WO2017120698A1 - 一种用于数控激光切割***的工件平整度预采集装置 - Google Patents

一种用于数控激光切割***的工件平整度预采集装置 Download PDF

Info

Publication number
WO2017120698A1
WO2017120698A1 PCT/CN2016/000026 CN2016000026W WO2017120698A1 WO 2017120698 A1 WO2017120698 A1 WO 2017120698A1 CN 2016000026 W CN2016000026 W CN 2016000026W WO 2017120698 A1 WO2017120698 A1 WO 2017120698A1
Authority
WO
WIPO (PCT)
Prior art keywords
height
axis
information
adjustment system
compensation
Prior art date
Application number
PCT/CN2016/000026
Other languages
English (en)
French (fr)
Inventor
徐海军
Original Assignee
徐海军
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐海军 filed Critical 徐海军
Priority to PCT/CN2016/000026 priority Critical patent/WO2017120698A1/zh
Publication of WO2017120698A1 publication Critical patent/WO2017120698A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller

Definitions

  • the invention belongs to the field of automatic height adjustment control technology of the numerical control laser cutting system, and is particularly suitable for materials with high requirements on the processing of laser cutting machine tools, such as: acrylic.
  • the laser cutting machine irradiates the material to be cut with a high power density laser beam, so that the material is quickly heated to the vaporization temperature and evaporates to form a hole. As the beam moves toward the material, the hole is continuously formed into a narrow width (e.g., about 0.1 mm). Sew, complete the cutting of the material.
  • Laser cutting can achieve better cutting quality due to the small laser spot, high energy density and fast cutting speed.
  • Laser cutting forming technology has a wide range of applications in the field of non-metallic materials. It can cut not only high hardness and brittle materials, such as silicon nitride, ceramics, quartz, etc., but also flexible materials such as cloth, paper, plastic sheets, rubber, etc., such as laser cutting for clothing, saving material 10 % ⁇ 12%, improve the efficacy by more than 3 times.
  • the laser cutting machine adopts a CNC machining system, which can realize extremely fine machining trajectory and real-time adjustment of laser power.
  • the laser cutting machine must ensure that the focus of the laser beam falls on the workpiece being cut, but due to the unevenness of the surface of the workpiece, this will lead to poor processing of the laser processing, excessive processing of the slit, incomplete cutting, and adhesion of the workpiece.
  • the problem affects the yield.
  • the system needs to increase the automatic height adjuster.
  • capacitive detection type which effectively solves the problem of high automatic adjustment in the metal cutting process.
  • it relies on the capacitance parameter as a feedback value, it cannot be used for cutting non-metallic materials.
  • the present invention provides a height pre-collection device for processing a workpiece surface, which collects workpiece information in advance, forms a workpiece height map, and adopts collection in the subsequent cutting process. Good information for Z-axis compensation of the machining height to achieve precise cutting height control of the CNC system.
  • the device uses a contact-type resistive displacement sensor to collect height information, which can be used to process non-metallic materials such as acrylic sheets and wood boards.
  • the workpiece flatness pre-acquisition system of the present invention comprises three parts: hardware composition, height information acquisition method, and cutting process compensation method.
  • the workpiece flatness pre-acquisition system hardware consists of two major parts, one is the Z-axis height-adjusting system, and the other is the motion control card.
  • the two work together through communication.
  • the Z-axis height adjustment system is the main hardware design part, responsible for height information acquisition and Z-axis motor drive, and is a subordinate actuator.
  • the motion control card is responsible for sending the height acquisition command and calculating the compensation value to the Z-axis height adjustment system, and sending it to the Z-axis height adjustment system for compensation to realize the control center function.
  • the motion control card uses the company's existing products.
  • the Z-axis height adjustment system consists of a motor drive part, a workpiece height acquisition part, and an information transmission part.
  • the motion control card only implements calculations and communications, without specific hardware instructions.
  • the motor drive part of the Z-axis height adjustment system is composed of a stepping motor and a lead screw.
