WO2017119249A1 - Multilayer substrate and method for manufacturing multilayer substrate - Google Patents

Multilayer substrate and method for manufacturing multilayer substrate Download PDF

Info

Publication number
WO2017119249A1
WO2017119249A1 PCT/JP2016/087171 JP2016087171W WO2017119249A1 WO 2017119249 A1 WO2017119249 A1 WO 2017119249A1 JP 2016087171 W JP2016087171 W JP 2016087171W WO 2017119249 A1 WO2017119249 A1 WO 2017119249A1
Authority
WO
WIPO (PCT)
Prior art keywords
multilayer substrate
insulator layer
resin
insulator
package component
Prior art date
Application number
PCT/JP2016/087171
Other languages
French (fr)
Japanese (ja)
Inventor
濱田 秀
茂 多胡
博史 品川
雅樹 川田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201690001339.6U priority Critical patent/CN208338048U/en
Publication of WO2017119249A1 publication Critical patent/WO2017119249A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a multilayer substrate and a method for manufacturing the multilayer substrate, and more particularly to a multilayer substrate including a base material on which an insulating layer made of a thermoplastic resin is laminated, and a method for manufacturing the multilayer substrate.
  • FIG. 26 is a cross-sectional structure diagram when the resin multilayer substrate 500 is manufactured.
  • the resin multilayer substrate 500 includes resin sheets 502a to 502d and components 503a and 503b. Through holes 514a and 514b are provided in the resin sheets 502b and 502c, respectively. Cavities 505a and 505b are formed by laminating such resin sheets 502b to 502d. Then, after the components 503a and 503b are accommodated in the cavities 505a and 505b, respectively, the resin sheet 502a is laminated on the resin sheet 502b. Thereby, the resin multilayer substrate 500 incorporating the components 503a and 503b is obtained.
  • an object of the present invention is to provide a multilayer substrate and a method for manufacturing the multilayer substrate that can improve the flatness of the main surface of the base material.
  • a multilayer substrate includes a base material formed by laminating a plurality of insulator layers made of a material including a first resin, which is a thermoplastic resin, in the stacking direction, and the base A package component embedded in a material, the package component having first and second planes positioned at both ends in the stacking direction and substantially perpendicular to the stacking direction.
  • the package component includes a first electronic component and a coating member made of a material containing a second resin and covering at least a part of the surface of the first electronic component.
  • the Young's modulus of the second resin is larger than the Young's modulus of the first resin at the softening point temperature of the first resin, and at least a part of the first plane and the second plane. At least a portion of It is constituted by coating member, and wherein.
  • At least a part of the surface of the first electronic component is covered with a coating member, so that it is positioned at both ends in the stacking direction and substantially in the stacking direction.
  • the coating member is made of a material containing a second resin, and the Young's modulus of the second resin is the first resin at the temperature of the heat treatment. Greater than Young's modulus It features a.
  • the flatness of the main surface of the substrate can be improved.
  • FIG. 1 is a cross-sectional structure diagram of an electronic device 10 including a multilayer substrate 20 according to an embodiment of the present invention.
  • FIG. 2A is a sectional view of the multilayer substrate 20.
  • FIG. 2B is an exploded view of the multilayer substrate 20.
  • FIG. 3A is a view of the electronic component 81 as viewed from above.
  • FIG. 3B is a view of the electronic component 81 as viewed from the front side.
  • FIG. 3C is a view of the package component 80 as viewed from above.
  • FIG. 3D is a view of the package component 80 as viewed from the front side.
  • FIG. 4A is a perspective view when the package component 80 is manufactured.
  • FIG. 4B is a perspective view when the package component 80 is manufactured.
  • FIG. 4A is a perspective view when the package component 80 is manufactured.
  • FIG. 4B is a perspective view when the package component 80 is manufactured.
  • FIG. 4C is a perspective view when the package component 80 is manufactured.
  • FIG. 4D is a perspective view when the package component 80 is manufactured.
  • FIG. 5A is a perspective view when the package component 80 is manufactured.
  • FIG. 5B is a perspective view when the package component 80 is manufactured.
  • FIG. 5C is a perspective view when the package component 80 is manufactured.
  • FIG. 5D is a perspective view when the package component 80 is manufactured.
  • FIG. 5E is a cross-sectional structure diagram when the multilayer substrate 20 is manufactured.
  • FIG. 6A is a cross-sectional structure diagram when the multilayer substrate 20 is manufactured.
  • FIG. 6B is a cross-sectional structure diagram when the multilayer substrate 20 is manufactured.
  • FIG. 7 is a cross-sectional structure diagram when the multilayer substrate 20 is manufactured.
  • FIG. 8 is a cross-sectional structure diagram of the multilayer substrate 20a.
  • FIG. 9A is a perspective view at the time of manufacturing the package component 80 and the insulator sheet 23.
  • FIG. 9B is a perspective view at the time of manufacturing the package component 80 and the insulator sheet 23.
  • FIG. 9C is a perspective view at the time of manufacturing the package component 80 and the insulator sheet 23.
  • FIG. 9D is a perspective view at the time of manufacturing the package component 80 and the insulator sheet 23.
  • FIG. 10 is a cross-sectional structure diagram when the multilayer substrate 20a is manufactured.
  • FIG. 11 is a cross-sectional structure diagram when the multilayer substrate 20a is manufactured.
  • FIG. 12 is a cross-sectional structure diagram of the multilayer substrates 20b and 20g.
  • FIG. 13 is a cross-sectional structure diagram when the multilayer substrates 20b and 20g are manufactured.
  • FIG. 14 is a cross-sectional structure diagram when the multilayer substrates 20b and 20g are manufactured.
  • FIG. 15 is a cross-sectional structure diagram of the multilayer substrates 20b and 20g during manufacturing.
  • FIG. 16 is a cross-sectional structure diagram of the multilayer substrates 20b and 20g during manufacturing.
  • FIG. 17 is a cross-sectional structure diagram of the multilayer substrate 20c.
  • FIG. 18 is a cross-sectional structure diagram when the multilayer substrate 20c is manufactured.
  • FIG. 19A is a cross-sectional structure diagram when the multilayer substrate 20c is manufactured.
  • FIG. 19B is a cross-sectional structure diagram when the multilayer substrate 20c is manufactured.
  • FIG. 20 is a cross-sectional structure diagram of the multilayer substrate 20d.
  • FIG. 21 is a sectional view of the multilayer substrate 20e.
  • FIG. 22 is a sectional view of the multilayer substrate 20f.
  • FIG. 23 is an external perspective view of the package component 80 of the multilayer board 20g.
  • FIG. 24A is a view of the package component 80 as viewed from above.
  • FIG. 24B is a cross-sectional structure diagram along AA in FIG. 24A.
  • 24C is a cross-sectional structure diagram taken along line BB in FIG. 24A.
  • FIG. 25 is an external perspective view of the package component 80 whose upper and lower surfaces are constituted by the external electrodes 84 a and 84 b and the coating member 86.
  • FIG. 26 is a cross-sectional structure diagram when the resin multilayer substrate 500 is manufactured.
  • FIG. 1 is a cross-sectional structure diagram of an electronic device 10 including a multilayer substrate 20 according to an embodiment of the present invention.
  • FIG. 2A is a sectional view of the multilayer substrate 20.
  • FIG. 2B is an exploded view of the multilayer substrate 20.
  • FIG. 3A is a view of the electronic component 81 as viewed from above.
  • FIG. 3B is a view of the electronic component 81 as viewed from the front side.
  • FIG. 3C is a view of the package component 80 as viewed from above.
  • 3D is a view of the package component 80 as viewed from the front side.
  • the via-hole conductors v100 and v102 are omitted.
  • the stacking direction of the multilayer substrate 20 is defined as the vertical direction.
  • 1, 2A, and 2B is defined as the front-rear direction (an example of the second orthogonal direction), and the left-right direction of the paper in FIGS. Example).
  • the up-down direction, the left-right direction, and the front-rear direction are orthogonal to each other.
  • the electronic device 10 is, for example, a mobile phone, a personal computer, a game machine, a wearable terminal, or the like.
  • FIG. 1 only modules and mother boards provided in the electronic device 10 are illustrated, and the casing of the electronic device 10 and other configurations are omitted.
  • the electronic device 10 includes a multilayer substrate 20, electronic components 60 and 70, and a mother substrate 100.
  • the multilayer substrate 20 is a plate-shaped resin substrate having a rectangular shape when viewed from above.
  • the long side extends in the left-right direction and the short side extends in the front-rear direction.
  • the multilayer substrate 20 includes a base material 22, external electrodes 24a to 24d, 26a and 26b, circuit conductor layers 28a to 28e, 29a to 29e, via-hole conductors v1 to v7, v11 to v17, v100, and v102.
  • the package part 80 is provided.
  • the external electrodes are provided in addition to the external electrodes 24a to 24d, 26a, and 26b, but the external electrodes other than the external electrodes 24a to 24d, 26a, and 26b are omitted in FIGS.
  • the circuit conductor layers are provided in addition to the circuit conductor layers 28a to 28e and 29a to 29e, but the circuit conductor layers other than the circuit conductor layers 28a to 28e and 29a to 29e are shown in FIGS. Omitted.
  • via-hole conductors are provided in addition to the via-hole conductors v1 to v7 and v11 to v17, but the via-hole conductors other than the via-hole conductors v1 to v7 and v11 to v17 are omitted in FIGS. 1 and 2A.
  • the base material 22 is a flexible plate-like member having a rectangular shape when viewed from above, as shown in FIG. 2A.
  • the base material 22 is a laminate in which insulator sheets 22a to 22g (an example of a plurality of insulator layers) are laminated in this order from the upper side to the lower side.
  • the base material 22 has two main surfaces.
  • the upper main surface of the base material 22 is referred to as a front surface
  • the lower main surface of the base material 22 is referred to as a back surface.
  • the back surface of the base material 22 is a mounting surface that faces the mother substrate 100 when the multilayer substrate 20 is mounted.
  • the insulator sheets 22a to 22g have a rectangular shape when viewed from above, and have the same shape as the base material 22.
  • the insulator sheets 22a to 22g are made of a material including a flexible thermoplastic resin (an example of a first resin) such as polyimide or liquid crystal polymer.
  • a flexible thermoplastic resin an example of a first resin
  • the upper main surface of the insulator sheets 22a to 22g is referred to as a front surface
  • the lower main surface of the insulator sheets 22a to 22g is referred to as a back surface.
  • through holes H1 to H3 having a rectangular shape when viewed from above are provided at the centers (near the intersections of the diagonal lines) of the insulator sheets 22b to 22d, respectively.
  • the through holes H1 to H3 are formed so as to connect the front and back surfaces of the insulator sheets 22b to 22d, respectively. Further, the outer edges of the through holes H1 to H3 overlap each other when viewed from above. Therefore, the through holes H1 to H3 are connected to one.
  • the upper opening of the through hole H1 is closed by the insulator sheet 22a.
  • the opening on the lower side of the through hole H3 is blocked by the insulator sheet 22e.
  • a rectangular parallelepiped space Sp in which the through holes H1 to H3 are connected is formed in the base material 22.
  • the package component 80 is built in the base material 22 and has a rectangular parallelepiped shape.
  • a surface positioned on the upper side is referred to as an upper surface (an example of the first plane)
  • a surface positioned on the lower side Is called the lower surface (an example of the second plane)
  • the front surface is called the front surface
  • the rear surface is called the rear surface
  • the right surface is called the right surface
  • the left surface is Called the left side.
  • the upper surface, the lower surface, the front surface, the rear surface, the right surface, and the left surface are substantially flat.
  • the upper surface and the lower surface are planes that are substantially perpendicular to the vertical direction.
  • the front surface, the rear surface, the right surface, and the left surface are planes that are substantially perpendicular to the upper surface and the lower surface and substantially parallel to the vertical direction.
  • the front surface, the rear surface, the right surface, and the left surface may be collectively referred to as a side surface.
  • chamfering is not performed on the joint portions of the upper surface, the lower surface, the front surface, the rear surface, the right surface, and the left surface, but the joint portions may be chamfered. It should be noted that being substantially flat and being substantially parallel or vertical means that it is allowed to slightly deviate from the plane or slightly deviate from parallel or vertical due to manufacturing variations.
  • the package component 80 is accommodated in the space Sp. Thereby, the package component 80 penetrates the insulator sheets 22b to 22d in the vertical direction. Furthermore, the back surface of the insulator sheet 22 a is in contact with the upper surface of the package component 80, and the surface of the insulator sheet 22 e (an example of the first insulator layer) is in contact with the lower surface of the package component 80. Further, the inner peripheral surfaces of the through holes H 1 to H 3 are in contact with the side surfaces of the package component 80. Further, the insulator sheets 22a to 22e are fixed to the package component 80. More specifically, as will be described later, the insulator sheets 22a to 22g are solidified after being softened in the thermocompression bonding process of the base material 22.
  • the insulating sheets 22a to 22g are softened, the insulating sheets 22a to 22e are formed in the gaps between the inner peripheral surface of the space Sp and the upper, lower, and side surfaces (hereinafter also referred to as surfaces) of the package component 50.
  • the gaps are filled, and the gaps are filled with the insulator sheets 22a to 22e.
  • the insulator sheets 22a to 22e are solidified, the inner peripheral surface of the space Sp and the surface of the package component 50 are fixed and are not easily separated.
  • the package component 80 includes an electronic component 81 (an example of a first electronic component) and a coating member 86, as shown in FIGS. 2A and 3A to 3D.
  • the electronic component 81 is, for example, a chip-type electronic component such as a capacitor or an inductor, and includes a main body 82 (an example of a first main body) and external electrodes 84 and 84b.
  • the main body 82 is a rectangular parallelepiped member made of a material such as ceramic, and includes circuit elements (not shown) such as capacitors and inductors therein.
  • the external electrode 84 a (an example of the first external electrode) is provided on the surface of the main body 82, and is provided on either the upper surface or the lower surface of the main body 82.
  • the external electrode 84a covers the entire left surface of the main body 82 (an example of a surface on one side in the first orthogonal direction) and is an area adjacent to the left surface, and has an upper surface (one side in the stacking direction).
  • the external electrode 84 b is provided on either the upper surface or the lower surface of the main body 82.
  • the external electrode 84b is provided on the surface of the main body 82.
  • the external electrode 84b covers the entire right surface of the main body 82 and is adjacent to the right surface, and includes an upper surface, a lower surface, a front surface, and a front surface. It covers a part of the rear surface.
  • the external electrodes 84a and 84b are formed, for example, by performing nickel plating and tin plating on a base electrode formed by applying a conductive paste mainly composed of silver or the like.
  • the coating member 86 is made of a material containing a thermosetting resin (an example of a second resin) such as an epoxy resin, and covers at least a part of the surface of the electronic component 81. Thereby, at least a part of the upper surface of the package component 80 and at least a part of the lower surface of the package component 80 are constituted by the coating member 86. In the present embodiment, the coating member 86 covers the entire surface of the electronic component 81. Therefore, the electronic component 81 is not exposed from the coating member 86. The entire upper surface of the package component 80 and the entire lower surface of the package component 80 are constituted by a coating member 86.
  • the lower surface of the coating member 86 (that is, the lower surface of the package component 80)
  • through holes for via-hole conductors v100 and v102 described later are provided on the lower surface of the coating member 86 (that is, the lower surface of the package component 80). Therefore, the lower surface of the coating member 86 (that is, the lower surface of the package component 80) is recessed in the through hole. However, since the through hole is small, the lower surface of the coating member 86 (that is, the lower surface of the package component 80) is interpreted as a plane for convenience.
  • the Young's modulus of a thermosetting resin such as an epoxy resin used for the coating member 86 at the softening point temperature of a thermoplastic resin such as polyimide or liquid crystal polymer used for the insulator sheets 22a to 22g is as follows. It is larger than the Young's modulus of thermoplastic resins such as polyimide and liquid crystal polymer used for 22g.
  • the softening point is the temperature at which the temperature of the resin rises and begins to deform.
  • the softening point of polyimide is 120 ° C., for example, and the softening point of liquid crystal polymer is 150 ° C., for example.
  • the softening point means a value measured according to the method described in JIS K7206.
  • the linear expansion coefficient of a thermosetting resin such as an epoxy resin used for the coating member 86 is equal to or higher than the linear expansion coefficient of the material (ceramic) of the main body 82, and polyimide or the like used for the insulator sheets 22a to 22g. It is below the linear expansion coefficient of thermoplastic resins, such as a liquid crystal polymer. More specifically, the linear expansion coefficient of the ceramic is, for example, about 7 ⁇ 10 ⁇ 6 / ° C., the linear expansion coefficient of the liquid crystal polymer is, for example, about 16 ⁇ 10 ⁇ 6 / ° C., and the linear expansion coefficient of the epoxy resin. Is, for example, about 10 ⁇ 10 ⁇ 6 / ° C. However, the linear expansion coefficient of the epoxy resin may be adjusted by the amount of filler added to the epoxy resin.
  • the external electrodes 24a to 24d are rectangular conductor layers and are provided on the surface of the insulator sheet 22a.
  • the external electrodes 24a to 24d are arranged in this order from the left side to the right side.
  • the external electrodes 26a and 26b are rectangular conductor layers, and are provided on the back surface of the insulator sheet 22g.
  • the external electrodes 26a and 26b are arranged in this order from the left side to the right side.
  • the circuit conductor layers 28a to 28e and 29a to 29e are conductor layers provided on the surfaces of the insulator sheets 22b to 22f, respectively, and constitute a part of the circuit in the multilayer substrate 20.
  • the circuit conductor layers 28a to 28e and 29a to 29e are linear wirings in FIG. 2, but may be capacitor conductors, ground conductors, or the like having a rectangular shape.
  • the circuit conductor layers 28 a to 28 e extend in the left-right direction on the left side with respect to the package component 80. However, the right end of the circuit conductor layer 28e overlaps with the package component 80 when viewed from above.
  • the circuit conductor layers 29 a to 29 e extend in the left-right direction on the right side with respect to the package component 80. However, the left end of the circuit conductor layer 29e overlaps with the package component 80 when viewed from above.
  • the material of the circuit conductor layers 28a to 28e, 29a to 29e and the external electrodes 24a to 24d, 26a, and 26b as described above is, for example, a metal foil made of copper.
  • the surface of the circuit conductor layers 28a to 28e, 29a to 29e and the external electrodes 24a to 24d, 26a and 26b is plated with zinc to reduce the surface roughness.
  • the surface roughness of the main surfaces of the circuit conductor layers 28a to 28e, 29a to 29e and the external electrodes 24a to 24d, 26a, and 26b that are in contact with the insulator sheets 22a to 22g is the circuit conductor layers 28a to 28e, 29a.
  • the surface roughness of the main surfaces not contacting the insulator sheets 22a to 22g is larger.
  • the circuit conductor layers 28a to 28e, 29a to 29e, the external electrodes 24a to 24d, 26a and 26b, and the insulator sheets 22a to 22g are made of the circuit conductor layers 28a to 28e, 29a to 29e and external electrodes 24a to 24d, 26a and 26b are physically fixed by entering into the irregularities, and are not chemically bonded. For this reason, there is almost no foreign matter such as a resin serving as an adhesive component at the boundary between the circuit conductor layers 28a to 28e, 29a to 29e, the external electrodes 24a to 24d, 26a and 26b, and the insulator sheets 22a to 22g. .
  • the via-hole conductors v1 to v7 are interlayer connection conductors that penetrate the insulating sheets 22a to 22g in the vertical direction, respectively.
  • Each of the via-hole conductors v1 to v6 has a shape that becomes thicker from the upper side to the lower side.
  • the via-hole conductor v7 has a shape that becomes thinner from the upper side to the lower side.
  • the via-hole conductor v1 connects the external electrode 24a and the circuit conductor layer 28a.
  • the via-hole conductor v2 connects the circuit conductor layer 28a and the circuit conductor layer 28b.
  • the via-hole conductor v3 connects the circuit conductor layer 28b and the circuit conductor layer 28c.
  • the via-hole conductor v4 connects the circuit conductor layer 28c and the circuit conductor layer 28d.
  • the via-hole conductor v5 connects the circuit conductor layer 28d and the circuit conductor layer 28e.
  • the via hole conductor v6 and the via hole conductor v7 are connected to each other to form a series of via hole conductors.
  • the via-hole conductors v6 and v7 connect the circuit conductor layer 28e and the external electrode 26a. Thereby, the external electrode 24a and the external electrode 26a are electrically connected.
  • Via-hole conductors v11 to v17 are interlayer connection conductors penetrating the insulating sheets 22a to 22g in the vertical direction, respectively.
  • Each of the via-hole conductors v11 to v16 has a shape that becomes thicker from the upper side to the lower side.
  • the via-hole conductor v17 has a shape that becomes thinner from the upper side to the lower side.
  • the via-hole conductor v11 connects the external electrode 24b and the circuit conductor layer 29a.
  • the via-hole conductor v12 connects the circuit conductor layer 29a and the circuit conductor layer 29b.
  • the via-hole conductor v13 connects the circuit conductor layer 29b and the circuit conductor layer 29c.
  • the via-hole conductor v14 connects the circuit conductor layer 29c and the circuit conductor layer 29d.
  • the via-hole conductor v15 connects the circuit conductor layer 29d and the circuit conductor layer 29e.
  • the via hole conductor v16 and the via hole conductor v17 constitute a series of via hole conductors by being connected to each other.
  • the via-hole conductors v16 and v17 connect the circuit conductor layer 29e and the external electrode 26b. Thereby, the external electrode 24d and the external electrode 26b are electrically connected.
  • the via-hole conductor v100 (an example of a connection conductor) penetrates the coating member 86 and the insulating sheet 22e in the vertical direction, and connects the external electrode 84a and the circuit conductor layer 28e. More specifically, the upper end of the via hole conductor v100 is connected to the external electrode 84a, and the lower end of the via hole conductor v100 is connected to the circuit conductor layer 28e.
  • the via-hole conductor v100 penetrates the coating member 86 existing between the external electrode 84a and the lower surface of the package component 80 in the vertical direction and penetrates the insulator sheet 22e in the vertical direction. Therefore, the via-hole conductor v100 passes through the lower surface of the package component 80.
  • the via-hole conductor v102 penetrates the coating member 86 and the insulating sheet 22e in the vertical direction, and connects the external electrode 84b and the circuit conductor layer 29e. More specifically, the upper end of the via hole conductor v102 is connected to the external electrode 84b, and the lower end of the via hole conductor v102 is connected to the circuit conductor layer 29e.
  • the via-hole conductor v102 penetrates the coating member 86 existing between the external electrode 84b and the lower surface of the package component 80 in the vertical direction and penetrates the insulator sheet 22e in the vertical direction. Therefore, the via-hole conductor v102 passes through the lower surface of the package component 80.
  • Via-hole conductors v1 to v7, v11 to v17, v100, and v102 are solidified conductive pastes mainly composed of metals such as copper, tin, and silver.
  • the material of the via-hole conductors v1 to v7 and v11 to v17 and the material of the via-hole conductors v100 and v102 are the same.
  • the electronic components 60 and 70 are electronic components mounted on the surface of the base material 22 and are, for example, semiconductor integrated circuits. However, the electronic components 60 and 70 may be chip-type electronic components such as capacitors and inductors.
  • the electronic component 60 includes a main body 60a and external electrodes 62a and 62b.
  • the main body 60a has a rectangular parallelepiped shape.
  • the external electrodes 62a and 62b are provided on the lower surface of the main body 60a, and are arranged in this order from the left side to the right side.
  • the external electrodes 62a and 62b are connected to the external electrodes 24a and 24b, for example, by solders 64a and 64b.
  • the electronic component 70 includes a main body 70a and external electrodes 72a and 72b.
  • the main body 70a has a rectangular parallelepiped shape.
  • the external electrodes 72a and 72b are provided on the lower surface of the main body 70a, and are arranged in this order from the left side to the right side.
  • the external electrodes 72a and 72b are connected to the external electrodes 24c and 24d by, for example, solders 74a and 74b.
  • the mother board 100 is a large circuit board used for a mobile phone or the like.
  • the mother substrate 100 is basically a hard substrate that does not have flexibility, but may have flexibility.
  • the mother substrate 100 includes a main body 102 and external electrodes 104a and 104b.
  • the main body 102 is a plate-shaped multilayer substrate having a rectangular shape when viewed from above.
  • An electric circuit is formed inside and on the surface of the main body 102.
  • the upper main surface of the main body 102 is referred to as a front surface
  • the lower main surface of the main body 102 is referred to as a back surface.
  • a surface mount type component, a shield case, or the like may be mounted on at least one of the front surface and the back surface of the mother substrate 100.
  • the external electrodes 104 a and 104 b are rectangular conductor layers and are provided on the surface of the main body 102.
  • the external electrodes 104a and 104b are arranged in this order from the left side to the right side.
  • the mother substrate 100 may further be provided with external electrodes (not shown) other than the external electrodes 104a and 104b.
  • the multilayer substrate 20 is mounted on the surface of the mother substrate 100. More specifically, the external electrodes 26a and 26b are mounted on the external electrodes 104a and 104b by solders 110a and 110b, respectively.
  • FIGS. 5A to 5D are perspective views when the package component 80 is manufactured. 4A to 4D and 5A to 5D that the electronic component 81 is indicated by a dotted line means that the electronic component 81 is present in the resin. 5E, FIG. 6A, FIG. 6B, and FIG. 7 are cross-sectional structure diagrams when the multilayer substrate 20 is manufactured.
  • a case where one multilayer substrate 20 is manufactured will be described as an example, but actually, a plurality of multilayer substrates 20 are manufactured simultaneously by laminating and cutting large-sized insulator sheets.
  • the manufacturing method of the package component 80 will be described with reference to FIGS. 4A to 4D and FIGS. 5A to 5D.
  • this step an example of the first step
  • the package component 80 is formed by covering the entire surface of the electronic component 81 with the coating member 86.
  • a plurality of electronic components 81 are arranged on a resin sheet 200 such as a PET film.
  • a resin sheet 200 such as a PET film.
  • the material containing the UV curable epoxy resin is irradiated with UV.
  • the resin layer 202 is formed.
  • the plurality of electronic components 81 are buried in the resin layer 202.
  • the upper surface of the resin layer 202 is polished with a grinder to adjust the vertical thickness of the resin layer 202 to an appropriate value, and the upper surface of the resin layer 202 is flattened.
  • the resin sheet 200 is peeled from the plurality of electronic components 81 and the resin layer 202. At this time, a part of the external electrodes 84 a and 84 b is exposed from the resin layer 202.
  • the resin sheet 201 is attached to the lower surfaces of the plurality of electronic components 81 and the resin layer 202.
  • a liquid material containing a UV curable epoxy resin is applied onto the resin layer 202, and then the material containing the UV curable epoxy resin is irradiated with UV.
  • the resin layer 203 is formed. Thereby, the plurality of electronic components 81 are buried in the resin layers 202 and 203 and are not exposed to the outside.
  • the resin layer 203 may be formed in advance, a plurality of electronic components 81 may be disposed on the resin layer 203, and the resin layer 202 may be formed on the resin layer 203.
  • the upper surface of the resin layer 203 is polished by a grinder to adjust the vertical thickness of the resin layers 202 and 203 to an appropriate value, and the upper surface of the resin layer 203 is flattened.
  • the resin layers 202 and 203 are cut with a dicer, and then the resin sheet 201 is peeled from the resin layer 203. Thereby, a plurality of package parts 80 are completed.
  • insulator sheets 22a to 22g made of a liquid crystal polymer are prepared.
  • a copper foil is formed on the entire main surface of one of the insulator sheets 22a to 22g. Specifically, copper foil is attached to the surfaces of the insulator sheets 22a to 22f. A copper foil is attached to the back surface of the insulator sheet 22g. Furthermore, the surface of the copper foils of the insulator sheets 22a to 22g is smoothed by, for example, applying zinc plating for rust prevention. In addition, metal foils other than copper foil may be used.
  • through holes H1 to H3 are formed in the insulating sheets 22b to 22d.
  • the through holes H1 to H3 are formed, for example, by irradiating a laser beam from the back surfaces of the insulator sheets 22b to 22d.
  • the through holes H1 to H3 may be formed by punching the insulating sheets 22b to 22d by punching.
  • the external electrodes 24a to 24d are formed on the surface of the insulator sheet 22a as shown in FIG. 2A.
  • a resist having the same shape as the external electrodes 24a to 24d shown in FIG. 3 is printed on the copper foil on the surface of the insulating sheet 22a.
  • the copper foil of the part which is not covered with the resist is removed by performing an etching process with respect to copper foil. Thereafter, the resist is removed by spraying a cleaning liquid (resist removing liquid).
  • a cleaning liquid resist removing liquid
  • circuit conductor layers 28a and 29a are formed on the surface of the insulator sheet 22b. Further, as shown in FIG. 2A, circuit conductor layers 28b and 29b are formed on the surface of the insulator sheet 22c. Further, as shown in FIG. 2A, circuit conductor layers 28c and 29c are formed on the surface of the insulator sheet 22d. Further, as shown in FIG. 2A, circuit conductor layers 28d and 29d are formed on the surface of the insulator sheet 22e. Further, as shown in FIG. 2A, circuit conductor layers 28e and 29e are formed on the surface of the insulator sheet 22f. As shown in FIG.
  • the external electrodes 26a and 26b are formed on the back surface of the insulating sheet 22g.
  • the process of forming the circuit conductor layers 28a to 28e, 29a to 29e and the external electrodes 26a and 26b is the same as the process of forming the external electrodes 24a and 24b, and the description thereof will be omitted.
  • the step of forming the through holes H1 to H3 may be performed after the step of forming the external electrodes 24a, 24b, 26a, 26b and the circuit conductor layers 28a to 28e, 29a to 29e.
  • a through hole is formed by irradiating a laser beam at a position where the via-hole conductors v1 to v4, v6, v7, v11 to v14, v16, and v17 are formed. Then, the through hole is filled with a conductive paste whose main component is a metal such as copper, tin or silver.
  • an insulator sheet 22e (an example of a first insulator layer) that contacts the lower surface of the package component 80, and an upper side (an example of one side in the stacking direction) of the insulator sheet 22e.
  • the insulating sheets 22a to 22e are stacked so as to incorporate the package component 80 in the insulating sheets 22a to 22d (an example of the third insulating layer) stacked on (4). That is, after the insulating sheets 22a to 22d are stacked, the package component 80 is inserted into the through holes H1 to H3 from the lower side, and the insulating sheet 22e is stacked on the lower side of the insulating sheet 22d.
  • the insulator sheets 22a to 22e are subjected to heat treatment and pressure treatment (thermocompression treatment), and the insulator sheets 22a to 22e are thermocompression bonded (hereinafter, this process is also referred to as a primary press).
  • the heat treatment is performed at a temperature not lower than the softening point of the thermoplastic resin constituting the insulating sheets 22a to 22g and at which the thermosetting resin constituting the coating member 86 is not decomposed (for example, 260 ° C. to 290 ° C.).
  • this heat treatment temperature it is sufficient that the thermosetting resin constituting the coating member 86 does not soften more greatly than the thermoplastic resin constituting the insulator sheets 22a to 22g.
  • Softening means that Young's modulus becomes small.
  • the Young's modulus of the resin that constitutes the coating member 86 only needs to be larger than the Young's modulus of the resin that constitutes the insulator sheets 22a to 22g under the same heat treatment temperature condition.
  • the insulator sheets 22a to 22e are softened and the conductive paste in the through holes is solidified.
  • the insulator sheets 22a to 22e are joined together, and the via-hole conductors v1 to v4 and v11 to v14 are formed.
  • thermoplastic resin of the insulator sheets 22a to 22e is softened by thermocompression, so that the thermoplastic resin flows into the gap formed between the inner peripheral surface of the space Sp and the surface of the package component 80. Thereafter, the insulator sheets 22a to 22e are cooled to solidify the thermoplastic resin, and the inner peripheral surface of the space Sp and the surface of the package component 80 are fixed.
