WO2017124606A1 - 触摸面板以及其制造方法 - Google Patents

触摸面板以及其制造方法 Download PDF

Info

Publication number
WO2017124606A1
WO2017124606A1 PCT/CN2016/074510 CN2016074510W WO2017124606A1 WO 2017124606 A1 WO2017124606 A1 WO 2017124606A1 CN 2016074510 W CN2016074510 W CN 2016074510W WO 2017124606 A1 WO2017124606 A1 WO 2017124606A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
driving
thin film
film transistor
Prior art date
Application number
PCT/CN2016/074510
Other languages
English (en)
French (fr)
Inventor
郝思坤
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/030,758 priority Critical patent/US20180052542A1/en
Publication of WO2017124606A1 publication Critical patent/WO2017124606A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to the field of capacitive sensing technology, and more particularly to a touch panel using a capacitive sensing component and a method of fabricating the same.
  • the liquid crystal display has the advantages of low power consumption, low flickering, vivid color and the like, and is widely used in electronic products such as mobile phones, cameras, computer screens, televisions, etc., and is currently the mainstream display.
  • the touch screen has the advantages of sturdy and durable, fast response, space saving, and easy communication.
  • the touch technology the user only needs to touch the graphic symbols or characters on the touch screen with a finger to realize the operation of the host, thereby enabling human-computer interaction. It is more straightforward and greatly facilitates users who are not familiar with computer operations.
  • the screens of many electronic devices combine liquid crystal display technology and touch technology, which not only has the advantages of liquid crystal display, but also realizes touch operation, and is popular among consumers.
  • the touch electrode for implementing the touch function is usually located under the pixel electrode of the liquid crystal display panel, which is easy to cause the touch electrode. It is difficult to sense the user's touch operation and reduce the sensitivity of the touch.
  • the conventional capacitive sensing component has a diamond-like shape in which the transparent first conductive line and the second conductive line are vertically and vertically overlapped, and the first conductive line and the second conductive line are respectively arranged with the driving lines arranged in the lateral direction.
  • the sensing lines arranged in the longitudinal direction are connected.
  • the driving line and the sensing line generate parasitic capacitance at positions crossing each other, thus affecting the aperture ratio of the pixel.
  • a large number of drive lines are set in the active area of the panel (Active One side of the area increases the width of the border of the display, which is not conducive to the display of the narrow bezel.
  • an object of the present invention is to provide an in-cell touch panel with a self-capacitive touch panel and a horizontal switching type (In plane)
  • the switching, IPS) panels are integrated to solve the above technical problems.
  • the present invention provides a touch panel including: a substrate; a first metal layer on the substrate for forming a gate and a driving line of the thin film transistor, the driving line for transmitting a driving signal and a common voltage; a first insulating layer on the first metal layer; a second metal layer on the gate insulating layer for forming a source and a drain of the thin film transistor; and an isolation layer on the second metal a first via hole penetrating the isolation layer and a second via hole penetrating the isolation layer and the gate insulating layer, the first via hole being aligned with the source or the drain,
  • the second via is aligned with the driving line; the pixel electrode is connected to the source or the drain through the first via; the driving electrode is connected to the driving line through the second via; And a sensing electrode for transmitting the sensing signal and the common voltage.
  • the driving electrode and the sensing electrode simultaneously serve as a common electrode layer.
  • the pixel electrode, the sensing electrode and the driving electrode are simultaneously formed by a conductive layer.
  • the conductive layer is made of indium tin oxide or a metal.
  • the second metal layer further includes a data line for transmitting a data voltage to the pixel electrode through the thin film transistor.
  • the data line when the driving line transmits the common voltage to the driving electrode, the data line is used to transfer a data voltage to the pixel electrode through the thin film transistor.
  • the data line when the driving line transmits the driving signal to the driving electrode, the data line stops transmitting a data voltage to the pixel electrode through the thin film transistor.
  • the present invention further provides a method of manufacturing a touch panel, comprising: forming a first metal layer on a substrate; etching the first metal layer to form a gate and a driving line of the thin film transistor; forming a gate insulating layer in the a gate of the thin film transistor and the driving line; forming a second metal layer on the gate insulating layer; etching the second metal layer to form a source and a drain of the thin film transistor; forming an isolation layer a source and a drain of the thin film transistor; a first via hole penetrating the isolation layer; and a second via hole penetrating the isolation layer and the gate insulating layer, the first via pair Aligning the source or drain, the second via is aligned with the drive line; depositing a conductive layer on the isolation layer, the source or drain; and etching the conductive layer to form a pixel electrode a driving electrode and a sensing electrode, wherein the pixel electrode is connected to the source or the drain through the first through hole, and
  • the conductive layer is made of indium tin oxide or a metal.
  • the step of etching the second metal layer to form a source and a drain of the thin film transistor includes etching the second metal layer to form a data line, and the data line is used to pass through The thin film transistor transfers a data voltage to the pixel electrode.
  • the method before the step of forming the second metal layer on the gate insulating layer, the method further comprises: forming an amorphous silicon layer on the gate insulating layer;
