WO2017126019A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2017126019A1
WO2017126019A1 PCT/JP2016/051348 JP2016051348W WO2017126019A1 WO 2017126019 A1 WO2017126019 A1 WO 2017126019A1 JP 2016051348 W JP2016051348 W JP 2016051348W WO 2017126019 A1 WO2017126019 A1 WO 2017126019A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat tube
center plane
cross
heat exchanger
section
Prior art date
Application number
PCT/JP2016/051348
Other languages
English (en)
French (fr)
Inventor
前田 剛志
裕樹 宇賀神
石橋 晃
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680078569.7A priority Critical patent/CN108474623A/zh
Priority to EP16886262.1A priority patent/EP3406996A4/en
Priority to JP2017562187A priority patent/JP6647319B2/ja
Priority to PCT/JP2016/051348 priority patent/WO2017126019A1/ja
Priority to US15/775,050 priority patent/US10514216B2/en
Publication of WO2017126019A1 publication Critical patent/WO2017126019A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0471Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • F28D1/0476Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/10Particular layout, e.g. for uniform temperature distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Definitions

  • the present invention relates to a heat exchanger having a flat tube.
  • fins that are arranged with a predetermined fin pitch interval and that include a plurality of plate-like fins extending in the direction of gravity and a plurality of heat transfer tubes (hereinafter referred to as flat tubes) having a flat cross section.
  • An and tube type heat exchanger is known.
  • Each flat tube is bonded to the fin by brazing or the like, and is extended in the horizontal direction so as to cross the fin.
  • the edge part of each flat tube is connected to the divider
  • heat exchange fluid such as air flowing between the fins and a heat exchange fluid such as water or refrigerant flowing in the flat tube.
  • frost moisture in the air
  • a defrosting mode is provided for the purpose of preventing the increase in draft resistance due to frost formation, deterioration of heat transfer performance, and damage to the heat exchanger. Will freeze again and grow into a larger frost. Therefore, when the drainage is poor, it is necessary to lengthen the time of the defrosting operation, and as a result, the comfort and the average heating capacity are reduced.
  • Patent Document 1 discloses a heat exchanger in which a flat tube is inclined in the direction of gravity for the purpose of improving drainage (see Patent Document 1).
  • the first row of the flat tubes configured in two rows in the flow direction of the heat exchange fluid (air or the like) is inclined downward toward the leeward, and the flat tubes are Arranged in a staggered pattern.
  • the purpose of arranging the flat tubes in a staggered manner is to increase the flow velocity of the heat transfer surface of the flat tubes in the second row by causing the heat exchange fluid that has passed through the first row to collide with the flat tubes in the second row. It is to improve the heat transfer performance.
  • the heat transfer tube is a circular tube or when the flat tube is not inclined, the main flow direction of the heat exchange fluid that passes through the first row of heat transfer tubes substantially coincides with the plane passing through the center between the first row of heat transfer tubes. Therefore, the heat transfer performance could be improved by the general staggered arrangement in which the second row of heat transfer tubes are arranged on the surface passing through the center between the first row of heat transfer tubes.
  • the present invention was made to solve the above-described problems, and provides a heat exchanger that ensures heat transfer performance while improving drainage performance in a flat tube.
  • the heat exchanger includes a first heat transfer section having a plurality of first flat tubes arranged at equal intervals with a distance Dp in the direction of gravity, and the flow direction of the heat exchange medium orthogonal to the direction of gravity.
  • a second heat transfer section that is located downstream from the first heat transfer section and has a plurality of second flat tubes that are spaced apart by a distance Dp in the direction of gravity and are arranged at equal intervals.
  • the flat tube has an angle formed by the first cross-section center plane, which is a virtual center plane in the short axis direction of the flow path cross section, and the flow direction, and the front edge portion is lower than the rear edge portion in the flow direction.
  • the plurality of second flat tubes are arranged between a second cross-sectional center plane that is a virtual central plane in the minor axis direction of the flow path cross section and an upstream end portion in the flow direction.
  • a pair of adjacent frontmost edge lines having a frontmost edge line that is an intersection line and a first frontmost edge line positioned above in the gravitational direction and a lower side in the gravitational direction
  • the first frontmost edge line, and the first cross-sectional center plane located between the first frontmost edge line and the second frontmost edge line,
  • the heat exchanger includes a first heat transfer section having a plurality of first flat tubes arranged at equal intervals in the gravity direction at a distance Dp, and a flow direction of the heat exchange medium orthogonal to the gravity direction.
  • a second heat transfer section that is located downstream of the first heat transfer section and has a plurality of second flat tubes that are spaced apart by a distance Dp in the gravitational direction and arranged at equal intervals.
  • an angle formed by the first cross-sectional center plane which is a virtual central plane in the short axis direction of the flow path cross section and the flow direction is ⁇ 1, and the front edge portion is higher than the rear edge portion in the flow direction.
  • the plurality of second flat tubes are arranged between a second cross-sectional center plane that is a virtual central plane in the minor axis direction of the flow path cross section and an upstream end portion in the flow direction.
  • FIG. 1 is a plan view showing a heat exchanger 1 according to Embodiment 1.
  • FIG. 1 is a side view showing a heat exchanger 1 according to Embodiment 1.
  • FIG. 3 is a plan view showing first fin 10 and second fin 20 according to Embodiment 1.
  • FIG. It is sectional drawing of the 1st flat tube 11 (2nd flat tube 21) with which the 1st fin 10 (2nd fin 20) which concerns on Embodiment 1 was mounted
  • worn It is a top view which shows the flow-velocity distribution of the heat exchanger 2 which concerns on the comparative example 1.
  • FIG. 3 is a plan view showing a flow velocity distribution of the heat exchanger 1 according to Embodiment 1.
  • FIG. 6 is a plan view showing a heat exchanger 1 according to Embodiment 2.
  • FIG. 1 is a plan view showing a heat exchanger 1 according to Embodiment 1.
  • FIG. 6 is a plan view showing first fins 10 and second fins 20 according to Embodiment 2.
  • FIG. It is sectional drawing of the 1st flat tube 11 (2nd flat tube 21) with which the 1st fin 10 (2nd fin 20) which concerns on Embodiment 2 was mounted
  • FIG. 6 is a top view which shows the flow-velocity distribution of the heat exchanger 2 which concerns on the comparative example 2.
  • FIG. 6 is a plan view showing a flow velocity distribution of the heat exchanger 1 according to Embodiment 2.
  • FIG. 6 is a plan view showing a heat exchanger 1 according to Embodiment 3.
  • FIG. 6 is a plan view showing first fin 10 and second fin 20 according to Embodiment 3.
  • FIG. 6 is a plan view showing a flow velocity distribution of a heat exchanger 1 according to Embodiment 3.
  • FIG. It is the graph which showed the relationship between inclination-angle (theta) of the flat tube which concerns on Embodiment 1, 2, and residual water amount. It is the graph which showed the relationship between inclination-angle (theta) of the flat tube which concerns on Embodiment 1, 2, pressure loss (DELTA) P, and heat transfer coefficient (alpha). It is the graph which showed the relationship between the eccentricity (xi) of the flat tube which concerns on Embodiment 1, 2, and balance ratio. It is the graph which showed the relationship between inclination-angle (theta) and (xi) max of the flat tube which concerns on Embodiment 1,2.
  • the heat exchanger according to the present invention will be described with reference to the drawings.
  • the configuration of the outdoor unit described below is merely an example, and the heat exchanger according to the present invention is not limited to such a configuration.
  • symbol is attached
  • symbol is abbreviate
  • the illustration of the fine structure is simplified or omitted as appropriate.
  • overlapping or similar descriptions are appropriately simplified or omitted.
  • FIG. 1 is a plan view showing a heat exchanger 1 according to Embodiment 1.
  • FIG. FIG. 2 is a side view showing the heat exchanger 1 according to the first embodiment.
  • FIG. 3 is a plan view showing the first fin 10 and the second fin 20 according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the first flat tube 11 (second flat tube 21) attached to the first fin 10 (second fin 20) according to the first embodiment.
  • the heat exchanger 1 will be described below with reference to FIGS.
  • the heat exchanger 1 includes a first heat transfer unit 100 and a second heat transfer unit 200.
  • the first heat transfer unit 100 is disposed on the upstream side of the second heat transfer unit 200 in the flow direction (X-axis direction) of air that is a heat exchange fluid.
  • the first heat transfer unit 100 includes a plurality of first fins 10 and a plurality of first flat tubes 11.
  • the plurality of first fins 10 are formed in a plate shape extending in the gravitational direction (Z-axis direction).
  • the plurality of first fins 10 has a predetermined fin pitch Fp in a direction (Y-axis direction) perpendicular to the air flow direction (X-axis direction) and perpendicular to the gravity direction (Z-axis direction). It is arranged in the space.
  • the plurality of first flat tubes 11 extend in the Y-axis direction and are disposed so as to cross the plurality of first fins 10.
  • the plurality of first fins 10 and the plurality of first flat tubes 11 are integrally bonded by brazing.
  • the first fin 10 is made of, for example, aluminum or aluminum alloy.
  • the first fin 10 is provided with a notch region 13 and a drainage region 14.
  • the cutout region 13 is a region in which a plurality of first cutout portions 12 are formed in the longitudinal direction that is the gravitational direction (Z-axis direction).
  • the first notch portion 12 of the first fin 10 is shaped along the outer diameter of the first flat tube 11 from the one side portion 10a side of the first fin 10 toward the other side portion 10b side as shown in FIG. It is cut into a long shape.
  • a plurality of first cutout portions 12 are formed in the same shape in parallel.
  • the first flat tube 11 is inserted into the first notch 12 and brazed.
  • the drainage region 14 is a region where the first notch 12 is not formed in the longitudinal direction (Z-axis direction) and the first fins 10 are connected.
  • the drainage area 14 is an area where water adhering to the first fin 10 is discharged in the direction of gravity.
  • the drainage region 14 is disposed on the upstream side of the cutout region 13 (on the other side portion 10b side of the first fin 10) in the flow direction (X-axis direction) of the air that is the heat exchange fluid.
  • the first notch 12 has a semicircular shape in which the back portion 12 a on the one side 10 a side of the first fin 10 matches the shape of the first flat tube 11.
  • the back part 12a in the 1st notch part 12 may be elliptical shape.
  • a straight line in the gravity direction (Z-axis direction) passing through the end of the back portion 12 a in the first cutout portion 12 is a boundary line between the cutout region 13 and the drainage region 14.
  • the first cutout portion 12 is an insertion portion 12 b in which one side portion 10 a side of the first fin 10 is expanded in the width direction of the first cutout portion 12. Due to the shape of the insertion portion 12b, the operation of inserting the first flat tube 11 into the first cutout portion 12 is facilitated.
  • the first cutout portion 12 is located on the back portion 12a side lower than the insertion portion 12b side in the gravitational direction (Z-axis direction).
  • the first notch 12 has an angle formed by a notch center plane KA1 that is a virtual center plane in the short direction (width direction) of the first notch 12 and the horizontal plane HA with a predetermined inclination. It is formed so as to be inclined at an angle ⁇ 1.
  • the distance in the gravitational direction (Z-axis direction) of the first cutouts 12 adjacent in the vertical direction is constant at a step pitch (distance) Dp as shown in FIG.
  • the intersection of the back part 12a of the 1st notch part 12, and the notch center plane KA1 be the deepest point 12c.
  • the plurality of first flat tubes 11 are attached to the plurality of first cutout portions 12 of the first fin 10 and intersect the first fin 10.
  • the cross-sectional shape of the outer shell of the first flat tube 11 has a pair of first surface portion 11b and second surface portion 11c facing each other as shown in FIG. 4, and a first arc portion 11d and a second arc portion at both ends. 11e.
  • a plurality of refrigerant flow paths 11a partitioned by a partition wall 11f are formed inside each constituent surface of these outer shells.
  • the cross-sectional shape of the outer shell of the first flat tube 11 may have a substantially elliptical cross section.
  • a groove may be formed on the wall surface of the refrigerant channel 11 a, that is, the inner wall surface of the first flat tube 11.
  • the first flat tube 11 is made of, for example, aluminum or an aluminum alloy.
  • the first flat tube 11 is attached to the first notch 12, and the first arc portion 11d (the front edge of the present invention which is upstream in the flow direction (X-axis direction) of the air as the heat exchange fluid) ) Side of the second circular arc portion 11e (corresponding to the rear edge portion of the present invention which is downstream in the flow direction (X-axis direction) of the air as the heat exchange fluid) in the direction of gravity (Z-axis direction).
  • the first flat tube 11 is fixed to the first cutout portion 12, and therefore, in the short axis direction (in the first surface portion 11b and the second surface portion 11c) in the flow path cross section of the first flat tube 11.
  • the first cross-section center plane CA1 and the cut-out center plane KA1 that are virtual center planes in the vertical direction are the same plane.
  • the first flat tube 11 is disposed so that the angle formed by the first cross-section center plane CA1 and the horizontal plane HA is a predetermined inclination angle ⁇ 1.
  • the distance of the gravity direction (Z-axis direction) of the 1st flat tube 11 adjacent to the upper and lower sides is constant with the step pitch (distance) Dp.
  • An intersection line between the first arc portion 11d and the first cross-section center plane CA1 is defined as the forefront edge line 11g of the first flat tube 11.
  • the deepest point 12c of the 1st notch part 12 and the forefront edge line 11g of the 1st flat tube 11 will become the same position, and will contact.
  • the second heat transfer unit 200 includes a plurality of second fins 20 and a plurality of second flat tubes 21.
  • the plurality of second fins 20 are formed in a plate shape extending in the gravity direction (Z-axis direction).
  • the plurality of second fins 20 have a predetermined fin pitch Fp in a direction (Y-axis direction) perpendicular to the air flow direction (X-axis direction) and perpendicular to the gravity direction (Z-axis direction). It is arranged in the space.
  • the plurality of second flat tubes 21 extend in the Y-axis direction and are disposed so as to cross the plurality of second fins 20.
  • the plurality of second fins 20 and the plurality of second flat tubes 21 are integrally bonded by brazing.
  • the second fin 20 is made of, for example, aluminum or aluminum alloy.
  • the second fin 20 is provided with a notch region 23 and a drainage region 24.
  • the cutout region 23 is a region in which a plurality of second cutout portions 22 are formed in the longitudinal direction that is the gravitational direction (Z-axis direction).
  • the second notch portion 22 of the second fin 20 is shaped along the outer diameter of the second flat tube 21 from the one side portion 20a side of the second fin 20 toward the other side portion 20b side as shown in FIG. It is cut into a long shape.
  • a plurality of second cutout portions 22 are formed in the same shape in parallel.
  • the second flat tube 21 is inserted into the second notch 22 and brazed.
  • the drainage region 24 is a region where the second notches 22 are not formed in the longitudinal direction (Z-axis direction) and the second fins 20 are connected.
  • the drainage area 24 is an area where water adhering to the second fin 20 is discharged in the direction of gravity.
  • the drainage region 24 is disposed on the upstream side of the cutout region 23 (on the other side 20b side of the first fin 10) in the flow direction (X-axis direction) of the air that is the heat exchange fluid.
  • the second notch 22 has a semicircular shape in which the back portion 22 a on the one side 20 a side of the second fin 20 matches the shape of the second flat tube 21.
  • the back part 22a in the 2nd notch part 22 may be elliptical shape.
  • a straight line in the gravity direction (Z-axis direction) passing through the end of the back portion 22 a in the second cutout portion 22 is a boundary line between the cutout region 23 and the drainage region 24.