  • a through hole is formed by irradiating a laser beam at a position where the via-hole conductors v5, v15, v100, and v102 are formed.
  • the through hole is provided so as to penetrate a part of the insulating sheet 22e and the coating member 86 and to expose a part of the external electrodes 84a and 84b of the package component 80.
  • the through hole is filled with a conductive paste mainly composed of a metal such as copper, tin, or silver.
  • insulator sheets 22f and 22g (an example of a fourth insulator layer) stacked on the lower side (an example of the other side in the stacking direction) of the insulator sheet 22e are insulators.
  • Laminate below the sheet 22e (an example of the second step and the sixth step).
  • the conductive paste (an example of a connection conductor) to be the via-hole conductors v100 and v102 and the circuit conductor layers 28e and 29e are connected.
  • the insulating sheets 22a to 22g are subjected to heat treatment and pressure treatment (thermocompression treatment), and the insulating sheets 22a to 22g are thermocompression bonded to form the base material 22 (hereinafter, this process is referred to as 2). Also called the next press, an example of the third step). At this time, heat treatment is performed at a temperature (for example, 260 ° C. to 290 ° C.) that is equal to or higher than the softening point of the thermoplastic resin that forms the insulating sheets 22a to 22g and that does not decompose the thermosetting resin that forms the coating member 86. I do. In the secondary press, the insulator sheets 22a to 22g are softened and the conductive paste in the through holes is solidified.
  • a temperature for example, 260 ° C. to 290 ° C.
  • the insulator sheets 22a to 22g are joined together, and the via-hole conductors v5 to v7, v15 to v17, v100, and v102 are formed (an example of the fifth step).
  • the via hole conductor v100 connects the external electrode 84a and the circuit conductor layer 28e, and the via hole conductor v102 connects the external electrode 84b and the circuit conductor layer 29e.
  • the multilayer substrate 20 is completed through the above steps.
  • the electronic components 60 and 70 are soldered to the base material 22 with solder 64a, 64b, 74a. It is mounted by 74b.
  • the multilayer substrate 20 is mounted on the mother substrate 100 with solders 110a and 110b. After that, the electronic device 10 is completed by mounting the mother substrate 100 on the housing.
  • the flatness of the upper surface and the lower surface of the base material 22 can be improved. More specifically, in the resin multilayer substrate 500 described in Patent Document 1, external electrodes (not shown) are provided on the upper and lower surfaces of the components 503a and 503b. Therefore, there are irregularities on the upper and lower surfaces of the components 503a and 503b. When such irregularities exist, large gaps are formed between the upper and lower surfaces of the components 503a and 503b and the resin sheets 502a and 502d. In the thermocompression bonding process, the resin sheets 502a and 502d in the vicinity of the components 503a and 503b soften and flow and flow into the gap. As a result, irregularities are formed on the upper and lower surfaces of the resin multilayer substrate 500 directly above and below the components 503a and 503b and in the vicinity thereof.
  • the coating member 86 is made of a material including a thermosetting resin and covers at least a part of the surface of the electronic component 81.
  • a part of the upper and lower surfaces of the package component 80 is constituted by a coating member 86. That is, the unevenness of the upper surface and the lower surface of the electronic component 81 is flattened by the coating member 86.
  • the Young's modulus of the thermosetting resin constituting the coating member 86 at the softening point temperature of the thermoplastic resin constituting the insulator sheets 22a to 22g constitutes the insulator sheets 22a to 22g. It is larger than the Young's modulus of the thermoplastic resin.
  • the coating member 86 is not softened or hardly softened, and the insulator sheets 22a to 22g are softened.
  • the insulating sheets 22a to 22g soften and flow while the upper and lower surfaces of the package component 80 are maintained flat, and a gap between the surface of the package component 80 and the inner peripheral surface of the space Sp is formed. fill in.
  • the insulator sheets 22a and 22e in the vicinity of the package component 80 are suppressed from being softened and flowed and flowing into the gap in a large amount.
  • the front and back surfaces of the multilayer substrate 20 it is possible to suppress the formation of irregularities directly above and below the package component 80 and in the vicinity thereof.
  • the occurrence of disconnection between the electronic component 81 and the circuit conductor layers 28e and 29e is suppressed. More specifically, since the upper surface and the lower surface of the package component 80 are flat, the gap between the upper surface of the package component 80 and the back surface of the insulator sheet 22a, and the lower surface of the package component 80 and the surface of the insulator sheet 22a. The gap between is very small. Therefore, in the process of FIG. 5E, for example, the package component 80 is prevented from rotating around an axis extending in the front-rear direction (clockwise or counterclockwise in FIG. 5E). Thereby, in the process shown in FIG.
  • the back surface of the insulator sheet 22e immediately below the package component 80 is suppressed from being inclined. Accordingly, the vertical positions of the lower end of the via-hole conductor v100 and the lower end of the via-hole conductor v102 are aligned. As a result, in the step shown in FIG. 7, the via-hole conductor v100 and the circuit conductor layer 28e are more reliably connected, and the via-hole conductor v102 and the circuit conductor layer 29e are more reliably connected.
  • the side surface of the package component 80 is a plane parallel to the vertical direction.
  • the gap between the side surface of the package component 80 and the inner peripheral surfaces of the through holes H1 to H3 is very small. This suppresses a large amount of the insulator sheets 22b to 22e from flowing into the gap during the heat treatment and pressure treatment of the base material 22. As a result, the package component 80 is prevented from rotating around the axis extending in the vertical direction in the space Sp.
  • the gap between the inner peripheral surface of the space Sp and the package component 80 can be reduced when the multilayer substrate 20 is manufactured.
  • the package component 80 is configured by covering an electronic component 81 with a coating member 86. Therefore, the coating member 86 can be processed into an arbitrary shape and size by processing the coating member 86 by polishing or the like. As a result, the shape of the coating member 86 and the shape of the space Sp can be made closer, and the gap between the inner peripheral surface of the space Sp and the package component 80 can be reduced.
  • the gap between the inner peripheral surface of the space Sp and the package component 80 is reduced, the flatness of the upper surface and the lower surface of the base material 22 is improved and the rotation of the package component 80 in the space Sp is suppressed. Is done. Therefore, the occurrence of mounting mistakes in the electronic components 60 and 70 and the multilayer substrate 20 is suppressed, and the occurrence of disconnection between the electronic component 81 and the circuit conductor layers 28e and 29e is suppressed.
  • the material of the via-hole conductors v100 and v102 is the same as the material of the via-hole conductors v1 to v7 and v11 to v17. Therefore, the via-hole conductors v6, v7, v16, v17, v100, and v102 can be simultaneously cured during the heat treatment and pressure treatment of the base material 22.
  • the multilayer substrate 20 it is possible to suppress the occurrence of peeling between the main body 82 and the coating member 86 and the peeling between the coating member 86 and the insulating sheets 22a to 22e. More specifically, heat treatment is performed when the multilayer substrate 20 is manufactured. Since the main body 82, the coating member 86, and the insulator sheets 22a to 22e are made of different materials, their expansion amounts are also different. Such a difference in the expansion amount causes peeling between the main body 82 and the coating member 86 and peeling between the coating member 86 and the insulating sheets 22a to 22e.
  • the linear expansion coefficient of a thermoplastic resin such as an epoxy resin used for the coating member 86 is equal to or greater than the linear expansion coefficient of the material (ceramic) of the main body 82, and the insulator sheets 22a to 22g It is below the linear expansion coefficient of thermoplastic resins, such as a polyimide used and liquid crystal polymer.
  • thermoplastic resin The difference between the linear expansion coefficient of the thermoplastic resin and the linear expansion coefficient of the thermoplastic resin such as polyimide or liquid crystal polymer used for the insulator sheets 22a to 22g can be reduced. As a result, the difference in the expansion amount is reduced, and the occurrence of the peeling is suppressed.
  • FIG. 8 is a cross-sectional structure diagram of the multilayer substrate 20a.
  • the multilayer substrate 20 a is different from the multilayer substrate 20 in the structure of the package component 80. More specifically, in the multilayer substrate 20a, the external electrodes 84a and 84b are exposed on the lower surface of the package component 80. Instead, the lower surface of the package component 80 is covered with the insulator sheet 23 (an example of a second insulator layer). Hereinafter, the multilayer substrate 20a will be described focusing on the difference.
  • the lower surface of the package component 80 is a flat surface. However, a part of the lower surface of the package component 80 is configured by the coating member 86, and the remaining portion of the lower surface of the package component 80 is configured by the external electrodes 84a and 84b. Furthermore, the insulator sheet 23 has the same shape and the same size as the lower surface of the package component 80 when viewed from above, and covers the entire lower surface of the package component 80. Further, the sum of the vertical thickness of the package component 80 and the vertical thickness of the insulating sheet 23 is substantially equal to the total vertical thickness of the insulating sheets 22b to 22d.
  • the via-hole conductor v100 penetrates the insulator sheets 23 and 22e in the vertical direction, and connects the external electrode 84a and the circuit conductor layer 28e. However, the via-hole conductor v100 does not penetrate the coating member 86.
  • the via-hole conductor v102 penetrates the insulator sheets 23 and 22e in the vertical direction, and connects the external electrode 84b and the circuit conductor layer 29e. However, the via-hole conductor v102 does not penetrate the coating member 86.
  • 9A to 9D are perspective views at the time of manufacturing the package component 80 and the insulator sheet 23.
  • 9A to 9D that the electronic component 81 is indicated by a dotted line means that the electronic component 81 is present in the resin.
  • 10 and 11 are cross-sectional structure diagrams when the multilayer substrate 20a is manufactured.
  • the mother sheet 223 is made of a material containing a flexible thermoplastic resin such as polyimide or liquid crystal polymer, and is a large sheet in which the insulator sheets 23 are arranged in a matrix when viewed from above. is there.
  • the material of the mother sheet 223 is the same as the material of the insulator sheets 22a to 22g.
  • the material containing the UV curable epoxy resin is irradiated with UV, and the resin Layer 202 is formed. Accordingly, the plurality of electronic components 81 are buried in the resin layer 202 so that at least a part of the lower surfaces of the external electrodes 84 a and 84 b of the plurality of electronic components 81 are in contact with the mother sheet 223.
  • the upper surface of the resin layer 202 is polished with a grinder to adjust the vertical thickness of the resin layer 202 to an appropriate value, and the upper surface of the resin layer 202 is flattened.
  • the resin layer 202 is cut with a dicer. Thereby, a plurality of package components 80 having the insulator sheet 23 attached to the lower surface are completed.
  • the conductive material is conducted to the through holes formed at positions where the via-hole conductors v1 to v4, v6, v7, v11 to v14, v16, and v17 are formed.
  • the steps up to the step of filling the conductive paste are the same as those steps in the method for manufacturing the multilayer substrate 20, and thus the description thereof is omitted.
  • the through hole is provided so as to penetrate part of the insulator sheet 22e and the insulator sheet 23 and to expose part of the external electrodes 84a and 84b of the package component 80.
  • the package component 80 to which the insulator sheet 23 is attached is inserted into the through holes H1 to H3 from below, and the insulator sheets 22e is laminated below the insulator sheet 22d. Further, heat treatment and pressure treatment (also referred to as thermocompression treatment) are performed on the insulator sheets 22a to 22e (hereinafter, this step is also referred to as a primary press).
  • a through-hole is formed by irradiating a laser beam at a position where the via-hole conductors v5, v15, v100, and v102 are formed. These through holes are filled with a conductive paste whose main component is a metal such as copper, tin or silver. Note that the subsequent steps of the method for manufacturing the multilayer substrate 20a are the same as the method for manufacturing the multilayer substrate 20, and thus the description thereof is omitted.
  • the multilayer substrate 20 a configured as described above can also exhibit the same operational effects as the multilayer substrate 20.
  • the package component 80 can be easily created. More specifically, in the method for manufacturing the multilayer substrate 20, the resin sheet 200 is peeled from the plurality of electronic components 81 and the resin layer 202 in the step illustrated in FIG. 4D. Further, in the step of FIG. 5A, after the front and back of the plurality of electronic components 81 and the resin layer 202 are reversed, the resin sheet 201 is attached to the lower surfaces of the plurality of electronic components 81 and the resin layer 202. As described above, in the method for manufacturing the multilayer substrate 20, it is necessary to peel the resin sheet 200 and attach the resin sheet 201 in order to cover the entire electronic component 81 with the coating member 86.
  • a mother sheet 223 is used instead of the resin sheets 200 and 201.
  • the material of the mother sheet 223 is the same material as the insulator sheets 22a to 22g. Therefore, the insulator sheet 23 obtained by dividing the mother sheet 223 is used as a part of the base material 22 without being peeled off from the lower surface of the package component 80. Therefore, in the manufacturing method of the multilayer substrate 20a, processes such as peeling and reversal are unnecessary, and the package component 80 can be easily created.
  • FIG. 12 is a cross-sectional structure diagram of the multilayer substrates 20b and 20g.
  • the multilayer substrate 20b is different from the multilayer substrate 20 in that the via-hole conductors v100 and v102 are further provided with circuit conductor layers 28f and 29f and via-hole conductors v8 and v18.
  • the multilayer substrate 20b will be described focusing on the differences related to the following.
  • the circuit conductor layers 28f and 29f are provided on the surface of the insulator sheet 22e.
  • the circuit conductor layer 28f is provided on the right side of the circuit conductor layer 28d and extends in the left-right direction.
  • the circuit conductor layer 29f is provided on the left side of the circuit conductor layer 29d and extends in the left-right direction.
  • the circuit conductor layers 28 f and 29 f are in contact with the lower surface of the package component 80.
  • the via-hole conductor v8 penetrates the insulator sheet 22e in the vertical direction, and connects the circuit conductor layer 28f and the circuit conductor layer 28e.
  • the via-hole conductor v18 penetrates the insulator sheet 22e in the vertical direction, and connects the circuit conductor layer 29f and the circuit conductor layer 29e.
  • the via-hole conductor v100 penetrates the coating member 86 in the vertical direction, and connects the external electrode 84a and the circuit conductor layer 28f. More specifically, the upper end of the via hole conductor v100 is connected to the external electrode 84a, and the lower end of the via hole conductor v100 is connected to the circuit conductor layer 28f.
  • the via-hole conductor v100 penetrates the coating member 86 existing between the external electrode 84a and the lower surface of the package component 80 in the vertical direction, and does not penetrate the insulator sheet 22e in the vertical direction.
  • the via-hole conductor v102 penetrates the coating member 86 in the vertical direction, and connects the external electrode 84b and the circuit conductor layer 29f. More specifically, the upper end of the via hole conductor v102 is connected to the external electrode 84b, and the lower end of the via hole conductor v102 is connected to the circuit conductor layer 29f.
  • the via-hole conductor v102 penetrates the coating member 86 existing between the external electrode 84b and the lower surface of the package component 80 in the vertical direction, and does not penetrate the insulator sheet 22e in the vertical direction.
  • 13 to 16 are cross-sectional structure diagrams of the multilayer substrates 20b and 20g when they are manufactured.
  • the manufacturing method of the package component 80 of the multilayer substrate 20b is the same as the manufacturing method of the package component 80 of the multilayer substrate 20, description thereof will be omitted.
  • the conductive material is conducted to the through holes formed at positions where the via-hole conductors v1 to v3, v5 to v7, v11 to v13, and v15 to v17 are formed.
  • the steps up to the step of filling the conductive paste are the same as those steps in the method for manufacturing the multilayer substrate 20, and thus the description thereof is omitted.
  • the conductive paste is filled in the through holes formed at positions where the via-hole conductors v4 and v14 are formed, whereas in the manufacturing method of the multilayer substrate 20b, the via-hole conductors v5 and v15 are formed.
  • the conductive paste is filled in the through-hole formed at the position where it is formed.
  • the package component 80 is inserted into the through holes H1 to H3 from below. Furthermore, the insulating sheets 22a to 22d are subjected to heat treatment and pressure treatment (primary press).
  • a through-hole is formed by irradiating a laser beam at a position where the via-hole conductors v4, v14, v100, and v102 are formed. And as shown in FIG. 15, these through-holes are filled with the electrically conductive paste which has metals, such as copper, tin, and silver, as a main component.
  • the package component 80 is built in the insulator sheets 22a to 22g, and the conductive paste (an example of the connection conductor) to be the via-hole conductors v100 and v102 is provided in the circuit conductor layers 28f and 29f, respectively.
  • Insulator sheets 22e to 22g are laminated below the insulator sheet 22d so as to be connected to the substrate (an example of an eighth step). Further, the insulating sheets 22a to 22g are subjected to heat treatment and pressure treatment, and the insulating sheets 22a to 22g are thermocompression bonded (secondary press). In the secondary press, the insulator sheets 22a to 22g are softened and the conductive paste in the through holes is solidified.
  • the insulator sheets 22a to 22g are joined together, and the via-hole conductors v4 to v8, v14 to v18, v100, and v102 are formed (an example of the seventh step).
  • the multilayer substrate 20b is completed.
  • the multilayer substrate 20b configured as described above can also exhibit the same effects as the multilayer substrate 20.
  • the connection by the via-hole conductors v100 and v102 is stabilized.
  • the via-hole conductors v100 and v102 penetrate the coating member 86 in the vertical direction and do not penetrate the insulator sheet 22e in the vertical direction. That is, the via-hole conductors v100 and v102 connect the external electrodes 84a and 84b and the circuit conductor layers 28f and 29f only through the coating member 86. Thereby, it is not necessary to consider the difference between the deformation amount of the insulator sheet 22e and the deformation amount of the coating member 86 in the heat treatment and the pressure treatment as compared with the multilayer substrate 20. Therefore, the connection by the via-hole conductors v100 and v102 is stabilized.
  • FIG. 17 is a cross-sectional structure diagram of the multilayer substrate 20c.
  • through-hole conductors v5 ′, v15 ′, v100 ′, and v102 ′ are used instead of the via-hole conductors v5, v15, v100, and v102, and the front and back of the insulator sheet 22f are reversed. And the via hole conductors v9 and v19 are different from the multilayer substrate 20.
  • the multilayer substrate 20c will be described focusing on the difference.
  • the via-hole conductors v5, v15, v100, and v102 were formed by filling the through holes formed in the insulator sheet 22e and the coating member 86 with a conductive paste and heating the conductive paste.
  • the through-hole conductors v ⁇ b> 5 ′, v ⁇ b> 15 ′, v ⁇ b> 100 ′, and v ⁇ b> 102 ′ are formed by performing copper plating on the inner peripheral surfaces of the through holes formed in the insulator sheet 22 e and the coating member 86.
  • the via-hole conductors v9 and v19 penetrate the insulator sheet 22f in the vertical direction and are connected to the circuit conductor layers 28e and 29e.
  • the front and back of the insulator sheet 22f are reversed.
  • the through-hole conductors v5 ', v15', v100 ', and v102' are connected to the via-hole conductors v6, v16, v9, and v19, respectively.
  • the external electrode 84a and the circuit conductor layer 28e are connected via the through-hole conductor v100 'and the via-hole conductor v9.
  • the external electrode 84b and the circuit conductor layer 29e are connected through a through-hole conductor v102 'and a via-hole conductor v19.
  • FIGS. 18, 19A, and 19B are cross-sectional structural diagrams of the multilayer substrate 20c when it is manufactured.
  • the manufacturing method of the package component 80 of the multilayer substrate 20c is the same as the manufacturing method of the package component 80 of the multilayer substrate 20, description thereof will be omitted.
  • the steps from the step of preparing the insulator sheets 22a to 22g to the step of applying heat treatment and pressure treatment (primary press) to the insulator sheets 22a to 22e are as follows: Since these steps are the same as those in the method of manufacturing the multilayer substrate 20, the description thereof is omitted.
  • a through hole is formed by irradiating a laser beam at a position where through-hole conductors v5 ', v15', v100 ', and v102' are formed. Then, as shown in FIG. 19A, these through holes are plated with copper to form through-hole conductors v5 ', v15', v100 ', and v102'.
  • insulator sheets 22f and 22g are laminated under the insulator sheet 22e.
  • the insulator sheet 22f is arranged so that the main surface on which the circuit conductor layers 28e and 29e are provided faces downward.
  • the insulating sheets 22a to 22g are subjected to a heat treatment and a pressure treatment.
  • the multilayer substrate 20c is completed through the above steps.
  • the multilayer substrate 20c configured as described above can also exhibit the same effects as the multilayer substrate 20.
  • FIG. 20 is a cross-sectional structure diagram of the multilayer substrate 20d.
  • the multilayer substrate 20d is different from the multilayer substrate 20 in that it further includes a package component 80 '. Thus, two or more package parts may be incorporated in the multilayer substrate 20d.
  • the package component 80 ′ includes an electronic component 81 ′ (an example of a first electronic component) and 81 ′′ (an example of a second electronic component).
  • the electronic components 81 ′ and 81 ′′ are arranged side by side in the package component 80 ′.
  • the package component 80 ′ may include a plurality of electronic components.
  • the external electrodes 84a 'and 84b' of the electronic component 81 ' are provided only on the lower surface of the main body 82'.
  • the external electrodes 84 a ′′ and 84 b ′′ of the electronic component 81 ′′ ′ are provided only on the lower surface of the main body 82 ′′.
  • the external electrode may be provided only on the lower surface of the main body.
  • FIG. 21 is a sectional view of the multilayer substrate 20e.
  • the multilayer substrate 20e is different from the multilayer substrate 20 in that an insulator sheet 22h is laminated on the insulator sheet 22a and further provided with via-hole conductors v110 and v112.
  • the multilayer substrate 20e will be described with reference to the drawings with a focus on the following differences.
  • the base material 22 is configured by laminating insulator sheets 22h and 22a to 22g in this order from the upper side to the lower side.
  • the external electrodes 24a to 24d are provided on the surface of the insulator sheet 22h.
  • the circuit conductor layers 28g and 29g are provided on the surface of the insulator sheet 22a.
  • the via-hole conductor v0 penetrates the insulator sheet 22h in the vertical direction, and connects the external electrode 24a and the circuit conductor layer 28h.
  • the via-hole conductor v10 penetrates the insulator sheet 22h in the vertical direction, and connects the external electrode 24d and the circuit conductor layer 29g.
  • the via-hole conductor v110 penetrates the coating member 86 and the insulating sheet 22a in the vertical direction, and connects the external electrode 84a and the circuit conductor layer 28g. More specifically, the upper end of the via hole conductor v110 is connected to the circuit conductor layer 28g, and the lower end of the via hole conductor v110 is connected to the external electrode 84a.
  • the via-hole conductor v110 penetrates the coating member 86 existing between the external electrode 84a and the upper surface of the package component 80 in the vertical direction and penetrates the insulator sheet 22a in the vertical direction. Therefore, the via-hole conductor v110 passes through the upper surface of the package component 80.
  • the via-hole conductor v112 penetrates the coating member 86 and the insulating sheet 22a in the vertical direction, and connects the external electrode 84b and the circuit conductor layer 29g. More specifically, the upper end of the via hole conductor v112 is connected to the circuit conductor layer 29g, and the lower end of the via hole conductor v112 is connected to the external electrode 84b.
  • the via-hole conductor v112 penetrates the coating member 86 existing between the external electrode 84b and the upper surface of the package component 80 in the vertical direction and penetrates the insulator sheet 22a in the vertical direction. Therefore, the via-hole conductor v112 passes through the upper surface of the package component 80.
  • the multilayer substrate 20e configured as described above can also exhibit the same effects as the multilayer substrate 20.
  • the upper surface of the package component 80 is fixed by the via-hole conductors v110 and v112, and the lower surface of the package component 80 is fixed by the via-hole conductors v100 and v102.
  • the package component 80 is more effectively suppressed from being displaced in the base material 22 due to an external force during use.
  • disconnection between the package component 80 and the circuit conductor layers 28g, 29g, 28f, 29f is suppressed.
  • FIG. 22 is a sectional view of the multilayer substrate 20f.
  • the multilayer substrate 20f is different from the multilayer substrate 20e in that the package component 80 further includes an electronic component 81 '(an example of a second electronic component).
  • the multilayer substrate 20f will be described with reference to the drawings with a focus on the following differences.
  • the electronic component 81 (an example of the first electronic component) and the electronic component 81 ′ are arranged so as to overlap when viewed from above.
  • the coating member 86 includes electronic parts 81 and 81 '. Note that the coating member 86 does not necessarily contain the electronic components 81 and 81 ′, and may cover at least a part of the surface of the electronic components 81 and 81 ′.
  • the electronic component 81 ′ includes a main body 82 ′ and external electrodes 84 a ′ and 84 b ′.
  • the main body 82 ′ has a rectangular parallelepiped shape and is located on the upper side with respect to the main body 82.
  • the external electrodes 84a 'and 84b' are provided on the upper surface of the main body 82 ', and are arranged in this order from the left side to the right side.
  • the via-hole conductor v110 penetrates the coating member 86 and the insulating sheet 22a in the vertical direction, and connects the external electrode 84a 'and the circuit conductor layer 28g.
  • the via-hole conductor v112 passes through the coating member 86 and the insulating sheet 22a in the vertical direction, and connects the external electrode 84b 'and the circuit conductor layer 29g.
  • the multilayer substrate 20 f configured as described above can also exhibit the same effects as the multilayer substrate 20.
  • the package component 80 is prevented from rotating in the space Sp during the heat treatment and the pressure treatment. That is, since the positioning of the package component 80 on the base material 22 is performed with high accuracy, the positioning of the two electronic components 81 and 81 ′ is performed with high accuracy.
  • FIG. 23 is an external perspective view of the package component 80 of the multilayer board 20g.
  • FIG. 24A is a view of the package component 80 as viewed from above.
  • FIG. 24B is a cross-sectional structure diagram along AA in FIG. 24A.
  • 24C is a cross-sectional structure diagram taken along line BB in FIG. 24A.
  • the multilayer substrate 20g is different from the multilayer substrate 20b in that through-hole conductors v120 and v122 are provided in the package component 80. Since the cross-sectional structure diagram of the multilayer substrate 20g is substantially the same as the cross-sectional structure diagram of the multilayer substrate 20b, FIG. 12 is used. Hereinafter, the multilayer substrate 20g will be described focusing on the difference.
  • the through-hole conductor v120 penetrates the coating member 86 in the vertical direction, and connects the external electrode 84a and the circuit conductor layer 28f. More specifically, the upper end of the through-hole conductor v120 is connected to the external electrode 84a, and the lower end of the through-hole conductor v120 is connected to the circuit conductor layer 28f.
  • the through-hole conductor v120 penetrates the coating member 86 existing between the external electrode 84a and the lower surface of the package component 80 in the vertical direction and does not penetrate the insulator sheet 22e in the vertical direction.
  • the through-hole conductor v122 penetrates the coating member 86 in the vertical direction, and connects the external electrode 84b and the circuit conductor layer 29f. More specifically, the upper end of the through-hole conductor v122 is connected to the external electrode 84b, and the lower end of the through-hole conductor v122 is connected to the circuit conductor layer 29f.
  • the through-hole conductor v122 penetrates the coating member 86 existing between the external electrode 84b and the lower surface of the package component 80 in the vertical direction and does not penetrate the insulator sheet 22e in the vertical direction.
  • the through-hole conductors v120 and v122 as described above are formed by performing copper plating on the inner peripheral surface of the through hole provided in the coating member 86.
  • the through-hole conductors v120 and v122 are formed before the package component 80 is accommodated in the space Sp. That is, after the package component 80 is completed, a through hole is formed in the coating member 86 by a laser beam. And copper plating is given to the internal peripheral surface of a through-hole. Thereby, since the conductor which does not protrude from a through-hole can be formed, the unevenness
  • the multilayer substrate and the method of manufacturing the multilayer substrate according to the present invention are not limited to the method of manufacturing the multilayer substrates 20, 20a to 20g and the multilayer substrates 20, 20a to 20g, and can be changed within the scope of the gist.
  • the side surface of the package component 80 may not be parallel to the stacking direction.
  • a square frustum is cited.
  • the side surface of the package component 80 may not be a flat surface.
  • An example of the shape of the package component 80 whose side surface is not flat is a cylinder.
  • FIG. 25 is an external perspective view of the package component 80 whose upper and lower surfaces are constituted by the external electrodes 84 a and 84 b and the coating member 86. As shown in FIG. 25, the external electrodes 84 a and 84 b may be exposed from the coating member 86 by increasing the polishing amount of the resin layers 202 and 203 at the time of manufacturing the package component 80.
  • the external electrodes 84a and 84b and the via-hole conductors v100 and v102 can be connected or the external electrodes 84a and 84b and the circuit conductor layers 28f and 29f can be connected without forming a through hole in the coating member 86. .
  • the multilayer substrates 20 and 20a to 20g may be used without being mounted on the mother substrate 100.
  • the via-hole conductors v100 and v102 do not have to be provided.
  • the insulator sheet 22a is in contact with the upper surface (an example of the second plane) of the package component 80.
  • the via-hole conductors v110 and v112 (an example of a connection conductor) pass through the upper surface of the package component 80 and penetrate the coating member 86 and the insulator sheet 22a.
  • the insulator sheet 23 may be in contact with the upper surface (an example of the second plane) instead of the lower surface of the package component 80.
  • the insulator sheet 22h is further laminated on the insulator sheet 22a.
  • the insulator sheet 22a is in contact with the upper surface (an example of the second plane) of the package component 80.
  • circuit conductor layers 28g and 29g are provided on the surface of the insulator sheet 22a.
  • the multilayer substrate 20a includes via-hole conductors v110 and v112 instead of the via-hole conductors v100 and v102.
  • Via-hole conductors v110 and v112 (an example of a connection conductor) pass through the upper surface of the package component 80 and penetrate the coating member 86 and the insulator sheet 22a.
  • the via-hole conductor v110 connects the circuit conductor layer 28g and the external electrode 84a
  • the via-hole conductor v112 connects the circuit conductor layer 29g and the external electrode 84b.
  • the via-hole conductors v110, v112 are provided instead of the via-hole conductors v100, v102, similarly to the multilayer substrates 20a, 20e. Also good.
  • the insulator sheet 22a is in contact with the upper surface (an example of the second plane) of the package component 80.
  • the via-hole conductors v110 and v112 pass through the upper surface of the package component 80 and penetrate the coating member 86 and the insulator sheet 22a.
  • the via-hole conductors v110 and v112 are directly connected to the circuit conductor layers 28e and 29e, respectively.
  • the circuit conductor layers 28e and 29e are connected via via-hole conductors different from the via-hole conductors v110 and v112. It may be connected directly to. That is, the via-hole conductors v110 and v112 only have to electrically connect the external electrodes 84a and 84b and the circuit conductor layers 28e and 29e, respectively.
  • the present invention is useful for a multilayer substrate and a method for producing the multilayer substrate, and is particularly excellent in that the flatness of the main surface of the base material can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

