WO2017124967A1 - 多天线传输方法、基站和用户终端 - Google Patents

多天线传输方法、基站和用户终端 Download PDF

Info

Publication number
WO2017124967A1
WO2017124967A1 PCT/CN2017/071025 CN2017071025W WO2017124967A1 WO 2017124967 A1 WO2017124967 A1 WO 2017124967A1 CN 2017071025 W CN2017071025 W CN 2017071025W WO 2017124967 A1 WO2017124967 A1 WO 2017124967A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
base station
antenna sub
user
antenna
Prior art date
Application number
PCT/CN2017/071025
Other languages
English (en)
French (fr)
Inventor
侯晓林
王新
蒋惠玲
加山英俊
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to CN201780006068.2A priority Critical patent/CN108604916B/zh
Priority to JP2018538148A priority patent/JP6961599B2/ja
Publication of WO2017124967A1 publication Critical patent/WO2017124967A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users

Definitions

  • the present application relates to the field of communications, and in particular, to a multi-antenna transmission method, a base station, and a user terminal.
  • AAS antenna array systems
  • AAS antenna array systems
  • Such large-scale AAS usually includes hundreds of antenna elements (such as 128, 256 or more), and these elements can be arranged in a panel type as an area array antenna.
  • the spatial correlation of the wireless propagation channel is high, especially for scenes where users are densely distributed.
  • it is theoretically possible to perform multi-antenna transmission using a nonlinear precoding method.
  • the implementation complexity of the nonlinear precoding method becomes unacceptable as the number of antennas increases. Therefore, in a high spatial correlation scenario, it is necessary to design a low complexity multi-antenna transmission scheme.
  • the embodiment of the present application provides a multi-antenna transmission method, a base station, and a user terminal, which can be applied to a scenario with high spatial correlation, and takes into account low computational complexity and system performance.
  • a multi-antenna transmission method is applied to a base station, and the method includes:
  • the downlink reference signal is beam-formed according to the transmit-end correlation parameter, and the beam-formed downlink reference signal is sent to the UE through the antenna sub-array.
  • a base station comprising:
  • a memory coupled to the processor; the memory storing a plurality of instruction modules, including a division module, a reception module, an estimation module, a beamforming module, and a transmitting module; when the instruction module is executed by the processor When doing the following:
  • the dividing module is configured to divide the antenna array into at least two antenna sub-arrays
  • the receiving module is configured to receive a first uplink signal sent by the user terminal UE;
  • the estimating module is configured to estimate a transmit end correlation parameter of each antenna sub-array according to the received first uplink signal, where the transmit end correlation parameter is used to indicate spatial correlation between radio propagation channels of different transmitting ends Sex
  • the beamforming module is configured to perform beamforming on the downlink reference signal according to the correlation parameter of the transmitting end for each antenna sub-array to obtain a downlink reference signal after beamforming;
  • the sending module is configured to send the beamformed downlink reference signal to the UE by using a corresponding antenna sub-array.
  • a user terminal comprising:
  • the memory stores a plurality of instruction modules, The sending module and the receiving module are included; when the instruction module is executed by the processor, the following operations are performed:
  • the sending module is configured to send a first uplink signal to the base station, so that the base station estimates a transmit end correlation parameter of each antenna sub-array according to the received first uplink signal, and for each antenna sub-array, according to the The transmitting end correlation parameter performs beamforming on the downlink reference signal, and sends the beamformed downlink reference signal to the user terminal through the antenna sub-array;
  • the receiving module is configured to receive a beamformed downlink reference signal from the base station.
  • a non-transitory computer readable storage medium storing machine readable instructions, the machine readable instructions being executable by a processor to perform the following operations:
  • the downlink reference signal is beam-formed according to the transmit-end correlation parameter, and the beam-formed downlink reference signal is sent to the UE through the antenna sub-array.
  • the multi-antenna transmission method, the base station, and the user terminal provided by the embodiment of the present application divide the antenna array into at least two antenna sub-arrays through the base station, and estimate each antenna according to the uplink signal sent by the received UE.
  • the array can reduce the computational complexity. It is applicable to the scenario where AAS and users are densely distributed, and provides a multi-antenna transmission scheme with both performance and complexity for scenarios with high spatial correlation.
  • FIG. 1 is a schematic flowchart of a method for performing multi-antenna transmission on a base station side according to some embodiments of the present disclosure
  • 2a is a schematic diagram of partitioning of an antenna sub-array in some embodiments of the present application.
  • 2b is a schematic diagram of partitioning of an antenna sub-array according to other embodiments of the present application.
  • 2c is a schematic diagram of partitioning of an antenna sub-array according to still another embodiment of the present application.
  • FIG. 3 is a schematic diagram of partitioning of an antenna sub-array according to other embodiments of the present application.
  • FIG. 4 is a schematic flowchart of a method for performing multi-antenna transmission on a base station side according to another embodiment of the present application;
  • FIG. 5 is a schematic diagram of signaling interaction of a multi-antenna transmission method in some embodiments of the present application.
  • FIG. 6 is a schematic flowchart of a method for performing multi-antenna transmission on a UE side according to some embodiments of the present disclosure
  • FIG. 7 is a schematic structural diagram of a base station in some embodiments of the present application.
  • FIG. 8 is a schematic structural diagram of a base station in other embodiments of the present application.
  • FIG. 9 is a schematic structural diagram of a user terminal in some embodiments of the present application.
  • FIG. 1 is a schematic flowchart of a multi-antenna transmission method according to some embodiments of the present application, where the method is applied to a base station. As shown in Figure 1, the following steps are included.
  • the antenna array is divided into at least two antenna sub-arrays.
  • an antenna sub-array there may be various methods for dividing an antenna sub-array, including dividing the antenna array according to at least one of a structure of the antenna array and a polarization direction of the antenna element. For example, uniform or non-uniform drawing can be performed according to the structure of the antenna array. Minute. Alternatively, the antenna elements having the same polarization direction are divided into one antenna sub-array according to the polarization direction of the antenna elements. Alternatively, the antenna array is uniformly divided or non-uniformly divided in combination with the polarization direction of the antenna element. The number of antenna elements included in each antenna sub-array may be the same or different.
  • FIG. 2a is a schematic diagram of partitioning of an antenna sub-array according to an embodiment of the present application.
  • the antenna array 210 is evenly divided into four antenna sub-arrays 211, 212, 213, and 214.
  • Each antenna sub-array is a regular square antenna array, and each includes four antenna array elements.
  • the antenna array 210 is evenly divided into four antenna sub-arrays 221, 222, 223, and 224 in the lateral direction, and each antenna sub-array is a regular horizontal strip antenna array, each of which includes four antenna array elements.
  • each antenna sub-array is a regular longitudinal strip antenna array, each comprising four antenna elements.
  • FIG. 3 is a schematic diagram of partitioning of an antenna sub-array according to another embodiment of the present application.
  • the antenna array element in the antenna array 300 includes two polarization modes, namely vertical polarization and horizontal polarization.
  • the antenna array 300 is divided into antenna sub-arrays 310 and 320 according to these two polarization modes, each containing 16 antenna elements.
  • the antenna elements in the antenna sub-array 310 are all vertically polarized, and the antenna elements in the antenna sub-array 320 are all horizontally polarized.
  • the antenna array may also be divided into antenna sub-arrays including different numbers of antenna elements.
  • the 16 antenna elements included in the antenna array 210 are divided into antenna sub-arrays each comprising 8, 6, and 2 antenna elements.
  • the shape of the antenna sub-array and the number of antenna elements included will affect the direction and coverage of the beam formed by it.
  • Step 102 Estimate a transmit end correlation parameter of each antenna sub-array according to the first uplink signal sent by the received user terminal (UE).
  • the first uplink signal may be an uplink reference signal, or other uplink signals, such as uplink data or control signals.
  • the sender correlation parameter is used to indicate the spatial correlation between the wireless propagation channels of different senders.
  • the sender correlation parameter may be represented as a sender correlation matrix.
  • the base station estimates the correlation matrix of the transmitting end of each antenna sub-array according to the uplink reference signal sent by the UE, specifically: calculating the correlation matrix of the transmitting end of the entire antenna array according to the uplink reference signal, for all UEs.
  • the transmit-end correlation matrix is averaged to obtain an equivalent transmit-end correlation matrix, and the sub-matrix on the diagonal in the equivalent transmit-end correlation matrix is determined as the transmit-end correlation matrix of each antenna sub-array.
  • the first uplink signal is a periodic channel sounding reference signal (P-SRS)
  • P-SRS transmission according to the k-th user is estimated user k uplink channel matrix H k, assuming that the user The total number is K, then the equivalent sender correlation matrix for:
  • the transmit end correlation matrix of the first antenna sub-array is the above
  • the lth submatrix R ll (l 1,...,L) on the diagonal. If the first antenna sub-array includes n antenna elements, then R ll is a square matrix of n*n.
  • Step 103 For each antenna sub-array, beamforming the downlink reference signal according to the correlation parameter of the transmitting end, and transmitting a beamformed reference signal (BRS) to the UE through the antenna sub-array.
