WO2017122834A2 - Reciprocating engine, and compressor - Google Patents

Reciprocating engine, and compressor Download PDF

Info

Publication number
WO2017122834A2
WO2017122834A2 PCT/JP2017/015681 JP2017015681W WO2017122834A2 WO 2017122834 A2 WO2017122834 A2 WO 2017122834A2 JP 2017015681 W JP2017015681 W JP 2017015681W WO 2017122834 A2 WO2017122834 A2 WO 2017122834A2
Authority
WO
WIPO (PCT)
Prior art keywords
power shaft
valve
crankshaft
piston
intake
Prior art date
Application number
PCT/JP2017/015681
Other languages
French (fr)
Japanese (ja)
Other versions
WO2017122834A3 (en
Inventor
信隆 嵯峨
Original Assignee
信隆 嵯峨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信隆 嵯峨 filed Critical 信隆 嵯峨
Publication of WO2017122834A2 publication Critical patent/WO2017122834A2/en
Publication of WO2017122834A3 publication Critical patent/WO2017122834A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/26Engines with cylinder axes coaxial with, or parallel or inclined to, main-shaft axis; Engines with cylinder axes arranged substantially tangentially to a circle centred on main-shaft axis

Definitions

  • the present invention relates to a reciprocating engine and a compressor.
  • Patent Document 1 describes this type of engine.
  • the reciprocating motion of the piston is converted into the rotational motion of the crank, and the rotational motion of the crank is transmitted to the power shaft.
  • the power shaft extends in a direction perpendicular to the moving direction of the piston.
  • Patent Document 2 describes a water-cooled four-cycle engine.
  • a toothed drive pulley is fixed to the crankshaft
  • a toothed driven pulley is fixed to the camshaft.
  • a toothed timing belt is wound around the driving pulley and the driven pulley.
  • the rotation of the crankshaft is transmitted to the camshaft by the timing belt, and the intake valve and the exhaust valve are opened and closed by the cam integrated with the camshaft.
  • crankshaft in a conventional reciprocating type engine, one crankshaft is provided for a plurality of pistons, and the crankshaft is relatively long. As a result, the engine itself becomes longer, which may increase the weight of the engine.
  • crankshaft since the crankshaft is provided with a plurality of crankpins corresponding to the plurality of pistons, the shape and structure of the crankshaft are complicated. Therefore, when it is required to manufacture a high-strength crankshaft with high accuracy, it is not easy to manufacture the crankshaft.
  • the moving direction of the piston is perpendicular to the power shaft, there is a risk that the vibration in the vertical direction becomes relatively large in the case of an automobile. In the case of a conventional reciprocating type compressor, the same problem occurs in the case of multiple cylinders.
  • the present invention has been made in view of such circumstances, and in a reciprocating type engine or compressor, the components of the crank mechanism are simplified and miniaturized, and are perpendicular to the power shaft (or drive shaft). The purpose is to suppress vibration in the direction.
  • the present invention provides a power shaft, a plurality of cylinders arranged along a predetermined circumference centered on the power shaft, each provided substantially parallel to the power shaft, and a plurality of cylinders.
  • a plurality of pistons provided in each of the cylinders, a plurality of crank mechanisms connected to each of the plurality of pistons for converting reciprocating motion of the pistons into rotational motion, and rotation converted by each of the plurality of crank mechanisms
  • An engine including a power transmission mechanism that transmits a motion to a power shaft and rotates the power shaft.
  • the first invention is a reciprocating type four-cycle multi-cylinder engine, and further has at least one of an intake valve and an exhaust valve provided in each cylinder head of a plurality of cylinders as a driving target, and is integrated with a power shaft. And a valve pressing unit that moves the valve to be driven by pushing the valve to the piston side at a position facing the cylinder head for each cylinder, and the valve to be driven is moved by the valve pressing unit.
  • the valve pressing unit When the valve is pushed and moved to the piston side, the valve is opened, and when the valve pressing part is released, it returns to its original position by the elastic member and closes, and each of the crank mechanisms includes a connecting rod connected to the piston and a connecting rod connected to the crank.
  • the power transmission mechanism is connected to the crankshaft in each of the plurality of crank mechanisms.
  • the connecting rod is connected to the crank arm on the outside of the gear box, the number of teeth on the power shaft side gear is twice that of each crank shaft side gear, and the valve pressing part is powered. It rotates at the same rotational speed as the shaft.
  • the second invention is a reciprocating type 6-cycle multi-cylinder engine, and further has at least one of an intake valve and an exhaust valve provided in each cylinder head of a plurality of cylinders as a driving target, and is integrated with a power shaft.
  • a valve pressing part that moves the valve to be driven by pushing the valve to the piston side at a position facing the cylinder head for each cylinder, and the valve to be driven is a valve pressing part.
  • the valve is opened during the period of moving to the piston side when the valve is pressed, and when the valve pressing part leaves, it returns to its original position by the elastic member and closes, and each of the crank mechanisms includes a connecting rod connected to the piston, and a connecting rod A power transmission mechanism in each of the plurality of crank mechanisms.
  • the connecting rod is connected to the crank arm on the outside of the gear box, the number of teeth on the power shaft side gear is three times that of each crank shaft side gear, and the valve pressing part is powered. It rotates at the same rotational speed as the shaft.
  • the supporting bevel gear is disposed opposite to the power shaft side gear, meshes with each of the plurality of crankshaft side gears, and rotates in a direction opposite to the power shaft. It has more.
  • a drive shaft that rotates upon receiving power, a plurality of cylinders that are arranged along a predetermined circumference centered on the drive shaft, and that are each provided substantially parallel to the drive shaft, A plurality of pistons that are provided in each of the cylinders to form a compression chamber in the cylinder, a plurality of crank mechanisms that are connected to each of the plurality of pistons and convert their own rotational motion into piston reciprocating motion, and drive
  • the compressor includes a power transmission mechanism that converts the rotational motion of the shaft into the rotational motion of each of the plurality of crank mechanisms and transmits the rotational force of the drive shaft to each crank mechanism.
  • each of the first and second inventions a crank mechanism is provided for each piston. Therefore, compared with the conventional engine which provides one crankshaft with respect to a some piston, the component of each crank mechanism can be simplified and reduced in size.
  • Each cylinder is provided substantially parallel to the power axis, and the moving direction of each piston is substantially parallel to the power axis. Therefore, vibration in a direction perpendicular to the power shaft can be suppressed.
  • the valve pressing unit integrated with the power shaft rotates around the power shaft during engine operation.
  • the valve pressing portion pushes the valve to be driven to the piston side to open the valve at a position facing the cylinder head.
  • the elastic member closes the driving target valve.
  • the rotational force of the crankshaft is transmitted to the camshaft using a timing belt and a pulley attached thereto, and the intake valve and the exhaust valve are opened and closed by the cam integrated with the camshaft.
  • the structure of the valve drive mechanism is complicated and energy loss is large.
  • the valve to be driven is opened and closed using a valve pressing unit integrated with the power shaft.
  • a valve pressing unit integrated with the power shaft.
  • a supporting bevel gear meshes with each crankshaft side gear in addition to the power shaft side gear. Therefore, in the power shaft side gear, it is possible to avoid a large rotational force due to the explosion from being concentrated in a specific region, and it is possible to suppress wear of the power shaft side gear.
  • the components of the crank mechanism can be simplified and miniaturized, and vibration in the direction perpendicular to the drive shaft can be suppressed.
  • FIG. 1 is a perspective view of an engine according to Embodiment 1.
  • FIG. Perspective view of valve drive disc View of the first support plate from the cylinder head side
  • the second support plate as seen from the cylinder head side Diagram for explaining the inside of the direction change gearbox
  • the figure for explaining the state during the intake stroke in the engine The figure for explaining the state in the compression stroke in the engine Illustration for explaining the state during the explosion stroke in the engine
  • the figure for explaining the part which united the crankshaft side bevel gear and the crank The figure for demonstrating the structure in a direction change gear box Illustration for explaining the division of explosive force applied to the power shaft side bevel gear Illustration for explaining the division of explosive force applied to the supporting bevel gear
  • Embodiment 1 of the present invention will be described in detail with reference to FIGS.
  • the following embodiment is an example of the present invention, and is not intended to limit the scope of the present invention, its application, or its use.
  • the engine 30 is a reciprocating type four-cycle multi-cylinder engine.
  • the engine 30 is used as a power source of a moving body such as an automobile or a motorcycle.
  • the engine 30 is arranged along a power shaft 3 (output shaft) constituted by a straight shaft and a predetermined circumference (single circumference) centered on the power shaft 3.
  • the plurality of cylinders 2 and a plurality of pistons 21 are provided in each of the plurality of cylinders 2 are provided.
  • the power shaft 3 is supported by first to third support plates 31 to 33 that are provided at the center with bearings 8 that rotatably support the power shaft 3.
  • the three support plates 31 to 33 are arranged at intervals in the axial direction of the power shaft 3 and are provided perpendicular to the power shaft 3.
  • a rectangular plate-like housing 1 that covers the outside of each cylinder 2 is attached to each of the support plates 31 to 33. 3 and 4, the housing 1 is hatched including the cut surface.
  • Each cylinder 2 is formed in a substantially cylindrical shape.
  • a substantially columnar piston 21 is slidably provided in the axial direction.
  • a combustion chamber is defined in each cylinder 2 by a piston 21.
  • Each cylinder 2 is provided so that the axial direction is substantially parallel to the power shaft 3 and the cylinder head 2a faces one end side (the front side in FIG. 1) of the power shaft 3. All cylinders 2 have the cylinder head 2a facing the same side. All the cylinders 2 are arranged at the same position in the axial direction of the power shaft 3.
  • Each cylinder 2 is fitted and fixed in the mounting holes of the first support plate 31 and the second support plate 32.
  • a first support plate 31 shown in FIG. 3 supports the cylinder head 2 a side of each cylinder 2.
  • the second support plate 32 shown in FIG. 4 supports the opposite side of each cylinder 2 from the cylinder head 2a.
  • the engine 30 includes four cylinders 2.
  • the four cylinders 2 are arranged at equiangular intervals (90 degree intervals) on the circumference of the same radius with the power shaft 3 as the center.
  • the number of cylinders 2 in the engine 30 is not limited to four, and may be two, three, six, or eight, for example, or may be a number other than these.
  • each cylinder head 2a is connected to a branch pipe of an intake manifold 10 for sucking an air-fuel mixture into the combustion chamber and a branch pipe of an exhaust manifold 9 for discharging combustion gas in the combustion chamber.
  • Each branch pipe of the intake manifold 10 is provided with a fuel injector (not shown) for injecting fuel.
  • each branch pipe connected to each cylinder 2 is connected to one upstream pipe in the vicinity of the power shaft 3. Further, in the exhaust manifold 9, for example, two of the four branch pipes connected to each cylinder 2 merge on the upper side of the engine 30 in FIG. 3, and the remaining two of the branch pipes of the engine 30 in FIG. 3. It merges on the lower side.
  • each structure of the intake manifold 10 and the exhaust manifold 9 is not limited to this embodiment.
  • Each cylinder head 2a is provided with an intake valve 22 for opening and closing the outlet (intake port) of the intake manifold 10 and an exhaust valve 23 for opening and closing the inlet (exhaust port) of the exhaust manifold 9.
  • Each intake valve 22 is urged to the outside (right side in FIG. 6) of the cylinder 2 by an elastic member (not shown) such as a coil spring, and the valve face is pressed against the valve seat at the edge of each intake port.
  • Each exhaust valve 23 is biased to the outside of the cylinder 2 by an elastic member (not shown) such as a coil spring, and the valve face is pressed against the valve seat at the edge of each exhaust port.
  • Each intake valve 22 and each exhaust valve 23 is controlled to be opened and closed by a valve drive mechanism. Details of the valve drive mechanism will be described later.
  • each cylinder head 2a as shown in FIG. 3, the intake valve 22, the spark plug 12, and the exhaust valve 23 are arranged in this order from the power shaft 3 side.
  • the intake valve 22 is provided closer to the power shaft 3 than the exhaust valve 23.
  • the intake valve rods 16 (valve stems) of all the intake valves 22 have a first circumference centered on the power shaft 3 (the distance from the axis of the power shaft 3 to the axis of the intake valve rod 16 is a radius). It is arranged on the circumference.
  • the exhaust valve rods 11 (valve stems) of all the exhaust valves 23 have a second circumference centered on the power shaft 3 (the distance from the axis of the power shaft 3 to the axis of the exhaust valve rod 11 is a radius). It is arranged on the circumference. The second circumference has a larger radius than the first circumference. In each cylinder 2, the exhaust valve 23 may be provided closer to the power shaft 3 than the intake valve 22.
  • FIG. 5 is a view of the direction change gearbox 4 as viewed from the second support plate 32 side.
  • One end of the connecting rod 6 is connected to each piston 21 by a piston pin 19.
  • the other end side of the connecting rod 6 is connected to the crank arm 5 a of the crank 5 by a crank pin 20.
  • the connecting rod 6 and the crank 5 constitute a crank mechanism.
  • the engine 30 is further provided with a plurality of crank mechanisms that are connected to each of the plurality of pistons 21 and convert the reciprocating motion of the pistons 21 into rotational motion.
  • the four cranks 5 are arranged at equiangular intervals around the power shaft 3.
  • crankshaft 5b of each crank 5 is provided substantially perpendicular to the power shaft 3 as shown in FIG.
  • the axis of the power shaft 3 exists on the extension line of the axis of each crankshaft 5b.
  • Each crankshaft 5b rotates counterclockwise when viewed from the power shaft 3 side.
  • Each crankshaft 5 b is rotatably supported by a crank bearing 7 attached to the inner surface of the housing 1.
  • Each crankshaft 5b passes through the peripheral wall portion 4a of the rectangular cylindrical direction changing gear box 4, and is also rotatably supported by the peripheral wall portion 4a.
  • the direction change gear box 4 is attached to the inner surface of the third support plate 33.
  • crankshaft side bevel gear 18 is fixed to each crankshaft 5b inside the direction changing gearbox 4.
  • Each crankshaft side bevel gear 18 has a gear forming surface facing the power shaft 3 side.
  • the four crankshaft side bevel gears 18 are arranged around the power shaft 3 at equal angular intervals.
  • a power shaft side bevel gear 17 having a larger diameter and a larger number of gears than the crank shaft side bevel gear 18 is fixed to the power shaft 3.
  • the power shaft side bevel gear 17 is disposed on the third support plate 33 side inside the direction changing gear box 4, and the gear forming surface faces the cylinder 2 side (one end side of the power shaft 3).
  • Each crankshaft side bevel gear 18 is meshed with the power shaft side bevel gear 17 inside the direction changing gear box 4.
  • the four crankshaft side bevel gears 18 and the one power shaft side bevel gear 17 constitute a power transmission mechanism.
  • the engine 30 further includes a power transmission mechanism that transmits the rotational motion converted by each of the plurality of crank mechanisms to the power shaft 3 to rotate the power shaft 3.
  • the power transmission mechanism converts the rotational motion of each crankshaft 5b into the rotational motion of the power shaft 3 perpendicular to each crankshaft 5b.
  • the engine 30 further includes a valve drive mechanism that drives each of the intake valve 22 and the exhaust valve 23.
  • the valve drive mechanism is integrated with the power shaft 3.
  • the valve drive mechanism rotates with the power shaft 3 around the power shaft 3.
  • the valve drive mechanism includes a valve drive disc 13 fixed to the power shaft 3, and an intake projection 15 projecting from the inner surface (surface on the cylinder 2 side) of the valve drive disc 13. (Intake cam) and an exhaust projection 14 (exhaust cam) protruding from the inner surface of the valve drive disc 13.
  • intake cam intake cam
  • exhaust projection 14 exhaust cam protruding from the inner surface of the valve drive disc 13.
  • the intake convex portion 15 and the exhaust convex portion 14 correspond to a valve pressing portion.
  • the intake convex portion 15 is disposed closer to the power shaft 3 than the exhaust convex portion 14 on the inner surface of the valve driving disc 13.
  • the valve drive disk 13 has a size (radius) sufficient to cover the outer valve of the intake valve 22 and the exhaust valve 23, and is provided so as to face the cylinder head 2a of each cylinder 2 with a space therebetween. It has been.
  • the valve driving disc 13 constitutes a valve driving plate, and a circular plate-like member may be used as in the present embodiment, or a plate-like member of another shape (for example, a polygon) may be used. Good.
  • the intake convex portion 15 is an arc-shaped convex portion that is partially formed along the circumference of the same radius as the first circumference around the power shaft 3 on the inner surface of the valve drive disc 13. is there.
  • the intake convex portion 15 rotates together with the power shaft 3 and the valve drive disc 13 and is positioned at the position facing each cylinder head 2a with respect to each cylinder 2 and the intake valve rod 16 of the intake valve 22 provided on the cylinder head 2a. Is pushed toward the piston 21 to move the intake valve 22.
  • the intake valve 22 is opened over a period in which the intake valve 22 is pushed by the intake convex portion 15 and moves to the piston 21 side. During this period, the elastic member pressing the valve face of the intake valve 22 against the valve seat contracts. When the intake convex portion 15 passes through the position facing the cylinder head 2a and the intake convex portion 15 moves away from the intake valve rod 16, the intake valve 22 returns to the original position by the restoring force of the elastic member. Close the valve. Note that the intake convex portion 15 has a slope at least at the leading end in the rotational direction.
  • the exhaust convex portion 14 is an arc-shaped convex portion that is partially formed on the inner surface of the valve driving disc 13 along the circumference of the same radius as the second circumference around the power shaft 3. is there.
  • the exhaust convex portion 14 rotates together with the power shaft 3 and the valve drive disc 13, and the exhaust valve rod 11 of the exhaust valve 23 provided on the cylinder head 2 a at a position facing the cylinder head 2 a for each cylinder 2. Is pushed to the piston 21 side to move the exhaust valve 23.