To provide a multilayer substrate whereby planarity of a main surface of a base material can be improved, and a method for manufacturing the multilayer substrate. A multilayer substrate relating to the present invention is characterized by being provided with: a base material configured by laminating, in the lamination direction, a plurality of insulating material layers that are configured from a material containing a first resin, i.e., a thermoplastic resin; and a package component embedded in the base material, said package component having a first flat surface and a second flat surface, which are positioned at both ends in the lamination direction, and which are substantially perpendicular to the lamination direction. The multilayer substrate is also characterized in that: the package component includes a first electronic component, and a coating member, which is configured from a material containing a second resin, and which is covering at least a part of the surface of the first electronic component; at the softening temperature of the first resin, the Young's modulus of the second resin is higher than the Young's modulus of the first resin; and at least a part of the first flat surface and at least a part of the second flat surface are configured from the coating member.

Description

多層基板及び多層基板の製造方法Multilayer substrate and method for manufacturing multilayer substrate
 本発明は、多層基板及び多層基板の製造方法に関し、より特定的には、熱可塑性樹脂を材料とする絶縁体層が積層された基材を備える多層基板及び多層基板の製造方法に関する。 The present invention relates to a multilayer substrate and a method for manufacturing the multilayer substrate, and more particularly to a multilayer substrate including a base material on which an insulating layer made of a thermoplastic resin is laminated, and a method for manufacturing the multilayer substrate.
 従来の多層基板に関する発明としては、例えば、特許文献1に記載の樹脂多層基板が知られている。図26は、樹脂多層基板500の製造時の断面構造図である。 As an invention related to a conventional multilayer substrate, for example, a resin multilayer substrate described in Patent Document 1 is known. FIG. 26 is a cross-sectional structure diagram when the resin multilayer substrate 500 is manufactured.
 樹脂多層基板500は、樹脂シート502a~502d及び部品503a,503bを備えている。樹脂シート502b,502cにはそれぞれ、貫通孔514a,514bが設けられている。このような樹脂シート502b~502dが積層されることにより、キャビティ505a,505bが形成されている。そして、部品503a,503bがそれぞれキャビティ505a,505b内に収容された後に、樹脂シート502b上に樹脂シート502aが積層される。これにより、部品503a,503bを内蔵した樹脂多層基板500が得られる。 The resin multilayer substrate 500 includes resin sheets 502a to 502d and components 503a and 503b. Through holes 514a and 514b are provided in the resin sheets 502b and 502c, respectively. Cavities 505a and 505b are formed by laminating such resin sheets 502b to 502d. Then, after the components 503a and 503b are accommodated in the cavities 505a and 505b, respectively, the resin sheet 502a is laminated on the resin sheet 502b. Thereby, the resin multilayer substrate 500 incorporating the components 503a and 503b is obtained.
国際公開第2014/203603号公報International Publication No. 2014/203603
 ところで、特許文献1に記載の樹脂多層基板500では、上面及び下面の平坦性を確保することが困難な場合がある。より詳細には、部品503a,503bの上面及び下面には図示しない外部電極が設けられている。そのため、部品503a,503bの上面及び下面には凹凸が存在する。このような凹凸が存在すると、部品503a,503bの上面及び下面と樹脂シート502a,502dとの間に隙間が形成される。そして、熱圧着工程において、部品503a,503b近傍の樹脂シート502a,502dは、軟化・流動して隙間に流れ込む。その結果、樹脂多層基板500の上面及び下面において、部品503a,503bの直上及び直下並びにその近傍に凹凸が形成されることがある。 Incidentally, in the resin multilayer substrate 500 described in Patent Document 1, it may be difficult to ensure the flatness of the upper surface and the lower surface. More specifically, external electrodes (not shown) are provided on the upper and lower surfaces of the components 503a and 503b. Therefore, there are irregularities on the upper and lower surfaces of the components 503a and 503b. When such irregularities exist, gaps are formed between the upper and lower surfaces of the components 503a and 503b and the resin sheets 502a and 502d. In the thermocompression bonding process, the resin sheets 502a and 502d in the vicinity of the components 503a and 503b soften and flow and flow into the gap. As a result, irregularities may be formed on the upper and lower surfaces of the resin multilayer substrate 500 directly above and below the components 503a and 503b and in the vicinity thereof.
 そこで、本発明の目的は、基材の主面の平坦性を向上させることができる多層基板及び多層基板の製造方法を提供することである。 Therefore, an object of the present invention is to provide a multilayer substrate and a method for manufacturing the multilayer substrate that can improve the flatness of the main surface of the base material.
 本発明の一形態に係る多層基板は、熱可塑性樹脂である第1の樹脂を含む材料により構成されている複数の絶縁体層が積層方向に積層されて構成されている基材と、前記基材に内蔵されているパッケージ部品であって、前記積層方向の両端に位置し、かつ、該積層方向に実質的に垂直な第1の平面及び第2の平面を有するパッケージ部品と、を備えており、前記パッケージ部品は、第1の電子部品と、第2の樹脂を含む材料により構成され、かつ、前記第1の電子部品の表面の少なくとも一部を覆っているコーティング部材と、を含んでおり、前記第1の樹脂の軟化点温度において、前記第2の樹脂のヤング率は、前記第1の樹脂のヤング率よりも大きく、前記第1の平面の少なくとも一部及び前記第2の平面の少なくとも一部は、前記コーティング部材により構成されていること、を特徴とする。 A multilayer substrate according to an embodiment of the present invention includes a base material formed by laminating a plurality of insulator layers made of a material including a first resin, which is a thermoplastic resin, in the stacking direction, and the base A package component embedded in a material, the package component having first and second planes positioned at both ends in the stacking direction and substantially perpendicular to the stacking direction. The package component includes a first electronic component and a coating member made of a material containing a second resin and covering at least a part of the surface of the first electronic component. The Young's modulus of the second resin is larger than the Young's modulus of the first resin at the softening point temperature of the first resin, and at least a part of the first plane and the second plane. At least a portion of It is constituted by coating member, and wherein.
 本発明の一形態に係る多層基板の製造方法は、第1の電子部品の表面の少なくとも一部をコーティング部材により覆うことにより、積層方向の両端に位置し、かつ、該積層方向に実質的に垂直な第1の平面及び第2の平面を有するパッケージ部品を形成する第1の工程と、前記パッケージ部品を内蔵するように複数の絶縁体層を前記積層方向に積層する第2の工程と、前記複数の絶縁体層に対して加熱処理及び加圧処理を施して基材を形成する第3の工程と、を備えており、前記複数の絶縁体層は、熱可塑性樹脂である第1の樹脂を含む材料により構成されており、前記コーティング部材は、第2の樹脂を含む材料により構成されており、前記加熱処理の温度において、前記第2の樹脂のヤング率は、前記第1の樹脂のヤング率よりも大きいこと、を特徴とする。 In the method for manufacturing a multilayer substrate according to one aspect of the present invention, at least a part of the surface of the first electronic component is covered with a coating member, so that it is positioned at both ends in the stacking direction and substantially in the stacking direction. A first step of forming a package component having a vertical first plane and a second plane; a second step of stacking a plurality of insulator layers in the stacking direction so as to incorporate the package component; A third step of forming a base material by subjecting the plurality of insulator layers to a heat treatment and a pressure treatment, wherein the plurality of insulator layers are made of a thermoplastic resin. The coating member is made of a material containing a second resin, and the Young's modulus of the second resin is the first resin at the temperature of the heat treatment. Greater than Young's modulus It features a.
 本発明によれば、基材の主面の平坦性を向上させることができる。 According to the present invention, the flatness of the main surface of the substrate can be improved.
図1は、本発明の一実施形態に係る多層基板20を備えた電子機器10の断面構造図である。FIG. 1 is a cross-sectional structure diagram of an electronic device 10 including a multilayer substrate 20 according to an embodiment of the present invention. 図2Aは、多層基板20の断面構造図である。FIG. 2A is a sectional view of the multilayer substrate 20. 図2Bは、多層基板20の分解図である。FIG. 2B is an exploded view of the multilayer substrate 20. 図3Aは、電子部品81を上側から見た図である。FIG. 3A is a view of the electronic component 81 as viewed from above. 図3Bは、電子部品81を前側から見た図である。FIG. 3B is a view of the electronic component 81 as viewed from the front side. 図3Cは、パッケージ部品80を上側から見た図である。FIG. 3C is a view of the package component 80 as viewed from above. 図3Dは、パッケージ部品80を前側から見た図である。FIG. 3D is a view of the package component 80 as viewed from the front side. 図4Aは、パッケージ部品80の製造時の透視図である。FIG. 4A is a perspective view when the package component 80 is manufactured. 図4Bは、パッケージ部品80の製造時の透視図である。FIG. 4B is a perspective view when the package component 80 is manufactured. 図4Cは、パッケージ部品80の製造時の透視図である。FIG. 4C is a perspective view when the package component 80 is manufactured. 図4Dは、パッケージ部品80の製造時の透視図である。FIG. 4D is a perspective view when the package component 80 is manufactured. 図5Aは、パッケージ部品80の製造時の透視図である。FIG. 5A is a perspective view when the package component 80 is manufactured. 図5Bは、パッケージ部品80の製造時の透視図である。FIG. 5B is a perspective view when the package component 80 is manufactured. 図5Cは、パッケージ部品80の製造時の透視図である。FIG. 5C is a perspective view when the package component 80 is manufactured. 図5Dは、パッケージ部品80の製造時の透視図である。FIG. 5D is a perspective view when the package component 80 is manufactured. 図5Eは、多層基板20の製造時の断面構造図である。FIG. 5E is a cross-sectional structure diagram when the multilayer substrate 20 is manufactured. 図6Aは、多層基板20の製造時の断面構造図である。FIG. 6A is a cross-sectional structure diagram when the multilayer substrate 20 is manufactured. 図6Bは、多層基板20の製造時の断面構造図である。FIG. 6B is a cross-sectional structure diagram when the multilayer substrate 20 is manufactured. 図7は、多層基板20の製造時の断面構造図である。FIG. 7 is a cross-sectional structure diagram when the multilayer substrate 20 is manufactured. 図8は、多層基板20aの断面構造図である。FIG. 8 is a cross-sectional structure diagram of the multilayer substrate 20a. 図9Aは、パッケージ部品80及び絶縁体シート23の製造時の透視図である。FIG. 9A is a perspective view at the time of manufacturing the package component 80 and the insulator sheet 23. 図9Bは、パッケージ部品80及び絶縁体シート23の製造時の透視図である。FIG. 9B is a perspective view at the time of manufacturing the package component 80 and the insulator sheet 23. 図9Cは、パッケージ部品80及び絶縁体シート23の製造時の透視図である。FIG. 9C is a perspective view at the time of manufacturing the package component 80 and the insulator sheet 23. 図9Dは、パッケージ部品80及び絶縁体シート23の製造時の透視図である。FIG. 9D is a perspective view at the time of manufacturing the package component 80 and the insulator sheet 23. 図10は、多層基板20aの製造時の断面構造図である。FIG. 10 is a cross-sectional structure diagram when the multilayer substrate 20a is manufactured. 図11は、多層基板20aの製造時の断面構造図である。FIG. 11 is a cross-sectional structure diagram when the multilayer substrate 20a is manufactured. 図12は、多層基板20b,20gの断面構造図である。FIG. 12 is a cross-sectional structure diagram of the multilayer substrates 20b and 20g. 図13は、多層基板20b,20gの製造時の断面構造図である。FIG. 13 is a cross-sectional structure diagram when the multilayer substrates 20b and 20g are manufactured. 図14は、多層基板20b,20gの製造時の断面構造図である。FIG. 14 is a cross-sectional structure diagram when the multilayer substrates 20b and 20g are manufactured. 図15は、多層基板20b,20gの製造時の断面構造図である。FIG. 15 is a cross-sectional structure diagram of the multilayer substrates 20b and 20g during manufacturing. 図16は、多層基板20b,20gの製造時の断面構造図である。FIG. 16 is a cross-sectional structure diagram of the multilayer substrates 20b and 20g during manufacturing. 図17は、多層基板20cの断面構造図である。FIG. 17 is a cross-sectional structure diagram of the multilayer substrate 20c. 図18は、多層基板20cの製造時の断面構造図である。FIG. 18 is a cross-sectional structure diagram when the multilayer substrate 20c is manufactured. 図19Aは、多層基板20cの製造時の断面構造図である。FIG. 19A is a cross-sectional structure diagram when the multilayer substrate 20c is manufactured. 図19Bは、多層基板20cの製造時の断面構造図である。FIG. 19B is a cross-sectional structure diagram when the multilayer substrate 20c is manufactured. 図20は、多層基板20dの断面構造図である。FIG. 20 is a cross-sectional structure diagram of the multilayer substrate 20d. 図21は、多層基板20eの断面構造図である。FIG. 21 is a sectional view of the multilayer substrate 20e. 図22は、多層基板20fの断面構造図である。FIG. 22 is a sectional view of the multilayer substrate 20f. 図23は、多層基板20gのパッケージ部品80の外観斜視図である。FIG. 23 is an external perspective view of the package component 80 of the multilayer board 20g. 図24Aは、パッケージ部品80を上側から見た図である。FIG. 24A is a view of the package component 80 as viewed from above. 図24Bは、図24AのA-Aにおける断面構造図である。FIG. 24B is a cross-sectional structure diagram along AA in FIG. 24A. 図24Cは、図24AのB-Bにおける断面構造図である。24C is a cross-sectional structure diagram taken along line BB in FIG. 24A. 図25は、上面及び下面が外部電極84a,84b及びコーティング部材86により構成されているパッケージ部品80の外観斜視図である。FIG. 25 is an external perspective view of the package component 80 whose upper and lower surfaces are constituted by the external electrodes 84 a and 84 b and the coating member 86. 図26は、樹脂多層基板500の製造時の断面構造図である。FIG. 26 is a cross-sectional structure diagram when the resin multilayer substrate 500 is manufactured.
(実施形態)
<多層基板及び電子機器の構成>
 以下に、本発明の一実施形態に係る多層基板及び電子機器の構成について図面を参照しながら説明する。図1は、本発明の一実施形態に係る多層基板20を備えた電子機器10の断面構造図である。図2Aは、多層基板20の断面構造図である。図2Bは、多層基板20の分解図である。図3Aは、電子部品81を上側から見た図である。図3Bは、電子部品81を前側から見た図である。図3Cは、パッケージ部品80を上側から見た図である。図3Dは、パッケージ部品80を前側から見た図である。図3C及び図3Dでは、ビアホール導体v100,v102は省略されている。以下では、多層基板20の積層方向を上下方向と定義する。図1、図2A及び図2Bにおける紙面垂直方向を前後方向(第2の直交方向の一例)と定義し、図1、図2A及び図2Bにおける紙面左右方向を左右方向(第1の直交方向の一例)と定義する。上下方向、左右方向及び前後方向は互いに直交している。
(Embodiment)
<Configuration of multilayer substrate and electronic device>
Hereinafter, configurations of a multilayer substrate and an electronic apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional structure diagram of an electronic device 10 including a multilayer substrate 20 according to an embodiment of the present invention. FIG. 2A is a sectional view of the multilayer substrate 20. FIG. 2B is an exploded view of the multilayer substrate 20. FIG. 3A is a view of the electronic component 81 as viewed from above. FIG. 3B is a view of the electronic component 81 as viewed from the front side. FIG. 3C is a view of the package component 80 as viewed from above. FIG. 3D is a view of the package component 80 as viewed from the front side. In FIG. 3C and FIG. 3D, the via-hole conductors v100 and v102 are omitted. Hereinafter, the stacking direction of the multilayer substrate 20 is defined as the vertical direction. 1, 2A, and 2B is defined as the front-rear direction (an example of the second orthogonal direction), and the left-right direction of the paper in FIGS. Example). The up-down direction, the left-right direction, and the front-rear direction are orthogonal to each other.
 電子機器10は、例えば、携帯電話やパーソナルコンピュータ、ゲーム機、ウェラブル端末等である。図1では、電子機器10内に設けられているモジュールやマザー基板のみを図示し、電子機器10の筺体やその他の構成については省略した。電子機器10は、図1に示すように、多層基板20、電子部品60,70及びマザー基板100を備えている。 The electronic device 10 is, for example, a mobile phone, a personal computer, a game machine, a wearable terminal, or the like. In FIG. 1, only modules and mother boards provided in the electronic device 10 are illustrated, and the casing of the electronic device 10 and other configurations are omitted. As shown in FIG. 1, the electronic device 10 includes a multilayer substrate 20, electronic components 60 and 70, and a mother substrate 100.
 まず、多層基板20について説明する。多層基板20は、上側から見たときに長方形状をなす板状の樹脂基板である。多層基板20を上側から見たときに、長辺は左右方向に延在し、短辺は前後方向に延在している。多層基板20は、図2に示すように、基材22、外部電極24a~24d,26a,26b、回路導体層28a~28e,29a~29e、ビアホール導体v1~v7,v11~v17,v100,v102、パッケージ部品80を備えている。なお、外部電極は、外部電極24a~24d,26a,26b以外にも設けられているが、外部電極24a~24d,26a,26b以外の外部電極については図1及び図2では省略した。同様に、回路導体層は、回路導体層28a~28e,29a~29e以外にも設けられているが、回路導体層28a~28e,29a~29e以外の回路導体層については図1及び図2では省略した。同様に、ビアホール導体は、ビアホール導体v1~v7,v11~v17以外にも設けられているが、ビアホール導体v1~v7,v11~v17以外のビアホール導体については図1及び図2Aでは省略した。 First, the multilayer substrate 20 will be described. The multilayer substrate 20 is a plate-shaped resin substrate having a rectangular shape when viewed from above. When the multilayer substrate 20 is viewed from above, the long side extends in the left-right direction and the short side extends in the front-rear direction. As shown in FIG. 2, the multilayer substrate 20 includes a base material 22, external electrodes 24a to 24d, 26a and 26b, circuit conductor layers 28a to 28e, 29a to 29e, via-hole conductors v1 to v7, v11 to v17, v100, and v102. The package part 80 is provided. The external electrodes are provided in addition to the external electrodes 24a to 24d, 26a, and 26b, but the external electrodes other than the external electrodes 24a to 24d, 26a, and 26b are omitted in FIGS. Similarly, the circuit conductor layers are provided in addition to the circuit conductor layers 28a to 28e and 29a to 29e, but the circuit conductor layers other than the circuit conductor layers 28a to 28e and 29a to 29e are shown in FIGS. Omitted. Similarly, via-hole conductors are provided in addition to the via-hole conductors v1 to v7 and v11 to v17, but the via-hole conductors other than the via-hole conductors v1 to v7 and v11 to v17 are omitted in FIGS. 1 and 2A.
 基材22は、図2Aに示すように、上側から見たときに、長方形状をなす可撓性の板状部材である。基材22は、絶縁体シート22a~22g(複数の絶縁体層の一例)が上側から下側へとこの順に積層されて構成されている積層体である。基材22は、2つの主面を有している。以下では、基材22の上側の主面を表面と称し、基材22の下側の主面を裏面と称す。基材22の裏面は、多層基板20の実装時にマザー基板100に対向する実装面である。 The base material 22 is a flexible plate-like member having a rectangular shape when viewed from above, as shown in FIG. 2A. The base material 22 is a laminate in which insulator sheets 22a to 22g (an example of a plurality of insulator layers) are laminated in this order from the upper side to the lower side. The base material 22 has two main surfaces. Hereinafter, the upper main surface of the base material 22 is referred to as a front surface, and the lower main surface of the base material 22 is referred to as a back surface. The back surface of the base material 22 is a mounting surface that faces the mother substrate 100 when the multilayer substrate 20 is mounted.
 絶縁体シート22a~22gは、上側から見たときに、長方形状をなしており、基材22と同じ形状をなしている。絶縁体シート22a~22gは、ポリイミドや液晶ポリマ等の可撓性を有する熱可塑性樹脂(第1の樹脂の一例)を含む材料により構成されている。以下では、絶縁体シート22a~22gの上側の主面を表面と称し、絶縁体シート22a~22gの下側の主面を裏面と称す。 The insulator sheets 22a to 22g have a rectangular shape when viewed from above, and have the same shape as the base material 22. The insulator sheets 22a to 22g are made of a material including a flexible thermoplastic resin (an example of a first resin) such as polyimide or liquid crystal polymer. Hereinafter, the upper main surface of the insulator sheets 22a to 22g is referred to as a front surface, and the lower main surface of the insulator sheets 22a to 22g is referred to as a back surface.
 また、図2Bに示すように、絶縁体シート22b~22dの中央(対角線の交点付近)にはそれぞれ、上側から見たときに、長方形状をなす貫通孔H1~H3が設けられている。貫通孔H1~H3はそれぞれ、絶縁体シート22b~22dの表面と裏面とを繋ぐように形成されている。また、貫通孔H1~H3の外縁は、上側から見たときに、互いに一致するように重なり合っている。よって、貫通孔H1~H3は1つに繋がっている。 Further, as shown in FIG. 2B, through holes H1 to H3 having a rectangular shape when viewed from above are provided at the centers (near the intersections of the diagonal lines) of the insulator sheets 22b to 22d, respectively. The through holes H1 to H3 are formed so as to connect the front and back surfaces of the insulator sheets 22b to 22d, respectively. Further, the outer edges of the through holes H1 to H3 overlap each other when viewed from above. Therefore, the through holes H1 to H3 are connected to one.
 また、貫通孔H1の上側の開口は、絶縁体シート22aによって塞がれている。貫通孔H3の下側の開口は、絶縁体シート22eによって塞がれている。これにより、基材22内には、貫通孔H1~H3が繋がった直方体状の空間Spが形成されている。 Further, the upper opening of the through hole H1 is closed by the insulator sheet 22a. The opening on the lower side of the through hole H3 is blocked by the insulator sheet 22e. Thus, a rectangular parallelepiped space Sp in which the through holes H1 to H3 are connected is formed in the base material 22.
 パッケージ部品80は、図1、図2A及び図2Bに示すように、基材22に内蔵されており、直方体状をなしている。以下では、パッケージ部品80において、上側(積層方向の一方側の一例)に位置する面を上面(第1の平面の一例)と呼び、下側(積層方向の他方側の一例)に位置する面を下面(第2の平面の一例)と呼び、前側に位置する面を前面と呼び、後側に位置する面を後面と呼び、右側に位置する面を右面と呼び、左側に位置する面を左面と呼ぶ。上面、下面、前面、後面、右面及び左面は、実質的に平面である。上面及び下面は、上下方向に実質的に垂直な平面である。また、前面、後面、右面及び左面は、上面及び下面に対して実質的に垂直であり、上下方向に実質的に平行な平面である。また、前面、後面、右面及び左面を総称して側面と呼ぶこともある。本実施形態では、上面、下面、前面、後面、右面及び左面の接合部分に対して面取りが施されていないが、該接合部分に対して面取りが施されていてもよい。なお、実質的に平面であること、及び、実質的に平行又は垂直であることは、製造ばらつきによって、僅かに平面からずれることや僅かに平行又は垂直からずれることを許容する意味である。 As shown in FIGS. 1, 2A, and 2B, the package component 80 is built in the base material 22 and has a rectangular parallelepiped shape. Hereinafter, in the package component 80, a surface positioned on the upper side (an example of one side in the stacking direction) is referred to as an upper surface (an example of the first plane), and a surface positioned on the lower side (an example of the other side in the stacking direction) Is called the lower surface (an example of the second plane), the front surface is called the front surface, the rear surface is called the rear surface, the right surface is called the right surface, and the left surface is Called the left side. The upper surface, the lower surface, the front surface, the rear surface, the right surface, and the left surface are substantially flat. The upper surface and the lower surface are planes that are substantially perpendicular to the vertical direction. Further, the front surface, the rear surface, the right surface, and the left surface are planes that are substantially perpendicular to the upper surface and the lower surface and substantially parallel to the vertical direction. In addition, the front surface, the rear surface, the right surface, and the left surface may be collectively referred to as a side surface. In the present embodiment, chamfering is not performed on the joint portions of the upper surface, the lower surface, the front surface, the rear surface, the right surface, and the left surface, but the joint portions may be chamfered. It should be noted that being substantially flat and being substantially parallel or vertical means that it is allowed to slightly deviate from the plane or slightly deviate from parallel or vertical due to manufacturing variations.
 パッケージ部品80は、空間Spに収容されている。これにより、パッケージ部品80は、絶縁体シート22b~22dを上下方向に貫通している。更に、絶縁体シート22aの裏面は、パッケージ部品80の上面に接触しており、絶縁体シート22e(第1の絶縁体層の一例)の表面は、パッケージ部品80の下面に接触している。また、貫通孔H1~H3の内周面は、パッケージ部品80の側面に接触している。また、絶縁体シート22a~22eは、パッケージ部品80に固着している。より詳細には、後述するように、絶縁体シート22a~22gは、基材22の熱圧着工程において、軟化した後に固化している。そのため、絶縁体シート22a~22gが軟化する際に、空間Spの内周面とパッケージ部品50の上面、下面及び側面(以下、表面とも呼ぶ)との間の隙間に絶縁体シート22a~22eが流れ込んで、該隙間が絶縁体シート22a~22eにより埋められる。更に、絶縁体シート22a~22eが固化する際に、空間Spの内周面とパッケージ部品50表面とが固着して容易に離れなくなる。 The package component 80 is accommodated in the space Sp. Thereby, the package component 80 penetrates the insulator sheets 22b to 22d in the vertical direction. Furthermore, the back surface of the insulator sheet 22 a is in contact with the upper surface of the package component 80, and the surface of the insulator sheet 22 e (an example of the first insulator layer) is in contact with the lower surface of the package component 80. Further, the inner peripheral surfaces of the through holes H 1 to H 3 are in contact with the side surfaces of the package component 80. Further, the insulator sheets 22a to 22e are fixed to the package component 80. More specifically, as will be described later, the insulator sheets 22a to 22g are solidified after being softened in the thermocompression bonding process of the base material 22. Therefore, when the insulating sheets 22a to 22g are softened, the insulating sheets 22a to 22e are formed in the gaps between the inner peripheral surface of the space Sp and the upper, lower, and side surfaces (hereinafter also referred to as surfaces) of the package component 50. The gaps are filled, and the gaps are filled with the insulator sheets 22a to 22e. Further, when the insulator sheets 22a to 22e are solidified, the inner peripheral surface of the space Sp and the surface of the package component 50 are fixed and are not easily separated.
 パッケージ部品80は、図2A及び図3Aないし図3Dに示すように、電子部品81(第1の電子部品の一例)及びコーティング部材86を含んでいる。電子部品81は、例えば、コンデンサやインダクタ等のチップ型の電子部品であり、本体82(第1の本体の一例)及び外部電極84,84bを有している。 The package component 80 includes an electronic component 81 (an example of a first electronic component) and a coating member 86, as shown in FIGS. 2A and 3A to 3D. The electronic component 81 is, for example, a chip-type electronic component such as a capacitor or an inductor, and includes a main body 82 (an example of a first main body) and external electrodes 84 and 84b.
 本体82は、セラミック等の材料により作製された直方体状をなす部材であり、内部にコンデンサやインダクタ等の回路素子(図示せず)を含んでいる。外部電極84a(第1の外部電極の一例)は、本体82の表面に設けられており、本体82において上面又は下面のいずれか一方に設けられている。本実施形態では、外部電極84aは、本体82の左面(第1の直交方向の一方側の面の一例)の全体を覆うと共に、左面に隣接する領域であって、上面(積層方向の一方側の面の一例)、下面(積層方向の他方側の面の一例)、前面(第2の直交方向の一方側の面の一例)及び後面(第2の直交方向の他方側の面の一例)の一部の領域を覆っている。外部電極84bは、本体82において上面又は下面のいずれか一方に設けられている。本実施形態では、外部電極84bは、本体82の表面に設けられており、具体的には、本体82の右面の全体を覆うと共に、右面に隣接する領域であって、上面、下面、前面及び後面の一部の領域を覆っている。これにより、電子部品81の上面、下面、前面及び後面には、凹凸が形成されている。外部電極84a,84bは、例えば、銀等を主成分とする導電性ペーストが塗布されて形成された下地電極上にニッケルメッキ及び錫メッキが施されることにより形成されている。 The main body 82 is a rectangular parallelepiped member made of a material such as ceramic, and includes circuit elements (not shown) such as capacitors and inductors therein. The external electrode 84 a (an example of the first external electrode) is provided on the surface of the main body 82, and is provided on either the upper surface or the lower surface of the main body 82. In the present embodiment, the external electrode 84a covers the entire left surface of the main body 82 (an example of a surface on one side in the first orthogonal direction) and is an area adjacent to the left surface, and has an upper surface (one side in the stacking direction). Example of surface), lower surface (example of surface on the other side in the stacking direction), front surface (example of surface on one side in the second orthogonal direction) and rear surface (example of surface on the other side in the second orthogonal direction) Covers some areas. The external electrode 84 b is provided on either the upper surface or the lower surface of the main body 82. In the present embodiment, the external electrode 84b is provided on the surface of the main body 82. Specifically, the external electrode 84b covers the entire right surface of the main body 82 and is adjacent to the right surface, and includes an upper surface, a lower surface, a front surface, and a front surface. It covers a part of the rear surface. Thereby, unevenness is formed on the upper surface, the lower surface, the front surface, and the rear surface of the electronic component 81. The external electrodes 84a and 84b are formed, for example, by performing nickel plating and tin plating on a base electrode formed by applying a conductive paste mainly composed of silver or the like.
 コーティング部材86は、エポキシ樹脂等の熱硬化性樹脂(第2の樹脂の一例)を含む材料により構成され、かつ、電子部品81の表面の少なくとも一部を覆っている。これにより、パッケージ部品80の上面の少なくとも一部及びパッケージ部品80の下面の少なくとも一部はコーティング部材86により構成されている。本実施形態では、コーティング部材86は、電子部品81の表面の全体を覆っている。そのため、電子部品81は、コーティング部材86から露出していない。そして、パッケージ部品80の上面の全体及びパッケージ部品80の下面の全体はコーティング部材86により構成されている。ただし、コーティング部材86の下面(すなわち、パッケージ部品80の下面)には、後述するビアホール導体v100,v102のための貫通孔が設けられている。そのため、コーティング部材86の下面(すなわち、パッケージ部品80の下面)は貫通孔において窪んでいる。ただし、この貫通孔は小さいので、コーティング部材86の下面(すなわち、パッケージ部品80の下面)を便宜上平面と解釈する。 The coating member 86 is made of a material containing a thermosetting resin (an example of a second resin) such as an epoxy resin, and covers at least a part of the surface of the electronic component 81. Thereby, at least a part of the upper surface of the package component 80 and at least a part of the lower surface of the package component 80 are constituted by the coating member 86. In the present embodiment, the coating member 86 covers the entire surface of the electronic component 81. Therefore, the electronic component 81 is not exposed from the coating member 86. The entire upper surface of the package component 80 and the entire lower surface of the package component 80 are constituted by a coating member 86. However, on the lower surface of the coating member 86 (that is, the lower surface of the package component 80), through holes for via-hole conductors v100 and v102 described later are provided. Therefore, the lower surface of the coating member 86 (that is, the lower surface of the package component 80) is recessed in the through hole. However, since the through hole is small, the lower surface of the coating member 86 (that is, the lower surface of the package component 80) is interpreted as a plane for convenience.
 また、絶縁体シート22a~22gに用いられるポリイミドや液晶ポリマ等の熱可塑性樹脂の軟化点温度において、コーティング部材86に用いられるエポキシ樹脂等の熱硬化性樹脂のヤング率は、絶縁体シート22a~22gに用いられるポリイミドや液晶ポリマ等の熱可塑性樹脂のヤング率よりも大きい。軟化点とは、樹脂の温度が上昇し変形を始めるときの温度である。ポリイミドの軟化点は例えば120℃であり、液晶ポリマの軟化点は例えば150℃である。本願では、軟化点とはJIS K7206に記載の方法に準じて測定したものを意味する。 In addition, the Young's modulus of a thermosetting resin such as an epoxy resin used for the coating member 86 at the softening point temperature of a thermoplastic resin such as polyimide or liquid crystal polymer used for the insulator sheets 22a to 22g is as follows. It is larger than the Young's modulus of thermoplastic resins such as polyimide and liquid crystal polymer used for 22g. The softening point is the temperature at which the temperature of the resin rises and begins to deform. The softening point of polyimide is 120 ° C., for example, and the softening point of liquid crystal polymer is 150 ° C., for example. In the present application, the softening point means a value measured according to the method described in JIS K7206.