  • the amorphous silicon layer is etched to form a semiconductor layer of the thin film transistor.
  • the driving line of the array substrate of the touch panel of the present invention can transmit the common voltage and the driving signal, so that no additional driving signal line is needed to transmit the driving signal. Therefore, the problem that the touch panel of the prior art increases the width of the bezel due to the setting of the driving signal line can be avoided.
  • the driving electrode, the sensing electrode, and the pixel electrode are completed by the same conductive layer, the process and cost are simplified, and the problem of parasitic capacitance generated by additionally setting the driving signal line is effectively reduced.
  • the driving electrode and the sensing electrode are made of indium tin oxide or metal, which can increase touch sensitivity.
  • FIG. 1 is a schematic diagram of a display device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the distribution of touch capacitance of a touch area of a display device according to an embodiment of the invention.
  • Fig. 3 is a cross-sectional view showing a touch panel of the first embodiment of the present invention.
  • 4 to 9 are schematic views showing the fabrication of the array substrate of the touch panel of FIG. 3.
  • FIG. 1 is a schematic diagram of a display device 10 according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a distribution of touch capacitances of the touch area 50 of the display device 10 according to an embodiment of the invention.
  • the display device 10 includes a touch panel 100, which is a liquid crystal display panel having a touch function.
  • the touch panel 100 includes a display area 30 and a touch area 50.
  • the display area 30 is used to display images, and the touch area 50 is used to detect the position of the finger touching the panel.
  • the display device 10 includes a gate driver 12, a timing controller 14, and a source driver (source) Driver)16.
  • the display area 30 is provided with a plurality of pixels arranged in a matrix, and each of the pixels includes three pixel units 20 respectively representing three primary colors of red, green and blue (RGB).
  • the gate driver 12 outputs a scan signal every fixed interval such that the transistors 22 of each row are sequentially turned on, and the source driver 16 outputs corresponding data signals to an entire column of pixel units 20 to charge them to respective required voltages.
  • the pixel unit 20 is caused to display different gray scales according to the voltage difference between the data signal and the common voltage Vcom.
  • the gate driver 12 turns off the scan signal of the row, and then the gate driver 12 outputs the scan signal to turn on the transistor 22 of the next row, and then the source driver 16 pairs the pixel unit 20 of the next row. Charge and discharge. This is continued until all the pixel units 20 are fully charged, and charging starts from the first line.
  • the touch area 50 is composed of a plurality of mutually insulated driving electrodes 521 and sensing electrodes 522, driving lines 53 and sensing lines 54.
  • the plurality of driving electrodes 521 and sensing electrodes 522 are distributed in an array.
  • the shape of each of the drive electrode 521 and the sense electrode 522 may be a circle, a triangle, or the like.
  • Each of the driving electrodes 521 is connected to a corresponding one of the driving lines 53, and the driving signal unit 14a of the controller 14 outputs a driving signal to the driving electrodes 521 through the driving lines 53.
  • Each of the sensing electrodes 522 is coupled to a respective one of the sensing lines 54 to transmit the sensed sensing signals to the driving signal unit 14b of the controller 14.
  • the drive signal unit 14a periodically outputs a drive signal to each of the drive electrodes 521.
  • the capacitance between the driving electrode 521 and the sensing electrode 522 is a fixed value.
  • the driving electrode corresponding to the position where the finger touches the screen For example, when the finger is operated on the screen, the driving electrode corresponding to the position where the finger touches the screen
  • the sensed capacitance between the 521 and the sensing electrode 522 is changed by the human body, so the sensing signal returned by the sensing electrode 522 close to the touch point may be different from the sensing electrode 522 that is far away from the touch point.
  • the transmitted signal. Therefore, the controller 14 can determine the position touched by the finger by detecting the change in the capacitance value, thereby implementing the touch function.
  • FIG. 3 is a cross-sectional view of the touch panel 100 according to the first embodiment of the present invention.
  • the touch panel 100 includes an array substrate 200, a color filter substrate 202, and a liquid crystal layer 204.
  • the array substrate 200 is used to provide a plurality of pixel electrodes 112, thin film transistors 22, and drive electrodes 52.
  • the array substrate 200 includes a glass substrate 102, a first metal layer 104, a gate insulating layer 106, a second metal layer 108, an isolation layer 110, a pixel electrode 112, a driving electrode 521, and a sensing electrode 522.
  • the first metal layer 104 is located on the substrate 102 for forming the gate 22g of the thin film transistor 22 and the driving line 53 for transmitting the driving signal generated by the controller 14 and the common voltage Vcom.
  • the gate insulating layer 106 is on the first metal layer 104.
  • the second metal layer 108 is on the gate insulating layer 106 for forming the source 22s and the drain 22d of the thin film transistor 22.
  • the isolation layer 110 is on the second metal layer 108.
  • the pixel electrode 112 is connected to the source 22s or the drain 22d through the first via 141.
  • the drive electrode 521 is connected to the drive line 53 through the second through hole 142.
  • the driving electrode 521, the sensing electrode 522, and the pixel electrode 112 are simultaneously formed by a conductive layer.
  • the driving electrode 521 and the sensing electrode 522 simultaneously serve as a common electrode layer.