  • the exhaust valve 23 is opened over a period in which the exhaust valve 23 is pushed by the exhaust projection 14 and moves to the piston 21 side. During this period, the elastic member that has pressed the valve face of the exhaust valve 23 against the valve seat contracts. When the exhaust convex portion 14 passes through the position facing the cylinder head 2a and the exhaust convex portion 14 moves away from the exhaust valve rod 11, the exhaust valve 23 returns to the original position by the restoring force of the elastic member. Close the valve.
  • the exhaust convex part 14 has a slope at least at the front side in the rotational direction.
  • the valve drive disc 13 rotates counterclockwise.
  • the spark plug 12 ignites the air-fuel mixture at the timing when the protrusion comes right next to the spark plug 12 (the timing when the piston 21 comes close to the compression top dead center).
  • the ratio between the number of teeth of the crankshaft side bevel gear 18 and the number of teeth of the power shaft side bevel gear 17 is 1: 2. Therefore, when the crankshaft side bevel gear 18 rotates twice, the power shaft side bevel gear 17 rotates once. That is, when the piston 21 reciprocates twice (when four strokes of suction, compression, expansion, and exhaust are performed), the power shaft 3 rotates once. When the piston 21 reciprocates halfway, the valve drive disk 13 rotates 90 degrees.
  • the protrusion is provided at a position advanced by approximately 90 degrees (for example, 90 to 100 degrees) counterclockwise from the top of the exhaust projection 14. Therefore, in each cylinder 2, the valve drive disk 13 rotates approximately 90 degrees after ignition by the spark plug 12, and the timing at which the leading side of the exhaust projection 14 comes directly beside the exhaust valve 23 (the piston 21 is dead dead). When the point is reached, the exhaust valve 23 is pushed by the exhaust projection 14 to open. The exhaust projection 14 is formed over an angular range of approximately 90 degrees (for example, 90 to 100 degrees) with the power shaft 3 as the center. Therefore, in each cylinder 2, the valve drive disk 13 rotates approximately 90 degrees after the exhaust valve 23 is opened, and the rear end of the exhaust projection 14 passes just beside the exhaust valve 23 (the piston 21 is moved upward). At the timing when the dead point is reached), the exhaust projection 14 is separated from the exhaust valve 23 and the exhaust valve 23 is closed. Strictly speaking, the exhaust valve 23 is closed slightly after the timing when the piston 21 passes through the top dead center.
  • the leading end of the intake convex portion 15 is at the same angular position as the tail of the exhaust convex portion 14. For this reason, the timing at which the exhaust valve 23 is closed is substantially the same as the timing at which the intake valve 22 is opened. Strictly speaking, the leading end of the intake convex portion 15 in the rotational direction of the valve driving disc 13 is located at the top of the exhaust convex portion 14 so that the intake valve 22 is opened shortly before the exhaust valve 23 is closed. It extends to the top side of the exhaust projection 14 slightly from the rear.
  • the intake valve 22 is pushed by the intake convex portion 15 and opened at the timing when the leading side of the intake convex portion 15 comes directly beside the intake valve 22 (timing when the piston 21 reaches top dead center). I speak.
  • the intake convex portion 15 is formed over an angular range of approximately 90 degrees (for example, 90 to 100 degrees) with the power shaft 3 as the center. For this reason, in each cylinder 2, the valve driving disk 13 rotates approximately 90 degrees after the intake valve 22 is opened, and the rear end of the intake convex portion 15 passes just beside the intake valve 22 (the piston 21 is At the timing when the dead point is reached), the intake convex portion 15 is separated from the intake valve 22 and the intake valve 22 is closed. Strictly speaking, the intake valve 22 is closed slightly after the timing when the piston 21 passes through the bottom dead center.
  • each cylinder 2 as shown in FIG. 6, the intake valve 22 is pushed to the piston 21 side by the intake convex portion 15 to open, and the piston 21 moves to the bottom dead center side.
  • An intake stroke is performed. In the intake stroke, an air-fuel mixture mixed with fuel injected from the fuel injector flows into the combustion chamber through the intake manifold 10.
  • the intake convex portion 15 passes, the intake valve 22 returns to its original position and closes, and the piston 21 moves to the top dead center side as shown in FIG. Is called.
  • the exhaust valve 23 is also closed. In the compression stroke, the air-fuel mixture sucked into the combustion chamber in the intake stroke is compressed.
  • the exhaust valve 23 is pushed toward the piston 21 side by the exhaust projection 14 to open, and the piston 21 moves to the top dead center side, whereby the exhaust stroke is performed.
  • the combustion gas burned in the combustion stroke is discharged from the combustion chamber through the exhaust manifold 9.
  • the exhaust valve 23 returns to the original position and closes.
  • FIG. 10 is a diagram showing the transition of the stroke in each cylinder 2 of the engine 30, as viewed from the cylinder head 2a side.
  • the power shaft 3 rotates clockwise. Since the valve driving disk 13 also rotates clockwise, each stroke is performed clockwise by four cylinders 2 (in FIG. 10, the cylinder 2 of the intake stroke is rotated clockwise (lower right, lower left, upper left, Are listed in the order in the upper right)).
  • a cylinder 2 for the intake stroke, a cylinder 2 for the compression stroke, a cylinder 2 for the explosion stroke, and a cylinder 2 for the exhaust stroke are arranged counterclockwise.
  • the four cylinders 2 perform different strokes. Each time the power shaft 3 rotates 90 degrees, the process in each cylinder 2 changes in the order of the intake stroke, the compression stroke, the explosion stroke, and the exhaust stroke.
  • a crank mechanism is provided for each piston 21, and the rotational motion of the crankshaft 5 b of each crank mechanism is transmitted to the power shaft 3 perpendicular to the crankshaft 5 b using the bevel gears 17 and 18. Therefore, compared with the conventional engine which provides one crankshaft with respect to a some piston, the component of each crank mechanism can be simplified and reduced in size.
  • Each cylinder 2 is provided substantially parallel to the power shaft 3, and the moving direction of each piston 21 is substantially parallel to the power shaft 3. Therefore, vibration in a direction perpendicular to the power shaft 3 can be suppressed.
  • the engine 30 can be collectively compacted, and the weight of the engine 30 can be reduced. Can be planned. That is, the engine 30 can be designed compactly by the structure of the three-dimensional thinking, maintenance is easy, and the weight of the engine 30 can be reduced. Therefore, it is possible to improve the fuel consumption of the moving body equipped with the engine 30 and reduce the exhaust gas.
  • the centers of the cylinders 2 are on the same circumference. Therefore, the piping of the manifolds 9 and 10 extending from the exhaust port or the intake port of each cylinder 2 is easy.
  • the convex portions 14 and 15 (valve pressing portions) integrated with the power shaft 3 rotate around the power shaft 3 during the operation of the engine 30. At that time, the convex portions 14 and 15 push the valves 22 and 23 to be driven to the piston 21 side to open them at positions facing the cylinder head 2a. And if the convex parts 14 and 15 leave
  • the valve drive mechanism can be simplified, and the energy loss in the valve drive mechanism can be reduced.
  • crank mechanism and the valve drive mechanism can be simplified, so that the number of parts can be reduced. Moreover, manufacture and assembly of the components of the engine 30 can be facilitated. Therefore, the cost of the engine itself including the engine development cost can be reduced.
  • each cylinder 2 is parallel to the power shaft 3, and the center of each cylinder 2 is arranged on the same circumference centering on the power shaft 3. Therefore, the intake valves 22 and the exhaust valves 23 of all the cylinders 2 can be opened and closed by the two rows of convex portions 14 and 15 formed by changing the radius and the arc length on one surface of the valve driving disc 13. it can. That is, the convex portions 14 and 15 can be shared by all the cylinders 2.
  • the half-reciprocation of the piston 21 corresponds to the 90-degree rotation of the valve drive disc 13, and the rotation angle of the valve drive disc 13 with respect to the change amount of the crank angle is easy to understand visually. Adjustment of the overlap between the intake valve 22 and the exhaust valve 23 is also easy.
  • the crank angle of the piston 21 is set to be different by 360 degrees between the pair of cylinders 2 that are opposed to each other with the power shaft 3 interposed therebetween (in this case, the angle of the crank pin with the crank shaft as the center). The position is the same).
  • the crank angle of the piston 21 is 360 degrees different between the upper right cylinder 2 and the lower left cylinder 2
  • the crank angle of the piston 21 is 360 degrees different between the upper left cylinder 2 and the lower right cylinder 2.
  • the pair of cylinders 2 facing each other with the power shaft 3 interposed therebetween when one piston 21 moves forward to the cylinder head 2a side, the other piston 21 also moves forward, and when one piston 21 moves backward, the other piston 21 moves forward. 21 also moves backward.
  • the connecting rod 6 is opposite to the straight line connecting the centers of the cylinders 2 while the piston 21 is moving forward or backward as shown in FIG. Facing.
  • the crank angle of the piston 21 is set to be different by 180 degrees, and the moving direction of the piston 21 is reversed. As described above, the vibrations of the four pistons 21 cancel each other, and the vibration of the engine 30 can be reduced.
  • the ratio (gear ratio) between the number of teeth of the crankshaft side bevel gear 18 and the number of teeth of the power shaft side bevel gear 17 is 1: 2, so that the power shaft side bevel gear 17 rotates once.
  • four processes are performed.
  • the explosion stroke is performed in turn every 90 degrees with respect to the angular position of the power shaft 3. Therefore, the power shaft 3 can be smoothly rotated.
  • the cycle can be arbitrarily changed according to the number of cylinders 2 (the number of cylinders) and the gear ratio described above.
  • the number of teeth of the power shaft side bevel gear 17 is a multiple of the number of cylinders due to the relationship between the top dead center and the bottom dead center in each cylinder 2 (see FIG. 11A). Further, in order to make a common part in which the crankshaft side bevel gear 18 and the crank 5 are integrated, the number of teeth of the crankshaft side bevel gear 18 is an even number, the longitudinal direction of the crank 5 at the top dead center and the bottom dead center, The centerline of the tooth tip 37 or the tooth bottom 36 in the crankshaft side bevel gear 18 is made parallel (see FIG. 12). In addition, in FIG. 11, the part 36 to which the character of "concave” was attached
  • a support bevel gear 34 is provided so as to face the power shaft side bevel gear 17, and each crankshaft side bevel gear is constituted by the power shaft side bevel gear 17 and the support bevel gear 34. 18 is sandwiched.
  • the supporting bevel gear 34 meshes with each crankshaft side bevel gear 18.
  • the supporting bevel gear 34 is attached to a rotating shaft different from the power shaft 3 and is reversely rotated. This rotating shaft is rotatably attached to a supporting bevel gear pedestal 35 fixed to the peripheral wall 4a. Thereby, the meshing of each crankshaft side bevel gear 18 with the power shaft side bevel gear 17 can be stabilized.
  • the number of teeth of the support bevel gear 34 is set to be a multiple of the number of cylinders in the relationship between the top dead center and the bottom dead center as in the power shaft side bevel gear 17 (see FIG. 11B).
  • each of the four crankshaft side bevel gears 18 meshes with the same region of the power shaft side bevel gear 17 at the timing when the rotational force due to the explosion in the corresponding cylinder 2 acts.
  • a large rotational force due to the explosion concentrates on the section A. Therefore, in the power shaft side bevel gear 17, there is a possibility that the concentrated region (section A) of the rotational force is worn.
  • the supporting bevel gear 34 when the supporting bevel gear 34 is provided, the rotational force of the crankshaft side bevel gear 18 is also transmitted to the supporting bevel gear 34, and the rotational force is transmitted from the supporting bevel gear 34 via the other crankshaft side bevel gear 18. It is transmitted to the power shaft side bevel gear 17. That is, the rotational force is dispersed. Therefore, wear of both the bevel gears 17 and 18 can be reduced.
  • the valve driving disc 13 is different from that of the above-described embodiment.
  • an intake convex portion 15 is provided on one side of the valve driving disc 13, and an exhaust convex portion 14 having the same diameter as the intake convex portion 15 is provided on the back surface thereof.
  • the valve drive disc 13 can be reduced to the outer diameter of the intake projection 15.
  • a bridge is provided on the first support plate 31. The exhaust projection 14 moves the exhaust valve 23 by pushing the end of the exhaust valve rod 11 toward the piston 21 through a rod using the bridge as a fulcrum at a position facing each cylinder 2 to the cylinder head 2a. .
  • each of the intake convex portion 15 and the exhaust convex portion 14 is within a predetermined radial range on the valve driving disc 13 (a range of about the width of the convex portions 14 and 15). Is movably provided.
  • the intake projection 15 is pressed inward by the elastic member. Therefore, as the rotational speed of the power shaft 3 increases and the centrifugal force increases, the elastic member contracts and the intake convex portion 15 moves outward. In this case, by increasing the protrusion height toward the inner side in the width direction of the intake convex portion 15, the lift amount of the intake valve 22 is increased as the intake convex portion 15 moves radially outward within a predetermined range. be able to. Further, by increasing the slope on the leading side of the intake convex portion 15 (by advancing the leading position), the more the intake convex portion 15 moves radially outward, the more the intake valve 22 opens. The start timing can be advanced.
  • the exhaust projection 14 is pressed inward by the elastic member. Therefore, as the rotational speed of the power shaft 3 increases and the centrifugal force increases, the elastic member contracts and the exhaust projection 14 moves outward.
  • the lift amount of the exhaust valve 23 is increased as the exhaust convex portion 14 moves outward in the radial direction within a predetermined range. be able to.
  • the exhaust valve 23 opens as the exhaust convex portion 14 moves outward in the radial direction.
  • the start timing can be advanced.
  • the intake valve 22 and the exhaust valve 23 can be configured as high and low speed variable valves with a simple configuration.
  • the high / low speed variable valve can be realized by a movable configuration using centrifugal force other than the above-described method.
  • the intake valve 22 and the exhaust valve 23 may be variable valves using other means.
  • the front side or the rear side of the intake convex portion 15 is divided, and the divided body is switched between a state of projecting from the valve drive disc 13 and a state of not projecting, so that the circumference of the valve drive disc 13 is changed.
  • the length of the intake convex portion 15 in the direction may be changed. That is, a divided body that moves continuously in the thickness direction of the valve driving disk 13 by a motor or the like may be provided continuously to the head side or the tail side of the main body of the intake convex portion 15.
  • the motor can be arbitrarily controlled based on the operating state of the engine 30 and the like.
  • a similar configuration can be adopted for the exhaust projection 14.
  • the engine 30 may be used as a generator (engine generator).
  • a worm gear having a large reduction ratio may be used instead of the bevel gear.
  • the engine 30 is a four-cylinder four-cycle engine.
  • the present invention is not limited to this, and the ratio (gear ratio) between the number of teeth of the crankshaft side bevel gear 18 and the number of teeth of the power shaft side bevel gear 17 is changed.
  • a multi-cycle engine may be used.
  • the aforementioned gear ratio may be 1: 3 and a 6-cycle engine may be used.
  • the scavenging suction step and the scavenging exhaust step can be performed after the exhaust step.
  • the scavenging suction convex part formed over an angular range of approximately 60 degrees from substantially the same angular position as the rear end of 15 and the angular range of approximately 60 degrees from substantially the same angular position as the rear tail of the scavenging suction convex part.
  • the formed scavenging exhaust projection is provided.
  • the exhaust convex portion 14 and the intake convex portion 15 are also formed over an angle range of approximately 60 degrees. Thereby, it is possible to improve the fuel consumption of moving bodies, such as a car, and to reduce exhaust gas.
  • the engine 30 is a gasoline engine, but may be another type of engine such as diesel or HCCI. Further, a supercharger may be used.
  • the second embodiment is a reciprocating type multi-cylinder compressor 130.
  • the compressor 130 includes a drive shaft 103 (input shaft) configured by a straight shaft, and a plurality of cylinders 2 arranged along a predetermined circumference (single circumference) around the drive shaft 103. And a plurality of pistons 21 provided in each of the plurality of cylinders 2. Although only one cylinder 2 is illustrated in FIG. 16, as in FIG. 1, the plurality of cylinders 2 are arranged at equiangular intervals on the circumference of the same radius around the drive shaft 103. .
  • each cylinder 2 a piston 21 is slidable in the axial direction.
  • a compression chamber is defined by a piston 21 in each cylinder 2.
  • Each cylinder 2 is provided so that the axial direction is substantially parallel to the drive shaft 103 and the cylinder head faces one end side (right side in FIG. 16) of the drive shaft 103. All the cylinders 2 are arranged at the same position in the axial direction of the drive shaft 103.
  • Each cylinder 2 is connected with an intake pipe 110 for sucking gas before compression into the compression chamber and a discharge pipe 109 for discharging high-pressure gas after compression from the compression chamber.
  • Each cylinder 2 is provided with an intake valve 122 that opens and closes the outlet (intake port) of the intake pipe 110 and a discharge valve 123 that opens and closes the inlet (discharge port) of the discharge pipe 109.
  • the compressor 130 is connected to each of the plurality of pistons 21 and converts the rotational motion of the piston 21 into reciprocating motion of the piston 21 and the rotational motion of the drive shaft 103 to the plurality of crank mechanisms.
  • a power transmission mechanism that converts the rotational force of the drive shaft 103 to each of the crank mechanisms 5 and 6 by converting into the rotational motions 5 and 6.
  • the crank mechanisms 5 and 6 and the power transmission mechanism employ the same configuration as that of the first embodiment.
  • each intake valve 122 is pressed against the valve seat of each intake port by an elastic member (not shown) such as a coil spring.
  • an elastic member such as a coil spring.
  • the intake valve 122 opens, and an intake stroke is performed in which gas is drawn from the intake pipe 110 into the compression chamber.
  • Each discharge valve 123 is pressed against the valve seat of each discharge port by an elastic member (not shown) such as a coil spring.
  • the compression stroke is performed.
  • the discharge valve 123 is opened, and high-pressure gas is discharged from the compression chamber to the discharge pipe 109.
  • the present invention can be applied to a reciprocating engine or a compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Transmission Devices (AREA)

