WO2017122350A1 - Epoxy resin composition, heat conductive material precursor, b-stage sheet, prepreg, heat dissipation material, laminated plate, metal substrate, and printed wiring board - Google Patents

Epoxy resin composition, heat conductive material precursor, b-stage sheet, prepreg, heat dissipation material, laminated plate, metal substrate, and printed wiring board Download PDF

Info

Publication number
WO2017122350A1
WO2017122350A1 PCT/JP2016/051144 JP2016051144W WO2017122350A1 WO 2017122350 A1 WO2017122350 A1 WO 2017122350A1 JP 2016051144 W JP2016051144 W JP 2016051144W WO 2017122350 A1 WO2017122350 A1 WO 2017122350A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
group
boron nitride
cured product
Prior art date
Application number
PCT/JP2016/051144
Other languages
French (fr)
Japanese (ja)
Inventor
竹澤 由高
優香 吉田
士輝 宋
慎吾 田中
房郎 北條
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2016/051144 priority Critical patent/WO2017122350A1/en
Priority to JP2017561488A priority patent/JPWO2017122350A1/en
Publication of WO2017122350A1 publication Critical patent/WO2017122350A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to an epoxy resin composition, a heat conductive material precursor, a B stage sheet, a prepreg, a heat dissipation material, a laminated board, a metal board, and a printed wiring board.
  • an epoxy resin is widely used as an insulating material from the viewpoint of high withstand voltage and easy molding.
  • a method for increasing the thermal conductivity of an epoxy resin for example, in JP-A-11-323162, it is effective to use a liquid crystalline epoxy resin obtained by polymerizing a resin composition containing a monomer having a highly oriented mesogenic group. It is described that there is.
  • a method of adding an insulating filler having a high thermal conductivity and an insulating property is generally used.
  • the insulating filler having high thermal conductivity include boron nitride particles, aluminum nitride particles, and alumina particles.
  • an epoxy resin composition capable of forming a cured product having high thermal conductivity, a thermal conductive material precursor, a B stage sheet and a prepreg, and a heat dissipation material having high thermal conductivity, a laminate A board, a metal substrate, and a printed wiring board are provided.
  • X represents a single bond or at least one linking group selected from the group (I) consisting of the following divalent groups.
  • Y independently represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, or an acetyl group.
  • Show. n independently represents an integer of 0 to 4.
  • k represents an integer of 0 to 7.
  • m represents an integer of 0 to 8.
  • l represents an integer of 0 to 12.
  • ⁇ 2> The epoxy resin composition according to the above ⁇ 1>, which has a periodic structure in which the length of one cycle is 2 nm to 3 nm.
  • ⁇ 3> The epoxy resin composition according to ⁇ 2>, wherein a half width 2 ⁇ of a peak derived from the periodic structure in X-ray diffraction is 0.2 degrees or less.
  • ⁇ 4> The epoxy resin composition according to any one of ⁇ 1> to ⁇ 3>, wherein the content of the boron nitride particles is 20% by mass to 95% by mass in the total solid content.
  • ⁇ 5> Further comprising alumina particles, wherein the content of the alumina particles is 5% by mass to 70% by mass with respect to the total amount of the boron nitride particles and the alumina particles.
  • the epoxy resin composition according to any one of the above.
  • a heat conductive material precursor which is a semi-cured product of the epoxy resin composition according to any one of ⁇ 1> to ⁇ 5>.
  • a half-value width 2 ⁇ of a peak derived from the periodic structure in X-ray diffraction is 0.2 degrees or less.
  • a B stage sheet which is a sheet-like semi-cured product of the epoxy resin composition according to any one of ⁇ 1> to ⁇ 5>.
  • ⁇ 12> a fiber base material;
  • a heat dissipation material which is a cured product of the epoxy resin composition according to any one of ⁇ 1> to ⁇ 5>.
  • a substrate comprising the epoxy resin composition according to any one of ⁇ 1> to ⁇ 5>, provided on the adherend, or any one of ⁇ 9> to ⁇ 11>.
  • Metal foil A metal plate, The resin layer comprising the epoxy resin composition according to any one of the above ⁇ 1> to ⁇ 5>, which is disposed between the metal foil and the metal plate, and any of the above ⁇ 9> to ⁇ 11> A cured layer of at least one resin-containing layer selected from the group consisting of the B stage sheet according to claim 1 and the prepreg according to ⁇ 12>, A metal substrate.
  • a metal plate The resin layer comprising the epoxy resin composition according to any one of ⁇ 1> to ⁇ 5>, which is disposed between the wiring layer and the metal plate, and any of ⁇ 9> to ⁇ 11>
  • a printed wiring board having:
  • an epoxy resin composition capable of forming a cured product having high thermal conductivity, a thermal conductive material precursor, a B stage sheet and a prepreg, and a heat dissipation material having high thermal conductivity, a laminated plate, a metal substrate, and A printed wiring board is provided.
  • FIG. 2 is an X-ray diffraction (XRD) spectrum of the cured epoxy resin of Example 1.
  • FIG. 2 is an X-ray diffraction (XRD) spectrum of a cured epoxy resin of Comparative Example 1.
  • FIG. 1 is an X-ray diffraction (XRD) spectrum of a cured epoxy resin of Comparative Example 1.
  • a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means.
  • process is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • the term “layer” includes a configuration formed in a part in addition to a configuration formed in the entire surface when observed as a plan view.
  • the term “stack” indicates that the layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • the average thickness (also referred to as the average thickness) of a layer or a laminate is a value given as an arithmetic average value obtained by measuring the thickness of five layers of the target layer or laminate.
  • the thickness of the layer or laminate can be measured using a micrometer or the like.
  • the thickness of a layer or a laminate can be directly measured, it is measured using a micrometer.
  • the thickness of one layer constituting a part of the laminate or the total thickness of a plurality of layers it is measured by observing a cross section parallel to the lamination direction of the laminate using an electron microscope. To do.
  • each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
  • the upper limit value or the lower limit value described in one numerical range is replaced with the upper limit value or the lower limit value of another numerical range described. May be. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the epoxy resin composition includes boron nitride particles (hereinafter also referred to as “specific boron nitride particles”) having a half-value width 2 ⁇ of a peak derived from the (004) plane in X-ray diffraction (XRD) of 0.5 degrees or less.
  • a curing agent and a liquid crystalline epoxy monomer represented by the following general formula (1) hereinafter also referred to as “specific liquid crystalline epoxy monomer”.
  • the epoxy resin composition may further contain other components.
  • X represents a single bond or at least one linking group selected from group (I) consisting of the following divalent groups.
  • Y independently represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, or an acetyl group. Show.
  • n represents an integer of 0 to 4.
  • k represents an integer of 0 to 7.
  • m represents an integer of 0 to 8.
  • l represents an integer of 0 to 12.
  • the connecting direction of the bond of each divalent group may be any.
  • the orientation of the liquid crystalline epoxy resin that is a polymer of the specific liquid crystalline epoxy monomer is suppressed from being inhibited by the specific boron nitride particles, and the cured product of the epoxy resin composition It is thought that the thermal conductivity in the is improved.
  • the components of the epoxy resin composition will be described in detail.
  • the epoxy resin composition contains boron nitride particles having a half width 2 ⁇ of a peak derived from the (004) plane in X-ray diffraction (XRD) of 0.5 degrees or less.
  • the specific boron nitride particles are not particularly limited as long as the half-value width 2 ⁇ of the peak derived from the (004) plane in X-ray diffraction (XRD) is 0.5 degrees or less, and usually used boron nitride particles Can be appropriately selected and used.
  • the half width 2 ⁇ of the peak derived from the (004) plane of the boron nitride particles in X-ray diffraction (XRD) is preferably 0.45 degrees or less. This is because by increasing the crystallinity of the boron nitride particles, the regularity of the boron nitride crystal itself is increased, and the regularity of the structure of the specific liquid crystalline epoxy monomer adjacent to the crystal, that is, the orientation is improved. it is conceivable that.
  • the half width 2 ⁇ of the peak derived from the (004) plane of the boron nitride particles in the present specification is determined using the wide-angle X-ray diffractometer (for example, “RINT2500HL” manufactured by Rigaku Corporation) under the following conditions.
  • X-ray diffraction is performed using a semi-cured product or a cured product of the epoxy resin composition as a measurement sample, and the obtained value is calculated by the following Bragg equation.
  • ⁇ X-ray source Cu ⁇ X-ray output: 50 kV, 250 mA -Divergence slit (DS): 1.0 degree-Scattering slit (SS): 1.0 degree-Receiving slit (RS): 0.3 mm ⁇ Scanning speed: 1.0 degree / min
  • the specific boron nitride particles may be any of single crystal particles, single crystal aggregated particles, polycrystalline particles, polycrystalline aggregated particles, and the like.
  • the crystal structure of the specific boron nitride particles may be any of hexagonal, cubic and wurtzite structures. From the viewpoint of use as a filler for a heat dissipation material, the crystal structure of the specific boron nitride particles is preferably a hexagonal crystal.
  • the volume average particle diameter of the specific boron nitride particles is preferably 0.01 ⁇ m to 1 mm from the viewpoint of use as a filler of the heat dissipation material.
  • the volume average particle diameter of the specific boron nitride particles is more preferably from 0.1 ⁇ m to 100 ⁇ m, and further preferably from 0.5 ⁇ m to 50 ⁇ m, from the viewpoint of highly filling the specific boron nitride particles.
  • the volume average particle diameter of the specific boron nitride particles is measured using a laser diffraction method.
  • the laser diffraction method can be performed using a laser diffraction scattering particle size distribution measuring apparatus (for example, Beckman Coulter, Inc., “LS230”).
  • the volume average particle diameter of the boron nitride particles in the epoxy resin composition is measured using a laser diffraction / scattering particle size distribution analyzer after extracting the boron nitride particles from the epoxy resin composition.
  • the volume average particle diameter of the boron nitride particles contained in the epoxy resin composition can be measured by the following method. First, boron nitride particles are extracted from the epoxy resin composition using an organic solvent, nitric acid, aqua regia, etc., and sufficiently dispersed with an ultrasonic disperser or the like to prepare a dispersion.
  • the particle diameter (D50) that is 50% cumulative is the volume average particle size. Calculate as diameter.
  • the volume average particle diameter of the specific boron nitride particles can also be measured by a 3D CT method or a method using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the volume average particle diameter of specific boron nitride particles can be measured by using Shimadzu Corporation, inspexio SMX-225CT. Specifically, a semi-cured product or cured product of an epoxy resin composition, or a sample obtained by cutting a resin sheet or a cured product thereof into a 10 mm square is fixed to a sample stage, irradiated with X-rays there, and photographed three-dimensional From the image, the volume average particle diameter of the specific boron nitride particles can be calculated by analyzing the ratio of the resin, the specific boron nitride particles, and the like by image analysis and calculating the ratio of each component.
  • volume average particle diameter of specific boron nitride particles is obtained by a method using SEM
  • a focused ion beam mounted scanning electron microscope SEM FIB
  • SEM FIB focused ion beam mounted scanning electron microscope
  • the epoxy resin composition was set to be inclined with respect to the cross-section while performing the cross-section processing by injecting a Ga ion beam perpendicularly to the semi-cured or cured product of the epoxy resin composition or the resin sheet or the cured product thereof. By observing with SEM, the volume average particle diameter can be determined.
  • Imaging is preferably performed at a processing pitch of 1 nm to 100 nm, and the pitch may be adjusted according to the size of the object to be imaged.
  • the production method of the specific boron nitride particles is not particularly limited as long as the half width 2 ⁇ of the peak derived from the (004) plane in X-ray diffraction (XRD) is 0.5 degrees or less. It may be formed by any manufacturing method such as a method or a gas phase reaction method.
  • the content of the specific boron nitride particles in the specific epoxy resin composition is not particularly limited.
  • the content of the specific boron nitride particles is preferably 20% by mass to 95% by mass in the total solid content in the epoxy resin composition from the viewpoint of viscosity adjustment, and 30% by mass from the viewpoint of thermal conductivity.
  • the content is more preferably 90% by mass, and further preferably 40% by mass to 85% by mass.
  • solid content in an epoxy resin composition means the residue which removed the volatile component from the structural component of the resin composition.
  • the epoxy resin composition contains a specific liquid crystalline epoxy monomer represented by the following general formula (1).
  • X represents a single bond or at least one linking group selected from group (I) consisting of the following divalent groups.
  • Y independently represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, or an acetyl group.
  • Show. n independently represents an integer of 0 to 4.
  • k represents an integer of 0 to 7.
  • m represents an integer of 0 to 8.
  • l represents an integer of 0 to 12.
  • the connecting direction of the bond of each divalent group may be any.
  • the specific liquid crystalline epoxy monomer in this specification is a monomer having a so-called mesogenic group.
  • a specific liquid crystalline epoxy monomer forms a cured product with a curing agent, it is derived from a mesogenic group (biphenyl group, terphenyl group, terphenyl analog group, a group in which these are connected by an azomethine group or an ester group, etc.) in the cured product.
  • Higher order structure also referred to as a periodic structure
  • the higher order structure means a state in which molecules are aligned after the epoxy resin composition is cured, for example, a state in which a crystal structure or a liquid crystal structure is present in the cured product. .
  • the cured product of the epoxy resin composition tends to have a high thermal conductivity.
  • the reason can be considered as follows, for example.
  • the specific liquid crystalline epoxy monomer represented by the general formula (1) forms a cured product together with a curing agent, a highly ordered higher order structure derived from the mesogenic group of the specific liquid crystalline epoxy monomer is formed in the cured product.
  • scattering of phonon conduction which is a heat conductive medium in the insulating resin, can be suppressed, and thereby high thermal conductivity can be achieved.
  • the presence of the filler hinders formation of a highly ordered higher-order structure by the liquid crystalline epoxy resin.
  • X in the general formula (1) is preferably at least one linking group selected from the group (II) consisting of the following divalent groups.
  • X in the general formula (1) is more preferably at least one linking group selected from the group consisting of the following divalent linking groups.
  • Y in the general formula (1) independently represents an aliphatic hydrocarbon group having 1 to 4 carbon atoms, an aliphatic alkoxy group having 1 to 4 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a cyano group. It is preferably a nitro group or an acetyl group, more preferably a methyl group, an ethyl group, a methoxy group, an ethoxy group or a chlorine atom, and even more preferably a methyl group or an ethyl group.
  • N in the general formula (1) are each independently preferably an integer of 0 to 2, and more preferably 0 or 1.
  • k is preferably an integer of 0 to 3, and more preferably 0 or 1.
  • m is preferably an integer of 0 to 4, and more preferably 0 or 1.
  • l is preferably an integer of 0 to 4, more preferably 0 or 1.
  • X is a single bond or at least one linking group selected from the group (II) consisting of the above divalent group, and Y is independent.
  • Y is independent.
  • an aliphatic hydrocarbon group having 1 to 4 carbon atoms, an aliphatic alkoxy group having 1 to 4 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, or an acetyl group, and n is It is preferably a liquid crystalline epoxy monomer that is an integer of 0 to 2, k is an integer of 0 to 3, m is an integer of 0 to 4, and l is an integer of 0 to 4.
  • the specific liquid crystalline epoxy monomer is represented by the general formula (1), wherein X is a single bond or at least one linking group selected from the group (II) consisting of the above divalent group, and each Y is independently methyl
  • a liquid crystalline epoxy which is a group, an ethyl group, a methoxy group, an ethoxy group or a chlorine atom, n is 0 or 1, k is 0 or 1, m is 0 or 1, and l is 0 or 1 More preferably, it is a monomer.
  • the temperature range in which the liquid crystal phase is expressed is 25 ° C. or more, the orientation of the liquid crystalline epoxy monomer is improved, and the thermal conductivity of the cured product is improved.
  • the liquid crystalline epoxy monomer represented by the general formula (1) can be produced by a known method, and is described in Japanese Patent No. 4619770, Japanese Patent Application Laid-Open No. 2011-98952, Japanese Patent Application Laid-Open No. 2011-74366, and the like. Refer to the manufacturing method.
  • the specific liquid crystalline epoxy monomer in the epoxy resin composition may be partially polymerized with a curing agent or the like to form a prepolymer.
  • the specific liquid crystalline epoxy monomer is generally easily crystallized and often has low solubility in a solvent.
  • crystallization of the specific liquid crystalline epoxy monomer tends to be suppressed. For this reason, when the specific liquid crystalline epoxy monomer is prepolymerized, the moldability of the epoxy resin composition tends to be improved.
  • the content of the specific liquid crystalline epoxy monomer in the epoxy resin composition is 3% by volume to 30% by volume with respect to the total solid content in the epoxy resin composition from the viewpoints of moldability, adhesiveness, and thermal conductivity. It is preferably 5% by volume to 25% by volume.
  • volume-based content of the specific liquid crystalline epoxy monomer with respect to the total solid content is a value determined by the following formula.
  • Aw Mass composition ratio (% by mass) of boron nitride particles
  • Bw mass composition ratio (mass%) of the specific liquid crystalline epoxy monomer
  • Cw mass composition ratio (% by mass) of curing agent
  • Dw mass composition ratio (% by mass) of other optional components (excluding solvent)
  • Ad Specific gravity of boron nitride particles
  • Bd Specific gravity of specific liquid crystalline epoxy monomer
  • Cd Specific gravity of curing agent
  • Dd Specific gravity of other optional components (excluding solvent)
  • the epoxy resin composition preferably has a periodic structure in which the length of one cycle is 2 nm to 3 nm. When the length of one cycle is 2 nm to 3 nm, higher thermal conductivity can be exhibited.
  • the length of one period in the periodic structure is determined using a semi-cured or cured product of the epoxy resin composition as a measurement sample using a wide-angle X-ray diffractometer (for example, “RINT2500HL” manufactured by Rigaku Corporation) under the following conditions. It is obtained by performing X-ray diffraction and converting the diffraction angle obtained thereby by the following Bragg equation.
  • a wide-angle X-ray diffractometer for example, “RINT2500HL” manufactured by Rigaku Corporation
  • ⁇ X-ray source Cu ⁇ X-ray output: 50 kV, 250 mA -Divergence slit (DS): 1.0 degree-Scattering slit (SS): 1.0 degree-Receiving slit (RS): 0.3 mm ⁇ Scanning speed: 1.0 degree / min
  • the epoxy resin composition preferably has a half width 2 ⁇ of a peak derived from a periodic structure in X-ray diffraction of 0.2 ° or less, more preferably 0.15 ° or less, and 0.13 ° or less. More preferably it is. It shows that the regularity of the periodic structure is higher as the half width is narrower.
  • XRD peak the full width at half maximum 2 ⁇ of a peak derived from a periodic structure in X-ray diffraction
  • the epoxy resin composition includes a curing agent.
  • the curing agent in the present specification is not particularly limited as long as it is a compound capable of curing reaction with a specific epoxy resin monomer.
  • Specific examples of the curing agent include amine curing agents, acid anhydride curing agents, phenol curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, and blocked isocyanate curing agents. These may be used alone or in combination of two or more. From the viewpoint of forming a periodic structure of the semi-cured product or cured product of the epoxy resin composition, an amine curing agent or a phenol curing agent is preferable, and a phenol curing agent is more preferable.
  • Examples of amine curing agents include 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 4,4′-diamino-3,3′-dimethoxybiphenyl, 4, Examples thereof include 4′-diaminophenylbenzoate, 1,5-diaminonaphthalene, 1,3-diaminonaphthalene, 1,4-diaminonaphthalene, 1,8-diaminonaphthalene and the like. Among these, 1,5-diaminonaphthalene is preferable from the viewpoint of forming a higher order structure. From the viewpoint of cost and handleability, 4,4'-diaminodiphenylmethane is preferred.
  • low molecular phenol compounds and phenol resins obtained by novolacizing them can be used as the phenol curing agent.
  • low molecular weight phenol compounds include monofunctional phenol compounds such as phenol, o-cresol, m-cresol, and p-cresol, bifunctional phenol compounds such as catechol, resorcinol, and hydroquinone, 1,2,3-trihydroxybenzene , Trifunctional phenol compounds such as 1,2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene.
  • a phenol novolac resin obtained by connecting these low molecular phenol compounds with a methylene chain or the like to form a novolac can be used as a curing agent.
  • phenol curing agent bifunctional phenol compounds such as catechol, resorcinol and hydroquinone are preferable from the viewpoint of thermal conductivity.
  • a phenol novolac resin in which these bifunctional phenol compounds are linked by a methylene chain is preferable.
  • Specific examples of phenol novolak resins include two types of resins such as cresol novolak resins, catechol novolak resins, resorcinol novolak resins, hydroquinone novolak resins and other novolac resins, catechol resorcinol novolak resins, and resorcinol hydroquinone novolak resins. Or the resin etc. which made the more phenol compound novolak-ized can be mentioned.
  • a curing accelerator may be used in combination as necessary.
  • the epoxy resin composition tends to be cured sufficiently.
  • the kind in particular of hardening accelerator is not restrict
  • curing agent in an epoxy resin composition can be suitably set in consideration of the kind of hardening
  • the chemical equivalent of the curing agent is preferably 0.005 equivalents to 5 equivalents, more preferably 0.01 equivalents to 3 equivalents, relative to 1 mol of the epoxy group in the specific liquid crystalline epoxy monomer. More preferably, it is 0.5 to 1.5 equivalents.
  • the content of the curing agent is 0.005 equivalent or more with respect to 1 mol of the epoxy group, the curing rate of the specific liquid crystalline epoxy monomer tends to be further improved.
  • curing agent is 5 equivalent or less with respect to 1 mol of epoxy groups.
  • the chemical equivalent in this specification represents the number of moles of the hydroxyl group of the phenol curing agent with respect to 1 mole of the epoxy group when, for example, a phenol curing agent is used as the curing agent.
  • the epoxy resin composition may contain other components such as a solvent as necessary.
  • the epoxy resin composition may contain a solvent for dissolving the epoxy resin or the curing agent when the epoxy resin or the curing agent is solid, or for reducing the viscosity when the epoxy resin composition is a liquid.
  • solvents include acetone, isobutyl alcohol, isopropyl alcohol, isopentyl alcohol, ethyl ether, ethylene glycol monoethyl ether, xylene, cresol, chlorobenzene, isobutyl acetate, isopropyl acetate, isopentyl acetate, ethyl acetate, methyl acetate, cyclohexanol.
  • the epoxy resin composition may contain other boron nitride particles other than the specific boron nitride particles having a half width 2 ⁇ of a peak derived from the (004) plane in X-ray diffraction (XRD) of 0.5 degrees or less.
  • the content of other boron nitride particles is preferably 0% by mass to 50% by mass, and preferably 0% by mass to 20% by mass with respect to the total amount of the specific boron nitride particles and other boron nitride particles. More preferred.
  • the epoxy resin composition comprises ceramic particles other than specific boron nitride particles having a half-value width 2 ⁇ of a peak derived from the (004) plane in X-ray diffraction (XRD) of 0.5 degrees or less, a coupling agent, a dispersant, and an elastomer. Etc. may be contained. Ceramic particles other than the specific boron nitride particles whose half width 2 ⁇ of the peak derived from the (004) plane in X-ray diffraction (XRD) is 0.5 degrees or less include alumina particles, silica particles, magnesium oxide particles, aluminum nitride Examples thereof include particles and silicon nitride particles, and alumina particles are preferred.
  • the epoxy resin composition may or may not contain alumina particles.
  • the content of alumina particles with respect to the total amount of boron nitride particles (specific boron nitride particles and other boron nitride particles) and alumina particles is 5 mass% to 70 mass%. It is preferably 10% by mass to 50% by mass.
  • the volume average particle diameter of the alumina particles is preferably 0.01 ⁇ m to 1 mm from the viewpoint of use as a filler of the heat dissipation material, and more preferably 0.1 ⁇ m to 100 ⁇ m from the viewpoint of high filling of the alumina particles. .
  • the alumina particles are preferably alumina particles having high crystallinity, and more preferably ⁇ -alumina particles.
  • the volume average particle diameter of the alumina particles is measured using a laser diffraction method.
  • the laser diffraction method can be performed by a method similar to the measurement of the volume average particle diameter of the boron nitride particles described above using a laser diffraction scattering particle size distribution measuring apparatus (for example, Beckman Coulter, Inc., “LS230”). it can.
  • Method for producing epoxy resin composition As a manufacturing method of an epoxy resin composition, the manufacturing method of the resin composition performed normally can be especially used without a restriction
  • an epoxy resin composition is obtained by mixing other components as required in a solution obtained by dissolving or dispersing specific boron nitride particles, liquid crystalline epoxy monomer and curing agent in an appropriate solvent. be able to.
  • the epoxy resin composition In the epoxy resin composition, the orientation of the specific liquid crystalline epoxy monomer is high, and the semi-cured product or cured product of the epoxy resin composition tends to be excellent in thermal conductivity. Therefore, the epoxy resin composition can be suitably used as a heat-dissipating material for heat-generating electronic components (for example, IC (Integrated Circuit) chips or printed wiring boards) of various electric devices and electronic devices. Specifically, the epoxy resin composition can be used as a heat conductive material precursor such as a B stage sheet or a prepreg, a heat dissipation material such as a laminated board, a metal board, or a printed wiring board.
  • a heat conductive material precursor such as a B stage sheet or a prepreg
  • a heat dissipation material such as a laminated board, a metal board, or a printed wiring board.
  • the heat conductive material precursor of this embodiment is a semi-cured product of the epoxy resin composition of this embodiment.
  • the heat conductive material precursor of this embodiment it is possible to obtain a heat dissipating material that is excellent in handleability and has high heat conductivity.
  • Examples of the heat conductive material precursor include a B-stage sheet that is a sheet-like semi-cured product of the epoxy resin composition of the present embodiment, a fiber base material, and the epoxy resin composition of the present embodiment impregnated in the fiber base material.