  • the second cutout portion 22 is an insertion portion 22 b in which one side portion 20 a side of the second fin 20 is expanded in the width direction of the second cutout portion 22. Due to the shape of the insertion portion 22b, the operation of inserting the second flat tube 21 into the second cutout portion 22 is facilitated.
  • the second cutout portion 22 is located on the back portion 22a side below the insertion portion 22b side in the gravitational direction (Z-axis direction).
  • the second notch 22 has an angle formed by a notch center plane KA ⁇ b> 2 that is a virtual center plane in the short direction (width direction) of the second notch 22 and the horizontal plane HA with a predetermined inclination. It is formed so as to be inclined at an angle ⁇ 2.
  • the distance in the gravitational direction (Z-axis direction) between the second notches 22 adjacent in the vertical direction is constant at a step pitch (distance) Dp as shown in FIG.
  • the intersection of the back portion 22a of the second notch 22 and the notch center plane KA1 is defined as the deepest point 22c.
  • the plurality of second flat tubes 21 are attached to the plurality of second notches 22 of the second fin 20 and intersect the second fin 20.
  • the cross-sectional shape of the outer shell of the second flat tube 21 has a pair of first surface portion 21b and second surface portion 21c facing each other, and a first arc portion 21d and a second arc portion at both ends. 21e.
  • a plurality of refrigerant flow paths 21a partitioned by a partition wall 21f are formed inside the constituent surfaces of these outer shells.
  • the cross-sectional shape of the outline of the second flat tube 21 may have a substantially elliptical cross-section.
  • the first flat tube 11 is made of, for example, aluminum or an aluminum alloy.
  • the second flat tube 21 is attached to the second notch 22, and the first circular arc portion 21d (the upper edge on the upstream side in the air flow direction (X-axis direction) as the heat exchange fluid) is the first side.
  • 2 arc part 21e (the lower edge part which becomes the downstream in the flow direction (X-axis direction) of the air as the heat exchange fluid) is located below in the gravitational direction (Z-axis direction).
  • the second flat tube 21 is fixed to the second notch 22, and therefore, in the short axis direction (in the first surface portion 21 b and the second surface portion 21 c) in the flow path cross section of the second flat tube 21.
  • the second cross-sectional center plane CA2 and the notch center plane KA2 in the vertical direction) are the same plane.
  • the second flat tube 21 is disposed so that an angle formed by the second cross-section center plane CA2 and the horizontal plane HA becomes a predetermined tilt angle ⁇ 2.
  • the inclination angle ⁇ 1 and the inclination angle ⁇ 2 according to the first embodiment are the same angle.
  • the distance of the gravity direction (Z-axis direction) of the 2nd flat tube 21 adjacent up and down is constant with the step pitch (distance) Dp.
  • An intersection line between the first circular arc portion 21d and the second cross-section center plane CA2 is defined as the forefront edge line 21g of the second flat tube 21. Then, the deepest point 22c of the 2nd notch part 22 and the forefront edge line 21g of the 2nd flat tube 21 will become the same position, and will contact.
  • the eccentricity ⁇ is a coefficient in the range of 0 ⁇ ⁇ ⁇ 0.5.
  • the plurality of first flat tubes 11 are arranged in the short axis direction in the flow path cross section.
  • the angle formed by the first cross-section center plane CA1 serving as the virtual center plane and the air flow direction (X-axis direction) is ⁇ 1.
  • the plurality of second flat tubes 21 are arranged such that an angle formed between the second cross-section center plane CA2 that is a virtual center plane in the short-axis direction in the flow path cross section and the air flow direction (X-axis direction) is ⁇ 2.
  • first flat tube 11 and the second flat tube 21 are such that the front edge portions (first arc portions 11d, 21d) are rear edge portions (second arc portions 11e, 21e) in the air flow direction (X-axis direction). ) And are arranged so as to be lower than ().
  • the plurality of second flat tubes 21 have a foremost edge line 21g on the upstream side in the flow direction, and a pair of foremost edge lines 21g adjacent in the gravitational direction (Z-axis direction) are positioned upward in the gravitational direction. It includes a first foremost edge line 21g-1 and a second foremost edge line 21g-2 located below in the direction of gravity. Then, the first frontmost edge line 21g-1 and the first cross-section center plane CA1 of the first flat tube 11 located between the first frontmost edge line 21g-1 and the second frontmost edge line 21g-2 are: It arrange
  • FIG. 5 is a plan view showing a flow velocity distribution of the heat exchanger 2 according to Comparative Example 1.
  • FIG. 6 is a plan view showing a flow velocity distribution of the heat exchanger 1 according to the first embodiment.
  • symbol are provided and demonstrated to the structure which is common in the heat exchanger 1 in Embodiment 1.
  • the air that has flowed into the heat exchanger 1 according to Embodiment 1 and the heat exchanger 2 according to Comparative Example 1 is separated at the lower portion of the front edge portion (first arc portion 11d) of the first flat tube 11.
  • the main flow of air inside the first heat transfer unit 100 drifts not along the inclination angle ⁇ 1 of the first flat tube 11 and rises in the direction of the second flat tube 21 at an angle smaller than ⁇ 1. enter in. Therefore, as shown in FIG. 5, the main flow of the air that has passed through the first heat transfer section 100 is an intermediate surface MA of the first cross-section center plane CA1 (cut-out center plane KA1) of the pair of first flat tubes 11 arranged vertically. It flows into the 2nd heat-transfer part 200 at a position lower than this, and an angle smaller than inclination-angle (theta) 1 of the 1st flat tube 11.
  • the residence area where the wind speed downstream of the 1st flat tube 11 is slow to the upper surface vicinity of the 2nd flat tube 21 is significantly lower than the wind speed below the second flat tube 21. That is, the flow velocity distribution that forms the high wind speed region on both the upper and lower surfaces of the second flat tube 21, which is the aim of staggered arrangement of the flat tubes, is not realized, and the heat transfer performance is reduced.
  • the first cross-section center plane CA1 (notch center plane KA1) of the first flat tube 11 and the second cross-section center plane CA2 (cut-out center plane) of the second flat tube 21.
  • the water droplets adhering to the notch region 13 fall in the direction of gravity on the notch region 13.
  • the water drops that have fallen on the cutout region 13 reach the first surface portion 11 b that is the upper surface of the first flat tube 11.
  • the water droplets that have reached the first surface portion 11b of the first flat tube 11 flow down to the first arc portion 11d side (front edge portion side) of the first flat tube 11 through the first surface portion 11b due to the influence of gravity.
  • Most of the water droplets flowing to the first arc portion 11d side flow into the drainage region 14 using the flow velocity, and are discharged below the first heat transfer portion 100.
  • Water droplets that have not flowed into the drainage region 14 from the cutout region 13 travel along the second arc portion 11e of the first flat tube 11 and wrap around the second surface portion 11c, which is the lower surface of the first flat tube 11.
  • This water droplet stays on the second surface portion 11c of the first flat tube 11 and grows in a state where the surface tension, gravity, static friction force and the like are balanced.
  • the retained water droplets are not affected by the surface tension when the gravity applied to the water droplets exceeds the force above the gravity direction (upward direction of the Z axis) such as the surface tension, and the second surface portion 11c of the first flat tube 11 is detached. Then fall.
  • the drainage regions 14 and 24 are arranged on the windward side, and the cutout regions 13 and 23 are arranged on the leeward side. Since the drainage areas 14 and 24 are far from the first flat tube 11 and the second flat tube 21 compared to the cutout areas 13 and 23, the cutout area is obtained when the heat exchanger 1 is used as an evaporator. Compared with 13 and 23, the surface temperature becomes higher. Therefore, in the heat exchanger 1 which concerns on Embodiment 1 which used the drainage areas 14 and 24 as the windward side, there exists an effect which suppresses the amount of frost formation, and, as a result, defrost operation time can be suppressed.
  • the drainage performance is improved by inclining the first flat tube 11 and the second flat tube 21, and the second flat tube 21 with respect to the first flat tube 11.
  • the position it is possible to efficiently contact the heat exchange fluid with the second flat tube 21 and obtain a heat exchanger that ensures heat transfer performance.
  • FIG. 1 In the heat exchanger 1 according to the second embodiment, the configuration of the first notch 12 and the second notch 22 formed in the first fin 10 and the second fin 20 is the heat exchanger 1 according to the first embodiment. And different. Therefore, this difference will be mainly described. Since the structure which concerns on the other heat exchanger 1 is common in Embodiment 1, description is abbreviate
  • FIG. 7 is a plan view showing the heat exchanger 1 according to the second embodiment.
  • FIG. 8 is a side view showing the heat exchanger 1 according to the second embodiment.
  • FIG. 9 is a plan view showing the first fin 10 and the second fin 20 according to the second embodiment.
  • FIG. 10 is a cross-sectional view of the first flat tube 11 (second flat tube 21) attached to the first fin 10 (second fin 20) according to the second embodiment.
  • the heat exchanger 1 will be described below with reference to FIGS.
  • the first fin 10 is provided with a cutout region 13 and a drainage region 14.
  • the cutout region 13 is a region in which a plurality of first cutout portions 12 are formed in the longitudinal direction that is the gravitational direction (Z-axis direction).
  • the first notch portion 12 of the first fin 10 has a shape along the outer diameter of the first flat tube 11 from the one side portion 10a side to the other side portion 10b side of the first fin 10 as shown in FIG. It is cut into a long shape.
  • a plurality of first cutout portions 12 are formed in the same shape in parallel.
  • the first flat tube 11 is inserted into the first notch 12 and brazed.
  • the drainage region 14 is a region where the first notch 12 is not formed in the longitudinal direction (Z-axis direction) and the first fins 10 are connected.
  • the drainage area 14 is an area where water adhering to the first fin 10 is discharged in the direction of gravity.
  • the drainage region 14 is disposed on the downstream side of the cutout region 13 (on the other side portion 10b side of the first fin 10) in the flow direction (X-axis direction) of the air that is the heat exchange fluid.
  • the first cutout portion 12 is located on the back portion 12a side lower than the insertion portion 12b side in the gravitational direction (Z-axis direction).
  • the first notch 12 has an angle formed by a notch center plane KA1 that is a virtual center plane in the short direction (width direction) of the first notch 12 and the horizontal plane HA with a predetermined inclination. It is formed so as to be inclined at an angle ⁇ 1. Further, the distance in the gravitational direction (Z-axis direction) of the first cutouts 12 adjacent in the vertical direction is constant at a step pitch (distance) Dp as shown in FIG.
  • the plurality of first flat tubes 11 are attached to the plurality of first cutout portions 12 of the first fin 10 and intersect the first fin 10.
  • the cross-sectional shape of the outer shell of the first flat tube 11 has a pair of first surface portion 11b and second surface portion 11c that face each other as shown in FIG. 10, and a first arc portion 11d and a second arc portion at both ends. 11e.
  • a plurality of refrigerant flow paths 11a partitioned by a partition wall 11f are formed inside each constituent surface of these outer shells.
  • the cross-sectional shape of the outer shell of the first flat tube 11 may have a substantially elliptical cross section.
  • a groove may be formed on the wall surface of the refrigerant channel 11 a, that is, the inner wall surface of the first flat tube 11.
  • the first flat tube 11 is made of, for example, aluminum or an aluminum alloy.
  • the first flat tube 11 is attached to the first notch 12, and the first arc portion 11d (the front edge of the present invention which is upstream in the flow direction (X-axis direction) of the air as the heat exchange fluid) ) Side of the second circular arc portion 11e (corresponding to the rear edge portion of the present invention which is downstream in the flow direction (X-axis direction) of the air as the heat exchange fluid) in the direction of gravity (Z-axis direction).
  • the first flat tube 11 is fixed to the first cutout portion 12, and therefore, in the short axis direction (in the first surface portion 11b and the second surface portion 11c) in the flow path cross section of the first flat tube 11.
  • the first cross-section center plane CA1 and the cut-out center plane KA1 that are virtual center planes in the vertical direction are the same plane.
  • the first flat tube 11 is disposed so that the angle formed by the first cross-section center plane CA1 and the horizontal plane HA is a predetermined inclination angle ⁇ 1.
  • the distance of the gravity direction (Z-axis direction) of the 1st flat tube 11 adjacent to the upper and lower sides is constant with the step pitch (distance) Dp.
  • An intersection line between the first arc portion 11d and the first cross-section center plane CA1 is defined as the forefront edge line 11g of the first flat tube 11.
  • the second fin 20 is provided with a notch region 23 and a drainage region 24.
  • the cutout region 23 is a region in which a plurality of second cutout portions 22 are formed in the longitudinal direction that is the gravitational direction (Z-axis direction).
  • the second notch portion 22 of the second fin 20 is shaped along the outer diameter of the second flat tube 21 from the one side portion 20a side of the second fin 20 toward the other side portion 20b side as shown in FIG. It is cut into a long shape.
  • a plurality of second cutout portions 22 are formed in the same shape in parallel.
  • the second flat tube 21 is inserted into the second notch 22 and brazed.
  • the drainage region 24 is a region where the second notches 22 are not formed in the longitudinal direction (Z-axis direction) and the second fins 20 are connected.
  • the drainage area 24 is an area where water adhering to the second fin 20 is discharged in the direction of gravity.
  • the drainage region 24 is disposed on the downstream side of the notch region 23 (the other side portion 20b side of the first fin 10) in the flow direction (X-axis direction) of the air that is the heat exchange fluid.
  • the second cutout portion 22 is located on the back portion 22a side below the insertion portion 22b side in the gravitational direction (Z-axis direction).
  • the second notch 22 has an angle formed by a notch center plane KA ⁇ b> 2 that is a virtual center plane in the short direction (width direction) of the second notch 22 and the horizontal plane HA with a predetermined inclination. It is formed so as to be inclined at an angle ⁇ 2.
  • the distance in the gravitational direction (Z-axis direction) between the second notches 22 adjacent in the vertical direction is constant at a step pitch (distance) Dp as shown in FIG.
  • the plurality of second flat tubes 21 are attached to the plurality of second cutout portions 22 of the second fin 20 as shown in FIG. 7 and intersect the second fin 20.
  • the cross-sectional shape of the outer shell of the second flat tube 21 has a pair of first surface portion 21b and second surface portion 21c facing each other as shown in FIG. 10, and a first arc portion 21d and a second arc portion at both ends. 21e.
  • a plurality of refrigerant flow paths 21a partitioned by a partition wall 21f are formed inside the constituent surfaces of these outer shells.
  • the cross-sectional shape of the outline of the second flat tube 21 may have a substantially elliptical cross-section.
  • a groove may be formed on the wall surface of the refrigerant flow path 21 a, that is, the inner wall surface of the second flat tube 21.
  • the second flat tube 21 is made of, for example, aluminum or aluminum alloy.
  • the second flat tube 21 is attached to the second notch 22, and the first circular arc portion 21d (the upper edge on the upstream side in the air flow direction (X-axis direction) as the heat exchange fluid) is the first side.
  • Two arcuate portions 21e (the lower edge portion on the downstream side in the flow direction of air (X-axis direction) as the heat exchange fluid) are positioned above the gravitational direction (Z-axis direction).
  • the second flat tube 21 is fixed to the second notch 22, and therefore, in the short axis direction (in the first surface portion 21 b and the second surface portion 21 c) in the flow path cross section of the second flat tube 21.
  • the second cross-section center plane CA2 and the notch center plane KA2 that are virtual center planes in the vertical direction) are the same plane.
  • the second flat tube 21 is disposed so that an angle formed by the second cross-section center plane CA2 and the horizontal plane HA becomes a predetermined tilt angle ⁇ 2.
  • the inclination angle ⁇ 1 and the inclination angle ⁇ 2 according to the first embodiment are the same angle.
  • the distance of the gravity direction (Z-axis direction) of the 2nd flat tube 21 adjacent up and down is constant with the step pitch (distance) Dp.
  • An intersection line between the first circular arc portion 21d and the second cross-section center plane CA2 is defined as the forefront edge line 21g of the second flat tube 21.