  • BRS beamformed reference signal
  • the feature parameter is calculated according to the correlation parameter of the transmitting end, and the downlink reference signal is beamformed according to the characteristic parameter to obtain the BRS.
  • the feature parameter may be a feature vector corresponding to the maximum eigenvalue of the correlation matrix of the transmitting end, and/or the secondary of the correlation matrix with the transmitting end. A feature vector corresponding to a large eigenvalue.
  • R ll Q ⁇ Q -1 (3)
  • is the eigenvalue diagonal matrix
  • Q is the eigenvector matrix
  • [ ⁇ ] -1 represents the inversion operation.
  • diag( ⁇ 1 , ⁇ 2 , . . . , ⁇ n ) includes n eigenvalues ⁇ 1 , ⁇ 2 , . . . , ⁇ n , eigenvalues arranged from large to small.
  • the eigenvector corresponding to the largest eigenvalue ⁇ 1 is ⁇ 1
  • the eigenvector corresponding to the second largest eigenvalue ⁇ 2 is ⁇ 2 .
  • the feature vector for beamforming the downlink reference signal may be one or more.
  • the downlink reference signal may be a cell-specific reference signal (CRS) or a channel state indication reference signal (CSI-RS) in consideration of compatibility of a Long Term Evolution (LTE) system.
  • CRS cell-specific reference signal
  • CSI-RS channel state indication reference signal
  • time division multiplexing TDM
  • frequency division multiplexing FDM
  • code division multiplexing CDM
  • CS cyclic shift
  • the antenna array is divided into at least two antenna sub-arrays by the base station, and the correlation parameters of the transmitting end of each antenna sub-array are estimated according to the received uplink signals sent by the UE, for each
  • the antenna sub-array performs beamforming on the downlink reference signal according to the correlation parameter of the transmitting end, and sends the BRS to the UE through the antenna sub-array, which can reduce the calculation compared with the beamforming of the entire antenna array in the prior art.
  • the complexity is applicable to scenarios where AAS and users are densely distributed, and provides a multi-antenna transmission scheme that combines performance and complexity for scenarios with high spatial correlation.
  • FIG. 4 is a schematic flow chart of a method for performing multi-antenna transmission on a base station side according to another embodiment of the present application. As shown in FIG. 4, based on the steps described in FIG. 1, FIG. 4 further includes:
  • Step 104 Receive beam selection information fed back by the UE, and schedule the user according to the received beam selection information.
  • the beam selection information may be a beam identifier corresponding to the BRS selected by the UE, or an antenna sub-array identifier selected by the UE.
  • the beam identifier may be an index of the beam
  • the antenna sub-array identifier may be an index of the antenna sub-array.
  • the UE receives multiple BRSs transmitted on the L antenna sub-arrays on the base station side, selects one or more BRSs, and determines a beam index corresponding to the selected BRS. If the UE learns the correspondence between the antenna sub-array and the beam on the base station side in advance, the UE may determine the index of the antenna sub-array corresponding to the beam index according to the correspondence, and It is sent to the base station as beam selection information. If the UE does not know the specific information of the antenna sub-array on the base station side, the beam index corresponding to the selected BRS is sent to the base station as beam selection information.
  • the base station determines the antenna sub-array selected by the UE according to the received beam selection information. If the beam selection information is a beam index corresponding to the BRS selected by the UE, the base station can map the antenna sub-array selected by the UE by the correspondence between the antenna sub-array and the beam. If the beam selection information is an antenna sub-array index selected by the UE, the base station can directly determine the antenna sub-array selected by the UE.
  • the method for the base station to schedule the user includes: grouping the UE according to the determined antenna sub-array selected by the UE, obtaining a group of to-be-scheduled UEs corresponding to each antenna sub-array, and then determining, for each group of to-be-scheduled UEs, adopting the group to be scheduled.
  • the group of UEs to be scheduled includes one or more UEs.
  • the grouping when the user grouping is performed, the grouping may be performed according to the feedback of the user, that is, the UEs that feed back the same antenna sub-array index are classified into a group of UEs to be scheduled, and no adjustment is made. For example, if there are K UEs, for L antenna sub-arrays, UE 1 feeds back the index of the selected antenna sub-array to 1, and UE 2 feeds back the selected antenna sub-array indexes 1 and 2, and UE 3 feedback selects The index of the antenna sub-array is 1 and 3.
  • the index of the antenna sub-array selected by the UE 4 is 1, and the index of the selected antenna sub-array fed back by the UE 5 is 1, ..., and the UE K feeds back the selected antenna.
  • the index of the subarray is L.
  • the base station can obtain the results as shown in Table 1.
  • 5 UEs select an antenna sub-array with an index of 1, and these 5 UEs are grouped together.
  • these users simultaneously request data service from the base station, and the base station determines
  • the antenna sub-array index selected by these users is all 1.
  • Antenna subarray index Corresponding set of UEs to be scheduled 1 UE 1, UE 2, UE 3, UE 4, UE 5 2 UE 2 3 UE 3 ... ... L UE K
  • the base station may perform the grouping on the UE according to the scheduling and equalization principle, that is, equalize the number of UEs to be scheduled allocated to each antenna sub-array, so that the number of UEs in all the UE groups to be scheduled is relatively close.
  • the base station may appropriately adjust the UEs to be scheduled divided into the same group among the antenna sub-arrays, for example, consider antennas with similar beams. Adjustments are made between the sub-arrays and some UEs that have selected multiple antenna sub-arrays remain in only one group.
  • UE 4 and UE 5 are respectively allocated to the UEs to be scheduled with corresponding indexes of 2 and 3, and are scheduled to be scheduled with the corresponding index of 1.
  • the UE 3 is deleted from the UE, and only the UE 3 is allocated to the UE to be scheduled with the corresponding index of 3.
  • Antenna subarray index Corresponding set of UEs to be scheduled 1 UE 1, UE 2 2 UE 2, UE 4 3 UE 3, UE 5 ... ... L UE K
  • the RSRP of the BRS received on the selected antenna sub-array is also sent to the base station, and the base station can also participate.
  • User grouping is performed by examining the RSRP on the antenna sub-array selected by each UE. For example, in the foregoing scheduling equalization principle, it is considered that only UEs whose RSRP is higher than a certain threshold are reserved in each group of to-be-scheduled UEs, so that the number of UEs to be scheduled allocated to each antenna sub-array is relatively close.
  • the base station may determine one or more scheduling users from the preset scheduling metrics.
  • the scheduling metric may be a geometric average throughput of the UE, a proportional fair scheduling metric, or an improved proportional fair scheduling metric.
  • Step 105 Send downlink control signaling to each scheduling user to trigger each scheduling user to send a second uplink signal to the base station, perform precoding on the data of each scheduling user based on the second uplink signal, and precode the data. Sent to each scheduled user.
  • the second uplink signal may be an uplink reference signal, such as an aperiodic channel sounding reference signal (A-SRS).
  • A-SRS aperiodic channel sounding reference signal
  • the sent downlink control command carries an indication bit indicating that the scheduling user sends an uplink reference signal, thereby triggering the scheduling user to send an uplink reference signal to the base station.
  • the base station performs channel estimation according to the received uplink reference signal, and estimates downlink channel state information of the entire antenna array according to the channel reciprocity principle.
  • the entire antenna array is divided into a plurality of antenna sub-arrays, the spatial correlation of the channels between the antenna sub-arrays is weak. Therefore, a linear pre-coding algorithm can be used between the antenna sub-arrays to obtain a comparison. Good performance.
  • a nonlinear precoding algorithm is used inside the antenna sub-array to adapt to higher spatial correlation. That is, two precoding matrices are separately calculated, and precoding is performed in a cascade manner.
  • the linear precoding matrix is calculated by using a linear precoding method according to downlink channel state information of all scheduling users, and is used as the first precoding matrix. Then, based on the estimated downlink channel state information and the linear precoding matrix, a nonlinear precoding matrix for each scheduling user is calculated by using a nonlinear precoding method as a second precoding matrix. Then according to the linear precoding matrix and the nonlinear precoding matrix for each scheduling user The data is precoded.
  • linear precoding may employ a zero-forcing (ZF) or block diagonalization (BD) algorithm to obtain a linear precoding matrix P based on downlink channel state information of all scheduled users. Then for each scheduling user on the antenna sub-array, the linear precoding matrix P and the downlink channel matrix are Product of Perform nonlinear precoding, such as using the THP algorithm, to obtain a nonlinear precoding matrix V k . Further, all user data is precoded twice according to P and Vk to obtain precoded data.
  • ZF zero-forcing
  • BD block diagonalization
  • the precoded data can be simultaneously transmitted to all of the scheduled users on the entire antenna array when the precoded data is transmitted.
  • each antenna sub-array corresponds to a group of scheduling users, and each group of scheduling users includes multiple scheduling users, different transmission periods may be set, and one transmission period is specified for each antenna sub-array, and then The pre-coded data is transmitted in a specified transmission period using the antenna sub-array corresponding to the scheduling user, that is, time-divisionally transmitted between the antenna sub-arrays.
  • the base station receives the beam selection information fed back by the UE, and schedules the user according to the received beam selection information, and determines a scheduling user for each antenna sub-array, so that the scheduling users corresponding to different antenna sub-arrays are configured.
  • the spatial correlation between the groups is weakened, and only high spatial correlation is reserved between the scheduling users corresponding to the same antenna sub-array, and then the cascade precoding is performed by using the combination of linear precoding and nonlinear precoding to improve
  • the multi-user multiplexing gain increases cell throughput.