  • Examples thereof include a prepreg having a semi-cured product.
  • the semi-cured product of the epoxy resin composition preferably has a periodic structure in which the length of one cycle is 2 nm to 3 nm.
  • the length of one cycle is 2 nm to 3 nm
  • the semi-cured product of the epoxy resin composition tends to exhibit higher thermal conductivity.
  • the half-cured product of the epoxy resin composition preferably has an X-ray diffraction (XRD) peak half-value width 2 ⁇ derived from the periodic structure of 0.2 degrees or less.
  • XRD X-ray diffraction
  • the half width of the XRD peak derived from the periodic structure is 0.2 degrees or less, the semi-cured product of the epoxy resin composition tends to exhibit higher thermal conductivity.
  • the B stage sheet and the prepreg will be described as examples of the heat conductive material precursor, the heat conductive material precursor is not limited thereto.
  • the B stage sheet of the present embodiment is a sheet-like semi-cured product of the epoxy resin composition of the present embodiment.
  • the B stage sheet of the present embodiment is obtained, for example, by molding the epoxy resin composition of the present embodiment into a sheet shape and semi-curing it.
  • a B stage sheet having excellent thermal conductivity after curing can be obtained.
  • “semi-cured” refers to a state generally referred to as a B-stage state.
  • the viscosity at a normal temperature (25 ° C.) is 10 4 Pa ⁇ s to 10 5 Pa ⁇ s, whereas at 100 ° C.
  • the B stage is defined in JIS K 6900: 1994 or ISO 472: 1988.
  • the viscosity can be measured with a torsional dynamic viscoelasticity measuring device or the like.
  • the B stage sheet can be produced, for example, by applying (applying) the epoxy resin composition of the present embodiment on a support, drying to produce a resin sheet, and semi-curing the resin sheet.
  • a commonly used method can be appropriately selected without particular limitation. Specifically, a comma coating method, a die coating method, a dip coating method, or the like can be given as a method for applying the epoxy resin composition.
  • a box-type hot air dryer or the like can be used for batch processing, and a multi-stage hot air dryer or the like can be used for continuous processing with a coating machine.
  • a hot air dryer from the viewpoint of preventing swelling of the epoxy resin composition, it includes a step of heat treatment with hot air in a temperature range lower than the boiling point of the solvent. It is preferable.
  • the method for semi-curing the resin sheet is not particularly limited, and a commonly used method can be appropriately selected.
  • the epoxy resin composition can be semi-cured by heat-treating the resin sheet.
  • the temperature range for semi-curing the resin sheet can be appropriately selected according to the type of liquid crystalline epoxy monomer contained in the epoxy resin composition. From the viewpoint of the strength of the B stage sheet, it is preferable to proceed the curing reaction slightly by heat treatment, and the temperature range of the heat treatment is preferably 80 ° C. to 180 ° C., more preferably 100 ° C. to 160 ° C. Moreover, there is no restriction
  • the heat treatment time for semi-curing is preferably 1 minute or longer and within 30 minutes, and more preferably 1 minute or longer and within 10 minutes.
  • Pressurization may be performed during the heat treatment for semi-curing, and the pressurization conditions are not particularly limited. Usually, it is preferable to pressurize in the range of 0.5 MPa to 15 MPa and pressurize in the range of 1 MPa to 10 MPa. A vacuum press or the like is preferably used for the heat treatment and the pressure treatment.
  • the average thickness of the B stage sheet can be appropriately selected according to the purpose, and can be, for example, 50 ⁇ m to 500 ⁇ m.
  • the average thickness of the B stage sheet is preferably 80 ⁇ m to 300 ⁇ m from the viewpoints of thermal conductivity, electrical insulation, and flexibility.
  • the average thickness of the B stage sheet is a value given as an arithmetic average value obtained by measuring the thickness of five points of the target B stage sheet using a micrometer or the like.
  • a B-stage sheet can also be produced by hot pressing while laminating two or more resin sheets (a sheet-like molded product of an epoxy resin composition and before curing).
  • the B stage sheet is preferably a sheet-like semi-cured product of an epoxy resin composition having a periodic structure with a period of 2 nm to 3 nm.
  • the B stage sheet tends to exhibit higher thermal conductivity.
  • the B stage sheet preferably has an X-ray diffraction (XRD) peak half-value width 2 ⁇ derived from the periodic structure of 0.2 degrees or less. When the half width 2 ⁇ of the XRD peak derived from the periodic structure is 0.2 degrees or less, the B stage sheet can exhibit higher thermal conductivity.
  • XRD X-ray diffraction
  • the prepreg of this embodiment has a fiber base material and a semi-cured product of the epoxy resin composition of this embodiment impregnated in the fiber base material.
  • the prepreg may have other layers such as a protective film as necessary.
  • the semi-cured product of the epoxy resin composition includes the specific boron nitride particles according to the present embodiment, a prepreg capable of forming a cured product having excellent thermal conductivity can be obtained.
  • the fiber substrate constituting the prepreg is not particularly limited as long as it is a fiber substrate used when producing a metal foil-clad laminate or a multilayer printed wiring board.
  • fiber base materials such as a woven fabric and a nonwoven fabric, are mentioned.
  • boron nitride particles may be clogged in the gaps between the fibers, making it difficult to impregnate the epoxy resin composition.
  • the opening is preferably at least 5 times the volume average particle diameter of the boron nitride particles.
  • fiber base materials include: inorganic fibers such as glass, alumina, boron, silica alumina glass, silica glass, tyrano fiber, silicon carbide, silicon nitride, zirconia; aramid, polyether ether ketone, polyether imide, poly Examples thereof include organic fibers such as ether sulfone, carbon, and cellulose; and mixed fiber base materials thereof.
  • a glass fiber woven fabric is preferably used.
  • the thickness of the fiber base material is not particularly limited, and is preferably 30 ⁇ m or less from the viewpoint of imparting better flexibility, and more preferably 15 ⁇ m or less from the viewpoint of impregnation property of the epoxy resin composition.
  • the lower limit of the thickness of the fiber substrate is not particularly limited, and is usually about 5 ⁇ m.
  • the impregnation ratio of the epoxy resin composition is preferably 50% by mass to 99.9% by mass with respect to the total mass of the fiber base material and the epoxy resin composition.
  • the prepreg can be produced, for example, by impregnating a fiber base material with an epoxy resin composition prepared in the same manner as described above and removing the solvent by heating at 80 ° C. to 180 ° C.
  • the solvent residual ratio in the prepreg is preferably 2.0% by mass or less, more preferably 1.0% by mass or less, and further preferably 0.7% by mass or less.
  • the solvent residual rate is obtained from the mass change before and after drying when the prepreg is cut into a 40 mm square and dried in a thermostat preheated to 190 ° C. for 2 hours.
  • the drying time for removing the solvent by heat treatment is not particularly limited.
  • limiting in particular in the method of impregnating a fiber base material with an epoxy resin composition For example, the method of providing (application
  • a vertical coating method in which a fiber base material is pulled through an epoxy resin composition a horizontal coating method in which an epoxy resin composition is applied on a support film and then impregnated by pressing the fiber base material, etc. Can do. From the viewpoint of suppressing the uneven distribution of the thermally conductive filler in the fiber base material, the horizontal coating method is suitable.
  • the epoxy resin composition of the present embodiment impregnated in the fiber base material is semi-cured and is in a B stage state.
  • the B stage state in the prepreg is synonymous with the B stage state in the B stage sheet described above, and the same conditions can be applied to the method of forming the B stage.
  • the prepreg may be used after the surface is smoothed in advance by laminating or sticking to a base material by heat and pressure treatment with a press, a roll laminator or the like.
  • the example of the method of heat-pressing treatment is the same as the method quoted with the above-mentioned B stage sheet.
  • the conditions of the heating temperature and the press pressure in the heat and pressure treatment of the prepreg are the same as the conditions mentioned in the heat treatment and pressure treatment of the B stage sheet.
  • the average thickness of the prepreg can be appropriately selected according to the purpose, and can be, for example, 50 ⁇ m or more and 500 ⁇ m or less.
  • the average thickness of the prepreg is preferably 60 ⁇ m or more and 300 ⁇ m or less from the viewpoint of thermal conductivity and flexibility.
  • the average thickness of the prepreg is a value given as an arithmetic average value obtained by measuring the thicknesses of five points of the target prepreg using a micrometer or the like.
  • the prepreg can be produced by laminating two or more prepregs and hot pressing.
  • the heat dissipation material of this embodiment is a cured product of the epoxy resin composition of this embodiment.
  • Specific examples of the heat dissipation material include a laminated board having a cured product of the epoxy resin composition of the present embodiment, a metal board, a printed wiring board, and the like.
  • the heat dissipation material has excellent thermal conductivity by including the cured product of the epoxy resin composition of the present embodiment.
  • the cured product of the epoxy resin composition preferably has a periodic structure in which the length of one cycle is 2 nm to 3 nm.
  • the length of one cycle is 2 nm to 3 nm
  • the cured product of the epoxy resin composition tends to exhibit higher thermal conductivity.
  • the half width 2 ⁇ of the X-ray diffraction (XRD) peak derived from the periodic structure is 0.2 degrees or less.
  • the half width of the XRD peak derived from the periodic structure is 0.2 degrees or less, the cured product of the epoxy resin composition tends to exhibit higher thermal conductivity.
  • the laminate in the present embodiment comprises an adherend, a resin layer made of the epoxy resin composition of the present embodiment, a B stage sheet of the present embodiment, and a prepreg of the present embodiment provided on the adherend.
  • adherend examples include metal foil and metal plate.
  • the adherend may be provided on only one side of the cured layer or on both sides.
  • the metal foil is not particularly limited and can be appropriately selected from commonly used metal foils. Specifically, gold foil, copper foil, aluminum foil, etc. can be mentioned, and copper foil is generally used.
  • the thickness of the metal foil is 1 ⁇ m to 200 ⁇ m, and a suitable thickness can be selected according to the electric power used.
  • metal foil nickel, nickel-phosphorus alloy, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and a copper layer of 0.5 ⁇ m to 15 ⁇ m is formed on both surfaces.
  • a composite foil having a three-layer structure provided with a copper layer of 10 ⁇ m to 150 ⁇ m may be used.
  • metal foil a two-layer structure composite foil in which aluminum and copper foil are combined can also be used.
  • the metal plate is preferably made of a metal material having a high thermal conductivity and a large heat capacity.
  • Specific examples of the material for the metal plate include copper, aluminum, iron, alloys used for lead frames, and the like.
  • the metal plate is not particularly limited, and can be appropriately selected from commonly used metal plates.
  • the material can be selected according to the purpose, such as using an aluminum plate when priority is given to weight reduction or workability, and using a copper plate when priority is given to heat dissipation.
  • the average thickness of the metal plate can be appropriately selected depending on the application, and is not particularly limited. From the viewpoint of workability, the thickness of the metal plate is preferably 0.5 mm or more and 5 mm or less.
  • the metal plate is preferably cut to a size to be used after being manufactured in a size larger than necessary and mounting an electronic component. Therefore, it is desirable that the metal plate used for the metal substrate is excellent in cutting workability.
  • aluminum or an alloy mainly composed of aluminum can be used as the material.
  • Many types of aluminum or alloys containing aluminum as a main component are available depending on the chemical composition and heat treatment conditions. Among them, it is preferable to select a kind of aluminum plate or aluminum alloy plate that is easy to cut and has high workability and excellent strength.
  • the cured layer has a single layer structure having a cured layer of a resin layer made of the epoxy resin composition of the present embodiment, a B stage sheet of the present embodiment, or a resin-containing layer that is a prepreg of the present embodiment. It may be a laminated structure having two or more layers.
  • the hardened layer has a laminated structure of two or more layers, a form having two or more resin layers made of the epoxy resin composition of the present embodiment, a form having two or more B stage sheets of the present embodiment, and the present embodiment Any of the forms having two or more prepregs may be used.
  • the laminated board in the present embodiment is formed by, for example, applying the epoxy resin composition of the present embodiment on an adherend to form a resin layer, heat-treating and pressurizing the resin layer, and curing the resin layer. It is obtained by making it adhere to an adherend.
  • the curing method for curing the resin layer, the B stage sheet and the prepreg made of the epoxy resin composition is not particularly limited.
  • the heating temperature in the heat treatment and pressure treatment is not particularly limited.
  • the heating temperature is usually in the range of 100 ° C to 250 ° C, and preferably in the range of 130 ° C to 230 ° C.
  • the pressurization conditions in heat processing and pressurization processing are not specifically limited.
  • the pressurizing condition is usually in the range of 1 MPa to 10 MPa, and preferably in the range of 1 MPa to 5 MPa.
  • a vacuum press machine etc. are used suitably for heat processing and pressurization processing.
  • the average thickness of the cured layer of the resin layer made of the epoxy resin composition or the cured layer of the resin-containing layer that is a B stage sheet or prepreg is preferably 500 ⁇ m or less, more preferably 50 ⁇ m to 300 ⁇ m, and more preferably 60 ⁇ m to 300 ⁇ m. More preferably.
  • the average thickness is 500 ⁇ m or less, the flexibility is excellent, and the generation of cracks during bending is suppressed, and when the average thickness is 300 ⁇ m or less, the generation of cracks during bending tends to be further suppressed. It is in. Moreover, it exists in the tendency for workability
  • the average thickness of the cured layer is a value given as an arithmetic average value obtained by measuring the thickness of five points of the cured layer of the target laminate by using a micrometer or the like.
  • the metal substrate of the present embodiment includes a metal foil, a metal plate, a resin layer made of the epoxy resin composition of the present embodiment, disposed between the metal foil and the metal plate, and a B stage sheet of the present embodiment. And a cured layer of at least one resin-containing layer selected from the group consisting of the prepregs of the present embodiment.
  • the metal foil is not particularly limited and can be appropriately selected from commonly used metal foils. Specifically, gold foil, copper foil, aluminum foil, etc. can be mentioned, and copper foil is generally used.
  • the thickness of the metal foil is 1 ⁇ m to 200 ⁇ m, and a suitable thickness can be selected according to the electric power used.
  • metal foil nickel, nickel-phosphorus alloy, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and a copper layer of 0.5 ⁇ m to 15 ⁇ m is formed on both surfaces.
  • a composite foil having a three-layer structure provided with a copper layer of 10 ⁇ m to 150 ⁇ m may be used, or a two-layer composite foil in which aluminum and a copper foil are combined can also be used.
  • the metal plate is preferably made of a metal material having a high thermal conductivity and a large heat capacity.
  • the metal material include copper, aluminum, iron, alloys used for lead frames, and the like. It does not restrict
  • the material can be selected according to the purpose, such as using an aluminum plate when priority is given to weight reduction or workability, and using a copper plate when priority is given to heat dissipation.
  • the average thickness of the metal plate can be appropriately selected depending on the application, and is not particularly limited. From the viewpoint of workability, the thickness of the metal plate is preferably 0.5 mm or more and 5 mm or less.
  • the metal plate is preferably cut to a size to be used after being manufactured in a size larger than necessary and mounting an electronic component. Therefore, it is desirable that the metal plate used for the metal substrate is excellent in cutting workability.
  • aluminum or an alloy mainly composed of aluminum can be used as the material.
  • Many types of aluminum or alloys containing aluminum as a main component are available depending on the chemical composition and heat treatment conditions. Among them, it is preferable to select a type having high workability such as easy cutting and excellent strength.
  • the cured layer has a single layer structure having a cured layer of a resin layer made of the epoxy resin composition of the present embodiment, a B stage sheet of the present embodiment, or a resin-containing layer that is a prepreg of the present embodiment. It may be a laminated structure having two or more layers.
  • the hardened layer has a laminated structure of two or more layers, a form having two or more resin layers made of the epoxy resin composition of the present embodiment, a form having two or more B stage sheets of the present embodiment, and the present embodiment Any of the forms having two or more prepregs may be used.
  • the printed wiring board of this embodiment includes a wiring layer, a metal plate, and a resin layer made of the epoxy resin composition of this embodiment, disposed between the wiring layer and the metal plate, and the B stage of this embodiment.
  • the wiring layer can be manufactured by circuit processing the metal foil on the metal substrate described above.
  • a normal photolithography method can be applied to the circuit processing of the metal foil.
  • Examples of the metal plate include the same metal plate used for the above-mentioned metal substrate, and the preferred embodiment is also the same.
  • Preferable embodiments of the printed wiring board include, for example, the same printed wiring board as described in paragraph No. 0064 of JP2009-214525A and paragraph Nos. 0056 to 0059 of JP2009-275086A. it can.
  • cyclohexane was added to prepare a novolac resin and a solution having a content of 50% by mass to obtain a phenol resin solution.
  • Example 1 Boron nitride particles (Mizushima Alloy Iron Co., Ltd., trade name “HP-40”, hereinafter also referred to as “boron nitride particles 1”) and liquid crystalline epoxy monomer 1 (1- (3-methyl-4-oxiranyl) Methoxyphenyl) -4- (oxiranylmethoxyphenyl) -1-cyclohexene; a liquid crystalline epoxy monomer represented by general formula (1) (hereinafter also referred to as “epoxy monomer 1”), and a curing agent (above A phenol resin), a curing accelerator (triphenylphosphine, Wako Pure Chemical Industries, Ltd.) and a solvent (cyclohexanone, Wako Pure Chemical Industries, Ltd.) were added to prepare an epoxy resin composition.
  • boronitride particles 1 liquid crystalline epoxy monomer 1 (1- (3-methyl-4-oxiranyl) Methoxyphenyl) -4- (oxiranylmethoxypheny
  • the compounding amounts of the liquid crystalline epoxy monomer and the curing agent were adjusted such that the molar ratio of the chemical equivalent of the curing agent to the epoxy group of the liquid crystalline epoxy monomer was 1: 1.
  • the addition amount of the boron nitride particles was adjusted so that the boron nitride content in the epoxy resin composition after curing was 50% by mass.
  • the prepared epoxy resin composition was applied to a 75 ⁇ m thick polyethylene terephthalate (PET) film at a thickness of 300 ⁇ m, and then the epoxy resin composition was sandwiched between different PET films at 140 ° C., 1 MPa for 2 minutes.
  • a B-stage sheet was obtained by vacuum pressing.
  • d is the length of one period
  • is the diffraction angle
  • n is the reflection order
  • is the X-ray wavelength (0.15406 nm).
  • the PET film on both sides of the obtained B-stage sheet is peeled off, and sandwiched between two sheets of copper foil (Furukawa Electric Co., Ltd., trade name “GTS”) whose surface is roughened, and vacuum-pressed at 180 ° C. It was made to press-fit to copper foil. This was further heat-treated at 140 ° C. for 2 hours and then cured by further heat-treating at 190 ° C. for 2 hours to obtain a sheet-like copper press-cured cured product.
  • GTS copper foil
  • the copper foils on both sides of the obtained copper press-cured cured product were removed by acid etching using a mixed solution of 200 g / L ammonium persulfate and 5 ml / L sulfuric acid to obtain a sheet-shaped epoxy resin cured product.
  • the obtained sheet-like epoxy resin cured product was cut into a 1 cm square and used as a test piece for measuring thermal diffusivity.
  • the thermal diffusivity of the cut specimen was measured using a flash method apparatus (“NETZSCH, nanoflash LFA447” manufactured by Bruker AXS Co., Ltd.). By multiplying the measurement result by the density measured by the Archimedes method and the specific heat measured by the DSC method, the thermal conductivity in the thickness direction of the cured epoxy resin sheet was determined.
  • the diffraction angle derived from the periodic structure of the obtained sheet-like cured epoxy resin was measured in the same manner as in the case of the B stage sheet. From the obtained XRD spectrum, the half width (2 ⁇ ) of the peak derived from the (004) plane of the boron nitride particles was determined. The results are shown in Table 1 and FIG.
  • Example 2 In Example 1, instead of boron nitride particles 1, boron nitride particles (Electrochemical Industry Co., Ltd., trade name “SP-3”, hereinafter also referred to as “boron nitride particles 2”) were used. In the same manner as in Example 1, a B-stage sheet and a sheet-like cured epoxy resin were prepared. Furthermore, as in Example 1, the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined. The results are shown in Table 1.
  • Example 3 In Example 1, ⁇ -alumina particles (Sumitomo Chemical Co., Ltd., trade name “AA04”) were added, and the content of boron nitride particles 1 in the cured epoxy resin (epoxy resin cured product) was 50 mass%.
  • the epoxy resin composition of Example 3 was obtained in the same manner as in Example 1 except that the epoxy resin composition was prepared so that the content of ⁇ -alumina particles was 20% by mass.
  • Example 1 Using the resulting epoxy resin composition, a B-stage sheet and a sheet-like cured epoxy resin were prepared in the same manner as in Example 1. Furthermore, as in Example 1, the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined. The results are shown in Table 1.
  • Example 4 In Example 1, boron nitride particles 2 (Electrochemical Industry Co., Ltd., trade name “SP-3”) was added, and the content of boron nitride particles 1 in the cured epoxy resin (cured epoxy resin) was 50.
  • the epoxy resin composition of Example 4 was obtained in the same manner as in Example 1 except that the epoxy resin composition was prepared so that the content of the boron nitride particles 2 was 20% by mass. It was.
  • Example 1 Using the resulting epoxy resin composition, a B-stage sheet and a sheet-like cured epoxy resin were prepared in the same manner as in Example 1. Furthermore, as in Example 1, the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined. The results are shown in Table 1.
  • Example 5 In Example 1, boron nitride particles 3 (Mitsui Chemicals, Inc., trade name “MBN-250”) was added, and the content of boron nitride particles 1 in the cured epoxy resin (epoxy resin cured product) was 50 mass. %, And the epoxy resin composition of Example 5 was obtained in the same manner as in Example 1 except that the epoxy resin composition was prepared so that the content of boron nitride particles 3 was 20% by mass. .
  • MBN-250 boron nitride particles 3
  • Example 1 Using the resulting epoxy resin composition, a B-stage sheet and a sheet-like cured epoxy resin were prepared in the same manner as in Example 1. Furthermore, as in Example 1, the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined. The results are shown in Table 1.
  • Example 6 In Example 1, boron nitride particles 2 (Electrochemical Industry Co., Ltd., trade name “SP-3”) and ⁇ -alumina particles (Sumitomo Chemical Co., Ltd., trade name “AA04”) were added and cured.
  • the content of boron nitride particles 1 in the epoxy resin (cured epoxy resin) is 50% by mass
  • the content of boron nitride particles 2 is 10% by mass
  • the content of ⁇ -alumina particles is 10% by mass.
  • An epoxy resin composition of Example 6 was obtained in the same manner as in Example 1 except that the epoxy resin composition was prepared.
  • Example 1 Using the resulting epoxy resin composition, a B-stage sheet and a sheet-like cured epoxy resin were prepared in the same manner as in Example 1. Furthermore, as in Example 1, the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined. The results are shown in Table 1.
  • Example 7 In Example 1, boron nitride particles 3 (Mitsui Chemicals Co., Ltd., trade name “MBN-250”) and ⁇ -alumina particles (Sumitomo Chemical Co., Ltd., trade name “AA04”) were added and cured epoxy.
  • the content of boron nitride particles 1 in the resin (cured epoxy resin) is 50% by mass
  • the content of boron nitride particles 3 is 10% by mass
  • the content of ⁇ -alumina particles is 10% by mass.
  • the epoxy resin composition of Example 7 was obtained by the method similar to Example 1 except having prepared the epoxy resin composition.
  • Example 1 Using the resulting epoxy resin composition, a B-stage sheet and a sheet-like cured epoxy resin were prepared in the same manner as in Example 1. Furthermore, as in Example 1, the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined. The results are shown in Table 1.
  • Example 1 (Comparative Example 1) In Example 1, instead of boron nitride particles 1, boron nitride particles 3 (Mitsui Chemicals, Inc., trade name “MBN-250”) were used as in Example 1, except that B stage sheets and sheets were used. A cured epoxy resin was prepared. Furthermore, as in Example 1, the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined. The results are shown in Table 1 and FIG.
  • Example 1 the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined. The results are shown in Table 1.
  • Example 2 the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined. The results are shown in Table 1.
  • FIG. 1 shows an X-ray diffraction (XRD) spectrum of the cured epoxy resin of Example 1
  • FIG. 2 shows an XRD spectrum of the cured epoxy resin of Comparative Example 1.
  • the vertical axis represents diffraction intensity (CPS)
  • the horizontal axis represents diffraction angle (2 ⁇ ).
  • CPS diffraction intensity
  • the horizontal axis represents diffraction angle (2 ⁇ ).
  • the half width of the peak derived from the (004) plane of the boron nitride (BN) particles is narrow, and the peak derived from the 2 nm to 3 nm periodic structure of the epoxy resin is detected.
  • FIG. 1 shows an X-ray diffraction (XRD) spectrum of the cured epoxy resin of Example 1
  • the vertical axis represents diffraction intensity (CPS)
  • the horizontal axis represents diffraction angle (2 ⁇ ).
  • the half width of the peak derived from the (004) plane of the boron nitride (BN) particles is wide, and no peak derived from the 2 nm to 3 nm periodic structure of the epoxy resin is detected. From this, it is considered that the higher the crystallinity of the boron nitride particles, the more the cyclic structure formation of the epoxy resin is affected, and as a result, the thermal conductivity is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

An epoxy resin composition including boron nitride particles in which the half-value width 2θ of a peak originating from the (004) plane in X-ray diffraction (XRD) is 0.5 degrees or less, a curing agent, and a liquid crystalline epoxy monomer represented by general formula (1). [In general formula (1), X represents a single bond or a divalent linking group, Y each independently represents a C1-8 aliphatic hydrocarbon group, a C1-8 aliphatic alkoxy group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, or an acetyl group, and n each independently represents an integer of 0 to 4.]