  • the eccentricity ⁇ is a coefficient in the range of 0 ⁇ ⁇ ⁇ 0.5.
  • the plurality of first flat tubes 11 are arranged in the short axis direction in the flow path cross section.
  • the angle formed by the first cross-section center plane CA1 serving as the virtual center plane and the air flow direction (X-axis direction) is ⁇ 1.
  • the plurality of second flat tubes 21 are arranged such that an angle formed between the second cross-section center plane CA2 that is a virtual center plane in the short-axis direction in the flow path cross section and the air flow direction (X-axis direction) is ⁇ 2.
  • first flat tube 11 and the second flat tube 21 are such that the front edge portions (first arc portions 11d, 21d) are rear edge portions (second arc portions 11e, 21e) in the air flow direction (X-axis direction). ) And are arranged so as to be higher than the above.
  • the plurality of second flat tubes 21 have a foremost edge line 21g on the upstream side in the flow direction, and a pair of foremost edge lines 21g adjacent in the gravitational direction (Z-axis direction) are positioned upward in the gravitational direction. It includes a first foremost edge line 21g-1 and a second foremost edge line 21g-2 located below in the direction of gravity. Then, the second frontmost edge line 21g-2 and the first cross-section center plane CA1 of the first flat tube 11 located between the first frontmost edge line 21g-1 and the second frontmost edge line 21g-2 are: It arrange
  • FIG. 11 is a plan view showing the flow velocity distribution of the heat exchanger 2 according to Comparative Example 2.
  • FIG. 12 is a plan view showing a flow velocity distribution of the heat exchanger 1 according to the second embodiment.
  • symbol are provided and demonstrated to the structure which is common in the heat exchanger 1 in Embodiment 2.
  • the air that has flowed into the heat exchanger 1 according to the second embodiment and the heat exchanger 2 according to the comparative example 2 is separated at the lower portion of the front edge portion (first arc portion 11d) of the first flat tube 11.
  • the main flow of air inside the first heat transfer unit 100 drifts not along the inclination angle ⁇ 1 of the first flat tube 11 and descends toward the second flat tube 21 at an angle smaller than ⁇ 1. enter in. Therefore, as shown in FIG. 11, the main flow of the air that has passed through the first heat transfer section 100 is an intermediate surface MA of the first cross-section center plane CA1 (cut-out center plane KA1) of the pair of first flat tubes 11 aligned vertically. It will flow into the 2nd heat-transfer part 200 at an angle smaller than the inclination-angle (theta) 1 of the 1st flat tube 11 in a position higher than this.
  • the residence area where the wind speed downstream of the 1st flat tube 11 is slow to the lower surface vicinity of the 2nd flat tube 21 The wind speed below the second flat tube 21 is significantly lower than the wind speed above the second flat tube 21. That is, the flow velocity distribution that forms the high wind speed region on both the upper and lower surfaces of the second flat tube 21, which is the aim of staggered arrangement of the flat tubes, is not realized, and the heat transfer performance is reduced.
  • the first cross-section center plane CA1 (notch center plane KA1) of the first flat tube 11 and the second cross-section center plane CA2 (cut-out center plane) of the second flat tube 21.
  • the water droplets adhering to the notch region 13 fall in the direction of gravity on the notch region 13.
  • the water drops that have fallen on the cutout region 13 reach the first surface portion 11 b that is the upper surface of the first flat tube 11.
  • the water droplets that have reached the first surface portion 11b of the first flat tube 11 flow down to the second arc portion 11e side (rear edge portion side) of the first flat tube 11 through the first surface portion 11b due to the influence of gravity.
  • Most of the water droplets flowing to the second arc portion 11e side flow into the drainage region 14 using the flow velocity and are discharged below the first heat transfer portion 100.
  • Water droplets that have not flowed into the drainage region 14 from the cutout region 13 travel along the second arc portion 11e of the first flat tube 11 and wrap around the second surface portion 11c, which is the lower surface of the first flat tube 11.
  • This water droplet stays on the second surface portion 11c of the first flat tube 11 and grows in a state where the surface tension, gravity, static friction force and the like are balanced.
  • the retained water droplets are not affected by the surface tension when the gravity applied to the water droplets exceeds the force above the gravity direction (upward direction of the Z axis) such as the surface tension, and the second surface portion 11c of the first flat tube 11 is detached. Then fall.
  • the drainage performance is improved by inclining the first flat tube 11 and the second flat tube 21, and the second flat tube 21 with respect to the first flat tube 11.
  • the position it is possible to efficiently contact the heat exchange fluid with the second flat tube 21 and obtain a heat exchanger that ensures heat transfer performance.
  • Embodiment 3 In the heat exchanger 1 according to the third embodiment, the configuration of the first notch 12 and the second notch 22 formed in the first fin 10 and the second fin 20 is the heat exchanger 1 according to the first embodiment. And different. Therefore, this difference will be mainly described. Since the structure which concerns on the other heat exchanger 1 is common in Embodiment 1, description is abbreviate
  • FIG. 13 is a plan view showing the heat exchanger 1 according to the third embodiment.
  • FIG. 14 is a plan view showing first fin 10 and second fin 20 according to the third embodiment.
  • FIG. 15 is a plan view showing a flow velocity distribution of the heat exchanger 1 according to the third embodiment. The configuration and operation of the heat exchanger 1 will be described below based on FIGS.
  • the air that has flowed into the heat exchanger 1 is peeled off at the lower portion of the front edge portion (first arc portion 11d) of the first flat tube 11.
  • the main flow of air inside the first heat transfer unit 100 drifts not along the inclination angle ⁇ 1 of the first flat tube 11 and rises toward the second flat tube 21 at an angle smaller than ⁇ 1. enter in.
  • the heat exchanger 1 according to Embodiment 3 has basically the same configuration as that of Embodiment 1 described above, but the second flattening is performed in accordance with the rising angle of the mainstream inside the first heat transfer unit 100.
  • the inclination angle ⁇ 2 of the tube 21 is formed smaller than the inclination angle ⁇ 1 of the first flat tube 11.
  • the plurality of second flat tubes 21 are arranged such that an angle formed between the second cross-sectional center plane CA2 serving as a virtual central plane in the short-axis direction in the cross-section of the flow path and the air flow direction (X-axis direction) is ⁇ 2. Is done.
  • the first flat tube 11 and the second flat tube 21 are such that the front edge portions (first arc portions 11d and 21d) are more than the rear edge portions (second arc portions 11e and 21e) in the air flow direction (X-axis direction). Are also inclined so as to be on the lower side.
  • the plurality of second flat tubes 21 have a foremost edge line 21g on the upstream side in the flow direction, and a pair of foremost edge lines 21g adjacent in the gravitational direction (Z-axis direction) are positioned upward in the gravitational direction. It includes a first foremost edge line 21g-1 and a second foremost edge line 21g-2 located below in the direction of gravity.
  • the first frontmost edge line 21g-1 and the first cross-section center plane CA1 of the first flat tube 11 located between the first frontmost edge line 21g-1 and the second frontmost edge line 21g-2 are: It arrange
  • the inclination angle ⁇ 2 of the second flat tube 21 is set to be greater than the inclination angle ⁇ 1 of the first flat tube 11 in accordance with the rising angle of the main flow inside the first heat transfer unit 100. Formed small.
  • ⁇ 1 30 °
  • ⁇ 2 20 °
  • FIG. 16 is a graph showing the relationship between the inclination angle ⁇ of the flat tube and the amount of residual water according to the first and second embodiments.
  • FIG. 18 is a graph showing the relationship between the eccentricity ⁇ and the balance ratio of the flat tubes according to the first and second embodiments.
  • FIG. 19 is a graph showing the relationship between the inclination angle ⁇ and ⁇ max of the flat tubes according to the first and second embodiments.
  • the heat exchanger 1 in which the balance ratio between the heat transfer coefficient ⁇ and the pressure loss ⁇ P becomes an optimum value by adjusting the eccentricity ⁇ by the inclination angles ⁇ 1 and ⁇ 2 of the first flat tube 11 and the second flat tube 21. Can be obtained.
  • the heat exchanger according to Embodiments 1 and 3 is (1) A first heat transfer unit 100 having a plurality of first flat tubes 11 arranged at equal intervals apart from each other by a distance Dp in the direction of gravity, and a first heat transfer unit in the flow direction of the heat exchange medium orthogonal to the direction of gravity. And a second heat transfer section 200 having a plurality of second flat tubes 21 arranged at equal intervals spaced apart by a distance Dp in the direction of gravity, and a plurality of first flat tubes 11.
  • the angle between the first cross-section center plane CA1 that is the virtual center plane in the short axis direction of the flow path section and the flow direction is ⁇ 1, and the front edge portion (first arc portion 11d) in the flow direction is the rear edge portion (
  • the plurality of second flat tubes 21 are arranged so as to be lower than the second arc portion 11e), and the plurality of second flat tubes 21 are connected to the second cross-section center plane CA2 that is a virtual center plane in the minor axis direction of the flow path cross section
  • the frontmost edge line 21g that is a line of intersection with the upstream end of the direction, and a pair of adjacent frontmost edge lines 21g A first foremost edge line 21g-1 positioned upward in the direction and a second foremost edge line 21g-2 positioned downward in the direction of gravity, the first foremost edge line 21g-1 and the first foremost line
  • the first cross-section center plane CA1 located between the edge line 21g-1 and the second forefront edge line 21g-2 is disposed so as to be separated by a distance W,
  • the wind speed above the 2nd flat tube 21 changes to the comparative example 1 of FIG. Compared to increase. That is, the high wind speed region is formed on both the upper and lower surfaces of the second flat tube 21 as originally intended for the staggered arrangement of the flat tubes, and the heat transfer performance can be improved. Further, the drainage performance can be improved by inclining the first flat tube 11 and the second flat tube 21.
  • the plurality of second flat tubes 21 have an angle formed by the second cross-section center plane CA2 and the flow direction of the heat exchange fluid as ⁇ 2, and the front edge portion is below the rear edge portion in the flow direction.
  • the angle ⁇ 1 and the angle ⁇ 2 are the same value. Then, since the 1st flat tube 11 and the 2nd flat tube 21 incline in the same direction at the same angle, while being able to suppress the channel resistance of a heat exchange fluid, manufacturing cost can be reduced.
  • the plurality of second flat tubes 21 have an angle formed by the second cross-sectional center plane CA2 and the flow direction of the heat exchange fluid as ⁇ 2, and the front edge portion is below the rear edge portion in the flow direction.
  • the angle ⁇ 1 is arranged to be inclined, and is configured to be larger than the angle ⁇ 2.
  • the flow of the front edge portion (first arc portion 21d) of the second flat tube 21 is made smooth to suppress pressure loss, and the bias of the wind speed on the upper and lower surfaces of the second flat tube 21 is suppressed, thereby improving the heat exchange efficiency.
  • the heat exchanger 1 with good quality can be obtained.
  • the first heat transfer unit 100 includes a plurality of first fins 10 that intersect with the first flat tube 11, and the second heat transfer unit 200 includes a plurality of second fins 20 that intersect with the second flat tube 21.
  • the first fin 10 is formed with a first notch 12 for fixing the first flat tube 11 to the downstream side in the flow direction of the heat exchange fluid
  • the second fin 20 has the second flat
  • a second notch 22 for fixing the tube 21 is formed to open downstream in the flow direction of the heat exchange fluid.
  • the drainage areas 14 and 24 are arranged on the leeward side
  • the cutout areas 13 and 23 are arranged on the leeward side.
  • the cutout area is obtained when the heat exchanger 1 is used as an evaporator. Compared with 13 and 23, the surface temperature becomes higher. Therefore, in the heat exchanger 1 which concerns on Embodiment 1 which used the drainage areas 14 and 24 as the windward side, there exists an effect which suppresses the amount of frost formation, and, as a result, defrost operation time can be suppressed.
  • the heat exchanger according to Embodiments 2 and 3 is (5) A first heat transfer unit 100 having a plurality of first flat tubes 11 arranged at equal intervals spaced apart by a distance Dp in the direction of gravity, and a first heat transfer unit in the flow direction of the heat exchange medium orthogonal to the direction of gravity. And a second heat transfer section 200 having a plurality of second flat tubes 21 arranged at equal intervals spaced apart by a distance Dp in the direction of gravity, and a plurality of first flat tubes 11.
  • the angle between the first cross-section center plane CA1 that is the virtual center plane in the short axis direction of the flow path section and the flow direction is ⁇ 1, and the front edge portion (first arc portion 11d) in the flow direction is the rear edge portion (
  • the plurality of second flat tubes 21 are arranged so as to be higher than the second arc portion 11e), and the plurality of second flat tubes 21 are connected to the second cross-section center plane CA2 that is a virtual center plane in the minor axis direction of the flow path cross section
  • the frontmost edge line 21g that is a line of intersection with the upstream end of the direction, and a pair of adjacent frontmost edge lines 21g A first foremost edge line 21g-1 positioned upward in the direction and a second foremost edge line 21g-2 positioned downward in the direction of gravity.
  • the high wind speed region is formed on both the upper and lower surfaces of the second flat tube 21 as originally intended for the staggered arrangement of the flat tubes, and the heat transfer performance can be improved. Further, the drainage performance can be improved by inclining the first flat tube 11 and the second flat tube 21.
  • the plurality of second flat tubes 21 have an angle formed by the second cross-section center plane CA2 and the flow direction of the heat exchange fluid as ⁇ 2, and the front edge portion is higher than the rear edge portion in the flow direction.
  • the angle ⁇ 1 and the angle ⁇ 2 are the same value. Then, since the 1st flat tube 11 and the 2nd flat tube 21 incline in the same direction at the same angle, while being able to suppress the channel resistance of a heat exchange fluid, manufacturing cost can be reduced.
  • the plurality of second flat tubes 21 have an angle formed by the second cross-section center plane CA2 and the flow direction of the heat exchange fluid as ⁇ 2, and the front edge portion is higher than the rear edge portion in the flow direction.
  • the angle ⁇ 1 is arranged to be inclined, and is configured to be larger than the angle ⁇ 2. Then, as shown in FIG. 15, the inflow angle of the air flowing into the second flat tube 21 at an angle smaller than the inclination angle ⁇ 1 of the first flat tube 11 and the inclination angle ⁇ 2 of the second flat tube 21 are matched. be able to.
  • the flow of the front edge portion (first arc portion 21d) of the second flat tube 21 is made smooth to suppress pressure loss, and the bias of the wind speed on the upper and lower surfaces of the second flat tube 21 is suppressed, thereby improving the heat exchange efficiency.
  • the heat exchanger 1 with good quality can be obtained.
  • the first heat transfer unit 100 includes a plurality of first fins 10 that intersect with the first flat tube 11, and the second heat transfer unit 200 includes a plurality of second fins 20 that intersect with the second flat tube 21.
  • the first fin 10 is formed with a first notch 12 that fixes the first flat tube 11 opened upstream in the flow direction, and the second flat tube 21 is fixed to the second fin 20.
  • the second cutout portion 22 is formed so as to open to the upstream side in the flow direction. Then, since the drainage areas 14 and 24 can be arranged on the leeward side, water droplets can be guided to the drainage areas 14 and 24 using the air flow during the defrosting operation. Thereby, drainage improves and it can control defrost operation time.
  • the angle ⁇ 1 is a value of 20 ° or less. Then, it becomes possible to secure the drainage performance of the first flat tube 11 and reduce the pressure loss when the heat exchange fluid passes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 本発明に係る熱交換器は、重力方向に距離Dp離間して等間隔に並んだ複数の第1扁平管を有する第1伝熱部と、重力方向と直交する熱交換媒体の流通方向で前記第1伝熱部よりも下流側に位置し、重力方向に距離Dp離間して等間隔に並んだ複数の第2扁平管を有する第2伝熱部と、を有し、前記複数の第1扁平管は、流路断面の短軸方向の仮想中心面である第1断面中心面と、前記流通方向と、の成す角度がθ1となり、前記流通方向で前縁部が後縁部よりも下方となるように傾斜して配置され、前記複数の第2扁平管は、流路断面の短軸方向の仮想中心面である第2断面中心面と、前記流通方向の上流側の端部との交線である最前縁線を有し、隣り合う一対の前記最前縁線は、重力方向で上方に位置する第1最前縁線と、重力方向で下方に位置する第2最前縁線と、で構成され、前記第1最前縁線と、前記第1最前縁線と前記第2最前縁線との間に位置する前記第1断面中心面とは、距離W離間するように配置され、前記距離Wは、W=ξ×Dp×cosθ1として、0≦ξ<0.5の範囲を満たすように構成されたものである。