  • FIG. 5 is a schematic diagram of signaling interaction of a multi-antenna transmission method according to an embodiment of the present disclosure, including a base station and users UE 1, 1, UE K to be scheduled. As shown in FIG. 5, the following steps are included.
  • the base station divides the antenna array into at least two antenna sub-arrays.
  • Step 502 Each UE sends a first uplink signal to the base station.
  • UE 1, ..., UE K respectively send an uplink signal P-SRS to the base station.
  • Step 503 The base station estimates each day according to the received first uplink signal sent by the UE.
  • Step 504 The base station sends a corresponding BRS to the UE on each antenna sub-array.
  • Step 505 The UE selects an antenna sub-array according to the received BRS.
  • step 506 the UE feeds back beam selection information to the base station.
  • step 507 the base station schedules the user according to the received beam selection information.
  • Step 508 The base station sends downlink control signaling to each scheduling user to trigger each scheduling user to send a second uplink signal to the base station.
  • UE 1 and UE K are scheduling users, and the base station triggers UE 1 and UE K to send an A-SRS to the base station.
  • each scheduling user sends a second uplink signal to the base station.
  • Step 510 The base station performs cascading precoding on data of each scheduled user based on the received second uplink signal.
  • step 511 the base station sends the pre-coded data to each scheduled user.
  • the base station may simultaneously send demodulation reference signal (DMRS) related signaling configuration information to the scheduling user for correlation demodulation of the UE's data channel.
  • DMRS demodulation reference signal
  • each scheduled user detects the received downlink data and obtains its own data.
  • FIG. 6 is a schematic flowchart of a method for performing multi-antenna transmission on a UE side according to an embodiment of the present application. As shown in FIG. 6, the following steps are included.
  • Step 601 Send a first uplink signal to the base station, so that the base station estimates a correlation parameter of the transmitting end of each antenna sub-array according to the received first uplink signal, and for each antenna sub-array, according to the correlation parameter of the transmitting end Beamforming with reference signals to shape the beam
  • the downlink reference signal BRS is transmitted to the user terminal through the antenna sub-array.
  • the first uplink signal is a P-SRS.
  • Step 602 Receive a BRS from a base station, select a beam according to the received BRS, and generate beam selection information.
  • the UE receives the BRS transmitted on the L antenna sub-arrays of the base station side, estimates the reference signal received power (RSRP) of each BRS, and selects one or more BRSs from the BRS, for example, selecting the largest RSRP. BRS, or choose the RSRS with the largest and second largest RSRP.
  • the UE may determine the beams corresponding to the BRSs according to the resources occupied by the selected BRS.
  • the UE may generate different beam selection information according to whether the correspondence between the antenna sub-array and the beam on the base station side is known. Specifically, if the UE cannot learn the corresponding relationship, the beam identifier corresponding to the selected BRS is fed back to the base station as beam selection information. If the UE is informed of the corresponding relationship in advance, the antenna sub-array identifier may be mapped by the beam identifier according to the foregoing correspondence, and fed back to the base station as beam selection information.
  • the UE in addition to feeding back the beam selection information to the base station, may also send the RSRP of the selected BRS to the base station, so that the base station can perform user scheduling with reference to the RSRP of the BRS selected by the UE.
  • Step 603 feeding back beam selection information to the base station, so that the base station schedules the user according to the received beam selection information.
  • steps 604 and 605 are further performed.
  • Step 604 Receive downlink control signaling from the base station, and send a second uplink signal to the base station, so that the base station pre-codes data of each scheduled user based on the second uplink signal, and sends the pre-coded data to each Schedule users.
  • Step 605 Receive pre-coded data from the base station, and perform data detection.
  • FIG. 7 is a schematic structural diagram of a base station 700 in an embodiment of the present application. As shown in Figure 7, The base station 700 includes:
  • a dividing module 710 configured to divide the antenna array into at least two antenna sub-arrays
  • the receiving module 720 is configured to receive a first uplink signal sent by the user terminal UE.
  • the estimation module 730 is configured to: according to the first uplink signal received by the receiving module 720, the transmit end correlation parameter of each antenna sub-array divided by the dividing module 710;
  • the beamforming module 740 is configured to perform beamforming on the downlink reference signal according to the transmitter correlation parameter estimated by the estimation module 730 for each antenna sub-array to obtain a beam-formed downlink reference signal;
  • the sending module 750 is configured to send, by using the corresponding antenna sub-array, the downlink reference signal obtained by the beamforming module 740 to the UE.
  • FIG. 8 is a schematic structural diagram of a base station 800 according to another embodiment of the present application. Based on the module shown in FIG. 7, base station 800 further includes a scheduling module 760 and a precoding module 770.
  • the receiving module 720 is further configured to: receive beam selection information fed back by the UE.
  • the scheduling module 760 is configured to schedule a user according to the beam selection information received by the receiving module 720.
  • the scheduling module 760 is configured to: determine, according to beam selection information, an antenna sub-array selected by the UE, and group the UE according to a scheduling equalization principle and an antenna sub-array selected by the UE, to obtain a corresponding to each antenna sub-array.
  • a group of to-be-scheduled UEs; for each group of to-be-scheduled UEs, a scheduling user that uses the antenna sub-array corresponding to the group of to-be-scheduled UEs to transmit data is determined.
  • the sending module 750 is further configured to: send, to each scheduling user determined by the scheduling module 760, downlink control signaling to trigger each scheduling user to send a second uplink signal to the base station.
  • the receiving module 720 is further configured to: receive a second uplink signal sent by each scheduling user.
  • the precoding module 770 is configured to receive the second received by the receiving module 720.
  • the row signals precode the data for each of the scheduled users determined by the scheduling module 760.
  • the sending module 750 is further configured to: send the pre-encoded data obtained by the pre-encoding module 770 to each scheduled user.
  • the precoding module 770 is further configured to: estimate downlink channel state information of each scheduling user according to the second uplink signal; calculate a first precoding matrix according to downlink channel state information of all scheduling users; Calculating, according to the downlink channel state information of each scheduling user and the first precoding matrix, a second precoding matrix for each scheduling user; according to the first precoding matrix and the second precoding matrix pair The data of each scheduled user is precoded.
  • the first precoding matrix is a linear precoding matrix
  • the second precoding matrix is a nonlinear precoding matrix
  • the precoding module 770 is further configured to: according to the linear precoding matrix And the nonlinear precoding matrix, the data of each scheduled user is precoded twice.
  • FIG. 9 is a schematic structural diagram of a user terminal 900 in an embodiment of the present application. As shown in FIG. 9, the user terminal 900 includes:
  • the sending module 910 is configured to send, by the base station, a first uplink signal, so that the base station estimates a transmit end correlation parameter of each antenna sub-array according to the received first uplink signal, where the antenna array of the base station is divided into at least two The antenna sub-array, the correlation parameter of the transmitting end indicates the spatial correlation between the wireless propagation channels of different transmitting ends, and for each antenna sub-array, the downlink reference signal is beam-shaped according to the correlation parameter of the transmitting end, and the beam is beam-shaped.
  • the shaped downlink reference signal is sent to the user terminal through the antenna sub-array; and,
  • the receiving module 920 is configured to receive a beamformed downlink reference signal from the base station.
  • the user terminal 900 further includes:
  • the selecting module 930 is configured to select beam according to the beam-shaped downlink reference signal received by the receiving module 920 to generate beam selection information.
  • the sending module 910 is further configured to: feed back, to the base station, the beam selection information determined by the selecting module 930, so that the base station schedules the user according to the beam selection information, where the base station determines, according to the beam selection information, the selected by the user terminal.
  • the antenna sub-array according to the scheduling equalization principle and the antenna sub-array selected by the user terminal, group the user terminals to obtain a group of to-be-scheduled user terminals corresponding to each antenna sub-array.
  • the sending module 910 is further configured to: send, according to the downlink control signaling sent by the base station, a second uplink signal to the base station; where the base station obtains according to the second uplink signal. a first precoding matrix and a second precoding matrix, performing precoding on the data of the user terminal twice according to the first precoding matrix and the second precoding matrix to obtain encoded data;
  • the receiving module 920 is further configured to: receive the pre-coded data from the base station.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple modules or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or modules, and may be electrical, mechanical or other forms. of.
  • the steps may be performed by a program instruction related hardware, and the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes the steps of the foregoing method embodiment; and the foregoing storage medium includes: mobile storage A device that can store program code, such as a device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例公开了一种多天线传输方法、基站和用户终端。当方法应用于基站时,包括:将天线阵列划分成至少两个天线子阵列;根据接收到的用户终端UE发送的第一上行信号估计每个天线子阵列的发送端相关性参数;及,对于每个天线子阵列,根据发送端相关性参数对下行参考信号进行波束赋形,将波束赋形后的下行参考信号通过该天线子阵列发送给UE。本申请实施例的这种方法、基站及用户终端,能够提供一种兼顾性能和复杂度的多天线传输方案。