Abstract

A reciprocating engine 30 is equipped with: a power shaft 3; a plurality of cylinders 2 that are disposed along a prescribed circle centering about the power shaft 3 and are each provided roughly parallel to the power shaft 3; a plurality of pistons 21 that are provided to each of the plurality of cylinders 2; a plurality of crank mechanisms 5, 6 that are connected to each of the plurality of pistons 21 and convert the reciprocating motion of the pistons 21 to rotational motion; and a power transmitting mechanism 17, 18 that transmits the rotational motion converted by each of the plurality of crank mechanisms to the power shaft 3 and rotates the power shaft 3 therewith.

Description

レシプロエンジン及び圧縮機Reciprocating engine and compressor
 本発明は、レシプロタイプのエンジン及び圧縮機に関する。 The present invention relates to a reciprocating engine and a compressor.
 従来から、レシプロタイプのエンジンや圧縮機が知られている。特許文献1には、この種のエンジンが記載されている。このエンジンでは、ピストンの往復運動がクランクの回動運動に変換されて、クランクの回転運動が動力軸に伝達される。動力軸は、ピストンの移動方向に対して垂直方向に延びている。 Conventionally, reciprocating type engines and compressors are known. Patent Document 1 describes this type of engine. In this engine, the reciprocating motion of the piston is converted into the rotational motion of the crank, and the rotational motion of the crank is transmitted to the power shaft. The power shaft extends in a direction perpendicular to the moving direction of the piston.
 また、特許文献2には、水冷式四サイクルのエンジンが記載されている。このエンジンでは、クランク軸に歯付きの駆動プーリーが固着され、カム軸に歯付きの従動プーリーが固着されている。駆動プーリーと従動プーリーとには、歯付きのタイミングベルトが巻き掛けられている。このエンジンでは、タイミングベルトによってクランク軸の回転がカム軸に伝達され、カム軸に一体化されたカムによって吸気バルブ及び排気バルブが開閉される。 Patent Document 2 describes a water-cooled four-cycle engine. In this engine, a toothed drive pulley is fixed to the crankshaft, and a toothed driven pulley is fixed to the camshaft. A toothed timing belt is wound around the driving pulley and the driven pulley. In this engine, the rotation of the crankshaft is transmitted to the camshaft by the timing belt, and the intake valve and the exhaust valve are opened and closed by the cam integrated with the camshaft.
特開2015-161207号公報Japanese Patent Laying-Open No. 2015-161207 特開2011-163141号公報JP 2011-163141 A
 ところで、従来のレシプロタイプのエンジンでは、複数のピストンに対して1本のクランク軸が設けられており、クランク軸が比較的長くなる。そのため、エンジン自体も長くなり、エンジンの重量が大きくなる虞がある。また、複数のピストンに対応してクランク軸に複数のクランクピンが設けられているため、クランク軸の形状及び構造が複雑になる。そのため、高強度のクランク軸を高精度に製造することが要求される場合に、クランク軸の製造が容易ではない。また、動力軸に対してピストンの移動方向が垂直になっており、自動車の場合に上下方向の振動が比較的大きくなる虞がある。また、従来のレシプロタイプの圧縮機でも、多気筒の場合に同様の問題が生じる。 Incidentally, in a conventional reciprocating type engine, one crankshaft is provided for a plurality of pistons, and the crankshaft is relatively long. As a result, the engine itself becomes longer, which may increase the weight of the engine. In addition, since the crankshaft is provided with a plurality of crankpins corresponding to the plurality of pistons, the shape and structure of the crankshaft are complicated. Therefore, when it is required to manufacture a high-strength crankshaft with high accuracy, it is not easy to manufacture the crankshaft. In addition, since the moving direction of the piston is perpendicular to the power shaft, there is a risk that the vibration in the vertical direction becomes relatively large in the case of an automobile. In the case of a conventional reciprocating type compressor, the same problem occurs in the case of multiple cylinders.
 本発明は、このような事情に鑑みてなされたものであり、レシプロタイプのエンジン又は圧縮機において、クランク機構の構成部品を簡素化及び小型化し、動力軸(又は駆動軸)に対して垂直な方向の振動を抑制することを目的とする。 The present invention has been made in view of such circumstances, and in a reciprocating type engine or compressor, the components of the crank mechanism are simplified and miniaturized, and are perpendicular to the power shaft (or drive shaft). The purpose is to suppress vibration in the direction.
 上述の課題を解決するべく、本発明は、動力軸と、動力軸を中心とした所定の円周に沿って配置され、それぞれが動力軸に対し略平行に設けられた複数のシリンダーと、複数のシリンダーの各々に設けられた複数のピストンと、複数のピストンの各々に接続され、該ピストンの往復運動を回転運動に変換する複数のクランク機構と、複数のクランク機構の各々によって変換された回転運動を動力軸に伝達させて該動力軸を回転させる動力伝達機構とを備えているエンジンである。なお、発明者は、このエンジンを「NS(NEW SYSTEM)エンジン」と名付けた。 In order to solve the above-described problems, the present invention provides a power shaft, a plurality of cylinders arranged along a predetermined circumference centered on the power shaft, each provided substantially parallel to the power shaft, and a plurality of cylinders. A plurality of pistons provided in each of the cylinders, a plurality of crank mechanisms connected to each of the plurality of pistons for converting reciprocating motion of the pistons into rotational motion, and rotation converted by each of the plurality of crank mechanisms An engine including a power transmission mechanism that transmits a motion to a power shaft and rotates the power shaft. The inventor named this engine “NS (NEW SYSTEM) engine”.
 第1の発明は、レシプロタイプの4サイクル多気筒エンジンであって、さらに、複数のシリンダーの各々のシリンダーヘッドに設けられた吸気バルブ又は排気バルブの少なくとも一方を駆動対象としており、動力軸に一体化されて該動力軸を中心に回転し、各シリンダーについてシリンダーヘッドに対面する位置で、駆動対象のバルブをピストン側に押して移動させるバルブ押付部を備え、駆動対象のバルブは、バルブ押付部によって押されてピストン側へ移動する期間に開弁し、バルブ押付部が離れると弾性部材によって元の位置に戻って閉弁し、クランク機構の各々は、ピストンに連結されたコンロッドと、コンロッドがクランクアームを介して連結されたクランク軸とを有し、動力伝達機構は、複数のクランク機構の各々におけるクランク軸に固定された複数のクランク軸側ギアと、動力軸に固定されて複数のクランク軸側ギアの各々に噛み合う動力軸側ギアとを有し、複数のクランク軸側ギア及び動力軸側ギアを内側に収容するギアボックスをさらに備え、ギアボックスの外側で、コンロッドがクランクアームに連結され、各クランク軸側ギアに対し動力軸側ギアは歯数が2倍であり、バルブ押付部が動力軸と同じ回転速度で回転する。 The first invention is a reciprocating type four-cycle multi-cylinder engine, and further has at least one of an intake valve and an exhaust valve provided in each cylinder head of a plurality of cylinders as a driving target, and is integrated with a power shaft. And a valve pressing unit that moves the valve to be driven by pushing the valve to the piston side at a position facing the cylinder head for each cylinder, and the valve to be driven is moved by the valve pressing unit. When the valve is pushed and moved to the piston side, the valve is opened, and when the valve pressing part is released, it returns to its original position by the elastic member and closes, and each of the crank mechanisms includes a connecting rod connected to the piston and a connecting rod connected to the crank. The power transmission mechanism is connected to the crankshaft in each of the plurality of crank mechanisms. A plurality of crankshaft side gears fixed to the crankshaft, and a powershaft side gear fixed to the power shaft and meshing with each of the plurality of crankshaft side gears. The connecting rod is connected to the crank arm on the outside of the gear box, the number of teeth on the power shaft side gear is twice that of each crank shaft side gear, and the valve pressing part is powered. It rotates at the same rotational speed as the shaft.
 第2の発明は、レシプロタイプの6サイクル多気筒エンジンであって、さらに、複数のシリンダーの各々のシリンダーヘッドに設けられた吸気バルブ又は排気バルブの少なくとも一方を駆動対象としており、動力軸に一体化されて該動力軸を中心に回転し、各シリンダーについてシリンダーヘッドに対面する位置で、駆動対象のバルブをピストン側に押して移動させるバルブ押付部とを備え、駆動対象のバルブは、バルブ押付部によって押されてピストン側へ移動する期間に開弁し、バルブ押付部が離れると弾性部材によって元の位置に戻って閉弁し、クランク機構の各々は、ピストンに連結されたコンロッドと、コンロッドがクランクアームを介して連結されたクランク軸とを有し、動力伝達機構は、複数のクランク機構の各々におけるクランク軸に固定された複数のクランク軸側ギアと、動力軸に固定されて複数のクランク軸側ギアの各々に噛み合う動力軸側ギアとを有し、複数のクランク軸側ギア及び動力軸側ギアを内側に収容するギアボックスをさらに備え、ギアボックスの外側で、コンロッドがクランクアームに連結され、各クランク軸側ギアに対し動力軸側ギアは歯数が3倍であり、バルブ押付部が動力軸と同じ回転速度で回転する。 The second invention is a reciprocating type 6-cycle multi-cylinder engine, and further has at least one of an intake valve and an exhaust valve provided in each cylinder head of a plurality of cylinders as a driving target, and is integrated with a power shaft. And a valve pressing part that moves the valve to be driven by pushing the valve to the piston side at a position facing the cylinder head for each cylinder, and the valve to be driven is a valve pressing part. The valve is opened during the period of moving to the piston side when the valve is pressed, and when the valve pressing part leaves, it returns to its original position by the elastic member and closes, and each of the crank mechanisms includes a connecting rod connected to the piston, and a connecting rod A power transmission mechanism in each of the plurality of crank mechanisms. A plurality of crankshaft side gears fixed to the rank shaft; and a power shaft side gear fixed to the power shaft and meshing with each of the plurality of crankshaft side gears. The connecting rod is connected to the crank arm on the outside of the gear box, the number of teeth on the power shaft side gear is three times that of each crank shaft side gear, and the valve pressing part is powered. It rotates at the same rotational speed as the shaft.
 第3の発明は、第1又は第2の発明において、動力軸側ギアに対向して配置され、複数のクランク軸側ギアの各々に噛み合い、動力軸とは逆方向に回転する支持用ベベルギアをさらに備えている。 According to a third invention, in the first or second invention, the supporting bevel gear is disposed opposite to the power shaft side gear, meshes with each of the plurality of crankshaft side gears, and rotates in a direction opposite to the power shaft. It has more.
 第4の発明は、動力を受けて回転する駆動軸と、駆動軸を中心とした所定の円周に沿って配置され、それぞれが駆動軸に対し略平行に設けられた複数のシリンダーと、複数のシリンダーの各々に設けられて、シリンダー内に圧縮室を形成する複数のピストンと、複数のピストンの各々に接続され、自らの回転運動をピストンの往復運動に変換する複数のクランク機構と、駆動軸の回転運動を複数のクランク機構の各々の回転運動に変換して、駆動軸の回転力を各クランク機構に伝達させる動力伝達機構とを備えている圧縮機である。 According to a fourth aspect of the present invention, there is provided a drive shaft that rotates upon receiving power, a plurality of cylinders that are arranged along a predetermined circumference centered on the drive shaft, and that are each provided substantially parallel to the drive shaft, A plurality of pistons that are provided in each of the cylinders to form a compression chamber in the cylinder, a plurality of crank mechanisms that are connected to each of the plurality of pistons and convert their own rotational motion into piston reciprocating motion, and drive The compressor includes a power transmission mechanism that converts the rotational motion of the shaft into the rotational motion of each of the plurality of crank mechanisms and transmits the rotational force of the drive shaft to each crank mechanism.
 第1及び第2の各発明では、ピストン毎にクランク機構がそれぞれ設けられている。そのため、複数のピストンに対して1本のクランク軸を設ける従来のエンジンに比べて、各クランク機構の構成部品を簡素化及び小型化することができる。また、各シリンダーが動力軸に対し略平行に設けられ、各ピストンの移動方向が動力軸に対し略平行となる。そのため、動力軸に対して垂直な方向の振動を抑制することができる。第1及び第2の各発明によれば、クランク機構の構成部品を簡素化及び小型化でき、動力軸に対して垂直な方向の振動を抑制することができるエンジンを提供することができる。 In each of the first and second inventions, a crank mechanism is provided for each piston. Therefore, compared with the conventional engine which provides one crankshaft with respect to a some piston, the component of each crank mechanism can be simplified and reduced in size. Each cylinder is provided substantially parallel to the power axis, and the moving direction of each piston is substantially parallel to the power axis. Therefore, vibration in a direction perpendicular to the power shaft can be suppressed. According to each of the first and second inventions, it is possible to provide an engine capable of simplifying and downsizing the components of the crank mechanism and suppressing vibration in a direction perpendicular to the power shaft.
 また、第1及び第2の各発明では、エンジンの動作中に、動力軸と一体化されたバルブ押付部が、動力軸を中心に回転する。その際、バルブ押付部は、シリンダーヘッドに対面する位置で、駆動対象のバルブをピストン側へ押して開弁させる。そして、バルブ押付部が回転して駆動対象のバルブから離れると、弾性部材が駆動対象のバルブを閉弁させる。ここで、従来のエンジンでは、タイミングベルトやそれに付随するプーリーなどを用いて、クランク軸の回転力をカム軸に伝達させ、カム軸に一体化されたカムによって吸気バルブや排気バルブを開閉する。従来は、バルブ駆動機構の構造が複雑で、エネルギーロスが大きい。それに対し、第1及び第2の各発明では、動力軸と一体化されたバルブ押付部を用いて、駆動対象のバルブを開閉する。タイミングベルトやプーリーなどを設ける必要がない。そのため、従来のエンジンに比べて、バルブ押付部を含むバルブ駆動機構を簡素化することができ、バルブ駆動機構におけるエネルギーロスを低減させることができる。 In each of the first and second inventions, the valve pressing unit integrated with the power shaft rotates around the power shaft during engine operation. At that time, the valve pressing portion pushes the valve to be driven to the piston side to open the valve at a position facing the cylinder head. When the valve pressing portion rotates and moves away from the driving target valve, the elastic member closes the driving target valve. Here, in the conventional engine, the rotational force of the crankshaft is transmitted to the camshaft using a timing belt and a pulley attached thereto, and the intake valve and the exhaust valve are opened and closed by the cam integrated with the camshaft. Conventionally, the structure of the valve drive mechanism is complicated and energy loss is large. On the other hand, in each of the first and second inventions, the valve to be driven is opened and closed using a valve pressing unit integrated with the power shaft. There is no need to provide a timing belt or pulley. Therefore, compared with the conventional engine, the valve drive mechanism including the valve pressing portion can be simplified, and energy loss in the valve drive mechanism can be reduced.
 第3の発明では、動力軸側ギアに加えて支持用ベベルギアが各クランク軸側ギアに噛み合う。そのため、動力軸側ギアにおいて、爆発による大きな回転力が特定の領域に集中することを回避でき、動力軸側ギアの摩耗を抑制することができる。 In the third invention, a supporting bevel gear meshes with each crankshaft side gear in addition to the power shaft side gear. Therefore, in the power shaft side gear, it is possible to avoid a large rotational force due to the explosion from being concentrated in a specific region, and it is possible to suppress wear of the power shaft side gear.
 第4の発明では、第1の発明と同様に圧縮機においても、クランク機構の構成部品を簡素化及び小型化でき、駆動軸に対して垂直な方向の振動を抑制することができる。 In the fourth invention, as in the first invention, in the compressor, the components of the crank mechanism can be simplified and miniaturized, and vibration in the direction perpendicular to the drive shaft can be suppressed.
実施形態1に係るエンジンの斜視図1 is a perspective view of an engine according to Embodiment 1. FIG. バルブ駆動用円板の斜視図Perspective view of valve drive disc 第1の支持板をシリンダーヘッド側から見た図View of the first support plate from the cylinder head side 第2の支持板をシリンダーヘッド側から見た図The second support plate as seen from the cylinder head side 方向変換ギアボックスの内部を説明するための図Diagram for explaining the inside of the direction change gearbox エンジンにおいて吸気行程中の状態を説明するための図The figure for explaining the state during the intake stroke in the engine エンジンにおいて圧縮行程中の状態を説明するための図The figure for explaining the state in the compression stroke in the engine エンジンにおいて爆発行程中の状態を説明するための図Illustration for explaining the state during the explosion stroke in the engine エンジンにおいて排気行程中の状態を説明するための図The figure for explaining the state in the exhaust stroke in the engine エンジンの各シリンダーにおける行程の遷移を示す図Diagram showing the transition of the stroke in each cylinder of the engine 動力軸側ベベルギアにおける歯の位置を説明するための図The figure for demonstrating the position of the tooth | gear in a power shaft side bevel gear クランク軸側ベベルギアとクランクとを一体化した部品を説明するための図The figure for explaining the part which united the crankshaft side bevel gear and the crank 方向変換ギアボックス内の構成を説明するための図The figure for demonstrating the structure in a direction change gear box 動力軸側ベベルギアに加わる爆発力の区割を説明するための図Illustration for explaining the division of explosive force applied to the power shaft side bevel gear 支持用ベベルギアに加わる爆発力の区割を説明するための図Illustration for explaining the division of explosive force applied to the supporting bevel gear 実施形態2に係る圧縮機の要部の斜視図The perspective view of the principal part of the compressor concerning Embodiment 2.
<実施形態1>
 以下、図1-図15を参照しながら、本発明の実施形態1を詳細に説明する。なお、以下の実施形態は、本発明の一例であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
<Embodiment 1>
Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to FIGS. The following embodiment is an example of the present invention, and is not intended to limit the scope of the present invention, its application, or its use.
[1.内燃機関の構成について]
 エンジン30は、レシプロタイプの4サイクル多気筒エンジンである。エンジン30は、例えば、自動車やオートバイなどの移動体の動力源として用いられる。エンジン30は、図1などに示すように、真っすぐなシャフトにより構成された動力軸3(出力軸)と、動力軸3を中心とした所定の円周(単一の円周)に沿って配置された複数のシリンダー2と、複数のシリンダー2の各々に設けられた複数のピストン21(図6などを参照)とを備えている。
[1. Regarding the configuration of the internal combustion engine]
The engine 30 is a reciprocating type four-cycle multi-cylinder engine. The engine 30 is used as a power source of a moving body such as an automobile or a motorcycle. As shown in FIG. 1 and the like, the engine 30 is arranged along a power shaft 3 (output shaft) constituted by a straight shaft and a predetermined circumference (single circumference) centered on the power shaft 3. The plurality of cylinders 2 and a plurality of pistons 21 (see FIG. 6 and the like) provided in each of the plurality of cylinders 2 are provided.