  • the controller 14 transmits a common voltage to the driving electrode 521 through the driving line 53
  • the source driver 16 transmits a data voltage to the pixel electrode 112 through the thin film transistor 22.
  • the data voltage applied to the pixel electrode 112 and the common voltage difference applied to the driving electrode 521 (or the sensing electrode 522) at this time may cause the liquid crystal molecules of the liquid crystal layer 204 between the pixel electrode 112 and the driving electrode 52 to rotate, thereby presenting Different gray levels.
  • the controller 14 transmits a drive signal to the drive electrode 521 through the drive line 53
  • the data line 114 stops transmitting the data voltage to the pixel electrode 112.
  • the sensing electrode 522 transmits the sensed sensing signal to the controller 54, and the liquid crystal molecules between the pixel electrode 112 and the driving electrode 521 (or the sensing electrode 522) still maintain the previous rotating state.
  • the driving electrode 521 and the sensing electrode 522 of the embodiment are used as a common electrode to receive a common voltage during the image display phase, and are used for detecting the touch pressure position during the touch detection phase. .
  • the color filter substrate 202 of the present embodiment includes a color filter layer 116, a black matrix layer 118, and a glass substrate 120.
  • the color filter layer 116 is used to filter out light of different colors.
  • the black matrix layer 118 is used to block light leakage.
  • the spacer 206 serves to maintain the spacing between the array substrate 200 and the color filter substrate 202 to accommodate the liquid crystal layer 204.
  • the black matrix layer 118 of the driving line 53 on the color filter substrate 202 is in the vertical projection area on the array substrate 200 to reduce the influence of the driving line 53 on the aperture ratio.
  • FIG. 4 to FIG. 9 are schematic diagrams showing the array substrate 200 of the touch panel 100 of FIG. 3 .
  • a glass substrate 102 is first provided, followed by a metal thin film deposition process to form a first metal layer (not shown) on the surface of the glass substrate 102, and the first mask is used to perform the first photolithography etching.
  • the gate 22g of the thin film transistor 22, the drive line 53, and the scanning line (not shown) are obtained by etching.
  • FIG. 4 does not depict scan lines, those skilled in the art will appreciate that gate 22g is substantially a portion of the scan line.
  • a gate insulating layer 106 made of silicon nitride (SiNx) is then deposited to cover the gate electrode 22g and the driving line 53.
  • amorphous silicon (a-Si, Amorphous) is deposited on the gate insulating layer 106.
  • the Si) layer is over the gate 22g.
  • a second mask is used to etch the amorphous silicon layer to constitute the semiconductor layer 22c.
  • the semiconductor layer 22c serves as a semiconductor layer of the thin film transistor 22.
  • a second metal layer (not shown) is deposited on the gate insulating layer 106, and is etched by a third mask, and the second metal layer is etched to form a source 22s of the thin film transistor 22.
  • the drain 22d and the data line (not shown).
  • the data line is directly connected to source 22s, and those skilled in the art will appreciate that source 22s is essentially a portion of the data line. Further, the positions of the source 22s and the drain 22d may also be reversed.
  • a spacer layer 110 made of a soluble polytetrafluoroethylene (PFA) is deposited, and the source 22s and the drain 22d and the driving line 53 are covered, and the isolation layer 110 is etched by using a fourth mask.
  • the portion of the isolation layer 110 over the drain 22d and the portion of the isolation layer 110 and the gate insulating layer 106 over the driving line 53 are removed to the surface of the drain 22d and the driving line 53 to form a square on the drain 22d.
  • the through hole 141 defines a second through hole 142 above the driving line 53. That is, the first through hole 141 is aligned with the drain 22d, and the second through hole 142 is aligned with the drive line 53.
  • an indium tin oxide is formed on the isolation layer 110.
  • the pixel electrode 112 is electrically connected to the drain 22d of the thin film transistor 22 through the first via hole 141 formed in advance.
  • the drive electrode 521 is connected to the drive line 53 through a second through hole 142 formed in advance.
  • the pixel electrode 112 constitutes a plurality of pixel electrodes, and a plurality of pixel electrodes, a plurality of driving electrodes 521 and sensing electrodes 522 are alternately formed on the isolation layer 110.
  • the array substrate 200 of the present embodiment has been completed. Thereafter, after the color film substrate 202 and the liquid crystal layer 204 are combined, the touch panel 100 of the present embodiment can be formed.
  • the touch panel 100 may also be an organic light emitting diode (OLED) display panel or other display panel having a touch function.
  • OLED organic light emitting diode
  • the driving line of the array substrate of the touch panel of the present invention can transmit the common voltage and the driving signal, so that no additional driving signal line is needed to transmit the driving signal. Therefore, the problem that the touch panel of the prior art increases the width of the bezel due to the setting of the driving signal line can be avoided.
  • the driving electrode, the sensing electrode, and the pixel electrode are completed by the same conductive layer, the process and cost are simplified, and the problem of parasitic capacitance generated by additionally setting the driving signal line is effectively reduced.
  • the driving electrode and the sensing electrode are made of indium tin oxide or metal, which can increase touch sensitivity.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触摸面板(100),其包括:基板(102);第一金属层(104),位于所述基板(102)上,用来形成薄膜晶体管(22)的栅极(22g)和驱动线(53);所述驱动线(53)用于传送驱动信号及公共电压;栅极绝缘层(106),位于所述第一金属层(104)上;第二金属层(108),位于所述栅极绝缘层(106)上,用来形成所述薄膜晶体管(22)的源极(22s)和漏极(22d);隔离层(110),位于所述第二金属层(108)上,并设置贯穿所述隔离层(110)的第一通孔(141)和贯穿所述隔离层(110)以及所述栅极绝缘层(106)的第二通孔(142);像素电极(112),通过所述第一通孔(141)与所述源极(22s)或漏极(22d)连接;驱动电极(521),通过所述第二通孔(142)与所述驱动线(53)连接;及感测电极(522),用来传送感测信号以及公共电压。所述驱动电极(521)、所述感测电极(522)同时作为公共电极层。