Description

多天线传输方法、基站和用户终端 技术领域
本申请涉及通信领域,特别涉及一种多天线传输方法、基站和用户终端。
发明背景
在无线通信***中,同时存在众多的用户希望与基站进行通信以获得服务。在这些场景中,使用多用户多输入多输出(MU-MIMO)的传输方案可以实现同时调度多个用户。随着天线技术的发展,大规模天线阵列***(AAS)正逐渐应用于基站。这种大规模AAS通常包括几百个天线阵元(如128根、256根或者更多),这些阵元可以排成一个面板型作为面阵天线来使用。通过在基站端安装AAS,可以同时向更多的用户提供无线通信。
由于在基站端的有限空间内使用大规模AAS,无线传播信道的空间相关性较高,尤其对于用户密集分布的场景。在这种情况下,为了保证无线通信***的***容量,理论上可以采用非线性预编码方法进行多天线传输。但是,非线性预编码方法的实现复杂度随着天线数的增加而变得不可接受。因此,在高空间相关性的场景中,需要设计一种低复杂度的多天线传输方案。
发明内容
本申请实施例提供了一种多天线传输方法、基站和用户终端,能够适用于高空间相关性的场景,并且兼顾了低的计算复杂度和***性能。
具体地,本申请实施例的技术方案是这样实现的:
一种多天线传输方法,应用于基站,所述方法包括:
将天线阵列划分成至少两个天线子阵列;
根据接收到的用户终端UE发送的第一上行信号估计每个天线子阵列的发送端相关性参数,其中所述发送端相关性参数用于表示不同发送端的无线传播信道之间的空间相关性;及,
对于每个天线子阵列,根据所述发送端相关性参数对下行参考信号进行波束赋形,将波束赋形后的下行参考信号通过该天线子阵列发送给所述UE。
一种基站,包括:
处理器;
与所述处理器相连接的存储器;所述存储器中存储有多个指令模块,包括划分模块、接收模块、估计模块、波束赋形模块和发送模块;当所述指令模块由所述处理器执行时,执行以下操作:
所述划分模块,用于将天线阵列划分成至少两个天线子阵列;
所述接收模块,用于接收用户终端UE发送的第一上行信号;
所述估计模块,用于根据接收到的第一上行信号估计每个天线子阵列的发送端相关性参数,其中所述发送端相关性参数用于表示不同发送端的无线传播信道之间的空间相关性;
所述波束赋形模块,用于对于每个天线子阵列,根据所述发送端相关性参数对下行参考信号进行波束赋形,得到波束赋形后的下行参考信号;及,
所述发送模块,用于将波束赋形后的下行参考信号通过相应的天线子阵列发送给所述UE。
一种用户终端,包括:
处理器;
与所述处理器相连接的存储器;所述存储器中存储有多个指令模块, 包括发送模块和接收模块;当所述指令模块由所述处理器执行时,执行以下操作:
所述发送模块,用于向基站发送第一上行信号,以使所述基站根据接收到的第一上行信号估计每个天线子阵列的发送端相关性参数,对于每个天线子阵列,根据所述发送端相关性参数对下行参考信号进行波束赋形,将波束赋形后的下行参考信号通过该天线子阵列发送给所述用户终端;及,
所述接收模块,用于从所述基站接收波束赋形后的下行参考信号。
一种非易失性计算机可读存储介质,所述存储介质中存储有机器可读指令,所述机器可读指令可以由处理器执行以完成以下操作:
将天线阵列划分成至少两个天线子阵列;
根据接收到的用户终端UE发送的第一上行信号估计每个天线子阵列的发送端相关性参数,其中所述发送端相关性参数用于表示不同发送端的无线传播信道之间的空间相关性;及,
对于每个天线子阵列,根据所述发送端相关性参数对下行参考信号进行波束赋形,将波束赋形后的下行参考信号通过该天线子阵列发送给所述UE。
由上述技术方案可见,本申请实施例提供的多天线传输方法、基站及用户终端,通过基站将天线阵列划分成至少两个天线子阵列,根据接收到的UE发送的上行信号估计每个天线子阵列的发送端相关性参数,对于每个天线子阵列,根据发送端相关性参数对下行参考信号进行波束赋形,将BRS通过该天线子阵列上发送给UE,与现有技术中将整个天线阵列进行波束赋形相比,能够降低计算的复杂度,适用于使用AAS、用户密集分布的场景,为存在高的空间相关性的场景提供了一种兼顾性能和复杂度的多天线传输方案。
附图简要说明
图1为本申请一些实施例中基站侧进行多天线传输的方法的流程示意图;
图2a为本申请一些实施例中天线子阵列的划分示意图;
图2b为本申请另一些实施例中天线子阵列的划分示意图;
图2c为本申请又一些实施例中天线子阵列的划分示意图;
图3为本申请另一些实施例中天线子阵列的划分示意图;
图4为本申请另一些实施例中基站侧进行多天线传输的方法的流程示意图;
图5为本申请一些实施例中多天线传输方法的信令交互示意图;
图6为本申请一些实施例中UE侧进行多天线传输的方法的流程示意图;
图7为本申请一些实施例中基站的结构示意图;
图8为本申请另一些实施例中基站的结构示意图;
图9为本申请一些实施例中用户终端的结构示意图。
具体实施方式
为使本申请的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。
图1为本申请一些实施例中多天线传输方法的流程示意图,该方法应用于基站。如图1所示,包括以下步骤。
步骤101,将天线阵列划分成至少两个天线子阵列。
在本申请一些实施例中,划分天线子阵列的方法可以有多种,包括根据天线阵列的结构和天线阵元的极化方向中的至少一个,对天线阵列进行划分。例如,可以根据天线阵列的结构进行均匀划分或者非均匀划 分。或者,根据天线阵元的极化方向,将具备相同极化方向的天线阵元划分成一个天线子阵列。或者,结合天线阵元的极化方向对天线阵列进行均匀划分或者非均匀划分。其中,每个天线子阵列所包含的天线阵元的数目可以相同,也可以不同。
以二维天线阵列为例,图2a为本申请一个实施例中天线子阵列的划分示意图。其中,天线阵列210被均匀划分成4个天线子阵列211、212、213和214,每个天线子阵列是一个规则的方形天线阵,各自包含4个天线阵元。
图2b为本申请另一个实施例中天线子阵列的划分示意图。其中,在横向上将天线阵列210均匀划分成4个天线子阵列221、222、223和224,每个天线子阵列是一个规则的横向条形天线阵,各自包含4个天线阵元。
图2c为本申请又一个实施例中天线子阵列的划分示意图。其中,在纵向上将天线阵列210均匀划分成4个天线子阵列231、232、233和234,每个天线子阵列是一个规则的纵向条形天线阵,各自包含4个天线阵元。
图3为本申请另一个实施例中天线子阵列的划分示意图。其中,天线阵列300中的天线阵元包括两种极化方式,分别为垂直极化和水平极化。根据这两种极化方式将天线阵列300划分成天线子阵列310和320,各自包含16个天线阵元。其中,天线子阵列310中的天线阵元均为垂直极化,天线子阵列320中的天线阵元均为水平极化。
以上划分天线子阵列的方法仅为示例,在具体应用时,还可以将天线阵列划分成包含不同个数的天线阵元的天线子阵列。例如,将天线阵列210所包含的16个天线阵元划分成分别包含8个、6个和2个天线阵元的天线子阵列。其中,天线子阵列的形状以及所包含天线阵元的个数将影响其形成的波束的方向和覆盖范围。
步骤102,根据接收到的用户终端(UE)发送的第一上行信号估计每个天线子阵列的发送端相关性参数。
本步骤中,第一上行信号可以为上行参考信号,或者其他上行信号,例如上行数据或控制信号。发送端相关性参数用于表示不同发送端的无线传播信道之间的空间相关性,例如,发送端相关性参数可以表示为发送端相关性矩阵。
以上行参考信号为例,基站根据UE发送的上行参考信号估计每个天线子阵列的发送端相关性矩阵,具体为:根据上行参考信号计算得到整个天线阵列的发送端相关性矩阵,对所有UE的发送端相关性矩阵进行平均得到等价的发送端相关性矩阵,将该等价的发送端相关性矩阵中对角线上的子矩阵确定为每个天线子阵列的发送端相关性矩阵。
在一实施例中,第一上行信号为周期性的信道探测参考信号(P-SRS),根据第k个用户发送的P-SRS估计出第k个用户的上行信道矩阵为Hk,假设用户总数为K,则等价的发送端相关性矩阵为:
Figure PCTCN2017071025-appb-000002
其中,[·]H表示共轭转置运算。
若整个天线阵列被划分成L个天线子阵列,那么上述等价的发送端相关性矩阵
Figure PCTCN2017071025-appb-000003
可以进一步表示为:
Figure PCTCN2017071025-appb-000004
其中,第l个天线子阵列的发送端相关性矩阵为上述
Figure PCTCN2017071025-appb-000005
对角线上的第l个子矩阵Rll(l=1,...,L)。若第l个天线子阵列包括n个天线阵元,那么Rll为n*n的方形矩阵。