 動力軸3は、動力軸3を回転自在に支持する軸受8が中心部に設けられた第1~第3の支持板31~33に支持されている。3枚の支持板31~33は、動力軸3の軸方向に間隔を開けて配置され、動力軸3に対し垂直に設けられている。各支持板31~33には、各シリンダー2の外側を覆う矩形板状のハウジング1が取り付けられている。図3及び図4では、切断面を含めてハウジング1にハッチングを付している。 The power shaft 3 is supported by first to third support plates 31 to 33 that are provided at the center with bearings 8 that rotatably support the power shaft 3. The three support plates 31 to 33 are arranged at intervals in the axial direction of the power shaft 3 and are provided perpendicular to the power shaft 3. A rectangular plate-like housing 1 that covers the outside of each cylinder 2 is attached to each of the support plates 31 to 33. 3 and 4, the housing 1 is hatched including the cut surface.
 各シリンダー2は、略円筒状に形成されている。各シリンダー2内には、略円柱状のピストン21が軸方向に摺動自在に設けられている。各シリンダー2内には、ピストン21によって燃焼室が区画形成されている。各シリンダー2は、軸方向が動力軸3と略平行で、且つ、シリンダーヘッド2aが動力軸3の一端側(図1において手前側)を向くように設けられている。全てのシリンダー2は、シリンダーヘッド2aが同じ側を向いている。全てのシリンダー2は、動力軸3の軸方向において同じ位置に配置されている。 Each cylinder 2 is formed in a substantially cylindrical shape. In each cylinder 2, a substantially columnar piston 21 is slidably provided in the axial direction. A combustion chamber is defined in each cylinder 2 by a piston 21. Each cylinder 2 is provided so that the axial direction is substantially parallel to the power shaft 3 and the cylinder head 2a faces one end side (the front side in FIG. 1) of the power shaft 3. All cylinders 2 have the cylinder head 2a facing the same side. All the cylinders 2 are arranged at the same position in the axial direction of the power shaft 3.
 各シリンダー2は、第1の支持板31及び第2の支持板32の取付穴に嵌め込まれて固定されている。図3に示す第1の支持板31は、各シリンダー2におけるシリンダーヘッド2a側を支持している。図4に示す第2の支持板32は、各シリンダー2におけるシリンダーヘッド2aとは反対側を支持している。 Each cylinder 2 is fitted and fixed in the mounting holes of the first support plate 31 and the second support plate 32. A first support plate 31 shown in FIG. 3 supports the cylinder head 2 a side of each cylinder 2. The second support plate 32 shown in FIG. 4 supports the opposite side of each cylinder 2 from the cylinder head 2a.
 本実施形態では、エンジン30が4つのシリンダー2を備えている。4つのシリンダー2は、動力軸3を中心とした同一半径の円周上に、等角度間隔(90度間隔)で配置されている。なお、エンジン30におけるシリンダー2の個数は、4つに限定されず、例えば2つ、3つ、6つ又は8つであってもよいし、これら以外の個数であってもよい。 In the present embodiment, the engine 30 includes four cylinders 2. The four cylinders 2 are arranged at equiangular intervals (90 degree intervals) on the circumference of the same radius with the power shaft 3 as the center. The number of cylinders 2 in the engine 30 is not limited to four, and may be two, three, six, or eight, for example, or may be a number other than these.
 各シリンダーヘッド2aの中心部には、図3に示すように、燃焼室の混合気に点火する点火プラグ12が設けられている。また、各シリンダーヘッド2aには、燃焼室に混合気を吸入するための吸気マニホールド10の枝管と、燃焼室の燃焼ガスを排出するための排気マニホールド9の枝管が接続されている。吸気マニホールド10の各枝管には、燃料を噴射する燃料噴射器(図示省略)が設けられている。 At the center of each cylinder head 2a, as shown in FIG. 3, a spark plug 12 for igniting the air-fuel mixture in the combustion chamber is provided. Further, each cylinder head 2a is connected to a branch pipe of an intake manifold 10 for sucking an air-fuel mixture into the combustion chamber and a branch pipe of an exhaust manifold 9 for discharging combustion gas in the combustion chamber. Each branch pipe of the intake manifold 10 is provided with a fuel injector (not shown) for injecting fuel.
 なお、吸気マニホールド10では、例えば、動力軸3の近傍で、各シリンダー2に接続された4本の枝管が1本の上流側配管に繋がっている。また、排気マニホールド9では、例えば、各シリンダー2に接続された4本の枝管のうち2本が、図3におけるエンジン30の上側で合流し、残りの2本が、図3におけるエンジン30の下側で合流している。なお、吸気マニホールド10及び排気マニホールド9の各構成は、本実施形態に限定されない。 In the intake manifold 10, for example, four branch pipes connected to each cylinder 2 are connected to one upstream pipe in the vicinity of the power shaft 3. Further, in the exhaust manifold 9, for example, two of the four branch pipes connected to each cylinder 2 merge on the upper side of the engine 30 in FIG. 3, and the remaining two of the branch pipes of the engine 30 in FIG. 3. It merges on the lower side. In addition, each structure of the intake manifold 10 and the exhaust manifold 9 is not limited to this embodiment.
 各シリンダーヘッド2aには、吸気マニホールド10の出口(吸気ポート)を開閉する吸気バルブ22と、排気マニホールド9の入口(排気ポート)を開閉する排気バルブ23が設けられている。各吸気バルブ22は、コイルバネなどの弾性部材(図示省略)によってシリンダー2の外側(図6において右側)に付勢され、バルブフェースが各吸気ポートの縁部のバルブシートに押し付けられている。各排気バルブ23は、コイルバネなどの弾性部材(図示省略)によってシリンダー2の外側に付勢され、バルブフェースが各排気ポートの縁部のバルブシートに押し付けられている。各吸気バルブ22及び各排気バルブ23は、バルブ駆動機構によって開期間及び閉期間が制御される。バルブ駆動機構についての詳細は後述する。 Each cylinder head 2a is provided with an intake valve 22 for opening and closing the outlet (intake port) of the intake manifold 10 and an exhaust valve 23 for opening and closing the inlet (exhaust port) of the exhaust manifold 9. Each intake valve 22 is urged to the outside (right side in FIG. 6) of the cylinder 2 by an elastic member (not shown) such as a coil spring, and the valve face is pressed against the valve seat at the edge of each intake port. Each exhaust valve 23 is biased to the outside of the cylinder 2 by an elastic member (not shown) such as a coil spring, and the valve face is pressed against the valve seat at the edge of each exhaust port. Each intake valve 22 and each exhaust valve 23 is controlled to be opened and closed by a valve drive mechanism. Details of the valve drive mechanism will be described later.
 各シリンダーヘッド2aでは、図3に示すように、動力軸3側から、吸気バルブ22、点火プラグ12、排気バルブ23がこの順番で並んでいる。各シリンダー2では、排気バルブ23よりも吸気バルブ22の方が動力軸3側に設けられている。全ての吸気バルブ22の吸気バルブロッド16(バルブステム)は、動力軸3を中心とした第1の円周(動力軸3の軸心から吸気バルブロッド16の軸心までの距離を半径とする円周)上に配置されている。全ての排気バルブ23の排気バルブロッド11(バルブステム)は、動力軸3を中心とした第2の円周(動力軸3の軸心から排気バルブロッド11の軸心までの距離を半径とする円周)上に配置されている。第2の円周は、第1の円周より半径が大きい。なお、各シリンダー2において、吸気バルブ22よりも排気バルブ23の方を動力軸3側に設けてもよい。 In each cylinder head 2a, as shown in FIG. 3, the intake valve 22, the spark plug 12, and the exhaust valve 23 are arranged in this order from the power shaft 3 side. In each cylinder 2, the intake valve 22 is provided closer to the power shaft 3 than the exhaust valve 23. The intake valve rods 16 (valve stems) of all the intake valves 22 have a first circumference centered on the power shaft 3 (the distance from the axis of the power shaft 3 to the axis of the intake valve rod 16 is a radius). It is arranged on the circumference. The exhaust valve rods 11 (valve stems) of all the exhaust valves 23 have a second circumference centered on the power shaft 3 (the distance from the axis of the power shaft 3 to the axis of the exhaust valve rod 11 is a radius). It is arranged on the circumference. The second circumference has a larger radius than the first circumference. In each cylinder 2, the exhaust valve 23 may be provided closer to the power shaft 3 than the intake valve 22.
 図5は、方向変換ギアボックス4を第2の支持板32側から見た図である。各ピストン21には、ピストンピン19によってコンロッド6の一端側が連結されている。コンロッド6の他端側は、クランクピン20によってクランク5のクランクアーム5aに連結されている。コンロッド6及びクランク5は、クランク機構を構成している。本実施形態では、エンジン30が、複数のピストン21の各々に接続され、ピストン21の往復運動を回転運動に変換する複数のクランク機構をさらに備えている。4つのクランク5は、動力軸3の周囲に等角度間隔で配置されている。 FIG. 5 is a view of the direction change gearbox 4 as viewed from the second support plate 32 side. One end of the connecting rod 6 is connected to each piston 21 by a piston pin 19. The other end side of the connecting rod 6 is connected to the crank arm 5 a of the crank 5 by a crank pin 20. The connecting rod 6 and the crank 5 constitute a crank mechanism. In the present embodiment, the engine 30 is further provided with a plurality of crank mechanisms that are connected to each of the plurality of pistons 21 and convert the reciprocating motion of the pistons 21 into rotational motion. The four cranks 5 are arranged at equiangular intervals around the power shaft 3.
 各クランク5のクランク軸5bは、図5に示すように、動力軸3に略垂直に設けられている。各クランク軸5bの軸心の延長線上に、動力軸3の軸心が存在する。各クランク軸5bは、動力軸3側から見て反時計回りに回転する。各クランク軸5bは、ハウジング1の内面に取り付けられたクランク軸受7によって回転自在に支持されている。また、各クランク軸5bは、矩形筒状の方向変換ギアボックス4の周壁部4aを貫通し、その周壁部4aにも回転自在に支持されている。方向変換ギアボックス4は、第3の支持板33の内面に取り付けられている。 The crankshaft 5b of each crank 5 is provided substantially perpendicular to the power shaft 3 as shown in FIG. The axis of the power shaft 3 exists on the extension line of the axis of each crankshaft 5b. Each crankshaft 5b rotates counterclockwise when viewed from the power shaft 3 side. Each crankshaft 5 b is rotatably supported by a crank bearing 7 attached to the inner surface of the housing 1. Each crankshaft 5b passes through the peripheral wall portion 4a of the rectangular cylindrical direction changing gear box 4, and is also rotatably supported by the peripheral wall portion 4a. The direction change gear box 4 is attached to the inner surface of the third support plate 33.
 各クランク軸5bには、図5に示すように、方向変換ギアボックス4の内側においてクランク軸側ベベルギア18が固定されている。各クランク軸側ベベルギア18は、ギア形成面が動力軸3側を向いている。4つのクランク軸側ベベルギア18は、動力軸3の周囲に等角度間隔で配置されている。 As shown in FIG. 5, a crankshaft side bevel gear 18 is fixed to each crankshaft 5b inside the direction changing gearbox 4. Each crankshaft side bevel gear 18 has a gear forming surface facing the power shaft 3 side. The four crankshaft side bevel gears 18 are arranged around the power shaft 3 at equal angular intervals.
 また、動力軸3には、クランク軸側ベベルギア18よりも大径でギア数が多い動力軸側ベベルギア17が固定されている。動力軸側ベベルギア17は、方向変換ギアボックス4の内側において第3の支持板33側に配置され、ギア形成面がシリンダー2側(動力軸3の一端側)を向いている。 Further, a power shaft side bevel gear 17 having a larger diameter and a larger number of gears than the crank shaft side bevel gear 18 is fixed to the power shaft 3. The power shaft side bevel gear 17 is disposed on the third support plate 33 side inside the direction changing gear box 4, and the gear forming surface faces the cylinder 2 side (one end side of the power shaft 3).
 方向変換ギアボックス4の内側では、動力軸側ベベルギア17に各クランク軸側ベベルギア18が噛み合わされている。4つのクランク軸側ベベルギア18及び1つの動力軸側ベベルギア17は、動力伝達機構を構成している。本実施形態では、エンジン30が、複数のクランク機構の各々によって変換された回転運動を動力軸3に伝達させて動力軸3を回転させる動力伝達機構をさらに備えている。動力伝達機構は、各クランク軸5bの回転運動を、各クランク軸5bに垂直な動力軸3の回転運動へ変換する。 Each crankshaft side bevel gear 18 is meshed with the power shaft side bevel gear 17 inside the direction changing gear box 4. The four crankshaft side bevel gears 18 and the one power shaft side bevel gear 17 constitute a power transmission mechanism. In the present embodiment, the engine 30 further includes a power transmission mechanism that transmits the rotational motion converted by each of the plurality of crank mechanisms to the power shaft 3 to rotate the power shaft 3. The power transmission mechanism converts the rotational motion of each crankshaft 5b into the rotational motion of the power shaft 3 perpendicular to each crankshaft 5b.
 エンジン30は、吸気バルブ22及び排気バルブ23の各々を駆動対象とするバルブ駆動機構をさらに備えている。バルブ駆動機構は、動力軸3に一体化されている。バルブ駆動機構は、動力軸3を中心に動力軸3と共に回転する。バルブ駆動機構は、図2に示すように、動力軸3に固定されたバルブ駆動用円板13と、バルブ駆動用円板13の内面(シリンダー2側の面)から突出する吸気用凸部15(吸気カム)と、バルブ駆動用円板13の内面から突出する排気用凸部14(排気カム)とを備えている。吸気用凸部15及び排気用凸部14は、バルブ押付部に相当する。吸気用凸部15は、バルブ駆動用円板13の内面において、排気用凸部14よりも動力軸3側に配置されている。 The engine 30 further includes a valve drive mechanism that drives each of the intake valve 22 and the exhaust valve 23. The valve drive mechanism is integrated with the power shaft 3. The valve drive mechanism rotates with the power shaft 3 around the power shaft 3. As shown in FIG. 2, the valve drive mechanism includes a valve drive disc 13 fixed to the power shaft 3, and an intake projection 15 projecting from the inner surface (surface on the cylinder 2 side) of the valve drive disc 13. (Intake cam) and an exhaust projection 14 (exhaust cam) protruding from the inner surface of the valve drive disc 13. The intake convex portion 15 and the exhaust convex portion 14 correspond to a valve pressing portion. The intake convex portion 15 is disposed closer to the power shaft 3 than the exhaust convex portion 14 on the inner surface of the valve driving disc 13.
 バルブ駆動用円板13は、吸気バルブ22及び排気バルブ23のうち外側のバルブを覆うだけの大きさ(半径)を有し、各シリンダー2のシリンダーヘッド2aに間隔を開けて対面するように設けられている。バルブ駆動用円板13は、バルブ駆動用板を構成し、本実施形態のように円形の板状部材を用いてもよいし、他の形状(例えば多角形)の板状部材を用いてもよい。 The valve drive disk 13 has a size (radius) sufficient to cover the outer valve of the intake valve 22 and the exhaust valve 23, and is provided so as to face the cylinder head 2a of each cylinder 2 with a space therebetween. It has been. The valve driving disc 13 constitutes a valve driving plate, and a circular plate-like member may be used as in the present embodiment, or a plate-like member of another shape (for example, a polygon) may be used. Good.
 吸気用凸部15は、バルブ駆動用円板13の内面において、動力軸3を中心として第1の円周と同一半径の円周上に沿って部分的に形成された円弧状の凸部である。吸気用凸部15は、動力軸3及びバルブ駆動用円板13と共に回転し、各シリンダー2についてシリンダーヘッド2aに対面する位置で、そのシリンダーヘッド2aに設けられた吸気バルブ22の吸気バルブロッド16の端をピストン21側へ押して、吸気バルブ22を移動させる。 The intake convex portion 15 is an arc-shaped convex portion that is partially formed along the circumference of the same radius as the first circumference around the power shaft 3 on the inner surface of the valve drive disc 13. is there. The intake convex portion 15 rotates together with the power shaft 3 and the valve drive disc 13 and is positioned at the position facing each cylinder head 2a with respect to each cylinder 2 and the intake valve rod 16 of the intake valve 22 provided on the cylinder head 2a. Is pushed toward the piston 21 to move the intake valve 22.
 吸気バルブ22は、吸気用凸部15によって押されてピストン21側へ移動する期間に亘って開弁する。この期間は、吸気バルブ22のバルブフェースをバルブシートに押し付けていた弾性部材が収縮する。そして、シリンダーヘッド2aに対面する位置を吸気用凸部15が通過して、吸気用凸部15が吸気バルブロッド16から離れると、弾性部材の復元力によって吸気バルブ22が元の位置に戻って閉弁する。なお、吸気用凸部15は、少なくとも、回転方向の先頭側が斜面になっている。 The intake valve 22 is opened over a period in which the intake valve 22 is pushed by the intake convex portion 15 and moves to the piston 21 side. During this period, the elastic member pressing the valve face of the intake valve 22 against the valve seat contracts. When the intake convex portion 15 passes through the position facing the cylinder head 2a and the intake convex portion 15 moves away from the intake valve rod 16, the intake valve 22 returns to the original position by the restoring force of the elastic member. Close the valve. Note that the intake convex portion 15 has a slope at least at the leading end in the rotational direction.
 排気用凸部14は、バルブ駆動用円板13の内面において、動力軸3を中心として第2の円周と同一半径の円周上に沿って部分的に形成された円弧状の凸部である。排気用凸部14は、動力軸3及びバルブ駆動用円板13と共に回転し、各シリンダー2についてシリンダーヘッド2aに対面する位置で、そのシリンダーヘッド2aに設けられた排気バルブ23の排気バルブロッド11の端をピストン21側へ押して、排気バルブ23を移動させる。 The exhaust convex portion 14 is an arc-shaped convex portion that is partially formed on the inner surface of the valve driving disc 13 along the circumference of the same radius as the second circumference around the power shaft 3. is there. The exhaust convex portion 14 rotates together with the power shaft 3 and the valve drive disc 13, and the exhaust valve rod 11 of the exhaust valve 23 provided on the cylinder head 2 a at a position facing the cylinder head 2 a for each cylinder 2. Is pushed to the piston 21 side to move the exhaust valve 23.
 排気バルブ23は、排気用凸部14によって押されてピストン21側へ移動する期間に亘って開弁する。この期間は、排気バルブ23のバルブフェースをバルブシートに押し付けていた弾性部材が収縮する。そして、シリンダーヘッド2aに対面する位置を排気用凸部14が通過して、排気用凸部14が排気バルブロッド11から離れると、弾性部材の復元力によって排気バルブ23が元の位置に戻って閉弁する。なお、排気用凸部14は、少なくとも、回転方向の先頭側が斜面になっている。 The exhaust valve 23 is opened over a period in which the exhaust valve 23 is pushed by the exhaust projection 14 and moves to the piston 21 side. During this period, the elastic member that has pressed the valve face of the exhaust valve 23 against the valve seat contracts. When the exhaust convex portion 14 passes through the position facing the cylinder head 2a and the exhaust convex portion 14 moves away from the exhaust valve rod 11, the exhaust valve 23 returns to the original position by the restoring force of the elastic member. Close the valve. In addition, the exhaust convex part 14 has a slope at least at the front side in the rotational direction.
 図2に示すバルブ駆動用円板13には、点火位置に対応する位置に突起を便宜的に設けている。図2では、バルブ駆動用円板13が反時計回りに回転する。各シリンダー2では、突起が点火プラグ12の真横に来たタイミング(ピストン21が圧縮上死点近傍に来たタイミング)で、点火プラグ12が混合気に点火する。なお、クランク軸側ベベルギア18の歯数と動力軸側ベベルギア17の歯数との比率を1:2となっている。そのため、クランク軸側ベベルギア18が2回転すると、動力軸側ベベルギア17が1回転する。つまり、ピストン21が2往復すると(吸入、圧縮、膨張、排気の4つの行程が行われると)、動力軸3が1回転する。ピストン21が半往復すると、バルブ駆動用円板13が90度回転する。 2 is provided with a protrusion for convenience in a position corresponding to the ignition position. In FIG. 2, the valve drive disc 13 rotates counterclockwise. In each cylinder 2, the spark plug 12 ignites the air-fuel mixture at the timing when the protrusion comes right next to the spark plug 12 (the timing when the piston 21 comes close to the compression top dead center). The ratio between the number of teeth of the crankshaft side bevel gear 18 and the number of teeth of the power shaft side bevel gear 17 is 1: 2. Therefore, when the crankshaft side bevel gear 18 rotates twice, the power shaft side bevel gear 17 rotates once. That is, when the piston 21 reciprocates twice (when four strokes of suction, compression, expansion, and exhaust are performed), the power shaft 3 rotates once. When the piston 21 reciprocates halfway, the valve drive disk 13 rotates 90 degrees.