  • the drive adopts a three-phase stepping motor subdivision drive design based on vector control.
  • the vector control current loop has a fast response speed; the speed loop can set the starting speed, acceleration, running speed, etc., and set corresponding parameters according to different load requirements; the position loop adopts a ladder motion locus, and the whole phase is accelerated, uniform, and decelerated.
  • the process consists of smooth operation.
  • the Z-axis height adjustment system uses a resistive displacement sensor with a displacement displacement of 50mm, which can adapt to the cutting height variation of most materials.
  • the signal acquisition converts the analog signal into a digital signal through 12-bit analog-to-digital conversion, and then converts it into height information. .
  • the Z-axis heightening system information transmission part consists of two parts:
  • the main transmission signal is the height information collected by the device, and the collected height information is transmitted to the motion control card by the N-BUS bus powered by the isolated power supply, N-
  • the maximum transfer rate of the BUS bus can reach 1 Mbit/s.
  • the main transmission signal is the height compensation signal sent to the Z-axis driver device.
  • the pulse width modulation signal is used.
  • the height compensation information is converted into a pulse width signal of the corresponding duty ratio and sent to the Z-axis driver device.
  • the analog voltage signal is used, and the compensation information of different heights is converted into the corresponding-sized analog voltage value information, and transmitted to the Z-axis driver device.
  • the different height information values directly send the digital information to the Z-axis driver device through the bus.
  • the pulse width modulation signal is used to actually transmit the signal.
  • the process of collecting height information according to the processing materials with different flatness and different flatness, set the number of height collection points, and all height collection positions are evenly distributed on the plane of the processing material.
  • the collection points can be appropriately increased. Density, the more collection points, the higher the amount of compensation information required for motion control card processing, the better the workpiece cutting effect.
  • the cutting head After the system collects the required height information, the cutting head returns to the machining origin and starts the machining process.
  • the motion control card sends the height compensation information to the Z-axis height adjustment system in real time through the pulse width modulation signal according to the running track and height information.
  • the Z axis is height compensated.
  • the overall process description of the device works: Before processing, firstly, the height information is collected, and the motion control card sends a height acquisition command to the Z-axis height adjustment system through the N-BUS bus.
  • the Z-axis height adjustment system collects the height information through the sensor, and passes the N -BUS bus feedback to the motion control card, the motion control card records the data, this process continues to collect all the position heights that need to be collected; next, the motion control card calculates the height compensation information of the entire processing area; during the processing, motion control
  • the card transmits the height compensation information of the corresponding position to the Z-axis height adjustment system through the pulse width modulation signal, and the Z-axis height adjustment system performs height compensation.
  • FIG. 1 is an overall block diagram of system hardware of the present invention
  • FIG. 2 is a block diagram of a main hardware Z-axis height adjustment system of the present invention
  • FIG. 3 is a block diagram of a motor driving part of the Z-axis height adjustment system of the present invention.
  • FIG. 4 is a block diagram of a high-acquisition part of the Z-axis height adjustment system of the present invention.
  • Figure 5 is a schematic diagram showing the collection method of the present invention.
  • the workpiece flatness pre-acquisition system hardware consists of two major parts, one is the Z-axis height-adjusting system, and the other is the motion control card. The two cooperate with each other through communication, and the block diagram structure is shown in Figure 1.