 また、コーティング部材86に用いられるエポキシ樹脂等の熱硬化性樹脂の線膨張係数は、本体82の材料(セラミック)の線膨張係数以上であり、かつ、絶縁体シート22a~22gに用いられるポリイミドや液晶ポリマ等の熱可塑性樹脂の線膨張係数以下である。より詳細には、セラミックの線膨張係数は、例えば7×10-6/℃程度であり、液晶ポリマの線膨張係数は、例えば16×10-6/℃程度であり、エポキシ樹脂の線膨張係数は、例えば10×10-6/℃程度である。ただし、エポキシ樹脂の線膨張係数についてはエポキシ樹脂に添加するフィラーの量で調整されてもよい。 Further, the linear expansion coefficient of a thermosetting resin such as an epoxy resin used for the coating member 86 is equal to or higher than the linear expansion coefficient of the material (ceramic) of the main body 82, and polyimide or the like used for the insulator sheets 22a to 22g. It is below the linear expansion coefficient of thermoplastic resins, such as a liquid crystal polymer. More specifically, the linear expansion coefficient of the ceramic is, for example, about 7 × 10 −6 / ° C., the linear expansion coefficient of the liquid crystal polymer is, for example, about 16 × 10 −6 / ° C., and the linear expansion coefficient of the epoxy resin. Is, for example, about 10 × 10 −6 / ° C. However, the linear expansion coefficient of the epoxy resin may be adjusted by the amount of filler added to the epoxy resin.
 外部電極24a~24dは、長方形状の導体層であり、絶縁体シート22aの表面に設けられている。外部電極24a~24dは、左側から右側へとこの順に並んでいる。外部電極26a,26bは、長方形状の導体層であり、絶縁体シート22gの裏面に設けられている。外部電極26a,26bは、左側から右側へとこの順に並んでいる。 The external electrodes 24a to 24d are rectangular conductor layers and are provided on the surface of the insulator sheet 22a. The external electrodes 24a to 24d are arranged in this order from the left side to the right side. The external electrodes 26a and 26b are rectangular conductor layers, and are provided on the back surface of the insulator sheet 22g. The external electrodes 26a and 26b are arranged in this order from the left side to the right side.
 回路導体層28a~28e,29a~29eはそれぞれ、絶縁体シート22b~22fの表面上に設けられている導体層であり、多層基板20内の回路の一部を構成している。回路導体層28a~28e,29a~29eは、図2では、線状をなす配線であるが、例えば、矩形状等の面状をなすコンデンサ導体やグランド導体等であってもよい。回路導体層28a~28eは、パッケージ部品80に対して左側において、左右方向に延在している。ただし、回路導体層28eの右端は、上側から見たときに、パッケージ部品80と重なっている。回路導体層29a~29eは、パッケージ部品80に対して右側において、左右方向に延在している。ただし、回路導体層29eの左端は、上側から見たときに、パッケージ部品80と重なっている。 The circuit conductor layers 28a to 28e and 29a to 29e are conductor layers provided on the surfaces of the insulator sheets 22b to 22f, respectively, and constitute a part of the circuit in the multilayer substrate 20. The circuit conductor layers 28a to 28e and 29a to 29e are linear wirings in FIG. 2, but may be capacitor conductors, ground conductors, or the like having a rectangular shape. The circuit conductor layers 28 a to 28 e extend in the left-right direction on the left side with respect to the package component 80. However, the right end of the circuit conductor layer 28e overlaps with the package component 80 when viewed from above. The circuit conductor layers 29 a to 29 e extend in the left-right direction on the right side with respect to the package component 80. However, the left end of the circuit conductor layer 29e overlaps with the package component 80 when viewed from above.
 以上のような回路導体層28a~28e,29a~29e及び外部電極24a~24d,26a,26bの材料は、例えば、銅からなる金属箔である。ただし、回路導体層28a~28e,29a~29e及び外部電極24a~24d,26a,26bの表面には表面粗さを低減するために亜鉛鍍金が施されている。 The material of the circuit conductor layers 28a to 28e, 29a to 29e and the external electrodes 24a to 24d, 26a, and 26b as described above is, for example, a metal foil made of copper. However, the surface of the circuit conductor layers 28a to 28e, 29a to 29e and the external electrodes 24a to 24d, 26a and 26b is plated with zinc to reduce the surface roughness.
 また、回路導体層28a~28e,29a~29e及び外部電極24a~24d,26a,26bにおいて絶縁体シート22a~22gに接触している主面の表面粗さは、回路導体層28a~28e,29a~29e及び外部電極24a~24d,26a,26bにおいて絶縁体シート22a~22gに接触していない主面の表面粗さよりも大きい。これにより、回路導体層28a~28e,29a~29e及び外部電極24a~24d,26a,26bは、絶縁体シート22a~22gの裏面に対してアンカー効果によって固着している。なお、回路導体層28a~28e,29a~29e及び外部電極24a~24d,26a,26bと絶縁体シート22a~22gとは、絶縁体シート22a~22gの材料が回路導体層28a~28e,29a~29e及び外部電極24a~24d,26a,26bの凹凸に入り込むことにより物理的に固着しており、化学結合していない。そのため、回路導体層28a~28e,29a~29e及び外部電極24a~24d,26a,26bと絶縁体シート22a~22gとの境界には接着剤の成分となる樹脂等の異物が殆ど存在していない。 Further, the surface roughness of the main surfaces of the circuit conductor layers 28a to 28e, 29a to 29e and the external electrodes 24a to 24d, 26a, and 26b that are in contact with the insulator sheets 22a to 22g is the circuit conductor layers 28a to 28e, 29a. To 29e and the outer electrodes 24a to 24d, 26a and 26b, the surface roughness of the main surfaces not contacting the insulator sheets 22a to 22g is larger. As a result, the circuit conductor layers 28a to 28e, 29a to 29e and the external electrodes 24a to 24d, 26a and 26b are fixed to the back surfaces of the insulator sheets 22a to 22g by the anchor effect. The circuit conductor layers 28a to 28e, 29a to 29e, the external electrodes 24a to 24d, 26a and 26b, and the insulator sheets 22a to 22g are made of the circuit conductor layers 28a to 28e, 29a to 29e and external electrodes 24a to 24d, 26a and 26b are physically fixed by entering into the irregularities, and are not chemically bonded. For this reason, there is almost no foreign matter such as a resin serving as an adhesive component at the boundary between the circuit conductor layers 28a to 28e, 29a to 29e, the external electrodes 24a to 24d, 26a and 26b, and the insulator sheets 22a to 22g. .
 ビアホール導体v1~v7はそれぞれ、絶縁体シート22a~22gを上下方向に貫通する層間接続導体である。ビアホール導体v1~v6はそれぞれ、上側から下側に行くにしたがって太くなる形状をなしている。ビアホール導体v7は、上側から下側に行くにしたがって細くなる形状をなしている。ビアホール導体v1は、外部電極24aと回路導体層28aとを接続している。ビアホール導体v2は、回路導体層28aと回路導体層28bとを接続している。ビアホール導体v3は、回路導体層28bと回路導体層28cとを接続している。ビアホール導体v4は、回路導体層28cと回路導体層28dとを接続している。ビアホール導体v5は、回路導体層28dと回路導体層28eとを接続している。ビアホール導体v6とビアホール導体v7とは、互いに接続されることにより一連のビアホール導体を構成している。ビアホール導体v6,v7は、回路導体層28eと外部電極26aとを接続している。これにより、外部電極24aと外部電極26aとが電気的に接続されている。 The via-hole conductors v1 to v7 are interlayer connection conductors that penetrate the insulating sheets 22a to 22g in the vertical direction, respectively. Each of the via-hole conductors v1 to v6 has a shape that becomes thicker from the upper side to the lower side. The via-hole conductor v7 has a shape that becomes thinner from the upper side to the lower side. The via-hole conductor v1 connects the external electrode 24a and the circuit conductor layer 28a. The via-hole conductor v2 connects the circuit conductor layer 28a and the circuit conductor layer 28b. The via-hole conductor v3 connects the circuit conductor layer 28b and the circuit conductor layer 28c. The via-hole conductor v4 connects the circuit conductor layer 28c and the circuit conductor layer 28d. The via-hole conductor v5 connects the circuit conductor layer 28d and the circuit conductor layer 28e. The via hole conductor v6 and the via hole conductor v7 are connected to each other to form a series of via hole conductors. The via-hole conductors v6 and v7 connect the circuit conductor layer 28e and the external electrode 26a. Thereby, the external electrode 24a and the external electrode 26a are electrically connected.
 ビアホール導体v11~v17はそれぞれ、絶縁体シート22a~22gを上下方向に貫通する層間接続導体である。ビアホール導体v11~v16はそれぞれ、上側から下側に行くにしたがって太くなる形状をなしている。ビアホール導体v17は、上側から下側に行くにしたがって細くなる形状をなしている。ビアホール導体v11は、外部電極24bと回路導体層29aとを接続している。ビアホール導体v12は、回路導体層29aと回路導体層29bとを接続している。ビアホール導体v13は、回路導体層29bと回路導体層29cとを接続している。ビアホール導体v14は、回路導体層29cと回路導体層29dとを接続している。ビアホール導体v15は、回路導体層29dと回路導体層29eとを接続している。ビアホール導体v16とビアホール導体v17とは、互いに接続されることにより一連のビアホール導体を構成している。ビアホール導体v16,v17は、回路導体層29eと外部電極26bとを接続している。これにより、外部電極24dと外部電極26bとが電気的に接続されている。 Via-hole conductors v11 to v17 are interlayer connection conductors penetrating the insulating sheets 22a to 22g in the vertical direction, respectively. Each of the via-hole conductors v11 to v16 has a shape that becomes thicker from the upper side to the lower side. The via-hole conductor v17 has a shape that becomes thinner from the upper side to the lower side. The via-hole conductor v11 connects the external electrode 24b and the circuit conductor layer 29a. The via-hole conductor v12 connects the circuit conductor layer 29a and the circuit conductor layer 29b. The via-hole conductor v13 connects the circuit conductor layer 29b and the circuit conductor layer 29c. The via-hole conductor v14 connects the circuit conductor layer 29c and the circuit conductor layer 29d. The via-hole conductor v15 connects the circuit conductor layer 29d and the circuit conductor layer 29e. The via hole conductor v16 and the via hole conductor v17 constitute a series of via hole conductors by being connected to each other. The via-hole conductors v16 and v17 connect the circuit conductor layer 29e and the external electrode 26b. Thereby, the external electrode 24d and the external electrode 26b are electrically connected.
 ビアホール導体v100(接続導体の一例)は、コーティング部材86及び絶縁体シート22eを上下方向に貫通しており、外部電極84aと回路導体層28eとを接続している。より詳細には、ビアホール導体v100の上端は、外部電極84aに接続されており、ビアホール導体v100の下端は回路導体層28eに接続されている。そして、ビアホール導体v100は、外部電極84aとパッケージ部品80の下面との間に存在するコーティング部材86を上下方向に貫通すると共に、絶縁体シート22eを上下方向に貫通している。従って、ビアホール導体v100は、パッケージ部品80の下面を通過している。 The via-hole conductor v100 (an example of a connection conductor) penetrates the coating member 86 and the insulating sheet 22e in the vertical direction, and connects the external electrode 84a and the circuit conductor layer 28e. More specifically, the upper end of the via hole conductor v100 is connected to the external electrode 84a, and the lower end of the via hole conductor v100 is connected to the circuit conductor layer 28e. The via-hole conductor v100 penetrates the coating member 86 existing between the external electrode 84a and the lower surface of the package component 80 in the vertical direction and penetrates the insulator sheet 22e in the vertical direction. Therefore, the via-hole conductor v100 passes through the lower surface of the package component 80.
 ビアホール導体v102は、コーティング部材86及び絶縁体シート22eを上下方向に貫通しており、外部電極84bと回路導体層29eとを接続している。より詳細には、ビアホール導体v102の上端は、外部電極84bに接続されており、ビアホール導体v102の下端は回路導体層29eに接続されている。そして、ビアホール導体v102は、外部電極84bとパッケージ部品80の下面との間に存在するコーティング部材86を上下方向に貫通すると共に、絶縁体シート22eを上下方向に貫通している。従って、ビアホール導体v102は、パッケージ部品80の下面を通過している。 The via-hole conductor v102 penetrates the coating member 86 and the insulating sheet 22e in the vertical direction, and connects the external electrode 84b and the circuit conductor layer 29e. More specifically, the upper end of the via hole conductor v102 is connected to the external electrode 84b, and the lower end of the via hole conductor v102 is connected to the circuit conductor layer 29e. The via-hole conductor v102 penetrates the coating member 86 existing between the external electrode 84b and the lower surface of the package component 80 in the vertical direction and penetrates the insulator sheet 22e in the vertical direction. Therefore, the via-hole conductor v102 passes through the lower surface of the package component 80.
 ビアホール導体v1~v7,v11~v17,v100,v102は、銅、錫や銀等の金属を主成分とする導電性ペーストが固化したものである。本実施形態では、ビアホール導体v1~v7,v11~v17の材料とビアホール導体v100,v102の材料とは同じである。 Via-hole conductors v1 to v7, v11 to v17, v100, and v102 are solidified conductive pastes mainly composed of metals such as copper, tin, and silver. In the present embodiment, the material of the via-hole conductors v1 to v7 and v11 to v17 and the material of the via-hole conductors v100 and v102 are the same.
 次に、電子部品60,70について説明する。電子部品60,70は、基材22の表面上に実装される電子部品であり、例えば、半導体集積回路である。ただし、電子部品60,70は、コンデンサやインダクタ等のチップ型電子部品であってもよい。電子部品60は、本体60a及び外部電極62a,62bを備えている。本体60aは直方体状をなしている。外部電極62a,62bは、本体60aの下面に設けられており、左側から右側へとこの順に並んでいる。そして、外部電極62a,62bはそれぞれ、外部電極24a,24bに例えばはんだ64a,64bにより接続される。電子部品70は、本体70a及び外部電極72a,72bを備えている。本体70aは直方体状をなしている。外部電極72a,72bは、本体70aの下面に設けられており、左側から右側へとこの順に並んでいる。そして、外部電極72a,72bはそれぞれ、外部電極24c,24dに例えばはんだ74a,74bにより接続される。 Next, the electronic components 60 and 70 will be described. The electronic components 60 and 70 are electronic components mounted on the surface of the base material 22 and are, for example, semiconductor integrated circuits. However, the electronic components 60 and 70 may be chip-type electronic components such as capacitors and inductors. The electronic component 60 includes a main body 60a and external electrodes 62a and 62b. The main body 60a has a rectangular parallelepiped shape. The external electrodes 62a and 62b are provided on the lower surface of the main body 60a, and are arranged in this order from the left side to the right side. The external electrodes 62a and 62b are connected to the external electrodes 24a and 24b, for example, by solders 64a and 64b. The electronic component 70 includes a main body 70a and external electrodes 72a and 72b. The main body 70a has a rectangular parallelepiped shape. The external electrodes 72a and 72b are provided on the lower surface of the main body 70a, and are arranged in this order from the left side to the right side. The external electrodes 72a and 72b are connected to the external electrodes 24c and 24d by, for example, solders 74a and 74b.
 次に、マザー基板100について説明する。マザー基板100は、携帯電話等に用いられる大判の回路基板である。マザー基板100は、基本的には、可撓性を有さない硬質な基板であるが、可撓性を有していてもよい。マザー基板100は、本体102及び外部電極104a,104bを含んでいる。本体102は、上側から見たときに、長方形状をなす板状の多層基板である。本体102の内部及び表面には電気回路が形成されている。以下では、本体102の上側の主面を表面と称し、本体102の下側の主面を裏面と称す。なお、マザー基板100の表面及び裏面の少なくとも一方には、図示しない表面実装型部品やシールドケース等が実装されていてもよい。 Next, the mother substrate 100 will be described. The mother board 100 is a large circuit board used for a mobile phone or the like. The mother substrate 100 is basically a hard substrate that does not have flexibility, but may have flexibility. The mother substrate 100 includes a main body 102 and external electrodes 104a and 104b. The main body 102 is a plate-shaped multilayer substrate having a rectangular shape when viewed from above. An electric circuit is formed inside and on the surface of the main body 102. Hereinafter, the upper main surface of the main body 102 is referred to as a front surface, and the lower main surface of the main body 102 is referred to as a back surface. Note that a surface mount type component, a shield case, or the like (not shown) may be mounted on at least one of the front surface and the back surface of the mother substrate 100.
 外部電極104a,104bは、長方形状の導体層であり、本体102の表面に設けられている。外部電極104a,104bは、左側から右側へとこの順に並ぶように配置されている。なお、マザー基板100には、外部電極104a,104b以外の図示しない外部電極が更に設けられていてもよい。 The external electrodes 104 a and 104 b are rectangular conductor layers and are provided on the surface of the main body 102. The external electrodes 104a and 104b are arranged in this order from the left side to the right side. The mother substrate 100 may further be provided with external electrodes (not shown) other than the external electrodes 104a and 104b.
 多層基板20は、マザー基板100の表面上に実装されている。より詳細には、外部電極26a,26bはそれぞれ、外部電極104a,104bに対してはんだ110a,110bにより実装されている。 The multilayer substrate 20 is mounted on the surface of the mother substrate 100. More specifically, the external electrodes 26a and 26b are mounted on the external electrodes 104a and 104b by solders 110a and 110b, respectively.
<多層基板の製造方法>
 以下に、多層基板20の製造方法について図面を参照しながら説明する。図4Aないし図4D及び図5Aないし図5Dは、パッケージ部品80の製造時の透視図である。なお、図4Aないし図4D及び図5Aないし図5Dにおいて電子部品81が点線で示されていることは、電子部品81が樹脂内に存在していることを意味する。図5E、図6A、図6B及び図7は、多層基板20の製造時の断面構造図である。以下では、一つの多層基板20が作製される場合を例にとって説明するが、実際には、大判の絶縁体シートが積層及びカットされることにより、同時に複数の多層基板20が作製される。
<Multilayer substrate manufacturing method>
Below, the manufacturing method of the multilayer substrate 20 is demonstrated, referring drawings. 4A to 4D and FIGS. 5A to 5D are perspective views when the package component 80 is manufactured. 4A to 4D and 5A to 5D that the electronic component 81 is indicated by a dotted line means that the electronic component 81 is present in the resin. 5E, FIG. 6A, FIG. 6B, and FIG. 7 are cross-sectional structure diagrams when the multilayer substrate 20 is manufactured. Hereinafter, a case where one multilayer substrate 20 is manufactured will be described as an example, but actually, a plurality of multilayer substrates 20 are manufactured simultaneously by laminating and cutting large-sized insulator sheets.
 パッケージ部品80の製造方法について、図4Aないし図4D及び図5Aないし図5Dを参照しながら説明する。本工程(第1の工程の一例)では、電子部品81の表面の少なくとも一部をコーティング部材86により覆うことにより、上下方向の両端に位置し、かつ、上下方向に実質的に平行な上面及び下面を有するパッケージ部品80を形成する。本実施形態では、電子部品81の表面の全体をコーティング部材86により覆うことによりパッケージ部品80を形成する。 The manufacturing method of the package component 80 will be described with reference to FIGS. 4A to 4D and FIGS. 5A to 5D. In this step (an example of the first step), by covering at least a part of the surface of the electronic component 81 with the coating member 86, the upper surface positioned at both ends in the vertical direction and substantially parallel to the vertical direction and A package component 80 having a lower surface is formed. In the present embodiment, the package component 80 is formed by covering the entire surface of the electronic component 81 with the coating member 86.
 まず、図4Aに示すように、複数の電子部品81をPETフィルム等の樹脂シート200上に配置する。次に、図4Bに示すように、UV硬化性を有するエポキシ樹脂を含む液体状の材料を樹脂シート200上に塗布した後に、UV硬化性を有するエポキシ樹脂を含む材料に対してUVを照射して、樹脂層202を形成する。これにより、複数の電子部品81は、樹脂層202内に埋没する。 First, as shown in FIG. 4A, a plurality of electronic components 81 are arranged on a resin sheet 200 such as a PET film. Next, as shown in FIG. 4B, after applying a liquid material containing a UV curable epoxy resin on the resin sheet 200, the material containing the UV curable epoxy resin is irradiated with UV. Thus, the resin layer 202 is formed. Thereby, the plurality of electronic components 81 are buried in the resin layer 202.
 次に、図4Cに示すように、樹脂層202の上面をグラインダーにより研磨して、樹脂層202の上下方向の厚みを適切な値に調整すると共に、樹脂層202の上面を平坦化する。その後、図4Dに示すように、複数の電子部品81及び樹脂層202から樹脂シート200を剥離する。このとき、外部電極84a,84bの一部が樹脂層202から露出している。 Next, as shown in FIG. 4C, the upper surface of the resin layer 202 is polished with a grinder to adjust the vertical thickness of the resin layer 202 to an appropriate value, and the upper surface of the resin layer 202 is flattened. Thereafter, as illustrated in FIG. 4D, the resin sheet 200 is peeled from the plurality of electronic components 81 and the resin layer 202. At this time, a part of the external electrodes 84 a and 84 b is exposed from the resin layer 202.
 次に、図5Aに示すように、複数の電子部品81及び樹脂層202の表裏を反転した後、複数の電子部品81及び樹脂層202の下面に樹脂シート201を貼り付ける。次に、図5Bに示すように、UV硬化性を有するエポキシ樹脂を含む液体状の材料を樹脂層202上に塗布した後に、UV硬化性を有するエポキシ樹脂を含む材料に対してUVを照射して、樹脂層203を形成する。これにより、複数の電子部品81は、樹脂層202,203内に埋没し、外部に露出しなくなる。 Next, as shown in FIG. 5A, after the front and back of the plurality of electronic components 81 and the resin layer 202 are reversed, the resin sheet 201 is attached to the lower surfaces of the plurality of electronic components 81 and the resin layer 202. Next, as shown in FIG. 5B, a liquid material containing a UV curable epoxy resin is applied onto the resin layer 202, and then the material containing the UV curable epoxy resin is irradiated with UV. Thus, the resin layer 203 is formed. Thereby, the plurality of electronic components 81 are buried in the resin layers 202 and 203 and are not exposed to the outside.
 なお、予め樹脂層203を形成しておき、樹脂層203上に複数の電子部品81を配置し、樹脂層203上に樹脂層202を形成してもよい。 The resin layer 203 may be formed in advance, a plurality of electronic components 81 may be disposed on the resin layer 203, and the resin layer 202 may be formed on the resin layer 203.
 次に、図5Cに示すように、樹脂層203の上面をグラインダーにより研磨して、樹脂層202,203の上下方向の厚みを適切な値に調整すると共に、樹脂層203の上面を平坦化する。次に、図5Dに示すように、樹脂層202,203をダイサーによりカットした後、樹脂層203から樹脂シート201を剥離する。これにより、複数のパッケージ部品80が完成する。 Next, as shown in FIG. 5C, the upper surface of the resin layer 203 is polished by a grinder to adjust the vertical thickness of the resin layers 202 and 203 to an appropriate value, and the upper surface of the resin layer 203 is flattened. . Next, as illustrated in FIG. 5D, the resin layers 202 and 203 are cut with a dicer, and then the resin sheet 201 is peeled from the resin layer 203. Thereby, a plurality of package parts 80 are completed.
 次に、液晶ポリマにより作製された絶縁体シート22a~22gを準備する。次に、絶縁体シート22a~22gの一方の主面の全面に銅箔を形成する。具体的には、絶縁体シート22a~22fの表面に銅箔を張り付ける。絶縁体シート22gの裏面に銅箔を張り付ける。更に、絶縁体シート22a~22gの銅箔の表面に、例えば、防錆のための亜鉛鍍金を施して、平滑化する。なお、銅箔以外の金属箔が用いられてもよい。 Next, insulator sheets 22a to 22g made of a liquid crystal polymer are prepared. Next, a copper foil is formed on the entire main surface of one of the insulator sheets 22a to 22g. Specifically, copper foil is attached to the surfaces of the insulator sheets 22a to 22f. A copper foil is attached to the back surface of the insulator sheet 22g. Furthermore, the surface of the copper foils of the insulator sheets 22a to 22g is smoothed by, for example, applying zinc plating for rust prevention. In addition, metal foils other than copper foil may be used.
 次に、絶縁体シート22b~22dに貫通孔H1~H3を形成する。貫通孔H1~H3の形成は、例えば、絶縁体シート22b~22dの裏面からレーザービームを照射することにより行われる。なお、パンチにより絶縁体シート22b~22dを打ち抜くことによって貫通孔H1~H3を形成してもよい。 Next, through holes H1 to H3 are formed in the insulating sheets 22b to 22d. The through holes H1 to H3 are formed, for example, by irradiating a laser beam from the back surfaces of the insulator sheets 22b to 22d. The through holes H1 to H3 may be formed by punching the insulating sheets 22b to 22d by punching.
 次に、絶縁体シート22aの表面上に形成された銅箔をパターニングすることにより、図2Aに示すように、外部電極24a~24dを絶縁体シート22aの表面上に形成する。具体的には、絶縁体シート22aの表面の銅箔上に、図3に示す外部電極24a~24dと同じ形状のレジストを印刷する。そして、銅箔に対してエッチング処理を施すことにより、レジストにより覆われていない部分の銅箔を除去する。その後、洗浄液(レジスト除去液)を吹き付けてレジストを除去する。これにより、図2Aに示すような、外部電極24a~24dが絶縁体シート22aの表面上にフォトリソグラフィ工程により形成される。 Next, by patterning the copper foil formed on the surface of the insulator sheet 22a, the external electrodes 24a to 24d are formed on the surface of the insulator sheet 22a as shown in FIG. 2A. Specifically, a resist having the same shape as the external electrodes 24a to 24d shown in FIG. 3 is printed on the copper foil on the surface of the insulating sheet 22a. And the copper foil of the part which is not covered with the resist is removed by performing an etching process with respect to copper foil. Thereafter, the resist is removed by spraying a cleaning liquid (resist removing liquid). As a result, external electrodes 24a to 24d as shown in FIG. 2A are formed on the surface of the insulator sheet 22a by a photolithography process.
 次に、図2Aに示すように、回路導体層28a,29aを絶縁体シート22bの表面上に形成する。また、図2Aに示すように、回路導体層28b,29bを絶縁体シート22cの表面上に形成する。また、図2Aに示すように、回路導体層28c,29cを絶縁体シート22dの表面上に形成する。また、図2Aに示すように、回路導体層28d,29dを絶縁体シート22eの表面上に形成する。また、図2Aに示すように、回路導体層28e,29eを絶縁体シート22fの表面上に形成する。また、図2Aに示すように、外部電極26a,26bを絶縁体シート22gの裏面上に形成する。なお、回路導体層28a~28e,29a~29e及び外部電極26a,26bの形成工程は、外部電極24a,24bの形成工程と同じであるので説明を省略する。なお、貫通孔H1~H3を形成する工程は、外部電極24a,24b,26a,26b及び回路導体層28a~28e,29a~29eを形成する工程の後に行われてもよい。 Next, as shown in FIG. 2A, circuit conductor layers 28a and 29a are formed on the surface of the insulator sheet 22b. Further, as shown in FIG. 2A, circuit conductor layers 28b and 29b are formed on the surface of the insulator sheet 22c. Further, as shown in FIG. 2A, circuit conductor layers 28c and 29c are formed on the surface of the insulator sheet 22d. Further, as shown in FIG. 2A, circuit conductor layers 28d and 29d are formed on the surface of the insulator sheet 22e. Further, as shown in FIG. 2A, circuit conductor layers 28e and 29e are formed on the surface of the insulator sheet 22f. As shown in FIG. 2A, the external electrodes 26a and 26b are formed on the back surface of the insulating sheet 22g. Note that the process of forming the circuit conductor layers 28a to 28e, 29a to 29e and the external electrodes 26a and 26b is the same as the process of forming the external electrodes 24a and 24b, and the description thereof will be omitted. The step of forming the through holes H1 to H3 may be performed after the step of forming the external electrodes 24a, 24b, 26a, 26b and the circuit conductor layers 28a to 28e, 29a to 29e.
 次に、ビアホール導体v1~v4,v6,v7,v11~v14,v16,v17が形成される位置にレーザービームを照射することによって貫通孔を形成する。そして、貫通孔に銅、錫や銀等の金属を主成分とする導電性ペーストを充填する。 Next, a through hole is formed by irradiating a laser beam at a position where the via-hole conductors v1 to v4, v6, v7, v11 to v14, v16, and v17 are formed. Then, the through hole is filled with a conductive paste whose main component is a metal such as copper, tin or silver.
 次に、図5Eに示すように、パッケージ部品80の下面に接触する絶縁体シート22e(第1の絶縁体層の一例)、及び、絶縁体シート22eよりも上側(積層方向の一方側の一例)に積層される絶縁体シート22a~22d(第3の絶縁体層の一例)内にパッケージ部品80を内蔵させるように、絶縁体シート22a~22eを積層する(第4の工程の一例)。すなわち、絶縁体シート22a~22dを積層した後、下側からパッケージ部品80を貫通孔H1~H3内に挿入し、絶縁体シート22eを絶縁体シート22dの下側に積層する。更に、絶縁体シート22a~22eに対して加熱処理及び加圧処理(熱圧着処理)を施して、絶縁体シート22a~22eを熱圧着する(以下、本工程を1次プレスとも呼ぶ)。この際、絶縁体シート22a~22gを構成する熱可塑性樹脂の軟化点以上、かつ、コーティング部材86を構成する熱硬化性樹脂が分解しない温度(例えば260℃~290℃)で加熱処理を行う。ただし、この加熱処理温度において、絶縁体シート22a~22gを構成する熱可塑性樹脂よりもコーティング部材86を構成する熱硬化性樹脂が大きく軟化しなければよい。軟化とは、ヤング率が小さくなることである。言い換えれば、ある同一の加熱処理温度条件において、コーティング部材86を構成する樹脂のヤング率は、絶縁体シート22a~22gを構成する樹脂のヤング率よりも大きければよい。1次プレスでは、絶縁体シート22a~22eが軟化すると共に、貫通孔内の導電性ペーストが固化する。これにより、絶縁体シート22a~22e同士が接合されると共に、ビアホール導体v1~v4,v11~v14が形成される。更に、熱圧着によって絶縁体シート22a~22eの熱可塑性樹脂が軟化することにより、空間Spの内周面とパッケージ部品80の表面との間に形成されている隙間に熱可塑性樹脂が流れこむ。その後、絶縁体シート22a~22eが冷却されることにより、熱可塑性樹脂が固化し、空間Spの内周面とパッケージ部品80の表面とが固着する。 Next, as shown in FIG. 5E, an insulator sheet 22e (an example of a first insulator layer) that contacts the lower surface of the package component 80, and an upper side (an example of one side in the stacking direction) of the insulator sheet 22e. The insulating sheets 22a to 22e are stacked so as to incorporate the package component 80 in the insulating sheets 22a to 22d (an example of the third insulating layer) stacked on (4). That is, after the insulating sheets 22a to 22d are stacked, the package component 80 is inserted into the through holes H1 to H3 from the lower side, and the insulating sheet 22e is stacked on the lower side of the insulating sheet 22d. Further, the insulator sheets 22a to 22e are subjected to heat treatment and pressure treatment (thermocompression treatment), and the insulator sheets 22a to 22e are thermocompression bonded (hereinafter, this process is also referred to as a primary press). At this time, the heat treatment is performed at a temperature not lower than the softening point of the thermoplastic resin constituting the insulating sheets 22a to 22g and at which the thermosetting resin constituting the coating member 86 is not decomposed (for example, 260 ° C. to 290 ° C.). However, at this heat treatment temperature, it is sufficient that the thermosetting resin constituting the coating member 86 does not soften more greatly than the thermoplastic resin constituting the insulator sheets 22a to 22g. Softening means that Young's modulus becomes small. In other words, the Young's modulus of the resin that constitutes the coating member 86 only needs to be larger than the Young's modulus of the resin that constitutes the insulator sheets 22a to 22g under the same heat treatment temperature condition. In the primary press, the insulator sheets 22a to 22e are softened and the conductive paste in the through holes is solidified. As a result, the insulator sheets 22a to 22e are joined together, and the via-hole conductors v1 to v4 and v11 to v14 are formed. Furthermore, the thermoplastic resin of the insulator sheets 22a to 22e is softened by thermocompression, so that the thermoplastic resin flows into the gap formed between the inner peripheral surface of the space Sp and the surface of the package component 80. Thereafter, the insulator sheets 22a to 22e are cooled to solidify the thermoplastic resin, and the inner peripheral surface of the space Sp and the surface of the package component 80 are fixed.
 次に、図6Aに示すように、ビアホール導体v5,v15,v100,v102が形成される位置にレーザービームを照射することにより貫通孔を形成する。貫通孔は、絶縁体シート22e及びコーティング部材86の一部を貫通し、パッケージ部品80の外部電極84a,84bの一部が露出するように設けられる。そして、図6Bに示すように、貫通孔に銅、錫や銀等の金属を主成分とする導電性ペーストを充填する。 Next, as shown in FIG. 6A, a through hole is formed by irradiating a laser beam at a position where the via-hole conductors v5, v15, v100, and v102 are formed. The through hole is provided so as to penetrate a part of the insulating sheet 22e and the coating member 86 and to expose a part of the external electrodes 84a and 84b of the package component 80. Then, as shown in FIG. 6B, the through hole is filled with a conductive paste mainly composed of a metal such as copper, tin, or silver.
 次に、図7に示すように、絶縁体シート22eよりも下側(積層方向の他方側の一例)に積層される絶縁体シート22f,22g(第4の絶縁体層の一例)を絶縁体シート22eの下側に積層する(第2の工程・第6の工程の一例)。この積層において、ビアホール導体v100,v102となるべき導電性ペースト(接続導体の一例)と回路導体層28e,29eとが接続される。更に、絶縁体シート22a~22gに対して加熱処理及び加圧処理(熱圧着処理)を施して、絶縁体シート22a~22gを熱圧着して基材22を形成する(以下、本工程を2次プレスとも呼ぶ。第3の工程の一例)。この際、絶縁体シート22a~22gを構成する熱可塑性樹脂の軟化点以上、かつ、コーティング部材86を構成する熱硬化性樹脂が分解しない温度以下の温度(例えば260℃~290℃)で加熱処理を行う。2次プレスでは、絶縁体シート22a~22gが軟化すると共に、貫通孔内の導電性ペーストが固化する。これにより、絶縁体シート22a~22g同士が接合されると共に、ビアホール導体v5~v7,v15~v17,v100,v102が形成される(第5の工程の一例)。また、ビアホール導体v100が外部電極84aと回路導体層28eとを接続し、ビアホール導体v102が外部電極84bと回路導体層29eとを接続するようになる。以上の工程を経て、多層基板20が完成する。 Next, as shown in FIG. 7, insulator sheets 22f and 22g (an example of a fourth insulator layer) stacked on the lower side (an example of the other side in the stacking direction) of the insulator sheet 22e are insulators. Laminate below the sheet 22e (an example of the second step and the sixth step). In this lamination, the conductive paste (an example of a connection conductor) to be the via-hole conductors v100 and v102 and the circuit conductor layers 28e and 29e are connected. Further, the insulating sheets 22a to 22g are subjected to heat treatment and pressure treatment (thermocompression treatment), and the insulating sheets 22a to 22g are thermocompression bonded to form the base material 22 (hereinafter, this process is referred to as 2). Also called the next press, an example of the third step). At this time, heat treatment is performed at a temperature (for example, 260 ° C. to 290 ° C.) that is equal to or higher than the softening point of the thermoplastic resin that forms the insulating sheets 22a to 22g and that does not decompose the thermosetting resin that forms the coating member 86. I do. In the secondary press, the insulator sheets 22a to 22g are softened and the conductive paste in the through holes is solidified. As a result, the insulator sheets 22a to 22g are joined together, and the via-hole conductors v5 to v7, v15 to v17, v100, and v102 are formed (an example of the fifth step). The via hole conductor v100 connects the external electrode 84a and the circuit conductor layer 28e, and the via hole conductor v102 connects the external electrode 84b and the circuit conductor layer 29e. The multilayer substrate 20 is completed through the above steps.