 突起は、排気用凸部14の先頭よりも反時計回りに略90度(例えば90~100度)進角した位置に設けられている。そのため、各シリンダー2では、点火プラグ12による点火後にバルブ駆動用円板13が略90度回転して、排気用凸部14の先頭側が排気バルブ23の真横に来たタイミング(ピストン21が下死点に到達したタイミング)で、排気バルブ23が排気用凸部14に押されて開弁する。排気用凸部14は、動力軸3を中心とした略90度(例えば90~100度)の角度範囲に亘って形成されている。そのため、各シリンダー2では、排気バルブ23の開弁後にバルブ駆動用円板13が略90度回転して、排気用凸部14の後尾が排気バルブ23の真横を通過したタイミング(ピストン21が上死点に到達したタイミング)で、排気バルブ23から排気用凸部14が離れて排気バルブ23が閉弁する。なお、厳密には、ピストン21が上死点を通過したタイミングの少し後に、排気バルブ23は閉弁する。 The protrusion is provided at a position advanced by approximately 90 degrees (for example, 90 to 100 degrees) counterclockwise from the top of the exhaust projection 14. Therefore, in each cylinder 2, the valve drive disk 13 rotates approximately 90 degrees after ignition by the spark plug 12, and the timing at which the leading side of the exhaust projection 14 comes directly beside the exhaust valve 23 (the piston 21 is dead dead). When the point is reached, the exhaust valve 23 is pushed by the exhaust projection 14 to open. The exhaust projection 14 is formed over an angular range of approximately 90 degrees (for example, 90 to 100 degrees) with the power shaft 3 as the center. Therefore, in each cylinder 2, the valve drive disk 13 rotates approximately 90 degrees after the exhaust valve 23 is opened, and the rear end of the exhaust projection 14 passes just beside the exhaust valve 23 (the piston 21 is moved upward). At the timing when the dead point is reached), the exhaust projection 14 is separated from the exhaust valve 23 and the exhaust valve 23 is closed. Strictly speaking, the exhaust valve 23 is closed slightly after the timing when the piston 21 passes through the top dead center.
 ここで、バルブ駆動用円板13の回転方向において、吸気用凸部15の先頭は、排気用凸部14の後尾と略同じ角度位置になっている。そのため、排気バルブ23が閉弁するタイミングと、吸気バルブ22が開弁するタイミングとがほぼ同じである。厳密には、排気バルブ23が閉弁する少し前に吸気バルブ22が開弁するように、バルブ駆動用円板13の回転方向において、吸気用凸部15の先頭は、排気用凸部14の後尾よりも少しだけ排気用凸部14の先頭側まで延びている。 Here, in the rotation direction of the valve driving disk 13, the leading end of the intake convex portion 15 is at the same angular position as the tail of the exhaust convex portion 14. For this reason, the timing at which the exhaust valve 23 is closed is substantially the same as the timing at which the intake valve 22 is opened. Strictly speaking, the leading end of the intake convex portion 15 in the rotational direction of the valve driving disc 13 is located at the top of the exhaust convex portion 14 so that the intake valve 22 is opened shortly before the exhaust valve 23 is closed. It extends to the top side of the exhaust projection 14 slightly from the rear.
 各シリンダー2では、吸気用凸部15の先頭側が吸気バルブ22の真横に来たタイミング(ピストン21が上死点に到達したタイミング)で、吸気バルブ22が吸気用凸部15に押されて開弁する。吸気用凸部15は、動力軸3を中心とした略90度(例えば90~100度)の角度範囲に亘って形成されている。そのため、各シリンダー2では、吸気バルブ22の開弁後にバルブ駆動用円板13が略90度回転して、吸気用凸部15の後尾が吸気バルブ22の真横を通過したタイミング(ピストン21が下死点に到達したタイミング)で、吸気バルブ22から吸気用凸部15が離れて吸気バルブ22が閉弁する。なお、厳密には、ピストン21が下死点を通過したタイミングの少し後に、吸気バルブ22は閉弁する。 In each cylinder 2, the intake valve 22 is pushed by the intake convex portion 15 and opened at the timing when the leading side of the intake convex portion 15 comes directly beside the intake valve 22 (timing when the piston 21 reaches top dead center). I speak. The intake convex portion 15 is formed over an angular range of approximately 90 degrees (for example, 90 to 100 degrees) with the power shaft 3 as the center. For this reason, in each cylinder 2, the valve driving disk 13 rotates approximately 90 degrees after the intake valve 22 is opened, and the rear end of the intake convex portion 15 passes just beside the intake valve 22 (the piston 21 is At the timing when the dead point is reached), the intake convex portion 15 is separated from the intake valve 22 and the intake valve 22 is closed. Strictly speaking, the intake valve 22 is closed slightly after the timing when the piston 21 passes through the bottom dead center.
[2.内燃機関の動作について]
 各シリンダー2では、吸気行程、圧縮行程、爆発行程(膨張行程)、排気工程の4つの工程が、この順番で繰り返し行われる。
[2. Operation of internal combustion engine]
In each cylinder 2, the four steps of the intake stroke, the compression stroke, the explosion stroke (expansion stroke), and the exhaust stroke are repeated in this order.
 具体的に、各シリンダー2では、図6に示すように、吸気用凸部15によって吸気バルブ22がピストン21側へ押されて開弁し、ピストン21が下死点側へ移動することで、吸気行程が行われる。吸気行程では、吸気マニホールド10を通じて、燃料噴射器から噴射された燃料が混ざった混合気が燃焼室に流入する。 Specifically, in each cylinder 2, as shown in FIG. 6, the intake valve 22 is pushed to the piston 21 side by the intake convex portion 15 to open, and the piston 21 moves to the bottom dead center side. An intake stroke is performed. In the intake stroke, an air-fuel mixture mixed with fuel injected from the fuel injector flows into the combustion chamber through the intake manifold 10.
 続いて、吸気用凸部15が通過して吸気バルブ22が元の位置に戻って閉弁し、図7に示すように、ピストン21が上死点側へ移動することで、圧縮行程が行われる。圧縮行程では、排気バルブ23も閉じられている。圧縮行程では、吸気行程で燃焼室に吸入された混合気が圧縮される。 Subsequently, the intake convex portion 15 passes, the intake valve 22 returns to its original position and closes, and the piston 21 moves to the top dead center side as shown in FIG. Is called. In the compression stroke, the exhaust valve 23 is also closed. In the compression stroke, the air-fuel mixture sucked into the combustion chamber in the intake stroke is compressed.
 続いて、ピストン21が上死点付近に到達したタイミングで点火プラグ12によって混合気に点火することで、混合気が燃焼をする爆発行程が行われる。爆発行程では、吸気バルブ22及び排気バルブ23が閉じており、図8に示すように、燃焼室のガスが燃焼によって膨張してピストン21が下死点側へ押される。 Subsequently, when the air-fuel mixture is ignited by the spark plug 12 at the timing when the piston 21 reaches near the top dead center, an explosion stroke in which the air-fuel mixture burns is performed. In the explosion stroke, the intake valve 22 and the exhaust valve 23 are closed. As shown in FIG. 8, the gas in the combustion chamber expands due to combustion and the piston 21 is pushed to the bottom dead center side.
 続いて、図9に示すように、排気用凸部14によって排気バルブ23がピストン21側へ押されて開弁し、ピストン21が上死点側へ移動することで、排気行程が行われる。排気行程では、排気マニホールド9を通じて、燃焼行程で燃焼した燃焼ガスが燃焼室から排出される。排気用凸部14が通過すると、排気バルブ23が元の位置に戻って閉弁する。 Subsequently, as shown in FIG. 9, the exhaust valve 23 is pushed toward the piston 21 side by the exhaust projection 14 to open, and the piston 21 moves to the top dead center side, whereby the exhaust stroke is performed. In the exhaust stroke, the combustion gas burned in the combustion stroke is discharged from the combustion chamber through the exhaust manifold 9. When the exhaust projection 14 passes, the exhaust valve 23 returns to the original position and closes.
 図10は、エンジン30の各シリンダー2における行程の遷移を示す図であり、シリンダーヘッド2a側から見た図である。図10では、動力軸3は時計回りに回転する。バルブ駆動用円板13も時計回りに回転するため、時計回りに各行程が4つのシリンダー2で行われる(図10では、吸気行程のシリンダー2が、時計回りに(右下、左下、左上、右上の順番に)記載されている)。また、吸気行程のシリンダー2、圧縮行程のシリンダー2、爆発行程のシリンダー2、排気工程のシリンダー2が反時計回りに並んでいる。4つのシリンダー2で互いに異なる行程が行われる。動力軸3が90度回転するごとに、各シリンダー2における工程が、吸気行程、圧縮行程、爆発行程、排気工程の順番で変化する。 FIG. 10 is a diagram showing the transition of the stroke in each cylinder 2 of the engine 30, as viewed from the cylinder head 2a side. In FIG. 10, the power shaft 3 rotates clockwise. Since the valve driving disk 13 also rotates clockwise, each stroke is performed clockwise by four cylinders 2 (in FIG. 10, the cylinder 2 of the intake stroke is rotated clockwise (lower right, lower left, upper left, Are listed in the order in the upper right)). In addition, a cylinder 2 for the intake stroke, a cylinder 2 for the compression stroke, a cylinder 2 for the explosion stroke, and a cylinder 2 for the exhaust stroke are arranged counterclockwise. The four cylinders 2 perform different strokes. Each time the power shaft 3 rotates 90 degrees, the process in each cylinder 2 changes in the order of the intake stroke, the compression stroke, the explosion stroke, and the exhaust stroke.
[3.実施形態の効果等]
 本実施形態では、ピストン21毎にクランク機構をそれぞれ設けて、ベベルギア17,18を用いて各クランク機構のクランク軸5bの回転運動を、クランク軸5bに垂直な動力軸3に伝達させている。そのため、複数のピストンに対して1本のクランク軸を設ける従来のエンジンに比べて、各クランク機構の構成部品を簡素化及び小型化することができる。また、各シリンダー2が動力軸3に対し略平行に設けられ、各ピストン21の移動方向が動力軸3に対し略平行となる。そのため、動力軸3に対して垂直な方向の振動を抑制することができる。本実施形態によれば、クランク機構の構成部品を簡素化及び小型化でき、動力軸3に対して垂直な方向の振動を抑制することができるエンジン30を提供することができる。
[3. Effects of the embodiment]
In the present embodiment, a crank mechanism is provided for each piston 21, and the rotational motion of the crankshaft 5 b of each crank mechanism is transmitted to the power shaft 3 perpendicular to the crankshaft 5 b using the bevel gears 17 and 18. Therefore, compared with the conventional engine which provides one crankshaft with respect to a some piston, the component of each crank mechanism can be simplified and reduced in size. Each cylinder 2 is provided substantially parallel to the power shaft 3, and the moving direction of each piston 21 is substantially parallel to the power shaft 3. Therefore, vibration in a direction perpendicular to the power shaft 3 can be suppressed. According to the present embodiment, it is possible to provide the engine 30 that can simplify and downsize the components of the crank mechanism and can suppress vibration in a direction perpendicular to the power shaft 3.
 また、本実施形態では、複数のシリンダー2が動力軸3を中心として周方向に等角度間隔で配置されているため、エンジン30を全体的にコンパクトに纏めることができ、エンジン30の軽量化を図ることができる。すなわち、立体思考の構造によりエンジン30をコンパクトに設計でき、メインテナンスが容易であると共に、エンジン30の軽量化を図ることが可能である。従って、エンジン30を搭載した移動体の燃費を向上させて、排気ガスを削減することが可能である。 Further, in the present embodiment, since the plurality of cylinders 2 are arranged at equiangular intervals in the circumferential direction around the power shaft 3, the engine 30 can be collectively compacted, and the weight of the engine 30 can be reduced. Can be planned. That is, the engine 30 can be designed compactly by the structure of the three-dimensional thinking, maintenance is easy, and the weight of the engine 30 can be reduced. Therefore, it is possible to improve the fuel consumption of the moving body equipped with the engine 30 and reduce the exhaust gas.
 また、本実施形態では、各シリンダー2の中心が同一の円周上にある。そのため、各シリンダー2の排気ポート又は吸気ポートから延びるマニホールド9,10における配管の取り回しが容易である。 In the present embodiment, the centers of the cylinders 2 are on the same circumference. Therefore, the piping of the manifolds 9 and 10 extending from the exhaust port or the intake port of each cylinder 2 is easy.
 また、本実施形態では、エンジン30の動作中に、動力軸3と一体化された凸部14,15(バルブ押付部)が、動力軸3を中心に回転する。その際、凸部14,15は、シリンダーヘッド2aに対面する位置で、駆動対象のバルブ22,23をピストン21側へ押して開弁させる。そして、凸部14,15が駆動対象のバルブ22,23から離れると、弾性部材が駆動対象のバルブ22,23を閉弁させる。従来のエンジンとは異なり、タイミングベルトやプーリーなどを設ける必要がない。そのため、従来のエンジンに比べて、バルブ駆動機構を簡素化させることができ、バルブ駆動機構におけるエネルギーロスを低減させることができる。 In the present embodiment, the convex portions 14 and 15 (valve pressing portions) integrated with the power shaft 3 rotate around the power shaft 3 during the operation of the engine 30. At that time, the convex portions 14 and 15 push the valves 22 and 23 to be driven to the piston 21 side to open them at positions facing the cylinder head 2a. And if the convex parts 14 and 15 leave | separate from the valves 22 and 23 to be driven, the elastic member closes the valves 22 and 23 to be driven. Unlike conventional engines, there is no need to provide timing belts or pulleys. Therefore, compared with the conventional engine, the valve drive mechanism can be simplified, and the energy loss in the valve drive mechanism can be reduced.
 また、本実施形態では、クランク機構やバルブ駆動機構を簡素化することができるため、部品点数を削減することができる。また、エンジン30の部品の製造及び組み立てを容易化することができる。従って、エンジン開発費等を含めエンジン自体のコストを低減させることができる。 Further, in this embodiment, the crank mechanism and the valve drive mechanism can be simplified, so that the number of parts can be reduced. Moreover, manufacture and assembly of the components of the engine 30 can be facilitated. Therefore, the cost of the engine itself including the engine development cost can be reduced.
 また、本実施形態では、各シリンダー2が動力軸3と平行であり、各シリンダー2の中心が動力軸3を中心とする同一の円周上に配置されている。そのため、バルブ駆動用円板13の片面上において半径と円弧の長さを変えて形成した二列の凸部14,15によって、全てのシリンダー2の吸気バルブ22及び排気バルブ23を開閉させることができる。すなわち、凸部14,15を全てのシリンダー2で共用することができる。また、本実施形態では、ピストン21の半往復がバルブ駆動用円板13の90度回転に対応しており、クランク角の変化量に対するバルブ駆動用円板13の回転角度を目視で理解しやすく、吸気バルブ22と排気バルブ23のオーバーラップ等の調整も容易である。 In this embodiment, each cylinder 2 is parallel to the power shaft 3, and the center of each cylinder 2 is arranged on the same circumference centering on the power shaft 3. Therefore, the intake valves 22 and the exhaust valves 23 of all the cylinders 2 can be opened and closed by the two rows of convex portions 14 and 15 formed by changing the radius and the arc length on one surface of the valve driving disc 13. it can. That is, the convex portions 14 and 15 can be shared by all the cylinders 2. In the present embodiment, the half-reciprocation of the piston 21 corresponds to the 90-degree rotation of the valve drive disc 13, and the rotation angle of the valve drive disc 13 with respect to the change amount of the crank angle is easy to understand visually. Adjustment of the overlap between the intake valve 22 and the exhaust valve 23 is also easy.
 また、本実施形態では、動力軸3を挟んで対向する一対のシリンダー2で、ピストン21のクランク角が360度異なるように設定されている(この場合、クランク軸を中心とするクランクピンの角度位置は同じである)。図10において、右上のシリンダー2と左下のシリンダー2とでピストン21のクランク角が360度異なり、左上のシリンダー2と右下のシリンダー2とでピストン21のクランク角が360度異なる。動力軸3を挟んで対向する一対のシリンダー2では、一方のピストン21がシリンダーヘッド2a側へ前進する際にもう一方のピストン21も前進し、一方のピストン21が後退する際にもう一方のピストン21も後退する。また、動力軸3を挟んで対向する一対のシリンダー2では、図10に示すように、これらのシリンダー2の中心間を結ぶ直線に対し、ピストン21が前進中又は後退中にコンロッド6が反対側を向く。また、動力軸3を中心とする周方向において隣り合うシリンダー2では、ピストン21のクランク角が180度異なるように設定され、ピストン21の移動方向が逆向きになる。以上より、4つのピストン21において振動が互いに打ち消し合い、エンジン30の振動を低減することができる。 In the present embodiment, the crank angle of the piston 21 is set to be different by 360 degrees between the pair of cylinders 2 that are opposed to each other with the power shaft 3 interposed therebetween (in this case, the angle of the crank pin with the crank shaft as the center). The position is the same). In FIG. 10, the crank angle of the piston 21 is 360 degrees different between the upper right cylinder 2 and the lower left cylinder 2, and the crank angle of the piston 21 is 360 degrees different between the upper left cylinder 2 and the lower right cylinder 2. In the pair of cylinders 2 facing each other with the power shaft 3 interposed therebetween, when one piston 21 moves forward to the cylinder head 2a side, the other piston 21 also moves forward, and when one piston 21 moves backward, the other piston 21 moves forward. 21 also moves backward. Further, in the pair of cylinders 2 facing each other with the power shaft 3 interposed therebetween, the connecting rod 6 is opposite to the straight line connecting the centers of the cylinders 2 while the piston 21 is moving forward or backward as shown in FIG. Facing. Moreover, in the cylinder 2 adjacent in the circumferential direction centering on the power shaft 3, the crank angle of the piston 21 is set to be different by 180 degrees, and the moving direction of the piston 21 is reversed. As described above, the vibrations of the four pistons 21 cancel each other, and the vibration of the engine 30 can be reduced.
 また、本実施形態では、クランク軸側ベベルギア18の歯数と動力軸側ベベルギア17の歯数との比率(ギア比)を1:2にすることで、動力軸側ベベルギア17が1回転する期間に、4つの行程が行われる。4つのシリンダー2では、図10に示すように、動力軸3の角度位置について90度毎に順番に爆発行程が行われる。そのため、動力軸3をスムーズに回転させることができる。なお、エンジン30では、シリンダー2の数(気筒数)、及び上述のギア比によって任意にサイクルを変更できる。 In the present embodiment, the ratio (gear ratio) between the number of teeth of the crankshaft side bevel gear 18 and the number of teeth of the power shaft side bevel gear 17 is 1: 2, so that the power shaft side bevel gear 17 rotates once. In addition, four processes are performed. In the four cylinders 2, as shown in FIG. 10, the explosion stroke is performed in turn every 90 degrees with respect to the angular position of the power shaft 3. Therefore, the power shaft 3 can be smoothly rotated. In the engine 30, the cycle can be arbitrarily changed according to the number of cylinders 2 (the number of cylinders) and the gear ratio described above.