  • the Z-axis height adjustment system is the main hardware design part, responsible for height information acquisition and Z-axis motor drive, and is a subordinate actuator.
  • the motion control card is responsible for sending the height acquisition command and calculating the compensation value to the Z-axis height adjustment system, and sending it to the Z-axis height adjustment system for compensation to realize the control center function.
  • the Z-axis height adjustment system consists of a motor drive part, a workpiece height acquisition part, and an information transmission part. The structural relationship is shown in Fig. 2.
  • the Z-axis height adjustment system motor drive part adopts TI digital signal processor F2808 as the control core, all motor control SVPWM and so on are written and implemented; three-phase motor inverter adopts high current MOSFET tube 75NF75 to build; motor current closed loop needs to collect motor phase current The phase current is collected by the double resistance method; the motor driving part also has a temperature collecting circuit, an overcurrent protection circuit, a hardware braking circuit, and a voltage monitoring circuit;
  • the workpiece height acquisition part of the Z-axis height adjustment system uses a resistive displacement sensor with a displacement stroke of 50 mm.
  • the sensor signal processing circuit uses a differential operational amplifier to effectively reduce common mode noise.
  • the amplifier output adds an amplitude protection circuit to ensure that the signal does not exceed the allowable range of the analog-to-digital converter.
  • the analog-to-digital converter can achieve microsecond acquisition speed, and the 12-bit acquisition resolution of the F2808 chip effectively ensures the accuracy and reliability of the height signal. See Figure 4 for details.
  • the information transmission part of the Z-axis height adjustment system is transmitted from the Z-axis driver device to the motion control card, and is realized by the N-BUS bus of the invention.
  • the N-BUS bus uses an isolated power supply: a 5V DC power supply, provided by the master device, for signal isolation between the master device control system and the N-BUS bus. It is not mandatory to isolate the signal from the control system of the device to the N-BUS bus. If the signal is isolated, this circuit power supply is required.
  • the N-BUS bus consists of three input signals and one output signal. The input and output directions are determined by the direction of the master device. Input signals are defined as emergency stop signals, pause signals, and other signals. The output signal function is defined as the enable signal.
  • Z-axis height adjustment system information transmission part is compensated height data transmission from motion control card to Z-axis driver device, which is realized by pulse width modulation signal.
  • the signal period is specified, and the compensation height 0 value corresponds to 50% duty cycle pulse width.
  • the compensation value and the negative compensation value correspond to 50%----100% duty ratio and 0%----50% duty ratio, respectively.
  • the motion control card determines the height based on the information.
  • Point acquisition coordinates The motion control card controls the cutting head with the displacement sensor to move to the first collection point, and sends the acquisition height command to the Z-axis height adjustment system through the N-BUS bus. After the Z-axis height adjustment system completes the acquisition, the height information is passed through the N- The BUS bus is sent back to the motion control card, and the control card records the height value at this coordinate, and continues to move to another adjacent collection point, repeating the operation. Until all collection points are collected, the height information is completed.
  • Collection point distribution description According to the length and width of the material, it is divided into squares and collected in square form.
  • Figure 5 shows the specific acquisition method.
  • the motion control card calculates the height compensation information of the cutting trajectory in this area according to the height information of the adjacent four collection points.
  • the motion control card transmits the compensation information through the pulse width signal in real time.
  • the Z-axis immediately performs height following compensation. The height of the entire cutting process is automatically adjusted automatically based on the pre-stored height information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

一种用于数控激光切割***的工件平整度预采集装置,包括Z轴调高***和运动控制卡,两者通过通信相互配合;其中Z轴调高***负责高度信息采集和Z轴电机驱动,运动控制卡负责向Z轴调高***发送高度采集指令和计算补偿值,并发送给Z轴调高***进行补偿;Z轴调高***由电机驱动部分、工件高度采集部分、信息传输部分组成;采集高度信息的过程为:设置高度采集点个数,所有高度采集位置均匀的分布在加工材料平面上;***采集完所需的高度信息后,切割头回到加工原点,开始加工过程,加工过程中运动控制卡根据运行轨迹和高度信息对Z轴调高***通过脉宽调制信号实时发送高度补偿信息,Z轴进行高度补偿。

Description

一种用于数控激光切割***的工件平整度预采集装置 技术领域
本发明属于数控激光切割***自动调高控制技术领域,尤其适应激光切割机床加工对高度要求较粗糙的材料,比如:亚克力。
背景技术
激光切割机利用高功率密度激光束照射被切割材料,使材料很快被加热至汽化温度,蒸发形成孔洞,随着光束对材料的移动,孔洞连续形成宽度很窄的(如0.1mm左右)切缝,完成对材料的切割。
由于激光光斑小、能量密度高、切割速度快,因此激光切割能够获得较好的切割质量。激光切割成形技术在非金属材料领域有着较为广泛的应用。不仅可以切割硬度高、脆性大的材料,如氮化硅、陶瓷、石英等;还能切割加工柔性材料,如布料、纸张、塑料板、橡胶等,如用激光进行服装剪裁,可节约衣料10%~12%,提高功效3倍以上。
激光切割机均采用数控加工***,可实现极精细的加工轨迹和激光功率实时调节。激光切割机床必须保证激光束聚焦焦点正好落在被切割工件上,但是由于工件表面存在凹凸不平,这将导致激光加工出现加工不良的问题,切缝过宽、切割不彻底、工件粘连等实际加工问题,影响成品率。解决此类问题,***需增加自动调高器。目前市场激光切割自动调高器大多采用电容检测式,此方法有效解决金属切割过程中高度自动调节问题。但由于依赖电容参数作为反馈值,所以不能用于非金属材料的切割。
发明内容
针对上述所述激光切割调高***所存在的问题与不足之处,本发明提供一种加工工件表面高度预采集装置,事先采集工件信息,形成工件高度图,在接下来的切割过程中采用采集好的信息对加工高度进行Z轴补偿,实现数控***精确的切割高度控制。此装置采用接触式电阻式位移传感器采集高度信息,可以用在加工材料为非金属材料,比如:亚克力板、木板。
本发明所述的工件平整度预采集***包括三部分内容:硬件组成、高度信息采集方法、切割过程补偿方法。
(1)***硬件组成
工件平整度预采集***硬件由两大部分组成,一部分为Z轴调高***,一部分为运动控制卡。两者通过通信相互配合。其中Z轴调高***为主要硬件设计部分,负责高度信息采集和Z轴电机驱动,为从属执行机构。运动控制卡负责向Z轴调高***发送高度采集指令和计算补偿值,并发送给Z轴调高***进行补偿,实现控制中心功能。运动控制卡采用本公司已有产品。
Z轴调高***由电机驱动部分、工件高度采集部分、信息传输部分组成。运动控制卡仅实现计算和通信,不做具体硬件说明。
Z轴调高***电机驱动部分采用步进电机和丝杆组成,驱动采用基于矢量控制的三相步进电机细分驱动设计。采用矢量控制电流环响应速度快;速度环可以设置启动速度、加速度、运行速度等,根据不同的负载要求设置对应的参数;位置环采用梯形图运动轨迹,整个阶段由加速过程、匀速过程、减速过程构成,运转平稳。
Z轴调高***工件高度采集部分采用电阻式位移传感器,位移行程50mm,可以适应大多数材料的切割高度变化,信号采集通过12位模数转换把模拟信号转换为数字信号,然后转换为高度信息。
Z轴调高***信息传输部分包含两部分:
1.从Z轴调高***到运动控制卡方向的传输,主要传输信号为装置采集到的高度信息,采用隔离电源供电的N-BUS总线实现采集到的高度信息传送到运动控制卡,N-BUS总线的最高传输速率可以达到1Mbit/s。
2.从运动控制卡到Z轴调高***方向的传输,主要传输信号为下发到Z轴驱动器装置的高度补偿信号,这里可以采用三种方式传输,第一,采用脉宽调制信号,不同高度的补偿信息转换为相应占空比的脉宽信号发送到Z轴驱动器装置;第二,采用模拟电压信号,不同高度的补偿信息转换为相应大小的模拟电压值信息,传送到Z轴驱动器装置;第三,采用N-BUS总线信号,不同高度信息值通过总线直接把数字信息发送到Z轴驱动器装置。这里采用脉宽调制信号进行实际传输信号。
(2)高度信息采集方法
采集高度信息的过程,根据不同规格尺寸不同平整度的加工材料,设置高度采集点个数,所有高度采集位置均匀的分布在加工材料平面上,欲得到较详细的工件高度信息可以适当增加采集点密度,采集点越多需要运动控制卡处理的高度补偿信息计算量越大,工件切割效果越好。
(3)切割过程补偿方法
***采集完所需的高度信息后,切割头回到加工原点,开始加工过程,加工过程中运动控制卡根据运行轨迹和高度信息对Z轴调高***通过脉宽调制信号实时发送高度补偿信息,Z轴进行高度补偿。
此装置工作整体过程描述:进行加工之前,首先进行高度信息采集,运动控制卡通过N-BUS总线发送高度采集指令给Z轴调高***,Z轴调高***通过传感器采集完高度信息,通过N-BUS总线反馈给运动控制卡,运动控制卡记录下数据,此过程持续采集完所有需要采集的位置高度;接下来,运动控制卡计算整个加工区域的高度补偿信息;加工的过程中,运动控制卡通过脉宽调制信号把相应位置的高度补偿信息下发给Z轴调高***,Z轴调高***进行高度补偿。
附图说明:
图1为本发明的***硬件整体框图;
图2为本发明的主要硬件Z轴调高***框图;
图3为本发明Z轴调高***里电机驱动部分电路框图;
图4为本发明Z轴调高***里高度采集部分电路框图;
图5为本发明的采集方法说明示意图;
具体实施方式:
下面结合具体实施例和附图对本发明作进一步说明书,但不应以此限制本发明的保护范围。
1.***硬件组成
工件平整度预采集***硬件由两大部分组成,一部分为Z轴调高***,一部分为运动控制卡。两者通过通信相互配合,框图结构见图1。其中Z轴调高***为主要硬件设计部分,负责高度信息采集和Z轴电机驱动,为从属执行机构。运动控制卡负责向Z轴调高***发送高度采集指令和计算补偿值,并发送给Z轴调高***进行补偿,实现控制中心功能。
Z轴调高***由电机驱动部分、工件高度采集部分、信息传输部分组成,结构关系见图2。
Z轴调高***电机驱动部分采用TI数字信号处理器F2808作为控制核心,所有电机控制SVPWM等由此编写实现;三相电机逆变采用大电流MOSFET管75NF75搭建;电机电流闭环需采集电机相电流,采用双电阻法采集相电流;电机驱动部分还具有温度采集电路、过流保护电路、硬件刹车电路、电压监测电路;具体见图3。
Z轴调高***工件高度采集部分采用电阻式位移传感器,位移行程50mm。传感器信号处理电路采用差分运算放大器,有效减小共模噪声,放大器输出添加幅值保护电路,确保信号不超过模数转换器的允许范围。模数转换器可以实现微秒级的采集速度,F2808芯片12位的采集分辨率有效保证高度信号的准确可靠。具体见图4。
Z轴调高***信息传输部分由Z轴驱动器装置到运动控制卡的数据传输,采用自主发明的N-BUS总线实现。N-BUS总线采用隔离电源:5V直流电源,由主设备提供,用于主设备控制***与N-BUS总线的信号隔离。从设备的控制***与N-BUS总线是否信号隔离不做强制要求,如果信号隔离,需使用此路电源。
N-BUS总线具有3路输入信号和1路输出信号组成。输入、输出方向均以主设备方向确定。输入信号分别定义为急停信号、暂停信号和其它信号。输出信号功能定义为使能信号。
Z轴调高***信息传输部分由运动控制卡到Z轴驱动器装置的补偿高度数据传输,采用脉宽调制信号实现,这里规定信号周期,补偿高度0值对应50%的占空比脉宽,正向补偿值和负向补偿值分别对应50%----100%占空比和0%----50%占空比。
2.高度信息采集方法
首先在运动控制卡端设置加工材料的尺寸和欲采集的高度点个数,运动控制卡根据这些信息确定高度 点采集坐标。运动控制卡控制安装有位移传感器的切割头移动到第一个采集点,通过N-BUS总线发送采集高度的命令给Z轴调高***,Z轴调高***完成采集后把高度信息通过N-BUS总线传送回运动控制卡,控制卡记录下此坐标下高度值,继续移动到相邻另一个采集点,重复操作。直到所有采集点高度信息采集完成。
采集点分布说明:按照材料长度和宽度等距离划分,以方格形式采集。图5显示了具体的采集方法。
3.切割过程补偿方法
切割过程中,运动控制卡根据相邻4个采集点的高度信息计算在此区域内切割轨迹的高度补偿信息,切割头在沿轨迹进行切割过程中,运动控制卡实时通过脉宽信号发送补偿信息到Z轴调高***,Z轴立刻进行高度跟随补偿。整个切割过程高度都会自动根据预存的高度信息进行自动调整。

Claims (8)

  1. 一种用于数控激光切割***的工件平整度预采集装置,其特征在于:工件平整度预采集装置包括Z轴调高***和运动控制卡,两者通过通信相互配合;其中Z轴调高***负责高度信息采集和Z轴电机驱动,运动控制卡负责向Z轴调高***发送高度采集指令和计算补偿值,并发送给Z轴调高***进行补偿;Z轴调高***由电机驱动部分、工件高度采集部分、信息传输部分组成;
    其中,采集高度信息的过程为:设置高度采集点个数,所有高度采集位置均匀的分布在加工材料平面上;***采集完所需的高度信息后,切割头回到加工原点,开始加工过程,加工过程中运动控制卡根据运行轨迹和高度信息对Z轴调高***通过脉宽调制信号实时发送高度补偿信息,Z轴进行高度补偿。
  2. 根据权利要求1所述的用于数控激光切割***的工件平整度预采集装置,其特征在于:被加工材料的高度信息是预先采集记录,通过N-BUS总线传送给运动控制卡。
  3. 根据权利要求1所述的用于数控激光切割***的工件平整度预采集装置,其特征在于:运动控制卡根据采集的离散高度值,计算在相邻4个采集点构成的区域内的高度补偿信息。
  4. 根据权利要求1所述的用于数控激光切割***的工件平整度预采集装置,其特征在于:***可以根据被加工材料的平整度和尺寸信息,设定采集点间隔,适当调整采集密度。
  5. 根据权利要求1所述的用于数控激光切割***的工件平整度预采集装置,其特征在于:所采集的高度信息通过N-BUS总线,以1Mbit/s的速率传送给运动控制卡。
  6. 根据权利要求1所述的用于数控激光切割***的工件平整度预采集装置,其特征在于:在工件加工过程当中,运动控制卡在当前位置的高度补偿信息通过脉宽调制信号传输/模拟电压信号传输/N-BUS总线传输的方式下发给Z轴调高***,进行高度调整。
  7. 根据权利要求1所述的用于数控激光切割***的工件平整度预采集装置,其特征在于:***高度传感器采用电阻式线性位移传感器。
  8. 根据权利要求1所述的用于数控激光切割***的工件平整度预采集装置,其特征在于:Z轴调高***电机驱动采用矢量控制算法的细分驱动。
PCT/CN2016/000026 2016-01-15 2016-01-15 一种用于数控激光切割***的工件平整度预采集装置 WO2017120698A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/000026 WO2017120698A1 (zh) 2016-01-15 2016-01-15 一种用于数控激光切割***的工件平整度预采集装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/000026 WO2017120698A1 (zh) 2016-01-15 2016-01-15 一种用于数控激光切割***的工件平整度预采集装置

Publications (1)

Publication Number Publication Date
WO2017120698A1 true WO2017120698A1 (zh) 2017-07-20

Family

ID=59310570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000026 WO2017120698A1 (zh) 2016-01-15 2016-01-15 一种用于数控激光切割***的工件平整度预采集装置

Country Status (1)

Country Link
WO (1) WO2017120698A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238518A (zh) * 2021-05-06 2021-08-10 上海御微半导体技术有限公司 运动控制***及驱动器切换方法
CN113275766A (zh) * 2021-06-10 2021-08-20 广东宏石激光技术股份有限公司 激光切割***及激光切割方法
CN114346473A (zh) * 2022-01-12 2022-04-15 浙江圣石激光科技股份有限公司 一种用于滤光片的激光切割方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156593A (ja) * 2001-11-21 2003-05-30 Toshiba Corp 放射性長尺物の水中レーザ切断装置
CN101422848A (zh) * 2008-11-21 2009-05-06 陈伟良 一种应用于激光切割加工的测距对焦方法
CN103394814A (zh) * 2013-08-01 2013-11-20 江苏大德重工有限公司 激光切割机z轴电容调高***
CN105589412A (zh) * 2016-01-15 2016-05-18 北京热刺激光技术有限责任公司 一种用于数控激光切割***的工件平整度预采集装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156593A (ja) * 2001-11-21 2003-05-30 Toshiba Corp 放射性長尺物の水中レーザ切断装置
CN101422848A (zh) * 2008-11-21 2009-05-06 陈伟良 一种应用于激光切割加工的测距对焦方法
CN103394814A (zh) * 2013-08-01 2013-11-20 江苏大德重工有限公司 激光切割机z轴电容调高***
CN105589412A (zh) * 2016-01-15 2016-05-18 北京热刺激光技术有限责任公司 一种用于数控激光切割***的工件平整度预采集装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238518A (zh) * 2021-05-06 2021-08-10 上海御微半导体技术有限公司 运动控制***及驱动器切换方法
CN113238518B (zh) * 2021-05-06 2024-04-09 上海御微半导体技术有限公司 运动控制***及驱动器切换方法
CN113275766A (zh) * 2021-06-10 2021-08-20 广东宏石激光技术股份有限公司 激光切割***及激光切割方法
CN113275766B (zh) * 2021-06-10 2023-12-22 广东宏石激光技术股份有限公司 激光切割***及激光切割方法
CN114346473A (zh) * 2022-01-12 2022-04-15 浙江圣石激光科技股份有限公司 一种用于滤光片的激光切割方法

Similar Documents

Publication Publication Date Title
WO2017120698A1 (zh) 一种用于数控激光切割***的工件平整度预采集装置
CN107276405B (zh) 微细电火花脉冲电源及基于该电源的分段控制方法
CN108380988B (zh) 一种电火花线切割脉冲电源及其控制方法
CN104493332B (zh) 一种基于电弧摆动自调节传感机构的焊缝跟踪控制方法
WO2021027314A1 (zh) 一种超声刀谐振频率跟踪自动复位方法及其设备
CN105290548A (zh) 多轴联动超声调制微细电解加工***
CN109202290A (zh) 一种增减材复合制造装备及方法
CN104690138A (zh) 一种镁合金板材超声振动单点渐进成形装置及其渐进成形方法
CN206010148U (zh) 一种均匀控制激光功率的***
TWI559108B (zh) 糾偏控制方法、控制器及糾偏控制系統
CN105589412A (zh) 一种用于数控激光切割***的工件平整度预采集装置
CN104007698B (zh) 伺服压力机加工工艺曲线轨迹规划方法
CN111843190A (zh) 激光加工设备和激光加工设备的校准方法
CN204247805U (zh) 高效多工位组合式门框冲压设备
CN109719085A (zh) 一种具有焦点跟踪功能的激光清洗装置
CN212555085U (zh) 一种用于超声波焊接力调整的机构
CN103331782B (zh) 利用热切割技术的泡沫切割机
CN204470780U (zh) 一种激光测距对标雕刻机
CN107728579B (zh) 用于相异形态的主轴协同数控***及其方法
CN114474036B (zh) 高效力控装置及其高效力控方法
CN203338080U (zh) 一种用于机床变形补偿的电气控制装置
CN203392577U (zh) 一种自动纠偏装置
CN219925198U (zh) 一种冲压模具生产用数控车床
CN103853098B (zh) 一种应用于雕铣机的伺服位置控制方法
CN117261241A (zh) 一种大功率激光辅助加热3d打印控制***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 21/09/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16884262

Country of ref document: EP

Kind code of ref document: A1