Description

触摸面板以及其制造方法 技术领域
本发明涉及电容式感应技术领域,特别是涉及使用电容式感应组件的触摸面板以及其制造方法。
背景技术
液晶显示器具有低功耗、低闪烁度、画面色彩逼真等优点,被广泛应用于移动电话、相机、计算机屏幕、电视机等电子产品中,为目前主流的显示器。
触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等优点,利用触控技术,用户只需要用手指轻碰触摸屏幕上的图形符号或文字即可实现对主机的操作,从而使得人机交互更为直截了当,极大方便对电脑操作不熟悉的用户。
目前,许多电子设备的屏幕都是将液晶显示技术和触控技术相结合,不仅具有液晶显示器的优点,同时实现触控操作,备受消费者欢迎。然而,现有的具有触摸功能的液晶显示器中,受液晶显示器本身结构的影响,用于实现触摸功能的触控电极通常是位于液晶显示面板的像素电极之下,如此一来容易导致触控电极难以感测用户的触摸操作,降低了触控的灵敏度。
此外,传统的电容式感应组件是把透明的第一导电线路和第二导电线路做成横竖交叠的类似菱形的形状,第一导电线路和第二导电线路分别与沿横向排列的驱动线和沿纵向排列的感测线连接。驱动线和感测线在彼此交叉的位置会产生寄生电容,因此会影响像素的开口率。另外,大量的驱动线设置在面板主动区(Active area)的一侧会增加显示器的边框宽度,因此不利于窄边框的显示器。
技术问题
因此,本发明的目的是提供一种内嵌式触摸面板,将自容式触控面板和水平切换式(In plane switching,IPS)面板整合在一起,以解决上述技术问题。
技术解决方案
本发明提供一种触摸面板,其包括:基板;第一金属层,位于所述基板上,用来形成薄膜晶体管的栅极和驱动线,所述驱动线用于传送驱动信号以及公共电压;栅级绝缘层,位于所述第一金属层上;第二金属层,位于所述栅级绝缘层上,用来形成所述薄膜晶体管的源极和漏极;隔离层,位于所述第二金属层上,并设置贯穿所述隔离层的第一通孔和贯穿所述隔离层以及所述栅级绝缘层的第二通孔,所述第一通孔对准所述源极或漏极,所述第二通孔对准所述驱动线;像素电极,通过所述第一通孔与所述源极或漏极连接;驱动电极,通过所述第二通孔与所述驱动线连接;及感测电极,用来传送感测信号以及所述公共电压。其中,所述驱动电极、所述感测电极同时作为公共电极层。
依据本发明的实施例,所述像素电极、所述感测电极和所述驱动电极是由一导电层同时所形成。
依据本发明的实施例,所述导电层是氧化铟锡或是金属构成。
依据本发明的实施例,所述第二金属层还包括数据线,所述数据线用来通过所述薄膜晶体管传递数据电压至所述像素电极。
依据本发明的实施例,当所述驱动线传送所述公共电压至所述驱动电极时,所述数据线用来通过所述薄膜晶体管传递数据电压至所述像素电极。
依据本发明的实施例,当所述驱动线传送所述驱动信号至所述驱动电极时,所述数据线停止通过所述薄膜晶体管传递数据电压至所述像素电极。
本发明又提供一种制造触摸面板的方法,其包括:形成第一金属层于基板上;蚀刻所述第一金属层以形成薄膜晶体管的栅极和驱动线;形成栅级绝缘层于所述薄膜晶体管的栅极和所述驱动线上;形成第二金属层于所述栅级绝缘层上;蚀刻所述第二金属层以形成所述薄膜晶体管的源极和漏极;形成隔离层于所述薄膜晶体管的源极和漏极之上;形成贯穿所述隔离层的第一通孔和贯穿所述隔离层和所述栅级绝缘层的第二通孔,所述第一通孔对准所述源极或漏极,所述第二通孔对准所述驱动线;沉积导电层于所述隔离层、所述源极或漏极上;以及蚀刻所述导电层以形成像素电极、驱动电极和感测电极,所述像素电极通过所述第一通孔与所述源极或漏极连接,所述驱动电极通过所述第二通孔与所述驱动线连接,其中所述感测电极用来传送感测信号以及所述公共电压,所述驱动电极、所述感测电极同时作为公共电极层。
依据本发明的实施例,所述导电层是氧化铟锡或是金属构成。
依据本发明的实施例,蚀刻所述第二金属层以形成所述薄膜晶体管的源极和漏极的步骤包含:蚀刻所述第二金属层以形成数据线,所述数据线用来通过所述薄膜晶体管传递数据电压至所述像素电极。
依据本发明的实施例,在形成所述第二金属层于所述栅级绝缘层上的步骤之前,所述方法另包含:形成非晶硅层于所述栅级绝缘层上;及
蚀刻所述非晶硅层以形成所述薄膜晶体管的半导体层。
有益效果