 また、動力軸側ベベルギア17の歯数は、各シリンダー2における上死点と下死点の関係で気筒数の倍数にしている(図11(a)参照)。また、クランク軸側ベベルギア18とクランク5とを一体化した共用部品を作るために、クランク軸側ベベルギア18の歯数は偶数にして、上死点と下死点においてクランク5の長手方向と、クランク軸側ベベルギア18における歯先37あるいは歯底36の中心線とを平行にしている(図12参照)。なお、図11では、「凹」の文字が付された箇所36が歯底になっている。図12では、「凸」の文字が付された箇所37が歯先になっている。 Also, the number of teeth of the power shaft side bevel gear 17 is a multiple of the number of cylinders due to the relationship between the top dead center and the bottom dead center in each cylinder 2 (see FIG. 11A). Further, in order to make a common part in which the crankshaft side bevel gear 18 and the crank 5 are integrated, the number of teeth of the crankshaft side bevel gear 18 is an even number, the longitudinal direction of the crank 5 at the top dead center and the bottom dead center, The centerline of the tooth tip 37 or the tooth bottom 36 in the crankshaft side bevel gear 18 is made parallel (see FIG. 12). In addition, in FIG. 11, the part 36 to which the character of "concave" was attached | subjected becomes the tooth bottom. In FIG. 12, a portion 37 marked with “convex” is a tooth tip.
[4.変形例1]
 変形例1に係るエンジン30では、図13に示すように、動力軸側ベベルギア17と向かい合わせに支持用ベベルギア34を設けて、動力軸側ベベルギア17と支持用ベベルギア34とによって各クランク軸側ベベルギア18を挟み込んでいる。支持用ベベルギア34は、各クランク軸側ベベルギア18に噛み合う。支持用ベベルギア34は、動力軸3とは別の回転軸に取り付けて逆空転させる。この回転軸は、周壁部4aに固定された支持用ベベルギア台座35に回転自在に取り付けられている。これにより、動力軸側ベベルギア17に対する各クランク軸側ベベルギア18の噛み合わせを安定化させることができる。支持用ベベルギア34の歯数は、動力軸側ベベルギア17と同様に、上死点と下死点の関係で気筒数の倍数にしている(図11(b)参照)。
[4. Modification 1]
In the engine 30 according to the modified example 1, as shown in FIG. 13, a support bevel gear 34 is provided so as to face the power shaft side bevel gear 17, and each crankshaft side bevel gear is constituted by the power shaft side bevel gear 17 and the support bevel gear 34. 18 is sandwiched. The supporting bevel gear 34 meshes with each crankshaft side bevel gear 18. The supporting bevel gear 34 is attached to a rotating shaft different from the power shaft 3 and is reversely rotated. This rotating shaft is rotatably attached to a supporting bevel gear pedestal 35 fixed to the peripheral wall 4a. Thereby, the meshing of each crankshaft side bevel gear 18 with the power shaft side bevel gear 17 can be stabilized. The number of teeth of the support bevel gear 34 is set to be a multiple of the number of cylinders in the relationship between the top dead center and the bottom dead center as in the power shaft side bevel gear 17 (see FIG. 11B).
 また、図14及び図15の各々に、第2の支持板32側から見た動力軸側ベベルギア17及び支持用ベベルギア34をそれぞれ示す。これらの図における「A」~「D」は、ベベルギア17,34における4つの区画を表す。 14 and 15 respectively show the power shaft side bevel gear 17 and the support bevel gear 34 viewed from the second support plate 32 side. In these drawings, “A” to “D” represent four sections in the bevel gears 17 and 34.
 ここで、支持用ベベルギア34を設けない場合、4つのクランク軸側ベベルギア18の各々は、対応するシリンダー2における爆発による回転力が作用するタイミングで、動力軸側ベベルギア17の同じ領域に噛み合う。図14では、動力軸側ベベルギア17では、爆発による大きな回転力が区画Aに集中する。そのため、動力軸側ベベルギア17では回転力の集中領域(区画A)が摩耗する虞がある。それに対し、支持用ベベルギア34を設けた場合、クランク軸側ベベルギア18の回転力は支持用ベベルギア34にも伝えられ、その回転力は、支持用ベベルギア34から他のクランク軸側ベベルギア18を介して動力軸側ベベルギア17に伝えられる。すなわち、回転力が分散される。そのため、両ベベルギア17、18の摩耗を低減させることができる。 Here, when the supporting bevel gear 34 is not provided, each of the four crankshaft side bevel gears 18 meshes with the same region of the power shaft side bevel gear 17 at the timing when the rotational force due to the explosion in the corresponding cylinder 2 acts. In FIG. 14, in the power shaft side bevel gear 17, a large rotational force due to the explosion concentrates on the section A. Therefore, in the power shaft side bevel gear 17, there is a possibility that the concentrated region (section A) of the rotational force is worn. On the other hand, when the supporting bevel gear 34 is provided, the rotational force of the crankshaft side bevel gear 18 is also transmitted to the supporting bevel gear 34, and the rotational force is transmitted from the supporting bevel gear 34 via the other crankshaft side bevel gear 18. It is transmitted to the power shaft side bevel gear 17. That is, the rotational force is dispersed. Therefore, wear of both the bevel gears 17 and 18 can be reduced.
[5.変形例2]
 変形例2に係るエンジン30では、バルブ駆動用円板13が上述の実施形態とは異なる。変形例2では、バルブ駆動用円板13の片面側に吸気用凸部15が設けられ、その裏面に吸気用凸部15と同径の排気用凸部14が設けられている。この場合、バルブ駆動用円板13は吸気用凸部15の外径まで縮小できる。また、第1の支持板31上にはブリッジが設けられている。排気用凸部14は、各シリンダー2についてシリンダーヘッド2aに対面する位置で、ブリッジを支点に利用したロッドを介して、排気バルブロッド11の端をピストン21側へ押して、排気バルブ23を移動させる。
[5. Modification 2]
In the engine 30 according to the modified example 2, the valve driving disc 13 is different from that of the above-described embodiment. In the second modification, an intake convex portion 15 is provided on one side of the valve driving disc 13, and an exhaust convex portion 14 having the same diameter as the intake convex portion 15 is provided on the back surface thereof. In this case, the valve drive disc 13 can be reduced to the outer diameter of the intake projection 15. A bridge is provided on the first support plate 31. The exhaust projection 14 moves the exhaust valve 23 by pushing the end of the exhaust valve rod 11 toward the piston 21 through a rod using the bridge as a fulcrum at a position facing each cylinder 2 to the cylinder head 2a. .
[6.変形例3]
 変形例3に係るエンジン30では、バルブ駆動用円板13上における径方向の所定の範囲(凸部14,15の幅程度の範囲)において、吸気用凸部15及び排気用凸部14の各々が可動に設けられている。
[6. Modification 3]
In the engine 30 according to the third modification, each of the intake convex portion 15 and the exhaust convex portion 14 is within a predetermined radial range on the valve driving disc 13 (a range of about the width of the convex portions 14 and 15). Is movably provided.
 弾性部材によって吸気用凸部15は内側へ押し付けられている。そのため、動力軸3の回転速度が上昇して遠心力が大きくなるに従って、弾性部材が収縮して吸気用凸部15は外側へ移動する。この場合、吸気用凸部15の幅方向において内側ほど突出高を高くすることで、吸気用凸部15が所定の範囲において径方向の外側へ移動するほど、吸気バルブ22のリフト量を大きくすることができる。また、吸気用凸部15の先頭側において斜面を長くすることで(先頭の位置を進角させることで)、吸気用凸部15が径方向の外側へ移動するほど、吸気バルブ22の開弁開始タイミングを早めることができる。 The intake projection 15 is pressed inward by the elastic member. Therefore, as the rotational speed of the power shaft 3 increases and the centrifugal force increases, the elastic member contracts and the intake convex portion 15 moves outward. In this case, by increasing the protrusion height toward the inner side in the width direction of the intake convex portion 15, the lift amount of the intake valve 22 is increased as the intake convex portion 15 moves radially outward within a predetermined range. be able to. Further, by increasing the slope on the leading side of the intake convex portion 15 (by advancing the leading position), the more the intake convex portion 15 moves radially outward, the more the intake valve 22 opens. The start timing can be advanced.
 同様に、弾性部材によって排気用凸部14は内側へ押し付けられている。そのため、動力軸3の回転速度が上昇して遠心力が大きくなるに従って、弾性部材が収縮して排気用凸部14は外側へ移動する。この場合、排気用凸部14の幅方向において内側ほど突出高を高くすることで、排気用凸部14が所定の範囲において径方向の外側へ移動するほど、排気バルブ23のリフト量を大きくすることができる。また、排気用凸部14の先頭側において斜面を長くすることで(先頭の位置を進角させることで)、排気用凸部14が径方向の外側へ移動するほど、排気バルブ23の開弁開始タイミングを早めることができる。変形例3によれば、簡素な構成で、吸気バルブ22及び排気バルブ23を高低速の可変バルブに構成することができる。高低速の可変バルブは、上述の方法以外にも遠心力を利用した可動構成で実現することができる。 Similarly, the exhaust projection 14 is pressed inward by the elastic member. Therefore, as the rotational speed of the power shaft 3 increases and the centrifugal force increases, the elastic member contracts and the exhaust projection 14 moves outward. In this case, by increasing the protrusion height toward the inner side in the width direction of the exhaust convex portion 14, the lift amount of the exhaust valve 23 is increased as the exhaust convex portion 14 moves outward in the radial direction within a predetermined range. be able to. Further, by increasing the slope on the leading side of the exhaust convex portion 14 (by advancing the leading position), the exhaust valve 23 opens as the exhaust convex portion 14 moves outward in the radial direction. The start timing can be advanced. According to the third modification, the intake valve 22 and the exhaust valve 23 can be configured as high and low speed variable valves with a simple configuration. The high / low speed variable valve can be realized by a movable configuration using centrifugal force other than the above-described method.
 なお、他の手段を用いて、吸気バルブ22及び排気バルブ23を可変バルブにしてもよい。例えば、吸気用凸部15の先頭側又は後尾側を分割して、その分割体をバルブ駆動用円板13から突出する状態と突出しない状態とに切り替えることで、バルブ駆動用円板13の周方向における吸気用凸部15の長さを変更するようにしてもよい。すなわち、吸気用凸部15の本体の先頭側又は後尾側に連続して、モーターなどによってバルブ駆動用円板13の厚さ方向に移動する分割体を設けてもよい。モーターは、エンジン30の運転状態などに基づいて任意に制御可能である。なお、排気用凸部14についても同様の構成を採用することができる。 The intake valve 22 and the exhaust valve 23 may be variable valves using other means. For example, the front side or the rear side of the intake convex portion 15 is divided, and the divided body is switched between a state of projecting from the valve drive disc 13 and a state of not projecting, so that the circumference of the valve drive disc 13 is changed. The length of the intake convex portion 15 in the direction may be changed. That is, a divided body that moves continuously in the thickness direction of the valve driving disk 13 by a motor or the like may be provided continuously to the head side or the tail side of the main body of the intake convex portion 15. The motor can be arbitrarily controlled based on the operating state of the engine 30 and the like. A similar configuration can be adopted for the exhaust projection 14.
[7.その他の変形例]
 上記実施形態において、エンジン30は発電機(エンジン発電機)として用いてもよい。
[7. Other variations]
In the above embodiment, the engine 30 may be used as a generator (engine generator).
 上記実施形態において、ベベルギアの代わりに、減速比が大きいウォームギアを用いてもよい。また、ベベルギアやウォームギア以外の歯車を用いて、各クランク機構のクランク軸5bの回転運動を、クランク軸5bに垂直な動力軸3に伝達させてもよい。 In the above embodiment, a worm gear having a large reduction ratio may be used instead of the bevel gear. Moreover, you may transmit the rotational motion of the crankshaft 5b of each crank mechanism to the power shaft 3 perpendicular | vertical to the crankshaft 5b using gears other than a bevel gear or a worm gear.
 上記実施形態では、エンジン30が4気筒4サイクルエンジンであったが、これに限定されず、クランク軸側ベベルギア18の歯数と動力軸側ベベルギア17の歯数との比率(ギア比)を変更して多サイクルエンジンにしてもよい。例えば、6気筒エンジンにおいて、前述のギア比を1:3として6サイクルエンジンとしてもよい。この場合、排気工程後に、掃気吸入工程と掃気排気工程とを行うことができるように、バルブ駆動用円板13において、排気用凸部14及び吸気用凸部15に加えて、吸気用凸部15の後尾と略同じ角度位置から略60度の角度範囲に亘って形成された掃気吸入用凸部と、掃気吸入用凸部の後尾と略同じ角度位置から略60度の角度範囲に亘って形成された掃気排気用凸部を設ける。排気用凸部14及び吸気用凸部15も、略60度の角度範囲に亘って形成する。これにより、自動車などの移動体の燃費を向上させて、排気ガスを削減することが可能である。 In the above embodiment, the engine 30 is a four-cylinder four-cycle engine. However, the present invention is not limited to this, and the ratio (gear ratio) between the number of teeth of the crankshaft side bevel gear 18 and the number of teeth of the power shaft side bevel gear 17 is changed. A multi-cycle engine may be used. For example, in a 6-cylinder engine, the aforementioned gear ratio may be 1: 3 and a 6-cycle engine may be used. In this case, in addition to the exhaust convex portion 14 and the intake convex portion 15, in addition to the exhaust convex portion 14 and the intake convex portion 15, in the valve driving disc 13, the scavenging suction step and the scavenging exhaust step can be performed after the exhaust step. The scavenging suction convex part formed over an angular range of approximately 60 degrees from substantially the same angular position as the rear end of 15 and the angular range of approximately 60 degrees from substantially the same angular position as the rear tail of the scavenging suction convex part. The formed scavenging exhaust projection is provided. The exhaust convex portion 14 and the intake convex portion 15 are also formed over an angle range of approximately 60 degrees. Thereby, it is possible to improve the fuel consumption of moving bodies, such as a car, and to reduce exhaust gas.
 上記実施形態では、エンジン30がガソリンエンジンであったが、ディーゼルやHCCIなど他のタイプのエンジンであってもよい。また、過給器を使用してもよい。 In the above embodiment, the engine 30 is a gasoline engine, but may be another type of engine such as diesel or HCCI. Further, a supercharger may be used.
<実施形態2>
 図16を参照しながら、本発明の実施形態2を説明する。実施形態2は、レシプロタイプの多気筒圧縮機130である。圧縮機130は、真っすぐなシャフトにより構成された駆動軸103(入力軸)と、駆動軸103を中心とした所定の円周(単一の円周)に沿って配置された複数のシリンダー2と、複数のシリンダー2の各々に設けられた複数のピストン21とを備えている。図16では1つのシリンダー2のみを記載しているが、図1と同様に、複数のシリンダー2は、駆動軸103を中心とした同一半径の円周上に、等角度間隔で配置されている。
<Embodiment 2>
A second embodiment of the present invention will be described with reference to FIG. The second embodiment is a reciprocating type multi-cylinder compressor 130. The compressor 130 includes a drive shaft 103 (input shaft) configured by a straight shaft, and a plurality of cylinders 2 arranged along a predetermined circumference (single circumference) around the drive shaft 103. And a plurality of pistons 21 provided in each of the plurality of cylinders 2. Although only one cylinder 2 is illustrated in FIG. 16, as in FIG. 1, the plurality of cylinders 2 are arranged at equiangular intervals on the circumference of the same radius around the drive shaft 103. .
 各シリンダー2内には、ピストン21が軸方向に摺動自在に設けられている。各シリンダー2内には、ピストン21によって圧縮室が区画形成されている。各シリンダー2は、軸方向が駆動軸103と略平行で、且つ、シリンダーヘッドが駆動軸103の一端側(図16において右側)を向くように設けられている。全てのシリンダー2は、駆動軸103の軸方向において同じ位置に配置されている。 In each cylinder 2, a piston 21 is slidable in the axial direction. A compression chamber is defined by a piston 21 in each cylinder 2. Each cylinder 2 is provided so that the axial direction is substantially parallel to the drive shaft 103 and the cylinder head faces one end side (right side in FIG. 16) of the drive shaft 103. All the cylinders 2 are arranged at the same position in the axial direction of the drive shaft 103.
 各シリンダー2には、圧縮室に圧縮前のガスを吸入するための吸気管110と、圧縮室から圧縮後の高圧ガスを吐出するための吐出管109が接続されている。各シリンダー2には、吸気管110の出口(吸気ポート)を開閉する吸気バルブ122と、吐出管109の入口(吐出ポート)を開閉する吐出バルブ123が設けられている。 Each cylinder 2 is connected with an intake pipe 110 for sucking gas before compression into the compression chamber and a discharge pipe 109 for discharging high-pressure gas after compression from the compression chamber. Each cylinder 2 is provided with an intake valve 122 that opens and closes the outlet (intake port) of the intake pipe 110 and a discharge valve 123 that opens and closes the inlet (discharge port) of the discharge pipe 109.
 また、圧縮機130は、複数のピストン21の各々に接続され、自らの回転運動をピストン21の往復運動に変換する複数のクランク機構5,6と、駆動軸103の回転運動を複数のクランク機構5,6の各々の回転運動に変換して、駆動軸103の回転力を各クランク機構5,6に伝達させる動力伝達機構とを備えている。クランク機構5,6と動力伝達機構とは、上述の実施形態1と同じ構成を採用している。 In addition, the compressor 130 is connected to each of the plurality of pistons 21 and converts the rotational motion of the piston 21 into reciprocating motion of the piston 21 and the rotational motion of the drive shaft 103 to the plurality of crank mechanisms. And a power transmission mechanism that converts the rotational force of the drive shaft 103 to each of the crank mechanisms 5 and 6 by converting into the rotational motions 5 and 6. The crank mechanisms 5 and 6 and the power transmission mechanism employ the same configuration as that of the first embodiment.
 圧縮機130では、各吸気バルブ122が、コイルバネなどの弾性部材(図示省略)によって各吸気ポートのバルブシートに押し付けられている。この状態からピストン21が下死点側へ移動することで、圧縮室の内圧が低下して吸気バルブ122が開弁し、吸気管110から圧縮室にガスが吸入される吸気行程が行われる。また、各吐出バルブ123は、コイルバネなどの弾性部材(図示省略)によって各吐出ポートのバルブシートに押し付けられている。吸入行程後にピストン21が上死点側へ移動すると圧縮行程が行われ、圧縮室の内圧が所定値を超えると吐出バルブ123が開弁して、高圧ガスが圧縮室から吐出管109に吐出される。 In the compressor 130, each intake valve 122 is pressed against the valve seat of each intake port by an elastic member (not shown) such as a coil spring. When the piston 21 moves to the bottom dead center side from this state, the internal pressure of the compression chamber decreases, the intake valve 122 opens, and an intake stroke is performed in which gas is drawn from the intake pipe 110 into the compression chamber. Each discharge valve 123 is pressed against the valve seat of each discharge port by an elastic member (not shown) such as a coil spring. When the piston 21 moves to the top dead center side after the intake stroke, the compression stroke is performed. When the internal pressure of the compression chamber exceeds a predetermined value, the discharge valve 123 is opened, and high-pressure gas is discharged from the compression chamber to the discharge pipe 109. The
 本発明は、レシプロタイプのエンジン又は圧縮機等に適用可能である。 The present invention can be applied to a reciprocating engine or a compressor.
 2    シリンダー
 3    動力軸 
 5    クランク(クランク機構)
 6    コンロッド(クランク機構)
 14   排気用凸部(バルブ押付部)
 15   吸気用凸部(バルブ押付部)
 17   動力軸側ベベルギア(動力伝達機構)
 18   クランク軸側ベベルギア(動力伝達機構)
 20   クランクピン
 21   ピストン
 22   吸気バルブ
 23   排気バルブ
 30   エンジン
 34   支持用ベベルギア34
 103  駆動軸
 122  吸気バルブ
 123  吐出バルブ
 130  圧縮機
2 cylinder 3 power shaft
5 Crank (Crank mechanism)
6 Connecting rod (Crank mechanism)
14 Exhaust convex part (valve pressing part)
15 Convex part for intake (valve pressing part)
17 Power shaft side bevel gear (power transmission mechanism)
18 Crankshaft side bevel gear (power transmission mechanism)
20 Crankpin 21 Piston 22 Intake valve 23 Exhaust valve 30 Engine 34 Support bevel gear 34
103 Drive shaft 122 Intake valve 123 Discharge valve 130 Compressor