步骤103,对于每个天线子阵列,根据发送端相关性参数对下行参考信号进行波束赋形,将波束赋形后的下行参考信号(BRS,beamformed reference signal)通过该天线子阵列发送给UE。
本步骤中,根据发送端相关性参数计算得到特征参数,根据特征参数对下行参考信号进行波束赋形,得到BRS。具体而言,当发送端相关性参数为发送端相关性矩阵时,特征参数可以为与发送端相关性矩阵的最大特征值相对应的特征向量,和/或,与发送端相关性矩阵的次大特征值相对应的特征向量。
例如,对于每个天线子阵列l=1,...,L,其对应的发送端相关性矩阵Rll可以通过特征值和特征向量进行唯一表示,对Rll进行特征值分解(EVD):
Rll=Q∑Q-1       (3)其中,∑为特征值对角阵,Q为特征向量矩阵,[·]-1表示求逆运算。当Rll满秩时,∑=diag(λ1,λ2,...,λn)包括从大到小排列的n个特征值λ1,λ2,...,λn,特征值向量Q={χ1,χ2,...,χn}包括相应的n个特征向量χ1,χ2,...,χn。最大特征值λ1对应的特征向量为χ1,次大特征值λ2对应的特征向量为χ2
对下行参考信号进行波束赋形的特征向量可以为一个或者多个。例如,在第l个天线子阵列上采用最大特征值λ1对应的特征向量χ1对下行参考信号sRS,l进行波束赋形,则得到BRS为yBRS,l=χ1sRS,l
或者,在第l个天线子阵列上采用次大特征值λ2对应的特征向量χ2对下行参考信号sRS,l进行波束赋形,则得到BRS为yBRS,l=χ2sRS,l
或者,使用这两个特征向量χ1和χ2对下行参考信号sRS,l进行波束赋形,得到两个BRSyBRS1,l=χ1sRS,l和yBRS2,l=χ2sRS,l,分别发送给UE。或者,也可以将得到的两个BRS叠加yBRS,l=χ1sRS,l2sRS,l,然后将合并后的BRS 发送给UE。
在具体应用时,考虑到长期演进(LTE)***的兼容性,下行参考信号可以为小区专用参考信号(CRS)或者信道状态指示参考信号(CSI-RS)。
对于L个天线子阵列上发送的多个BRS,可以通过时分复用(TDM)、频分复用(FDM)、码分复用(CDM)或者循环移位(CS)在时频资源上进行复用。
在上述图1所示的实施例中,通过基站将天线阵列划分成至少两个天线子阵列,根据接收到的UE发送的上行信号估计每个天线子阵列的发送端相关性参数,对于每个天线子阵列,根据发送端相关性参数对下行参考信号进行波束赋形,将BRS通过该天线子阵列上发送给UE,与现有技术中将整个天线阵列进行波束赋形相比,能够降低计算的复杂度,适用于使用AAS、用户密集分布的场景,为存在高的空间相关性的场景提供了一种兼顾性能和复杂度的多天线传输方案。
图4为本申请另一个实施例中基站侧进行多天线传输的方法的流程示意图。如图4所示,在图1所述步骤的基础上,图4进一步包括:
步骤104,接收UE反馈的波束选择信息,并根据接收到的波束选择信息调度用户。
本步骤中,波束选择信息可以为UE所选择的BRS对应的波束标识,或者,UE所选择的天线子阵列标识。其中,波束标识可以为波束的索引,天线子阵列标识可以为天线子阵列的索引。
具体而言,UE接收到基站侧L个天线子阵列上发送的多个BRS,从中选择出一个或者多个BRS,确定出所选择的BRS对应的波束索引。若UE预先获知基站侧的天线子阵列与波束之间的对应关系,那么UE可以根据该对应关系确定出上述波束索引对应的天线子阵列的索引,将 其作为波束选择信息发送给基站。若UE不知道基站侧的天线子阵列的具体信息,那么将所选择的BRS对应的波束索引作为波束选择信息发送给基站。
基站根据接收到的波束选择信息确定UE选择的天线子阵列。若该波束选择信息为UE所选择的BRS对应的波束索引,基站通过天线子阵列与波束之间的对应关系,可以映射出UE所选择的天线子阵列。若该波束选择信息为UE所选择的天线子阵列索引,那么基站可以直接从中确定出UE所选择的天线子阵列。
基站调度用户的方法包括:根据确定出的UE选择的天线子阵列将UE进行分组,得到与每个天线子阵列对应的一组待调度UE,然后为每组待调度UE确定出采用该组待调度UE对应的天线子阵列传输数据的调度用户。其中,一组待调度UE包括一个或多个UE。
在一实施例中,进行用户分组时,可以完全按照用户的反馈进行分组,即将反馈同一天线子阵列索引的UE归为一组待调度UE,不做任何调整。例如,假设有K个UE,对于L个天线子阵列,UE 1反馈所选择的天线子阵列的索引为1,UE 2反馈所选择的天线子阵列的索引为1和2,UE 3反馈所选择的天线子阵列的索引为1和3,UE 4反馈所选择的天线子阵列的索引为1,UE 5反馈所选择的天线子阵列的索引为1,...,UE K反馈所选择的天线子阵列的索引为L。
那么,基站可以得到如表1所示的结果。其中,有5个UE选择了索引为1的天线子阵列,这5个UE被归为一组。考虑到具体场景,如在该天线子阵列所形成波束的覆盖范围之内存在大量的用户等待被调度,比如目前多个用户在一个会议室内开会,这些用户同时向基站请求数据服务,基站确定出这些用户所选择的天线子阵列索引都为1。
天线子阵列的索引 对应的一组待调度UE
1 UE 1、UE 2、UE 3、UE 4、UE 5
2 UE 2
3 UE 3
L UE K
表1针对天线子阵列进行UE分组示例
在另一实施例中,基站可以基于调度均衡原则对UE进行分组,即对分配给每个天线子阵列的待调度UE个数进行均衡,使得所有待调度UE组内的UE个数较为接近。例如,如表2所示,当大多数UE反馈的天线子阵列索引为1时,基站可以适当在天线子阵列之间对划分为同一组的待调度UE进行调整,比如考虑在波束相近的天线子阵列之间进行调整,并将选择了多个天线子阵列的某些UE仅保留在一组中。与表1中不做任何调整的结果对比来看,如表2所示,分别将UE 4和UE 5分配在对应索引为2和3的待调度UE中,并在对应索引为1的待调度UE中删除UE 3,仅将UE 3分配到对应索引为3的待调度UE中。
天线子阵列的索引 对应的一组待调度UE
1 UE 1、UE 2
2 UE 2、UE 4
3 UE 3、UE 5
L UE K
表2针对天线子阵列进行UE分组示例
若UE除了向基站反馈所选择的天线子阵列的索引,还将所选择的天线子阵列上接收的BRS的RSRP一并发送给基站,此时基站还可以参 考每个UE所选择的天线子阵列上的RSRP进行用户分组。例如,在上述调度均衡原则中考虑在每组待调度UE中仅保留RSRP高于某个阈值的UE,以使分配给每个天线子阵列的待调度UE个数较为接近。
对于每组待调度UE,基站可以根据预设的调度度量从中确定出一个或多个调度用户。其中,调度度量可以为UE的几何平均吞吐量、比例公平调度度量或改进的比例公平调度度量等。
步骤105,向每个调度用户发送下行控制信令以触发每个调度用户向基站发送第二上行信号,基于第二上行信号对每个调度用户的数据进行预编码,并将预编码后的数据发送给每个调度用户。
本步骤中,第二上行信号可以为上行参考信号,如非周期的信道探测参考信号(A-SRS)。所发送的下行控制命令携带有指示调度用户发送上行参考信号的指示位,从而触发调度用户向基站发送上行参考信号。然后,基站根据接收到的上行参考信号进行信道估计,并且根据信道互惠(channel reciprocity)原则,估计出整个天线阵列的下行信道状态信息。
本申请中,由于将整个天线阵列划分成多个天线子阵列,在天线子阵列之间信道的空间相关性较弱,因此,可以在天线子阵列之间使用线性预编码算法,就可以获得较好的性能。同时,在天线子阵列内部使用非线性预编码算法,以适应较高的空间相关性。即,分别计算两个预编码矩阵,采用级联的方式进行预编码。
具体而言,根据所有调度用户的下行信道状态信息,采用线性预编码方法计算得到线性预编码矩阵,将其作为第一预编码矩阵。然后,根据估计出的下行信道状态信息和线性预编码矩阵,采用非线性预编码方法计算得到针对每个调度用户的非线性预编码矩阵,将其作为第二预编码矩阵。然后根据线性预编码矩阵和非线性预编码矩阵对每个调度用户 的数据进行预编码。
例如,线性预编码可以采用迫零(ZF)或者块对角化(BD)算法,根据所有调度用户的下行信道状态信息,得到线性预编码矩阵P。然后对于天线子阵列上的每个调度用户,对线性预编码矩阵P和下行信道矩阵为
Figure PCTCN2017071025-appb-000006
的乘积
Figure PCTCN2017071025-appb-000007
进行非线性预编码,如采用THP算法,得到非线性预编码矩阵Vk。进而根据P和Vk对所有的用户数据进行两次预编码,得到预编码后的数据。
在一个实施例中,在发送预编码后的数据时,可以在整个天线阵列上同时将预编码后的数据发送给所有的调度用户。在另一实施例中,若每个天线子阵列对应一组调度用户,每组调度用户包括了多个调度用户时,可以设置不同的发送时段,为每个天线子阵列指定一个发送时段,然后使用调度用户对应的天线子阵列在指定的发送时段发送预编码后的数据,即在天线子阵列之间分时地发送。
在图4所示的实施例中,基站接收UE反馈的波束选择信息,并根据接收到的波束选择信息调度用户,针对每个天线子阵列确定出调度用户,使得对应不同天线子阵列的调度用户组之间的空间相关性变弱,而仅在对应同一天线子阵列的调度用户之间保留高的空间相关性,进而使用线性预编码和非线性预编码联合的方式进行级联预编码,提高了多用户复用的增益,增加小区吞吐。
图5为本申请一个实施例中多天线传输方法的信令交互示意图,包括基站和待调度用户UE 1,...,UE K。如图5所示,包括以下步骤。
步骤501,基站将天线阵列划分成至少两个天线子阵列。
步骤502,每个UE向基站发送第一上行信号。
例如,UE 1,...,UE K分别向基站发送上行信号P-SRS。
步骤503,基站根据接收到的UE发送的第一上行信号估计每个天 线子阵列的发送端相关性矩阵;对于每个天线子阵列,根据发送端相关性矩阵计算得到特征向量,根据特征向量对下行参考信号进行波束赋形,得到BRS。
步骤504,基站在每个天线子阵列上将相应的BRS发送给UE。
步骤505,UE根据接收到的BRS选择天线子阵列。
步骤506,UE向基站反馈波束选择信息。
步骤507,基站根据接收到的波束选择信息调度用户。
步骤508,基站向每个调度用户发送下行控制信令以触发每个调度用户向基站发送第二上行信号。
如图5所示,假设UE 1和UE K为调度用户,此时基站触发UE 1和UE K向基站发送A-SRS。
步骤509,每个调度用户向基站发送第二上行信号。
步骤510,基站基于接收到的第二上行信号对每个调度用户的数据进行级联预编码。
步骤511,基站将预编码后的数据发送给每个调度用户。
在一实施例中,除了发送预编码后的数据,基站还可以同时向调度用户发送解调参考信号(DMRS)相关的信令配置信息,以用于UE的数据信道的相关解调。
步骤512,每个调度用户对接收到的下行数据进行检测,从中获得自身的数据。
图6为本申请一个实施例中UE侧进行多天线传输的方法的流程示意图。如图6所示,包括以下步骤。
步骤601,向基站发送第一上行信号,以使基站根据接收到的第一上行信号估计每个天线子阵列的发送端相关性参数,对于每个天线子阵列,根据发送端相关性参数对下行参考信号进行波束赋形,将波束赋形 后的下行参考信号BRS通过该天线子阵列发送给用户终端。
例如,第一上行信号为P-SRS。
步骤602,从基站接收BRS,根据接收到的BRS选择波束,并生成波束选择信息。
在一实施例中,UE接收到基站侧L个天线子阵列上发送的BRS,估计出每个BRS的参考信号接收功率(RSRP),从中选择出一个或者多个BRS,例如,选择RSRP最大的BRS,或者选择RSRP最大和次大的BRS。UE根据选择的BRS所占用的资源可以确定出这些BRS对应的波束。
进一步,UE根据是否获知基站侧的天线子阵列与波束之间的对应关系,可以生成不同的波束选择信息。具体为,若UE无法获知上述对应关系,则将所选择的BRS对应的波束标识作为波束选择信息反馈给基站。若UE预先获知上述对应关系,可以根据上述对应关系由波束标识映射出天线子阵列标识,将其作为波束选择信息反馈给基站。
在另一实施例中,UE除了向基站反馈波束选择信息,还可以将所选择的BRS的RSRP一并发送给基站,以使基站可以参考UE所选择的BRS的RSRP进行用户调度。
步骤603,向基站反馈波束选择信息,以使基站根据接收到的波束选择信息调度用户。
当该UE为调度用户时,进一步执行步骤604和605。
步骤604,从基站接收下行控制信令,并向基站发送第二上行信号,以使基站基于第二上行信号对每个调度用户的数据进行预编码,并将预编码后的数据发送给每个调度用户。
步骤605,从基站接收预编码后的数据,并进行数据检测。
图7为本申请一个实施例中基站700的结构示意图。如图7所示, 基站700包括:
划分模块710,用于将天线阵列划分成至少两个天线子阵列;
接收模块720,用于接收用户终端UE发送的第一上行信号;
估计模块730,用于根据接收模块720接收到的第一上行信号估计划分模块710划分出的每个天线子阵列的发送端相关性参数;
波束赋形模块740,用于对于每个天线子阵列,根据估计模块730估计出的发送端相关性参数对下行参考信号进行波束赋形,得到波束赋形后的下行参考信号;及,
发送模块750,用于将波束赋形模块740得到的波束赋形后的下行参考信号通过相应的天线子阵列发送给UE。
图8为本申请另一个实施例中基站800的结构示意图。在图7所示模块的基础之上,基站800进一步包括调度模块760和预编码模块770。
在一实施例中,接收模块720进一步用于:接收UE反馈的波束选择信息。相应地,调度模块760,用于根据接收模块720接收到的波束选择信息调度用户。
在一实施例中,调度模块760用于:根据波束选择信息确定UE选择的天线子阵列,根据调度均衡原则和UE选择的天线子阵列,将UE进行分组,得到与每个天线子阵列对应的一组待调度UE;为每组待调度UE确定出采用该组待调度UE对应的天线子阵列传输数据的调度用户。
在一实施例中,发送模块750进一步用于:向调度模块760确定的每个调度用户发送下行控制信令以触发每个调度用户向基站发送第二上行信号。接收模块720进一步用于:接收每个调度用户发送的第二上行信号。
相应地,预编码模块770,用于基于接收模块720接收到的第二上 行信号对调度模块760确定的每个调度用户的数据进行预编码。发送模块750进一步用于:将预编码模块770得到的预编码后的数据发送给每个调度用户。
在一些实施例中,预编码模块770进一步用于:根据所述第二上行信号估计每个调度用户的下行信道状态信息;根据所有调度用户的下行信道状态信息,计算得到第一预编码矩阵;根据每个调度用户的下行信道状态信息和所述第一预编码矩阵,计算得到针对每个调度用户的第二预编码矩阵;根据所述第一预编码矩阵和所述第二预编码矩阵对每个调度用户的数据进行预编码。
在一些实施例中,所述第一预编码矩阵为线性预编码矩阵;所述第二预编码矩阵为非线性预编码矩阵;所述预编码模块770进一步用于:根据所述线性预编码矩阵和所述非线性预编码矩阵,对每个调度用户的数据进行两次预编码。
图9为本申请一个实施例中用户终端900的结构示意图。如图9所示,用户终端900包括:
发送模块910,用于向基站发送第一上行信号,以使基站根据接收到的第一上行信号估计每个天线子阵列的发送端相关性参数,其中,所述基站的天线阵列划分成至少两个天线子阵列,所述发送端相关性参数表示不同发送端的无线传播信道之间的空间相关性,对于每个天线子阵列,根据发送端相关性参数对下行参考信号进行波束赋形,将波束赋形后的下行参考信号通过该天线子阵列发送给用户终端;及,
接收模块920,用于从基站接收波束赋形后的下行参考信号。
在一实施例中,用户终端900进一步包括:
选择模块930,用于根据接收模块920接收到的波束赋形后的下行参考信号选择波束,生成波束选择信息。
相应地,发送模块910进一步用于:向基站反馈选择模块930确定的波束选择信息,以使基站根据波束选择信息调度用户;其中,所述基站根据所述波束选择信息确定所述用户终端选择的天线子阵列,根据调度均衡原则和所述用户终端选择的天线子阵列,将所述用户终端进行分组,得到与每个天线子阵列对应的一组待调度用户终端。
在一些实施例中,所述发送模块910进一步用于:响应于所述基站发送的下行控制信令,向所述基站发送第二上行信号;其中,所述基站根据所述第二上行信号得到第一预编码矩阵和第二预编码矩阵,根据所述第一预编码矩阵和所述第二预编码矩阵对所述用户终端的数据进行两次预编码,得到编码后的数据;
所述接收模块920进一步用于:从所述基站接收所述预编码后的数据。
本领域技术人员应当理解,本申请实施例的用户终端和基站中各处理模块的功能,可参照前述方法实施例的相关描述而理解,本申请实施例的用户终端和基站中各处理模块,可通过实现本申请实施例的软件在用户终端和基站上的运行而实现。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个模块或组件可以结合,或可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或模块的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (19)