Description

熱交換器
 本発明は、扁平管を有する熱交換器に関する。
 従来、所定のフィンピッチ間隔を有して配置されるとともに、重力方向に延設された板状の複数のフィンと、断面が扁平形状の複数の伝熱管(以下、扁平管)とを備えるフィンアンドチューブ型の熱交換器が知られている。各扁平管は、フィンに対してろう付け等で接着されるとともに、フィンを横切るように水平方向に延設される。なお、各扁平管の端部は、扁平管と共に冷媒流路を形成する分配器又はヘッダ等に接続されている。そして、熱交換器において、フィンの間を流動する空気等の熱交換流体と、扁平管内を流動する水又は冷媒等の被熱交換流体との間で熱が交換される。
 伝熱管として扁平管を用いた熱交換器では、円管を用いた熱交換器と比較して、管内の伝熱面積を大きく確保できることに加え、熱交換流体の通風抵抗を抑制することができるため、伝熱性能を向上させることができる。一方で、熱交換器の排水性能については、その断面形状により、扁平管の管面に水滴が残留しやすく、円管と比較して排水性が劣る傾向にある。
 例えば、空気調和機の暖房運転時には、熱交換流体である空気中の水分が凝縮して室外機の熱交換器に付着して霜となる。着霜による通風抵抗の増加や伝熱性能の低下、さらには熱交換器の損傷を防ぐことを目的に除霜モードを備えるのが一般的であるが、水滴が残留した場合には、この水滴は再び氷結してさらに大きな霜に成長してしまう。したがって、排水性が悪い場合には、除霜運転の時間を長くする必要があり、その結果、快適性の低下や平均暖房能力の低下を招くこととなる。
 そこで、特許文献1には、排水性の向上を目的に、扁平管を重力方向に傾斜させた熱交換器が開示されている(特許文献1を参照)。
特開2007-183088号公報
 特許文献1に開示された熱交換器では、熱交換流体(空気等)の流通方向に2列で構成された扁平管の1列目を風下に向かって下り勾配に傾斜させるとともに、扁平管を千鳥状に配置している。扁平管を千鳥状に配置する目的は、1列目を通過した熱交換流体を、2列目の扁平管に衝突させることにより、2列目の扁平管の伝熱面の流速を増大して、伝熱性能を向上させることにある。
 伝熱管が円管の場合や扁平管を傾斜させない場合、1列目の伝熱管を通過する熱交換流体の主流方向は、1列目の伝熱管間の中央を通る面とほぼ一致する。したがって、1列目の伝熱管間の中央を通る面上に2列目の伝熱管を配置する一般的な千鳥状配置により、伝熱性能を向上させることができた。
 しかしながら、特許文献1に開示された熱交換器では、1列目の扁平管が傾斜しているため、その前縁で熱交換流体の剥離が生じる。すると、2列目の扁平管に流入する熱交換流体の主流方向が1列目の扁平管の傾斜方向からずれて、1列目の伝熱管間の中央を通る面から離れてしまう。この現象により、一般的な千鳥状配置では、伝熱管の2列目が有効に熱交換できず、伝熱性能を向上できないという課題であった。
 本発明は、上記のような課題を解決するためになされたもので、扁平管における排水性能を向上しつつ、伝熱性能を確保する熱交換器を提供するものである。
本発明に係る熱交換器は、重力方向に距離Dp離間して等間隔に並んだ複数の第1扁平管を有する第1伝熱部と、重力方向と直交する熱交換媒体の流通方向で前記第1伝熱部よりも下流側に位置し、重力方向に距離Dp離間して等間隔に並んだ複数の第2扁平管を有する第2伝熱部と、を有し、前記複数の第1扁平管は、流路断面の短軸方向の仮想中心面である第1断面中心面と、前記流通方向と、の成す角度がθ1となり、前記流通方向で前縁部が後縁部よりも下方となるように傾斜して配置され、前記複数の第2扁平管は、流路断面の短軸方向の仮想中心面である第2断面中心面と、前記流通方向の上流側の端部との交線である最前縁線を有し、隣り合う一対の前記最前縁線は、重力方向で上方に位置する第1最前縁線と、重力方向で下方に位置する第2最前縁線と、で構成され、前記第1最前縁線と、前記第1最前縁線と前記第2最前縁線との間に位置する前記第1断面中心面とは、距離W離間するように配置され、前記距離Wは、W=ξ×Dp×cosθ1として、0≦ξ<0.5の範囲を満たすように構成されたものである。
 本発明に係る熱交換器は、重力方向に距離Dp離間して等間隔に並んだ複数の第1扁平管を有する第1伝熱部と、前記重力方向と直交する熱交換媒体の流通方向で前記第1伝熱部よりも下流側に位置し、前記重力方向に距離Dp離間して等間隔に並んだ複数の第2扁平管を有する第2伝熱部と、を有し、前記複数の第1扁平管は、流路断面の短軸方向の仮想中心面である第1断面中心面と前記流通方向との成す角度がθ1となり、前記流通方向で前縁部が後縁部よりも上方となるように傾斜して配置され、前記複数の第2扁平管は、流路断面の短軸方向の仮想中心面である第2断面中心面と、前記流通方向の上流側の端部との交線である最前縁線を有し、隣り合う一対の前記最前縁線は、重力方向で上方に位置する第1最前縁線と、重力方向で下方に位置する第2最前縁線と、で構成され、前記第2最前縁線と、前記第1最前縁線と前記第2最前縁線との間に位置する前記第1断面中心面とは、距離W離間するように配置され、前記距離Wは、W=ξ×Dp×cosθ1として、0≦ξ<0.5の範囲を満たすように構成された熱交換器。
 本発明によれば、扁平管の排水性能を向上させつつ、伝熱性能を確保した熱交換器を得ることができる。
実施の形態1に係る熱交換器1を示す平面図である。 実施の形態1に係る熱交換器1を示す側面図である。 実施の形態1に係る第1フィン10と第2フィン20とを示す平面図である。 実施の形態1に係る第1フィン10(第2フィン20)に装着された第1扁平管11(第2扁平管21)の断面図である。 比較例1に係る熱交換器2の流速分布を示す平面図である。 実施の形態1に係る熱交換器1の流速分布を示す平面図である。 実施の形態2に係る熱交換器1を示す平面図である。 実施の形態2に係る熱交換器1を示す側面図である。 実施の形態2に係る第1フィン10と第2フィン20とを示す平面図である。 実施の形態2に係る第1フィン10(第2フィン20)に装着された第1扁平管11(第2扁平管21)の断面図である。 比較例2に係る熱交換器2の流速分布を示す平面図である。 実施の形態2に係る熱交換器1の流速分布を示す平面図である。 実施の形態3に係る熱交換器1を示す平面図である。 実施の形態3に係る第1フィン10と第2フィン20とを示す平面図である。 実施の形態3に係る熱交換器1の流速分布を示す平面図である。 実施の形態1、2に係る扁平管の傾斜角度θと残水量との関係を示したグラフである。 実施の形態1、2に係る扁平管の傾斜角度θと圧損△P及び熱伝達率αとの関係を示したグラフである。 実施の形態1、2に係る扁平管の偏心率ξとバランス比との関係を示したグラフである。 実施の形態1、2に係る扁平管の傾斜角度θとξmaxとの関係を示したグラフである。
 以下、本発明に係る熱交換器について、図面を用いて説明する。
 以下で説明する室外機の構成は一例に過ぎず、本発明に係る熱交換器は、そのような構成に限定されない。また、各図において、同一又は類似するものには、同一の符号を付すか、又は、符号を付すことを省略している。また、細かい構造については、適宜図示を簡略化又は省略している。また、重複又は類似する説明については、適宜簡略化又は省略している。
 実施の形態1.
 図1は、実施の形態1に係る熱交換器1を示す平面図である。
 図2は、実施の形態1に係る熱交換器1を示す側面図である。
 図3は、実施の形態1に係る第1フィン10と第2フィン20とを示す平面図である。
 図4は、実施の形態1に係る第1フィン10(第2フィン20)に装着された第1扁平管11(第2扁平管21)の断面図である。
 図1~図4に基づき、熱交換器1について以下に説明する。
 熱交換器1は、第1伝熱部100と第2伝熱部200を備えている。第1伝熱部100は、熱交換流体である空気の流れ方向(X軸方向)において、第2伝熱部200の上流側に配置される。
<第1伝熱部100の構成>
 第1伝熱部100は、複数の第1フィン10と複数の第1扁平管11から構成される。複数の第1フィン10は、重力方向(Z軸方向)に延びる板状に形成されている。複数の第1フィン10は、空気の流れ方向(X軸方向)に対して垂直で、かつ重力方向(Z軸方向)に対して垂直な方向(Y軸方向)に、所定のフィンピッチFpを空けて配置されている。複数の第1扁平管11はY軸方向に延び、複数の第1フィン10を横切るように配置されている。複数の第1フィン10と複数の第1扁平管11とは、ろう付けにより一体的に接着されている。第1フィン10は、例えばアルミニウム製又はアルミニウム合金製である。
 第1フィン10には、図1、3に示すように切欠領域13と、排水領域14とが設けられている。
 切欠領域13は、重力方向(Z軸方向)となる長手方向に複数の第1切欠部12が形成された領域である。第1フィン10の第1切欠部12は、図3に示すように第1フィン10の一側部10a側から他側部10b側に向かって、第1扁平管11の外径に沿った形状で長尺形状に切り欠かれている。第1切欠部12は、複数本が平行に同一形状として形成されている。第1切欠部12には、第1扁平管11が挿入されろう付けされる。
 排水領域14は、長手方向(Z軸方向)に第1切欠部12が形成されておらず、第1フィン10がつながって形成されている領域である。排水領域14は、第1フィン10に付着した水が重力方向に排出される領域である。排水領域14は、熱交換流体である空気の流れ方向(X軸方向)において、切欠領域13の上流側(第1フィン10の他側部10b側)に配置される。
 第1切欠部12は、第1フィン10の一側部10a側の奥部12aが第1扁平管11の形状に合わせて半円形状となっている。なお、第1切欠部12における奥部12aは、楕円形状となっていてもよい。
 第1切欠部12における奥部12aの端部を通る重力方向(Z軸方向)の直線が、切欠領域13と排水領域14との境界線となっている。
 第1切欠部12は、第1フィン10の一側部10a側が第1切欠部12の幅方向に拡開された挿入部12bとなっている。この挿入部12bの形状により、第1切欠部12への第1扁平管11の挿入作業を容易にしている。
 第1切欠部12は、奥部12a側が挿入部12b側よりも重力方向(Z軸方向)で下方に位置する。第1切欠部12は、図3に示すように、第1切欠部12の短尺方向(幅方向)の仮想中心面である切欠中心面KA1と水平方向面HAとの成す角度が、所定の傾斜角度θ1となるように傾斜して形成されている。また、上下に隣り合う第1切欠部12の重力方向(Z軸方向)の距離は、図3に示すように段ピッチ(距離)Dpで一定となっている。なお、第1切欠部12の奥部12aと、切欠中心面KA1との交点を最深点12cとする。
 複数の第1扁平管11は、図1に示すように第1フィン10の複数の第1切欠部12に装着され、第1フィン10と交差するものである。第1扁平管11の外郭の断面形状は、図4に示すように対向する一対の第1面部11bと第2面部11cとを有し、両端部には第1円弧部11dと第2円弧部11eとを有している。また、これら外郭の各構成面の内部には、仕切壁11fに仕切られた冷媒流路11aが複数形成されている。なお、第1扁平管11の外郭の断面形状は、略楕円形状の断面を有していてもよい。
 また、冷媒流路11aの壁面、即ち、第1扁平管11の内壁面には、溝が形成されてもよい。これにより、第1扁平管11の内壁面と冷媒との接触面積が増え、伝熱性能が向上する。第1扁平管11は、例えばアルミニウム製又はアルミニウム合金製である。
 第1扁平管11は、第1切欠部12に装着された状態で、第1円弧部11d(熱交換流体である空気の流れ方向(X軸方向)において上流側となる本発明の前縁部に相当する)側が第2円弧部11e(熱交換流体である空気の流れ方向(X軸方向)において下流側となる本発明の後縁部に相当する)側よりも重力方向(Z軸方向)で下方に位置する。また、前述のように、第1扁平管11は、第1切欠部12に固定されるため、第1扁平管11の流路断面における短軸方向(第1面部11bと第2面部11cとに垂直な方向)の仮想中心面である第1断面中心面CA1と切欠中心面KA1とは同一面となる。すると、第1扁平管11の第1断面中心面CA1と水平方向面HAとの成す角度が、所定の傾斜角度θ1となるように傾斜して配置される。そして、上下に隣り合う第1扁平管11の重力方向(Z軸方向)の距離は、段ピッチ(距離)Dpで一定となっている。
 また、第1円弧部11dと、第1断面中心面CA1との交線を第1扁平管11の最前縁線11gとする。すると、第1切欠部12の最深点12cと、第1扁平管11の最前縁線11gとは、同一位置となり接触することとなる。
<第2伝熱部200の構成>
 第2伝熱部200は、複数の第2フィン20と複数の第2扁平管21から構成される。複数の第2フィン20は、重力方向(Z軸方向)に延びる板状に形成されている。複数の第2フィン20は、空気の流れ方向(X軸方向)に対して垂直で、かつ重力方向(Z軸方向)に対して垂直な方向(Y軸方向)に、所定のフィンピッチFpを空けて配置されている。複数の第2扁平管21はY軸方向に延び、複数の第2フィン20を横切るように配置されている。複数の第2フィン20と複数の第2扁平管21とは、ろう付けにより一体的に接着されている。第2フィン20は、例えばアルミニウム製又はアルミニウム合金製である。
 第2フィン20には、図1、3に示すように切欠領域23と、排水領域24とが設けられている。