Claims (4)

  1.  レシプロタイプの4サイクル多気筒エンジンであって、
     動力軸と、
     前記動力軸を中心とした所定の円周に沿って配置され、それぞれが前記動力軸に対し略平行に設けられた複数のシリンダーと、
     前記複数のシリンダーの各々に設けられた複数のピストンと、
     前記複数のピストンの各々に接続され、該ピストンの往復運動を回転運動に変換する複数のクランク機構と、
     前記複数のクランク機構の各々によって変換された回転運動を前記動力軸に伝達させて該動力軸を回転させる動力伝達機構と、
     前記複数のシリンダーの各々のシリンダーヘッドに設けられた吸気バルブ又は排気バルブの少なくとも一方を駆動対象としており、前記動力軸に一体化されて該動力軸を中心に回転し、各シリンダーについてシリンダーヘッドに対面する位置で、駆動対象のバルブをピストン側に押して移動させるバルブ押付部とを備え、
     前記駆動対象のバルブは、前記バルブ押付部によって押されて前記ピストン側へ移動する期間に開弁し、前記バルブ押付部が離れると弾性部材によって元の位置に戻って閉弁し、
     前記クランク機構の各々は、前記ピストンに連結されたコンロッドと、前記コンロッドがクランクアームを介して連結されたクランク軸とを有し、
     前記動力伝達機構は、前記複数のクランク機構の各々における前記クランク軸に固定された複数のクランク軸側ギアと、前記動力軸に固定されて前記複数のクランク軸側ギアの各々に噛み合う動力軸側ギアとを有し、
     前記複数のクランク軸側ギア及び前記動力軸側ギアを内側に収容するギアボックスをさらに備え、
     前記ギアボックスの外側で、前記コンロッドが前記クランクアームに連結され、
     前記各クランク軸側ギアに対し前記動力軸側ギアは歯数が2倍であり、前記バルブ押付部が前記動力軸と同じ回転速度で回転することを特徴とする、エンジン。
    A reciprocating type 4-cycle multi-cylinder engine,
    A power shaft,
    A plurality of cylinders arranged along a predetermined circumference centered on the power shaft, each provided substantially parallel to the power shaft;
    A plurality of pistons provided in each of the plurality of cylinders;
    A plurality of crank mechanisms connected to each of the plurality of pistons for converting reciprocating motion of the pistons into rotational motion;
    A power transmission mechanism for transmitting the rotational motion converted by each of the plurality of crank mechanisms to the power shaft to rotate the power shaft;
    At least one of an intake valve and an exhaust valve provided in each cylinder head of the plurality of cylinders is a driving target, and is integrated with the power shaft and rotated around the power shaft. A valve pressing portion that moves the valve to be driven by pushing it toward the piston at the facing position;
    The valve to be driven is opened during a period in which the valve is pressed by the valve pressing portion and moves to the piston side, and when the valve pressing portion is released, the valve is returned to the original position by an elastic member and closed
    Each of the crank mechanisms has a connecting rod connected to the piston, and a crankshaft to which the connecting rod is connected via a crank arm,
    The power transmission mechanism includes a plurality of crankshaft side gears fixed to the crankshaft in each of the plurality of crank mechanisms, and a power shaft side fixed to the power shaft and meshing with each of the plurality of crankshaft side gears. With gears,
    A gear box for accommodating the plurality of crankshaft side gears and the power shaft side gears inside;
    Outside the gear box, the connecting rod is connected to the crank arm;
    2. The engine according to claim 1, wherein the power shaft side gear has twice as many teeth as the crankshaft side gear, and the valve pressing portion rotates at the same rotational speed as the power shaft.
  2.  レシプロタイプの6サイクル多気筒エンジンであって、
     動力軸と、
     前記動力軸を中心とした所定の円周に沿って配置され、それぞれが前記動力軸に対し略平行に設けられた複数のシリンダーと、
     前記複数のシリンダーの各々に設けられた複数のピストンと、
     前記複数のピストンの各々に接続され、該ピストンの往復運動を回転運動に変換する複数のクランク機構と、
     前記複数のクランク機構の各々によって変換された回転運動を前記動力軸に伝達させて該動力軸を回転させる動力伝達機構と、
     前記複数のシリンダーの各々のシリンダーヘッドに設けられた吸気バルブ又は排気バルブの少なくとも一方を駆動対象としており、前記動力軸に一体化されて該動力軸を中心に回転し、各シリンダーについてシリンダーヘッドに対面する位置で、駆動対象のバルブをピストン側に押して移動させるバルブ押付部とを備え、
     前記駆動対象のバルブは、前記バルブ押付部によって押されて前記ピストン側へ移動する期間に開弁し、前記バルブ押付部が離れると弾性部材によって元の位置に戻って閉弁し、
     前記クランク機構の各々は、前記ピストンに連結されたコンロッドと、前記コンロッドがクランクアームを介して連結されたクランク軸とを有し、
     前記動力伝達機構は、前記複数のクランク機構の各々における前記クランク軸に固定された複数のクランク軸側ギアと、前記動力軸に固定されて前記複数のクランク軸側ギアの各々に噛み合う動力軸側ギアとを有し、
     前記複数のクランク軸側ギア及び前記動力軸側ギアを内側に収容するギアボックスをさらに備え、
     前記ギアボックスの外側で、前記コンロッドが前記クランクアームに連結され、
     前記各クランク軸側ギアに対し前記動力軸側ギアは歯数が3倍であり、前記バルブ押付部が前記動力軸と同じ回転速度で回転することを特徴とする、エンジン。
    A reciprocating type 6-cycle multi-cylinder engine,
    A power shaft,
    A plurality of cylinders arranged along a predetermined circumference centered on the power shaft, each provided substantially parallel to the power shaft;
    A plurality of pistons provided in each of the plurality of cylinders;
    A plurality of crank mechanisms connected to each of the plurality of pistons for converting reciprocating motion of the pistons into rotational motion;
    A power transmission mechanism for transmitting the rotational motion converted by each of the plurality of crank mechanisms to the power shaft to rotate the power shaft;
    At least one of an intake valve and an exhaust valve provided in each cylinder head of the plurality of cylinders is a driving target, and is integrated with the power shaft and rotated around the power shaft. A valve pressing portion that moves the valve to be driven by pushing it toward the piston at the facing position;
    The valve to be driven is opened during a period in which the valve is pressed by the valve pressing portion and moves to the piston side, and when the valve pressing portion is released, the valve is returned to the original position by an elastic member and closed
    Each of the crank mechanisms has a connecting rod connected to the piston, and a crankshaft to which the connecting rod is connected via a crank arm,
    The power transmission mechanism includes a plurality of crankshaft side gears fixed to the crankshaft in each of the plurality of crank mechanisms, and a power shaft side fixed to the power shaft and meshing with each of the plurality of crankshaft side gears. With gears,
    A gear box for accommodating the plurality of crankshaft side gears and the power shaft side gears inside;
    Outside the gear box, the connecting rod is connected to the crank arm;
    The engine, wherein the power shaft side gear has three times the number of teeth with respect to each crankshaft side gear, and the valve pressing portion rotates at the same rotational speed as the power shaft.
  3.  前記動力軸側ギアに対向して配置され、前記複数のクランク軸側ギアの各々に噛み合い、前記動力軸とは逆方向に回転する支持用ベベルギアをさらに備えていることを特徴とする、請求項1又は2に記載のエンジン。 The apparatus further comprises a support bevel gear that is disposed to face the power shaft side gear, meshes with each of the plurality of crankshaft side gears, and rotates in a direction opposite to the power shaft. The engine according to 1 or 2.
  4.  動力を受けて回転する駆動軸と、
     前記駆動軸を中心とした所定の円周に沿って配置され、それぞれが前記駆動軸に対し略平行に設けられた複数のシリンダーと、
     前記複数のシリンダーの各々に設けられて、該シリンダー内に圧縮室を形成する複数のピストンと、
     前記複数のピストンの各々に接続され、自らの回転運動をピストンの往復運動に変換する複数のクランク機構と、
     前記駆動軸の回転運動を前記複数のクランク機構の各々の回転運動に変換して、前記駆動軸の回転力を各クランク機構に伝達させる動力伝達機構とを備えていることを特徴とする、圧縮機。
    A drive shaft that rotates under power,
    A plurality of cylinders arranged along a predetermined circumference centered on the drive shaft, each provided substantially parallel to the drive shaft;
    A plurality of pistons provided in each of the plurality of cylinders to form a compression chamber in the cylinder;
    A plurality of crank mechanisms connected to each of the plurality of pistons for converting their own rotational motion into piston reciprocation;
    A compression mechanism comprising: a power transmission mechanism that converts the rotational motion of the drive shaft into the rotational motion of each of the plurality of crank mechanisms, and transmits the rotational force of the drive shaft to each crank mechanism. Machine.
PCT/JP2017/015681 2016-08-23 2017-04-19 Reciprocating engine, and compressor WO2017122834A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-163062 2016-08-23
JP2016163062A JP6126282B2 (en) 2016-08-23 2016-08-23 Engine and compressor