 次に、電子部品60,70を基材22に対してはんだ64a,64b,74a.74bにより実装する。 Next, the electronic components 60 and 70 are soldered to the base material 22 with solder 64a, 64b, 74a. It is mounted by 74b.
 最後に、図1に示すように、多層基板20をマザー基板100にはんだ110a,110bにより実装する。この後、マザー基板100を筺体に搭載することにより、電子機器10が完成する。 Finally, as shown in FIG. 1, the multilayer substrate 20 is mounted on the mother substrate 100 with solders 110a and 110b. After that, the electronic device 10 is completed by mounting the mother substrate 100 on the housing.
<効果>
 本実施形態に係る多層基板20によれば、基材22の上面及び下面の平坦性を向上させることができる。より詳細には、特許文献1に記載の樹脂多層基板500では、部品503a,503bの上面及び下面には図示しない外部電極が設けられている。そのため、部品503a,503bの上面及び下面には凹凸が存在する。このような凹凸が存在すると、部品503a,503bの上面及び下面と樹脂シート502a,502dとの間に大きな隙間が形成される。そして、熱圧着工程において、部品503a,503b近傍の樹脂シート502a,502dは、軟化・流動して隙間に流れ込む。その結果、樹脂多層基板500の上面及び下面において、部品503a,503bの直上及び直下並びにその近傍に凹凸が形成される。
<Effect>
According to the multilayer substrate 20 according to the present embodiment, the flatness of the upper surface and the lower surface of the base material 22 can be improved. More specifically, in the resin multilayer substrate 500 described in Patent Document 1, external electrodes (not shown) are provided on the upper and lower surfaces of the components 503a and 503b. Therefore, there are irregularities on the upper and lower surfaces of the components 503a and 503b. When such irregularities exist, large gaps are formed between the upper and lower surfaces of the components 503a and 503b and the resin sheets 502a and 502d. In the thermocompression bonding process, the resin sheets 502a and 502d in the vicinity of the components 503a and 503b soften and flow and flow into the gap. As a result, irregularities are formed on the upper and lower surfaces of the resin multilayer substrate 500 directly above and below the components 503a and 503b and in the vicinity thereof.
 そこで、多層基板20では、コーティング部材86は、熱硬化性樹脂を含む材料により構成され、かつ、電子部品81の表面の少なくとも一部を覆っている。そして、パッケージ部品80の上面及び下面の一部は、コーティング部材86により構成されている。すなわち、電子部品81の上面及び下面の凹凸がコーティング部材86により平坦化されている。更に、絶縁体シート22a~22gを構成している熱可塑性樹脂の軟化点温度において、コーティング部材86を構成している熱硬化性樹脂のヤング率は、絶縁体シート22a~22gを構成している熱可塑性樹脂のヤング率よりも大きい。これにより、基材22の加熱処理及び加圧処理の際に、コーティング部材86が軟化せず、又は軟化しにくく、絶縁体シート22a~22gが軟化する。その結果、パッケージ部品80の上面及び下面が平坦の状態が維持されたままで、絶縁体シート22a~22gが軟化及び流動し、パッケージ部品80の表面と空間Spの内周面との間の隙間を埋める。ただし、パッケージ部品80の上面及び下面は平面であるので、パッケージ部品80の上面と絶縁体シート22aの裏面との間の隙間、及び、パッケージ部品80の下面と絶縁体シート22aの表面との間の隙間は非常に小さい。よって、熱圧着工程において、パッケージ部品80近傍の絶縁体シート22a,22eが、軟化・流動して大量に隙間に流れ込むことが抑制される。その結果、多層基板20の表面及び裏面において、パッケージ部品80の直上及び直下並びにその近傍に凹凸が形成されることが抑制される。 Therefore, in the multilayer substrate 20, the coating member 86 is made of a material including a thermosetting resin and covers at least a part of the surface of the electronic component 81. A part of the upper and lower surfaces of the package component 80 is constituted by a coating member 86. That is, the unevenness of the upper surface and the lower surface of the electronic component 81 is flattened by the coating member 86. Furthermore, the Young's modulus of the thermosetting resin constituting the coating member 86 at the softening point temperature of the thermoplastic resin constituting the insulator sheets 22a to 22g constitutes the insulator sheets 22a to 22g. It is larger than the Young's modulus of the thermoplastic resin. As a result, during the heat treatment and pressure treatment of the base material 22, the coating member 86 is not softened or hardly softened, and the insulator sheets 22a to 22g are softened. As a result, the insulating sheets 22a to 22g soften and flow while the upper and lower surfaces of the package component 80 are maintained flat, and a gap between the surface of the package component 80 and the inner peripheral surface of the space Sp is formed. fill in. However, since the upper surface and the lower surface of the package component 80 are flat, the gap between the upper surface of the package component 80 and the back surface of the insulator sheet 22a, and between the lower surface of the package component 80 and the surface of the insulator sheet 22a. The gap is very small. Therefore, in the thermocompression bonding process, the insulator sheets 22a and 22e in the vicinity of the package component 80 are suppressed from being softened and flowed and flowing into the gap in a large amount. As a result, on the front and back surfaces of the multilayer substrate 20, it is possible to suppress the formation of irregularities directly above and below the package component 80 and in the vicinity thereof.
 基材22の上面の平坦性が向上すると、基材22上に電子部品60,70を実装する際に、電子部品60,70の実装ミスの発生が抑制される。また、基材22の下面の平坦性が向上すると、多層基板20をマザー基板100に実装する際に、多層基板20の実装ミスの発生が抑制される。 When the flatness of the upper surface of the base material 22 is improved, when mounting the electronic components 60 and 70 on the base material 22, occurrence of mounting errors of the electronic components 60 and 70 is suppressed. Further, when the flatness of the lower surface of the base material 22 is improved, the mounting mistake of the multilayer substrate 20 is suppressed when the multilayer substrate 20 is mounted on the mother substrate 100.
 また、多層基板20では、電子部品81と回路導体層28e,29eとの間で断線が発生することが抑制される。より詳細には、パッケージ部品80の上面及び下面が平面であるので、パッケージ部品80の上面と絶縁体シート22aの裏面との間の隙間、及び、パッケージ部品80の下面と絶縁体シート22aの表面との間の隙間は非常に小さい。そのため、図5Eの工程において、パッケージ部品80が、例えば、前後方向に延在する軸周り(図5Eにおける時計回り又は反時計回り)に回転することが抑制される。これにより、図6Bに示す工程において、パッケージ部品80の直下における絶縁体シート22eの裏面が傾くことが抑制される。従って、ビアホール導体v100の下端とビアホール導体v102の下端の上下方向における位置が揃う。その結果、図7に示す工程において、ビアホール導体v100と回路導体層28eとがより確実に接続され、ビアホール導体v102と回路導体層29eとがより確実に接続されるようになる。 Further, in the multilayer substrate 20, the occurrence of disconnection between the electronic component 81 and the circuit conductor layers 28e and 29e is suppressed. More specifically, since the upper surface and the lower surface of the package component 80 are flat, the gap between the upper surface of the package component 80 and the back surface of the insulator sheet 22a, and the lower surface of the package component 80 and the surface of the insulator sheet 22a. The gap between is very small. Therefore, in the process of FIG. 5E, for example, the package component 80 is prevented from rotating around an axis extending in the front-rear direction (clockwise or counterclockwise in FIG. 5E). Thereby, in the process shown in FIG. 6B, the back surface of the insulator sheet 22e immediately below the package component 80 is suppressed from being inclined. Accordingly, the vertical positions of the lower end of the via-hole conductor v100 and the lower end of the via-hole conductor v102 are aligned. As a result, in the step shown in FIG. 7, the via-hole conductor v100 and the circuit conductor layer 28e are more reliably connected, and the via-hole conductor v102 and the circuit conductor layer 29e are more reliably connected.
 また、多層基板20では、以下の理由によっても、電子部品81と回路導体層28e,29eとの間で断線が発生することが抑制される。より詳細には、パッケージ部品80の側面は、上下方向に平行な平面である。パッケージ部品80の側面と貫通孔H1~H3の内周面との間の隙間は非常に小さい。これにより、基材22の加熱処理及び加圧処理の際に、絶縁体シート22b~22eが隙間に大量に流れ込むことが抑制される。その結果、空間Sp内においてパッケージ部品80が上下方向に延在する軸周りに回転することが抑制される。よって、電子部品81の外部電極84a,84bの位置と回路導体層28e,29eの位置との間にずれが生じにくい。その結果、外部電極84a,84bと回路導体層28e,29eとがビアホール導体v100,v102により確実に接続されるようになる。 Further, in the multilayer substrate 20, occurrence of disconnection between the electronic component 81 and the circuit conductor layers 28e and 29e is suppressed for the following reason. More specifically, the side surface of the package component 80 is a plane parallel to the vertical direction. The gap between the side surface of the package component 80 and the inner peripheral surfaces of the through holes H1 to H3 is very small. This suppresses a large amount of the insulator sheets 22b to 22e from flowing into the gap during the heat treatment and pressure treatment of the base material 22. As a result, the package component 80 is prevented from rotating around the axis extending in the vertical direction in the space Sp. Therefore, it is difficult for a deviation to occur between the positions of the external electrodes 84a and 84b of the electronic component 81 and the positions of the circuit conductor layers 28e and 29e. As a result, the external electrodes 84a and 84b and the circuit conductor layers 28e and 29e are reliably connected by the via-hole conductors v100 and v102.
 また、多層基板20では、多層基板20の製造時に、空間Spの内周面とパッケージ部品80との間の隙間を小さくすることができる。より詳細には、パッケージ部品80は、電子部品81がコーティング部材86により覆われることにより構成されている。よって、コーティング部材86を研磨等により加工することで、コーティング部材86を任意の形状及び寸法に加工することができる。その結果、コーティング部材86の形状と空間Spの形状とを近づけることができ、空間Spの内周面とパッケージ部品80との間の隙間を小さくすることができる。以上のように、空間Spの内周面とパッケージ部品80との間の隙間が小さくなると、基材22の上面及び下面の平坦性が向上すると共に、パッケージ部品80の空間Sp内における回転が抑制される。よって、電子部品60,70及び多層基板20の実装ミスの発生が抑制され、電子部品81と回路導体層28e,29eとの間で断線が発生することが抑制される。 In the multilayer substrate 20, the gap between the inner peripheral surface of the space Sp and the package component 80 can be reduced when the multilayer substrate 20 is manufactured. More specifically, the package component 80 is configured by covering an electronic component 81 with a coating member 86. Therefore, the coating member 86 can be processed into an arbitrary shape and size by processing the coating member 86 by polishing or the like. As a result, the shape of the coating member 86 and the shape of the space Sp can be made closer, and the gap between the inner peripheral surface of the space Sp and the package component 80 can be reduced. As described above, when the gap between the inner peripheral surface of the space Sp and the package component 80 is reduced, the flatness of the upper surface and the lower surface of the base material 22 is improved and the rotation of the package component 80 in the space Sp is suppressed. Is done. Therefore, the occurrence of mounting mistakes in the electronic components 60 and 70 and the multilayer substrate 20 is suppressed, and the occurrence of disconnection between the electronic component 81 and the circuit conductor layers 28e and 29e is suppressed.
 また、ビアホール導体v100,v102の材料は、ビアホール導体v1~v7,v11~v17の材料と同じである。そのため、基材22の加熱処理及び加圧処理の際に、ビアホール導体v6,v7,v16,v17,v100,v102を同時に硬化させることができる。 The material of the via-hole conductors v100 and v102 is the same as the material of the via-hole conductors v1 to v7 and v11 to v17. Therefore, the via-hole conductors v6, v7, v16, v17, v100, and v102 can be simultaneously cured during the heat treatment and pressure treatment of the base material 22.
 また、多層基板20によれば、本体82とコーティング部材86との間の剥離、及び、コーティング部材86と絶縁体シート22a~22eとの剥離の発生を抑制できる。より詳細には、多層基板20の製造時には、加熱処理が施される。本体82、コーティング部材86及び絶縁体シート22a~22eは異なる材料で作製されているので、これらの膨張量も異なる。このような膨張量の相違は、本体82とコーティング部材86との間の剥離、及び、コーティング部材86と絶縁体シート22a~22eとの剥離の発生の原因となる。 Moreover, according to the multilayer substrate 20, it is possible to suppress the occurrence of peeling between the main body 82 and the coating member 86 and the peeling between the coating member 86 and the insulating sheets 22a to 22e. More specifically, heat treatment is performed when the multilayer substrate 20 is manufactured. Since the main body 82, the coating member 86, and the insulator sheets 22a to 22e are made of different materials, their expansion amounts are also different. Such a difference in the expansion amount causes peeling between the main body 82 and the coating member 86 and peeling between the coating member 86 and the insulating sheets 22a to 22e.
 そこで、多層基板20では、コーティング部材86に用いられるエポキシ樹脂等の熱可塑性樹脂の線膨張係数は、本体82の材料(セラミック)の線膨張係数以上であり、かつ、絶縁体シート22a~22gに用いられるポリイミドや液晶ポリマ等の熱可塑性樹脂の線膨張係数以下である。これにより、コーティング部材86に用いられるエポキシ樹脂等の熱可塑性樹脂の線膨張係数と本体82の材料(セラミック)の線膨張係数との差を小さくしつつ、コーティング部材86に用いられるエポキシ樹脂等の熱可塑性樹脂の線膨張係数と絶縁体シート22a~22gに用いられるポリイミドや液晶ポリマ等の熱可塑性樹脂の線膨張係数との差を小さくすることができる。その結果、前記の膨張量の差が小さくなり、前記の剥離の発生が抑制される。 Therefore, in the multilayer substrate 20, the linear expansion coefficient of a thermoplastic resin such as an epoxy resin used for the coating member 86 is equal to or greater than the linear expansion coefficient of the material (ceramic) of the main body 82, and the insulator sheets 22a to 22g It is below the linear expansion coefficient of thermoplastic resins, such as a polyimide used and liquid crystal polymer. Thereby, while reducing the difference between the linear expansion coefficient of the thermoplastic resin such as an epoxy resin used for the coating member 86 and the linear expansion coefficient of the material (ceramic) of the main body 82, the epoxy resin used for the coating member 86, etc. The difference between the linear expansion coefficient of the thermoplastic resin and the linear expansion coefficient of the thermoplastic resin such as polyimide or liquid crystal polymer used for the insulator sheets 22a to 22g can be reduced. As a result, the difference in the expansion amount is reduced, and the occurrence of the peeling is suppressed.
(第1の変形例)
 以下に、第1の変形例に係る多層基板20aについて図面を参照しながら説明する。図8は、多層基板20aの断面構造図である。
(First modification)
Hereinafter, a multilayer substrate 20a according to a first modification will be described with reference to the drawings. FIG. 8 is a cross-sectional structure diagram of the multilayer substrate 20a.
 多層基板20aは、パッケージ部品80の構造において多層基板20と相違する。より詳細には、多層基板20aでは、パッケージ部品80の下面において外部電極84a,84bが露出している。その代わり、パッケージ部品80の下面が絶縁体シート23(第2の絶縁体層の一例)により覆われている。以下に、かかる相違点を中心に、多層基板20aについて説明する。 The multilayer substrate 20 a is different from the multilayer substrate 20 in the structure of the package component 80. More specifically, in the multilayer substrate 20a, the external electrodes 84a and 84b are exposed on the lower surface of the package component 80. Instead, the lower surface of the package component 80 is covered with the insulator sheet 23 (an example of a second insulator layer). Hereinafter, the multilayer substrate 20a will be described focusing on the difference.
 多層基板20aでは、パッケージ部品80の下面は、平面である。ただし、パッケージ部品80の下面の一部は、コーティング部材86により構成されており、パッケージ部品80の下面の残余の部分は、外部電極84a,84bにより構成されている。更に、絶縁体シート23は、上側から見たときに、パッケージ部品80の下面と同じ形状及び同じサイズを有しており、パッケージ部品80の下面の全体を覆っている。また、パッケージ部品80の上下方向の厚みと絶縁体シート23の上下方向の厚みとの合計は、絶縁体シート22b~22dの上下方向の厚みの合計と実質的に等しくなっている。 In the multilayer substrate 20a, the lower surface of the package component 80 is a flat surface. However, a part of the lower surface of the package component 80 is configured by the coating member 86, and the remaining portion of the lower surface of the package component 80 is configured by the external electrodes 84a and 84b. Furthermore, the insulator sheet 23 has the same shape and the same size as the lower surface of the package component 80 when viewed from above, and covers the entire lower surface of the package component 80. Further, the sum of the vertical thickness of the package component 80 and the vertical thickness of the insulating sheet 23 is substantially equal to the total vertical thickness of the insulating sheets 22b to 22d.
 また、ビアホール導体v100は、絶縁体シート23,22eを上下方向に貫通しており、外部電極84aと回路導体層28eとを接続している。ただし、ビアホール導体v100は、コーティング部材86を貫通していない。ビアホール導体v102は、絶縁体シート23,22eを上下方向に貫通しており、外部電極84bと回路導体層29eとを接続している。ただし、ビアホール導体v102は、コーティング部材86を貫通していない。 The via-hole conductor v100 penetrates the insulator sheets 23 and 22e in the vertical direction, and connects the external electrode 84a and the circuit conductor layer 28e. However, the via-hole conductor v100 does not penetrate the coating member 86. The via-hole conductor v102 penetrates the insulator sheets 23 and 22e in the vertical direction, and connects the external electrode 84b and the circuit conductor layer 29e. However, the via-hole conductor v102 does not penetrate the coating member 86.
 次に、多層基板20aの製造方法について説明する。図9Aないし図9Dは、パッケージ部品80及び絶縁体シート23の製造時の透視図である。なお、図9Aないし図9Dにおいて電子部品81が点線で示されていることは、電子部品81が樹脂内に存在していることを意味する。図10及び図11は、多層基板20aの製造時の断面構造図である。 Next, a method for manufacturing the multilayer substrate 20a will be described. 9A to 9D are perspective views at the time of manufacturing the package component 80 and the insulator sheet 23. 9A to 9D that the electronic component 81 is indicated by a dotted line means that the electronic component 81 is present in the resin. 10 and 11 are cross-sectional structure diagrams when the multilayer substrate 20a is manufactured.
 まず、図9Aに示すように、複数の電子部品81をマザーシート223上に配置する。マザーシート223は、ポリイミドや液晶ポリマ等の可撓性を有する熱可塑性樹脂を含む材料により構成されており、上側から見たときに、絶縁体シート23がマトリクス状に配列された大判のシートである。なお、マザーシート223の材料は、絶縁体シート22a~22gの材料と同じである。 First, as shown in FIG. 9A, a plurality of electronic components 81 are arranged on the mother sheet 223. The mother sheet 223 is made of a material containing a flexible thermoplastic resin such as polyimide or liquid crystal polymer, and is a large sheet in which the insulator sheets 23 are arranged in a matrix when viewed from above. is there. The material of the mother sheet 223 is the same as the material of the insulator sheets 22a to 22g.
 次に、図9Bに示すように、UV硬化性を有するエポキシ樹脂を含む材料をマザーシート223上に塗布した後に、UV硬化性を有するエポキシ樹脂を含む材料に対してUVを照射して、樹脂層202を形成する。これにより、複数の電子部品81は、複数の電子部品81の外部電極84a,84bの下面の少なくとも一部がマザーシート223に接触するように樹脂層202内に埋没する。複数の電子部品81の外部電極84a,84bの下面の少なくとも一部がマザーシート223に接触するように樹脂層202内に埋没しているので、後の工程で貫通孔を設ける際に、絶縁体シート22e及び絶縁体シート23の一部を貫通することにより、外部電極84a,84bの一部が露出させることができる。 Next, as shown in FIG. 9B, after a material containing a UV curable epoxy resin is applied on the mother sheet 223, the material containing the UV curable epoxy resin is irradiated with UV, and the resin Layer 202 is formed. Accordingly, the plurality of electronic components 81 are buried in the resin layer 202 so that at least a part of the lower surfaces of the external electrodes 84 a and 84 b of the plurality of electronic components 81 are in contact with the mother sheet 223. Since at least a part of the lower surfaces of the external electrodes 84a and 84b of the plurality of electronic components 81 are buried in the resin layer 202 so as to be in contact with the mother sheet 223, an insulator is provided when a through hole is provided in a later step. By penetrating part of the sheet 22e and the insulator sheet 23, part of the external electrodes 84a and 84b can be exposed.
 次に、図9Cに示すように、樹脂層202の上面をグラインダーにより研磨して、樹脂層202の上下方向の厚みを適切な値に調整すると共に、樹脂層202の上面を平坦化する。最後に、図9Dに示すように、樹脂層202をダイサーによりカットする。これにより、下面に絶縁体シート23が貼り付けられた複数のパッケージ部品80が完成する。 Next, as shown in FIG. 9C, the upper surface of the resin layer 202 is polished with a grinder to adjust the vertical thickness of the resin layer 202 to an appropriate value, and the upper surface of the resin layer 202 is flattened. Finally, as shown in FIG. 9D, the resin layer 202 is cut with a dicer. Thereby, a plurality of package components 80 having the insulator sheet 23 attached to the lower surface are completed.
 次に、多層基板20aの製造方法において絶縁体シート22a~22gを準備する工程からビアホール導体v1~v4,v6,v7,v11~v14,v16,v17が形成される位置に形成した貫通孔に導電性ペーストを充填する工程までの工程については、多層基板20の製造方法におけるこれらの工程と同じであるので説明を省略する。ただし、貫通孔は、絶縁体シート22e及び絶縁体シート23の一部を貫通し、パッケージ部品80の外部電極84a,84bの一部が露出するように設けられる。 Next, from the step of preparing the insulator sheets 22a to 22g in the manufacturing method of the multilayer substrate 20a, the conductive material is conducted to the through holes formed at positions where the via-hole conductors v1 to v4, v6, v7, v11 to v14, v16, and v17 are formed. The steps up to the step of filling the conductive paste are the same as those steps in the method for manufacturing the multilayer substrate 20, and thus the description thereof is omitted. However, the through hole is provided so as to penetrate part of the insulator sheet 22e and the insulator sheet 23 and to expose part of the external electrodes 84a and 84b of the package component 80.
 次に、図10に示すように、絶縁体シート22a~22dを積層した後、下側から絶縁体シート23が貼り付けられたパッケージ部品80を貫通孔H1~H3内に挿入し、絶縁体シート22eを絶縁体シート22dの下側に積層する。更に、絶縁体シート22a~22eに対して加熱処理及び加圧処理(熱圧着処理とも呼ぶ)を施す(以下、本工程を1次プレスとも呼ぶ)。 Next, as shown in FIG. 10, after the insulator sheets 22a to 22d are stacked, the package component 80 to which the insulator sheet 23 is attached is inserted into the through holes H1 to H3 from below, and the insulator sheets 22e is laminated below the insulator sheet 22d. Further, heat treatment and pressure treatment (also referred to as thermocompression treatment) are performed on the insulator sheets 22a to 22e (hereinafter, this step is also referred to as a primary press).
 次に、図11に示すように、ビアホール導体v5,v15,v100,v102が形成される位置にレーザービームを照射することにより貫通孔を形成する。そして、これらの貫通孔に銅、錫や銀等の金属を主成分とする導電性ペーストを充填する。なお、多層基板20aの製造方法のこの後の工程は、多層基板20の製造方法と同じであるので説明を省略する。 Next, as shown in FIG. 11, a through-hole is formed by irradiating a laser beam at a position where the via-hole conductors v5, v15, v100, and v102 are formed. These through holes are filled with a conductive paste whose main component is a metal such as copper, tin or silver. Note that the subsequent steps of the method for manufacturing the multilayer substrate 20a are the same as the method for manufacturing the multilayer substrate 20, and thus the description thereof is omitted.
 以上のように構成された多層基板20aも多層基板20と同じ作用効果を奏することが可能である。 The multilayer substrate 20 a configured as described above can also exhibit the same operational effects as the multilayer substrate 20.
 また、多層基板20aの製造方法によれば、パッケージ部品80を容易に作成することができる。より詳細には、多層基板20の製造方法では、図4Dに示す工程において、複数の電子部品81及び樹脂層202から樹脂シート200を剥離する。更に、図5Aの工程において、複数の電子部品81及び樹脂層202の表裏を反転した後、複数の電子部品81及び樹脂層202の下面に樹脂シート201を貼り付ける。このように、多層基板20の製造方法では、電子部品81の全体をコーティング部材86により覆うために、樹脂シート200の剥離及び樹脂シート201の貼り付けが必要であった。 Further, according to the method for manufacturing the multilayer substrate 20a, the package component 80 can be easily created. More specifically, in the method for manufacturing the multilayer substrate 20, the resin sheet 200 is peeled from the plurality of electronic components 81 and the resin layer 202 in the step illustrated in FIG. 4D. Further, in the step of FIG. 5A, after the front and back of the plurality of electronic components 81 and the resin layer 202 are reversed, the resin sheet 201 is attached to the lower surfaces of the plurality of electronic components 81 and the resin layer 202. As described above, in the method for manufacturing the multilayer substrate 20, it is necessary to peel the resin sheet 200 and attach the resin sheet 201 in order to cover the entire electronic component 81 with the coating member 86.
 一方、多層基板20aでは、樹脂シート200,201の代わりにマザーシート223が用いられている。マザーシート223の材料は、絶縁体シート22a~22gと同じ材料である。そのため、マザーシート223が分割されて得られる絶縁体シート23は、パッケージ部品80の下面から剥離されることなく、基材22の一部として用いられる。よって、多層基板20aの製造方法では、剥離・反転等の工程が不要となり、パッケージ部品80を容易に作成することができる。 On the other hand, in the multilayer substrate 20a, a mother sheet 223 is used instead of the resin sheets 200 and 201. The material of the mother sheet 223 is the same material as the insulator sheets 22a to 22g. Therefore, the insulator sheet 23 obtained by dividing the mother sheet 223 is used as a part of the base material 22 without being peeled off from the lower surface of the package component 80. Therefore, in the manufacturing method of the multilayer substrate 20a, processes such as peeling and reversal are unnecessary, and the package component 80 can be easily created.
(第2の変形例)
 以下に、第2の変形例に係る多層基板20bについて図面を参照しながら説明する。図12は、多層基板20b,20gの断面構造図である。
(Second modification)
Hereinafter, a multilayer substrate 20b according to a second modification will be described with reference to the drawings. FIG. 12 is a cross-sectional structure diagram of the multilayer substrates 20b and 20g.
 多層基板20bは、ビアホール導体v100,v102の長さ、並びに、回路導体層28f,29f及びビアホール導体v8,v18を更に備えている点において多層基板20と相違する。以下に係る相違点を中心に、多層基板20bについて説明する。 The multilayer substrate 20b is different from the multilayer substrate 20 in that the via-hole conductors v100 and v102 are further provided with circuit conductor layers 28f and 29f and via-hole conductors v8 and v18. The multilayer substrate 20b will be described focusing on the differences related to the following.
 回路導体層28f,29fは、絶縁体シート22eの表面上に設けられている。回路導体層28fは、回路導体層28dに対して右側に設けられており、左右方向に延在している。回路導体層29fは、回路導体層29dに対して左側に設けられており、左右方向に延在している。回路導体層28f,29fは、パッケージ部品80の下面に接触している。 The circuit conductor layers 28f and 29f are provided on the surface of the insulator sheet 22e. The circuit conductor layer 28f is provided on the right side of the circuit conductor layer 28d and extends in the left-right direction. The circuit conductor layer 29f is provided on the left side of the circuit conductor layer 29d and extends in the left-right direction. The circuit conductor layers 28 f and 29 f are in contact with the lower surface of the package component 80.
 ビアホール導体v8は、絶縁体シート22eを上下方向に貫通しており、回路導体層28fと回路導体層28eとを接続している。ビアホール導体v18は、絶縁体シート22eを上下方向に貫通しており、回路導体層29fと回路導体層29eとを接続している。 The via-hole conductor v8 penetrates the insulator sheet 22e in the vertical direction, and connects the circuit conductor layer 28f and the circuit conductor layer 28e. The via-hole conductor v18 penetrates the insulator sheet 22e in the vertical direction, and connects the circuit conductor layer 29f and the circuit conductor layer 29e.
 ビアホール導体v100は、コーティング部材86を上下方向に貫通しており、外部電極84aと回路導体層28fとを接続している。より詳細には、ビアホール導体v100の上端は、外部電極84aに接続されており、ビアホール導体v100の下端は回路導体層28fに接続されている。そして、ビアホール導体v100は、外部電極84aとパッケージ部品80の下面との間に存在するコーティング部材86を上下方向に貫通しており、絶縁体シート22eを上下方向に貫通していない。 The via-hole conductor v100 penetrates the coating member 86 in the vertical direction, and connects the external electrode 84a and the circuit conductor layer 28f. More specifically, the upper end of the via hole conductor v100 is connected to the external electrode 84a, and the lower end of the via hole conductor v100 is connected to the circuit conductor layer 28f. The via-hole conductor v100 penetrates the coating member 86 existing between the external electrode 84a and the lower surface of the package component 80 in the vertical direction, and does not penetrate the insulator sheet 22e in the vertical direction.
 ビアホール導体v102は、コーティング部材86を上下方向に貫通しており、外部電極84bと回路導体層29fとを接続している。より詳細には、ビアホール導体v102の上端は、外部電極84bに接続されており、ビアホール導体v102の下端は回路導体層29fに接続されている。そして、ビアホール導体v102は、外部電極84bとパッケージ部品80の下面との間に存在するコーティング部材86を上下方向に貫通しており、絶縁体シート22eを上下方向に貫通していない。 The via-hole conductor v102 penetrates the coating member 86 in the vertical direction, and connects the external electrode 84b and the circuit conductor layer 29f. More specifically, the upper end of the via hole conductor v102 is connected to the external electrode 84b, and the lower end of the via hole conductor v102 is connected to the circuit conductor layer 29f. The via-hole conductor v102 penetrates the coating member 86 existing between the external electrode 84b and the lower surface of the package component 80 in the vertical direction, and does not penetrate the insulator sheet 22e in the vertical direction.
 次に、多層基板20bの製造方法について説明する。図13ないし図16は、多層基板20b,20gの製造時の断面構造図である。 Next, a method for manufacturing the multilayer substrate 20b will be described. 13 to 16 are cross-sectional structure diagrams of the multilayer substrates 20b and 20g when they are manufactured.
 多層基板20bのパッケージ部品80の製造方法は、多層基板20のパッケージ部品80の製造方法と同じであるので説明を省略する。 Since the manufacturing method of the package component 80 of the multilayer substrate 20b is the same as the manufacturing method of the package component 80 of the multilayer substrate 20, description thereof will be omitted.
 次に、多層基板20bの製造方法において絶縁体シート22a~22gを準備する工程からビアホール導体v1~v3,v5~v7,v11~v13,v15~v17が形成される位置に形成した貫通孔に導電性ペーストを充填する工程までの工程については、多層基板20の製造方法におけるこれらの工程と同じであるので説明を省略する。ただし、多層基板20の製造方法では、ビアホール導体v4,v14が形成される位置に形成した貫通孔に導電性ペーストを充填するのに対して、多層基板20b製造方法では、ビアホール導体v5,v15が形成される位置に形成した貫通孔に導電性ペーストを充填する。更に、多層基板20bの製造方法では、回路導体層28f,29fを形成すると共に、ビアホール導体v8,v18が形成される位置に形成した貫通孔に導電性ペーストを充填する必要がある。 Next, from the step of preparing the insulator sheets 22a to 22g in the manufacturing method of the multilayer substrate 20b, the conductive material is conducted to the through holes formed at positions where the via-hole conductors v1 to v3, v5 to v7, v11 to v13, and v15 to v17 are formed. The steps up to the step of filling the conductive paste are the same as those steps in the method for manufacturing the multilayer substrate 20, and thus the description thereof is omitted. However, in the manufacturing method of the multilayer substrate 20, the conductive paste is filled in the through holes formed at positions where the via-hole conductors v4 and v14 are formed, whereas in the manufacturing method of the multilayer substrate 20b, the via-hole conductors v5 and v15 are formed. The conductive paste is filled in the through-hole formed at the position where it is formed. Furthermore, in the manufacturing method of the multilayer substrate 20b, it is necessary to form the circuit conductor layers 28f and 29f and to fill the through holes formed at positions where the via-hole conductors v8 and v18 are formed with a conductive paste.