 切欠領域23は、重力方向(Z軸方向)となる長手方向に複数の第2切欠部22が形成された領域である。第2フィン20の第2切欠部22は、図3に示すように第2フィン20の一側部20a側から他側部20b側に向かって、第2扁平管21の外径に沿った形状で長尺形状に切り欠かれている。第2切欠部22は、複数本が平行に同一形状として形成されている。第2切欠部22には、第2扁平管21が挿入されろう付けされる。
 排水領域24は、長手方向(Z軸方向)に第2切欠部22が形成されておらず、第2フィン20がつながって形成されている領域である。排水領域24は、第2フィン20に付着した水が重力方向に排出される領域である。排水領域24は、熱交換流体である空気の流れ方向(X軸方向)において、切欠領域23の上流側(第1フィン10の他側部20b側)に配置される。
 第2切欠部22は、第2フィン20の一側部20a側の奥部22aが第2扁平管21の形状に合わせて半円形状となっている。なお、第2切欠部22における奥部22aは、楕円形状となっていてもよい。
 第2切欠部22における奥部22aの端部を通る重力方向(Z軸方向)の直線が、切欠領域23と排水領域24との境界線となっている。
 第2切欠部22は、第2フィン20の一側部20a側が第2切欠部22の幅方向に拡開された挿入部22bとなっている。この挿入部22bの形状により、第2切欠部22への第2扁平管21の挿入作業を容易にしている。
 第2切欠部22は、奥部22a側が挿入部22b側よりも重力方向(Z軸方向)で下方に位置する。第2切欠部22は、図3に示すように、第2切欠部22の短尺方向(幅方向)の仮想中心面である切欠中心面KA2と水平方向面HAとの成す角度が、所定の傾斜角度θ2となるように傾斜して形成されている。また、上下に隣り合う第2切欠部22の重力方向(Z軸方向)の距離は、図3に示すように段ピッチ(距離)Dpで一定となっている。なお、第2切欠部22の奥部22aと、切欠中心面KA1との交点を最深点22cとする。
 複数の第2扁平管21は、図1に示すように第2フィン20の複数の第2切欠部22に装着され、第2フィン20と交差するものである。第2扁平管21の外郭の断面形状は、図4に示すように対向する一対の第1面部21bと第2面部21cとを有し、両端部には第1円弧部21dと第2円弧部21eとを有している。また、これら外郭の各構成面の内部には、仕切壁21fに仕切られた冷媒流路21aが複数形成されている。なお、第2扁平管21の外郭の断面形状は、略楕円形状の断面を有していてもよい。
 また、冷媒流路21aの壁面、即ち、第2扁平管21の内壁面には、溝が形成されてもよい。これにより、第2扁平管21の内壁面と冷媒との接触面積が増え、伝熱性能が向上する。第1扁平管11は、例えばアルミニウム製又はアルミニウム合金製である。
 第2扁平管21は、第2切欠部22に装着された状態で、第1円弧部21d(熱交換流体である空気の流れ方向(X軸方向)において上流側となる上縁部)側が第2円弧部21e(熱交換流体である空気の流れ方向(X軸方向)において下流側となる下縁部)側よりも重力方向(Z軸方向)で下方に位置する。また、前述のように、第2扁平管21は、第2切欠部22に固定されるため、第2扁平管21の流路断面における短軸方向(第1面部21bと第2面部21cとに垂直な方向)の第2断面中心面CA2と切欠中心面KA2とは同一面となる。すると、第2扁平管21の第2断面中心面CA2と水平方向面HAとの成す角度が、所定の傾斜角度θ2となるように傾斜して配置される。
 なお、実施の形態1に係る傾斜角度θ1と傾斜角度θ2とは、同一角度となっている。そして、上下に隣り合う第2扁平管21の重力方向(Z軸方向)の距離は、段ピッチ(距離)Dpで一定となっている。
 また、第1円弧部21dと、第2断面中心面CA2との交線を第2扁平管21の最前縁線21gとする。すると、第2切欠部22の最深点22cと、第2扁平管21の最前縁線21gとは、同一位置となり接触することとなる。
<第1扁平管11と第2扁平管21との位置関係>
 重力方向(Z軸方向)で上下に隣り合わせる一組の第2切欠部22の切欠中心面KA2と、それらの間に位置する第1切欠部12の切欠中心面KA1との位置関係を説明する。
 図1、3に示すように、一組の第2切欠部22のうち重力方向(Z軸方向)の上方に位置する切欠中心面KA2と、この一組の切欠中心面KA2の間に位置する第1切欠部12の切欠中心面KA1と、の距離をWと定義する。実施の形態1に係る熱交換器1では、Wを段ピッチ(距離)Dpの関数として、W=ξ×Dp×cosθ1として表される。偏心率ξは、0≦ξ<0.5の範囲となる係数である。このような第1切欠部12と第2切欠部22との構成により、各切欠部に挿入される第1扁平管11と第2扁平管21との位置関係が決定する。
 すなわち、第1切欠部12と第2切欠部22とに第1扁平管11と第2扁平管21とが固定されると、複数の第1扁平管11は、流路断面における短軸方向の仮想中心面となる第1断面中心面CA1と空気の流通方向(X軸方向)との成す角度がθ1となって配置される。複数の第2扁平管21は、流路断面における短軸方向の仮想中心面となる第2断面中心面CA2と空気の流通方向(X軸方向)との成す角度がθ2となって配置される。
 また、第1扁平管11と第2扁平管21とは、空気の流通方向(X軸方向)で前縁部(第1円弧部11d、21d)が後縁部(第2円弧部11e、21e)よりも下方となるように傾斜して配置される。
 また、複数の第2扁平管21は、流通方向の上流側に最前縁線21gを有し、重力方向(Z軸方向)で隣り合う一対の最前縁線21gは、重力方向で上方に位置する第1最前縁線21g-1と、重力方向で下方に位置する第2最前縁線21g-2と、を含む。すると、第1最前縁線21g-1と、第1最前縁線21g-1と第2最前縁線21g-2との間に位置する第1扁平管11の第1断面中心面CA1とは、距離W離間するように配置される。ここで、距離Wは、W=ξ×Dp×cosθ1として、0≦ξ<0.5の範囲を満たす寸法となっている。
<第1扁平管11と第2扁平管21の配置の作用>
 実施の形態1における熱交換器1の作用について説明する。
 図5は、比較例1に係る熱交換器2の流速分布を示す平面図である。
 図6は、実施の形態1に係る熱交換器1の流速分布を示す平面図である。
 比較例1に係る熱交換器2は、上記の距離Wを、W=0.5×Dp×cosθ1とし、第1扁平管11と第2扁平管21とに一般的な千鳥配置を採用したものである。
 なお、比較例1の熱交換器2において、実施の形態1における熱交換器1と共通する構成には、同じ名称および同じ符号を付与して説明する。
 実施の形態1に係る熱交換器1、および、比較例1に係る熱交換器2の内部に流入した空気は、第1扁平管11の前縁部(第1円弧部11d)の下部で剥離する。これにより、第1伝熱部100の内部の空気の主流は、第1扁平管11の傾斜角度θ1には沿わずに偏流し、θ1よりも小さな角度で第2扁平管21方向に上昇しながら進入する。したがって、図5に示すように第1伝熱部100を通過した空気の主流は、上下に並ぶ一組の第1扁平管11の第1断面中心面CA1(切欠中心面KA1)の中間面MAよりも低い位置で、かつ、第1扁平管11の傾斜角度θ1よりも小さい角度で第2伝熱部200に流入することとなる。
 したがって、一般的な千鳥配置を採用した比較例1の熱交換器2では、図5に示すように第1扁平管11の下流の風速の遅い滞留域が、第2扁平管21の上面近傍まで伸びており、第2扁平管21の上方の風速が、第2扁平管21の下方の風速に比べて著しく低下している。すなわち、扁平管の千鳥配置の狙いである、第2扁平管21の上下面両面に高風速域を形成する流速分布が実現されず、伝熱性能が低下することとなる。
 これに対し、実施の形態1における熱交換器1では、第1扁平管11の第1断面中心面CA1(切欠中心面KA1)と第2扁平管21の第2断面中心面CA2(切欠中心面KA2)との距離Wを、W=ξ×Dp×cosθ1(0≦ξ<0.5)としている。すると、図6に示すように第1伝熱部100における空気の偏流に合わせて、第2扁平管21が配置されるため、第2扁平管21の上方の風速が図5の比較例1に比べて増大している。すなわち、扁平管の千鳥配置本来の狙いどおりに、第2扁平管21の上下面両面に高風速域が形成され、伝熱性能を向上させることができる。
<水滴の排出構造>
 次に、実施の形態1に係る熱交換器1の切欠領域13に付着した水滴の排出過程について、第1伝熱部100を用いて説明する。
 切欠領域13に付着した水滴は、切欠領域13上において重力方向に落下する。切欠領域13上を落下した水滴は、第1扁平管11の上面である第1面部11bに到達する。第1扁平管11の第1面部11bに到達した水滴は、重力の影響により、第1面部11bを伝って第1扁平管11の第1円弧部11d側(前縁部側)に流下する。第1円弧部11d側に流れた水滴は、その流速を利用して大部分が排水領域14に流入し第1伝熱部100の下方に排出される。
 切欠領域13から排水領域14に流入しなかった水滴は、第1扁平管11の第2円弧部11eを伝って第1扁平管11の下面である第2面部11cに回り込む。この水滴は、表面張力、重力及び静止摩擦力等が釣り合った状態で、第1扁平管11の第2面部11cに滞留して成長する。滞留した水滴は、水滴にかかる重力が表面張力等の重力方向上方(Z軸の上方向)の力に勝ると、表面張力の影響を受けなくなり、第1扁平管11の第2面部11cを離脱して落下する。
 なお、第2伝熱部200における切欠領域23に付着した水滴の排出過程は、第1伝熱部100の切欠領域13に付着した水滴の排出過程と同様であるため説明は省略する。
 実施の形態1に係る熱交換器1では、排水領域14、24を風上側に、切欠領域13及び23を風下側に配置した。排水領域14、24は、切欠領域13、23と比較して、第1扁平管11及び第2扁平管21からの距離が遠いため、熱交換器1を蒸発器として用いた場合に、切欠領域13、23と比較して表面温度が高くなる。したがって、排水領域14、24を風上側とした実施の形態1に係る熱交換器1では、着霜量を抑制する効果があり、結果として除霜運転時間を抑制することができる。
 なお、実施の形態1に係る熱交換器1では、一例として、θ1=θ2=30°、ξ=0.25と規定することができるが、この構成に限定されない。
<効果>
 実施の形態1に係る熱交換器1の構成によれば、第1扁平管11及び第2扁平管21を傾斜させることで排水性能を向上させるとともに、第1扁平管11に対する第2扁平管21の位置を特定することで第2扁平管21に熱交換流体を効率的に接触させ、伝熱性能を確保した熱交換器を得ることができる。
 実施の形態2.
 実施の形態2に係る熱交換器1は、第1フィン10と第2フィン20とに形成された第1切欠部12と第2切欠部22の構成が実施の形態1に係る熱交換器1と異なる。よって、この相違点を中心に説明する。その他の熱交換器1に係る構成は実施の形態1と共通のため説明を省略する。
 図7は、実施の形態2に係る熱交換器1を示す平面図である。
 図8は、実施の形態2に係る熱交換器1を示す側面図である。
 図9は、実施の形態2に係る第1フィン10と第2フィン20とを示す平面図である。
 図10は、実施の形態2に係る第1フィン10(第2フィン20)に装着された第1扁平管11(第2扁平管21)の断面図である。
 図7~図10に基づき、熱交換器1について以下に説明する。
<第1フィン10の構成>
 第1フィン10には、図7、9に示すように切欠領域13と、排水領域14とが設けられている。
 切欠領域13は、重力方向(Z軸方向)となる長手方向に複数の第1切欠部12が形成された領域である。第1フィン10の第1切欠部12は、図7に示すように第1フィン10の一側部10a側から他側部10b側に向かって、第1扁平管11の外径に沿った形状で長尺形状に切り欠かれている。第1切欠部12は、複数本が平行に同一形状として形成されている。第1切欠部12には、第1扁平管11が挿入されろう付けされる。
 排水領域14は、長手方向(Z軸方向)に第1切欠部12が形成されておらず、第1フィン10がつながって形成されている領域である。排水領域14は、第1フィン10に付着した水が重力方向に排出される領域である。排水領域14は、熱交換流体である空気の流れ方向(X軸方向)において、切欠領域13の下流側(第1フィン10の他側部10b側)に配置される。
 第1切欠部12は、奥部12a側が挿入部12b側よりも重力方向(Z軸方向)で下方に位置する。第1切欠部12は、図3に示すように、第1切欠部12の短尺方向(幅方向)の仮想中心面である切欠中心面KA1と水平方向面HAとの成す角度が、所定の傾斜角度θ1となるように傾斜して形成されている。また、上下に隣り合う第1切欠部12の重力方向(Z軸方向)の距離は、図3に示すように段ピッチ(距離)Dpで一定となっている。
 複数の第1扁平管11は、図7に示すように第1フィン10の複数の第1切欠部12に装着され、第1フィン10と交差するものである。第1扁平管11の外郭の断面形状は、図10に示すように対向する一対の第1面部11bと第2面部11cとを有し、両端部には第1円弧部11dと第2円弧部11eとを有している。また、これら外郭の各構成面の内部には、仕切壁11fに仕切られた冷媒流路11aが複数形成されている。なお、第1扁平管11の外郭の断面形状は、略楕円形状の断面を有していてもよい。