Description

エポキシ樹脂組成物、熱伝導材料前駆体、Bステージシート、プリプレグ、放熱材料、積層板、金属基板及びプリント配線板Epoxy resin composition, heat conductive material precursor, B stage sheet, prepreg, heat dissipation material, laminated board, metal substrate and printed wiring board
 本発明は、エポキシ樹脂組成物、熱伝導材料前駆体、Bステージシート、プリプレグ、放熱材料、積層板、金属基板及びプリント配線板に関する。 The present invention relates to an epoxy resin composition, a heat conductive material precursor, a B stage sheet, a prepreg, a heat dissipation material, a laminated board, a metal board, and a printed wiring board.
 近年、電子機器の小型化及び高性能化によるエネルギー密度の増加に伴い、単位体積当たりの発熱量が増加傾向にあることから、電子機器を構成する絶縁材料には高い熱伝導性が求められている。また、絶縁材料には、絶縁耐圧の高さ及び成型の容易さの観点から、広くエポキシ樹脂が用いられている。エポキシ樹脂の高熱伝導化の方法として、例えば特開平11-323162号公報には、配向性の高いメソゲン基を有するモノマーを含む樹脂組成物を重合させた液晶性エポキシ樹脂を利用することが有効であることが記載されている。 In recent years, with the increase in energy density due to downsizing and higher performance of electronic devices, the amount of heat generated per unit volume has been increasing, so insulating materials constituting electronic devices are required to have high thermal conductivity. Yes. In addition, an epoxy resin is widely used as an insulating material from the viewpoint of high withstand voltage and easy molding. As a method for increasing the thermal conductivity of an epoxy resin, for example, in JP-A-11-323162, it is effective to use a liquid crystalline epoxy resin obtained by polymerizing a resin composition containing a monomer having a highly oriented mesogenic group. It is described that there is.
 更に、エポキシ樹脂の熱伝導性を高めるために、熱伝導率が高く且つ絶縁性のフィラーを樹脂に添加する方法が一般に用いられている。熱伝導率が高く且つ絶縁性のフィラーとしては、窒化ホウ素粒子、窒化アルミニウム粒子、アルミナ粒子等が挙げられる。 Furthermore, in order to increase the thermal conductivity of the epoxy resin, a method of adding an insulating filler having a high thermal conductivity and an insulating property is generally used. Examples of the insulating filler having high thermal conductivity include boron nitride particles, aluminum nitride particles, and alumina particles.
 しかしながら、窒化ホウ素、窒化アルミニウム等の無機窒化物粒子と液晶性エポキシ樹脂とをコンポジット化すると、液晶性エポキシ樹脂の配向を無機窒化物粒子が阻害し、エポキシ樹脂硬化物の熱伝導率が低下する場合がある。 However, when inorganic nitride particles such as boron nitride and aluminum nitride are combined with a liquid crystalline epoxy resin, the orientation of the liquid crystalline epoxy resin is inhibited by the inorganic nitride particles and the thermal conductivity of the cured epoxy resin is lowered. There is a case.
 上記状況を鑑み、本発明の態様によれば、熱伝導率が高い硬化物を形成可能なエポキシ樹脂組成物、熱伝導材料前駆体、Bステージシート及びプリプレグ並びに熱伝導率が高い放熱材料、積層板、金属基板及びプリント配線板が提供される。 In view of the above situation, according to an aspect of the present invention, an epoxy resin composition capable of forming a cured product having high thermal conductivity, a thermal conductive material precursor, a B stage sheet and a prepreg, and a heat dissipation material having high thermal conductivity, a laminate A board, a metal substrate, and a printed wiring board are provided.
 本発明は以下の態様を包含する。
<1> X線回折における(004)面に由来するピークの半値幅2θが0.5度以下である窒化ホウ素粒子と、
 硬化剤と、
 下記一般式(1)で表される液晶性エポキシモノマーと、
を含むエポキシ樹脂組成物。
The present invention includes the following aspects.
<1> Boron nitride particles having a half width 2θ of a peak derived from the (004) plane in X-ray diffraction of 0.5 degrees or less;
A curing agent;
A liquid crystalline epoxy monomer represented by the following general formula (1);
An epoxy resin composition comprising:
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
〔一般式(1)中、Xは単結合又は下記2価の基からなる群(I)より選択される少なくとも1種の連結基を示す。Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基又はアセチル基を示す。nは各々独立に0~4の整数を示す。kは0~7の整数を示す。mは0~8の整数を示す。lは0~12の整数を示す。〕 [In the general formula (1), X represents a single bond or at least one linking group selected from the group (I) consisting of the following divalent groups. Y independently represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, or an acetyl group. Show. n independently represents an integer of 0 to 4. k represents an integer of 0 to 7. m represents an integer of 0 to 8. l represents an integer of 0 to 12. ]
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
<2> 1周期の長さが2nm~3nmの周期構造を有する前記<1>に記載のエポキシ樹脂組成物。
<3> X線回折における前記周期構造に由来するピークの半値幅2θが0.2度以下である前記<2>に記載のエポキシ樹脂組成物。
<4> 前記窒化ホウ素粒子の含有率が、全固形分中20質量%~95質量%である前記<1>~<3>のいずれか1項に記載のエポキシ樹脂組成物。
<5> 更にアルミナ粒子を含み、前記アルミナ粒子の含有率が、前記窒化ホウ素粒子と前記アルミナ粒子との総量に対して、5質量%~70質量%である前記<1>~<4>のいずれか1項に記載のエポキシ樹脂組成物。
<2> The epoxy resin composition according to the above <1>, which has a periodic structure in which the length of one cycle is 2 nm to 3 nm.
<3> The epoxy resin composition according to <2>, wherein a half width 2θ of a peak derived from the periodic structure in X-ray diffraction is 0.2 degrees or less.
<4> The epoxy resin composition according to any one of <1> to <3>, wherein the content of the boron nitride particles is 20% by mass to 95% by mass in the total solid content.
<5> Further comprising alumina particles, wherein the content of the alumina particles is 5% by mass to 70% by mass with respect to the total amount of the boron nitride particles and the alumina particles. The epoxy resin composition according to any one of the above.
<6> 前記<1>~<5>のいずれか1項に記載のエポキシ樹脂組成物の半硬化物である熱伝導材料前駆体。
<7> 前記半硬化物が、1周期の長さが2nm~3nmの周期構造を有する前記<6>に記載の熱伝導材料前駆体。
<8> X線回折における前記周期構造に由来するピークの半値幅2θが0.2度以下である前記<7>に記載の熱伝導材料前駆体。
<6> A heat conductive material precursor which is a semi-cured product of the epoxy resin composition according to any one of <1> to <5>.
<7> The thermal conductive material precursor according to <6>, wherein the semi-cured product has a periodic structure having a length of one cycle of 2 nm to 3 nm.
<8> The heat conductive material precursor according to <7>, wherein a half-value width 2θ of a peak derived from the periodic structure in X-ray diffraction is 0.2 degrees or less.
<9> 前記<1>~<5>のいずれか1項に記載のエポキシ樹脂組成物のシート状の半硬化物であるBステージシート。
<10> 前記エポキシ樹脂組成物のシート状の半硬化物が、1周期の長さが2nm~3nmの周期構造を有する前記<9>に記載のBステージシート。
<11> X線回折における前記周期構造に由来するピークの半値幅2θが0.2度以下である前記<10>に記載のBステージシート。
<9> A B stage sheet which is a sheet-like semi-cured product of the epoxy resin composition according to any one of <1> to <5>.
<10> The B stage sheet according to <9>, wherein the sheet-like semi-cured product of the epoxy resin composition has a periodic structure with a period of 2 nm to 3 nm.
<11> The B stage sheet according to <10>, wherein a half width 2θ of a peak derived from the periodic structure in X-ray diffraction is 0.2 degrees or less.
<12> 繊維基材と、
 前記繊維基材に含浸される前記<1>~<5>のいずれか1項に記載のエポキシ樹脂組成物の半硬化物と、
を有するプリプレグ。
<12> a fiber base material;
The semi-cured product of the epoxy resin composition according to any one of <1> to <5>, wherein the fiber base material is impregnated;
Prepreg with
<13> 前記<1>~<5>のいずれか1項に記載のエポキシ樹脂組成物の硬化物である放熱材料。
<14> 前記エポキシ樹脂組成物の硬化物が、1周期の長さが2nm~3nmの周期構造を有する前記<13>に記載の放熱材料。
<15> X線回折における前記周期構造に由来するピークの半値幅2θが0.2度以下である前記<14>に記載の放熱材料。
<13> A heat dissipation material, which is a cured product of the epoxy resin composition according to any one of <1> to <5>.
<14> The heat radiation material according to <13>, wherein the cured product of the epoxy resin composition has a periodic structure having a length of one cycle of 2 nm to 3 nm.
<15> The heat dissipation material according to <14>, wherein a half width 2θ of a peak derived from the periodic structure in X-ray diffraction is 0.2 ° or less.
<16> 被着材と、
 前記被着材上に設けられる、前記<1>~<5>のいずれか1項に記載のエポキシ樹脂組成物からなる樹脂層、前記<9>~<11>のいずれか1項に記載のBステージシート及び前記<12>に記載のプリプレグからなる群より選択される少なくとも1種の樹脂含有層の硬化層と、
 を有する積層板。
<16> A substrate,
The resin layer comprising the epoxy resin composition according to any one of <1> to <5>, provided on the adherend, or any one of <9> to <11>. A cured layer of at least one resin-containing layer selected from the group consisting of a B stage sheet and the prepreg according to <12>,
A laminate having
<17> 金属箔と、
 金属板と、
 前記金属箔と前記金属板との間に配置される、前記<1>~<5>のいずれか1項に記載のエポキシ樹脂組成物からなる樹脂層、前記<9>~<11>のいずれか1項に記載のBステージシート及び前記<12>に記載のプリプレグからなる群より選択される少なくとも1種の樹脂含有層の硬化層と、
 を有する金属基板。
<17> Metal foil,
A metal plate,
The resin layer comprising the epoxy resin composition according to any one of the above <1> to <5>, which is disposed between the metal foil and the metal plate, and any of the above <9> to <11> A cured layer of at least one resin-containing layer selected from the group consisting of the B stage sheet according to claim 1 and the prepreg according to <12>,
A metal substrate.
<18> 配線層と、
 金属板と、
 前記配線層と前記金属板との間に配置される、前記<1>~<5>のいずれか1項に記載のエポキシ樹脂組成物からなる樹脂層、前記<9>~<11>のいずれか1項に記載のBステージシート及び前記<12>に記載のプリプレグからなる群より選択される少なくとも1種の樹脂含有層の硬化層と、
 を有するプリント配線板。
<18> a wiring layer;
A metal plate,
The resin layer comprising the epoxy resin composition according to any one of <1> to <5>, which is disposed between the wiring layer and the metal plate, and any of <9> to <11> A cured layer of at least one resin-containing layer selected from the group consisting of the B stage sheet according to claim 1 and the prepreg according to <12>,
A printed wiring board having:
 本発明の態様によれば、熱伝導率が高い硬化物を形成可能なエポキシ樹脂組成物、熱伝導材料前駆体、Bステージシート及びプリプレグ並びに熱伝導率が高い放熱材料、積層板、金属基板及びプリント配線板が提供される。 According to an aspect of the present invention, an epoxy resin composition capable of forming a cured product having high thermal conductivity, a thermal conductive material precursor, a B stage sheet and a prepreg, and a heat dissipation material having high thermal conductivity, a laminated plate, a metal substrate, and A printed wiring board is provided.
実施例1のエポキシ樹脂硬化物のX線回折(XRD)スペクトルである。2 is an X-ray diffraction (XRD) spectrum of the cured epoxy resin of Example 1. FIG. 比較例1のエポキシ樹脂硬化物のX線回折(XRD)スペクトルである。2 is an X-ray diffraction (XRD) spectrum of a cured epoxy resin of Comparative Example 1. FIG.
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。更に、本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In this specification, a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. Further, in the present specification, the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means.
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。 In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. .
 本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。
 また、「積層」との語は、層を積み重ねることを示し、二以上の層が結合されてもよく、二以上の層が脱着可能であってもよい。
In this specification, the term “layer” includes a configuration formed in a part in addition to a configuration formed in the entire surface when observed as a plan view.
In addition, the term “stack” indicates that the layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
 本明細書において層又は積層体の平均厚み(厚みの平均値ともいう)は、対象となる層又は積層体の5点の厚みを測定し、その算術平均値として与えられる値とする。
 層又は積層体の厚みは、マイクロメーター等を用いて測定することができる。本明細書において、層又は積層体の厚みを直接測定可能な場合には、マイクロメーターを用いて測定する。一方、積層体の一部を構成する1つの層の厚み又は複数の層の総厚みを測定する場合には、電子顕微鏡を用いて、積層体の積層方向に平行な断面を観察することで測定する。
 更に組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 また、本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
In this specification, the average thickness (also referred to as the average thickness) of a layer or a laminate is a value given as an arithmetic average value obtained by measuring the thickness of five layers of the target layer or laminate.
The thickness of the layer or laminate can be measured using a micrometer or the like. In this specification, when the thickness of a layer or a laminate can be directly measured, it is measured using a micrometer. On the other hand, when measuring the thickness of one layer constituting a part of the laminate or the total thickness of a plurality of layers, it is measured by observing a cross section parallel to the lamination direction of the laminate using an electron microscope. To do.
Furthermore, the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
In addition, in the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value described in one numerical range is replaced with the upper limit value or the lower limit value of another numerical range described. May be. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
<エポキシ樹脂組成物>
 エポキシ樹脂組成物は、X線回折(XRD)における(004)面に由来するピークの半値幅2θが0.5度以下である窒化ホウ素粒子(以下、「特定窒化ホウ素粒子」とも称する)と、硬化剤と、下記一般式(1)で表される液晶性エポキシモノマー(以下、「特定液晶性エポキシモノマー」とも称する)と、を含む。エポキシ樹脂組成物は、更にその他の成分を含んでいてもよい。
<Epoxy resin composition>
The epoxy resin composition includes boron nitride particles (hereinafter also referred to as “specific boron nitride particles”) having a half-value width 2θ of a peak derived from the (004) plane in X-ray diffraction (XRD) of 0.5 degrees or less. A curing agent and a liquid crystalline epoxy monomer represented by the following general formula (1) (hereinafter also referred to as “specific liquid crystalline epoxy monomer”). The epoxy resin composition may further contain other components.
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000005

 
 一般式(1)中、Xは単結合又は下記2価の基からなる群(I)より選択される少なくとも1種の連結基を示す。Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基又はアセチル基を示す。nは0~4の整数を示す。kは0~7の整数を示す。mは0~8の整数を示す。lは0~12の整数を示す。 In general formula (1), X represents a single bond or at least one linking group selected from group (I) consisting of the following divalent groups. Y independently represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, or an acetyl group. Show. n represents an integer of 0 to 4. k represents an integer of 0 to 7. m represents an integer of 0 to 8. l represents an integer of 0 to 12.
Figure JPOXMLDOC01-appb-C000006