 次に、図13に示すように、絶縁体シート22a~22dを積層した後、下側からパッケージ部品80を貫通孔H1~H3内に挿入する。更に、絶縁体シート22a~22dに対して加熱処理及び加圧処理を施す(1次プレス)。 Next, as shown in FIG. 13, after the insulator sheets 22a to 22d are stacked, the package component 80 is inserted into the through holes H1 to H3 from below. Furthermore, the insulating sheets 22a to 22d are subjected to heat treatment and pressure treatment (primary press).
 次に、図14に示すように、ビアホール導体v4,v14,v100,v102が形成される位置にレーザービームを照射することにより貫通孔を形成する。そして、図15に示すように、これらの貫通孔に銅、錫や銀等の金属を主成分とする導電性ペーストを充填する。 Next, as shown in FIG. 14, a through-hole is formed by irradiating a laser beam at a position where the via-hole conductors v4, v14, v100, and v102 are formed. And as shown in FIG. 15, these through-holes are filled with the electrically conductive paste which has metals, such as copper, tin, and silver, as a main component.
 次に、図16に示すように、パッケージ部品80を絶縁体シート22a~22gに内蔵させると共に、ビアホール導体v100,v102となるべき導電性ペースト(接続導体の一例)がそれぞれ回路導体層28f,29fに接続されるように、絶縁体シート22dの下に絶縁体シート22e~22gを積層する(第8の工程の一例)。更に、絶縁体シート22a~22gに対して加熱処理及び加圧処理を施して、絶縁体シート22a~22gを熱圧着する(2次プレス)。2次プレスでは、絶縁体シート22a~22gが軟化すると共に、貫通孔内の導電性ペーストが固化する。これにより、絶縁体シート22a~22g同士が接合されると共に、ビアホール導体v4~v8,v14~v18,v100,v102が形成される(第7の工程の一例)。以上の工程を経て、多層基板20bが完成する。 Next, as shown in FIG. 16, the package component 80 is built in the insulator sheets 22a to 22g, and the conductive paste (an example of the connection conductor) to be the via-hole conductors v100 and v102 is provided in the circuit conductor layers 28f and 29f, respectively. Insulator sheets 22e to 22g are laminated below the insulator sheet 22d so as to be connected to the substrate (an example of an eighth step). Further, the insulating sheets 22a to 22g are subjected to heat treatment and pressure treatment, and the insulating sheets 22a to 22g are thermocompression bonded (secondary press). In the secondary press, the insulator sheets 22a to 22g are softened and the conductive paste in the through holes is solidified. As a result, the insulator sheets 22a to 22g are joined together, and the via-hole conductors v4 to v8, v14 to v18, v100, and v102 are formed (an example of the seventh step). Through the above steps, the multilayer substrate 20b is completed.
 以上のように構成された多層基板20bも多層基板20と同じ作用効果を奏することが可能である。 The multilayer substrate 20b configured as described above can also exhibit the same effects as the multilayer substrate 20.
 また、多層基板20bによれば、ビアホール導体v100,v102による接続が安定する。 Moreover, according to the multilayer substrate 20b, the connection by the via-hole conductors v100 and v102 is stabilized.
 より詳細には、ビアホール導体v100,v102は、コーティング部材86を上下方向に貫通し、絶縁体シート22eを上下方向に貫通していない。すなわち、ビアホール導体v100,v102はコーティング部材86のみを介して外部電極84a,84bと回路導体層28f,29fとを接続している。これにより、多層基板20と比較して、加熱処理及び加圧処理における絶縁体シート22eの変形量とコーティング部材86の変形量との差を考慮する必要がない。従って、ビアホール導体v100,v102による接続が安定する。 More specifically, the via-hole conductors v100 and v102 penetrate the coating member 86 in the vertical direction and do not penetrate the insulator sheet 22e in the vertical direction. That is, the via-hole conductors v100 and v102 connect the external electrodes 84a and 84b and the circuit conductor layers 28f and 29f only through the coating member 86. Thereby, it is not necessary to consider the difference between the deformation amount of the insulator sheet 22e and the deformation amount of the coating member 86 in the heat treatment and the pressure treatment as compared with the multilayer substrate 20. Therefore, the connection by the via-hole conductors v100 and v102 is stabilized.
(第3の変形例)
 以下に、第3の変形例に係る多層基板20cについて図面を参照しながら説明する。図17は、多層基板20cの断面構造図である。
(Third Modification)
Hereinafter, a multilayer substrate 20c according to a third modification will be described with reference to the drawings. FIG. 17 is a cross-sectional structure diagram of the multilayer substrate 20c.
 多層基板20cは、ビアホール導体v5,v15,v100,v102の代わりにスルーホール導体v5’,v15’,v100’,v102’が用いられている点、絶縁体シート22fの表裏が反転している点、及び、ビアホール導体v9,v19が設けられている点において多層基板20と相違する。以下に、かかる相違点を中心に多層基板20cについて説明する。 In the multilayer substrate 20c, through-hole conductors v5 ′, v15 ′, v100 ′, and v102 ′ are used instead of the via-hole conductors v5, v15, v100, and v102, and the front and back of the insulator sheet 22f are reversed. And the via hole conductors v9 and v19 are different from the multilayer substrate 20. Hereinafter, the multilayer substrate 20c will be described focusing on the difference.
 ビアホール導体v5,v15,v100,v102は、絶縁体シート22e及びコーティング部材86に形成された貫通孔に導電性ペーストが充填され、導電性ペーストが加熱されることにより形成されていた。一方、スルーホール導体v5’,v15’,v100’,v102’は、絶縁体シート22e及びコーティング部材86に形成された貫通孔の内周面に銅めっきが施されることにより形成されている。 The via-hole conductors v5, v15, v100, and v102 were formed by filling the through holes formed in the insulator sheet 22e and the coating member 86 with a conductive paste and heating the conductive paste. On the other hand, the through-hole conductors v <b> 5 ′, v <b> 15 ′, v <b> 100 ′, and v <b> 102 ′ are formed by performing copper plating on the inner peripheral surfaces of the through holes formed in the insulator sheet 22 e and the coating member 86.
 ビアホール導体v9,v19は、絶縁体シート22fを上下方向に貫通しており、回路導体層28e,29eに接続されている。 The via-hole conductors v9 and v19 penetrate the insulator sheet 22f in the vertical direction and are connected to the circuit conductor layers 28e and 29e.
 また、前記のとおり、絶縁体シート22fの表裏が反転している。これにより、スルーホール導体v5’,v15’,v100’,v102’はそれぞれ、ビアホール導体v6,v16,v9,v19に接続されている。よって、外部電極84aと回路導体層28eとは、スルーホール導体v100’及びビアホール導体v9を介して接続されている。外部電極84bと回路導体層29eとは、スルーホール導体v102’及びビアホール導体v19を介して接続されている。 Further, as described above, the front and back of the insulator sheet 22f are reversed. Thereby, the through-hole conductors v5 ', v15', v100 ', and v102' are connected to the via-hole conductors v6, v16, v9, and v19, respectively. Therefore, the external electrode 84a and the circuit conductor layer 28e are connected via the through-hole conductor v100 'and the via-hole conductor v9. The external electrode 84b and the circuit conductor layer 29e are connected through a through-hole conductor v102 'and a via-hole conductor v19.
 次に、多層基板20cの製造方法について説明する。図18、図19A及び図19Bは、多層基板20cの製造時の断面構造図である。 Next, a method for manufacturing the multilayer substrate 20c will be described. 18, 19A, and 19B are cross-sectional structural diagrams of the multilayer substrate 20c when it is manufactured.
 多層基板20cのパッケージ部品80の製造方法は、多層基板20のパッケージ部品80の製造方法と同じであるので説明を省略する。 Since the manufacturing method of the package component 80 of the multilayer substrate 20c is the same as the manufacturing method of the package component 80 of the multilayer substrate 20, description thereof will be omitted.
 次に、多層基板20cの製造方法において絶縁体シート22a~22gを準備する工程から絶縁体シート22a~22eに対して加熱処理及び加圧処理(1次プレス)を施す工程までの工程については、多層基板20の製造方法におけるこれらの工程と同じであるので説明を省略する。 Next, in the manufacturing method of the multilayer substrate 20c, the steps from the step of preparing the insulator sheets 22a to 22g to the step of applying heat treatment and pressure treatment (primary press) to the insulator sheets 22a to 22e are as follows: Since these steps are the same as those in the method of manufacturing the multilayer substrate 20, the description thereof is omitted.
 次に、図18に示すように、スルーホール導体v5’,v15’,v100’,v102’が形成される位置にレーザービームを照射することにより貫通孔を形成する。そして、図19Aに示すように、これらの貫通孔に銅めっきを施してスルーホール導体v5’,v15’,v100’,v102’を形成する。 Next, as shown in FIG. 18, a through hole is formed by irradiating a laser beam at a position where through-hole conductors v5 ', v15', v100 ', and v102' are formed. Then, as shown in FIG. 19A, these through holes are plated with copper to form through-hole conductors v5 ', v15', v100 ', and v102'.
 次に、図19Bに示すように、絶縁体シート22eの下に絶縁体シート22f,22gを積層する。ただし、絶縁体シート22fは、回路導体層28e,29eが設けられている主面が下側を向くように配置される。この後、絶縁体シート22a~22gに対して加熱処理及び加圧処理を施す。以上の工程を経て、多層基板20cが完成する。 Next, as shown in FIG. 19B, insulator sheets 22f and 22g are laminated under the insulator sheet 22e. However, the insulator sheet 22f is arranged so that the main surface on which the circuit conductor layers 28e and 29e are provided faces downward. Thereafter, the insulating sheets 22a to 22g are subjected to a heat treatment and a pressure treatment. The multilayer substrate 20c is completed through the above steps.
 以上のように構成された多層基板20cも多層基板20と同じ作用効果を奏することが可能である。 The multilayer substrate 20c configured as described above can also exhibit the same effects as the multilayer substrate 20.
(第4の変形例)
 以下に、第4の変形例に係る多層基板20dについて図面を参照しながら説明する。図20は、多層基板20dの断面構造図である。
(Fourth modification)
Hereinafter, a multilayer substrate 20d according to a fourth modification will be described with reference to the drawings. FIG. 20 is a cross-sectional structure diagram of the multilayer substrate 20d.
 多層基板20dは、パッケージ部品80’を更に内蔵している点において多層基板20と相違する。このように、多層基板20dにおいて、2以上のパッケージ部品が内蔵されていてもよい。 The multilayer substrate 20d is different from the multilayer substrate 20 in that it further includes a package component 80 '. Thus, two or more package parts may be incorporated in the multilayer substrate 20d.
 また、パッケージ部品80’は、電子部品81’(第1の電子部品の一例),81’’(第2の電子部品の一例)を含んでいる。電子部品81’,81’’は、パッケージ部品80’内において左右に並んでいる。このように、パッケージ部品80’は、複数の電子部品を含んでいてもよい。 Further, the package component 80 ′ includes an electronic component 81 ′ (an example of a first electronic component) and 81 ″ (an example of a second electronic component). The electronic components 81 ′ and 81 ″ are arranged side by side in the package component 80 ′. As described above, the package component 80 ′ may include a plurality of electronic components.
 また、電子部品81’の外部電極84a’,84b’は、本体82’の下面のみに設けられている。同様に、電子部品81’ ’の外部電極84a’’,84b’’は、本体82’’の下面のみに設けられている。このように、外部電極は、本体の下面のみに設けられていてもよい。 Further, the external electrodes 84a 'and 84b' of the electronic component 81 'are provided only on the lower surface of the main body 82'. Similarly, the external electrodes 84 a ″ and 84 b ″ of the electronic component 81 ″ ′ are provided only on the lower surface of the main body 82 ″. Thus, the external electrode may be provided only on the lower surface of the main body.
(第5の変形例)
 以下に、第5の変形例に係る多層基板20eについて図面を参照しながら説明する。図21は、多層基板20eの断面構造図である。
(Fifth modification)
Hereinafter, a multilayer substrate 20e according to a fifth modification will be described with reference to the drawings. FIG. 21 is a sectional view of the multilayer substrate 20e.
 多層基板20eは、絶縁体シート22hが絶縁体シート22aの上側に積層されている点、及び、ビアホール導体v110,v112を更に備えている点において多層基板20と相違する。以下に係る相違点を中心に多層基板20eについて図面を参照ながら説明する。 The multilayer substrate 20e is different from the multilayer substrate 20 in that an insulator sheet 22h is laminated on the insulator sheet 22a and further provided with via-hole conductors v110 and v112. The multilayer substrate 20e will be described with reference to the drawings with a focus on the following differences.
 基材22は、絶縁体シート22h,22a~22gが上側から下側へとこの順に積層されて構成されている。外部電極24a~24dは、絶縁体シート22hの表面上に設けられている。回路導体層28g,29gは、絶縁体シート22aの表面上に設けられている。ビアホール導体v0は、絶縁体シート22hを上下方向に貫通しており、外部電極24aと回路導体層28hとを接続している。ビアホール導体v10は、絶縁体シート22hを上下方向に貫通しており、外部電極24dと回路導体層29gとを接続している。 The base material 22 is configured by laminating insulator sheets 22h and 22a to 22g in this order from the upper side to the lower side. The external electrodes 24a to 24d are provided on the surface of the insulator sheet 22h. The circuit conductor layers 28g and 29g are provided on the surface of the insulator sheet 22a. The via-hole conductor v0 penetrates the insulator sheet 22h in the vertical direction, and connects the external electrode 24a and the circuit conductor layer 28h. The via-hole conductor v10 penetrates the insulator sheet 22h in the vertical direction, and connects the external electrode 24d and the circuit conductor layer 29g.
 ビアホール導体v110は、コーティング部材86及び絶縁体シート22aを上下方向に貫通しており、外部電極84aと回路導体層28gとを接続している。より詳細には、ビアホール導体v110の上端は、回路導体層28gに接続されており、ビアホール導体v110の下端は外部電極84aに接続されている。そして、ビアホール導体v110は、外部電極84aとパッケージ部品80の上面との間に存在するコーティング部材86を上下方向に貫通すると共に、絶縁体シート22aを上下方向に貫通している。従って、ビアホール導体v110は、パッケージ部品80の上面を通過している。 The via-hole conductor v110 penetrates the coating member 86 and the insulating sheet 22a in the vertical direction, and connects the external electrode 84a and the circuit conductor layer 28g. More specifically, the upper end of the via hole conductor v110 is connected to the circuit conductor layer 28g, and the lower end of the via hole conductor v110 is connected to the external electrode 84a. The via-hole conductor v110 penetrates the coating member 86 existing between the external electrode 84a and the upper surface of the package component 80 in the vertical direction and penetrates the insulator sheet 22a in the vertical direction. Therefore, the via-hole conductor v110 passes through the upper surface of the package component 80.
 ビアホール導体v112は、コーティング部材86及び絶縁体シート22aを上下方向に貫通しており、外部電極84bと回路導体層29gとを接続している。より詳細には、ビアホール導体v112の上端は、回路導体層29gに接続されており、ビアホール導体v112の下端は外部電極84bに接続されている。そして、ビアホール導体v112は、外部電極84bとパッケージ部品80の上面との間に存在するコーティング部材86を上下方向に貫通すると共に、絶縁体シート22aを上下方向に貫通している。従って、ビアホール導体v112は、パッケージ部品80の上面を通過している。 The via-hole conductor v112 penetrates the coating member 86 and the insulating sheet 22a in the vertical direction, and connects the external electrode 84b and the circuit conductor layer 29g. More specifically, the upper end of the via hole conductor v112 is connected to the circuit conductor layer 29g, and the lower end of the via hole conductor v112 is connected to the external electrode 84b. The via-hole conductor v112 penetrates the coating member 86 existing between the external electrode 84b and the upper surface of the package component 80 in the vertical direction and penetrates the insulator sheet 22a in the vertical direction. Therefore, the via-hole conductor v112 passes through the upper surface of the package component 80.
 以上のように構成された多層基板20eも多層基板20と同じ作用効果を奏することが可能である。 The multilayer substrate 20e configured as described above can also exhibit the same effects as the multilayer substrate 20.
 また、多層基板20eでは、パッケージ部品80の上面がビアホール導体v110,v112により固定され、パッケージ部品80の下面がビアホール導体v100,v102により固定されている。これにより、使用時に外力を受けて、パッケージ部品80が基材22内において位置ずれを起こすことがより効果的に抑制されるようになる。その結果、パッケージ部品80と回路導体層28g,29g,28f,29fとの間で断線が生じることが抑制される。 In the multilayer substrate 20e, the upper surface of the package component 80 is fixed by the via-hole conductors v110 and v112, and the lower surface of the package component 80 is fixed by the via-hole conductors v100 and v102. As a result, the package component 80 is more effectively suppressed from being displaced in the base material 22 due to an external force during use. As a result, disconnection between the package component 80 and the circuit conductor layers 28g, 29g, 28f, 29f is suppressed.
(第6の変形例)
 以下に、第6の変形例に係る多層基板20fについて図面を参照しながら説明する。図22は、多層基板20fの断面構造図である。
(Sixth Modification)
Hereinafter, a multilayer substrate 20f according to a sixth modification will be described with reference to the drawings. FIG. 22 is a sectional view of the multilayer substrate 20f.
 多層基板20fは、パッケージ部品80が電子部品81’(第2の電子部品の一例)を更に含んでいる点において多層基板20eと相違する。以下に係る相違点を中心に多層基板20fについて図面を参照ながら説明する。 The multilayer substrate 20f is different from the multilayer substrate 20e in that the package component 80 further includes an electronic component 81 '(an example of a second electronic component). The multilayer substrate 20f will be described with reference to the drawings with a focus on the following differences.
 電子部品81(第1の電子部品の一例)と電子部品81’とは、上側から見たときに、重なるように配置されている。また、コーティング部材86は、電子部品81,81’を内蔵している。なお、コーティング部材86は、電子部品81,81’を必ずしも内蔵する必要はなく、電子部品81,81'の表面の少なくとも一部を覆っていればよい。 The electronic component 81 (an example of the first electronic component) and the electronic component 81 ′ are arranged so as to overlap when viewed from above. Further, the coating member 86 includes electronic parts 81 and 81 '. Note that the coating member 86 does not necessarily contain the electronic components 81 and 81 ′, and may cover at least a part of the surface of the electronic components 81 and 81 ′.
 電子部品81’は、本体82’及び外部電極84a’,84b’を含んでいる。本体82’は、直方体状をなしており、本体82に対して上側に位置している。外部電極84a’,84b’はそれぞれ、本体82’の上面に設けられており、左側から右側へとこの順に並んでいる。 The electronic component 81 ′ includes a main body 82 ′ and external electrodes 84 a ′ and 84 b ′. The main body 82 ′ has a rectangular parallelepiped shape and is located on the upper side with respect to the main body 82. The external electrodes 84a 'and 84b' are provided on the upper surface of the main body 82 ', and are arranged in this order from the left side to the right side.
 ビアホール導体v110は、コーティング部材86及び絶縁体シート22aを上下方向に貫通しており、外部電極84a’と回路導体層28gとを接続している。ビアホール導体v112は、コーティング部材86及び絶縁体シート22aを上下方向に貫通しており、外部電極84b’と回路導体層29gとを接続している。 The via-hole conductor v110 penetrates the coating member 86 and the insulating sheet 22a in the vertical direction, and connects the external electrode 84a 'and the circuit conductor layer 28g. The via-hole conductor v112 passes through the coating member 86 and the insulating sheet 22a in the vertical direction, and connects the external electrode 84b 'and the circuit conductor layer 29g.
 以上のように構成された多層基板20fも多層基板20と同じ作用効果を奏することが可能である。 The multilayer substrate 20 f configured as described above can also exhibit the same effects as the multilayer substrate 20.
 また、多層基板20fでは、加熱処理及び加圧処理において、パッケージ部品80が空間Sp内において回転することが抑制される。すなわち、パッケージ部品80の基材22における位置決めが精度よく行われるので、2つの電子部品81、81’の位置決めが精度よく行われるようになる。 In the multilayer substrate 20f, the package component 80 is prevented from rotating in the space Sp during the heat treatment and the pressure treatment. That is, since the positioning of the package component 80 on the base material 22 is performed with high accuracy, the positioning of the two electronic components 81 and 81 ′ is performed with high accuracy.
(第7の変形例)
 以下に、第7の変形例に係る多層基板20gについて図面を参照しながら説明する。図23は、多層基板20gのパッケージ部品80の外観斜視図である。図24Aは、パッケージ部品80を上側から見た図である。図24Bは、図24AのA-Aにおける断面構造図である。図24Cは、図24AのB-Bにおける断面構造図である。
(Seventh Modification)
The multilayer substrate 20g according to the seventh modification will be described below with reference to the drawings. FIG. 23 is an external perspective view of the package component 80 of the multilayer board 20g. FIG. 24A is a view of the package component 80 as viewed from above. FIG. 24B is a cross-sectional structure diagram along AA in FIG. 24A. 24C is a cross-sectional structure diagram taken along line BB in FIG. 24A.
 多層基板20gは、パッケージ部品80にスルーホール導体v120,v122が設けられている点において多層基板20bと相違する。なお、多層基板20gの断面構造図は、多層基板20bの断面構造図と実質的に同じであるので、図12を援用する。以下に、かかる相違点を中心に多層基板20gについて説明する。 The multilayer substrate 20g is different from the multilayer substrate 20b in that through-hole conductors v120 and v122 are provided in the package component 80. Since the cross-sectional structure diagram of the multilayer substrate 20g is substantially the same as the cross-sectional structure diagram of the multilayer substrate 20b, FIG. 12 is used. Hereinafter, the multilayer substrate 20g will be described focusing on the difference.
 スルーホール導体v120は、コーティング部材86を上下方向に貫通しており、外部電極84aと回路導体層28fとを接続している。より詳細には、スルーホール導体v120の上端は、外部電極84aに接続されており、スルーホール導体v120の下端は回路導体層28fに接続されている。そして、スルーホール導体v120は、外部電極84aとパッケージ部品80の下面との間に存在するコーティング部材86を上下方向に貫通しており、絶縁体シート22eを上下方向に貫通していない。 The through-hole conductor v120 penetrates the coating member 86 in the vertical direction, and connects the external electrode 84a and the circuit conductor layer 28f. More specifically, the upper end of the through-hole conductor v120 is connected to the external electrode 84a, and the lower end of the through-hole conductor v120 is connected to the circuit conductor layer 28f. The through-hole conductor v120 penetrates the coating member 86 existing between the external electrode 84a and the lower surface of the package component 80 in the vertical direction and does not penetrate the insulator sheet 22e in the vertical direction.
 スルーホール導体v122は、コーティング部材86を上下方向に貫通しており、外部電極84bと回路導体層29fとを接続している。より詳細には、スルーホール導体v122の上端は、外部電極84bに接続されており、スルーホール導体v122の下端は回路導体層29fに接続されている。そして、スルーホール導体v122は、外部電極84bとパッケージ部品80の下面との間に存在するコーティング部材86を上下方向に貫通しており、絶縁体シート22eを上下方向に貫通していない。 The through-hole conductor v122 penetrates the coating member 86 in the vertical direction, and connects the external electrode 84b and the circuit conductor layer 29f. More specifically, the upper end of the through-hole conductor v122 is connected to the external electrode 84b, and the lower end of the through-hole conductor v122 is connected to the circuit conductor layer 29f. The through-hole conductor v122 penetrates the coating member 86 existing between the external electrode 84b and the lower surface of the package component 80 in the vertical direction and does not penetrate the insulator sheet 22e in the vertical direction.
 以上のようなスルーホール導体v120,v122は、コーティング部材86に設けられた貫通孔の内周面に銅めっきが施されることにより形成されている。そして、スルーホール導体v120,v122は、パッケージ部品80が空間Spに収容される前に形成される。すなわち、パッケージ部品80の完成後に、レーザービームによりコーティング部材86に貫通孔を形成する。そして、貫通孔の内周面に銅めっきを施す。これにより、貫通孔から突出しない導体を形成することができるため、接続部の凹凸を抑制できる。なお、このめっきは貫通孔の内周面だけでなく内周面周囲のコーティング部材86表面にも設けられていてもよい。この後、パッケージ部品80を基材22の空間Spに収容する。 The through-hole conductors v120 and v122 as described above are formed by performing copper plating on the inner peripheral surface of the through hole provided in the coating member 86. The through-hole conductors v120 and v122 are formed before the package component 80 is accommodated in the space Sp. That is, after the package component 80 is completed, a through hole is formed in the coating member 86 by a laser beam. And copper plating is given to the internal peripheral surface of a through-hole. Thereby, since the conductor which does not protrude from a through-hole can be formed, the unevenness | corrugation of a connection part can be suppressed. This plating may be provided not only on the inner peripheral surface of the through hole but also on the surface of the coating member 86 around the inner peripheral surface. Thereafter, the package component 80 is accommodated in the space Sp of the base material 22.
(その他の実施形態)
 本発明に係る多層基板及び多層基板の製造方法は、多層基板20,20a~20g及び多層基板20,20a~20gの製造方法に限らず、その要旨の範囲内において変更可能である。
(Other embodiments)
The multilayer substrate and the method of manufacturing the multilayer substrate according to the present invention are not limited to the method of manufacturing the multilayer substrates 20, 20a to 20g and the multilayer substrates 20, 20a to 20g, and can be changed within the scope of the gist.
 なお、多層基板20,20a~20g及び多層基板20,20a~20gの製造方法の構成を任意に組み合わせてもよい。 In addition, you may combine arbitrarily the structure of the manufacturing method of the multilayer substrate 20, 20a-20g and the multilayer substrate 20, 20a-20g.
 なお、パッケージ部品80の側面は積層方向に平行でなくてもよい。側面は積層方向に平行ではないパッケージ部品80の形状の例としては、例えば、四角錘台が挙げられる。また、パッケージ部品80の側面は平面でなくてもよい。側面が平面ではないパッケージ部品80の形状の例としては、円柱が挙げられる。 In addition, the side surface of the package component 80 may not be parallel to the stacking direction. As an example of the shape of the package component 80 whose side surfaces are not parallel to the stacking direction, for example, a square frustum is cited. Further, the side surface of the package component 80 may not be a flat surface. An example of the shape of the package component 80 whose side surface is not flat is a cylinder.
 また、パッケージ部品80の上面及び下面は、外部電極84a,84b及びコーティング部材86により構成されていてもよい。図25は、上面及び下面が外部電極84a,84b及びコーティング部材86により構成されているパッケージ部品80の外観斜視図である。図25に示すように、パッケージ部品80の製造時の樹脂層202,203の研磨量を多くすることによって、外部電極84a,84bをコーティング部材86から露出させてもよい。この場合、コーティング部材86に貫通孔を形成することなく、外部電極84a,84bとビアホール導体v100,v102とを接続したり、外部電極84a,84bと回路導体層28f,29fとを接続したりできる。 Further, the upper surface and the lower surface of the package component 80 may be constituted by the external electrodes 84 a and 84 b and the coating member 86. FIG. 25 is an external perspective view of the package component 80 whose upper and lower surfaces are constituted by the external electrodes 84 a and 84 b and the coating member 86. As shown in FIG. 25, the external electrodes 84 a and 84 b may be exposed from the coating member 86 by increasing the polishing amount of the resin layers 202 and 203 at the time of manufacturing the package component 80. In this case, the external electrodes 84a and 84b and the via-hole conductors v100 and v102 can be connected or the external electrodes 84a and 84b and the circuit conductor layers 28f and 29f can be connected without forming a through hole in the coating member 86. .
 なお、多層基板20,20a~20gは、マザー基板100に実装されずに用いられてもよい。 The multilayer substrates 20 and 20a to 20g may be used without being mounted on the mother substrate 100.
 なお、多層基板20eにおいて、ビアホール導体v100,v102が設けられていなくてもよい。この場合には、絶縁体シート22aは、パッケージ部品80の上面(第2の平面の一例)に接触している。そして、ビアホール導体v110,v112(接続導体の一例)は、パッケージ部品80の上面を通過し、コーティング部材86及び絶縁体シート22aを貫通している。 In the multilayer substrate 20e, the via-hole conductors v100 and v102 do not have to be provided. In this case, the insulator sheet 22a is in contact with the upper surface (an example of the second plane) of the package component 80. The via-hole conductors v110 and v112 (an example of a connection conductor) pass through the upper surface of the package component 80 and penetrate the coating member 86 and the insulator sheet 22a.
 なお、多層基板20aにおいて、絶縁体シート23は、パッケージ部品80の下面ではなく上面(第2の平面の一例)に接触していてもよい。この場合、図21に示す多層基板20eのように、絶縁体シート22aの上側に絶縁体シート22hが更に積層される。これにより、絶縁体シート22aは、パッケージ部品80の上面(第2の平面の一例)に接触している。また、絶縁体シート22aの表面上には、回路導体層28g,29gが設けられる。そして、多層基板20aは、ビアホール導体v100,v102の代わりに、ビアホール導体v110,v112を備えている。ビアホール導体v110,v112(接続導体の一例)は、パッケージ部品80の上面を通過し、コーティング部材86及び絶縁体シート22aを貫通する。そして、ビアホール導体v110は、回路導体層28gと外部電極84aとを接続し、ビアホール導体v112は、回路導体層29gと外部電極84bとを接続する。 In the multilayer substrate 20a, the insulator sheet 23 may be in contact with the upper surface (an example of the second plane) instead of the lower surface of the package component 80. In this case, as in the multilayer substrate 20e shown in FIG. 21, the insulator sheet 22h is further laminated on the insulator sheet 22a. Thereby, the insulator sheet 22a is in contact with the upper surface (an example of the second plane) of the package component 80. In addition, circuit conductor layers 28g and 29g are provided on the surface of the insulator sheet 22a. The multilayer substrate 20a includes via-hole conductors v110 and v112 instead of the via-hole conductors v100 and v102. Via-hole conductors v110 and v112 (an example of a connection conductor) pass through the upper surface of the package component 80 and penetrate the coating member 86 and the insulator sheet 22a. The via-hole conductor v110 connects the circuit conductor layer 28g and the external electrode 84a, and the via-hole conductor v112 connects the circuit conductor layer 29g and the external electrode 84b.
 以上のように、多層基板20,20b~20d,20gにおいても、多層基板20a,20eと同様に、ビアホール導体v100,v102の代わりにビアホール導体v110,v112(接続導体の一例)が設けられていてもよい。この場合には、絶縁体シート22aは、パッケージ部品80の上面(第2の平面の一例)に接触している。そして、ビアホール導体v110,v112(接続導体の一例)は、パッケージ部品80の上面を通過し、コーティング部材86及び絶縁体シート22aを貫通している。 As described above, also in the multilayer substrates 20, 20b to 20d, 20g, the via-hole conductors v110, v112 (an example of connection conductors) are provided instead of the via-hole conductors v100, v102, similarly to the multilayer substrates 20a, 20e. Also good. In this case, the insulator sheet 22a is in contact with the upper surface (an example of the second plane) of the package component 80. The via-hole conductors v110 and v112 (an example of a connection conductor) pass through the upper surface of the package component 80 and penetrate the coating member 86 and the insulator sheet 22a.
 なお、多層基板20aにおいて、ビアホール導体v110,v112はそれぞれ、回路導体層28e,29eに直接に接続されているが、ビアホール導体v110,v112とは別のビアホール導体を介して回路導体層28e,29eに直接に接続されていてもよい。すなわち、ビアホール導体v110,v112はそれぞれ、外部電極84a,84bと回路導体層28e,29eとを電気的に接続していればよい。 In the multilayer substrate 20a, the via-hole conductors v110 and v112 are directly connected to the circuit conductor layers 28e and 29e, respectively. However, the circuit conductor layers 28e and 29e are connected via via-hole conductors different from the via-hole conductors v110 and v112. It may be connected directly to. That is, the via-hole conductors v110 and v112 only have to electrically connect the external electrodes 84a and 84b and the circuit conductor layers 28e and 29e, respectively.
 以上のように、本発明は、多層基板及び多層基板の製造方法に有用であり、特に、基材の主面の平坦性を向上させることができる点で優れている。 As described above, the present invention is useful for a multilayer substrate and a method for producing the multilayer substrate, and is particularly excellent in that the flatness of the main surface of the base material can be improved.
10:電子機器
20,20a~20g:多層基板
22:基材
22a~22g,23:絶縁体シート
28a~28f,29a~29f:回路導体層
50,80,80’:パッケージ部品
60,70,81,81’,81’’:電子部品
60a,70a,82、82’,82’’:本体
24a~24d,26a,26b,62a,62b,72a,72b,84a,84a’,84a’’, 84b,84b’,84b’’:外部電極
86:コーティング部材
H1~H3:貫通孔
Sp:空間
v1~v9,v11~v19,v100,v102,v110,v112:ビアホール導体
v5’,v100’,v102’,v120,v122:スルーホール導体
10: Electronic equipment 20, 20a-20g: Multilayer substrate 22: Base materials 22a-22g, 23: Insulator sheets 28a-28f, 29a-29f: Circuit conductor layers 50, 80, 80 ': Package parts 60, 70, 81 , 81 ′, 81 ″: electronic components 60a, 70a, 82, 82 ′, 82 ″: main bodies 24a to 24d, 26a, 26b, 62a, 62b, 72a, 72b, 84a, 84a ′, 84a ″, 84b , 84b ′, 84b ″: External electrode 86: Coating members H1 to H3: Through holes Sp: Spaces v1 to v9, v11 to v19, v100, v102, v110, v112: Via hole conductors v5 ′, v100 ′, v102 ′, v120, v122: Through-hole conductor