相较于现有技术,本发明的触摸面板的阵列基板的驱动线可以传输公共电压和驱动信号,因此不需额外增设驱动信号线来传输驱动信号。所以可以避免现有技术的触控面板因设置驱动信号线而增加边框宽度的问题。另外,由于驱动电极、感测电极和像素电极利用同一导电层完成,因此简化制程和减少成本,并有效减少因额外设置驱动信号线而产生寄生电容的问题。此外,驱动电极、感测电极是由氧化铟锡或是金属构成,可以增加触控灵敏度。
附图说明
图1是本发明实施例的显示设备的示意图。
图2绘示本发明实施例显示设备的触控区的触控电容的分布示意图。
图3是本发明第一实施例的触摸面板的剖面图。
图4-图9绘示制造图3的触摸面板的阵列基板的示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施之特定实施例。本发明所提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“水平”、“垂直”等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
请参阅图1和图2,图1是本发明实施例的显示设备10的示意图,图2绘示本发明实施例显示设备10的触控区50的触控电容的分布示意图。显示设备10包含触摸面板100,其为具有触控功能的液晶显示面板。触摸面板100包含显示区30以及触控区50。显示区30用来显示影像,触控区50用来侦测手指接触面板的位置。显示设备10包含栅极驱动器12、时序控制器14以及源极驱动器(source driver)16。显示区30设置数个呈矩阵排列的像素(pixel),而每一个像素包含三个分别代表红绿蓝(RGB)三原色的像素单元20构成。栅极驱动器12每隔一固定间隔输出扫描信号使得每一行的晶体管22依序开启,同时源极驱动器16则输出对应的数据信号至一整列的像素单元20使其充电到各自所需的电压,使得像素单元20依据数据信号和公共电压Vcom的压差以显示不同的灰阶。当同一行充电完毕后,栅极驱动器12便将该行的扫描信号关闭,然后栅极驱动器12再输出扫描信号将下一行的晶体管22打开,再由源极驱动器16对下一行的像素单元20进行充放电。如此依序下去,直到所有像素单元20都充电完成,再从第一行开始充电。
参阅图2。触控区50是由多个相互绝缘的驱动电极521和感测电极522、驱动线53和感测线54组成。多个驱动电极521和感测电极522呈阵列分布。每个驱动电极521和感测电极522的形状可以是圆形、三角形或其他形状。
每个驱动电极521与相应的一条驱动线53连接,控制器14的驱动信号单元14a通过驱动线53向驱动电极521输出驱动信号。每个感测电极522与相应的一条感测线54连接,将所感应到的感测信号传输至控制器14的驱动信号单元14b。驱动信号单元14a会定期向每一驱动电极521输出驱动信号。当人体未触碰屏幕时,驱动电极521和感测电极522之间的电容为一固定值,当人体触碰屏幕,例如手指在屏幕上操作时,手指触碰屏幕的位置所对应的驱动电极521和感测电极522之间感知的电容受人体的影响而发生变化,因此接近触碰点的感测电极522回传的感测信号会不同于其它远离触碰点的感测电极522所回传的感测信号。因此控制器14通过检测的电容值变化即可判断出手指触摸的位置,从而实现触控功能。
请参阅图3,图3是本发明第一实施例的触摸面板100的剖面图。触摸面板100包括阵列基板200、彩膜基板202和液晶层204。阵列基板200用来设置数个像素电极112、薄膜晶体管22以及驱动电极52。阵列基板200包括玻璃基板102、第一金属层104、栅级绝缘层106、第二金属层108、隔离层110、像素电极112、驱动电极521及感测电极522。第一金属层104位于基板102上,用来形成薄膜晶体管22的栅极22g和驱动线53,驱动线53用于传送由控制器14产生的驱动信号以及公共电压Vcom。栅级绝缘层106位于第一金属层104上。第二金属层108位于栅级绝缘层106上,用来形成薄膜晶体管22的源极22s和漏极22d。隔离层110位于第二金属层108上。像素电极112通过第一通孔141与源极22s或漏极22d连接。驱动电极521通过第二通孔142与驱动线53连接。驱动电极521、感测电极522与像素电极112是由一导电层同时所形成。