 
Figure JPOXMLDOC01-appb-C000006

 
 上記2価の基からなる群(I)において、各2価の基の結合手の連結方向はいずれであってもよい。 In the group (I) consisting of the above divalent groups, the connecting direction of the bond of each divalent group may be any.
 X線回折(XRD)における窒化ホウ素粒子の(004)面に由来するピーク(以下、「窒化ホウ素粒子の(004)面に由来するピーク」とも称する)の半値幅を0.5度以下(2θ=0.5度以下)とすることにより、特定窒化ホウ素粒子表面での特定液晶性エポキシモノマーの配向性が高まるものと考えられる。その結果、エポキシ樹脂組成物の硬化物では、特定液晶性エポキシモノマーの重合体である液晶性エポキシ樹脂の配向が、特定窒化ホウ素粒子により阻害されることが抑制され、エポキシ樹脂組成物の硬化物における熱伝導率が向上するものと考えられる。
 以下、エポキシ樹脂組成物の構成成分について詳細に説明する。
The full width at half maximum of a peak derived from the (004) plane of boron nitride particles in X-ray diffraction (XRD) (hereinafter also referred to as “peak derived from the (004) plane of boron nitride particles”) is 0.5 degrees or less (2θ = 0.5 degrees or less), it is considered that the orientation of the specific liquid crystalline epoxy monomer on the surface of the specific boron nitride particles is enhanced. As a result, in the cured product of the epoxy resin composition, the orientation of the liquid crystalline epoxy resin that is a polymer of the specific liquid crystalline epoxy monomer is suppressed from being inhibited by the specific boron nitride particles, and the cured product of the epoxy resin composition It is thought that the thermal conductivity in the is improved.
Hereinafter, the components of the epoxy resin composition will be described in detail.
[特定窒化ホウ素粒子]
 エポキシ樹脂組成物は、X線回折(XRD)における(004)面に由来するピークの半値幅2θが0.5度以下である窒化ホウ素粒子を含む。
 特定窒化ホウ素粒子は、X線回折(XRD)における(004)面に由来するピークの半値幅2θが0.5度以下である窒化ホウ素粒子であれば特に限定されず、通常用いられる窒化ホウ素粒子から適宜選択して用いることができる。
 半値幅2θが0.5度以下である結晶性の高い特定窒化ホウ素粒子を使用することで、特定窒化ホウ素粒子を含むエポキシ樹脂組成物中の特定液晶性エポキシモノマーの配向性が向上し、更にはエポキシ樹脂組成物の硬化物中の液晶性エポキシ樹脂の配向性が向上する傾向にある。
[Specific boron nitride particles]
The epoxy resin composition contains boron nitride particles having a half width 2θ of a peak derived from the (004) plane in X-ray diffraction (XRD) of 0.5 degrees or less.
The specific boron nitride particles are not particularly limited as long as the half-value width 2θ of the peak derived from the (004) plane in X-ray diffraction (XRD) is 0.5 degrees or less, and usually used boron nitride particles Can be appropriately selected and used.
By using specific boron nitride particles with high crystallinity having a half width 2θ of 0.5 degrees or less, the orientation of the specific liquid crystalline epoxy monomer in the epoxy resin composition containing the specific boron nitride particles is improved, and Tends to improve the orientation of the liquid crystalline epoxy resin in the cured product of the epoxy resin composition.
 特定液晶性エポキシモノマーの配向性をより高める観点から、X線回折(XRD)における窒化ホウ素粒子の(004)面に由来するピークの半値幅2θは0.45度以下であることが好ましい。これは、窒化ホウ素粒子の結晶性を高めることにより、窒化ホウ素の結晶自体の規則性が高くなり、結晶に隣接する特定液晶性エポキシモノマーの構造の規則性、つまりは、配向性が向上するためと考えられる。 From the viewpoint of further improving the orientation of the specific liquid crystalline epoxy monomer, the half width 2θ of the peak derived from the (004) plane of the boron nitride particles in X-ray diffraction (XRD) is preferably 0.45 degrees or less. This is because by increasing the crystallinity of the boron nitride particles, the regularity of the boron nitride crystal itself is increased, and the regularity of the structure of the specific liquid crystalline epoxy monomer adjacent to the crystal, that is, the orientation is improved. it is conceivable that.
 本明細書における窒化ホウ素粒子の(004)面に由来するピークの半値幅2θは、広角X線回折装置(例えば、(株)リガク製、「RINT2500HL」)を用いて、下記条件で窒化ホウ素粒子又はエポキシ樹脂組成物の半硬化物若しくは硬化物を測定試料としてX線回折を行い、得られた値を下記ブラッグの式により換算することによって求められる。 The half width 2θ of the peak derived from the (004) plane of the boron nitride particles in the present specification is determined using the wide-angle X-ray diffractometer (for example, “RINT2500HL” manufactured by Rigaku Corporation) under the following conditions. Alternatively, X-ray diffraction is performed using a semi-cured product or a cured product of the epoxy resin composition as a measurement sample, and the obtained value is calculated by the following Bragg equation.
(測定条件)
 ・X線源:Cu
 ・X線出力:50kV、250mA
 ・発散スリット(DS):1.0度
 ・散乱スリット(SS):1.0度
 ・受光スリット(RS):0.3mm
 ・走査速度:1.0度/分
(Measurement condition)
・ X-ray source: Cu
・ X-ray output: 50 kV, 250 mA
-Divergence slit (DS): 1.0 degree-Scattering slit (SS): 1.0 degree-Receiving slit (RS): 0.3 mm
・ Scanning speed: 1.0 degree / min
 ブラッグの式:  2dsinθ=nλ
 ここで、dは結晶面間隔、θは回折角度、nは反射次数、λはX線波長(0.15406nm)を示している。
Bragg's formula: 2dsinθ = nλ
Here, d is the crystal plane spacing, θ is the diffraction angle, n is the reflection order, and λ is the X-ray wavelength (0.15406 nm).
 特定窒化ホウ素粒子は、単結晶粒子、単結晶の凝集粒子、多結晶粒子、多結晶の凝集粒子等のいずれであってもよい。また、特定窒化ホウ素粒子の結晶構造は、六方晶、立方晶及びウルツ鉱型構造のいずれであってもよい。放熱材料のフィラーとして使用する観点からは、特定窒化ホウ素粒子の結晶構造は六方晶であることが好ましい。 The specific boron nitride particles may be any of single crystal particles, single crystal aggregated particles, polycrystalline particles, polycrystalline aggregated particles, and the like. The crystal structure of the specific boron nitride particles may be any of hexagonal, cubic and wurtzite structures. From the viewpoint of use as a filler for a heat dissipation material, the crystal structure of the specific boron nitride particles is preferably a hexagonal crystal.
 特定窒化ホウ素粒子の体積平均粒子径は、放熱材料のフィラーとして使用する観点からは0.01μm~1mmであることが好ましい。特定窒化ホウ素粒子の体積平均粒子径は、特定窒化ホウ素粒子を高充填する観点から、0.1μm~100μmであることがより好ましく、0.5μm~50μmであることが更に好ましい。 The volume average particle diameter of the specific boron nitride particles is preferably 0.01 μm to 1 mm from the viewpoint of use as a filler of the heat dissipation material. The volume average particle diameter of the specific boron nitride particles is more preferably from 0.1 μm to 100 μm, and further preferably from 0.5 μm to 50 μm, from the viewpoint of highly filling the specific boron nitride particles.
 特定窒化ホウ素粒子の体積平均粒子径は、レーザー回折法を用いて測定される。レーザー回折法は、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター(株)、「LS230」)を用いて行うことができる。 The volume average particle diameter of the specific boron nitride particles is measured using a laser diffraction method. The laser diffraction method can be performed using a laser diffraction scattering particle size distribution measuring apparatus (for example, Beckman Coulter, Inc., “LS230”).
 エポキシ樹脂組成物中の窒化ホウ素粒子の体積平均粒子径は、エポキシ樹脂組成物中から窒化ホウ素粒子を抽出した後、レーザー回折散乱粒度分布測定装置を用いて測定される。具体的には、エポキシ樹脂組成物に含有される窒化ホウ素粒子の体積平均粒子径の測定は下記の方法で可能である。まず、有機溶剤、硝酸、王水等を用いて、エポキシ樹脂組成物中から窒化ホウ素粒子を抽出し、超音波分散機等で充分に分散して分散液を調製する。この分散液を試料とし、レーザー回折散乱粒度分布測定装置によって、窒化ホウ素粒子の粒度分布の小径側から体積累積分布曲線を描いた場合に、累積50%となる粒子径(D50)を体積平均粒子径として求める。 The volume average particle diameter of the boron nitride particles in the epoxy resin composition is measured using a laser diffraction / scattering particle size distribution analyzer after extracting the boron nitride particles from the epoxy resin composition. Specifically, the volume average particle diameter of the boron nitride particles contained in the epoxy resin composition can be measured by the following method. First, boron nitride particles are extracted from the epoxy resin composition using an organic solvent, nitric acid, aqua regia, etc., and sufficiently dispersed with an ultrasonic disperser or the like to prepare a dispersion. Using this dispersion as a sample, when a volume cumulative distribution curve is drawn from the small-diameter side of the particle size distribution of boron nitride particles using a laser diffraction / scattering particle size distribution measuring device, the particle diameter (D50) that is 50% cumulative is the volume average particle size. Calculate as diameter.
 また、特定窒化ホウ素粒子の体積平均粒子径は、3D CT法又は走査型電子顕微鏡(Scanning Electron Microscope、SEM)を用いる方法で測定することもできる。尚、分析装置によって得意な粒径が異なるため、レーザー回折散乱粒度分布測定、3D CT法、及び走査型電子顕微鏡を用いる方法から選択される複数の手法を組み合わせた方がより精度良く測定できることが知られている。 In addition, the volume average particle diameter of the specific boron nitride particles can also be measured by a 3D CT method or a method using a scanning electron microscope (SEM). In addition, since the particle size that is good for each analyzer differs, it is possible to measure with higher accuracy by combining a plurality of methods selected from laser diffraction scattering particle size distribution measurement, 3D CT method, and method using a scanning electron microscope. Are known.
 3D CT法を用いる場合、(株)島津製作所、inspeXio SMX-225CTを用いることで、特定窒化ホウ素粒子の体積平均粒子径を測定可能である。具体的には、エポキシ樹脂組成物の半硬化物若しくは硬化物、又は樹脂シート若しくはその硬化物を10mm角に切り出した試料を試料台に固定し、そこにX線を照射し、撮影した三次元像から、樹脂、特定窒化ホウ素粒子等の割合を画像解析により分析して、各成分の割合を算出することにより、特定窒化ホウ素粒子の体積平均粒子径を算出することができる。尚、樹脂と特定窒化ホウ素粒子との組み合わせによっては特定窒化ホウ素粒子の判別が難しいことがあり、その場合は3DCT法を他の手法と組み合わせて粒径を計算することがより好ましい。 When using the 3D CT method, the volume average particle diameter of specific boron nitride particles can be measured by using Shimadzu Corporation, inspexio SMX-225CT. Specifically, a semi-cured product or cured product of an epoxy resin composition, or a sample obtained by cutting a resin sheet or a cured product thereof into a 10 mm square is fixed to a sample stage, irradiated with X-rays there, and photographed three-dimensional From the image, the volume average particle diameter of the specific boron nitride particles can be calculated by analyzing the ratio of the resin, the specific boron nitride particles, and the like by image analysis and calculating the ratio of each component. Depending on the combination of the resin and the specific boron nitride particles, it may be difficult to discriminate the specific boron nitride particles. In that case, it is more preferable to calculate the particle size by combining the 3DCT method with another method.
 SEMを用いる方法により特定窒化ホウ素粒子の体積平均粒子径を求める場合、収束イオンビーム搭載走査型電子顕微鏡(SEM FIB)を用いることができる。SEM FIBを用いる場合、例えば、FIB光学系とSEM光学系との両者を備える(株)日立ハイテクノロジーズ、「nano DUE’T NB5000型」を用いることができる。具体的には、エポキシ樹脂組成物の半硬化物若しくは硬化物、又は樹脂シート若しくはその硬化物に対して垂直にGaイオンビームを入射して断面加工を行いながら、断面に対して傾けて設置したSEMで観察を行うことにより、体積平均粒子径を求めることができる。加工ピッチは1nm~100nmで撮影を行うことが好ましく、撮影の対象物のサイズに合わせてピッチを調整してもよい。撮影した三次元像から、特定窒化ホウ素粒子を二値化により抽出して、粒子が球であると仮定して計算することにより、体積平均粒子径を算出することができる。 When the volume average particle diameter of specific boron nitride particles is obtained by a method using SEM, a focused ion beam mounted scanning electron microscope (SEM FIB) can be used. When SEM FIB is used, for example, Hitachi High-Technologies Corporation, “Nano DUE'T NB5000”, which has both FIB optical system and SEM optical system, can be used. Specifically, the epoxy resin composition was set to be inclined with respect to the cross-section while performing the cross-section processing by injecting a Ga ion beam perpendicularly to the semi-cured or cured product of the epoxy resin composition or the resin sheet or the cured product thereof. By observing with SEM, the volume average particle diameter can be determined. Imaging is preferably performed at a processing pitch of 1 nm to 100 nm, and the pitch may be adjusted according to the size of the object to be imaged. By extracting specific boron nitride particles from the photographed three-dimensional image by binarization and assuming that the particles are spheres, the volume average particle diameter can be calculated.
 特定窒化ホウ素粒子は、X線回折(XRD)における(004)面に由来するピークの半値幅2θが0.5度以下であれば、その製造方法は特に制限されず、直接窒化法、還元窒化法、気相反応法等のいずれの製造法により形成されていてもよい。 The production method of the specific boron nitride particles is not particularly limited as long as the half width 2θ of the peak derived from the (004) plane in X-ray diffraction (XRD) is 0.5 degrees or less. It may be formed by any manufacturing method such as a method or a gas phase reaction method.
 特定エポキシ樹脂組成物における特定窒化ホウ素粒子の含有率は特に制限されない。特定窒化ホウ素粒子の含有率は、粘度調整の観点から、エポキシ樹脂組成物中の全固形分中、20質量%~95質量%であることが好ましく、熱伝導率の観点から、30質量%~90質量%であることがより好ましく、40質量%~85質量%であることが更に好ましい。 The content of the specific boron nitride particles in the specific epoxy resin composition is not particularly limited. The content of the specific boron nitride particles is preferably 20% by mass to 95% by mass in the total solid content in the epoxy resin composition from the viewpoint of viscosity adjustment, and 30% by mass from the viewpoint of thermal conductivity. The content is more preferably 90% by mass, and further preferably 40% by mass to 85% by mass.
 尚、本明細書において、エポキシ樹脂組成物中の固形分とは、樹脂組成物の構成成分から揮発性の成分を除去した残分を意味する。 In addition, in this specification, solid content in an epoxy resin composition means the residue which removed the volatile component from the structural component of the resin composition.
[特定液晶性エポキシモノマー]
 エポキシ樹脂組成物は、下記一般式(1)で表される特定液晶性エポキシモノマーを含む。
[Specific liquid crystalline epoxy monomer]
The epoxy resin composition contains a specific liquid crystalline epoxy monomer represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000007

 
Figure JPOXMLDOC01-appb-C000007

 
 一般式(1)中、Xは単結合又は下記2価の基からなる群(I)より選択される少なくとも1種の連結基を示す。Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基又はアセチル基を示す。nは各々独立に0~4の整数を示す。kは0~7の整数を示す。mは0~8の整数を示す。lは0~12の整数を示す。 In general formula (1), X represents a single bond or at least one linking group selected from group (I) consisting of the following divalent groups. Y independently represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, or an acetyl group. Show. n independently represents an integer of 0 to 4. k represents an integer of 0 to 7. m represents an integer of 0 to 8. l represents an integer of 0 to 12.
Figure JPOXMLDOC01-appb-C000008

 
Figure JPOXMLDOC01-appb-C000008

 
 上記2価の基からなる群(I)において、各2価の基の結合手の連結方向はいずれであってもよい。 In the group (I) consisting of the above divalent groups, the connecting direction of the bond of each divalent group may be any.
 本明細書における特定液晶性エポキシモノマーは、いわゆるメソゲン基を有するモノマーである。特定液晶性エポキシモノマーが硬化剤とともに硬化物を形成すると、硬化物中にメソゲン基(ビフェニル基、ターフェニル基、ターフェニル類縁基、これらがアゾメチン基又はエステル基で接続された基等)に由来する高次構造(周期構造とも称する)が形成される。ここでいう高次構造(周期構造)とは、エポキシ樹脂組成物の硬化後に分子が配向配列している状態を意味し、例えば、硬化物中に結晶構造又は液晶構造が存在する状態を意味する。このような結晶構造又は液晶構造は、例えば、直交ニコル下での偏光顕微鏡による観察又はX線散乱により、その存在を確認することができる。また、結晶構造又は液晶構造が存在するとエポキシ樹脂硬化物の貯蔵弾性率の温度に対する変化が小さくなるので、この貯蔵弾性率の変化を測定することにより、結晶構造又は液晶構造の存在を間接的に確認できる。 The specific liquid crystalline epoxy monomer in this specification is a monomer having a so-called mesogenic group. When a specific liquid crystalline epoxy monomer forms a cured product with a curing agent, it is derived from a mesogenic group (biphenyl group, terphenyl group, terphenyl analog group, a group in which these are connected by an azomethine group or an ester group, etc.) in the cured product. Higher order structure (also referred to as a periodic structure) is formed. Here, the higher order structure (periodic structure) means a state in which molecules are aligned after the epoxy resin composition is cured, for example, a state in which a crystal structure or a liquid crystal structure is present in the cured product. . The presence of such a crystal structure or liquid crystal structure can be confirmed, for example, by observation with a polarizing microscope under crossed Nicols or X-ray scattering. In addition, when the crystal structure or liquid crystal structure is present, the change in storage elastic modulus of the epoxy resin cured product with respect to temperature becomes small. Therefore, by measuring the change in storage elastic modulus, the presence of the crystal structure or liquid crystal structure is indirectly detected. I can confirm.
 エポキシ樹脂組成物の硬化物は、高い熱伝導率を有することができる傾向にある。この理由は、例えば、以下のように考えることができる。一般式(1)で表される特定液晶性エポキシモノマーが、硬化剤とともに硬化物を形成すると、特定液晶性エポキシモノマーのメソゲン基に由来する規則性の高い高次構造が硬化物中に形成される。このため、絶縁樹脂における熱伝導の媒体であるフォノン伝導の散乱を抑制することができ、これにより高い熱伝導率を達成することができると考えられる。また、一般的には、フィラーの存在により、液晶性エポキシ樹脂による規則性の高い高次構造の形成が阻害される。しかしながら、X線回折(XRD)における(004)面に由来するピークの半値幅2θが0.5度以下である特定窒化ホウ素粒子をフィラーとして用いると、特定液晶性エポキシ樹脂の配向の阻害が抑制され、その結果、熱伝導率が向上すると考えることができる。 The cured product of the epoxy resin composition tends to have a high thermal conductivity. The reason can be considered as follows, for example. When the specific liquid crystalline epoxy monomer represented by the general formula (1) forms a cured product together with a curing agent, a highly ordered higher order structure derived from the mesogenic group of the specific liquid crystalline epoxy monomer is formed in the cured product. The For this reason, it is considered that scattering of phonon conduction, which is a heat conductive medium in the insulating resin, can be suppressed, and thereby high thermal conductivity can be achieved. In general, the presence of the filler hinders formation of a highly ordered higher-order structure by the liquid crystalline epoxy resin. However, when specific boron nitride particles having a half-value width 2θ of a peak derived from the (004) plane in X-ray diffraction (XRD) of 0.5 degrees or less are used as fillers, inhibition of the alignment of the specific liquid crystalline epoxy resin is suppressed. As a result, it can be considered that the thermal conductivity is improved.
 一般式(1)におけるXは、下記2価の基からなる群(II)より選択される少なくとも1種の連結基であることが好ましい。 X in the general formula (1) is preferably at least one linking group selected from the group (II) consisting of the following divalent groups.
Figure JPOXMLDOC01-appb-C000009

 
Figure JPOXMLDOC01-appb-C000009

 
 一般式(1)におけるXは、下記2価の連結基からなる群より選択される少なくとも1種の連結基であることがより好ましい。 X in the general formula (1) is more preferably at least one linking group selected from the group consisting of the following divalent linking groups.
Figure JPOXMLDOC01-appb-C000010

 
Figure JPOXMLDOC01-appb-C000010

 
 一般式(1)におけるYは、それぞれ独立に、炭素数1~4の脂肪族炭化水素基、炭素数1~4の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基又はアセチル基であることが好ましく、メチル基、エチル基、メトキシ基、エトキシ基又は塩素原子であることがより好ましく、メチル基又はエチル基であることが更に好ましい。 Y in the general formula (1) independently represents an aliphatic hydrocarbon group having 1 to 4 carbon atoms, an aliphatic alkoxy group having 1 to 4 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a cyano group. It is preferably a nitro group or an acetyl group, more preferably a methyl group, an ethyl group, a methoxy group, an ethoxy group or a chlorine atom, and even more preferably a methyl group or an ethyl group.
 一般式(1)におけるnは、それぞれ独立に、0~2の整数であることが好ましく、0又は1であることがより好ましい。kは0~3の整数であることが好ましく、0又は1であることがより好ましい。mは0~4の整数であることが好ましく、0又は1であることがより好ましい。lは0~4の整数であることが好ましく、0又は1であることがより好ましい。 N in the general formula (1) are each independently preferably an integer of 0 to 2, and more preferably 0 or 1. k is preferably an integer of 0 to 3, and more preferably 0 or 1. m is preferably an integer of 0 to 4, and more preferably 0 or 1. l is preferably an integer of 0 to 4, more preferably 0 or 1.
 本発明における特定液晶性エポキシモノマーは、一般式(1)において、Xが単結合又は上記2価の基からなる群(II)より選択される少なくとも1種の連結基であり、Yがそれぞれ独立に、炭素数1~4の脂肪族炭化水素基、炭素数1~4の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基又はアセチル基であり、nが0~2の整数であり、kが0~3の整数であり、mが0~4の整数であり、lが0~4の整数である液晶性エポキシモノマーであることが好ましい。 In the general liquid crystal epoxy monomer in the present invention, in the general formula (1), X is a single bond or at least one linking group selected from the group (II) consisting of the above divalent group, and Y is independent. And an aliphatic hydrocarbon group having 1 to 4 carbon atoms, an aliphatic alkoxy group having 1 to 4 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, or an acetyl group, and n is It is preferably a liquid crystalline epoxy monomer that is an integer of 0 to 2, k is an integer of 0 to 3, m is an integer of 0 to 4, and l is an integer of 0 to 4.
 特定液晶性エポキシモノマーは、一般式(1)において、Xが単結合又は上記2価の基からなる群(II)より選択される少なくとも1種の連結基であり、Yがそれぞれ独立に、メチル基、エチル基、メトキシ基、エトキシ基又は塩素原子であり、nが0又は1であり、kが0又は1であり、mが0又は1であり、lが0又は1である液晶性エポキシモノマーであることがより好ましい。 The specific liquid crystalline epoxy monomer is represented by the general formula (1), wherein X is a single bond or at least one linking group selected from the group (II) consisting of the above divalent group, and each Y is independently methyl A liquid crystalline epoxy which is a group, an ethyl group, a methoxy group, an ethoxy group or a chlorine atom, n is 0 or 1, k is 0 or 1, m is 0 or 1, and l is 0 or 1 More preferably, it is a monomer.
 一般式(1)で表される液晶性エポキシモノマーの例としては、液晶相を発現する温度範囲が25℃以上であり、液晶性エポキシモノマーの配向性が向上し、硬化物の熱伝導性を向上させる観点から、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセン、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)ベンゼン、2-メチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)ベンゾエート}、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル-4-(2,3-エポキシプロポキシ)ベンゾエート等が好ましく、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセンがより好ましい。
 特定液晶性エポキシモノマーは、単一種で用いても、2種以上で用いてもよい。
As an example of the liquid crystalline epoxy monomer represented by the general formula (1), the temperature range in which the liquid crystal phase is expressed is 25 ° C. or more, the orientation of the liquid crystalline epoxy monomer is improved, and the thermal conductivity of the cured product is improved. From the viewpoint of improvement, 1- (3-methyl-4-oxiranylmethoxyphenyl) -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene, 1- (3-methyl-4-oxiranylmethoxy) Phenyl) -4- (4-oxiranylmethoxyphenyl) benzene, 2-methyl-1,4-phenylene-bis {4- (2,3-epoxypropoxy) benzoate}, 4- {4- (2,3 -Epoxypropoxy) phenyl} cyclohexyl-4- (2,3-epoxypropoxy) benzoate and the like, preferably 1- (3-methyl-4-oxiranylmethoxyphenyl) 4- (4-oxiranylmethoxy-phenyl) -1-cyclohexene is more preferable.
The specific liquid crystalline epoxy monomer may be used alone or in combination of two or more.
 一般式(1)で表される液晶性エポキシモノマーは、公知の方法により製造することができ、特許第4619770号公報、特開2011-98952号公報、特開2011-74366号公報等に記載の製造方法を参照することができる。 The liquid crystalline epoxy monomer represented by the general formula (1) can be produced by a known method, and is described in Japanese Patent No. 4619770, Japanese Patent Application Laid-Open No. 2011-98952, Japanese Patent Application Laid-Open No. 2011-74366, and the like. Refer to the manufacturing method.
 エポキシ樹脂組成物中における特定液晶性エポキシモノマーは、その一部が硬化剤等により部分的に重合してプレポリマーを形成していてもよい。特定液晶性エポキシモノマーは一般的に結晶化し易く、溶媒への溶解度が低いものが多い。特定液晶性エポキシモノマーの少なくとも一部を重合させると、特定液晶性エポキシモノマーの結晶化が抑制される傾向にある。このため、特定液晶性エポキシモノマーをプリポリマー化しておくと、エポキシ樹脂組成物の成形性が向上する傾向にある。 The specific liquid crystalline epoxy monomer in the epoxy resin composition may be partially polymerized with a curing agent or the like to form a prepolymer. The specific liquid crystalline epoxy monomer is generally easily crystallized and often has low solubility in a solvent. When at least a part of the specific liquid crystalline epoxy monomer is polymerized, crystallization of the specific liquid crystalline epoxy monomer tends to be suppressed. For this reason, when the specific liquid crystalline epoxy monomer is prepolymerized, the moldability of the epoxy resin composition tends to be improved.
 エポキシ樹脂組成物における特定液晶性エポキシモノマーの含有率は、成形性、接着性及び熱伝導性の観点から、エポキシ樹脂組成物中の全固形分に対して、3体積%~30体積%であることが好ましく、5体積%~25体積%であることがより好ましい。 The content of the specific liquid crystalline epoxy monomer in the epoxy resin composition is 3% by volume to 30% by volume with respect to the total solid content in the epoxy resin composition from the viewpoints of moldability, adhesiveness, and thermal conductivity. It is preferably 5% by volume to 25% by volume.
 尚、本明細書において、全固形分に対する特定液晶性エポキシモノマーの体積基準の含有率は、次式により求めた値とする。 In the present specification, the volume-based content of the specific liquid crystalline epoxy monomer with respect to the total solid content is a value determined by the following formula.
 全固形分に対する特定液晶性エポキシモノマーの含有率(体積%)={(Bw/Bd)/((Aw/Ad)+(Bw/Bd)+(Cw/Cd)+(Dw/Dd))}×100
 ここで、各変数は以下の通りである。
 Aw:窒化ホウ素粒子の質量組成比(質量%)
 Bw:特定液晶性エポキシモノマーの質量組成比(質量%)
 Cw:硬化剤の質量組成比(質量%)
 Dw:その他の任意成分(溶媒を除く)の質量組成比(質量%)
 Ad:窒化ホウ素粒子の比重
 Bd:特定液晶性エポキシモノマーの比重
 Cd:硬化剤の比重
 Dd:その他の任意成分(溶媒を除く)の比重
Content of specific liquid crystalline epoxy monomer based on total solid content (volume%) = {(Bw / Bd) / ((Aw / Ad) + (Bw / Bd) + (Cw / Cd) + (Dw / Dd))} × 100
Here, each variable is as follows.
Aw: Mass composition ratio (% by mass) of boron nitride particles
Bw: mass composition ratio (mass%) of the specific liquid crystalline epoxy monomer
Cw: mass composition ratio (% by mass) of curing agent
Dw: mass composition ratio (% by mass) of other optional components (excluding solvent)
Ad: Specific gravity of boron nitride particles Bd: Specific gravity of specific liquid crystalline epoxy monomer Cd: Specific gravity of curing agent Dd: Specific gravity of other optional components (excluding solvent)
 エポキシ樹脂組成物は、1周期の長さが2nm~3nmの周期構造を有することが好ましい。1周期の長さが2nm~3nmであることにより、より高い熱伝導性を発揮することが可能である。 The epoxy resin composition preferably has a periodic structure in which the length of one cycle is 2 nm to 3 nm. When the length of one cycle is 2 nm to 3 nm, higher thermal conductivity can be exhibited.
 周期構造における1周期の長さは、広角X線回折装置(例えば、(株)リガク製、「RINT2500HL」)を用いて、下記条件でエポキシ樹脂組成物の半硬化物又は硬化物を測定試料としてX線回折を行い、これにより得られた回折角度を、下記ブラッグの式により換算することにより得られる。 The length of one period in the periodic structure is determined using a semi-cured or cured product of the epoxy resin composition as a measurement sample using a wide-angle X-ray diffractometer (for example, “RINT2500HL” manufactured by Rigaku Corporation) under the following conditions. It is obtained by performing X-ray diffraction and converting the diffraction angle obtained thereby by the following Bragg equation.
(測定条件)
 ・X線源:Cu
 ・X線出力:50kV、250mA
 ・発散スリット(DS):1.0度
 ・散乱スリット(SS):1.0度
 ・受光スリット(RS):0.3mm
 ・走査速度:1.0度/分
(Measurement condition)
・ X-ray source: Cu
・ X-ray output: 50 kV, 250 mA
-Divergence slit (DS): 1.0 degree-Scattering slit (SS): 1.0 degree-Receiving slit (RS): 0.3 mm
・ Scanning speed: 1.0 degree / min
 ブラッグの式:  2dsinθ=nλ
 ここで、dは1周期の長さ、θは回折角度、nは反射次数、λはX線波長(0.15406nm)を示している。
Bragg's formula: 2dsinθ = nλ
Here, d is the length of one period, θ is the diffraction angle, n is the reflection order, and λ is the X-ray wavelength (0.15406 nm).
 エポキシ樹脂組成物は、X線回折における周期構造に由来するピークの半値幅2θが0.2度以下であることが好ましく、0.15度以下であることがより好ましく、0.13度以下であることが更に好ましい。この半値幅が狭い程、周期構造の規則性が高いことを示している。X線回折における周期構造に由来するピーク(以下、「XRDピーク」とも称する)の半値幅2θが0.2度以下であることにより、より高い熱伝導性を発揮することができる。 The epoxy resin composition preferably has a half width 2θ of a peak derived from a periodic structure in X-ray diffraction of 0.2 ° or less, more preferably 0.15 ° or less, and 0.13 ° or less. More preferably it is. It shows that the regularity of the periodic structure is higher as the half width is narrower. When the full width at half maximum 2θ of a peak derived from a periodic structure in X-ray diffraction (hereinafter also referred to as “XRD peak”) is 0.2 degrees or less, higher thermal conductivity can be exhibited.
[硬化剤]
 エポキシ樹脂組成物は、硬化剤を含む。本明細書における硬化剤は、特定エポキシ樹脂モノマーと硬化反応が可能な化合物であれば特に制限されるものではない。硬化剤の具体例としては、アミン硬化剤、酸無水物硬化剤、フェノール硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。これらを1種単独で用いても2種以上を組合せて用いてもよい。
 エポキシ樹脂組成物の半硬化物又は硬化物の周期構造形成の観点から、アミン硬化剤又はフェノール硬化剤が好ましく、フェノール硬化剤がより好ましい。
[Curing agent]
The epoxy resin composition includes a curing agent. The curing agent in the present specification is not particularly limited as long as it is a compound capable of curing reaction with a specific epoxy resin monomer. Specific examples of the curing agent include amine curing agents, acid anhydride curing agents, phenol curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, and blocked isocyanate curing agents. These may be used alone or in combination of two or more.
From the viewpoint of forming a periodic structure of the semi-cured product or cured product of the epoxy resin composition, an amine curing agent or a phenol curing agent is preferable, and a phenol curing agent is more preferable.
 アミン硬化剤の例としては、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノ-3,3’-ジメトキシビフェニル、4,4’-ジアミノフェニルベンゾエート、1,5-ジアミノナフタレン、1,3-ジアミノナフタレン、1,4-ジアミノナフタレン、1,8-ジアミノナフタレン等が挙げられる。中でも、高次構造形成の観点からは、1,5-ジアミノナフタレンが好ましい。コスト及び取扱性の観点からは4,4’-ジアミノジフェニルメタンが好ましい。 Examples of amine curing agents include 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 4,4′-diamino-3,3′-dimethoxybiphenyl, 4, Examples thereof include 4′-diaminophenylbenzoate, 1,5-diaminonaphthalene, 1,3-diaminonaphthalene, 1,4-diaminonaphthalene, 1,8-diaminonaphthalene and the like. Among these, 1,5-diaminonaphthalene is preferable from the viewpoint of forming a higher order structure. From the viewpoint of cost and handleability, 4,4'-diaminodiphenylmethane is preferred.
 フェノール硬化剤としては、低分子フェノール化合物及びそれらをノボラック化したフェノール樹脂を用いることができる。低分子フェノール化合物の例としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール等の単官能フェノール化合物、カテコール、レゾルシノール、ハイドロキノン等の2官能フェノール化合物、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、1,3,5-トリヒドロキシベンゼン等の3官能フェノール化合物などが挙げられる。また、これらの低分子フェノール化合物をメチレン鎖等で連結してノボラック化したフェノールノボラック樹脂を硬化剤として用いることもできる。 As the phenol curing agent, low molecular phenol compounds and phenol resins obtained by novolacizing them can be used. Examples of low molecular weight phenol compounds include monofunctional phenol compounds such as phenol, o-cresol, m-cresol, and p-cresol, bifunctional phenol compounds such as catechol, resorcinol, and hydroquinone, 1,2,3-trihydroxybenzene , Trifunctional phenol compounds such as 1,2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene. Further, a phenol novolac resin obtained by connecting these low molecular phenol compounds with a methylene chain or the like to form a novolac can be used as a curing agent.
 フェノール硬化剤としては、熱伝導率の観点からはカテコール、レゾルシノール、ハイドロキノン等の2官能フェノール化合物が好ましい。耐熱性の観点からは、これらの2官能フェノール化合物をメチレン鎖で連結したフェノールノボラック樹脂が好ましい。フェノールノボラック樹脂として具体的には、クレゾールノボラック樹脂、カテコールノボラック樹脂、レゾルシノールノボラック樹脂、ハイドロキノンノボラック樹脂等の1種のフェノール化合物をノボラック化した樹脂、カテコールレゾルシノールノボラック樹脂、レゾルシノールハイドロキノンノボラック樹脂等の2種類又はそれ以上のフェノール化合物をノボラック化した樹脂などを挙げることができる。 As the phenol curing agent, bifunctional phenol compounds such as catechol, resorcinol and hydroquinone are preferable from the viewpoint of thermal conductivity. From the viewpoint of heat resistance, a phenol novolac resin in which these bifunctional phenol compounds are linked by a methylene chain is preferable. Specific examples of phenol novolak resins include two types of resins such as cresol novolak resins, catechol novolak resins, resorcinol novolak resins, hydroquinone novolak resins and other novolac resins, catechol resorcinol novolak resins, and resorcinol hydroquinone novolak resins. Or the resin etc. which made the more phenol compound novolak-ized can be mentioned.
 硬化剤としてフェノール硬化剤を用いる場合は、必要に応じて硬化促進剤を併用してもよい。硬化促進剤を併用することで、エポキシ樹脂組成物を更に充分に硬化させることができる傾向にある。硬化促進剤の種類は特に制限されず、通常使用される硬化促進剤から選択してよい。例えば、イミダゾール化合物、ホスフィン化合物、ボレート塩化合物等が挙げられる。 When a phenol curing agent is used as the curing agent, a curing accelerator may be used in combination as necessary. By using a curing accelerator in combination, the epoxy resin composition tends to be cured sufficiently. The kind in particular of hardening accelerator is not restrict | limited, You may select from the hardening accelerator normally used. For example, an imidazole compound, a phosphine compound, a borate salt compound, etc. are mentioned.
 エポキシ樹脂組成物における硬化剤の含有量は、配合する硬化剤の種類及び特定液晶性エポキシモノマーの物性を考慮して適宜設定することができる。
 具体的には、特定液晶性エポキシモノマーにおけるエポキシ基1モルに対して硬化剤の化学当量が0.005当量~5当量であることが好ましく、0.01当量~3当量であることがより好ましく、0.5当量~1.5当量であることが更に好ましい。
 硬化剤の含有量がエポキシ基1モルに対して0.005当量以上であると、特定液晶性エポキシモノマーの硬化速度をより向上することができる傾向にある。また、硬化剤の含有量がエポキシ基1モルに対して5当量以下であると、硬化反応をより適切に制御することができる傾向にある。
Content of the hardening | curing agent in an epoxy resin composition can be suitably set in consideration of the kind of hardening | curing agent to mix | blend and the physical property of a specific liquid crystalline epoxy monomer.
Specifically, the chemical equivalent of the curing agent is preferably 0.005 equivalents to 5 equivalents, more preferably 0.01 equivalents to 3 equivalents, relative to 1 mol of the epoxy group in the specific liquid crystalline epoxy monomer. More preferably, it is 0.5 to 1.5 equivalents.
When the content of the curing agent is 0.005 equivalent or more with respect to 1 mol of the epoxy group, the curing rate of the specific liquid crystalline epoxy monomer tends to be further improved. Moreover, it exists in the tendency which can control a hardening reaction more appropriately as content of a hardening | curing agent is 5 equivalent or less with respect to 1 mol of epoxy groups.
 尚、本明細書中での化学当量は、例えば硬化剤としてフェノール硬化剤を使用した際は、エポキシ基1モルに対するフェノール硬化剤の水酸基のモル数を表わす。 The chemical equivalent in this specification represents the number of moles of the hydroxyl group of the phenol curing agent with respect to 1 mole of the epoxy group when, for example, a phenol curing agent is used as the curing agent.
[その他の成分]
 エポキシ樹脂組成物は、必要に応じて、溶媒等のその他の成分を含んでいてもよい。
 エポキシ樹脂組成物は、エポキシ樹脂又は硬化剤が固体である場合はこれらを溶解させるため、又は、液体である場合は粘度を低減させるために、溶媒を含有してもよい。
 溶媒の例としては、アセトン、イソブチルアルコール、イソプロピルアルコール、イソペンチルアルコール、エチルエーテル、エチレングリコールモノエチルエーテル、キシレン、クレゾール、クロロベンゼン、酢酸イソブチル、酢酸イソプロピル、酢酸イソペンチル、酢酸エチル、酢酸メチル、シクロヘキサノール、シクロヘキサノン、1,4-ジオキサン、ジクロロメタン、スチレン、テトラクロロエチレン、テトラヒドロフラン、トルエン、ノルマルヘキサン、1-ブタノール、2-ブタノール、メタノール、メチルイソブチルケトン、メチルエチルケトン、メチルシクロヘキサノール、メチルシクロヘキサノン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等の一般的に各種化学製品の製造技術で利用されている有機溶剤が挙げられる。
[Other ingredients]
The epoxy resin composition may contain other components such as a solvent as necessary.
The epoxy resin composition may contain a solvent for dissolving the epoxy resin or the curing agent when the epoxy resin or the curing agent is solid, or for reducing the viscosity when the epoxy resin composition is a liquid.
Examples of solvents include acetone, isobutyl alcohol, isopropyl alcohol, isopentyl alcohol, ethyl ether, ethylene glycol monoethyl ether, xylene, cresol, chlorobenzene, isobutyl acetate, isopropyl acetate, isopentyl acetate, ethyl acetate, methyl acetate, cyclohexanol. , Cyclohexanone, 1,4-dioxane, dichloromethane, styrene, tetrachloroethylene, tetrahydrofuran, toluene, normal hexane, 1-butanol, 2-butanol, methanol, methyl isobutyl ketone, methyl ethyl ketone, methyl cyclohexanol, methyl cyclohexanone, chloroform, carbon tetrachloride Organic solvents that are generally used in the manufacturing technology of various chemical products such as 1,2-dichloroethane It is below.
 エポキシ樹脂組成物は、X線回折(XRD)における(004)面に由来するピークの半値幅2θが0.5度以下である特定窒化ホウ素粒子以外のその他の窒化ホウ素粒子を含有してもよい。
 その他の窒化ホウ素粒子の含有率は、特定窒化ホウ素粒子及びその他の窒化ホウ素粒子の総量に対して、0質量%~50質量%であることが好ましく、0質量%~20質量%であることがより好ましい。
The epoxy resin composition may contain other boron nitride particles other than the specific boron nitride particles having a half width 2θ of a peak derived from the (004) plane in X-ray diffraction (XRD) of 0.5 degrees or less. .
The content of other boron nitride particles is preferably 0% by mass to 50% by mass, and preferably 0% by mass to 20% by mass with respect to the total amount of the specific boron nitride particles and other boron nitride particles. More preferred.
 エポキシ樹脂組成物は、X線回折(XRD)における(004)面に由来するピークの半値幅2θが0.5度以下である特定窒化ホウ素粒子以外のセラミック粒子、カップリング剤、分散剤、エラストマー等を含有してもよい。
 X線回折(XRD)における(004)面に由来するピークの半値幅2θが0.5度以下である特定窒化ホウ素粒子以外のセラミック粒子としては、アルミナ粒子、シリカ粒子、酸化マグネシウム粒子、窒化アルミニウム粒子、窒化ケイ素粒子等が挙げられ、アルミナ粒子が好ましい。
 エポキシ樹脂組成物は、アルミナ粒子を含有していても、含有していなくてもよい。エポキシ樹脂組成物がアルミナ粒子を含有する場合には、窒化ホウ素粒子(特定窒化ホウ素粒子及びその他の窒化ホウ素粒子)及びアルミナ粒子の総量に対するアルミナ粒子の含有率は、5質量%~70質量%であることが好ましく、10質量%~50質量%であることがより好ましい。
The epoxy resin composition comprises ceramic particles other than specific boron nitride particles having a half-value width 2θ of a peak derived from the (004) plane in X-ray diffraction (XRD) of 0.5 degrees or less, a coupling agent, a dispersant, and an elastomer. Etc. may be contained.
Ceramic particles other than the specific boron nitride particles whose half width 2θ of the peak derived from the (004) plane in X-ray diffraction (XRD) is 0.5 degrees or less include alumina particles, silica particles, magnesium oxide particles, aluminum nitride Examples thereof include particles and silicon nitride particles, and alumina particles are preferred.
The epoxy resin composition may or may not contain alumina particles. When the epoxy resin composition contains alumina particles, the content of alumina particles with respect to the total amount of boron nitride particles (specific boron nitride particles and other boron nitride particles) and alumina particles is 5 mass% to 70 mass%. It is preferably 10% by mass to 50% by mass.
 アルミナ粒子の体積平均粒子径は、放熱材のフィラーとして使用する観点からは0.01μm~1mmであることが好ましく、アルミナ粒子を高充填する観点から、0.1μm~100μmであることがより好ましい。 The volume average particle diameter of the alumina particles is preferably 0.01 μm to 1 mm from the viewpoint of use as a filler of the heat dissipation material, and more preferably 0.1 μm to 100 μm from the viewpoint of high filling of the alumina particles. .
 エポキシ樹脂組成物がアルミナ粒子を含む場合、アルミナ粒子は結晶性が高いアルミナ粒子であることが好ましく、α-アルミナ粒子であることがより好ましい。 When the epoxy resin composition contains alumina particles, the alumina particles are preferably alumina particles having high crystallinity, and more preferably α-alumina particles.
 アルミナ粒子の体積平均粒子径は、レーザー回折法を用いて測定される。レーザー回折法は、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター(株)、「LS230」)を用いて、上述の窒化ホウ素粒子の体積平均粒子径の測定と同様の方法で行うことができる。 The volume average particle diameter of the alumina particles is measured using a laser diffraction method. The laser diffraction method can be performed by a method similar to the measurement of the volume average particle diameter of the boron nitride particles described above using a laser diffraction scattering particle size distribution measuring apparatus (for example, Beckman Coulter, Inc., “LS230”). it can.
[エポキシ樹脂組成物の製造方法]
 エポキシ樹脂組成物の製造方法としては、通常行われる樹脂組成物の製造方法を特に制限無く用いることができる。特定窒化ホウ素粒子、液晶性エポキシモノマー及び硬化剤並びに必要に応じて用いられるその他の成分を混合する方法としては、通常の攪拌機、らいかい機、三本ロール、ボールミル等の分散機を適宜組み合わせて行うことができる。また、適当な溶媒を添加して、分散又は溶解を行うことができる。
[Method for producing epoxy resin composition]
As a manufacturing method of an epoxy resin composition, the manufacturing method of the resin composition performed normally can be especially used without a restriction | limiting. As a method of mixing specific boron nitride particles, liquid crystalline epoxy monomer and curing agent, and other components used as necessary, a normal stirrer, a raking machine, a three-roller, a ball mill, etc. are appropriately combined. It can be carried out. Moreover, it can disperse | distribute or melt | dissolve by adding a suitable solvent.
 具体的には、例えば、特定窒化ホウ素粒子、液晶性エポキシモノマー及び硬化剤を適当な溶媒に溶解又は分散したものに、必要に応じてその他の成分を混合することで、エポキシ樹脂組成物を得ることができる。 Specifically, for example, an epoxy resin composition is obtained by mixing other components as required in a solution obtained by dissolving or dispersing specific boron nitride particles, liquid crystalline epoxy monomer and curing agent in an appropriate solvent. be able to.
[エポキシ樹脂組成物の用途等]
 エポキシ樹脂組成物では特定液晶性エポキシモノマーの配向性が高く、このエポキシ樹脂組成物の半硬化物又は硬化物は熱伝導性に優れる傾向にある。したがって、エポキシ樹脂組成物は、各種の電気機器及び電子機器の発熱性電子部品(例えば、IC(Integrated Circuit)チップ又はプリント配線基板)の放熱材料に好適に用いることができる。
 具体的には、エポキシ樹脂組成物は、Bステージシート、プリプレグ等の熱伝導材料前駆体、積層板、金属基板、プリント配線板等の放熱材料などに使用することができる。
[Use of epoxy resin composition]
In the epoxy resin composition, the orientation of the specific liquid crystalline epoxy monomer is high, and the semi-cured product or cured product of the epoxy resin composition tends to be excellent in thermal conductivity. Therefore, the epoxy resin composition can be suitably used as a heat-dissipating material for heat-generating electronic components (for example, IC (Integrated Circuit) chips or printed wiring boards) of various electric devices and electronic devices.
Specifically, the epoxy resin composition can be used as a heat conductive material precursor such as a B stage sheet or a prepreg, a heat dissipation material such as a laminated board, a metal board, or a printed wiring board.
<熱伝導材料前駆体>
 本実施形態の熱伝導材料前駆体は、本実施形態のエポキシ樹脂組成物の半硬化物である。本実施形態の熱伝導材料前駆体を用いることにより、取扱い性に優れ且つ高い熱伝導性を有する放熱材料を得ることができる。
<Heat conductive material precursor>
The heat conductive material precursor of this embodiment is a semi-cured product of the epoxy resin composition of this embodiment. By using the heat conductive material precursor of this embodiment, it is possible to obtain a heat dissipating material that is excellent in handleability and has high heat conductivity.
 熱伝導材料前駆体としては、本実施形態のエポキシ樹脂組成物のシート状の半硬化物であるBステージシート、繊維基材とこの繊維基材に含浸される本実施形態のエポキシ樹脂組成物の半硬化物とを有するプリプレグ等を挙げることができる。 Examples of the heat conductive material precursor include a B-stage sheet that is a sheet-like semi-cured product of the epoxy resin composition of the present embodiment, a fiber base material, and the epoxy resin composition of the present embodiment impregnated in the fiber base material. Examples thereof include a prepreg having a semi-cured product.
 上述のとおり、エポキシ樹脂組成物の半硬化物は、1周期の長さが2nm~3nmの周期構造を有することが好ましい。1周期の長さが2nm~3nmであることにより、エポキシ樹脂組成物の半硬化物はより高い熱伝導性を発揮することができる傾向にある。
 更に、エポキシ樹脂組成物の半硬化物は、周期構造に由来するX線回折(XRD)ピークの半値幅2θが0.2度以下であることが好ましい。周期構造に由来するXRDピークの半値幅が0.2度以下であることにより、エポキシ樹脂組成物の半硬化物は更に高い熱伝導性を発揮することができる傾向にある。
 以下、熱伝導材料前駆体の例として、Bステージシート及びプリプレグについて説明するが、熱伝導材料前駆体はこれらに限定されるものではない。
As described above, the semi-cured product of the epoxy resin composition preferably has a periodic structure in which the length of one cycle is 2 nm to 3 nm. When the length of one cycle is 2 nm to 3 nm, the semi-cured product of the epoxy resin composition tends to exhibit higher thermal conductivity.
Furthermore, the half-cured product of the epoxy resin composition preferably has an X-ray diffraction (XRD) peak half-value width 2θ derived from the periodic structure of 0.2 degrees or less. When the half width of the XRD peak derived from the periodic structure is 0.2 degrees or less, the semi-cured product of the epoxy resin composition tends to exhibit higher thermal conductivity.
Hereinafter, although the B stage sheet and the prepreg will be described as examples of the heat conductive material precursor, the heat conductive material precursor is not limited thereto.
 [Bステージシート]
 本実施形態のBステージシートは、本実施形態のエポキシ樹脂組成物のシート状の半硬化物である。本実施形態のBステージシートは、例えば、本実施形態のエポキシ樹脂組成物をシート状に成形し、これを半硬化することにより得られる。Bステージシートが本実施形態のエポキシ樹脂組成物の半硬化物であることにより、硬化後の熱伝導性に優れるBステージシートが得られる。
 ここで「半硬化」とは、一般にBステージ状態と称される状態を言い、常温(25℃)における粘度が10Pa・s~10Pa・sであるのに対して、100℃における粘度が10Pa・s~10Pa・sに低下する状態を意味する。Bステージは、JIS K 6900:1994又はISO 472:1988で定義される。尚、粘度は、ねじり型動的粘弾性測定装置等により測定が可能である。
[B stage sheet]
The B stage sheet of the present embodiment is a sheet-like semi-cured product of the epoxy resin composition of the present embodiment. The B stage sheet of the present embodiment is obtained, for example, by molding the epoxy resin composition of the present embodiment into a sheet shape and semi-curing it. When the B stage sheet is a semi-cured product of the epoxy resin composition of the present embodiment, a B stage sheet having excellent thermal conductivity after curing can be obtained.
Here, “semi-cured” refers to a state generally referred to as a B-stage state. The viscosity at a normal temperature (25 ° C.) is 10 4 Pa · s to 10 5 Pa · s, whereas at 100 ° C. It means a state where the viscosity is lowered to 10 2 Pa · s to 10 3 Pa · s. The B stage is defined in JIS K 6900: 1994 or ISO 472: 1988. The viscosity can be measured with a torsional dynamic viscoelasticity measuring device or the like.
 Bステージシートは、例えば、支持体上に本実施形態のエポキシ樹脂組成物を付与(塗布)し、乾燥して樹脂シートを作製し、この樹脂シートを半硬化することで製造することができる。エポキシ樹脂組成物の付与方法及び乾燥方法については特に制限なく通常用いられる方法を適宜選択することができる。具体的には、エポキシ樹脂組成物の付与方法として、コンマコート法、ダイコート法、ディップコート法等が挙げられる。 The B stage sheet can be produced, for example, by applying (applying) the epoxy resin composition of the present embodiment on a support, drying to produce a resin sheet, and semi-curing the resin sheet. With respect to the method for applying the epoxy resin composition and the method for drying, a commonly used method can be appropriately selected without particular limitation. Specifically, a comma coating method, a die coating method, a dip coating method, or the like can be given as a method for applying the epoxy resin composition.
 エポキシ樹脂組成物の乾燥方法としては、バッチ処理の場合には箱型温風乾燥機等が使用でき、塗工機との連続処理の場合には多段式温風乾燥機等が使用できる。乾燥の条件については特に制限はなく、温風乾燥機を用いる場合は、エポキシ樹脂組成物の塗工物の膨れを防ぐ観点から、溶媒の沸点より低い温度範囲の温風で熱処理する工程を含むことが好ましい。 As a method for drying the epoxy resin composition, a box-type hot air dryer or the like can be used for batch processing, and a multi-stage hot air dryer or the like can be used for continuous processing with a coating machine. There is no particular limitation on the drying conditions, and when using a hot air dryer, from the viewpoint of preventing swelling of the epoxy resin composition, it includes a step of heat treatment with hot air in a temperature range lower than the boiling point of the solvent. It is preferable.
 樹脂シートを半硬化する方法としては、特に制限はなく、通常用いられる方法を適宜選択することができる。例えば、樹脂シートを熱処理することで、エポキシ樹脂組成物を半硬化することができる。半硬化のための熱処理方法には特に制限はない。 The method for semi-curing the resin sheet is not particularly limited, and a commonly used method can be appropriately selected. For example, the epoxy resin composition can be semi-cured by heat-treating the resin sheet. There is no restriction | limiting in particular in the heat processing method for semi-hardening.
 樹脂シートを半硬化するための温度範囲は、エポキシ樹脂組成物に含まれる液晶性エポキシモノマーの種類等に応じて適宜選択することができる。Bステージシートの強度の観点から、熱処理により硬化反応を若干進めることが好ましく、熱処理の温度範囲は80℃~180℃であることが好ましく、100℃~160℃であることがより好ましい。また、半硬化のための熱処理の時間としては、特に制限はなく、樹脂シートの硬化速度、樹脂の流動性及び接着性の観点から適宜選択することができる。半硬化のための熱処理の時間は、1分以上30分以内であることが好ましく、1分以上10分以内であることがより好ましい。 The temperature range for semi-curing the resin sheet can be appropriately selected according to the type of liquid crystalline epoxy monomer contained in the epoxy resin composition. From the viewpoint of the strength of the B stage sheet, it is preferable to proceed the curing reaction slightly by heat treatment, and the temperature range of the heat treatment is preferably 80 ° C. to 180 ° C., more preferably 100 ° C. to 160 ° C. Moreover, there is no restriction | limiting in particular as the time of the heat processing for semi-hardening, It can select suitably from a viewpoint of the cure rate of a resin sheet, the fluidity | liquidity of resin, and adhesiveness. The heat treatment time for semi-curing is preferably 1 minute or longer and within 30 minutes, and more preferably 1 minute or longer and within 10 minutes.
 半硬化のための熱処理の際に加圧してもよく、その加圧条件は特に限定されない。通常は、0.5MPa~15MPaの範囲で加圧し、1MPa~10MPaの範囲で加圧することが好ましい。熱処理及び加圧処理には、真空プレス機等が好適に用いられる。 Pressurization may be performed during the heat treatment for semi-curing, and the pressurization conditions are not particularly limited. Usually, it is preferable to pressurize in the range of 0.5 MPa to 15 MPa and pressurize in the range of 1 MPa to 10 MPa. A vacuum press or the like is preferably used for the heat treatment and the pressure treatment.
 Bステージシートの平均厚みは、目的に応じて適宜選択することができ、例えば、50μm~500μmとすることができる。Bステージシートの平均厚みは、熱伝導性、電気絶縁性及び可とう性の観点から、80μm~300μmであることが好ましい。
 ここで、Bステージシートの平均厚みは、対象となるBステージシートの5点の厚みを、マイクロメーター等を用いて測定し、その算術平均値として与えられる値である。
The average thickness of the B stage sheet can be appropriately selected according to the purpose, and can be, for example, 50 μm to 500 μm. The average thickness of the B stage sheet is preferably 80 μm to 300 μm from the viewpoints of thermal conductivity, electrical insulation, and flexibility.
Here, the average thickness of the B stage sheet is a value given as an arithmetic average value obtained by measuring the thickness of five points of the target B stage sheet using a micrometer or the like.
 また、2層以上の樹脂シート(エポキシ樹脂組成物のシート状成型物であり、硬化処理前のもの)を積層しながら、熱プレスすることにより、Bステージシートを作製することもできる。 Also, a B-stage sheet can also be produced by hot pressing while laminating two or more resin sheets (a sheet-like molded product of an epoxy resin composition and before curing).
 Bステージシートは、1周期の長さが2nm~3nmの周期構造を有する、エポキシ樹脂組成物のシート状の半硬化物であることが好ましい。半硬化物の1周期の長さが2nm~3nmであることにより、Bステージシートはより高い熱伝導性を発揮することができる傾向にある。
 更に、Bステージシートは、周期構造に由来するX線回折(XRD)ピークの半値幅2θが0.2度以下であることが好ましい。周期構造に由来するXRDピークの半値幅2θが0.2度以下であることにより、Bステージシートは更に高い熱伝導性を発揮することができる。
The B stage sheet is preferably a sheet-like semi-cured product of an epoxy resin composition having a periodic structure with a period of 2 nm to 3 nm. When the length of one cycle of the semi-cured product is 2 nm to 3 nm, the B stage sheet tends to exhibit higher thermal conductivity.
Further, the B stage sheet preferably has an X-ray diffraction (XRD) peak half-value width 2θ derived from the periodic structure of 0.2 degrees or less. When the half width 2θ of the XRD peak derived from the periodic structure is 0.2 degrees or less, the B stage sheet can exhibit higher thermal conductivity.
[プリプレグ]
 本実施形態のプリプレグは、繊維基材と、この繊維基材に含浸される本実施形態のエポキシ樹脂組成物の半硬化物と、を有する。
 プリプレグは、必要に応じて、保護フィルム等のその他の層を有していてもよい。エポキシ樹脂組成物の半硬化物が、本実施形態に係る特定窒化ホウ素粒子を含むことで、熱伝導性に優れる硬化物を形成可能なプリプレグを得ることができる。
[Prepreg]
The prepreg of this embodiment has a fiber base material and a semi-cured product of the epoxy resin composition of this embodiment impregnated in the fiber base material.
The prepreg may have other layers such as a protective film as necessary. When the semi-cured product of the epoxy resin composition includes the specific boron nitride particles according to the present embodiment, a prepreg capable of forming a cured product having excellent thermal conductivity can be obtained.
 プリプレグを構成する繊維基材としては、金属箔張り積層板又は多層プリント配線板を製造する際に用いられる繊維基材であれば特に制限されない。具体的には、織布、不織布等の繊維基材が挙げられる。ただし、目が極めて詰まった繊維素材を繊維基材として使用する場合、窒化ホウ素粒子が繊維の隙間に詰まってしまい、エポキシ樹脂組成物の含浸が困難となる場合があるため、繊維基材の目開きは窒化ホウ素粒子の体積平均粒子径の5倍以上とすることが好ましい。 The fiber substrate constituting the prepreg is not particularly limited as long as it is a fiber substrate used when producing a metal foil-clad laminate or a multilayer printed wiring board. Specifically, fiber base materials, such as a woven fabric and a nonwoven fabric, are mentioned. However, when a fiber material with extremely clogged eyes is used as the fiber base material, boron nitride particles may be clogged in the gaps between the fibers, making it difficult to impregnate the epoxy resin composition. The opening is preferably at least 5 times the volume average particle diameter of the boron nitride particles.
 繊維基材の材質の例としては、ガラス、アルミナ、ボロン、シリカアルミナガラス、シリカガラス、チラノ繊維、炭化ケイ素、窒化ケイ素、ジルコニア等の無機繊維;アラミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォン、カーボン、セルロース等の有機繊維;及びこれらの混抄系繊維基材が挙げられる。特に、ガラス繊維の織布が好ましく用いられる。これにより屈曲性のある任意に折り曲げ可能なプリント配線板を得ることができる。更に、製造プロセスでの温度、吸湿等に伴うプリント配線板の寸法変化を小さくすることも可能となる。 Examples of fiber base materials include: inorganic fibers such as glass, alumina, boron, silica alumina glass, silica glass, tyrano fiber, silicon carbide, silicon nitride, zirconia; aramid, polyether ether ketone, polyether imide, poly Examples thereof include organic fibers such as ether sulfone, carbon, and cellulose; and mixed fiber base materials thereof. In particular, a glass fiber woven fabric is preferably used. As a result, it is possible to obtain a flexible printed wiring board having flexibility. Furthermore, it becomes possible to reduce the dimensional change of the printed wiring board accompanying the temperature, moisture absorption, etc. in the manufacturing process.
 繊維基材の厚みは特に限定されず、より良好な可とう性を付与する観点から、30μm以下であることが好ましく、エポキシ樹脂組成物の含浸性の観点から15μm以下であることがより好ましい。繊維基材の厚みの下限は特に制限されず、通常5μm程度である。 The thickness of the fiber base material is not particularly limited, and is preferably 30 μm or less from the viewpoint of imparting better flexibility, and more preferably 15 μm or less from the viewpoint of impregnation property of the epoxy resin composition. The lower limit of the thickness of the fiber substrate is not particularly limited, and is usually about 5 μm.
 プリプレグにおいて、エポキシ樹脂組成物の含浸率は、繊維基材及びエポキシ樹脂組成物の総質量に対して50質量%~99.9質量%であることが好ましい。 In the prepreg, the impregnation ratio of the epoxy resin composition is preferably 50% by mass to 99.9% by mass with respect to the total mass of the fiber base material and the epoxy resin composition.
 プリプレグは、例えば、上記と同様に調製されたエポキシ樹脂組成物を、繊維基材に含浸し、80℃~180℃の加熱により溶媒を除去して製造することができる。プリプレグにおける溶媒残存率は、2.0質量%以下であることが好ましく、1.0質量%以下であることがより好ましく、0.7質量%以下であることが更に好ましい。 The prepreg can be produced, for example, by impregnating a fiber base material with an epoxy resin composition prepared in the same manner as described above and removing the solvent by heating at 80 ° C. to 180 ° C. The solvent residual ratio in the prepreg is preferably 2.0% by mass or less, more preferably 1.0% by mass or less, and further preferably 0.7% by mass or less.
 溶媒残存率は、プリプレグを40mm角に切り出し、190℃に予熱した恒温槽中に2時間乾燥させたときの、乾燥前後の質量変化から求める。 The solvent residual rate is obtained from the mass change before and after drying when the prepreg is cut into a 40 mm square and dried in a thermostat preheated to 190 ° C. for 2 hours.
 熱処理により溶媒を除去する乾燥時間については特に制限されない。また、エポキシ樹脂組成物を繊維基材に含浸する方法に特に制限はなく、例えば、塗工機を使用して付与(塗布)する方法を挙げることができる。詳細には、繊維基材をエポキシ樹脂組成物にくぐらせて引き上げる縦型塗工法、支持フィルム上にエポキシ樹脂組成物を付与してから繊維基材を押し付けて含浸させる横型塗工法等を挙げることができる。繊維基材内での熱伝導性フィラーの偏在を抑える観点からは、横型塗工法が好適である。 The drying time for removing the solvent by heat treatment is not particularly limited. Moreover, there is no restriction | limiting in particular in the method of impregnating a fiber base material with an epoxy resin composition, For example, the method of providing (application | coating) using a coating machine can be mentioned. In detail, mention is made of a vertical coating method in which a fiber base material is pulled through an epoxy resin composition, a horizontal coating method in which an epoxy resin composition is applied on a support film and then impregnated by pressing the fiber base material, etc. Can do. From the viewpoint of suppressing the uneven distribution of the thermally conductive filler in the fiber base material, the horizontal coating method is suitable.
 プリプレグにおいては、繊維基材に含浸された本実施形態のエポキシ樹脂組成物が半硬化し、Bステージ状態となっている。プリプレグにおけるBステージ状態は、上述のBステージシートにおけるBステージ状態と同義であり、Bステージ化する方法についても同様の条件を適用できる。 In the prepreg, the epoxy resin composition of the present embodiment impregnated in the fiber base material is semi-cured and is in a B stage state. The B stage state in the prepreg is synonymous with the B stage state in the B stage sheet described above, and the same conditions can be applied to the method of forming the B stage.
 また、プリプレグは、プレス、ロールラミネータ等による加熱加圧処理により、積層又は基材に貼付する前に予め表面を平滑化してから使用してもよい。加熱加圧処理の方法の例は、上述のBステージシートで挙げた方法と同様である。また、プリプレグの加熱加圧処理における加熱温度及びプレス圧の条件についても、Bステージシートの加熱処理及び加圧処理で挙げた条件と同様である。 Further, the prepreg may be used after the surface is smoothed in advance by laminating or sticking to a base material by heat and pressure treatment with a press, a roll laminator or the like. The example of the method of heat-pressing treatment is the same as the method quoted with the above-mentioned B stage sheet. Moreover, the conditions of the heating temperature and the press pressure in the heat and pressure treatment of the prepreg are the same as the conditions mentioned in the heat treatment and pressure treatment of the B stage sheet.
 プリプレグの平均厚みは、目的に応じて適宜選択することができ、例えば50μm以上500μm以下とすることができる。プリプレグの平均厚みは、熱伝導率及び可とう性の観点から、60μm以上300μm以下であることが好ましい。
 ここで、プリプレグの平均厚みは、対象となるプリプレグの5点の厚みを、マイクロメーター等を用いて測定し、その算術平均値として与えられる値である。
The average thickness of the prepreg can be appropriately selected according to the purpose, and can be, for example, 50 μm or more and 500 μm or less. The average thickness of the prepreg is preferably 60 μm or more and 300 μm or less from the viewpoint of thermal conductivity and flexibility.
Here, the average thickness of the prepreg is a value given as an arithmetic average value obtained by measuring the thicknesses of five points of the target prepreg using a micrometer or the like.
 また、プリプレグは2以上のプリプレグを積層して熱プレスすることにより作製することもできる。 Also, the prepreg can be produced by laminating two or more prepregs and hot pressing.
<放熱材料>
 本実施形態の放熱材料は、本実施形態のエポキシ樹脂組成物の硬化物である。放熱材料として具体的には、本実施形態のエポキシ樹脂組成物の硬化物を有する積層板、金属基板、プリント配線板等を挙げることができる。放熱材料は、本実施形態のエポキシ樹脂組成物の硬化物を含むことで優れた熱伝導性を有する。
<Heat dissipation material>
The heat dissipation material of this embodiment is a cured product of the epoxy resin composition of this embodiment. Specific examples of the heat dissipation material include a laminated board having a cured product of the epoxy resin composition of the present embodiment, a metal board, a printed wiring board, and the like. The heat dissipation material has excellent thermal conductivity by including the cured product of the epoxy resin composition of the present embodiment.
 上述のとおり、エポキシ樹脂組成物の硬化物は、1周期の長さが2nm~3nmの周期構造を有することが好ましい。1周期の長さが2nm~3nmであることにより、エポキシ樹脂組成物の硬化物はより高い熱伝導性を発揮することができる傾向にある。
 更に、周期構造に由来するX線回折(XRD)ピークの半値幅2θが0.2度以下であることが好ましい。周期構造に由来するXRDピークの半値幅が0.2度以下であることにより、エポキシ樹脂組成物の硬化物は更に高い熱伝導性を発揮することができる傾向にある。
As described above, the cured product of the epoxy resin composition preferably has a periodic structure in which the length of one cycle is 2 nm to 3 nm. When the length of one cycle is 2 nm to 3 nm, the cured product of the epoxy resin composition tends to exhibit higher thermal conductivity.
Furthermore, it is preferable that the half width 2θ of the X-ray diffraction (XRD) peak derived from the periodic structure is 0.2 degrees or less. When the half width of the XRD peak derived from the periodic structure is 0.2 degrees or less, the cured product of the epoxy resin composition tends to exhibit higher thermal conductivity.
[積層板]
 本実施形態における積層板は、被着材と、この被着材上に設けられる、本実施形態のエポキシ樹脂組成物からなる樹脂層、本実施形態のBステージシート及び本実施形態のプリプレグからなる群より選択される少なくとも1種の樹脂含有層の硬化層と、を有する。本実施形態のエポキシ樹脂組成物からなる樹脂層の硬化層又は本実施形態のBステージシート若しくはプリプレグである樹脂含有層の硬化層を有することで、熱伝導性に優れた積層板が得られる。
[Laminated board]
The laminate in the present embodiment comprises an adherend, a resin layer made of the epoxy resin composition of the present embodiment, a B stage sheet of the present embodiment, and a prepreg of the present embodiment provided on the adherend. A cured layer of at least one resin-containing layer selected from the group. By having the cured layer of the resin layer made of the epoxy resin composition of the present embodiment or the cured layer of the resin-containing layer that is the B-stage sheet or prepreg of the present embodiment, a laminate having excellent thermal conductivity is obtained.
 被着材の例としては、金属箔、金属板等を挙げることができる。被着材は、硬化層の片面のみに設けても、両面に設けてもよい。 Examples of the adherend include metal foil and metal plate. The adherend may be provided on only one side of the cured layer or on both sides.
 金属箔としては特に制限されず、通常用いられる金属箔から適宜選択することができる。具体的には、金箔、銅箔、アルミニウム箔等を挙げることができ、一般的には銅箔が用いられる。金属箔の厚みは、1μm~200μmであり、使用する電力等に応じて好適な厚みを選択することができる。 The metal foil is not particularly limited and can be appropriately selected from commonly used metal foils. Specifically, gold foil, copper foil, aluminum foil, etc. can be mentioned, and copper foil is generally used. The thickness of the metal foil is 1 μm to 200 μm, and a suitable thickness can be selected according to the electric power used.
 また、金属箔として、ニッケル、ニッケル-リン合金、ニッケル-スズ合金、ニッケル-鉄合金、鉛、鉛-スズ合金等の層を中間層とし、この両表面に0.5μm~15μmの銅層と10μm~150μmの銅層とを設けた3層構造の複合箔を用いてもよい。金属箔として、アルミニウムと銅箔とを複合した2層構造複合箔を用いることもできる。 Also, as the metal foil, nickel, nickel-phosphorus alloy, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and a copper layer of 0.5 μm to 15 μm is formed on both surfaces. A composite foil having a three-layer structure provided with a copper layer of 10 μm to 150 μm may be used. As the metal foil, a two-layer structure composite foil in which aluminum and copper foil are combined can also be used.
 金属板は熱伝導率が高く、熱容量が大きい金属材料からなることが好ましい。金属板の材料としては具体的には、銅、アルミニウム、鉄、リードフレームに使われる合金等が例示できる。 The metal plate is preferably made of a metal material having a high thermal conductivity and a large heat capacity. Specific examples of the material for the metal plate include copper, aluminum, iron, alloys used for lead frames, and the like.
 金属板としては特に制限されず、通常用いられる金属板から適宜選択することができる。例えば、金属板としては、軽量化又は加工性を優先する場合はアルミニウム板を使用し、放熱性を優先する場合は銅板を使用する、というように目的を応じて材質を選定することができる。 The metal plate is not particularly limited, and can be appropriately selected from commonly used metal plates. For example, as the metal plate, the material can be selected according to the purpose, such as using an aluminum plate when priority is given to weight reduction or workability, and using a copper plate when priority is given to heat dissipation.
 金属板の平均厚みは用途に応じて適宜選択することができ、特に制限されない。加工性の観点から、金属板の厚みは0.5mm以上5mm以下であることが好ましい。 The average thickness of the metal plate can be appropriately selected depending on the application, and is not particularly limited. From the viewpoint of workability, the thickness of the metal plate is preferably 0.5 mm or more and 5 mm or less.
 また、金属板は、生産性を高める観点から、必要分より大きなサイズで作製されて電子部品を実装した後に、使用するサイズに切断されることが好ましい。そのため、金属基板に用いる金属板は切断加工性に優れることが望ましい。 Also, from the viewpoint of increasing productivity, the metal plate is preferably cut to a size to be used after being manufactured in a size larger than necessary and mounting an electronic component. Therefore, it is desirable that the metal plate used for the metal substrate is excellent in cutting workability.
 金属板としてアルミニウムを用いる場合、アルミニウム又はアルミニウムを主成分とする合金を材質とすることができる。アルミニウム又はアルミニウムを主成分とする合金は、その化学組成と熱処理条件により多種類のものが入手可能である。中でも、切削し易い等の加工性が高く、且つ強度に優れた種類のアルミニウム板又はアルミニウム合金板を選定することが好ましい。 When aluminum is used as the metal plate, aluminum or an alloy mainly composed of aluminum can be used as the material. Many types of aluminum or alloys containing aluminum as a main component are available depending on the chemical composition and heat treatment conditions. Among them, it is preferable to select a kind of aluminum plate or aluminum alloy plate that is easy to cut and has high workability and excellent strength.
 積層板においては、硬化層は、本実施形態のエポキシ樹脂組成物からなる樹脂層、本実施形態のBステージシート又は本実施形態のプリプレグである樹脂含有層の硬化層を有する単層構造であってもよく、2層以上を有する積層構造であってもよい。
 硬化層が2層以上の積層構造を有する場合、本実施形態のエポキシ樹脂組成物からなる樹脂層を2層以上有する形態、本実施形態のBステージシートを2枚以上有する形態及び本実施形態のプリプレグを2枚以上有する形態のいずれであってもよい。また、本実施形態のエポキシ樹脂組成物からなる樹脂層、本実施形態のBステージシート及び本実施形態のプリプレグからなる群より選択される少なくとも2種以上を組み合わせて有してもよい。
In the laminate, the cured layer has a single layer structure having a cured layer of a resin layer made of the epoxy resin composition of the present embodiment, a B stage sheet of the present embodiment, or a resin-containing layer that is a prepreg of the present embodiment. It may be a laminated structure having two or more layers.
When the hardened layer has a laminated structure of two or more layers, a form having two or more resin layers made of the epoxy resin composition of the present embodiment, a form having two or more B stage sheets of the present embodiment, and the present embodiment Any of the forms having two or more prepregs may be used. Moreover, you may have in combination at least 2 or more types selected from the group which consists of the resin layer which consists of the epoxy resin composition of this embodiment, the B stage sheet | seat of this embodiment, and the prepreg of this embodiment.
 本実施形態における積層板は、例えば、被着材上に、本実施形態のエポキシ樹脂組成物を付与して樹脂層を形成し、これを熱処理及び加圧処理して、樹脂層を硬化させ、被着材に密着させることにより得られる。又は、被着材に本実施形態のBステージシート又はプリプレグを積層したものを準備し、これを熱処理及び加圧処理して、Bステージシート又はプリプレグを硬化させ、被着材に密着させることにより得られる。 The laminated board in the present embodiment is formed by, for example, applying the epoxy resin composition of the present embodiment on an adherend to form a resin layer, heat-treating and pressurizing the resin layer, and curing the resin layer. It is obtained by making it adhere to an adherend. Alternatively, by preparing a laminate of the B stage sheet or prepreg of this embodiment on the adherend, heat-treating and pressurizing it, and curing the B stage sheet or prepreg to adhere to the adherend can get.
 エポキシ樹脂組成物からなる樹脂層、Bステージシート及びプリプレグを硬化する際の硬化方法は特に制限されない。
 例えば、熱処理及び加圧処理により硬化することが好ましい。熱処理及び加圧処理における加熱温度は特に限定されない。加熱温度は、通常100℃~250℃の範囲であり、130℃~230℃の範囲であることが好ましい。
 また、熱処理及び加圧処理における加圧条件は特に限定されない。加圧条件は、通常1MPa~10MPaの範囲であり、1MPa~5MPaの範囲であることが好ましい。また、熱処理及び加圧処理には、真空プレス機等が好適に用いられる。
The curing method for curing the resin layer, the B stage sheet and the prepreg made of the epoxy resin composition is not particularly limited.
For example, it is preferable to cure by heat treatment and pressure treatment. The heating temperature in the heat treatment and pressure treatment is not particularly limited. The heating temperature is usually in the range of 100 ° C to 250 ° C, and preferably in the range of 130 ° C to 230 ° C.
Moreover, the pressurization conditions in heat processing and pressurization processing are not specifically limited. The pressurizing condition is usually in the range of 1 MPa to 10 MPa, and preferably in the range of 1 MPa to 5 MPa. Moreover, a vacuum press machine etc. are used suitably for heat processing and pressurization processing.
 エポキシ樹脂組成物からなる樹脂層の硬化層又はBステージシート若しくはプリプレグである樹脂含有層の硬化層の平均厚みは500μm以下であることが好ましく、50μm~300μmであることがより好ましく、60μm~300μmであることが更に好ましい。平均厚みが500μm以下であると可とう性に優れ、曲げ加工の際にクラックが発生するのを抑えられ、平均厚みが300μm以下であると、曲げ加工の際のクラックの発生をより抑えられる傾向にある。また、平均厚みが50μm以上であると、作業性に優れる傾向にある。
 ここで、硬化層の平均厚みは、対象となる積層板の硬化層の5点の厚みを、マイクロメーター等を用いて測定し、その算術平均値として与えられる値である。
The average thickness of the cured layer of the resin layer made of the epoxy resin composition or the cured layer of the resin-containing layer that is a B stage sheet or prepreg is preferably 500 μm or less, more preferably 50 μm to 300 μm, and more preferably 60 μm to 300 μm. More preferably. When the average thickness is 500 μm or less, the flexibility is excellent, and the generation of cracks during bending is suppressed, and when the average thickness is 300 μm or less, the generation of cracks during bending tends to be further suppressed. It is in. Moreover, it exists in the tendency for workability | operativity to be excellent in average thickness being 50 micrometers or more.
Here, the average thickness of the cured layer is a value given as an arithmetic average value obtained by measuring the thickness of five points of the cured layer of the target laminate by using a micrometer or the like.
[金属基板]
 本実施形態の金属基板は、金属箔と、金属板と、この金属箔と金属板との間に配置される、本実施形態のエポキシ樹脂組成物からなる樹脂層、本実施形態のBステージシート及び本実施形態のプリプレグからなる群より選択される少なくとも1種の樹脂含有層の硬化層と、を有する。本実施形態のエポキシ樹脂組成物からなる樹脂層の硬化層又は本実施形態のBステージシート若しくはプリプレグである樹脂含有層の硬化層を有することで、熱伝導性に優れた金属基板が得られる。
[Metal substrate]
The metal substrate of the present embodiment includes a metal foil, a metal plate, a resin layer made of the epoxy resin composition of the present embodiment, disposed between the metal foil and the metal plate, and a B stage sheet of the present embodiment. And a cured layer of at least one resin-containing layer selected from the group consisting of the prepregs of the present embodiment. By having the cured layer of the resin layer made of the epoxy resin composition of the present embodiment or the cured layer of the resin-containing layer that is the B stage sheet or prepreg of the present embodiment, a metal substrate having excellent thermal conductivity is obtained.
 金属箔としては特に制限されず、通常用いられる金属箔から適宜選択することができる。具体的には、金箔、銅箔、アルミニウム箔等を挙げることができ、一般的には銅箔が用いられる。金属箔の厚みは、1μm~200μmであり、使用する電力等に応じて好適な厚みを選択することができる。 The metal foil is not particularly limited and can be appropriately selected from commonly used metal foils. Specifically, gold foil, copper foil, aluminum foil, etc. can be mentioned, and copper foil is generally used. The thickness of the metal foil is 1 μm to 200 μm, and a suitable thickness can be selected according to the electric power used.
 また、金属箔として、ニッケル、ニッケル-リン合金、ニッケル-スズ合金、ニッケル-鉄合金、鉛、鉛-スズ合金等の層を中間層とし、この両表面に0.5μm~15μmの銅層と10μm~150μmの銅層とを設けた3層構造の複合箔を用いてもよく、アルミニウムと銅箔とを複合した2層構造複合箔を用いることもできる。 Also, as the metal foil, nickel, nickel-phosphorus alloy, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and a copper layer of 0.5 μm to 15 μm is formed on both surfaces. A composite foil having a three-layer structure provided with a copper layer of 10 μm to 150 μm may be used, or a two-layer composite foil in which aluminum and a copper foil are combined can also be used.
 金属板は熱伝導率が高く、熱容量が大きい金属材料からなることが好ましい。金属材料としては、具体的には、銅、アルミニウム、鉄、リードフレームに使われる合金等が例示できる。
 金属板としては特に制限されず、通常用いられる金属板から適宜選択することができる。例えば、金属板としては、軽量化又は加工性を優先する場合はアルミニウム板を使用し、放熱性を優先する場合は銅板を使用する、というように目的を応じて材質を選定することができる。
The metal plate is preferably made of a metal material having a high thermal conductivity and a large heat capacity. Specific examples of the metal material include copper, aluminum, iron, alloys used for lead frames, and the like.
It does not restrict | limit especially as a metal plate, It can select suitably from the metal plate used normally. For example, as the metal plate, the material can be selected according to the purpose, such as using an aluminum plate when priority is given to weight reduction or workability, and using a copper plate when priority is given to heat dissipation.
 金属板の平均厚みは用途に応じて適宜選択することができ、特に制限されない。加工性の観点から、金属板の厚みは0.5mm以上5mm以下であることが好ましい。 The average thickness of the metal plate can be appropriately selected depending on the application, and is not particularly limited. From the viewpoint of workability, the thickness of the metal plate is preferably 0.5 mm or more and 5 mm or less.
 また、金属板は、生産性を高める観点から、必要分より大きなサイズで作製されて電子部品を実装した後に、使用するサイズに切断されることが好ましい。そのため、金属基板に用いる金属板は切断加工性に優れることが望ましい。 Also, from the viewpoint of increasing productivity, the metal plate is preferably cut to a size to be used after being manufactured in a size larger than necessary and mounting an electronic component. Therefore, it is desirable that the metal plate used for the metal substrate is excellent in cutting workability.
 金属板としてアルミニウムを用いる場合、アルミニウム又はアルミニウムを主成分とする合金を材質とすることができる。アルミニウム又はアルミニウムを主成分とする合金は、その化学組成と熱処理条件により多種類のものが入手可能である。中でも、切削し易い等の加工性が高く、且つ強度に優れた種類を選定することが好ましい。 When aluminum is used as the metal plate, aluminum or an alloy mainly composed of aluminum can be used as the material. Many types of aluminum or alloys containing aluminum as a main component are available depending on the chemical composition and heat treatment conditions. Among them, it is preferable to select a type having high workability such as easy cutting and excellent strength.
 金属基板においては、硬化層は、本実施形態のエポキシ樹脂組成物からなる樹脂層、本実施形態のBステージシート又は本実施形態のプリプレグである樹脂含有層の硬化層を有する単層構造であってもよく、2層以上を有する積層構造であってもよい。
 硬化層が2層以上の積層構造を有する場合、本実施形態のエポキシ樹脂組成物からなる樹脂層を2層以上有する形態、本実施形態のBステージシートを2枚以上有する形態及び本実施形態のプリプレグを2枚以上有する形態のいずれであってもよい。また、本実施形態のエポキシ樹脂組成物からなる樹脂層、本実施形態のBステージシート及び本実施形態のプリプレグからなる群より選択される少なくとも2種以上を組み合わせて有してもよい。
In the metal substrate, the cured layer has a single layer structure having a cured layer of a resin layer made of the epoxy resin composition of the present embodiment, a B stage sheet of the present embodiment, or a resin-containing layer that is a prepreg of the present embodiment. It may be a laminated structure having two or more layers.
When the hardened layer has a laminated structure of two or more layers, a form having two or more resin layers made of the epoxy resin composition of the present embodiment, a form having two or more B stage sheets of the present embodiment, and the present embodiment Any of the forms having two or more prepregs may be used. Moreover, you may have in combination at least 2 or more types selected from the group which consists of the resin layer which consists of the epoxy resin composition of this embodiment, the B stage sheet | seat of this embodiment, and the prepreg of this embodiment.
[プリント配線板]
 本実施形態のプリント配線板は、配線層と、金属板と、この配線層と金属板との間に配置される、本実施形態のエポキシ樹脂組成物からなる樹脂層、本実施形態のBステージシート及び本実施形態のプリプレグからなる群より選択される少なくとも1種の樹脂含有層の硬化層と、を有する。本実施形態のエポキシ樹脂組成物からなる樹脂層の硬化層又は本実施形態のBステージシート若しくはプリプレグである樹脂含有層の硬化層を有することで、熱伝導性に優れたプリント配線板が得られる。
[Printed wiring board]
The printed wiring board of this embodiment includes a wiring layer, a metal plate, and a resin layer made of the epoxy resin composition of this embodiment, disposed between the wiring layer and the metal plate, and the B stage of this embodiment. A cured layer of at least one resin-containing layer selected from the group consisting of a sheet and the prepreg of the present embodiment. By having the cured layer of the resin layer made of the epoxy resin composition of the present embodiment or the cured layer of the resin-containing layer that is the B stage sheet or prepreg of the present embodiment, a printed wiring board excellent in thermal conductivity is obtained. .
 配線層は、上述の金属基板における金属箔を回路加工することにより製造することができる。金属箔の回路加工には、通常のフォトリソグラフィーによる方法が適用できる。 The wiring layer can be manufactured by circuit processing the metal foil on the metal substrate described above. A normal photolithography method can be applied to the circuit processing of the metal foil.
 金属板の例としては、上述の金属基板に使用される金属板と同じものが挙げられ、好ましい態様も同じである。 Examples of the metal plate include the same metal plate used for the above-mentioned metal substrate, and the preferred embodiment is also the same.
 プリント配線板の好ましい態様としては、例えば、特開2009-214525号公報の段落番号0064及び特開2009-275086号公報の段落番号0056~0059に記載のプリント配線板と同様のものを挙げることができる。 Preferable embodiments of the printed wiring board include, for example, the same printed wiring board as described in paragraph No. 0064 of JP2009-214525A and paragraph Nos. 0056 to 0059 of JP2009-275086A. it can.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、特に断りのない限り、「部」及び「%」は質量基準である。本発明は、その要旨を逸脱しない限り、本実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. Unless otherwise specified, “part” and “%” are based on mass. The present invention is not limited to the present embodiment unless departing from the gist thereof.
(合成例1:フェノール樹脂の合成)
 セパラブルフラスコに、モノマーとしてのレゾルシノール 105g(0.95mol)及びカテコール 5g(0.05mol)、触媒としてのシュウ酸 0.11g(0.1wt%)並びに溶剤としてのメタノール 15gを量り取った。その後、窒素雰囲気下でこの混合物を攪拌し、40℃以下になるように油浴で冷却しながらホルマリン 30g(約0.33mol、F/Pモル比は0.33)を加えた。混合物を2時間攪拌した後、油浴を100℃にして加温しながら、水及びメタノールを減圧留去した。水及びメタノールが出なくなったことを確認した後、シクロヘキサンを加えて、ノボラック樹脂と含有率が50質量%となる溶液を作製し、フェノール樹脂溶液を得た。
 ゲルパーミエーションクロマトグラフィー(GPC)による分子量測定により、得られたフェノール樹脂溶液中のフェノール樹脂の数平均分子量は484であり、繰り返し単位数はn=3.9であることが分かった。また、未反応のモノマーの含有率は、フェノール樹脂溶液の全固形分に対して40質量%であった。H-NMRの測定により、各繰り返し単位中に水酸基が2.1個含まれることが分かった。水酸基当量は62g/eqであった。
(Synthesis Example 1: Synthesis of phenol resin)
In a separable flask, 105 g (0.95 mol) of resorcinol as a monomer and 5 g (0.05 mol) of catechol, 0.11 g (0.1 wt%) of oxalic acid as a catalyst, and 15 g of methanol as a solvent were weighed. Thereafter, the mixture was stirred under a nitrogen atmosphere, and 30 g of formalin (about 0.33 mol, F / P molar ratio was 0.33) was added while cooling in an oil bath to 40 ° C. or lower. After the mixture was stirred for 2 hours, water and methanol were distilled off under reduced pressure while heating the oil bath to 100 ° C. After confirming that water and methanol were no longer produced, cyclohexane was added to prepare a novolac resin and a solution having a content of 50% by mass to obtain a phenol resin solution.
The molecular weight measurement by gel permeation chromatography (GPC) revealed that the number average molecular weight of the phenol resin in the obtained phenol resin solution was 484, and the number of repeating units was n = 3.9. Moreover, the content rate of the unreacted monomer was 40 mass% with respect to the total solid of a phenol resin solution. From 1 H-NMR measurement, it was found that 2.1 hydroxyl groups were contained in each repeating unit. The hydroxyl equivalent was 62 g / eq.
(実施例1)
 窒化ホウ素粒子(水島合金鉄(株)、商品名「HP-40」、以下「窒化ホウ素粒子1」とも表記する)に、液晶性エポキシモノマー1(1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(オキシラニルメトキシフェニル)-1-シクロヘキセン;一般式(1)で表される液晶性エポキシモノマー)(以下、「エポキシモノマー1」とも表記する)と、硬化剤(上記フェノール樹脂)と、硬化促進剤(トリフェニルフォスフィン、和光純薬工業(株))と、溶剤(シクロヘキサノン、和光純薬工業(株))と、を加えてエポキシ樹脂組成物を調製した。
 液晶性エポキシモノマー及び硬化剤の配合量は、液晶性エポキシモノマーのエポキシ基に対する硬化剤の化学当量のモル比が、1対1となるように調整した。また、硬化後のエポキシ樹脂組成物における窒化ホウ素含有率が50質量%となるように窒化ホウ素粒子の添加量を調整した。
Example 1
Boron nitride particles (Mizushima Alloy Iron Co., Ltd., trade name “HP-40”, hereinafter also referred to as “boron nitride particles 1”) and liquid crystalline epoxy monomer 1 (1- (3-methyl-4-oxiranyl) Methoxyphenyl) -4- (oxiranylmethoxyphenyl) -1-cyclohexene; a liquid crystalline epoxy monomer represented by general formula (1) (hereinafter also referred to as “epoxy monomer 1”), and a curing agent (above A phenol resin), a curing accelerator (triphenylphosphine, Wako Pure Chemical Industries, Ltd.) and a solvent (cyclohexanone, Wako Pure Chemical Industries, Ltd.) were added to prepare an epoxy resin composition.
The compounding amounts of the liquid crystalline epoxy monomer and the curing agent were adjusted such that the molar ratio of the chemical equivalent of the curing agent to the epoxy group of the liquid crystalline epoxy monomer was 1: 1. Moreover, the addition amount of the boron nitride particles was adjusted so that the boron nitride content in the epoxy resin composition after curing was 50% by mass.
 調製したエポキシ樹脂組成物を、厚さ75μmのポリエチレンテレフタレート(PET)フィルム上に、300μmの厚さで付与した後、エポキシ樹脂組成物を別のPETフィルムで挟み、140℃、1MPa、2分間で真空プレスすることによりBステージシートを得た。 The prepared epoxy resin composition was applied to a 75 μm thick polyethylene terephthalate (PET) film at a thickness of 300 μm, and then the epoxy resin composition was sandwiched between different PET films at 140 ° C., 1 MPa for 2 minutes. A B-stage sheet was obtained by vacuum pressing.
 エポキシ樹脂組成物の半硬化物であるBステージシートの周期構造に由来する回折角度を、広角X線回折装置((株)リガク製、「RINT2500HL」)を使用して測定した。
 詳細には、X線源としてCuを用い、X線出力を50kV、250mAとし、発散スリット(DS)を1.0度とし、散乱スリット(SS)を1.0度とし、受光スリット(RS)を0.3mmとし、走査速度を1.0度/分とした条件で測定した。
The diffraction angle derived from the periodic structure of the B-stage sheet, which is a semi-cured product of the epoxy resin composition, was measured using a wide-angle X-ray diffractometer (manufactured by Rigaku Corporation, “RINT2500HL”).
Specifically, Cu is used as the X-ray source, the X-ray output is 50 kV, 250 mA, the divergence slit (DS) is 1.0 degree, the scattering slit (SS) is 1.0 degree, and the light receiving slit (RS). Was 0.3 mm, and the scanning speed was 1.0 degree / min.
 測定した回折角度を、下記ブラッグの式で1周期の長さに変換した。
  2dsinθ=nλ
 ここで、dは1周期の長さ、θは回折角度、nは反射次数、λはX線波長(0.15406nm)を示している。
The measured diffraction angle was converted into the length of one period by the following Bragg equation.
2 dsin θ = nλ
Here, d is the length of one period, θ is the diffraction angle, n is the reflection order, and λ is the X-ray wavelength (0.15406 nm).
 得られたBステージシートの両面のPETフィルムを剥がし、代わりに表面を粗化した銅箔(古河電気工業(株)製、商品名「GTS」)2枚で挟み、180℃で真空プレスを行うことにより銅箔に圧着させた。これを更に、140℃で2時間熱処理した後、更に190℃で2時間熱処理することにより硬化させ、シート状の銅圧着硬化物を得た。 The PET film on both sides of the obtained B-stage sheet is peeled off, and sandwiched between two sheets of copper foil (Furukawa Electric Co., Ltd., trade name “GTS”) whose surface is roughened, and vacuum-pressed at 180 ° C. It was made to press-fit to copper foil. This was further heat-treated at 140 ° C. for 2 hours and then cured by further heat-treating at 190 ° C. for 2 hours to obtain a sheet-like copper press-cured cured product.
 得られた銅圧着硬化物の両面の銅箔を、200g/Lの過硫酸アンモニウム及び5ml/Lの硫酸の混合溶液を用いた酸エッチングにより除去し、シート状のエポキシ樹脂硬化物を得た。 The copper foils on both sides of the obtained copper press-cured cured product were removed by acid etching using a mixed solution of 200 g / L ammonium persulfate and 5 ml / L sulfuric acid to obtain a sheet-shaped epoxy resin cured product.
 得られたシート状のエポキシ樹脂硬化物を1cm角に切出し、熱拡散率を測定するための試験片とした。フラッシュ法装置(ブルカー・エイエックスエス(株)製、「NETZSCH,nanoflash LFA447」)を用いて、切出した試験片の熱拡散率を測定した。測定結果にアルキメデス法により測定した密度と、DSC法により測定した比熱とを乗じることにより、シート状のエポキシ樹脂硬化物の厚さ方向の熱伝導率を求めた。 The obtained sheet-like epoxy resin cured product was cut into a 1 cm square and used as a test piece for measuring thermal diffusivity. The thermal diffusivity of the cut specimen was measured using a flash method apparatus (“NETZSCH, nanoflash LFA447” manufactured by Bruker AXS Co., Ltd.). By multiplying the measurement result by the density measured by the Archimedes method and the specific heat measured by the DSC method, the thermal conductivity in the thickness direction of the cured epoxy resin sheet was determined.
 得られたシート状のエポキシ樹脂硬化物の周期構造由来の回折角度を、Bステージシートの場合と同様にして測定した。得られたXRDスペクトルから、窒化ホウ素粒子の(004)面に由来するピークの半値幅(2θ)を求めた。
 結果を表1及び図1に示す。
The diffraction angle derived from the periodic structure of the obtained sheet-like cured epoxy resin was measured in the same manner as in the case of the B stage sheet. From the obtained XRD spectrum, the half width (2θ) of the peak derived from the (004) plane of the boron nitride particles was determined.
The results are shown in Table 1 and FIG.
(実施例2)
 実施例1において、窒化ホウ素粒子1の代わりに、窒化ホウ素粒子(電気化学工業(株)、商品名「SP-3」、以下「窒化ホウ素粒子2」とも表記する)を用いたこと以外、実施例1と同様にBステージシート及びシート状のエポキシ樹脂硬化物を作製した。更に、実施例1と同様に、周期構造の1周期の長さ、X線回折における周期構造に由来するピークの半値幅、窒化ホウ素粒子の(004)面に由来するピークの半値幅、及び熱伝導率を求めた。
 結果を表1に示す。
(Example 2)
In Example 1, instead of boron nitride particles 1, boron nitride particles (Electrochemical Industry Co., Ltd., trade name “SP-3”, hereinafter also referred to as “boron nitride particles 2”) were used. In the same manner as in Example 1, a B-stage sheet and a sheet-like cured epoxy resin were prepared. Furthermore, as in Example 1, the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined.
The results are shown in Table 1.
(実施例3)
 実施例1において、α-アルミナ粒子(住友化学(株)、商品名「AA04」)を加えて、硬化後のエポキシ樹脂(エポキシ樹脂硬化物)における窒化ホウ素粒子1の含有率が50質量%であり、且つα-アルミナ粒子の含有率が20質量%となるようにエポキシ樹脂組成物を調製したこと以外は、実施例1と同様の方法で実施例3のエポキシ樹脂組成物を得た。
(Example 3)
In Example 1, α-alumina particles (Sumitomo Chemical Co., Ltd., trade name “AA04”) were added, and the content of boron nitride particles 1 in the cured epoxy resin (epoxy resin cured product) was 50 mass%. In addition, the epoxy resin composition of Example 3 was obtained in the same manner as in Example 1 except that the epoxy resin composition was prepared so that the content of α-alumina particles was 20% by mass.
 得られたエポキシ樹脂組成物を用いて、実施例1と同様にBステージシート及びシート状のエポキシ樹脂硬化物を作製した。更に、実施例1と同様に、周期構造の1周期の長さ、X線回折における周期構造に由来するピークの半値幅、窒化ホウ素粒子の(004)面に由来するピークの半値幅、及び熱伝導率を求めた。
 結果を表1に示す。
Using the resulting epoxy resin composition, a B-stage sheet and a sheet-like cured epoxy resin were prepared in the same manner as in Example 1. Furthermore, as in Example 1, the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined.
The results are shown in Table 1.
(実施例4)
 実施例1において、窒化ホウ素粒子2(電気化学工業(株)、商品名「SP-3」)を加えて、硬化後のエポキシ樹脂(エポキシ樹脂硬化物)における窒化ホウ素粒子1の含有率が50質量%であり、且つ窒化ホウ素粒子2の含有率が20質量%となるようにエポキシ樹脂組成物を調製したこと以外は、実施例1と同様の方法で実施例4のエポキシ樹脂組成物を得た。
Example 4
In Example 1, boron nitride particles 2 (Electrochemical Industry Co., Ltd., trade name “SP-3”) was added, and the content of boron nitride particles 1 in the cured epoxy resin (cured epoxy resin) was 50. The epoxy resin composition of Example 4 was obtained in the same manner as in Example 1 except that the epoxy resin composition was prepared so that the content of the boron nitride particles 2 was 20% by mass. It was.
 得られたエポキシ樹脂組成物を用いて、実施例1と同様にBステージシート及びシート状のエポキシ樹脂硬化物を作製した。更に、実施例1と同様に、周期構造の1周期の長さ、X線回折における周期構造に由来するピークの半値幅、窒化ホウ素粒子の(004)面に由来するピークの半値幅、及び熱伝導率を求めた。
 結果を表1に示す。
Using the resulting epoxy resin composition, a B-stage sheet and a sheet-like cured epoxy resin were prepared in the same manner as in Example 1. Furthermore, as in Example 1, the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined.
The results are shown in Table 1.
(実施例5)
 実施例1において、窒化ホウ素粒子3(三井化学(株)、商品名「MBN-250」)を加えて、硬化後のエポキシ樹脂(エポキシ樹脂硬化物)における窒化ホウ素粒子1の含有率が50質量%であり、且つ窒化ホウ素粒子3の含有率が20質量%となるようにエポキシ樹脂組成物を調製したこと以外は、実施例1と同様の方法で実施例5のエポキシ樹脂組成物を得た。
(Example 5)
In Example 1, boron nitride particles 3 (Mitsui Chemicals, Inc., trade name “MBN-250”) was added, and the content of boron nitride particles 1 in the cured epoxy resin (epoxy resin cured product) was 50 mass. %, And the epoxy resin composition of Example 5 was obtained in the same manner as in Example 1 except that the epoxy resin composition was prepared so that the content of boron nitride particles 3 was 20% by mass. .
 得られたエポキシ樹脂組成物を用いて、実施例1と同様にBステージシート及びシート状のエポキシ樹脂硬化物を作製した。更に、実施例1と同様に、周期構造の1周期の長さ、X線回折における周期構造に由来するピークの半値幅、窒化ホウ素粒子の(004)面に由来するピークの半値幅、及び熱伝導率を求めた。
 結果を表1に示す。
Using the resulting epoxy resin composition, a B-stage sheet and a sheet-like cured epoxy resin were prepared in the same manner as in Example 1. Furthermore, as in Example 1, the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined.
The results are shown in Table 1.
(実施例6)
 実施例1において、窒化ホウ素粒子2(電気化学工業(株)、商品名「SP-3」)及びα‐アルミナ粒子(住友化学(株)、商品名「AA04」)を加えて、硬化後のエポキシ樹脂(エポキシ樹脂硬化物)における窒化ホウ素粒子1の含有率が50質量%であり、窒化ホウ素粒子2の含有率が10質量%であり、且つα‐アルミナ粒子の含有率が10質量%となるようにエポキシ樹脂組成物を調製したこと以外は、実施例1と同様の方法で実施例6のエポキシ樹脂組成物を得た。
(Example 6)
In Example 1, boron nitride particles 2 (Electrochemical Industry Co., Ltd., trade name “SP-3”) and α-alumina particles (Sumitomo Chemical Co., Ltd., trade name “AA04”) were added and cured. The content of boron nitride particles 1 in the epoxy resin (cured epoxy resin) is 50% by mass, the content of boron nitride particles 2 is 10% by mass, and the content of α-alumina particles is 10% by mass. An epoxy resin composition of Example 6 was obtained in the same manner as in Example 1 except that the epoxy resin composition was prepared.
 得られたエポキシ樹脂組成物を用いて、実施例1と同様にBステージシート及びシート状のエポキシ樹脂硬化物を作製した。更に、実施例1と同様に、周期構造の1周期の長さ、X線回折における周期構造に由来するピークの半値幅、窒化ホウ素粒子の(004)面に由来するピークの半値幅、及び熱伝導率を求めた。
 結果を表1に示す。
Using the resulting epoxy resin composition, a B-stage sheet and a sheet-like cured epoxy resin were prepared in the same manner as in Example 1. Furthermore, as in Example 1, the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined.
The results are shown in Table 1.
(実施例7)
 実施例1において、窒化ホウ素粒子3(三井化学(株)、商品名「MBN-250」)及びα‐アルミナ粒子(住友化学(株)、商品名「AA04」)を加えて、硬化後のエポキシ樹脂(エポキシ樹脂硬化物)における窒化ホウ素粒子1の含有率が50質量%であり、窒化ホウ素粒子3の含有率が10質量%であり、且つα‐アルミナ粒子の含有率が10質量%となるようにエポキシ樹脂組成物を調製したこと以外は、実施例1と同様の方法で実施例7のエポキシ樹脂組成物を得た。
(Example 7)
In Example 1, boron nitride particles 3 (Mitsui Chemicals Co., Ltd., trade name “MBN-250”) and α-alumina particles (Sumitomo Chemical Co., Ltd., trade name “AA04”) were added and cured epoxy. The content of boron nitride particles 1 in the resin (cured epoxy resin) is 50% by mass, the content of boron nitride particles 3 is 10% by mass, and the content of α-alumina particles is 10% by mass. Thus, the epoxy resin composition of Example 7 was obtained by the method similar to Example 1 except having prepared the epoxy resin composition.
 得られたエポキシ樹脂組成物を用いて、実施例1と同様にBステージシート及びシート状のエポキシ樹脂硬化物を作製した。更に、実施例1と同様に、周期構造の1周期の長さ、X線回折における周期構造に由来するピークの半値幅、窒化ホウ素粒子の(004)面に由来するピークの半値幅、及び熱伝導率を求めた。
 結果を表1に示す。
Using the resulting epoxy resin composition, a B-stage sheet and a sheet-like cured epoxy resin were prepared in the same manner as in Example 1. Furthermore, as in Example 1, the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined.
The results are shown in Table 1.
(比較例1)
 実施例1において、窒化ホウ素粒子1の代わりに、窒化ホウ素粒子3(三井化学(株)、商品名「MBN-250」)を用いたこと以外は実施例1と同様に、Bステージシート及びシート状のエポキシ樹脂硬化物を作製した。更に、実施例1と同様に、周期構造の1周期の長さ、X線回折における周期構造に由来するピークの半値幅、窒化ホウ素粒子の(004)面に由来するピークの半値幅、及び熱伝導率を求めた。
 結果を表1及び図2に示す。
(Comparative Example 1)
In Example 1, instead of boron nitride particles 1, boron nitride particles 3 (Mitsui Chemicals, Inc., trade name “MBN-250”) were used as in Example 1, except that B stage sheets and sheets were used. A cured epoxy resin was prepared. Furthermore, as in Example 1, the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined.
The results are shown in Table 1 and FIG.
(比較例2)
 実施例1において使用した液晶性エポキシモノマー1(1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(オキシラニルメトキシフェニル)-1-シクロヘキセン)の代わりに、エポキシモノマー2(三菱化学(株)、「jER828」;一般式(1)で表される液晶性エポキシモノマーとは異なる)を使用したこと以外は、実施例1と同様に、Bステージシート及びシート状のエポキシ樹脂硬化物を作製した。更に、実施例1と同様に、周期構造の1周期の長さ、X線回折における周期構造に由来するピークの半値幅、窒化ホウ素粒子の(004)面に由来するピークの半値幅、及び熱伝導率を求めた。
 結果を表1に示す。
(Comparative Example 2)
Instead of the liquid crystalline epoxy monomer 1 (1- (3-methyl-4-oxiranylmethoxyphenyl) -4- (oxiranylmethoxyphenyl) -1-cyclohexene) used in Example 1, an epoxy monomer 2 ( B-stage sheet and sheet-like epoxy resin in the same manner as in Example 1 except that Mitsubishi Chemical Corporation, “jER828”; different from the liquid crystalline epoxy monomer represented by the general formula (1) is used. A cured product was produced. Furthermore, as in Example 1, the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined.
The results are shown in Table 1.
(比較例3)
 実施例2において使用した液晶性エポキシモノマー1(1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(オキシラニルメトキシフェニル)-1-シクロヘキセン)の代わりに、エポキシモノマー2(三菱化学(株)、「jER828」;一般式(1)で表される液晶性エポキシモノマーとは異なる)を使用したこと以外は、実施例2と同様に、Bステージシート及びシート状のエポキシ樹脂硬化物を作製した。更に、実施例2と同様に、周期構造の1周期の長さ、X線回折における周期構造に由来するピークの半値幅、窒化ホウ素粒子の(004)面に由来するピークの半値幅、及び熱伝導率を求めた。
 結果を表1に示す。
(Comparative Example 3)
Instead of the liquid crystalline epoxy monomer 1 (1- (3-methyl-4-oxiranylmethoxyphenyl) -4- (oxiranylmethoxyphenyl) -1-cyclohexene) used in Example 2, epoxy monomer 2 ( B-stage sheet and sheet-like epoxy resin as in Example 2 except that Mitsubishi Chemical Corporation, “jER828”; different from the liquid crystalline epoxy monomer represented by the general formula (1) is used. A cured product was produced. Further, as in Example 2, the length of one period of the periodic structure, the half width of the peak derived from the periodic structure in X-ray diffraction, the half width of the peak derived from the (004) plane of the boron nitride particles, and the heat The conductivity was determined.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000011

 
Figure JPOXMLDOC01-appb-T000011

 
 表1より、比較例1では窒化ホウ素の結晶性が低く、周期構造が確認されないのに対し、実施例1~7では、エポキシ樹脂硬化物が1周期あたり2.5nmの周期構造を有し、高い熱伝導率を有していることが分かる。 From Table 1, in Comparative Example 1, the crystallinity of boron nitride is low and the periodic structure is not confirmed, whereas in Examples 1 to 7, the cured epoxy resin has a periodic structure of 2.5 nm per period, It can be seen that it has a high thermal conductivity.
 また、液晶性でないエポキシ樹脂2を用いた比較例2及び3では、エポキシ樹脂硬化物の周期構造が形成されず、熱伝導率が低下することが分かる。 Further, it can be seen that in Comparative Examples 2 and 3 using the epoxy resin 2 that is not liquid crystalline, the periodic structure of the cured epoxy resin is not formed, and the thermal conductivity is lowered.
 更に、図1は実施例1のエポキシ樹脂硬化物のX線回折(XRD)スペクトルを示し、図2は比較例1のエポキシ樹脂硬化物のXRDスペクトルを示している。尚、図1~図2において、縦軸は回折強度(CPS)を表し、横軸は回折角度(2θ)を表す。図1では、窒化ホウ素(BN)粒子の(004)面に由来するピークの半値幅が狭く、エポキシ樹脂の2nm~3nmの周期構造に由来するピークが検出されている。一方、図2では、窒化ホウ素(BN)粒子の(004)面に由来するピークの半値幅が広く、エポキシ樹脂の2nm~3nmの周期構造に由来するピークが検出されていない。このことから、窒化ホウ素粒子の結晶性が高いほどエポキシ樹脂の周期構造形成に影響し、結果として熱伝導率が向上すると考えられる。 1 shows an X-ray diffraction (XRD) spectrum of the cured epoxy resin of Example 1, and FIG. 2 shows an XRD spectrum of the cured epoxy resin of Comparative Example 1. 1 and 2, the vertical axis represents diffraction intensity (CPS), and the horizontal axis represents diffraction angle (2θ). In FIG. 1, the half width of the peak derived from the (004) plane of the boron nitride (BN) particles is narrow, and the peak derived from the 2 nm to 3 nm periodic structure of the epoxy resin is detected. On the other hand, in FIG. 2, the half width of the peak derived from the (004) plane of the boron nitride (BN) particles is wide, and no peak derived from the 2 nm to 3 nm periodic structure of the epoxy resin is detected. From this, it is considered that the higher the crystallinity of the boron nitride particles, the more the cyclic structure formation of the epoxy resin is affected, and as a result, the thermal conductivity is improved.
 2014年7月18日に出願された日本国特許出願2014-148006号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The entire disclosure of Japanese Patent Application No. 2014-148006 filed on July 18, 2014 is incorporated herein by reference. All documents, patent applications and technical standards mentioned in this specification are to the same extent as if each individual document, patent application and technical standard were specifically and individually stated to be incorporated by reference. Incorporated by reference in the book.

Claims (18)

  1.  X線回折における(004)面に由来するピークの半値幅2θが0.5度以下である窒化ホウ素粒子と、
     硬化剤と、
     下記一般式(1)で表される液晶性エポキシモノマーと、
    を含むエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

     
     
    〔一般式(1)中、Xは単結合又は下記2価の基からなる群(I)より選択される少なくとも1種の連結基を示す。Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基又はアセチル基を示す。nは各々独立に0~4の整数を示す。kは0~7の整数を示す。mは0~8の整数を示す。lは0~12の整数を示す。〕
    Figure JPOXMLDOC01-appb-C000002

     
     
    Boron nitride particles having a half-value width 2θ of a peak derived from the (004) plane in X-ray diffraction of 0.5 ° or less,
    A curing agent;
    A liquid crystalline epoxy monomer represented by the following general formula (1);
    An epoxy resin composition comprising:
    Figure JPOXMLDOC01-appb-C000001



    [In the general formula (1), X represents a single bond or at least one linking group selected from the group (I) consisting of the following divalent groups. Y independently represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, or an acetyl group. Show. n independently represents an integer of 0 to 4. k represents an integer of 0 to 7. m represents an integer of 0 to 8. l represents an integer of 0 to 12. ]
    Figure JPOXMLDOC01-appb-C000002


  2.  1周期の長さが2nm~3nmの周期構造である請求項1に記載のエポキシ樹脂組成物。 2. The epoxy resin composition according to claim 1, which has a periodic structure having a period of 2 nm to 3 nm.
  3.  X線回折における前記周期構造に由来するピークの半値幅2θが0.2度以下である請求項2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 2, wherein a half-value width 2θ of a peak derived from the periodic structure in X-ray diffraction is 0.2 ° or less.
  4.  前記窒化ホウ素粒子の含有率が、全固形分中20質量%~95質量%である請求項1~請求項3のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3, wherein a content of the boron nitride particles is 20% by mass to 95% by mass in the total solid content.
  5.  更にアルミナ粒子を含み、前記アルミナ粒子の含有率が、前記窒化ホウ素粒子と前記アルミナ粒子との総量に対して、5質量%~70質量%である請求項1~請求項4のいずれか1項に記載のエポキシ樹脂組成物。 5. The method according to claim 1, further comprising alumina particles, wherein the content of the alumina particles is 5% by mass to 70% by mass with respect to the total amount of the boron nitride particles and the alumina particles. The epoxy resin composition described in 1.
  6.  請求項1~請求項5のいずれか1項に記載のエポキシ樹脂組成物の半硬化物である熱伝導材料前駆体。 A heat conductive material precursor which is a semi-cured product of the epoxy resin composition according to any one of claims 1 to 5.
  7.  前記半硬化物が、1周期の長さが2nm~3nmの周期構造を有する請求項6に記載の熱伝導材料前駆体。 The heat conductive material precursor according to claim 6, wherein the semi-cured product has a periodic structure in which the length of one cycle is 2 nm to 3 nm.
  8.  X線回折における前記周期構造に由来するピークの半値幅2θが0.2度以下である請求項7に記載の熱伝導材料前駆体。 The heat conductive material precursor according to claim 7, wherein a half-value width 2θ of a peak derived from the periodic structure in X-ray diffraction is 0.2 degrees or less.
  9.  請求項1~請求項5のいずれか1項に記載のエポキシ樹脂組成物のシート状の半硬化物であるBステージシート。 A B-stage sheet which is a sheet-like semi-cured product of the epoxy resin composition according to any one of claims 1 to 5.
  10.  前記エポキシ樹脂組成物のシート状の半硬化物が、1周期の長さが2nm~3nmの周期構造を有する請求項9に記載のBステージシート。 10. The B stage sheet according to claim 9, wherein the sheet-like semi-cured product of the epoxy resin composition has a periodic structure having a period length of 2 nm to 3 nm.
  11.  X線回折における前記周期構造に由来するピークの半値幅2θが0.2度以下である請求項10に記載のBステージシート。 The B stage sheet according to claim 10, wherein a half-value width 2θ of a peak derived from the periodic structure in X-ray diffraction is 0.2 degrees or less.
  12.  繊維基材と、
     前記繊維基材に含浸される請求項1~請求項5のいずれか1項に記載のエポキシ樹脂組成物の半硬化物と、
    を有するプリプレグ。
    A fiber substrate;
    A semi-cured product of the epoxy resin composition according to any one of claims 1 to 5, wherein the fiber base material is impregnated;
    Prepreg with
  13.  請求項1~請求項5のいずれか1項に記載のエポキシ樹脂組成物の硬化物である放熱材料。 A heat dissipating material which is a cured product of the epoxy resin composition according to any one of claims 1 to 5.
  14.  前記エポキシ樹脂組成物の硬化物が、1周期の長さが2nm~3nmの周期構造を有する請求項13に記載の放熱材料。 The heat dissipating material according to claim 13, wherein the cured product of the epoxy resin composition has a periodic structure having a length of one cycle of 2 nm to 3 nm.
  15.  X線回折における前記周期構造に由来するピークの半値幅2θが0.2度以下である請求項14に記載の放熱材料。 The heat-dissipating material according to claim 14, wherein a half-value width 2θ of a peak derived from the periodic structure in X-ray diffraction is 0.2 degrees or less.
  16.  被着材と、
     前記被着材上に設けられる、請求項1~請求項5のいずれか1項に記載のエポキシ樹脂組成物からなる樹脂層、請求項9~請求項11のいずれか1項に記載のBステージシート及び請求項12に記載のプリプレグからなる群より選択される少なくとも1種の樹脂含有層の硬化層と、
     を有する積層板。
    A substrate,
    The resin layer comprising the epoxy resin composition according to any one of claims 1 to 5 and the B stage according to any one of claims 9 to 11, which are provided on the adherend. A cured layer of at least one resin-containing layer selected from the group consisting of a sheet and the prepreg according to claim 12;
    A laminate having
  17.  金属箔と、
     金属板と、
     前記金属箔と前記金属板との間に配置される、請求項1~請求項5のいずれか1項に記載のエポキシ樹脂組成物からなる樹脂層、請求項9~請求項11のいずれか1項に記載のBステージシート及び請求項12に記載のプリプレグからなる群より選択される少なくとも1種の樹脂含有層の硬化層と、
     を有する金属基板。
    Metal foil,
    A metal plate,
    The resin layer comprising the epoxy resin composition according to any one of claims 1 to 5, which is disposed between the metal foil and the metal plate, and any one of claims 9 to 11. A cured layer of at least one resin-containing layer selected from the group consisting of the B stage sheet according to claim and the prepreg according to claim 12;
    A metal substrate.
  18.  配線層と、
     金属板と、
     前記配線層と前記金属板との間に配置される、請求項1~請求項5のいずれか1項に記載のエポキシ樹脂組成物からなる樹脂層、請求項9~請求項11のいずれか1項に記載のBステージシート及び請求項12に記載のプリプレグからなる群より選択される少なくとも1種の樹脂含有層の硬化層と、
     を有するプリント配線板。
    A wiring layer;
    A metal plate,
    The resin layer comprising the epoxy resin composition according to any one of claims 1 to 5, which is disposed between the wiring layer and the metal plate, and any one of claims 9 to 11. A cured layer of at least one resin-containing layer selected from the group consisting of the B stage sheet according to claim and the prepreg according to claim 12;
    A printed wiring board having:
PCT/JP2016/051144 2016-01-15 2016-01-15 Epoxy resin composition, heat conductive material precursor, b-stage sheet, prepreg, heat dissipation material, laminated plate, metal substrate, and printed wiring board WO2017122350A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/051144 WO2017122350A1 (en) 2016-01-15 2016-01-15 Epoxy resin composition, heat conductive material precursor, b-stage sheet, prepreg, heat dissipation material, laminated plate, metal substrate, and printed wiring board
JP2017561488A JPWO2017122350A1 (en) 2016-01-15 2016-01-15 Epoxy resin composition, heat conductive material precursor, B stage sheet, prepreg, heat dissipation material, laminated board, metal substrate and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051144 WO2017122350A1 (en) 2016-01-15 2016-01-15 Epoxy resin composition, heat conductive material precursor, b-stage sheet, prepreg, heat dissipation material, laminated plate, metal substrate, and printed wiring board

Publications (1)

Publication Number Publication Date
WO2017122350A1 true WO2017122350A1 (en) 2017-07-20

Family

ID=59311106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051144 WO2017122350A1 (en) 2016-01-15 2016-01-15 Epoxy resin composition, heat conductive material precursor, b-stage sheet, prepreg, heat dissipation material, laminated plate, metal substrate, and printed wiring board

Country Status (2)

Country Link
JP (1) JPWO2017122350A1 (en)
WO (1) WO2017122350A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031178A1 (en) * 2017-08-08 2019-02-14 三菱瓦斯化学株式会社 Resin composition, cured product, single-layer resin sheet, laminated resin sheet, prepreg, metal-foiled laminate sheet, printed circuit board, sealing material, fiber reinforced composite material, and adhesive agent
KR20190046443A (en) * 2017-10-26 2019-05-07 한국전기연구원 Crystalline alumina-epoxy nanocomposite insulation materials and their manufacturing method
WO2020194867A1 (en) * 2019-03-27 2020-10-01 富士フイルム株式会社 Heat dissipation sheet precursor and method for producing heat dissipation sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201610A (en) * 2013-04-01 2014-10-27 日立化成株式会社 Epoxy resin composition, heat-conductive material precursor, b-stage sheet, prepreg, laminate sheet, metallic substrate, and printed wiring board
WO2015141797A1 (en) * 2014-03-20 2015-09-24 日立化成株式会社 Resin composition, resin sheet, resin sheet cured product, resin sheet laminate, resin sheet laminate cured product and method for producing same, semiconductor device, and led device.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201610A (en) * 2013-04-01 2014-10-27 日立化成株式会社 Epoxy resin composition, heat-conductive material precursor, b-stage sheet, prepreg, laminate sheet, metallic substrate, and printed wiring board
WO2015141797A1 (en) * 2014-03-20 2015-09-24 日立化成株式会社 Resin composition, resin sheet, resin sheet cured product, resin sheet laminate, resin sheet laminate cured product and method for producing same, semiconductor device, and led device.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031178A1 (en) * 2017-08-08 2019-02-14 三菱瓦斯化学株式会社 Resin composition, cured product, single-layer resin sheet, laminated resin sheet, prepreg, metal-foiled laminate sheet, printed circuit board, sealing material, fiber reinforced composite material, and adhesive agent
JPWO2019031178A1 (en) * 2017-08-08 2020-07-02 三菱瓦斯化学株式会社 Resin composition, cured product, single-layer resin sheet, laminated resin sheet, prepreg, metal foil-clad laminated board, printed wiring board, sealing material, fiber reinforced composite material and adhesive
JP7052797B2 (en) 2017-08-08 2022-04-12 三菱瓦斯化学株式会社 Resin composition, cured product, single-layer resin sheet, laminated resin sheet, prepreg, metal leaf-clad laminated board, printed wiring board, sealing material, fiber-reinforced composite material and adhesive
KR20190046443A (en) * 2017-10-26 2019-05-07 한국전기연구원 Crystalline alumina-epoxy nanocomposite insulation materials and their manufacturing method
KR102393991B1 (en) * 2017-10-26 2022-05-02 한국전기연구원 Crystalline alumina-epoxy nanocomposite insulation materials and their manufacturing method
WO2020194867A1 (en) * 2019-03-27 2020-10-01 富士フイルム株式会社 Heat dissipation sheet precursor and method for producing heat dissipation sheet
JPWO2020194867A1 (en) * 2019-03-27 2021-11-18 富士フイルム株式会社 Heat dissipation sheet precursor and heat dissipation sheet manufacturing method
JP7059441B2 (en) 2019-03-27 2022-04-25 富士フイルム株式会社 Heat dissipation sheet precursor and heat dissipation sheet manufacturing method

Also Published As

Publication number Publication date
JPWO2017122350A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6304419B2 (en) Resin composition, and resin sheet, prepreg, laminate, metal substrate, printed wiring board and power semiconductor device using the same
US11840619B2 (en) Epoxy resin composition, thermally-conductive material precursor, B-stage sheet, prepreg, heat dissipation material, laminate, metal substrate, and printed circuit board
JP6311820B2 (en) Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, wiring board, method for producing semi-cured epoxy resin composition, and method for producing cured epoxy resin composition
JP5928477B2 (en) Resin composition, and resin sheet, prepreg, laminate, metal substrate and printed wiring board using the same
JP6023474B2 (en) Thermally conductive insulating sheet, metal base substrate and circuit board, and manufacturing method thereof
US8921458B2 (en) Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
JP2016155985A (en) Epoxy resin composition, semi-cured epoxy resin composition and cured epoxy resin composition, and resin sheet, prepreg, laminate sheet, metal substrate, wiring board and power semiconductor device, using these
JP2016023227A (en) Epoxy resin composition, heat-conductive material precursor, b-stage sheet, prepreg, heat radiation material, laminate, metal substrate, and printed wiring board
WO2016098709A1 (en) Epoxy resin composition, resin sheet, prepreg, laminate, process for producing epoxy resin composition, and cured object
WO2017122350A1 (en) Epoxy resin composition, heat conductive material precursor, b-stage sheet, prepreg, heat dissipation material, laminated plate, metal substrate, and printed wiring board
JP6411010B2 (en) Epoxy resin composition, method for producing epoxy resin composition, heat conductive material precursor, B stage sheet, prepreg, heat conductive material, laminated board, metal substrate, and printed wiring board
JP6132041B2 (en) Resin composition, and resin sheet, prepreg, laminate, metal substrate and printed wiring board using the same
JP2013053180A (en) Resin composition, resin sheet, prepreg sheet, resin cured product sheet, structure, and semiconductor device for power or for light source
JP2016113493A (en) Epoxy resin composition, heat-conductive material precursor, b-stage sheet, prepreg, heat dissipation material, laminate, metal substrate and printed wiring board
TW201725236A (en) Epoxy resin composition, thermally-conductive material precursor, B stage sheet, prepreg, heat dissipation material, laminate, metal substrate, and printed circuit board
JP2017066336A (en) Resin composition, resin sheet, resin sheet cured product, resin sheet laminate, resin sheet laminate cured product and method for producing the same, semiconductor device and led device
JP2018021180A (en) Epoxy resin composition, heat conduction material precursor, b stage sheet, prepreg, heat conduction material, laminate, metal substrate and printed wiring board
JP2017218468A (en) Epoxy resin composition, molding material precursor, molding material, and method for producing molding material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561488

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884953

Country of ref document: EP

Kind code of ref document: A1