  1. 一种多天线传输方法,其特征在于,应用于基站,所述方法包括:
    将天线阵列划分成至少两个天线子阵列;
    根据接收到的用户终端UE发送的第一上行信号估计每个天线子阵列的发送端相关性参数,其中所述发送端相关性参数用于表示不同发送端的无线传播信道之间的空间相关性;及,
    对于每个天线子阵列,根据所述发送端相关性参数对下行参考信号进行波束赋形,将波束赋形后的下行参考信号通过该天线子阵列发送给所述UE。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述发送端相关性参数对下行参考信号进行波束赋形包括:
    根据所述发送端相关性参数计算得到特征参数,根据所述特征参数对所述下行参考信号进行波束赋形。
  3. 根据权利要求2所述的方法,其特征在于,所述发送端相关性参数为发送端相关性矩阵,所述特征参数为与所述发送端相关性矩阵的最大特征值相对应的特征向量,和/或,与所述发送端相关性矩阵的次大特征值相对应的特征向量。
  4. 根据权利要求1所述的方法,其特征在于,进一步包括:
    接收所述UE反馈的波束选择信息,并根据接收到的波束选择信息调度用户。
  5. 根据权利要求4所述的方法,其特征在于,所述根据接收到的波束选择信息调度用户包括:
    根据所述波束选择信息确定所述UE选择的天线子阵列;
    根据调度均衡原则和所述UE选择的天线子阵列,将所述UE进行 分组,得到与每个天线子阵列对应的一组待调度UE;
    为每组待调度UE确定出采用该组待调度UE对应的天线子阵列传输数据的调度用户。
  6. 根据权利要求4或者5所述的方法,其特征在于,进一步包括:
    向每个调度用户发送下行控制信令以触发每个调度用户向所述基站发送第二上行信号;
    基于所述第二上行信号对每个调度用户的数据进行预编码,并将预编码后的数据发送给每个调度用户。
  7. 根据权利要求6所述的方法,其特征在于,所述基于所述第二上行信号对每个调度用户的数据进行预编码包括:
    根据所述第二上行信号估计每个调度用户的下行信道状态信息;
    根据所有调度用户的下行信道状态信息,计算得到第一预编码矩阵;
    根据每个调度用户的下行信道状态信息和所述第一预编码矩阵,计算得到针对每个调度用户的第二预编码矩阵;
    根据所述第一预编码矩阵和所述第二预编码矩阵对每个调度用户的数据进行预编码。
  8. 根据权利要求7所述的方法,其特征在于,所述第一预编码矩阵为线性预编码矩阵;所述第二预编码矩阵为非线性预编码矩阵;
    所述根据所述第一预编码矩阵和所述第二预编码矩阵对每个调度用户的数据进行预编码包括:
    根据所述线性预编码矩阵和所述非线性预编码矩阵,对每个调度用户的数据进行两次预编码。
  9. 根据权利要求6所述的方法,其特征在于,所述将预编码后的数据发送给每个调度用户包括:
    设置不同的发送时段,为每个天线子阵列指定一个发送时段;
    使用所述调度用户对应的天线子阵列在指定的发送时段发送所述预编码后的数据。
  10. 一种基站,其特征在于,包括:
    处理器;
    与所述处理器相连接的存储器;所述存储器中存储有多个指令模块,包括划分模块、接收模块、估计模块、波束赋形模块和发送模块;当所述指令模块由所述处理器执行时,执行以下操作,
    所述划分模块,用于将天线阵列划分成至少两个天线子阵列;
    所述接收模块,用于接收用户终端UE发送的第一上行信号;
    所述估计模块,用于根据接收到的第一上行信号估计每个天线子阵列的发送端相关性参数,其中所述发送端相关性参数用于表示不同发送端的无线传播信道之间的空间相关性;
    所述波束赋形模块,用于对于每个天线子阵列,根据所述发送端相关性参数对下行参考信号进行波束赋形,得到波束赋形后的下行参考信号;及,
    所述发送模块,用于将波束赋形后的下行参考信号通过相应的天线子阵列发送给所述UE。
  11. 根据权利要求10所述的基站,其特征在于,所述接收模块进一步用于:接收所述UE反馈的波束选择信息;
    所述基站进一步包括:
    调度模块,用于根据接收到的波束选择信息调度用户。
  12. 根据权利要求11所述的基站,其特征在于,所述调度模块用于:根据所述波束选择信息确定所述UE选择的天线子阵列,根据调度均衡原则和所述UE选择的天线子阵列,将所述UE进行分组,得到与每个天线子阵列对应的一组待调度UE;为每组待调度UE确定出采用该 组待调度UE对应的天线子阵列传输数据的调度用户。
  13. 根据权利要求11或者12所述的基站,其特征在于,所述发送模块进一步用于:向每个调度用户发送下行控制信令以触发每个调度用户向所述基站发送第二上行信号;
    所述接收模块进一步用于:接收每个调度用户发送的第二上行信号;
    所述基站进一步包括:
    预编码模块,用于基于接收到的第二上行信号对每个调度用户的数据进行预编码;
    所述发送模块进一步用于:将预编码后的数据发送给每个调度用户。
  14. 根据权利要求13所述的基站,其特征在于,所述预编码模块进一步用于:根据所述第二上行信号估计每个调度用户的下行信道状态信息;
    根据所有调度用户的下行信道状态信息,计算得到第一预编码矩阵;
    根据每个调度用户的下行信道状态信息和所述第一预编码矩阵,计算得到针对每个调度用户的第二预编码矩阵;
    根据所述第一预编码矩阵和所述第二预编码矩阵对每个调度用户的数据进行预编码。
  15. 根据权利要求14所述的基站,其特征在于,所述第一预编码矩阵为线性预编码矩阵;所述第二预编码矩阵为非线性预编码矩阵;
    所述预编码模块进一步用于:根据所述线性预编码矩阵和所述非线性预编码矩阵,对每个调度用户的数据进行两次预编码。
  16. 一种用户终端,其特征在于,包括:
    处理器;
    与所述处理器相连接的存储器;所述存储器中存储有多个指令模块,包括发送模块和接收模块;当所述指令模块由所述处理器执行时,执行 以下操作:
    所述发送模块,用于向基站发送第一上行信号,以使所述基站根据接收到的第一上行信号估计每个天线子阵列的发送端相关性参数,其中,所述基站的天线阵列划分成至少两个天线子阵列,所述发送端相关性参数表示不同发送端的无线传播信道之间的空间相关性,对于每个天线子阵列,根据所述发送端相关性参数对下行参考信号进行波束赋形,将波束赋形后的下行参考信号通过该天线子阵列发送给所述用户终端;及,
    所述接收模块,用于从所述基站接收波束赋形后的下行参考信号。
  17. 根据权利要求16所述的用户终端,其特征在于,进一步包括:
    选择模块,用于根据接收到的波束赋形后的下行参考信号选择波束,生成波束选择信息;
    所述发送模块进一步用于:向所述基站反馈所述波束选择信息,以使所述基站根据所述波束选择信息调度用户;其中,所述基站根据所述波束选择信息确定所述用户终端选择的天线子阵列,根据调度均衡原则和所述用户终端选择的天线子阵列,将所述用户终端进行分组,得到与每个天线子阵列对应的一组待调度用户终端。
  18. 根据权利要求17所述的用户终端,其特征在于,所述发送模块进一步用于:响应于所述基站发送的下行控制信令,向所述基站发送第二上行信号;其中,所述基站根据所述第二上行信号得到第一预编码矩阵和第二预编码矩阵,根据所述第一预编码矩阵和所述第二预编码矩阵对所述用户终端的数据进行两次预编码,得到编码后的数据;
    所述接收模块进一步用于:从所述基站接收所述预编码后的数据。
  19. 一种非易失性计算机可读存储介质,其特征在于,所述存储介质中存储有机器可读指令,所述机器可读指令可以由处理器执行以完成以下操作:
    将天线阵列划分成至少两个天线子阵列;
    根据接收到的用户终端UE发送的第一上行信号估计每个天线子阵列的发送端相关性参数,其中所述发送端相关性参数用于表示不同发送端的无线传播信道之间的空间相关性;及,
    对于每个天线子阵列,根据所述发送端相关性参数对下行参考信号进行波束赋形,将波束赋形后的下行参考信号通过该天线子阵列发送给所述UE。
PCT/CN2017/071025 2016-01-21 2017-01-13 多天线传输方法、基站和用户终端 WO2017124967A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780006068.2A CN108604916B (zh) 2016-01-21 2017-01-13 多天线传输方法、基站和用户终端
JP2018538148A JP6961599B2 (ja) 2016-01-21 2017-01-13 マルチアンテナ伝送方法、基地局、およびユーザ端末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610040786.9 2016-01-21
CN201610040786.9A CN106992805A (zh) 2016-01-21 2016-01-21 多天线传输方法、基站和用户终端

Publications (1)

Publication Number Publication Date
WO2017124967A1 true WO2017124967A1 (zh) 2017-07-27

Family

ID=59361350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071025 WO2017124967A1 (zh) 2016-01-21 2017-01-13 多天线传输方法、基站和用户终端

Country Status (3)

Country Link
JP (1) JP6961599B2 (zh)
CN (2) CN106992805A (zh)
WO (1) WO2017124967A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019191970A1 (zh) * 2018-04-04 2019-10-10 华为技术有限公司 通信方法、通信装置和***
CN111182561A (zh) * 2018-11-12 2020-05-19 中兴通讯股份有限公司 一种天线阵列的控制方法及***
CN113015249A (zh) * 2019-12-20 2021-06-22 大唐移动通信设备有限公司 一种物理上行共享信道pusch非码本传输方法和装置
WO2024016837A1 (zh) * 2022-07-18 2024-01-25 华为技术有限公司 一种通信方法及装置
EP4318968A4 (en) * 2021-03-31 2024-06-05 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND APPARATUS FOR DETERMINING TRANSMISSION NETWORK OF OAM SYSTEM, AND TERMINAL DEVICE, ACCESS NETWORK DEVICE AND STORAGE MEDIUM

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842435A (zh) 2017-11-24 2019-06-04 上海诺基亚贝尔股份有限公司 一种用于执行预编码的方法和装置
EP3741070A4 (en) 2018-01-18 2021-08-25 Nokia Technologies Oy NONLINEAR PRECODING APPARATUS AND METHODS
CN110838862B (zh) * 2018-08-17 2022-06-21 大唐移动通信设备有限公司 一种波束处理方法、装置、终端及网络侧设备
CN112994773B (zh) * 2019-12-12 2022-08-19 中国电信股份有限公司 天线及其自适应调整方法和装置、空中基站和无人机
CN113315555B (zh) * 2020-02-27 2022-05-13 华为技术有限公司 一种波束赋形方法以及相关装置
CN111917671B (zh) * 2020-08-07 2023-11-14 北京信息科技大学 用于无线通信的装置和方法
CN113727388B (zh) * 2021-11-01 2022-01-18 广东省新一代通信与网络创新研究院 一种基于定向监听的信道使用方法及***
CN116405350B (zh) * 2023-06-09 2023-10-20 清华大学 一种超大规模mimo通信***的信道估计方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1941663A (zh) * 2005-09-30 2007-04-04 上海原动力通信科技有限公司 多天线信道复用的方法及波束赋形的方法
CN101359947A (zh) * 2007-07-30 2009-02-04 大唐移动通信设备有限公司 多天线阵列***的广播波束赋形方法及装置
US20150124738A1 (en) * 2013-11-01 2015-05-07 Samsung Electronics Co., Ltd. Channel estimation for data transmission parameter determination in systems employing an array-of-subarrays transceiver architecture
CN105210306A (zh) * 2013-05-10 2015-12-30 三星电子株式会社 无线通信***中用于选择发送和接收波束的设备和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5478525B2 (ja) * 2011-01-31 2014-04-23 日本電信電話株式会社 送信方法、及び送信装置
KR102109655B1 (ko) * 2012-02-23 2020-05-12 한국전자통신연구원 대규모 안테나 시스템에서의 다중 입력 다중 출력 통신 방법
JP6073073B2 (ja) * 2012-05-10 2017-02-01 シャープ株式会社 端末装置、基地局装置および通信方法
CN104039017A (zh) * 2013-03-06 2014-09-10 夏普株式会社 发送调度信息的方法和基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1941663A (zh) * 2005-09-30 2007-04-04 上海原动力通信科技有限公司 多天线信道复用的方法及波束赋形的方法
CN101359947A (zh) * 2007-07-30 2009-02-04 大唐移动通信设备有限公司 多天线阵列***的广播波束赋形方法及装置
CN105210306A (zh) * 2013-05-10 2015-12-30 三星电子株式会社 无线通信***中用于选择发送和接收波束的设备和方法
US20150124738A1 (en) * 2013-11-01 2015-05-07 Samsung Electronics Co., Ltd. Channel estimation for data transmission parameter determination in systems employing an array-of-subarrays transceiver architecture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019191970A1 (zh) * 2018-04-04 2019-10-10 华为技术有限公司 通信方法、通信装置和***
CN111937319A (zh) * 2018-04-04 2020-11-13 华为技术有限公司 通信方法、通信装置和***
US11277176B2 (en) 2018-04-04 2022-03-15 Huawei Technologies Co., Ltd. Communication method, communications apparatus, and communications system
CN111937319B (zh) * 2018-04-04 2022-04-26 华为技术有限公司 通信方法、通信装置和***
CN111182561A (zh) * 2018-11-12 2020-05-19 中兴通讯股份有限公司 一种天线阵列的控制方法及***
CN113015249A (zh) * 2019-12-20 2021-06-22 大唐移动通信设备有限公司 一种物理上行共享信道pusch非码本传输方法和装置
CN113015249B (zh) * 2019-12-20 2022-09-23 大唐移动通信设备有限公司 一种物理上行共享信道pusch非码本传输方法和装置
EP4318968A4 (en) * 2021-03-31 2024-06-05 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND APPARATUS FOR DETERMINING TRANSMISSION NETWORK OF OAM SYSTEM, AND TERMINAL DEVICE, ACCESS NETWORK DEVICE AND STORAGE MEDIUM
WO2024016837A1 (zh) * 2022-07-18 2024-01-25 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
JP6961599B2 (ja) 2021-11-05
CN106992805A (zh) 2017-07-28
JP2019508941A (ja) 2019-03-28
CN108604916B (zh) 2021-07-30
CN108604916A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2017124967A1 (zh) 多天线传输方法、基站和用户终端
CN107005293B (zh) 用于部分预编码的信道状态信息参考信号和信道状态信息反馈的下行链路信令的方法和装置
JP6060241B2 (ja) 無線通信システムにおいてチャネル状態情報をフィードバックする端末装置及びその方法
EP2891260B1 (en) Method and wireless terminal for mitigating downlink interference
CN104396153B (zh) 用于蜂窝无线通信***的信道状态信息码字构造的方法和装置
US9071389B2 (en) Method for communicating in a MIMO network
US10630353B2 (en) Two-stage precoding method and apparatus
US9276658B2 (en) Method for communicating in a MIMO network
US9602178B2 (en) Joint precoder and receiver design for MU-MIMO downlink
CN104935365B (zh) 用于多用户传输的方法和设备
US11483035B2 (en) Method and device for performing precoding
US8942305B2 (en) Method for communicating in a network
EP2810381B1 (en) Joint transmit and receive procedure
EP3288189B1 (en) Channel information feedback method and apparatus for array antenna
WO2017157123A1 (zh) 一种预编码处理方法、用户设备及基站
WO2023105266A1 (en) Ue-assisted precoder selection in active antenna system (aas)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17740998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018538148

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17740998

Country of ref document: EP

Kind code of ref document: A1