本实施例中,驱动电极521和感测电极522同时作为公共电极层。一方面,当控制器14通过驱动线53传送公共电压至驱动电极521时,源极驱动器16会通过薄膜晶体管22传递数据电压至像素电极112。此时施加于像素电极112的数据电压和施加于驱动电极521(或是感测电极522)的公共电压差会导致像素电极112和驱动电极52之间的液晶层204的液晶分子转动,因而呈现不同的灰阶。另一方面,当控制器14通过驱动线53传送驱动信号至驱动电极521时,数据线114停止传递数据电压至像素电极112。此时,感测电极522会将所感应到的感测信号传输至控制器54,像素电极112和驱动电极521(或是感测电极522)之间的液晶分子仍会保持之前的转动状态。也就是说,本实施例的驱动电极521和感测电极522在显示影像阶段时,会做为公共电极以接收公共电压;在触控侦测阶段时,会用来侦测触压位置之用。
本实施例的彩膜基板202包括彩色滤光层116、黑色矩阵层118和玻璃基板120。彩色滤光层116用来滤出不同颜色的光线。黑色矩阵层118用来遮挡漏光。间隙子206用来维持阵列基板200和彩膜基板202之间的间隔,以收容液晶层204。驱动线53位于彩膜基板202上的黑色矩阵层118在阵列基板200上的垂直投影区域内,以减小驱动线53对开口率的影响。
请参阅图4-图9,图4-图9绘示制造图3的触摸面板100的阵列基板200的示意图。如图4所示,首先提供一个玻璃基板102,接着进行一金属薄膜沉积制程,以于玻璃基板102表面形成第一金属层(未显示),并利用第一掩膜来进行第一微影蚀刻,以蚀刻得到薄膜晶体管22的栅极22g、驱动线53以及扫描线(未图示)。虽然图4并未标示出扫描线,但本领域的技术人员可以了解栅极22g实质上是扫描线的一部分。
请参阅图5,接着沉积以氮化硅(SiNx)为材质的栅级绝缘层106而覆盖栅极22g和驱动线53。
请参阅图6,于栅级绝缘层106上沉积非晶硅(a-Si,Amorphous Si)层于栅极22g上方。接着利用第二掩膜以蚀刻非晶硅层以构成半导体层22c。半导体层22c作为薄膜晶体管22的半导体层。
请参阅图7,于栅级绝缘层106上沉积第二金属层(未图示),并利用第三掩膜进行微影蚀刻,蚀刻该第二金属层以形成薄膜晶体管22的源极22s、漏极22d和数据线(未图示)。该数据线是直接连接到源极22s,本领域的技术人员可以了解源极22s实质上是数据线的一部分。此外,源极22s和漏极22d的位置也可以对调。
请参阅图8,接着沉积以可溶性聚四氟乙烯(Polyfluoroalkoxy,PFA)为材质的隔离层110,并覆盖源极22s及漏极22d和驱动线53,再利用第四掩膜蚀刻隔离层110,用以去除漏极22d上方的部份隔离层110以及驱动线53上方的部份隔离层110和栅级绝缘层106,直至漏极22d和驱动线53表面,以于漏极22d上方形第一通孔141,于驱动线53上方形成第二通孔142。也就是说,第一通孔141对准漏极22d,第二通孔142对准驱动线53。
请参阅图9,在隔离层110上形成以氧化铟锡物(Indium tin oxide,ITO)或石墨烯或金属为材质的导电层(未图示),接着利用第五掩膜蚀刻该导电层以同时形成像素电极112、驱动电极521和感测电极522。像素电极112通过预先形成的第一通孔141与薄膜晶体管22的漏极22d电性连接。驱动电极521通过预先形成的第二通孔142与驱动线53连接。像素电极112构成数个像素电极,数个像素电极、数个驱动电极521和感测电极522交替形成于隔离层110上。
至此,本实施例的阵列基板200已完成。之后在将彩膜基板202和液晶层204组合后,便可以形成本实施例的触摸面板100。
在其他实施方式中,触摸面板100还可以是具有触控功能的有机发光二极管(OLED)显示面板或其他显示面板。
相较于现有技术,本发明的触摸面板的阵列基板的驱动线可以传输公共电压和驱动信号,因此不需额外增设驱动信号线来传输驱动信号。所以可以避免现有技术的触控面板因设置驱动信号线而增加边框宽度的问题。另外,由于驱动电极、感测电极和像素电极利用同一导电层完成,因此简化制程和减少成本,并有效减少因额外设置驱动信号线而产生寄生电容的问题。此外,驱动电极、感测电极是由氧化铟锡或是金属构成,可以增加触控灵敏度。
综上所述,虽然本发明已以较佳实施例揭露如上,但该较佳实施例并非用以限制本发明,该领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (13)

  1. 一种触摸面板,其包括:
    基板;
    第一金属层,位于所述基板上,用来形成薄膜晶体管的栅极和驱动线,所述驱动线用于传送驱动信号以及公共电压;
    栅级绝缘层,位于所述第一金属层上;
    第二金属层,位于所述栅级绝缘层上,用来形成所述薄膜晶体管的源极和漏极;
    隔离层,位于所述第二金属层上,并设置贯穿所述隔离层的第一通孔和贯穿所述隔离层以及所述栅级绝缘层的第二通孔,所述第一通孔对准所述源极或漏极,所述第二通孔对准所述驱动线;
    像素电极,通过所述第一通孔与所述源极或漏极连接;
    驱动电极,通过所述第二通孔与所述驱动线连接;及
    感测电极,用来传送感测信号以及所述公共电压,
    其中所述驱动电极、所述感测电极同时作为公共电极层,所述第二金属层还包括数据线,所述数据线用来通过所述薄膜晶体管传递数据电压至所述像素电极,
    其中当所述驱动线传送所述公共电压至所述驱动电极时,所述数据线用来通过所述薄膜晶体管传递数据电压至所述像素电极,当所述驱动线传送所述驱动信号至所述驱动电极时,所述数据线停止通过所述薄膜晶体管传递数据电压至所述像素电极。
  2. 根据权利要求1所述的触摸面板,其中所述像素电极、所述感测电极和所述驱动电极是由一导电层同时所形成。
  3. 根据权利要求2所述的触摸面板,其中所述导电层是氧化铟锡或是金属构成。
  4. 一种触摸面板,其包括:
    基板;
    第一金属层,位于所述基板上,用来形成薄膜晶体管的栅极和驱动线,所述驱动线用于传送驱动信号以及公共电压;
    栅级绝缘层,位于所述第一金属层上;
    第二金属层,位于所述栅级绝缘层上,用来形成所述薄膜晶体管的源极和漏极;
    隔离层,位于所述第二金属层上,并设置贯穿所述隔离层的第一通孔和贯穿所述隔离层以及所述栅级绝缘层的第二通孔,所述第一通孔对准所述源极或漏极,所述第二通孔对准所述驱动线;
    像素电极,通过所述第一通孔与所述源极或漏极连接;
    驱动电极,通过所述第二通孔与所述驱动线连接;及
    感测电极,用来传送感测信号以及所述公共电压,
    其中,所述驱动电极、所述感测电极同时作为公共电极层。
  5. 根据权利要求4所述的触摸面板,其中所述像素电极、所述感测电极和所述驱动电极是由一导电层同时所形成。
  6. 根据权利要求5所述的触摸面板,其中所述导电层是氧化铟锡或是金属构成。
  7. 根据权利要求4所述的触摸面板,其中所述第二金属层还包括数据线,所述数据线用来通过所述薄膜晶体管传递数据电压至所述像素电极。
  8. 根据权利要求7所述的触摸面板,其中当所述驱动线传送所述公共电压至所述驱动电极时,所述数据线用来通过所述薄膜晶体管传递数据电压至所述像素电极。
  9. 根据权利要求7所述的触摸面板,其中当所述驱动线传送所述驱动信号至所述驱动电极时,所述数据线停止通过所述薄膜晶体管传递数据电压至所述像素电极。
  10. 一种制造触摸面板的方法,其包括:
    形成第一金属层于基板上;
    蚀刻所述第一金属层以形成薄膜晶体管的栅极和驱动线;
    形成栅级绝缘层于所述薄膜晶体管的栅极和所述驱动线上;
    形成第二金属层于所述栅级绝缘层上;
    蚀刻所述第二金属层以形成所述薄膜晶体管的源极和漏极;
    形成隔离层于所述薄膜晶体管的源极和漏极之上;
    形成贯穿所述隔离层的第一通孔和贯穿所述隔离层和所述栅级绝缘层的第二通孔,所述第一通孔对准所述源极或漏极,所述第二通孔对准所述驱动线;
    沉积导电层于所述隔离层、所述源极或漏极上;以及
    蚀刻所述导电层以形成像素电极、驱动电极和感测电极,所述像素电极通过所述第一通孔与所述源极或漏极连接,所述驱动电极通过所述第二通孔与所述驱动线连接,其中所述感测电极用来传送感测信号以及所述公共电压,所述驱动电极、所述感测电极同时作为公共电极层。
  11. 根据权利要求10所述的方法,其中所述导电层是氧化铟锡或是金属构成。
  12. 根据权利要求10所述的方法,其中蚀刻所述第二金属层以形成所述薄膜晶体管的源极和漏极的步骤包含:蚀刻所述第二金属层以形成数据线,所述数据线用来通过所述薄膜晶体管传递数据电压至所述像素电极。
  13. 根据权利要求12所述的方法,其中在形成所述第二金属层于所述栅级绝缘层上的步骤之前,所述方法另包含:
    形成非晶硅层于所述栅级绝缘层上;及
    蚀刻所述非晶硅层以形成所述薄膜晶体管的半导体层。
PCT/CN2016/074510 2016-01-19 2016-02-25 触摸面板以及其制造方法 WO2017124606A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/030,758 US20180052542A1 (en) 2016-01-19 2016-02-25 Touch panel and method of fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610035663.6 2016-01-19
CN201610035663.6A CN105487735A (zh) 2016-01-19 2016-01-19 触摸面板以及其制造方法