Claims (17)

  1.  熱可塑性樹脂である第1の樹脂を含む材料により構成されている複数の絶縁体層が積層方向に積層されて構成されている基材と、
     前記基材に内蔵されているパッケージ部品であって、前記積層方向の両端に位置し、かつ、該積層方向に実質的に垂直な第1の平面及び第2の平面を有するパッケージ部品と、
     を備えており、
     前記パッケージ部品は、
      第1の電子部品と、
      第2の樹脂を含む材料により構成され、かつ、前記第1の電子部品の表面の少なくとも一部を覆っているコーティング部材と、
     を含んでおり、
     前記第1の樹脂の軟化点温度において、前記第2の樹脂のヤング率は、前記第1の樹脂のヤング率よりも大きく、
     前記第1の平面の少なくとも一部及び前記第2の平面の少なくとも一部は、前記コーティング部材により構成されていること、
     を特徴とする多層基板。
    A base material constituted by laminating a plurality of insulator layers made of a material containing a first resin that is a thermoplastic resin in a laminating direction;
    A package component embedded in the base material, the package component having first and second planes positioned at both ends in the stacking direction and substantially perpendicular to the stacking direction;
    With
    The package component is:
    A first electronic component;
    A coating member made of a material containing a second resin and covering at least part of the surface of the first electronic component;
    Contains
    At the softening point temperature of the first resin, the Young's modulus of the second resin is larger than the Young's modulus of the first resin,
    At least a part of the first plane and at least a part of the second plane are constituted by the coating member;
    A multilayer board characterized by
  2.  前記第1の電子部品は、
      第1の本体と、
      前記第1の本体の表面に設けられている第1の外部電極を、
     有しており、
     前記多層基板は、
     前記絶縁体層に設けられている回路導体層と、
     前記コーティング部材を貫通しており、前記第1の外部電極と前記回路導体層とを接続している接続導体と、
     を更に備えていること、
     を特徴とする請求項1に記載の多層基板。
    The first electronic component is:
    A first body;
    A first external electrode provided on a surface of the first main body;
    Have
    The multilayer substrate is
    A circuit conductor layer provided on the insulator layer;
    A connecting conductor passing through the coating member and connecting the first external electrode and the circuit conductor layer;
    Further comprising
    The multilayer substrate according to claim 1.
  3.  前記複数の絶縁体層は、前記第2の平面に接触する第1の絶縁体層を含んでおり、
     前記接続導体は、前記第2の平面を通過し、かつ、前記コーティング部材及び前記第1の絶縁体層を貫通していること、
     を特徴とする請求項2に記載の多層基板。
    The plurality of insulator layers include a first insulator layer that contacts the second plane;
    The connection conductor passes through the second plane and passes through the coating member and the first insulator layer;
    The multilayer substrate according to claim 2.
  4.  前記複数の絶縁体層は、前記第2の平面に接触する第2の絶縁体層を含んでおり、
    前記第1の電子部品は、
      第1の本体と、
      前記第1の本体の表面に設けられている第1の外部電極を、
     有しており、
     前記第2の平面は、前記コーティング部材及び前記第1の外部電極により構成されており、
     前記多層基板は、
     前記絶縁体層に設けられている回路導体層と、
     前記第2の絶縁体層を前記積層方向に貫通しており、前記第1の外部電極と前記回路導体層とを電気的に接続している接続導体と、
     を更に備えていること、
     を特徴とする請求項1に記載の多層基板。
    The plurality of insulator layers include a second insulator layer in contact with the second plane;
    The first electronic component is:
    A first body;
    A first external electrode provided on a surface of the first main body;
    Have
    The second plane is constituted by the coating member and the first external electrode,
    The multilayer substrate is
    A circuit conductor layer provided on the insulator layer;
    A connection conductor penetrating the second insulator layer in the stacking direction and electrically connecting the first external electrode and the circuit conductor layer;
    Further comprising
    The multilayer substrate according to claim 1.
  5.  前記絶縁体層を前記積層方向に貫通する層間接続導体を、
     更に備えており、
     前記接続導体の材料と前記層間接続導体の材料とは同じであること、
     を特徴とする請求項2ないし請求項4のいずれかに記載の多層基板。
    An interlayer connection conductor that penetrates the insulator layer in the stacking direction,
    In addition,
    The material of the connection conductor and the material of the interlayer connection conductor are the same,
    The multilayer substrate according to any one of claims 2 to 4, wherein:
  6.  前記第1の電子部品は、
      直方体状の第1の本体と、
      前記第1の本体において前記積層方向のいずれか一方の面上に設けられている第1の外部電極と、
     有していること、
     を特徴とする請求項1ないし請求項5のいずれかに記載の多層基板。
    The first electronic component is:
    A rectangular parallelepiped first body;
    A first external electrode provided on any one surface in the stacking direction in the first body;
    Having
    The multilayer substrate according to any one of claims 1 to 5, wherein:
  7.  前記積層方向に直交する方向を第1の直交方向と定義し、
     前記積層方向及び前記第1の直交方向に直交する方向を第2の直交方向と定義し、
     前記第1の外部電極は、前記第1の本体において、前記第1の直交方向の一方側の面の全体を覆うと共に、
     前記第1の直交方向の一方側の面に隣接する領域であって、前記積層方向の両側の面の一部、及び、前記第2の直交方向の両側の一部の領域を覆っていること、
     を特徴とする請求項6に記載の多層基板。
    A direction orthogonal to the stacking direction is defined as a first orthogonal direction,
    A direction orthogonal to the stacking direction and the first orthogonal direction is defined as a second orthogonal direction,
    The first external electrode covers the entire surface on one side in the first orthogonal direction in the first main body,
    It is a region adjacent to one surface in the first orthogonal direction, and covers a part of both surfaces in the stacking direction and a region on both sides in the second orthogonal direction. ,
    The multilayer substrate according to claim 6.
  8.  前記第2の樹脂の線膨張係数は、前記第1の本体の材料の線膨張係数以上、かつ、前記第1の樹脂の線膨張係数以下であること、
     を特徴とする請求項4又は請求項7のいずれかに記載の多層基板。
    The linear expansion coefficient of the second resin is not less than the linear expansion coefficient of the material of the first main body and not more than the linear expansion coefficient of the first resin;
    The multilayer substrate according to claim 4 or 7, wherein
  9.  前記パッケージ部品は、
      第2の電子部品を、
     更に含んでおり、
     前記コーティング部材は、前記第1の電子部品及び前記第2の電子部品の表面の少なくとも一部を覆っていること、
     を特徴とする請求項1ないし請求項8のいずれかに記載の多層基板。
    The package component is:
    The second electronic component,
    In addition,
    The coating member covers at least a part of the surfaces of the first electronic component and the second electronic component;
    The multilayer substrate according to claim 1, wherein:
  10.  前記第1の電子部品と前記第2の電子部品は、前記積層方向から見たときに重なっていること、
     を特徴とする請求項9に記載の多層基板。
    The first electronic component and the second electronic component overlap when viewed from the stacking direction;
    The multilayer substrate according to claim 9.
  11.  前記パッケージ部品は、直方体状をなしていること、
     を特徴とする請求項1ないし請求項10のいずれかに記載の多層基板。
    The package component has a rectangular parallelepiped shape;
    The multilayer substrate according to any one of claims 1 to 10, wherein:
  12.  前記第2の樹脂は、熱硬化性樹脂であること、
     を特徴とする請求項1ないし請求項11のいずれかに記載の多層基板。
    The second resin is a thermosetting resin;
    The multilayer substrate according to any one of claims 1 to 11, wherein:
  13.  第1の電子部品の表面の少なくとも一部をコーティング部材により覆うことにより、積層方向の両端に位置し、かつ、該積層方向に実質的に垂直な第1の平面及び第2の平面を有するパッケージ部品を形成する第1の工程と、
     前記パッケージ部品を内蔵するように複数の絶縁体層を前記積層方向に積層する第2の工程と、
     前記複数の絶縁体層に対して加熱処理及び加圧処理を施して基材を形成する第3の工程と、
     を備えており、
     前記複数の絶縁体層は、熱可塑性樹脂である第1の樹脂を含む材料により構成されており、
     前記コーティング部材は、第2の樹脂を含む材料により構成されており、
     前記加熱処理の温度において、前記第2の樹脂のヤング率は、前記第1の樹脂のヤング率よりも大きいこと、
     を特徴とする多層基板の製造方法。
    A package having a first plane and a second plane that are located at both ends in the stacking direction and are substantially perpendicular to the stacking direction by covering at least part of the surface of the first electronic component with a coating member A first step of forming a component;
    A second step of laminating a plurality of insulator layers in the laminating direction so as to incorporate the package component;
    A third step of performing a heat treatment and a pressure treatment on the plurality of insulator layers to form a substrate;
    With
    The plurality of insulator layers are made of a material containing a first resin that is a thermoplastic resin,
    The coating member is made of a material containing a second resin,
    The Young's modulus of the second resin is greater than the Young's modulus of the first resin at the temperature of the heat treatment;
    A method for producing a multilayer substrate.
  14.  前記第1の平面は、前記積層方向の一方側に位置し、
     前記第2の平面は、前記積層方向の他方側に位置し、
     前記第1の電子部品は、
      第1の本体と、
      前記第1の本体の表面に設けられている第1の外部電極を、
     更に含んでおり、
     前記複数の絶縁体層は、前記第2の平面に接触する第1の絶縁体層、該第1の絶縁体層よりも前記積層方向の一方側に積層される1以上の第3の絶縁体層、及び、該第1の絶縁体層よりも該積層方向の他方側に積層される第4の絶縁体層を含んでおり、
     前記多層基板は、
     前記第4の絶縁体層に設けられている回路導体層を、
     更に備えており、
     前記第3の工程は、
      前記第1の絶縁体層及び前記第3の絶縁体層内に前記パッケージ部品を内蔵させるように、該第1の絶縁体層及び該第3の絶縁体層を積層する第4の工程と、
      前記コーティング部材及び前記第1の絶縁体層を貫通する接続導体を形成する第5の工程と、
      前記接続導体と前記回路導体層とが接続されるように、前記第1の絶縁体層及び前記第4の絶縁体層を積層する第6の工程と、
     を含んでいること、
     を特徴とする請求項13に記載の多層基板の製造方法。
    The first plane is located on one side in the stacking direction,
    The second plane is located on the other side in the stacking direction,
    The first electronic component is:
    A first body;
    A first external electrode provided on a surface of the first main body;
    In addition,
    The plurality of insulator layers include a first insulator layer in contact with the second plane, and one or more third insulators stacked on one side in the stacking direction with respect to the first insulator layer. And a fourth insulator layer that is laminated on the other side in the laminating direction from the first insulator layer,
    The multilayer substrate is
    A circuit conductor layer provided on the fourth insulator layer;
    In addition,
    The third step includes
    A fourth step of laminating the first insulator layer and the third insulator layer so as to incorporate the package component in the first insulator layer and the third insulator layer;
    A fifth step of forming a connection conductor penetrating the coating member and the first insulator layer;
    A sixth step of laminating the first insulator layer and the fourth insulator layer so that the connection conductor and the circuit conductor layer are connected;
    Including
    The method for producing a multilayer substrate according to claim 13.
  15.  前記第4の工程では、加熱処理及び加圧処理を施して、前記第1の絶縁体層及び前記第3の絶縁体層を熱圧着し、
     前記第6の工程では、加熱処理及び加圧処理を施して、前記第1の絶縁体層及び前記第4の絶縁体層を熱圧着すること、
     を特徴とする請求項14に記載の多層基板の製造方法。
    In the fourth step, heat treatment and pressure treatment are performed, and the first insulator layer and the third insulator layer are thermocompression bonded,
    In the sixth step, heat treatment and pressure treatment are performed, and the first insulator layer and the fourth insulator layer are thermocompression bonded,
    The method for producing a multilayer substrate according to claim 14.
  16.  前記第1の平面は、前記積層方向の一方側に位置し、
     前記第2の平面は、前記積層方向の他方側に位置し、
     前記第1の電子部品は、
      第1の本体と、
      前記第1の本体の表面に設けられている第1の外部電極と、
     を更に含んでおり、
     前記複数の絶縁体層は、前記第2の平面に接触する第1の絶縁体層、該第1の絶縁体層よりも前記積層方向の一方側に積層される1以上の第3の絶縁体層を含んでおり、
     前記多層基板は、
     前記第1の絶縁体層に設けられている回路導体層を、
     更に備えており、
     前記第3の工程は、
      前記コーティング部材を貫通し、前記第1の外部電極に接続されている接続導体を形成する第7の工程、
      前記第1の絶縁体層及び前記第3の絶縁体層内に前記パッケージ部品を内蔵させると共に、前記接続導体が前記回路導体層に接続されるように、該第1の絶縁体層及び該第3の絶縁体層を積層する第8の工程と、
     を含んでいること、
     を特徴とする請求項13に記載の多層基板の製造方法。
    The first plane is located on one side in the stacking direction,
    The second plane is located on the other side in the stacking direction,
    The first electronic component is:
    A first body;
    A first external electrode provided on a surface of the first body;
    Further including
    The plurality of insulator layers include a first insulator layer in contact with the second plane, and one or more third insulators stacked on one side in the stacking direction with respect to the first insulator layer. Contains layers,
    The multilayer substrate is
    A circuit conductor layer provided on the first insulator layer;
    In addition,
    The third step includes
    A seventh step of forming a connection conductor penetrating the coating member and connected to the first external electrode;
    The package component is embedded in the first insulator layer and the third insulator layer, and the first insulator layer and the first insulator layer are connected so that the connection conductor is connected to the circuit conductor layer. An eighth step of laminating three insulator layers;
    Including
    The method for producing a multilayer substrate according to claim 13.
  17.  前記第8の工程では、加熱処理及び加圧処理を施して、前記第1の絶縁体層及び前記第
    3の絶縁体層を熱圧着すること、
     を特徴とする請求項16に記載の多層基板の製造方法。
    In the eighth step, heat treatment and pressure treatment are performed, and the first insulator layer and the third insulator layer are thermocompression bonded,
    The method for producing a multilayer substrate according to claim 16.
PCT/JP2016/087171 2016-01-07 2016-12-14 Multilayer substrate and method for manufacturing multilayer substrate WO2017119249A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201690001339.6U CN208338048U (en) 2016-01-07 2016-12-14 Multilager base plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016001438 2016-01-07
JP2016-001438 2016-01-07