 また、冷媒流路11aの壁面、即ち、第1扁平管11の内壁面には、溝が形成されてもよい。これにより、第1扁平管11の内壁面と冷媒との接触面積が増え、伝熱性能が向上する。第1扁平管11は、例えばアルミニウム製又はアルミニウム合金製である。
 第1扁平管11は、第1切欠部12に装着された状態で、第1円弧部11d(熱交換流体である空気の流れ方向(X軸方向)において上流側となる本発明の前縁部に相当する)側が第2円弧部11e(熱交換流体である空気の流れ方向(X軸方向)において下流側となる本発明の後縁部に相当する)側よりも重力方向(Z軸方向)で上方に位置する。また、前述のように、第1扁平管11は、第1切欠部12に固定されるため、第1扁平管11の流路断面における短軸方向(第1面部11bと第2面部11cとに垂直な方向)の仮想中心面である第1断面中心面CA1と切欠中心面KA1とは同一面となる。すると、第1扁平管11の第1断面中心面CA1と水平方向面HAとの成す角度が、所定の傾斜角度θ1となるように傾斜して配置される。そして、上下に隣り合う第1扁平管11の重力方向(Z軸方向)の距離は、段ピッチ(距離)Dpで一定となっている。また、第1円弧部11dと、第1断面中心面CA1との交線を第1扁平管11の最前縁線11gとする。
<第2フィン20の構成>
 第2フィン20には、図7、9に示すように切欠領域23と、排水領域24とが設けられている。
 切欠領域23は、重力方向(Z軸方向)となる長手方向に複数の第2切欠部22が形成された領域である。第2フィン20の第2切欠部22は、図3に示すように第2フィン20の一側部20a側から他側部20b側に向かって、第2扁平管21の外径に沿った形状で長尺形状に切り欠かれている。第2切欠部22は、複数本が平行に同一形状として形成されている。第2切欠部22には、第2扁平管21が挿入されろう付けされる。
 排水領域24は、長手方向(Z軸方向)に第2切欠部22が形成されておらず、第2フィン20がつながって形成されている領域である。排水領域24は、第2フィン20に付着した水が重力方向に排出される領域である。排水領域24は、熱交換流体である空気の流れ方向(X軸方向)において、切欠領域23の下流側(第1フィン10の他側部20b側)に配置される。
 第2切欠部22は、奥部22a側が挿入部22b側よりも重力方向(Z軸方向)で下方に位置する。第2切欠部22は、図3に示すように、第2切欠部22の短尺方向(幅方向)の仮想中心面である切欠中心面KA2と水平方向面HAとの成す角度が、所定の傾斜角度θ2となるように傾斜して形成されている。また、上下に隣り合う第2切欠部22の重力方向(Z軸方向)の距離は、図9に示すように段ピッチ(距離)Dpで一定となっている。
 複数の第2扁平管21は、図7に示すように第2フィン20の複数の第2切欠部22に装着され、第2フィン20と交差するものである。第2扁平管21の外郭の断面形状は、図10に示すように対向する一対の第1面部21bと第2面部21cとを有し、両端部には第1円弧部21dと第2円弧部21eとを有している。また、これら外郭の各構成面の内部には、仕切壁21fに仕切られた冷媒流路21aが複数形成されている。なお、第2扁平管21の外郭の断面形状は、略楕円形状の断面を有していてもよい。
 また、冷媒流路21aの壁面、即ち、第2扁平管21の内壁面には、溝が形成されてもよい。これにより、第2扁平管21の内壁面と冷媒との接触面積が増え、伝熱性能が向上する。第2扁平管21は、例えばアルミニウム製又はアルミニウム合金製である。
 第2扁平管21は、第2切欠部22に装着された状態で、第1円弧部21d(熱交換流体である空気の流れ方向(X軸方向)において上流側となる上縁部)側が第2円弧部21e(熱交換流体である空気の流れ方向(X軸方向)において下流側となる下縁部)側よりも重力方向(Z軸方向)で上方に位置する。また、前述のように、第2扁平管21は、第2切欠部22に固定されるため、第2扁平管21の流路断面における短軸方向(第1面部21bと第2面部21cとに垂直な方向)の仮想中心面である第2断面中心面CA2と切欠中心面KA2とは同一面となる。すると、第2扁平管21の第2断面中心面CA2と水平方向面HAとの成す角度が、所定の傾斜角度θ2となるように傾斜して配置される。
 なお、実施の形態1に係る傾斜角度θ1と傾斜角度θ2は同一角度となっている。そして、上下に隣り合う第2扁平管21の重力方向(Z軸方向)の距離は、段ピッチ(距離)Dpで一定となっている。また、第1円弧部21dと、第2断面中心面CA2との交線を第2扁平管21の最前縁線21gとする。
<第1扁平管11と第2扁平管21との位置関係>
 重力方向(Z軸方向)で上下に隣り合わせる一組の第2切欠部22の切欠中心面KA2と、それらの間に位置する第1切欠部12の切欠中心面KA1との位置関係を説明する。
 図7、9に示すように、一組の第2切欠部22のうち重力方向(Z軸方向)の下方に位置する切欠中心面KA2と、この一組の切欠中心面KA2の間に位置する第1切欠部12の切欠中心面KA1と、の距離をWと定義する。実施の形態2に係る熱交換器1では、Wを段ピッチ(距離)Dpの関数として、W=ξ×Dp×cosθ1として表される。偏心率ξは、0≦ξ<0.5の範囲となる係数である。このような第1切欠部12と第2切欠部22との構成により、各切欠部に挿入される第1扁平管11と第2扁平管21との位置関係が決定する。
 すなわち、第1切欠部12と第2切欠部22とに第1扁平管11と第2扁平管21とが固定されると、複数の第1扁平管11は、流路断面における短軸方向の仮想中心面となる第1断面中心面CA1と空気の流通方向(X軸方向)との成す角度がθ1となって配置される。複数の第2扁平管21は、流路断面における短軸方向の仮想中心面となる第2断面中心面CA2と空気の流通方向(X軸方向)との成す角度がθ2となって配置される。
 また、第1扁平管11と第2扁平管21とは、空気の流通方向(X軸方向)で前縁部(第1円弧部11d、21d)が後縁部(第2円弧部11e、21e)よりも上方となるように傾斜して配置される。
 また、複数の第2扁平管21は、流通方向の上流側に最前縁線21gを有し、重力方向(Z軸方向)で隣り合う一対の最前縁線21gは、重力方向で上方に位置する第1最前縁線21g-1と、重力方向で下方に位置する第2最前縁線21g-2と、を含む。すると、第2最前縁線21g-2と、第1最前縁線21g-1と第2最前縁線21g-2との間に位置する第1扁平管11の第1断面中心面CA1とは、距離W離間するように配置される。ここで、距離Wは、W=ξ×Dp×cosθ1として、0≦ξ<0.5の範囲を満たす寸法となっている。
<第1扁平管11と第2扁平管21の配置の作用>
 実施の形態2における熱交換器1の作用について説明する。
 図11は、比較例2に係る熱交換器2の流速分布を示す平面図である。
 図12は、実施の形態2に係る熱交換器1の流速分布を示す平面図である。
 比較例2に係る熱交換器2は、上記の距離Wを、W=0.5×Dp×cosθ1とし、第1扁平管11と第2扁平管21とに一般的な千鳥配置を採用したものである。
 なお、比較例2の熱交換器2において、実施の形態2における熱交換器1と共通する構成には、同じ名称および同じ符号を付与して説明する。
 実施の形態2に係る熱交換器1、および、比較例2に係る熱交換器2の内部に流入した空気は、第1扁平管11の前縁部(第1円弧部11d)の下部で剥離する。これにより、第1伝熱部100の内部の空気の主流は、第1扁平管11の傾斜角度θ1には沿わずに偏流し、θ1よりも小さな角度で第2扁平管21方向に下降しながら進入する。したがって、図11に示すように第1伝熱部100を通過した空気の主流は、上下に並ぶ一組の第1扁平管11の第1断面中心面CA1(切欠中心面KA1)の中間面MAよりも高い位置で、かつ、第1扁平管11の傾斜角度θ1よりも小さい角度で第2伝熱部200に流入することとなる。
 したがって、一般的な千鳥配置を採用した比較例2の熱交換器2では、図11に示すように第1扁平管11の下流の風速の遅い滞留域が、第2扁平管21の下面近傍まで伸びており、第2扁平管21の下方の風速が、第2扁平管21の上方の風速に比べて著しく低下している。すなわち、扁平管の千鳥配置の狙いである、第2扁平管21の上下面両面に高風速域を形成する流速分布が実現されず、伝熱性能が低下することとなる。
 これに対し、実施の形態2における熱交換器1では、第1扁平管11の第1断面中心面CA1(切欠中心面KA1)と第2扁平管21の第2断面中心面CA2(切欠中心面KA2)との距離Wを、W=ξ×Dp×cosθ1(0≦ξ<0.5)としている。すると、図12に示すように第1伝熱部100における空気の偏流に合わせて、第2扁平管21が配置されるため、第2扁平管21の下方の風速が図11の比較例2に比べて増大している。すなわち、扁平管の千鳥配置本来の狙いどおりに、第2扁平管21の上下面両面に高風速域が形成され、伝熱性能を向上させることができる。
<水滴の排出構造>
 次に、実施の形態2に係る熱交換器1の切欠領域13に付着した水滴の排出過程について、第1伝熱部100を用いて説明する。
 切欠領域13に付着した水滴は、切欠領域13上において重力方向に落下する。切欠領域13上を落下した水滴は、第1扁平管11の上面である第1面部11bに到達する。第1扁平管11の第1面部11bに到達した水滴は、重力の影響により、第1面部11bを伝って第1扁平管11の第2円弧部11e側(後縁部側)に流下する。第2円弧部11e側に流れた水滴は、その流速を利用して大部分が排水領域14に流入し第1伝熱部100の下方に排出される。
 切欠領域13から排水領域14に流入しなかった水滴は、第1扁平管11の第2円弧部11eを伝って第1扁平管11の下面である第2面部11cに回り込む。この水滴は、表面張力、重力及び静止摩擦力等が釣り合った状態で、第1扁平管11の第2面部11cに滞留して成長する。滞留した水滴は、水滴にかかる重力が表面張力等の重力方向上方(Z軸の上方向)の力に勝ると、表面張力の影響を受けなくなり、第1扁平管11の第2面部11cを離脱して落下する。
 なお、第2伝熱部200における切欠領域23に付着した水滴の排出過程は、第1伝熱部100の切欠領域13に付着した水滴の排出過程と同様であるため説明は省略する。
 実施の形態2に係る熱交換器1では、排水領域14、24を風下側に配置したため、除霜運転時の空気流を利用して水滴を排水領域14、24に導くことができる。これにより、排水性が向上し、除霜運転時間を抑制することができる。
 なお、実施の形態2に係る熱交換器1では、一例として、θ1=θ2=30°、ξ=0.25と規定することができるが、この構成に限定されない。
<効果>
 実施の形態2に係る熱交換器1の構成によれば、第1扁平管11及び第2扁平管21を傾斜させることで排水性能を向上させるとともに、第1扁平管11に対する第2扁平管21の位置を特定することで第2扁平管21に熱交換流体を効率的に接触させ、伝熱性能を確保した熱交換器を得ることができる。
 実施の形態3.
 実施の形態3に係る熱交換器1は、第1フィン10と第2フィン20とに形成された第1切欠部12と第2切欠部22の構成が実施の形態1に係る熱交換器1と異なる。よって、この相違点を中心に説明する。その他の熱交換器1に係る構成は実施の形態1と共通のため説明を省略する。
 図13は、実施の形態3に係る熱交換器1を示す平面図である。
 図14は、実施の形態3に係る第1フィン10と第2フィン20とを示す平面図である。
 図15は、実施の形態3に係る熱交換器1の流速分布を示す平面図である。
 図13~15に基づき、熱交換器1の構成と作用について以下に説明する。
 実施の形態1で説明したように、熱交換器1の内部に流入した空気は、第1扁平管11の前縁部(第1円弧部11d)の下部で剥離する。これにより、第1伝熱部100内部の空気の主流は、第1扁平管11の傾斜角度θ1には沿わずに偏流し、θ1よりも小さな角度で第2扁平管21に向かって上昇しつつ進入する。
 実施の形態3に係る熱交換器1は、基本的には上述した実施の形態1と同様の構成であるが、第1伝熱部100の内部の主流の上昇角度に合わせて、第2扁平管21の傾斜角度θ2を、第1扁平管11の傾斜角度θ1よりも小さく形成した。
<第1扁平管11と第2扁平管21との位置関係>
 重力方向(Z軸方向)で上下に隣り合わせる一組の第2切欠部22の切欠中心面KA2と、それらの間に位置する第1切欠部12の切欠中心面KA1との位置関係を説明する。
 図13、14に示すように、第1切欠部12と第2切欠部22とに第1扁平管11と第2扁平管21とが固定されると、複数の第1扁平管11は、流路断面における短軸方向の仮想中心面となる第1断面中心面CA1と空気の流通方向(X軸方向)との成す角度がθ1となって配置される。また、複数の第2扁平管21は、流路断面における短軸方向の仮想中心面となる第2断面中心面CA2と空気の流通方向(X軸方向)との成す角度がθ2となって配置される。
 第1扁平管11と第2扁平管21とは、空気の流通方向(X軸方向)で前縁部(第1円弧部11d、21d)が後縁部(第2円弧部11e、21e)よりも下方となるように傾斜して配置される。
 また、複数の第2扁平管21は、流通方向の上流側に最前縁線21gを有し、重力方向(Z軸方向)で隣り合う一対の最前縁線21gは、重力方向で上方に位置する第1最前縁線21g-1と、重力方向で下方に位置する第2最前縁線21g-2と、を含む。すると、第1最前縁線21g-1と、第1最前縁線21g-1と第2最前縁線21g-2との間に位置する第1扁平管11の第1断面中心面CA1とは、距離W離間するように配置される。ここで、距離Wは、W=ξ×Dp×cosθ1として、0≦ξ<0.5の範囲を満たす寸法となっている。
 そして、図13、14に示すように、第1伝熱部100の内部の主流の上昇角度に合わせて、第2扁平管21の傾斜角度θ2を、第1扁平管11の傾斜角度θ1よりも小さく形成した。
<効果>
 この第2扁平管21の構成により、図15に示すように、第1扁平管11の傾斜角度θ1よりも小さな角度で第2扁平管21に流入する空気の流入角度と、第2扁平管21の傾斜角度θ2と、を合わせることができる。
 よって、第2扁平管21の前縁部(第1円弧部21d)の流れをスムーズにして圧損を抑制するとともに、第2扁平管21の上下面での風速の偏りを抑制し、熱交換効率の良い熱交換器1を得ることができる。
 なお、実施の形態3では、一例として、θ1=30°、θ2=20°、ξ=0.25と規定することができるが、この構成に限定されない。
<第1扁平管11及び第2扁平管21の傾斜角度θ1、θ2について>
 実施の形態1~3に係る熱交換器1において、排水性能を向上するには傾斜角度θ1及びθ2を大きくすることが望ましい。一方で、傾斜角度θ1及びθ2を大きくなると熱交換器1における空気側の圧損が増大してしまう。すなわち、排水性能と空気側の圧損とのバランスの取れた傾斜角度θ1及びθ2を選定することが重要となる。
 また、実施の形態1~3に係る熱交換器1において、熱伝達率αを向上させるには、第2扁平管21の管壁面で風速を上昇させる必要がある。しかしながら、風速が上昇すると空気側の圧損も増大してしまう。圧損が増大すると送風抵抗が増し、送風手段への負荷が増加する。すると、同風量を得るために送風手段の入力を上げる必要がある。また、送風手段への入力を維持すると送風量が少なくなり、結果として熱伝達率αは低下する。すなわち、熱伝達率αと空気側の圧損とのバランスの取れた傾斜角度θ1及びθ2を選定することも重要となる。
 図16は、実施の形態1、2に係る扁平管の傾斜角度θと残水量との関係を示したグラフである。
 図17は、実施の形態1、2に係る扁平管の傾斜角度θと圧損△P及び熱伝達率αとの関係を示したグラフである。
 なお、図16、17に係る第1扁平管11及び第2扁平管21の傾斜角度θ1、θ2は、θ1=θ2=θとし、ξ=0.25とした場合を示している。
 図16に示すように熱交換器1の残水量は、第1扁平管11及び第2扁平管21の傾斜角度θ=0°付近で一気に低下するが、20°以上になると飽和傾向となり、排水性能の大幅な向上は見込めない。また、図17に示すように第1扁平管11及び第2扁平管21の傾斜角度θが大きくなると、上下に並ぶ扁平管の間隙距離が狭まることで風速が増加する。すると、熱伝達率αは若干上昇するが、傾斜角度θが大きくなることに伴う圧損△Pの増大は、傾斜角度θ=45°でθ=0°の約2倍となりその増加が顕著である。したがって、傾斜角度θは、これらの結果から各性能のバランスを考慮し、20°以下とすることが望ましい。
 図18は、実施の形態1、2に係る扁平管の偏心率ξとバランス比との関係を示したグラフである。
 図18には、偏心率ξを第1扁平管11と第2扁平管21の傾斜角度θ1=θ2=0°~30°まで10°刻みで変化させ、バランス比(α0ξ/△Pξ)/(α0ξ0/△Pξ0)をプロットしている。
 バランス比は、熱伝達率αを圧損△Pで除した値の比であり、分母として、偏心率ξ=0のとき(第1扁平管11と第2扁平管21とが同一平面上に重なっているとき)を基準としている。
 すると、図18に示すように、第1扁平管11と第2扁平管21の傾斜角度θ1、θ2が大きいほど、バランス比が極大となる偏心率ξの値が小さくなることがわかる。これは、傾斜角度θ1、θ2が大きいほど、第1伝熱部100での偏流の度合いが大きくなるためである。
 また、傾斜角度θ1、θ2が小さいほど、バランス比の極大値が大きくなることもわかる。これは、傾斜角度θが小さいほど第1伝熱部100での偏流の度合いが小さくなり、圧損△Pが小さくなるためである。
 図19は、実施の形態1、2に係る扁平管の傾斜角度θとξmaxとの関係を示したグラフである。
 図19は、図18におけるバランス比が極大値となるときの偏心率ξ(ξmax)を縦軸とし、傾斜角度θをθ=θ1=θ2として横軸としたグラフである。θ=0のときは第1伝熱部100における偏流がないため、ξmax=0.5となる。傾斜角度θが増大するとξmaxは減少することが確認できる。すなわち、傾斜角度θに応じてバランス比が極大となる最適な偏心率ξが傾斜角度θごとに存在する。
 よって、第1扁平管11及び第2扁平管21の傾斜角度θ1、θ2により偏心率ξを調整することで、熱伝達率αと圧損△Pとのバランス比が最適値となる熱交換器1を得ることができる。
 実施の形態1、3に係る熱交換器は、
 (1)重力方向に距離Dp離間して等間隔に並んだ複数の第1扁平管11を有する第1伝熱部100と、重力方向と直交する熱交換媒体の流通方向で第1伝熱部100よりも下流側に位置し、重力方向に距離Dp離間して等間隔に並んだ複数の第2扁平管21を有する第2伝熱部200と、を有し、複数の第1扁平管11は、流路断面の短軸方向の仮想中心面である第1断面中心面CA1と流通方向との成す角度がθ1となり、流通方向で前縁部(第1円弧部11d)が後縁部(第2円弧部11e)よりも下方となるように傾斜して配置され、複数の第2扁平管21は、流路断面の短軸方向の仮想中心面である第2断面中心面CA2と、流通方向の上流側の端部との交線である最前縁線21gを有し、隣り合う一対の最前縁線21gは、重力方向で上方に位置する第1最前縁線21g-1と、重力方向で下方に位置する第2最前縁線21g-2と、で構成され、第1最前縁線21g-1と、第1最前縁線21g-1と第2最前縁線21g-2との間に位置する第1断面中心面CA1とは、距離W離間するように配置され、距離Wは、W=ξ×Dp×cosθ1として、0≦ξ<0.5の範囲を満たすものである。
 すると、図6に示すように第1伝熱部100における空気の偏流に合わせて、第2扁平管21が配置されるため、第2扁平管21の上方の風速が図5の比較例1に比べて増大する。すなわち、扁平管の千鳥配置本来の狙いどおりに、第2扁平管21の上下面両面に高風速域が形成され、伝熱性能を向上させることができる。また、第1扁平管11及び第2扁平管21を傾斜させることで排水性能を向上させることができる。
 また、上記(1)に記載の熱交換器において、
 (2)複数の第2扁平管21は、第2断面中心面CA2と熱交換流体の流通方向との成す角度がθ2となり、流通方向で前縁部が後縁部よりも下方となるように傾斜して配置され、角度θ1と角度θ2とは同一の値となるものである。
 すると、第1扁平管11及び第2扁平管21とが同一角度で同一方向に傾斜するため、熱交換流体の流路抵抗を抑制することができるとともに、製造コストを削減することができる。
 また、上記(1)に記載の熱交換器において、
 (3)複数の第2扁平管21は、第2断面中心面CA2と熱交換流体の流通方向との成す角度がθ2となり、流通方向で前縁部が後縁部よりも下方となるように傾斜して配置され、角度θ1は、角度θ2に比べて大きく構成されたものである。
 すると、図15に示すように、第1扁平管11の傾斜角度θ1よりも小さな角度で第2扁平管21に流入する空気の流入角度と、第2扁平管21の傾斜角度θ2と、を合わせることができる。
 よって、第2扁平管21の前縁部(第1円弧部21d)の流れをスムーズにして圧損を抑制するとともに、第2扁平管21の上下面での風速の偏りを抑制し、熱交換効率の良い熱交換器1を得ることができる。
 また、上記(1)~(3)に記載の熱交換器において、
 (4)第1伝熱部100は、第1扁平管11と交わる複数の第1フィン10を有し、第2伝熱部200は、第2扁平管21と交わる複数の第2フィン20を有し、第1フィン10には、第1扁平管11を固定する第1切欠部12が熱交換流体の流通方向の下流側に開口して形成され、第2フィン20には、第2扁平管21を固定する第2切欠部22が熱交換流体の流通方向の下流側に開口して形成されたものである。
 すると、排水領域14、24を風上側に、切欠領域13及び23を風下側に配置した構成となる。排水領域14、24は、切欠領域13、23と比較して、第1扁平管11及び第2扁平管21からの距離が遠いため、熱交換器1を蒸発器として用いた場合に、切欠領域13、23と比較して表面温度が高くなる。したがって、排水領域14、24を風上側とした実施の形態1に係る熱交換器1では、着霜量を抑制する効果があり、結果として除霜運転時間を抑制することができる。
 また、実施の形態2、3に係る熱交換器は、
 (5)重力方向に距離Dp離間して等間隔に並んだ複数の第1扁平管11を有する第1伝熱部100と、重力方向と直交する熱交換媒体の流通方向で第1伝熱部100よりも下流側に位置し、重力方向に距離Dp離間して等間隔に並んだ複数の第2扁平管21を有する第2伝熱部200と、を有し、複数の第1扁平管11は、流路断面の短軸方向の仮想中心面である第1断面中心面CA1と流通方向との成す角度がθ1となり、流通方向で前縁部(第1円弧部11d)が後縁部(第2円弧部11e)よりも上方となるように傾斜して配置され、複数の第2扁平管21は、流路断面の短軸方向の仮想中心面である第2断面中心面CA2と、流通方向の上流側の端部との交線である最前縁線21gを有し、隣り合う一対の最前縁線21gは、重力方向で上方に位置する第1最前縁線21g-1と、重力方向で下方に位置する第2最前縁線21g-2と、で構成され、第2最前縁線21g-2と、第1最前縁線21g-1と第2最前縁線21g-2との間に位置する第1断面中心面CA1とは、距離W離間するように配置され、距離Wは、W=ξ×Dp×cosθ1として、0≦ξ<0.5の範囲を満たすものである。
 すると、図12に示すように第1伝熱部100における空気の偏流に合わせて、第2扁平管21が配置されるため、第2扁平管21の下方の風速が図11の比較例2に比べて増大する。すなわち、扁平管の千鳥配置本来の狙いどおりに、第2扁平管21の上下面両面に高風速域が形成され、伝熱性能を向上させることができる。また、第1扁平管11及び第2扁平管21を傾斜させることで排水性能を向上させることができる。
 また、上記(5)に記載の熱交換器において、
 (6)複数の第2扁平管21は、第2断面中心面CA2と熱交換流体の流通方向との成す角度がθ2となり、流通方向で前縁部が後縁部よりも上方となるように傾斜して配置され、角度θ1と角度θ2とは同一の値となるものである。
 すると、第1扁平管11及び第2扁平管21とが同一角度で同一方向に傾斜するため、熱交換流体の流路抵抗を抑制することができるとともに、製造コストを削減することができる。
 また、上記(5)に記載の熱交換器において、
 (7)複数の第2扁平管21は、第2断面中心面CA2と熱交換流体の流通方向との成す角度がθ2となり、流通方向で前縁部が後縁部よりも上方となるように傾斜して配置され、角度θ1は、角度θ2に比べて大きく構成されたものである。
 すると、図15に示すように、第1扁平管11の傾斜角度θ1よりも小さな角度で第2扁平管21に流入する空気の流入角度と、第2扁平管21の傾斜角度θ2と、を合わせることができる。
 よって、第2扁平管21の前縁部(第1円弧部21d)の流れをスムーズにして圧損を抑制するとともに、第2扁平管21の上下面での風速の偏りを抑制し、熱交換効率の良い熱交換器1を得ることができる。
 また、上記(5)~(7)に記載の熱交換器において、
 (8)第1伝熱部100は、第1扁平管11と交わる複数の第1フィン10を有し、第2伝熱部200は、第2扁平管21と交わる複数の第2フィン20を有し、第1フィン10には、第1扁平管11を固定する第1切欠部12が流通方向の上流側に開口して形成され、第2フィン20には、第2扁平管21を固定する第2切欠部22が流通方向の上流側に開口して形成されたものである。
 すると、排水領域14、24を風下側に配置することができるため、除霜運転時の空気流を利用して水滴を排水領域14、24に導くことができる。これにより、排水性が向上し、除霜運転時間を抑制することができる。
 また、上記(1)~(8)に記載の熱交換器において、
 (9)角度θ1は、20°以下の値としたものである。
すると、第1扁平管11の排水性能を確保するとともに、熱交換流体が通過する際の圧損を低減することが可能となる。
 1、2 熱交換器、10 第1フィン、10a 一側部、10b 他側部、11 第1扁平管、11a 冷媒流路、11b 第1面部、11c 第2面部、11d 第1円弧部、11e 第2円弧部、11f 仕切壁、11g 最前縁線、12 第1切欠部、12a 奥部、12b 挿入部、12c 最深点、13 切欠領域、14 排水領域、20 第2フィン、20a 一側部、20b 他側部、21 第2扁平管、21a 冷媒流路、21b 第1面部、21c 第2面部、21d 第1円弧部、21e 第2円弧部、21f 仕切壁、21g 最前縁線、21g-1 第1最前縁線、21g-2 第2最前縁線、22 第2切欠部、22a 奥部、22b 挿入部、22c 最深点、23 切欠領域、24 排水領域、100 第1伝熱部、200 第2伝熱部、CA1 第1断面中心面、CA2 第2断面中心面、Dp 段ピッチ(距離)、Fp フィンピッチ、HA 水平方向面、KA1 切欠中心面、KA2 切欠中心面、MA 中間面、W 距離、θ1 傾斜角度、θ2 傾斜角度。

Claims (9)

  1.  重力方向に距離Dp離間して等間隔に並んだ複数の第1扁平管を有する第1伝熱部と、
     重力方向と直交する熱交換媒体の流通方向で前記第1伝熱部よりも下流側に位置し、重力方向に距離Dp離間して等間隔に並んだ複数の第2扁平管を有する第2伝熱部と、を有し、
     前記複数の第1扁平管は、
     流路断面の短軸方向の仮想中心面である第1断面中心面と、前記流通方向と、の成す角度がθ1となり、前記流通方向で前縁部が後縁部よりも下方となるように傾斜して配置され、
     前記複数の第2扁平管は、
     流路断面の短軸方向の仮想中心面である第2断面中心面と、前記流通方向の上流側の端部との交線である最前縁線を有し、
     隣り合う一対の前記最前縁線は、重力方向で上方に位置する第1最前縁線と、重力方向で下方に位置する第2最前縁線と、で構成され、
     前記第1最前縁線と、前記第1最前縁線と前記第2最前縁線との間に位置する前記第1断面中心面とは、距離W離間するように配置され、
     前記距離Wは、W=ξ×Dp×cosθ1として、0≦ξ<0.5の範囲を満たすように構成された熱交換器。
  2.  前記複数の第2扁平管は、前記第2断面中心面と前記流通方向との成す角度がθ2となり、前記流通方向で前縁部が後縁部よりも下方となるように傾斜して配置され、
     前記角度θ1と前記角度θ2とは同一の値である請求項1に記載の熱交換器。
  3.  前記複数の第2扁平管は、前記第2断面中心面と前記流通方向との成す角度がθ2となり、前記流通方向で前縁部が後縁部よりも下方となるように傾斜して配置され、
     前記角度θ1は、前記角度θ2に比べて大きく構成された請求項1に記載の熱交換器。
  4.  前記第1伝熱部は、前記第1扁平管と交わる複数の第1フィンを有し、
     前記第2伝熱部は、前記第2扁平管と交わる複数の第2フィンを有し、
     前記第1フィンには、前記第1扁平管を固定する第1切欠部が前記流通方向の下流側に開口して形成され、
     前記第2フィンには、前記第2扁平管を固定する第2切欠部が前記流通方向の下流側に開口して形成された請求項1~3のいずれか1項に記載の熱交換器。
  5.  重力方向に距離Dp離間して等間隔に並んだ複数の第1扁平管を有する第1伝熱部と、
     前記重力方向と直交する熱交換媒体の流通方向で前記第1伝熱部よりも下流側に位置し、前記重力方向に距離Dp離間して等間隔に並んだ複数の第2扁平管を有する第2伝熱部と、を有し、
     前記複数の第1扁平管は、
     流路断面の短軸方向の仮想中心面である第1断面中心面と前記流通方向との成す角度がθ1となり、前記流通方向で前縁部が後縁部よりも上方となるように傾斜して配置され、
     前記複数の第2扁平管は、
     流路断面の短軸方向の仮想中心面である第2断面中心面と、前記流通方向の上流側の端部との交線である最前縁線を有し、
     隣り合う一対の前記最前縁線は、重力方向で上方に位置する第1最前縁線と、重力方向で下方に位置する第2最前縁線と、で構成され、
     前記第2最前縁線と、前記第1最前縁線と前記第2最前縁線との間に位置する前記第1断面中心面とは、距離W離間するように配置され、
     前記距離Wは、W=ξ×Dp×cosθ1として、0≦ξ<0.5の範囲を満たすように構成された熱交換器。
  6.  前記複数の第2扁平管は、前記第2断面中心面と前記流通方向との成す角度がθ2となり、前記流通方向で前縁部が後縁部よりも上方となるように傾斜して配置され、
     前記角度θ1と前記角度θ2とは同一の値である請求項5に記載の熱交換器。
  7.  前記複数の第2扁平管は、前記第2断面中心面と前記流通方向との成す角度がθ2となり、前記流通方向で前縁部が後縁部よりも上方となるように傾斜して配置され、
     前記角度θ1は、前記角度θ2に比べて大きく構成された請求項5に記載の熱交換器。
  8.  前記第1伝熱部は、前記第1扁平管と交わる複数の第1フィンを有し、
     前記第2伝熱部は、前記第2扁平管と交わる複数の第2フィンを有し、
     前記第1フィンには、前記第1扁平管を固定する第1切欠部が前記流通方向の上流側に開口して形成され、
     前記第2フィンには、前記第2扁平管を固定する第2切欠部が前記流通方向の上流側に開口して形成された請求項5~7のいずれか1項に記載の熱交換器。
  9.  前記角度θ1は、20°以下の値とした請求項1~8のいずれか1項に記載の熱交換器。
PCT/JP2016/051348 2016-01-19 2016-01-19 熱交換器 WO2017126019A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680078569.7A CN108474623A (zh) 2016-01-19 2016-01-19 热交换器
EP16886262.1A EP3406996A4 (en) 2016-01-19 2016-01-19 HEAT EXCHANGER
JP2017562187A JP6647319B2 (ja) 2016-01-19 2016-01-19 熱交換器
PCT/JP2016/051348 WO2017126019A1 (ja) 2016-01-19 2016-01-19 熱交換器
US15/775,050 US10514216B2 (en) 2016-01-19 2016-01-19 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051348 WO2017126019A1 (ja) 2016-01-19 2016-01-19 熱交換器

Publications (1)

Publication Number Publication Date
WO2017126019A1 true WO2017126019A1 (ja) 2017-07-27

Family

ID=59362671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051348 WO2017126019A1 (ja) 2016-01-19 2016-01-19 熱交換器

Country Status (5)

Country Link
US (1) US10514216B2 (ja)
EP (1) EP3406996A4 (ja)
JP (1) JP6647319B2 (ja)
CN (1) CN108474623A (ja)
WO (1) WO2017126019A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136797A1 (ja) * 2018-12-27 2020-07-02 三菱電機株式会社 室外機、及び、冷凍サイクル装置
JPWO2019077655A1 (ja) * 2017-10-16 2020-10-22 三菱電機株式会社 熱交換器および冷凍サイクル装置
JPWO2019239520A1 (ja) * 2018-06-13 2021-04-01 三菱電機株式会社 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
JPWO2020110301A1 (ja) * 2018-11-30 2021-05-20 三菱電機株式会社 冷凍サイクル装置
WO2022085067A1 (ja) * 2020-10-20 2022-04-28 三菱電機株式会社 熱交換器および冷凍サイクル装置
JP7229255B2 (ja) 2018-08-23 2023-02-27 三菱電機株式会社 室外機、及び、冷凍サイクル装置
WO2023032155A1 (ja) * 2021-09-03 2023-03-09 三菱電機株式会社 熱交換器、冷凍サイクル装置及び熱交換器の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603419A (zh) * 2017-05-11 2019-12-20 三菱电机株式会社 热交换器及制冷循环装置
KR20210001150A (ko) * 2019-06-27 2021-01-06 삼성전자주식회사 열교환기 및 이를 포함하는 냉장고
DE102019217368A1 (de) * 2019-11-11 2021-05-12 Mahle International Gmbh Rohrkörper für einen Wärmeübertrager sowie Wärmeübertrager

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49150462U (ja) * 1973-04-20 1974-12-26
JPS633183A (ja) * 1986-06-20 1988-01-08 Matsushita Refrig Co フイン付熱交換器
JPH11141904A (ja) * 1997-11-03 1999-05-28 Samsung Electron Co Ltd 熱交換器
JP2000028288A (ja) * 1998-07-10 2000-01-28 Kimura Kohki Co Ltd 空気調和機用熱交換コイル
JP2007183088A (ja) * 2005-12-07 2007-07-19 Matsushita Electric Ind Co Ltd 熱交換器
JP2008002746A (ja) * 2006-06-22 2008-01-10 Kenji Umetsu 高性能空気熱交換器
JP2012037154A (ja) * 2010-08-09 2012-02-23 Mitsubishi Electric Corp フィンチューブ熱交換器及びそれを用いた冷凍サイクル装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1117891A (en) * 1964-07-09 1968-06-26 Donald Edward Hartley Improvements in or relating to heat exchangers
US4283970A (en) * 1979-07-02 1981-08-18 General Motors Corporation Automatic transmission line pressure control
JPS6219693A (ja) * 1985-07-18 1987-01-28 Matsushita Refrig Co フイン付熱交換器
JPS62166476U (ja) 1986-04-02 1987-10-22
DE9014655U1 (de) * 1990-10-23 1991-01-03 Thomae, Rudolf, Dipl.-Ing., 6900 Heidelberg Wärmetauscher, insbesondere Verflüssiger und Verdampfer für Fahrzeug - Klimaanlagen
JPH0791873A (ja) * 1993-09-20 1995-04-07 Hitachi Ltd フィンアンドチューブ形熱交換器
CN2295980Y (zh) * 1996-12-19 1998-10-28 苏金泉 扁管片式热交换器
KR100345156B1 (ko) 1999-05-26 2002-07-24 한국기계연구원 저온배기가스 폐열회수용 모듈형 응축 열교환기
CN100513977C (zh) * 2005-12-07 2009-07-15 松下电器产业株式会社 热交换器
US7549465B2 (en) * 2006-04-25 2009-06-23 Lennox International Inc. Heat exchangers based on non-circular tubes with tube-endplate interface for joining tubes of disparate cross-sections
JP4679542B2 (ja) * 2007-03-26 2011-04-27 三菱電機株式会社 フィンチューブ熱交換器、およびそれを用いた熱交換器ユニット並びに空気調和機
US20100116481A1 (en) * 2008-11-12 2010-05-13 Evans Timothy V Heat Exchanger
US10941985B2 (en) * 2016-04-22 2021-03-09 Mitsubishi Electric Corporation Heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49150462U (ja) * 1973-04-20 1974-12-26
JPS633183A (ja) * 1986-06-20 1988-01-08 Matsushita Refrig Co フイン付熱交換器
JPH11141904A (ja) * 1997-11-03 1999-05-28 Samsung Electron Co Ltd 熱交換器
JP2000028288A (ja) * 1998-07-10 2000-01-28 Kimura Kohki Co Ltd 空気調和機用熱交換コイル
JP2007183088A (ja) * 2005-12-07 2007-07-19 Matsushita Electric Ind Co Ltd 熱交換器
JP2008002746A (ja) * 2006-06-22 2008-01-10 Kenji Umetsu 高性能空気熱交換器
JP2012037154A (ja) * 2010-08-09 2012-02-23 Mitsubishi Electric Corp フィンチューブ熱交換器及びそれを用いた冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3406996A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019077655A1 (ja) * 2017-10-16 2020-10-22 三菱電機株式会社 熱交換器および冷凍サイクル装置
EP3699538A4 (en) * 2017-10-16 2020-11-25 Mitsubishi Electric Corporation HEAT EXCHANGER AND COOLING CYCLE DEVICE
US11384996B2 (en) 2017-10-16 2022-07-12 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
JPWO2019239520A1 (ja) * 2018-06-13 2021-04-01 三菱電機株式会社 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
JP7004814B2 (ja) 2018-06-13 2022-01-21 三菱電機株式会社 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
US11391521B2 (en) 2018-06-13 2022-07-19 Mitsubishi Electric Corporation Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
JP7229255B2 (ja) 2018-08-23 2023-02-27 三菱電機株式会社 室外機、及び、冷凍サイクル装置
JPWO2020110301A1 (ja) * 2018-11-30 2021-05-20 三菱電機株式会社 冷凍サイクル装置
WO2020136797A1 (ja) * 2018-12-27 2020-07-02 三菱電機株式会社 室外機、及び、冷凍サイクル装置
JPWO2020136797A1 (ja) * 2018-12-27 2021-09-09 三菱電機株式会社 室外機、及び、冷凍サイクル装置
WO2022085067A1 (ja) * 2020-10-20 2022-04-28 三菱電機株式会社 熱交換器および冷凍サイクル装置
WO2023032155A1 (ja) * 2021-09-03 2023-03-09 三菱電機株式会社 熱交換器、冷凍サイクル装置及び熱交換器の製造方法

Also Published As

Publication number Publication date
EP3406996A4 (en) 2019-01-09
EP3406996A1 (en) 2018-11-28
JP6647319B2 (ja) 2020-02-14
US10514216B2 (en) 2019-12-24
CN108474623A (zh) 2018-08-31
US20180372429A1 (en) 2018-12-27
JPWO2017126019A1 (ja) 2018-08-23

Similar Documents

Publication Publication Date Title
WO2017126019A1 (ja) 熱交換器
EP2697589B1 (en) Heat exchanger
EP2369285B1 (en) Heat exchanger
EP2908082B1 (en) Heat exchanger
US9534827B2 (en) Air heat exchanger
JP4211998B2 (ja) 熱交換器用プレート
US20120103583A1 (en) Heat exchanger and fin for the same
EP2693150B1 (en) Heat exchanger
JP6842915B6 (ja) エバポレータ
JP6716021B2 (ja) 熱交換器及び冷凍サイクル装置
JP4517333B2 (ja) 熱交換器
JP6785137B2 (ja) エバポレータ
EP2693151B1 (en) Heat exchanger
JP2015014397A (ja) 熱交換器
JP2018087646A5 (ja)
JP5508818B2 (ja) エバポレータ
JP2008275303A (ja) 熱交換器
JP2010127511A (ja) 熱交換器
JP2016169901A (ja) フィンチューブ熱交換器
KR101100114B1 (ko) 열교환기용 핀
JP2020153606A (ja) 熱交換器
KR20050027410A (ko) 열교환기
KR20110090522A (ko) 열교환기용 핀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562187

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016886262

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016886262

Country of ref document: EP

Effective date: 20180820