Publications (1)

Publication Number Publication Date
WO2017124606A1 true WO2017124606A1 (zh) 2017-07-27

Family

ID=55674752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074510 WO2017124606A1 (zh) 2016-01-19 2016-02-25 触摸面板以及其制造方法

Country Status (3)

Country Link
US (1) US20180052542A1 (zh)
CN (1) CN105487735A (zh)
WO (1) WO2017124606A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200077A (zh) * 2016-08-31 2016-12-07 深圳市华星光电技术有限公司 一种触控面板及其制作方法
CN106155420A (zh) * 2016-08-31 2016-11-23 深圳市华星光电技术有限公司 一种触控面板及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103164076A (zh) * 2011-12-09 2013-06-19 乐金显示有限公司 具有集成式触摸屏的显示装置
CN104199586A (zh) * 2014-09-16 2014-12-10 重庆京东方光电科技有限公司 一种阵列基板、内嵌式触摸屏和触控显示装置
CN105094479A (zh) * 2015-06-30 2015-11-25 京东方科技集团股份有限公司 触控显示面板、制备方法、驱动方法及显示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102116982B (zh) * 2010-11-26 2012-08-22 深圳市华星光电技术有限公司 液晶显示面板及其制造方法
KR101524449B1 (ko) * 2011-12-22 2015-06-02 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
KR101380479B1 (ko) * 2012-03-30 2014-04-01 엘지디스플레이 주식회사 터치 센서 일체형 표시장치 및 그 제조방법
KR102024782B1 (ko) * 2012-12-27 2019-09-24 엘지디스플레이 주식회사 터치센서 일체형 표시장치
CN103150070B (zh) * 2013-03-05 2016-07-06 合肥京东方光电科技有限公司 一种电容式触控模组、电容式内嵌触摸屏及显示装置
JP6375223B2 (ja) * 2014-01-31 2018-08-15 株式会社ジャパンディスプレイ センサ付表示装置及びその駆動方法
CN104460080A (zh) * 2014-12-04 2015-03-25 深圳市华星光电技术有限公司 触控显示装置
TWI567950B (zh) * 2015-01-08 2017-01-21 群創光電股份有限公司 顯示面板
CN104571715B (zh) * 2015-02-02 2018-01-02 京东方科技集团股份有限公司 阵列基板及其制作方法和驱动方法、显示装置
CN106033765B (zh) * 2015-03-17 2019-06-11 上海和辉光电有限公司 有机发光二极管触控显示面板
CN104698707A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 阵列基板及其形成方法、显示装置
CN104932767B (zh) * 2015-05-08 2018-02-09 上海天马微电子有限公司 一种阵列基板及制造方法、触控显示面板及触控显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103164076A (zh) * 2011-12-09 2013-06-19 乐金显示有限公司 具有集成式触摸屏的显示装置
CN104199586A (zh) * 2014-09-16 2014-12-10 重庆京东方光电科技有限公司 一种阵列基板、内嵌式触摸屏和触控显示装置
CN105094479A (zh) * 2015-06-30 2015-11-25 京东方科技集团股份有限公司 触控显示面板、制备方法、驱动方法及显示装置

Also Published As

Publication number Publication date
US20180052542A1 (en) 2018-02-22
CN105487735A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2017124604A1 (zh) 触摸面板以及其制造方法
US9619063B2 (en) Array substrate and manufacturing method thereof, and touch display device
WO2017124607A1 (zh) 触摸面板以及其制造方法
US10613664B2 (en) Display device with built-in touch screen and method of fabricating the same
WO2017124605A1 (zh) 触摸面板以及其制造方法
US8659564B2 (en) Touch sensible display device having reduced number of image data lines
CN102566171B (zh) 液晶显示设备和制造该液晶显示设备的方法
KR101451938B1 (ko) 터치스크린 내장형 표시 패널
TWI546589B (zh) 具有整合的觸控螢幕面板的液晶顯示器
TWI496044B (zh) 觸控裝置、其觸控顯示器及其電子裝置
WO2014000382A1 (zh) 触摸面板、触摸显示面板、触摸检测及显示方法
WO2016033928A1 (zh) 显示面板及其驱动方法、显示装置
WO2017020367A1 (zh) 内嵌式自电容触控显示面板及其制作方法
US20160253010A1 (en) Liquid Crystal Display Touch Screen Array Substrate and the Corresponding Liquid Crystal Display Touch Screen
WO2015176459A1 (zh) 触控显示面板及其制作方法、触控显示装置
US11092836B2 (en) Array substrate, manufacturing method for the same and in-cell touch panel
KR20160141305A (ko) 인셀 터치 액정 디스플레이 장치와 그 제조방법
WO2015032223A1 (zh) 阵列基板、触控显示面板、显示装置及电路驱动方法
TWI617959B (zh) 顯示裝置
US10037115B2 (en) Touch display panel, display device and driving method thereof
WO2015039382A1 (zh) 一种内嵌式触摸屏及显示装置
WO2013139192A1 (zh) 触摸液晶显示装置、液晶显示面板及上部基板
KR20130015126A (ko) 터치 스크린이 내장된 액정 표시장치와 이의 제조방법
US10114504B2 (en) Touch screen, display device and fabrication method of touch screen
CN103760703A (zh) 双栅面板内嵌式触控装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15030758

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16885879

Country of ref document: EP

Kind code of ref document: A1