Publications (2)

Publication Number Publication Date
WO2017122834A2 true WO2017122834A2 (en) 2017-07-20
WO2017122834A3 WO2017122834A3 (en) 2017-09-28

Family

ID=57830034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015681 WO2017122834A2 (en) 2016-08-23 2017-04-19 Reciprocating engine, and compressor

Country Status (2)

Country Link
JP (1) JP6126282B2 (en)
WO (1) WO2017122834A2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB244894A (en) * 1924-11-24 1925-12-31 George Arthur Taylor Improvements in internal combustion engines
JPS4935716A (en) * 1972-08-07 1974-04-02
US4043301A (en) * 1975-06-20 1977-08-23 Templet Industries Incorporated Internal combustion engine
SE434972B (en) * 1981-07-21 1984-08-27 Volvo Ab MOTOR VEHICLES
DE3342108A1 (en) * 1983-11-18 1984-08-16 Jürgen 1000 Berlin Manthei Crown gear engine
JP5902729B2 (en) * 2014-02-13 2016-04-13 高木 泰男 Isometric Isotropically Placed Reciprocating Engine

Also Published As

Publication number Publication date
WO2017122834A3 (en) 2017-09-28
JP6126282B2 (en) 2017-05-10
JP2017015093A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP3016485B2 (en) Reciprocating 2-cycle internal combustion engine without crank
US7556014B2 (en) Reciprocating machines
US6698405B2 (en) Reciprocating internal combustion engine with balancing and supercharging
US4026252A (en) Engine construction
US9951679B2 (en) Reciprocating internal combustion engine
US20120285415A1 (en) Internal combustion engine with direct air injection
KR20190058323A (en) Infinitely Variable Compression Ratio and Single Stroke Length Mechanism or Dual Stroke Length Mechanism of Reciprocating 2-Cycle or 4-Cycle Internal Combustion Engine
WO2018138947A1 (en) Opposed piston type engine
KR20090027603A (en) Pulling rod engine
JP2007009834A (en) Stroke variable reciprocating cylinder device
US10267225B2 (en) Internal combustion engine
JP2015529296A (en) Variable stroke mechanism for internal combustion engines
JP6190891B2 (en) Circulating piston engine
JP2008516142A (en) V-twin structure having an assembly in the field of rotating machinery
US9074527B2 (en) Counterpoise engine
JP6126282B2 (en) Engine and compressor
RU2388917C1 (en) Internal combustion engine
WO2020141553A1 (en) A radial opposed piston reciprocating internal combustion engine
JP2006516695A (en) Improved engine
US7188598B2 (en) Rotary mechanical field assembly
US20120023917A1 (en) Rotary engine with a circular rotor
WO2023163085A1 (en) Engine
RU2485336C2 (en) Supercharged double-rotor machine
TR2022012908A2 (en) INTERNAL COMBUSTION ENGINE ROTATING AROUND ITS AXIS
JP6127876B2 (en) Internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738586

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738586

Country of ref document: EP

Kind code of ref document: A2