Publications (1)

Publication Number Publication Date
WO2017119249A1 true WO2017119249A1 (en) 2017-07-13

Family

ID=59273574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087171 WO2017119249A1 (en) 2016-01-07 2016-12-14 Multilayer substrate and method for manufacturing multilayer substrate

Country Status (2)

Country Link
CN (1) CN208338048U (en)
WO (1) WO2017119249A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950017A (en) * 2017-11-20 2019-06-28 株式会社村田制作所 The manufacturing method of electronic component and electronic component
CN114175860A (en) * 2019-08-08 2022-03-11 株式会社村田制作所 Resin multilayer substrate and method for manufacturing resin multilayer substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211045436U (en) * 2019-07-07 2020-07-17 深南电路股份有限公司 Circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116155A (en) * 2005-10-17 2007-05-10 Samsung Electro-Mechanics Co Ltd Board containing passive element and manufacturing method thereof
JP2008085222A (en) * 2006-09-28 2008-04-10 Toshiba Corp Printed wiring board, method of mounting exterior component on printed wiring board and electronic apparatus
WO2011121993A1 (en) * 2010-03-30 2011-10-06 株式会社村田製作所 Component assembly
WO2014203603A1 (en) * 2013-06-18 2014-12-24 株式会社村田製作所 Method for manufacturing multi-layer resin substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116155A (en) * 2005-10-17 2007-05-10 Samsung Electro-Mechanics Co Ltd Board containing passive element and manufacturing method thereof
JP2008085222A (en) * 2006-09-28 2008-04-10 Toshiba Corp Printed wiring board, method of mounting exterior component on printed wiring board and electronic apparatus
WO2011121993A1 (en) * 2010-03-30 2011-10-06 株式会社村田製作所 Component assembly
WO2014203603A1 (en) * 2013-06-18 2014-12-24 株式会社村田製作所 Method for manufacturing multi-layer resin substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950017A (en) * 2017-11-20 2019-06-28 株式会社村田制作所 The manufacturing method of electronic component and electronic component
CN109950017B (en) * 2017-11-20 2022-04-15 株式会社村田制作所 Electronic component and method for manufacturing electronic component
US11437182B2 (en) 2017-11-20 2022-09-06 Murata Manufacturing Co., Ltd. Electronic component and method of manufacturing electronic component
CN114175860A (en) * 2019-08-08 2022-03-11 株式会社村田制作所 Resin multilayer substrate and method for manufacturing resin multilayer substrate

Also Published As

Publication number Publication date
CN208338048U (en) 2019-01-04

Similar Documents

Publication Publication Date Title
JP6665864B2 (en) Multilayer substrate and electronic equipment
KR101387313B1 (en) Method of manufacturing flying tail type rigid-flexible printed circuit board and flying tail type rigid-flexible printed circuit board manufactured by the same
US10051740B2 (en) Wiring substrate and method for manufacturing same
JP2006108211A (en) Wiring board, multilayered wiring circuit board using the board, and method of manufacturing the multilayered wiring circuit board
JPWO2012147484A1 (en) Rigid flexible substrate and manufacturing method thereof
KR101868680B1 (en) Circuit board, production method of circuit board, and electronic equipment
JP5684958B1 (en) Printed wiring board
KR20120035007A (en) Manufacturing method of printed circuit board
JP5708814B2 (en) Module manufacturing method
CN106879188B (en) A kind of production method and circuit board of built-in component type circuit board
WO2014162478A1 (en) Component-embedded substrate and manufacturing method for same
JP2015035497A (en) Electronic component built-in wiring board
US20030168249A1 (en) Wiring board and method for producing the same
WO2017119249A1 (en) Multilayer substrate and method for manufacturing multilayer substrate
JP2018186241A (en) Electronic component and manufacturing method thereof
KR20120049144A (en) Wiring board with electronic component, and method of manufacturing the same
CN110140433B (en) Electronic module and method for manufacturing electronic module
US11406013B2 (en) Resin multilayer substrate and electronic device
US20160105957A1 (en) Wiring board with built-in electronic component and method for manufacturing the same
JP2007088058A (en) Multilayer substrate and method of manufacturing same
JP2016048768A (en) Wiring board and manufacturing method of semiconductor device
CN112533381B (en) Method for manufacturing mother board
JP2013115110A (en) Printed wiring board of step structure
JP2012174710A (en) Multilayer wiring board and manufacturing method thereof
JP6779088B2 (en) Wiring board manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP