WO2017118191A1 - 一种控制面信息的传输方法及装置 - Google Patents

一种控制面信息的传输方法及装置 Download PDF

Info

Publication number
WO2017118191A1
WO2017118191A1 PCT/CN2016/104238 CN2016104238W WO2017118191A1 WO 2017118191 A1 WO2017118191 A1 WO 2017118191A1 CN 2016104238 W CN2016104238 W CN 2016104238W WO 2017118191 A1 WO2017118191 A1 WO 2017118191A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration information
wireless network
communication node
network communication
rrc
Prior art date
Application number
PCT/CN2016/104238
Other languages
English (en)
French (fr)
Inventor
王昕�
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017118191A1 publication Critical patent/WO2017118191A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/161Implementation details of TCP/IP or UDP/IP stack architecture; Specification of modified or new header fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • H04W84/22Self-organising networks, e.g. ad-hoc networks or sensor networks with access to wired networks

Definitions

  • the present application relates to, but is not limited to, the field of communication for wireless heterogeneous access network deployment, and in particular, to a method and device for transmitting control plane information.
  • the 5G network strives to achieve an order of magnitude increase in data capacity and transmission speed compared to 4G networks, and can be applied to various scenarios and compatible with various terminals at a lower cost.
  • the communication industry basically believes that the service capability provided by the communication network of only the traditional macro base station and the micro base station is difficult to meet the requirements of the 5G system, so the new transmission technology and/or deployment is additionally utilized on the basis of the existing network.
  • the new base station is even more important.
  • the new type of base station involved in this paper is one of the many prototypes of the new type of base station that has been developed.
  • the new type of base station is evolved from 4G.
  • the small evolved Node B (SeNB) is used as the standard to It is different from the traditional macro base station (Moma evolved Node B, MeNB) and the micro base station.
  • FIG. 1 is a schematic diagram of deployment of a communication system.
  • the communication system includes a User Equipment (UE), an access network, and a Core Network (CN).
  • the SeNB and the MeNB are deployed in the access network.
  • MME Mobility Management Entity
  • the types and attributes of the wired interfaces between the SeNB and the MeNB may be various, such as the X2 interface in the related art.
  • the control plane interface S1-MME between the access network and the core network is established in the MeNB and the MME.
  • UE-related control plane signaling needs to be transmitted between the MeNB and the UE via the SeNB.
  • the user interface data and control plane signaling are transmitted on the wireless interface established between the UE and the SeNB.
  • the wireless establishment between the UE and the MeNB An interface that transmits user plane data and control plane signaling.
  • the control plane protocol stack between the access network and the MME and the UE in which the SeNB is deployed is as shown in FIG. 2 .
  • the SeNB does not have a Radio Resource Control (RRC) entity on the control plane, and has at least no Packet Data Convergence Protocol (PDCP) sublayer on the Layer 2 protocol stack, that is, the SeNB.
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • the radio link control (RLC) sublayer, the medium access control (MAC) sublayer, and the physical layer (PHY) may be configured.
  • the peer entity corresponding to the RRC entity and the PDCP entity on the UE side is established on the MeNB, that is, the responsibilities for the UE's mobility control, radio resource configuration, and encryption of the radio interface remain in the MeNB, and the data of the UE is Transmission, mobility and other aspects are very beneficial.
  • the underlying transmission technology, deployment scenarios, and types of UEs that can be supported by the SeNB are very extensive.
  • the SeNB can provide services for the UE; in addition, in terms of the radio interface, the SeNB can provide services for the UE separately (ie, support single-connected UEs), and can also cooperate.
  • the MeNB provides a joint service for the UE (ie, supports dual connectivity UE).
  • the control plane information related to the UE is mainly transmitted through RRC signaling.
  • the generation/transmission and reception/processing of RRC signaling can only be performed by the MeNB having the RRC entity, and the RRC that should have been transmitted only in the wireless Uu port is loaded with RRC.
  • the PDCP packet of the configuration information needs to be transmitted not only on the Uu interface between the SeNB and the UE but also on the wired X2 interface between the SeNB and the MeNB. Therefore, how to efficiently and reliably transmit RRC configuration information on the X2 interface is a problem that needs to be solved at present.
  • the embodiment of the invention provides a method and a device for transmitting control plane information, which can effectively and reliably transmit control plane information on a wired interface.
  • An embodiment of the present invention provides a method for transmitting control plane information, which is applied to a wireless network communication node deployed in an access network, including: a wireless network communication node acquires RRC configuration information; and the wireless network communication node passes at least one of the following manners Transmitting the RRC configuration information on a wired interface:
  • X2-AP X2 Application Layer Protocol
  • the data packet carrying the RRC configuration information is transmitted through a tunnel.
  • the transmitting, by the wireless network communication node, the RRC configuration information on the wired interface includes at least one of the following:
  • the wireless network communication node receives the RRC configuration information on a wired interface.
  • the acquiring, by the wireless network communications node, the RRC configuration information includes:
  • the wireless network communication node receives an RRC message carrying RRC configuration information
  • the RRC entity of the wireless network communication node generates RRC configuration information.
  • the method further includes: determining, by the wireless network communication node, whether the RRC message that carries the RRC configuration information received from the user equipment (UE) needs to be sent to another A wireless network communication node, wherein the basis for the judgment comprises at least one of the following terms:
  • the wireless network communication node processes the RRC message when the wireless network communication node decides not to forward the received RRC message.
  • the another wireless network communication node is a pre-configured wireless network communication node or a wireless network communication node dynamically selected by content in the RRC message.
  • the method further includes:
  • RLC Radio Link Control
  • SDU RLC Service Data Unit
  • the packet convergence protocol (PDCP) entity of the wireless network communication node encapsulates the RRC configuration information generated by the RRC entity to obtain a PDCP protocol data unit (PDU) carrying the RRC configuration information, and the wireless network communication node passes the X2 interface.
  • the control plane protocol stack entity encapsulates the PDCP PDU carrying the RRC configuration information in a container of X2-AP signaling.
  • the wireless network communication node transmits the RRC configuration information on a wired interface, including:
  • the wireless network communication node sends the X2-AP signaling by using the X2 interface, where the container of the X2-AP signaling is encapsulated with an RLC SDU carrying RRC configuration information, or the X2-AP signaling
  • the container is encapsulated with a PDCP PDU carrying RRC configuration information.
  • the foregoing method further includes at least one of the following:
  • the wireless network communication node establishes at least one common universal data packet wireless system tunneling protocol user plane (GTP-U) on the wired interface and another wireless network communication node connected to the wireless network communication node through the wired interface. a tunnel for transmitting information carried by the SRB0 on the radio interface;
  • GTP-U universal data packet wireless system tunneling protocol user plane
  • the wireless network communication node establishes at least one GTP-U tunnel on the wired interface and another wireless network communication node connected to the wireless network communication node through the wired interface, for transmitting on the wireless interface with SRB1 or Information carried by SRB2.
  • the wireless network communication node transmits the RRC configuration information on a wired interface, including at least one of the following:
  • the wireless network communication node sends the RRC configuration information in an encapsulated form of a user plane protocol stack of the X2 interface by using the GTP-U tunnel.
  • the wireless network communication node includes: a small base station (SeNB), or a macro base station (MeNB) connected to the SeNB through a wired interface, or meets a third generation partnership plan (3GPP) access network specification requirement.
  • a small base station SeNB
  • MeNB macro base station
  • 3GPP third generation partnership plan
  • the embodiment of the invention further provides a transmission device for controlling plane information, which is applied to a wireless network communication node deployed in an access network, and includes:
  • the transmission module is configured to transmit the RRC configuration information on the wired interface by using at least one of the following methods:
  • the data packet carrying the RRC configuration information is transmitted through a tunnel.
  • the transmission module is configured to perform at least one of the following:
  • the RRC configuration information is received on a wired interface.
  • the obtaining module includes:
  • a receiving unit configured to receive an RRC message carrying RRC configuration information
  • the RRC entity is configured to generate RRC configuration information.
  • the foregoing apparatus further includes: a determining module, configured to determine, when the acquiring module receives an RRC message carrying RRC configuration information from the UE, whether the RRC message needs to be sent to another wireless network communication node, where The basis for the judgment includes at least one clause:
  • the foregoing apparatus further includes: a first processing module, configured to process the RRC message when the determining module determines not to forward the received RRC message.
  • a first processing module configured to process the RRC message when the determining module determines not to forward the received RRC message.
  • the another wireless network communication node is a pre-configured wireless network communication node or a wireless network communication node dynamically selected by content in the RRC message.
  • the foregoing apparatus further includes: a second processing module, configured to decapsulate the received RRC message to the RLC layer, and obtain an RLC SDU that carries the RRC configuration information, by using X2
  • the control plane protocol stack entity of the interface carries the RLC SDU of the RRC configuration information and is encapsulated in the container of the X2-AP signaling.
  • the foregoing apparatus further includes: a PDCP entity and an encapsulating module; the PDCP entity is configured to encapsulate the RRC configuration information generated by the RRC entity to obtain a PDCP PDU that carries the RRC configuration information; and the encapsulating module is configured to pass The control plane protocol stack entity of the X2 interface encapsulates the PDCP PDU carrying the RRC configuration information in a container of X2-AP signaling.
  • the apparatus further includes: a tunnel establishment module, configured to perform at least one of: establishing at least one public on the wired interface and another wireless network communication node connected to the wireless network communication node through the wired interface a GTP-U tunnel for transmitting information carried by the SRB0 on the wireless interface; establishing at least one GTP-U on the wired interface and another wireless network communication node connected to the wireless network communication node through the wired interface A tunnel for transmitting information carried on the radio interface with SRB1 or SRB2.
  • a tunnel establishment module configured to perform at least one of: establishing at least one public on the wired interface and another wireless network communication node connected to the wireless network communication node through the wired interface a GTP-U tunnel for transmitting information carried by the SRB0 on the wireless interface; establishing at least one GTP-U on the wired interface and another wireless network communication node connected to the wireless network communication node through the wired interface A tunnel for transmitting information carried on the radio interface with SRB1 or SRB2.
  • the transmission module is configured to perform at least one of the following:
  • the wireless network communication node includes: an SeNB, or an MeNB connected to the SeNB through a wired interface, or another network node that meets the requirements of the 3GPP access network specification.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, and the method for transmitting the control plane information is implemented when the computer executable instructions are executed.
  • the wireless network communication node acquires RRC configuration information, and transmits RRC configuration information on the wired interface by transmitting at least one of the following: transmitting X2-AP signaling, where the X2-AP signaling container The RRC configuration information is included; the data packet carrying the RRC configuration information is transmitted through the tunnel.
  • the embodiment of the present invention can effectively and reliably transmit the control plane information on the wired interface.
  • the embodiment of the present invention is applicable to various wired interfaces, various capabilities, and UEs of various states, and ensures that the RRC configuration information is Reliability of transmission over wired interfaces.
  • embodiments of the present invention enable the RRC configuration information to be efficiently transmitted between the SeNB configuring only the partial control plane protocol stack and the MeNB configuring the full control plane protocol stack.
  • FIG. 1 is a schematic diagram of deployment of a communication system
  • FIG. 2 is a schematic diagram of a control plane protocol stack of the system architecture shown in FIG. 1;
  • FIG. 3 is a flowchart of a method for transmitting control plane information according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a protocol stack of a system control plane according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of a protocol stack of a system control plane according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a system control plane protocol stack and a tunnel establishment process according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic diagram of a system control plane protocol stack and a tunnel establishment process according to Embodiment 4 of the present invention.
  • FIG. 8 is a schematic diagram of a device for transmitting control plane information according to an embodiment of the present invention.
  • FIG. 9 is another schematic diagram of a device for transmitting control plane information according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for transmitting control plane information according to an embodiment of the present invention. As shown in FIG. 3, the method for transmitting control plane information provided in this embodiment is applied to a wireless network communication node deployed in an access network, and includes the following steps:
  • Step 11 The wireless network communication node acquires RRC configuration information.
  • Step 12 The wireless network communication node transmits the RRC configuration information on the wired interface by using at least one of the following manners:
  • X2-AP Transmitting X2 Application Protocol (AP) (X2-AP) signaling, where the container of the X2-AP signaling includes RRC configuration information;
  • the data packet carrying the RRC configuration information is transmitted through the tunnel.
  • the wireless network communication node is, for example, a small base station (SeNB) in the communication system shown in FIG. 1 or a macro base station (MeNB) connected to the SeNB through a wired interface (such as an X2 interface).
  • the wireless network communication node may also be, for example, other network nodes (such as next generation communication network access network devices) that meet the requirements of the 3rd Generation Partnership Project (3GPP) access network specification.
  • 3GPP 3rd Generation Partnership Project
  • step 12 includes at least one of the following:
  • the wireless network communication node sends RRC configuration information on the wired interface
  • the wireless network communication node receives the RRC configuration information on the wired interface.
  • step 11 includes:
  • the wireless network communication node receives the RRC message carrying the RRC configuration information
  • the RRC entity of the wireless network communication node generates RRC configuration information.
  • acquisition includes, but is not limited to, “receive” and “generate”.
  • the method further includes: determining, by the wireless network communication node, whether the RRC message that carries the RRC configuration information received from the UE needs to be sent to another wireless network communication node, where the basis for the determination includes the following at least One clause:
  • the physical resource is a physical resource related to the current RRC message transmission, for example, a random access resource received before sending the RRC message, and the like;
  • the wireless network communication node such as the wireless network communication node 1
  • SRB Signaling Radio Bearer
  • the wireless network communication node When the RRC message from the UE is received by the wireless network communication node, it is determined that the RRC message uses a common transport channel, and then the RRC message is forwarded to another wireless network communication node;
  • the wireless network communication node Determining the RRC when the wireless network communication node receives an RRC message from the UE If the pre-configured random access resource is used in the message sending process, the RRC message is forwarded to another wireless network communication node;
  • the wireless network communication node When the wireless network communication node receives the RRC message from the UE, the RRC message is forwarded to another wireless network communication node according to one or more of the following in the message content:
  • the RRC message type is a specific RRC message, for example, the RRC message is an RRC setup request;
  • the UE ID of the RRC message is determined. For example, when it is determined that the RRC message is from a UE that has established a context on the communication node of the wireless network, or has a context and the context indicates that forwarding is not performed, no forwarding is performed.
  • the another wireless network communication node (such as the wireless network communication node 2) is a pre-configured wireless network communication node or a wireless network communication node dynamically selected by content in the RRC message.
  • the wireless network communication node 2 selects the cause value by, for example, RRC, or selects it through a public land mobile network (PLMN) or other ID.
  • PLMN public land mobile network
  • the wireless network communication node processes the RRC message when the wireless network communication node decides not to forward the received RRC message.
  • the method further includes:
  • the wireless network communication node decapsulates the received RRC message to the RLC layer to obtain an RLC Service Data Unit (SDU) carrying the RRC configuration information; the wireless network communication node carries the control plane protocol stack through the X2 interface.
  • the RLC SDU of the RRC configuration information is encapsulated in a container of X2-AP signaling; or,
  • the PDCP entity of the wireless network communication node encapsulates the RRC configuration information generated by the RRC entity to obtain a PDCP protocol data unit (PDU) carrying the RRC configuration information; the wireless network communication node passes the control plane protocol stack entity of the X2 interface.
  • the PDCP PDU carrying the RRC configuration information is encapsulated in a container of X2-AP signaling.
  • the step 12 includes: the wireless network communication node sends the X2-AP signaling by using the X2 interface, where the container of the X2-AP signaling is encapsulated with an RLC SDU carrying RRC configuration information, or the X2- The container of the AP signaling encapsulates a PDCP PDU carrying RRC configuration information.
  • the foregoing method further includes at least one of the following:
  • the wireless network communication node establishes at least one common universal packet wireless system tunneling protocol user plane (General Packet Radio System (GPRS)) on the wired interface and another wireless network communication node connected to the wireless network communication node through the wired interface.
  • GPRS General Packet Radio System
  • GTP-U Tunneling Protocol User Plane tunnel for transmitting information carried by SRB0 on the radio interface;
  • the wireless network communication node establishes at least one GTP-U tunnel on the wired interface and another wireless network communication node connected to the wireless network communication node through the wired interface, for transmitting information carried by the SRB1 or SRB2 on the wireless interface. .
  • step 12 includes at least one of the following:
  • the wireless network communication node sends the RRC configuration information in the form of a User Datagram Protocol (UDP) through a public GTP-U tunnel;
  • UDP User Datagram Protocol
  • the WLAN configuration node sends the RRC configuration information in a package form of the user plane protocol stack of the X2 interface through the GTP-U tunnel.
  • the control plane information related to the UE is mainly transmitted by using RRC signaling, where the control plane information is mapped on the control channel for transmission in the MAC entity, and the control channel is further divided according to the current RRC state of the UE. for:
  • the common control channel is used when the RRC connection is not established between the UE and the access network, and the corresponding bearer is a Signaling Radio Bearer (SRB) 0;
  • SRB Signaling Radio Bearer
  • the base station does not have a complete context of the UE, and the PDCP entity is not yet established between the base station and the UE, that is, SRB0 is a PDCP transparent mode (TM);
  • the corresponding bearer may be SRB1 or SRB2;
  • SRB1, and 2 have their own PDCP entities, that is, encryption and integrity protection are required.
  • the information carried by the SRB0 is suitable for carrying in the container of the X2-AP signaling for transmission. Since SRB0 does not require the processing of the PDCP entity, that is, the RRC entity of the MeNB and the control plane protocol stack entity of the X2 interface can directly interact with each other, the implementation complexity is not improved compared to the related art.
  • the base station For information carried by SRB1 or SRB2, it is suitable for transmission through a tunnel.
  • the base station has the context of the UE, that is, the operation of establishing the GTP-U for the SRB1 or the SRB2 is similar to the operation when the GTP-U is established for the Data Radio Bearer (DRB) in the related art.
  • DRB Data Radio Bearer
  • a common GTP-U tunnel needs to be established between the SeNB and the MeNB, so that the information of the SRB0 bearer of the UE that initiates the access to the SeNB can be transmitted through the public GTP-U tunnel.
  • the RRC configuration information that needs to be carried by the SRB0 is transmitted on the X2 interface by using a control plane signaling flow.
  • the RRC configuration information is carried in an RRC container (Container) in the X2-AP signaling, and is transmitted by using an X2 interface in an existing X2 Control Plane (CP) message.
  • the control plane protocol stack of the communication system is as shown in FIG.
  • the process of performing a one-way control plane signaling transmission is as follows:
  • Step 101 When the UE in the RRC idle state needs to access the network, the UE selects an appropriate base station according to the measurement result of the wireless signal and the like, and requests the RRC connection establishment from the base station.
  • the UE after the UE selects the SeNB, the UE generates RRC configuration information in the RRC entity, and carries the RRC configuration information in an RRC Connection Request message, and sends the message through the wireless Uu interface.
  • the SeNB is sent, wherein the RRC message is carried by SRB0.
  • SRB0 belongs to PDCPTM and is mapped on the CCCH in the MAC entity.
  • Step 102 After receiving the RRC message on the SRB0, the SeNB decapsulates the RRC message to the RLC layer and obtain the RLC service data unit (Service Data Unit) according to the configuration of the protocol stack and the identity of the receiving end. SDU), the RLC SDU is encapsulated in a Container carried in the X2-AP signaling according to the control plane protocol stack of the X2 interface, and the X2-AP signaling is sent to the MeNB through the X2 interface.
  • RLC service data unit Service Data Unit
  • the X2-AP signaling is transmitted to the MeNB, which is signaling indicating that the UE attempts to access the network, and the Container carries an RLC SDU including inter-node RRC configuration information, where the RRC The configuration information indicates the RRC Connection Request related information required on the network side.
  • Step 103 The MeNB extracts the RLC SDU included in the Container from the received X2-AP signaling, and submits the RLC SDU to the upper RRC entity for processing. If the MeNB agrees to the access request of the UE, the MeNB continues to request access of the UE to the core network through the S1 interface.
  • the technology of the subsequent access process is the same as the related standard, so it will not be described here.
  • the RRC configuration information that needs to be carried by SRB1 or SRB2 is transmitted on the X2 interface by using a control plane signaling flow.
  • the RRC configuration information is carried in the RRC Container in the X2-AP signaling, and the reliable message transmission is performed through the X2 interface and using the Stream Control Transmission Protocol (SCTP).
  • SCTP Stream Control Transmission Protocol
  • the control plane protocol stack of the communication system is as shown in FIG. 5.
  • the process of performing a one-way control plane signaling transmission is as follows:
  • Step 201 The MME in the core network triggers an S1 procedure (such as parameter modification of an Evolved Packet System (EPS) bearer) of the UE-side radio resource configuration modification, and the S1 procedure is performed by the MME through the S1-
  • the MME interface sends S1-AP signaling (such as E-RAB MODIFY REQUEST signaling) to the MeNB as a start.
  • S1-AP signaling such as E-RAB MODIFY REQUEST signaling
  • step 201 is optional, that is, the MeNB can autonomously trigger the RRC signaling procedure facing the UE, and does not have to be triggered by the signaling indication from the MME.
  • Step 202 The MeNB generates corresponding RRC configuration information in the RRC entity according to the received S1-AP signaling indication, and the RRC configuration information is delivered by the RRC entity to the PDCP entity in the lower layer, and then the PDCP entity performs the The RRC configuration information is encapsulated and processed such as encryption and integrity protection.
  • the PDCP entity submits the processed PDCP Protocol Data Unit (PDU) to the control plane protocol stack of the X2 interface (ie, SCTP and the following layers) for transmission on the wired interface.
  • PDU PDCP Protocol Data Unit
  • X2-AP signaling carries a new Container, and the Container is loaded with The PDCP PDU of the RRC configuration information.
  • the MeNB transmits the X2-AP signaling to the SeNB.
  • Step 203 As a receiving end of the X2 interface, the SeNB extracts the received signaling flow from the X2 control plane protocol stack to obtain the PDCP PDU, and submits the protocol stack to the wireless interface (ie, the RLC and the following layers). And then sent to the UE through SRB1 or SRB2.
  • the wireless interface ie, the RLC and the following layers
  • Step 204 The receiving end UE decapsulates the control plane signaling received on the SRB1 or the SRB2 according to the relevant protocol stack, and obtains the RRC configuration information indicated by the MeNB in the RRC entity.
  • the user plane (UP) data transmission is adopted, that is, the RRC configuration information is sent through the GTP-U tunnel.
  • the SeNB and the MeNB establish a common GTP-U tunnel for the SRB0 of all UEs on the X2 interface, and transmit the signaling transmitted on the SRB0.
  • the protocol stack for transmitting SRB0 (wireless Uu port) in the communication system is shown in Figure 6(a), and the X2 interface tunnel is established as shown in Figure 6(b).
  • the process of performing a one-way control plane signaling transmission is as follows:
  • Step 301 When the UE in the RRC idle state needs to access the network, the UE selects an appropriate base station according to the measurement result of the wireless signal, and requests the RRC connection establishment to the base station.
  • the UE_2 after the UE_2 selects the SeNB, the UE_2 generates the RRC configuration information in the RRC entity, and the RRC configuration information is carried in the RRC Connection Request message, and is sent to the SeNB through the wireless Uu interface, where the RRC The message is carried over SRB0.
  • SRB0 belongs to PDCPTM and is mapped on the CCCH in the MAC entity.
  • Step 302 The SeNB and the MeNB establish a common GTP-U tunnel (GTP-U_Common) on the X2 interface, and the SRB0 signaling (such as UE_1 and UE_2) of at least one UE may be transmitted on the tunnel.
  • GTP-U_Common GTP-U tunnel
  • SRB0 signaling such as UE_1 and UE_2
  • the SeNB After receiving the RRC message on the SRB0, the SeNB decapsulates the RRC message to the RLC layer and obtains the RLC SDU according to the configuration of the protocol stack, and then obtains the RLC SDU by using the GTP-U_Common.
  • the RLC SDU is sent to the MeNB in the form of a User Datagram Protocol (UDP).
  • UDP User Datagram Protocol
  • Step 303 The MeNB extracts the UDP data received from the GTP-U_Common and submits it to the upper layer (RRC entity) for processing. If the MeNB agrees to the UE's access request, the MeNB continues to request the UE's access to the core network through the S1 interface.
  • the technology of the subsequent access procedure (such as establishing a signaling connection on the S1-MME) is the same as the relevant standard. Therefore, it will not be repeated here.
  • the user plane data transmission is adopted, that is, the RRC configuration information is sent through the GTP-U tunnel.
  • the SeNB and the MeNB respectively establish a GTP-U tunnel for each UE's SRB1 or SRB2 on the X2 interface, and use the signaling that each UE needs to transmit on SRB1 or 2.
  • the protocol stack for transmitting SRB1 or SRB2 (wireless Uu port) in the communication system is shown in Figure 7(a), and the X2 interface tunnel establishment process is shown in Figure 7(b).
  • the process of performing a one-way control plane signaling transmission is as follows:
  • Step 401 When the MeNB triggers the RRC signaling of the UE_1, the RRC configuration information is first generated in the RRC entity, and the RRC configuration information is delivered by the RRC entity to the PDCP entity in the lower layer.
  • the RRC configuration information is encapsulated and processed such as encryption and integrity protection.
  • the PDCP PDU is signaling data that is mapped on SRB2.
  • GTP-U_1 a GTP-U tunnel
  • the MeNB and the SeNB exchange the transport layer address (Transport Layer Address) allocated to the GTP-U_1 on the X2 interface control plane. And the tunnel port (GTP TEID) number.
  • the MeNB encapsulates the PDCP PDU in the form of an X2 interface user plane protocol stack, and sends the PDCP PDU to the SeNB through the GTP-U_1.
  • Step 402 The SeNB extracts the data packet received on the GTP-U_1 from the X2 user plane protocol stack to obtain the PDCP PDU, and further encapsulates the RLC packet transmitted by the wireless interface, and then sends the RLC packet to the UE1 through the SRB2. .
  • Step 403 UE_1 decapsulates the information received on the SRB2 according to the protocol stack, and obtains the RRC configuration information indicated by the MeNB in the RRC entity.
  • GTP-U_2 Another GTP-U tunnel (GTP-U_2) is established between the MeNB and the SeNB for the SRB2 of the UE_2, and the operation details are similar to those of the GTP-U_1. Therefore, it will not be repeated here.
  • the difference between this embodiment and the first embodiment is that, in this embodiment, after receiving the RRC message from the UE, the SeNB determines whether to send the RRC message to the MeNB.
  • the physical resource is a physical resource related to the current RRC message transmission, for example, a random access resource received before sending the RRC message, and the like;
  • the SeNB When the SeNB receives the RRC message from the UE and determines that the RRC message belongs to the logical channel SRB0, the SeNB determines to forward the RRC message to the MeNB.
  • the SeNB when the SeNB decides not to forward the received RRC message, the SeNB processes the RRC message.
  • the transmission process of the RRC configuration information between the SeNB and the MeNB in this embodiment is the same as that in the first embodiment, and therefore will not be further described herein.
  • an embodiment of the present invention further provides a transmission device for controlling plane information, which is applied to a wireless network communication node deployed in an access network, including:
  • the transmission module is configured to transmit the RRC configuration information on the wired interface by using at least one of the following methods:
  • the data packet carrying the RRC configuration information is transmitted through a tunnel.
  • the transmission device of the control plane information is applied, for example, to the SeNB in the communication system shown in FIG. 1 or the MeNB connected to the SeNB through a wired interface (such as an X2 interface).
  • a wired interface such as an X2 interface
  • the transmission device of the control plane information can also be applied, for example, to other network nodes (such as next generation communication network access network devices) that meet the requirements of the 3GPP access network specification.
  • the transmission module is configured to perform at least one of the following:
  • the RRC configuration information is received on a wired interface.
  • FIG. 8 is a schematic diagram of a device for transmitting control plane information according to an embodiment of the present invention.
  • the apparatus for transmitting control plane information provided in this embodiment is applied to an SeNB, and includes: an acquisition module, a determination module, a first processing module, a second processing module, and a transmission module.
  • the obtaining module includes: a receiving unit, configured to receive, by using a wireless interface, an RRC message that carries RRC configuration information from a UE, where the determining module is configured to determine whether the RRC message needs to be sent to another wireless network.
  • a first processing module configured to process the RRC message when the determining module determines not to forward the received RRC message; and the second processing module is configured to: when the determining module decides to forward And receiving the RRC message, decapsulating the received RRC message to the RLC layer, obtaining the RLC SDU carrying the RRC configuration information, and encapsulating the RLC SDU carrying the RRC configuration information by using a control plane protocol stack entity of the X2 interface In a container of X2-AP signaling; the transmission module is configured to send the X2-AP signaling through the X2 interface.
  • the judging module judges the basis for including at least one clause: determining according to the logical channel type used by the received RRC message; determining according to the type of the transport channel used by the received RRC message; according to the received RRC message The physical resource used is judged; it is judged according to the content in the received RRC message.
  • FIG. 9 is another schematic diagram of a device for transmitting control plane information according to an embodiment of the present invention.
  • the apparatus for transmitting control plane information provided in this embodiment for example, is applied to an MeNB, including: an acquisition module, a PDCP entity, a package module, and a transmission module.
  • the acquiring module includes: an RRC entity, configured to generate RRC configuration information, and deliver the RRC configuration information to the PDCP entity; the PDCP entity is configured to perform encapsulation processing on the RRC configuration information, and obtain a PDCP PDU of the RRC configuration information; the encapsulating module is configured to encapsulate the PDCP PDU carrying the RRC configuration information in a container of the X2-AP signaling by using a control plane protocol stack entity of the X2 interface; the transmission module And configured to send the X2-AP signaling by using the X2 interface.
  • an RRC entity configured to generate RRC configuration information, and deliver the RRC configuration information to the PDCP entity
  • the PDCP entity is configured to perform encapsulation processing on the RRC configuration information, and obtain a PDCP PDU of the RRC configuration information
  • the encapsulating module is configured to encapsulate the PDCP PDU carrying the RRC configuration information in a container of the X2-AP signaling by using a control
  • the transmission device of the control plane information further includes: a tunnel establishment module, configured to perform at least one of: communicating with the wireless network node on the wired interface and through the wired interface
  • the connected another wireless network communication node establishes at least one common GTP-U tunnel for transmitting information carried by the SRB0 on the wireless interface; and connecting to the wireless network communication node on the wired interface and through the wired interface
  • Another wireless network communication node establishes at least one GTP-U tunnel for communicating information carried on the radio interface with SRB1 or SRB2.
  • the transmission module is configured to perform at least one of the following:
  • the embodiments of the present invention can effectively and reliably transmit control plane information related to a UE on a wired interface between a SeNB configured only with a part of the control plane protocol stack and a MeNB configured with a complete control plane protocol stack. Moreover, the embodiments of the present invention are applicable to UEs of various wired interfaces, various capabilities, and various states.
  • an embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, the method of transmitting the control plane information being implemented when the computer executable instructions are executed.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present application which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal device (which may be a cell phone, computer, server, or network device, etc.) to perform the methods described in each embodiment of the present application.
  • modules or steps of the present application can be implemented by a general-purpose computing device, which can be centralized on a single computing device or distributed over a network of multiple computing devices. They may be implemented by program code executable by the computing device such that they may be stored in the storage device for execution by the computing device and, in some cases, may be performed in a different order than that illustrated herein. Or describing the steps, or making them into a single integrated circuit module, or making multiple modules or steps into a single integration The circuit module is implemented. Thus, the application is not limited to any particular combination of hardware and software.
  • the embodiment of the present invention provides a method and a device for transmitting control plane information, which can effectively and reliably transmit control plane information on a wired interface, and is applicable to UEs with various wired interfaces, various capabilities, and various states, and The reliability of the transmission of the RRC configuration information on the wired interface is guaranteed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种控制面信息的传输方法,应用于部署在接入网的无线网络通信节点,该方法包括:无线网络通信节点获取RRC配置信息;无线网络通信节点通过以下至少一种方式在有线接口上传输RRC配置信息:传输X2-AP信令,其中,所述X2-AP信令的容器中包括RRC配置信息;通过隧道传输携带RRC配置信息的数据包。通过上述方法能够有效、可靠地在有线接口上传输控制面信息。

Description

一种控制面信息的传输方法及装置 技术领域
本申请涉及但不限于无线异构接入网部署的通信领域,尤其涉及一种控制面信息的传输方法及装置。
背景技术
随着用户对大数据量业务和通信性能等多方面需求的日益增长,通信***保持着快速的发展。在***移动通信技术(the fourth Generation,4G)网络日趋广泛部署的今天,第五代移动通信技术(the fifth Generation,5G)网络技术的研究也已提上日程。5G网络力求比4G网络在数据容量、传输速度等各个方面达到数量级级别的增长,并能够以较低的成本适用于各种场景、兼容各种终端。
目前,通信业界基本认为仅部署传统的宏基站和微基站的通信网络所能提供的服务能力很难达到5G***的需求,因此在现有网络的基础上,附加利用新型传输技术和/或部署新型基站显得更为重要。本文涉及的新型基站是目前已有的众多新型基站雏形中的一种,所述新型基站是从4G中演化而来,在本文中以小基站(Small evolved Node B,SeNB)进行标称,以区别于传统的宏基站(Macro evolved Node B,MeNB)和微基站。
图1为一种通信***的部署示意图。如图1所示,通信***包括用户设备(User Equipment,UE)、接入网和核心网(Core Network,CN)。其中,接入网中部署有SeNB和MeNB。SeNB与UE间为无线Uu口、与MeNB间为有线接口,而与核心网中的移动性管理实体(Mobility Management Entity,MME)间没有接口。其中,SeNB与MeNB间的有线接口的种类与属性可以是多种多样的,如相关技术中的X2接口;另外,接入网与核心网间的控制面接口S1-MME是建立在MeNB与MME之间的,也就是说,至少对单连接态UE,与UE相关的控制面信令需要经由SeNB在MeNB与UE间进行传输。在UE与SeNB间建立的无线接口传输用户面数据和控制面信令。另外,根据无线信号的覆盖情况和/或UE的能力,可选地,UE与MeNB间建立无线 接口,所述无线接口可传输用户面数据和控制面信令。
部署了SeNB的接入网与MME、UE间的控制面协议栈如图2所示。SeNB在控制面上没有无线资源控制(Radio Resource Control,RRC)实体、在层2(Layer 2)协议栈上至少没有数据包收敛协议(Packet Data Convergence Protocol,PDCP)子层,也就是说,SeNB上可以只配置有无线链路控制(Radio Link Control,RLC)子层、媒体接入控制(Medium Access Control,MAC)子层和物理层(Physical layer,PHY)。与UE侧的RRC实体和PDCP实体对应的对端实体建立在MeNB上,也就是说,对UE的移动性控制、无线资源配置及无线接口的加密等职责仍保留在MeNB,这对UE的数据传输、移动性能等方面都是非常有益的。
SeNB适用的底层传输技术、部署场景和能够支持的UE类型是非常广泛的。例如,在有/无MeNB无线信号覆盖的区域中,SeNB都可以为UE提供服务;另外,在无线接口方面,SeNB既可以为UE单独提供服务(即支持单连接态的UE)、也可以协同MeNB为UE提供联合服务(即支持双连接态UE)。其中,与UE相关的控制面信息主要通过RRC信令进行传输。但是,在服务UE的过程中,在接入网侧,RRC信令的产生/发送和接收/处理只能由具备RRC实体的MeNB执行,而原本仅应在无线Uu口传递的、装载了RRC配置信息的PDCP包则不仅需要在SeNB与UE间的Uu口上进行传输、还需要在SeNB与MeNB间的有线X2接口上进行传输。因此,如何在X2接口上有效、可靠地传输RRC配置信息,是目前需要解决的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种控制面信息的传输方法及装置,能够有效、可靠地在有线接口上传输控制面信息。
本发明实施例提供一种控制面信息的传输方法,应用于部署在接入网的无线网络通信节点,包括:无线网络通信节点获取RRC配置信息;所述无线网络通信节点通过以下至少一种方式在有线接口上传输所述RRC配置信息:
传输X2应用层协议(X2-AP)信令,其中,所述X2-AP信令的容器中包括所述RRC配置信息;
通过隧道传输携带所述RRC配置信息的数据包。
可选地,所述无线网络通信节点在有线接口上传输所述RRC配置信息包括以下至少之一:
所述无线网络通信节点在有线接口上发送所述RRC配置信息;
所述无线网络通信节点在有线接口上接收所述RRC配置信息。
可选地,所述无线网络通信节点获取RRC配置信息,包括:
所述无线网络通信节点接收携带RRC配置信息的RRC消息;或者,
所述无线网络通信节点的RRC实体生成RRC配置信息。
可选地,当所述无线网络通信节点获取RRC配置信息之后,上述方法还包括:所述无线网络通信节点判断从用户设备(UE)接收的携带RRC配置信息的RRC消息是否需要发送给另一无线网络通信节点,其中,判断的依据包括以下至少一个条款:
根据所收到的RRC消息所使用的逻辑信道类型判断;
根据所收到的RRC消息所使用的传输信道类型判断;
根据所收到的RRC消息所使用的物理资源判断;
根据所收到的RRC消息中的内容判断。
可选地,当所述无线网络通信节点判决不转发所收到的RRC消息时,所述无线网络通信节点处理所述RRC消息。
可选地,所述另一无线网络通信节点为预先配置的无线网络通信节点或者通过所述RRC消息中的内容动态选择的无线网络通信节点。
可选地,所述无线网络通信节点获取RRC配置信息之后,所述无线网络通信节点在有线接口上传输所述RRC配置信息之前,上述方法还包括:
所述无线网络通信节点将接收到的所述RRC消息解封装至无线链路控制(RLC)层,获得携带所述RRC配置信息的RLC服务数据单元(SDU),通过X2接口的控制面协议栈实体将携带RRC配置信息的RLC SDU封装在 X2-AP信令的容器中;或者,
所述无线网络通信节点的数据包收敛协议(PDCP)实体将RRC实体生成的RRC配置信息进行封装,得到携带RRC配置信息的PDCP协议数据单元(PDU),所述无线网络通信节点通过X2接口的控制面协议栈实体将携带RRC配置信息的PDCP PDU封装在X2-AP信令的容器中。
可选地,所述无线网络通信节点在有线接口上传输所述RRC配置信息,包括:
所述无线网络通信节点通过所述X2接口发送X2-AP信令,其中,所述X2-AP信令的容器中封装有携带RRC配置信息的RLC SDU,或者,所述X2-AP信令的容器中封装有携带RRC配置信息的PDCP PDU。
可选地,所述无线网络通信节点在有线接口上传输所述RRC配置信息之前,上述方法还包括以下至少之一:
所述无线网络通信节点在所述有线接口上和通过所述有线接口与本无线网络通信节点相连的另一无线网络通信节点建立至少一个公共的通用数据包无线***隧道协议用户面(GTP-U)隧道,用于传递在无线接口上以SRB0承载的信息;
所述无线网络通信节点在所述有线接口上和通过所述有线接口与本无线网络通信节点相连的另一无线网络通信节点建立至少一个GTP-U隧道,用于传递在无线接口上以SRB1或者SRB2承载的信息。
可选地,所述无线网络通信节点在有线接口上传输所述RRC配置信息,包括以下至少之一:
所述无线网络通信节点通过所述公共的GTP-U隧道以用户数据报协议(UDP)的形式发送所述RRC配置信息;
所述无线网络通信节点通过所述GTP-U隧道以X2接口的用户面协议栈的封装形式发送所述RRC配置信息。
可选地,所述无线网络通信节点包括:小基站(SeNB),或者,通过有线接口与SeNB相连的宏基站(MeNB),或者,满足第三代合作伙伴计划(3GPP)接入网规范要求的其他网络节点。
本发明实施例还提供一种控制面信息的传输装置,应用于部署在接入网的无线网络通信节点,包括:
获取模块,设置为获取RRC配置信息;
传输模块,设置为通过以下至少一种方式在有线接口上传输所述RRC配置信息:
传输X2-AP信令,其中,所述X2-AP信令的容器中包括所述RRC配置信息;
通过隧道传输携带所述RRC配置信息的数据包。
可选地,所述传输模块设置为执行以下至少之一:
在有线接口上发送所述RRC配置信息;
在有线接口上接收所述RRC配置信息。
可选地,所述获取模块包括:
接收单元,设置为接收携带RRC配置信息的RRC消息;或者,
RRC实体,设置为生成RRC配置信息。
可选地,上述装置还包括:判断模块,设置为在所述获取模块接收到来自UE的携带RRC配置信息的RRC消息时,判断所述RRC消息是否需要发送给另一无线网络通信节点,其中,判断的依据包括至少一个条款:
根据所收到的RRC消息所使用的逻辑信道类型判断;
根据所收到的RRC消息所使用的传输信道类型判断;
根据所收到的RRC消息所使用的物理资源判断;
根据所收到的RRC消息中的内容判断。
可选地,上述装置还包括:第一处理模块,设置为当所述判断模块判决不转发所收到的RRC消息时,处理所述RRC消息。
可选地,所述另一无线网络通信节点为预先配置的无线网络通信节点或者通过所述RRC消息中的内容动态选择的无线网络通信节点。
可选地,上述装置还包括:第二处理模块,设置为将接收到的所述RRC消息解封装至RLC层,获得携带所述RRC配置信息的RLC SDU,通过X2 接口的控制面协议栈实体携带RRC配置信息的RLC SDU封装在X2-AP信令的容器。
可选地,上述装置还包括:PDCP实体以及封装模块;所述PDCP实体,设置为将RRC实体生成的RRC配置信息进行封装,得到携带RRC配置信息的PDCP PDU;所述封装模块,设置为通过X2接口的控制面协议栈实体将所述携带RRC配置信息的PDCP PDU封装在X2-AP信令的容器中。
可选地,上述装置还包括:隧道建立模块,设置为执行以下至少之一:在有线接口上和通过所述有线接口与本无线网络通信节点相连的另一无线网络通信节点建立至少一个公共的GTP-U隧道,用于传递在无线接口上以SRB0承载的信息;在所述有线接口上和通过所述有线接口与本无线网络通信节点相连的另一无线网络通信节点建立至少一个GTP-U隧道,用于传递在无线接口上以SRB1或者SRB2承载的信息。
可选地,所述传输模块设置为执行以下至少之一:
通过所述公共的GTP-U隧道以UDP的形式发送所述RRC配置信息;
通过所述GTP-U隧道以X2接口的用户面协议栈的封装形式发送所述RRC配置信息。
可选地,所述无线网络通信节点包括:SeNB,或者,通过有线接口与SeNB相连的MeNB,或者,满足3GPP接入网规范要求的其他网络节点。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现所述控制面信息的传输方法。
在本发明实施例中,无线网络通信节点获取RRC配置信息,并通过以下至少一种方式在有线接口上传输RRC配置信息:传输X2-AP信令,其中,所述X2-AP信令的容器中包括RRC配置信息;通过隧道传输携带RRC配置信息的数据包。通过本发明实施例,能够有效、可靠地在有线接口上传输控制面信息,而且,本发明实施例适用于各种有线接口、各种能力及各种状态的UE,并保证了RRC配置信息在有线接口上传输的可靠性。
而且,本发明实施例能够使得RRC配置信息有效地在仅配置部分控制面协议栈的SeNB和配置完整控制面协议栈的MeNB之间进行传输。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为通信***的部署示意图;
图2为图1所示***架构的控制面协议栈示意图;
图3为本发明实施例提供的控制面信息的传输方法的流程图;
图4为本发明实施例一的***控制面协议栈示意图;
图5为本发明实施例二的***控制面协议栈示意图;
图6为本发明实施例三的***控制面协议栈和隧道建立过程的示意图;
图7为本发明实施例四的***控制面协议栈和隧道建立过程的示意图;
图8为本发明实施例提供的控制面信息的传输装置的示意图;
图9为本发明实施例提供的控制面信息的传输装置的另一示意图。
本发明的实施方式
以下结合附图对本发明实施例进行详细说明,应当理解,以下所说明的实施例仅用于说明和解释本申请,并不用于限定本申请。
图3为本发明实施例提供的控制面信息的传输方法的流程图。如图3所示,本实施例提供的控制面信息的传输方法,应用于部署在接入网的无线网络通信节点,包括以下步骤:
步骤11:无线网络通信节点获取RRC配置信息;
步骤12:无线网络通信节点通过以下至少一种方式在有线接口上传输RRC配置信息:
传输X2应用层协议(Application Protocol,AP)(X2-AP)信令,其中,所述X2-AP信令的容器中包括RRC配置信息;
通过隧道传输携带RRC配置信息的数据包。
于本实施例中,所述无线网络通信节点例如为图1所示通信***中的小基站(SeNB)或者通过有线接口(如X2接口)与SeNB相连的宏基站(MeNB)。 然而,本发明实施例对此并不限定。所述无线网络通信节点还可以例如为满足第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)接入网规范要求的其他网络节点(如下一代通信网络接入网设备)。
可选地,步骤12包括以下至少之一:
无线网络通信节点在有线接口上发送RRC配置信息;
无线网络通信节点在有线接口上接收RRC配置信息。
可选地,步骤11包括:
无线网络通信节点接收携带RRC配置信息的RRC消息;或者,
无线网络通信节点的RRC实体生成RRC配置信息。
换言之,于此,“获取”表示的意思包括但不限于“接收”、“生成”。
可选地,步骤11之后,该方法还包括:所述无线网络通信节点判断从UE接收的携带RRC配置信息的RRC消息是否需要发送给另一无线网络通信节点,其中,判断的依据包括以下至少一个条款:
根据所收到的RRC消息所使用的逻辑信道类型判断;
根据所收到的RRC消息所使用的传输信道类型判断;
根据所收到的RRC消息所使用的物理资源判断,其中,所述物理资源为与本次RRC消息发送相关的物理资源,例如包含在发送RRC消息前所接收到的随机接入资源等;
根据所收到的RRC消息中的内容判断。
其中,当所述无线网络通信节点(如无线网络通信节点1)接收到来自UE的RRC消息时,判断出此RRC消息属于逻辑信道信令无线承载(Signaling Radio Bearer,SRB)0,则判决将此RRC消息转发给另一无线网络通信节点(如无线网络通信节点2);
当所述无线网络通信节点接收到来自UE的RRC消息时,判断出此RRC消息使用的是公共传输信道,则判决将此RRC消息转发给另一无线网络通信节点;
当所述无线网络通信节点接收到来自UE的RRC消息时,判断出此RRC 消息发送过程中使用了预配置的随机接入资源,则判决将此RRC消息转发给另一无线网络通信节点;
当所述无线网络通信节点接收到来自UE的RRC消息时,根据消息内容中以下几条中的一条或多条判决将此RRC消息转发给另一无线网络通信节点:
判断RRC消息类型为特定RRC消息,例如,RRC消息为RRC建立请求;
判断此RRC消息中携带了协议约定的特定取值或消息中某IE的取值为协议中约定的特定取值;
对此RRC消息所属UE ID进行判断,例如,当判断所述RRC消息来自属于本无线网络通信节点上已经建立了上下文的UE,或者有上下文且上下文显示不用进行转发,则不用进行转发。
可选地,所述另一无线网络通信节点(如无线网络通信节点2)为预先配置的无线网络通信节点或者通过所述RRC消息中的内容动态选择的无线网络通信节点。其中,无线网络通信节点2例如通过RRC建立原因值选择,或者,通过公共陆地移动网络(Public Land Mobile Network,PLMN)或其他的ID进行选择。
可选地,当所述无线网络通信节点判决不转发所收到的RRC消息时,所述无线网络通信节点处理所述RRC消息。
可选地,步骤11之后,步骤12之前,该方法还包括:
无线网络通信节点将接收到的RRC消息解封装至RLC层,获得携带所述RRC配置信息的RLC服务数据单元(Service Data Unit,SDU);无线网络通信节点通过X2接口的控制面协议栈将携带RRC配置信息的RLC SDU封装在X2-AP信令的容器中;或者,
无线网络通信节点的PDCP实体对RRC实体生成的RRC配置信息进行封装处理,得到携带RRC配置信息的PDCP协议数据单元(Protocol Data Unit,PDU);无线网络通信节点通过X2接口的控制面协议栈实体将所述携带RRC配置信息的PDCP PDU封装在X2-AP信令的容器中。
可选地,步骤12包括:无线网络通信节点通过X2接口发送X2-AP信令,其中,所述X2-AP信令的容器中封装有携带RRC配置信息的RLC SDU,或者,所述X2-AP信令的容器中封装有携带RRC配置信息的PDCP PDU。
可选地,步骤12之前,上述方法还包括以下至少之一:
无线网络通信节点在有线接口上和通过所述有线接口与本无线网络通信节点相连的另一无线网络通信节点建立至少一个公共的通用数据包无线***隧道协议用户面(General Packet Radio System(GPRS)Tunneling Protocol User Plane,GTP-U)隧道,用于传递在无线接口上以SRB0承载的信息;
无线网络通信节点在有线接口上和通过所述有线接口与本无线网络通信节点相连的另一无线网络通信节点建立至少一个GTP-U隧道,用于传递在无线接口上以SRB1或者SRB2承载的信息。
可选地,步骤12包括以下至少之一:
无线网络通信节点通过公共的GTP-U隧道以用户数据报协议(User Datagram Protocol,UDP)的形式发送RRC配置信息;
无线网络通信节点通过GTP-U隧道以X2接口的用户面协议栈的封装形式发送RRC配置信息。
其中,与UE相关的控制面信息主要通过RRC信令进行传输,其中,控制面信息在MAC实体中会映射在控制信道上进行传输,根据UE当前的RRC状态,所述控制信道会进一步地分为:
公共控制信道(Common Control Channel,CCCH),用在UE与接入网间还没有建立RRC连接时,对应的承载为信令无线承载(Signaling Radio Bearer,SRB)0;此时,接入网中的基站还没有UE完整的上下文,基站与UE间也还没有建立PDCP实体,即SRB0是PDCP透传态(Transparent Mode,TM);
专用控制信道(Dedicated Control Channel,DCCH),用在UE与接入网中的至少一个基站间已建立RRC连接时,对应的承载可以是SRB1或SRB2;此时,UE接入的基站已有UE的上下文,SRB1、2都有自身的PDCP实体,即需要进行加密及完整性保护等处理。
针对由SRB0承载的信息,适合携带在X2-AP信令的容器中进行传输。由于SRB0不需要PDCP实体的处理,即MeNB的RRC实体与X2接口的控制面协议栈实体之间可以直接交互,因此,相较于相关技术未提高实现复杂度。
针对由SRB1或SRB2承载的信息,适合通过隧道进行传输。此时基站已有UE的上下文,即对SRB1或SRB2建立GTP-U的操作与相关技术中为数据无线承载(Data Radio Bearer,DRB)建立GTP-U时的操作类似。
针对由SRB0承载的信息通过隧道进行传输时,需要在SeNB和MeNB之间建立公共的GTP-U隧道,使得向SeNB发起接入的UE的SRB0承载的信息可以通过公共GTP-U隧道进行传输。
以下通过具体实施例进行详细说明。
实施例一
于本实施例中,针对需要以SRB0承载的RRC配置信息,在X2接口上采取控制面信令流的方式进行传输。其中,将RRC配置信息携带在X2-AP信令内的RRC容器(Container)中,通过X2接口以现有X2控制面(Control Plane,CP)消息的方式进行传输。于本实施例中,通信***的控制面协议栈如图4所示。以上行为例,执行一次单向的控制面信令传输的过程如下:
步骤101:当处于RRC空闲态的UE需要接入网络时,UE会根据对无线信号的测量结果等信息选择合适的基站,并向所述基站请求RRC连接建立。在本实施例中,当某UE选择到SeNB后,所述UE在RRC实体中生成RRC配置信息并将所述RRC配置信息携带在RRC连接请求(RRC Connection Request)消息中,通过无线Uu口发送给SeNB,其中,所述RRC消息通过SRB0进行承载。SRB0属于PDCP TM,在MAC实体中映射在CCCH上。
步骤102:SeNB在所述SRB0上收到所述RRC消息后,根据自身的协议栈配置、以接收端的身份将所述RRC消息依次解封装至RLC层、获得RLC服务数据单元(Service Data Unit,SDU),然后根据X2接口的控制面协议栈将所述RLC SDU封装在一条X2-AP信令中携带的Container内,并通过X2接口将所述X2-AP信令发送给MeNB。
所述X2-AP信令向MeNB传递的是指示所述UE试图接入网络的信令,所述Container中携带的是包含有节点间(inter-node)RRC配置信息的RLC SDU,所述RRC配置信息指示的是网络侧需要的RRC Connection Request相关信息。
步骤103:MeNB从接收到的所述X2-AP信令中解出Container包含的所述RLC SDU并递交到上层RRC实体中进行处理。如果MeNB同意所述UE的接入请求,那么所述MeNB继续通过S1接口向核心网请求所述UE的接入。后续接入流程的技术同相关标准,故于此不再赘述。
实施例二
于本实施例中,针对需要以SRB1或SRB2承载的RRC配置信息,在X2接口上采取控制面信令流的方式进行传输。其中,将RRC配置信息携带在X2-AP信令内的RRC Container中,通过X2接口、利用流控制传输协议(Stream Control Transmission Protocol,SCTP)执行可靠的消息传输。于本实施例中,通信***的控制面协议栈如图5所示。以下行为例,执行一次单向的控制面信令传输的过程如下:
步骤201:核心网中的MME触发涉及到UE侧无线资源配置修改的S1程序(如演进分组***(Evolved Packet System,EPS)承载(bearer)的参数修改),所述S1程序由MME通过S1-MME接口向MeNB发送S1-AP信令(如E-RAB MODIFY REQUEST信令)为开端。其中,S1-MME接口的有线传输协议栈及信令形式同相关技术。
需要说明的是,步骤201是可选的,也就是说,MeNB可以自主触发面对UE的RRC信令程序,而不必需由来自MME的信令指示来触发。
步骤202:MeNB根据接收到的S1-AP信令指示在RRC实体中生成相应的RRC配置信息,并由RRC实体将所述RRC配置信息递交到下层的PDCP实体中,再由PDCP实体对所述RRC配置信息进行加密及完整性保护等封装处理。PDCP实体将处理得到的PDCP协议数据单元(Protocol Data Unit,PDU)递交给X2接口的控制面协议栈(即SCTP及以下各层),以便进行有线接口上的传输。
X2-AP信令中携带一个新的Container,所述Container中装载的是携带 所述RRC配置信息的PDCP PDU。通过X2接口,MeNB将所述X2-AP信令传递给SeNB。
步骤203:作为X2接口的接收端,SeNB将收到的信令流从X2控制面协议栈中解出从而获得所述PDCP PDU、并递交给无线接口的协议栈(即RLC及以下各层),然后通过SRB1或SRB2发送给所述UE。
步骤204:接收端UE将在SRB1或SRB2上收到的控制面信令按照相关协议栈依次进行解封装,在RRC实体中获得MeNB指示的所述RRC配置信息。
实施例三
于本实施例中,采取用户面(User Plane,UP)数据传输的方式,即将RRC配置信息通过GTP-U隧道进行发送。其中,SeNB和MeNB会在X2接口上为所有UE的SRB0建立一个公共的GTP-U隧道,用来传输在SRB0上传输的信令。通信***中传输SRB0(无线Uu口)的协议栈如图6(a)所示,X2接口隧道建立如图6(b)所示。以上行为例,执行一次单向的控制面信令传输的过程如下:
步骤301:当处于RRC空闲态的UE需要接入网络时,UE会根据对无线信号的测量结果等信息选择合适的基站、并向所述基站请求RRC连接建立。在本实施例中,当UE_2选择到SeNB后,所述UE_2在RRC实体中生成RRC配置信息并将所述RRC配置信息携带在RRC Connection Request消息中、通过无线Uu口发送给SeNB,所述RRC消息通过SRB0进行承载。SRB0属于PDCP TM,在MAC实体中映射在CCCH上。
步骤302:SeNB与MeNB会在X2接口上建立一个公共的GTP-U隧道(GTP-U_Common),所述隧道上可传递至少一个UE的SRB0信令(如UE_1和UE_2)。
SeNB在所述SRB0上收到所述RRC消息后,根据自身的协议栈配置、以接收端的身份将所述RRC消息依次解封装至RLC层、获得RLC SDU,然后通过所述GTP-U_Common将所述RLC SDU以用户数据报协议(User Datagram Protocol,UDP)的形式发送给MeNB。
步骤303:MeNB将从GTP-U_Common中收到的UDP数据解出并递交到上层(RRC实体)中进行处理。如果MeNB同意UE的接入请求,那么所述MeNB继续通过S1接口向核心网请求UE的接入。后续接入流程的技术(如在S1-MME上建立信令连接)同相关标准。故于此不再赘述。
实施例四
于本实施例中,采取用户面数据传输的方式,即将RRC配置信息通过GTP-U隧道进行发送。其中,SeNB和MeNB会在X2接口上为每个UE的SRB1或SRB2分别建立一个GTP-U隧道,用来传输每个UE需在SRB1或2上传输的信令。通信***中传输SRB1或SRB2(无线Uu口)的协议栈如图7(a)所示,X2接口隧道建立过程如图7(b)所示。以下行为例,执行一次单向的控制面信令传输的过程如下:
步骤401:MeNB触发面对UE_1的RRC信令时,首先在RRC实体中生成相应的RRC配置信息,并由RRC实体将所述RRC配置信息递交到下层的PDCP实体中、由PDCP实体对所述RRC配置信息进行加密及完整性保护等封装处理。所述PDCP PDU为映射在SRB2上传输的信令数据。
为建立能够传输所述UE_1的SRB2信令数据的GTP-U隧道(GTP-U_1),MeNB与SeNB在X2接口控制面上交互各自为所述GTP-U_1分配的传输层地址(Transport Layer Address)及隧道端口(GTP TEID)号。在所述GTP-U_1建立后,MeNB将所述PDCP PDU以X2接口用户面协议栈的形式进行封装、并通过所述GTP-U_1发送给SeNB。
步骤402:SeNB将在GTP-U_1上收到的数据包从X2用户面协议栈中解出从而获得所述PDCP PDU、并进一步封装为无线接口传输的RLC包,然后通过所述SRB2发送给UE_1。
步骤403:UE_1将在所述SRB2上收到的信息按照协议栈依次进行解封装,在RRC实体中获得MeNB指示的所述RRC配置信息。
MeNB与SeNB间会为UE_2的SRB2建立另一个GTP-U隧道(GTP-U_2),各操作细节与所述GTP-U_1类似。故于此不再赘述。
实施例五
本实施例与实施例一的区别在于:在本实施例中,SeNB在接收到来自UE的RRC消息后,SeNB会判断是否将所述RRC消息发送给MeNB。
其中,判断的依据包括以下至少一个条款:
根据所收到的RRC消息所使用的逻辑信道类型判断;
根据所收到的RRC消息所使用的传输信道类型判断;
根据所收到的RRC消息所使用的物理资源判断,其中,所述物理资源为与本次RRC消息发送相关的物理资源,例如包含在发送RRC消息前所接收到的随机接入资源等;
根据所收到的RRC消息中的内容判断。
于此,SeNB接收到来自UE的RRC消息时,判断出此RRC消息属于逻辑信道SRB0,则SeNB判决将此RRC消息转发给MeNB。
可选地,当SeNB判决不转发所收到的RRC消息时,SeNB处理所述RRC消息。
另外,本实施例中RRC配置信息在SeNB和MeNB之间的传输过程同实施例一所述,故于此不再赘述。
此外,本发明实施例还提供一种控制面信息的传输装置,应用于部署在接入网的无线网络通信节点,包括:
获取模块,设置为获取RRC配置信息;
传输模块,设置为通过以下至少一种方式在有线接口上传输所述RRC配置信息:
传输X2-AP信令,其中,所述X2-AP信令的容器中包括所述RRC配置信息;
通过隧道传输携带所述RRC配置信息的数据包。
于本实施例中,所述控制面信息的传输装置例如应用于图1所示的通信***中的SeNB或者通过有线接口(如X2接口)与SeNB相连的MeNB。然而,本申请对此并不限定。所述控制面信息的传输装置例如还可应用于满足3GPP接入网规范要求的其他网络节点(如下一代通信网络接入网设备)。
可选地,所述传输模块设置为执行以下至少之一:
在有线接口上发送所述RRC配置信息;
在有线接口上接收所述RRC配置信息。
图8为本发明实施例提供的控制面信息的传输装置的示意图。如图8所示,本实施例提供的控制面信息的传输装置,例如应用于SeNB,包括:获取模块、判断模块、第一处理模块、第二处理模块以及传输模块。其中,所述获取模块包括:接收单元;所述接收单元,设置为通过无线接口从UE接收携带RRC配置信息的RRC消息;判断模块,设置为判断所述RRC消息是否需要发送给另一无线网络通信节点(如MeNB);第一处理模块,设置为当所述判断模块判决不转发所收到的RRC消息时,处理所述RRC消息;第二处理模块,设置为当所述判断模块判决转发所接收的RRC消息时,将接收到的RRC消息解封装至RLC层,获得携带所述RRC配置信息的RLC SDU,通过X2接口的控制面协议栈实体将所述携带RRC配置信息的RLC SDU封装在一条X2-AP信令的容器中;所述传输模块,设置为通过所述X2接口发送所述X2-AP信令。其中,判断模块的判断依据包括至少一个条款:根据所收到的RRC消息所使用的逻辑信道类型判断;根据所收到的RRC消息所使用的传输信道类型判断;根据所收到的RRC消息所使用的物理资源判断;根据所收到的RRC消息中的内容判断。
图9为本发明实施例提供的控制面信息的传输装置的另一示意图。如图9所示,本实施例提供的控制面信息的传输装置,例如应用于MeNB,包括:获取模块、PDCP实体、封装模块以及传输模块。其中,所述获取模块包括:RRC实体,设置为生成RRC配置信息,并传递所述RRC配置信息至所述PDCP实体;所述PDCP实体,设置为对所述RRC配置信息进行封装处理,得到携带所述RRC配置信息的PDCP PDU;所述封装模块,设置为通过X2接口的控制面协议栈实体将所述携带RRC配置信息的PDCP PDU封装在X2-AP信令的容器中;所述传输模块,设置为通过所述X2接口发送所述X2-AP信令。
可选地,所述控制面信息的传输装置还包括:隧道建立模块,设置为执行以下至少之一:在有线接口上和通过所述有线接口与本无线网络通信节点 相连的另一无线网络通信节点建立至少一个公共的GTP-U隧道,用于传递在无线接口上以SRB0承载的信息;在所述有线接口上和通过所述有线接口与本无线网络通信节点相连的另一无线网络通信节点建立至少一个GTP-U隧道,用于传递在无线接口上以SRB1或者SRB2承载的信息。
可选地,所述传输模块设置为执行以下至少之一:
通过所述公共的GTP-U隧道以UDP的形式发送所述RRC配置信息;
通过所述GTP-U隧道以X2接口的用户面协议栈的封装形式发送所述RRC配置信息。
此外,关于上述装置的具体处理流程同上述方法所述,故于此不再赘述。
综上所述,本发明实施例能够实现在仅配置部分控制面协议栈的SeNB和配置完整控制面协议栈的MeNB之间的有线接口上有效、可靠地传输与UE相关的控制面信息。而且,本发明实施例适用于各种有线接口、各种能力及各种状态的UE。
此外,发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现所述控制面信息的传输方法。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请每个实施例所述的方法。
本领域的技术人员应该明白,上述的本申请的模块或步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成单个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成 电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上显示和描述了本申请的基本原理和主要特征和本申请的优点。本申请不受上述实施例的限制,上述实施例和说明书中描述的只是说明本申请的原理,在不脱离本申请精神和范围的前提下,本申请还会有各种变化和改进,这些变化和改进都落入要求保护的本申请范围内。
工业实用性
本申请实施例提供一种控制面信息的传输方法及装置,能够有效、可靠地在有线接口上传输控制面信息,而且,适用于各种有线接口、各种能力及各种状态的UE,并保证了RRC配置信息在有线接口上传输的可靠性。

Claims (22)

  1. 一种控制面信息的传输方法,应用于部署在接入网的无线网络通信节点,包括:
    无线网络通信节点获取无线资源控制RRC配置信息;
    所述无线网络通信节点通过以下至少一种方式在有线接口上传输所述RRC配置信息:
    传输X2应用层协议X2-AP信令,其中,所述X2-AP信令的容器中包括所述RRC配置信息;
    通过隧道传输携带所述RRC配置信息的数据包。
  2. 如权利要求1所述的方法,其中,所述无线网络通信节点在有线接口上传输所述RRC配置信息包括以下至少之一:
    所述无线网络通信节点在有线接口上发送所述RRC配置信息;
    所述无线网络通信节点在有线接口上接收所述RRC配置信息。
  3. 如权利要求1所述的方法,其中,所述无线网络通信节点获取RRC配置信息,包括:
    所述无线网络通信节点接收携带RRC配置信息的RRC消息;或者,
    所述无线网络通信节点的RRC实体生成RRC配置信息。
  4. 如权利要求1或2所述的方法,当所述无线网络通信节点获取RRC配置信息之后,所述方法还包括:所述无线网络通信节点判断从用户设备UE接收的携带RRC配置信息的RRC消息是否需要发送给另一无线网络通信节点,其中,判断的依据包括以下至少一个条款:
    根据所收到的RRC消息所使用的逻辑信道类型判断;
    根据所收到的RRC消息所使用的传输信道类型判断;
    根据所收到的RRC消息所使用的物理资源判断;
    根据所收到的RRC消息中的内容判断。
  5. 如权利要求4所述的方法,其中,当所述无线网络通信节点判决不转发所收到的RRC消息时,所述无线网络通信节点处理所述RRC消息。
  6. 如权利要求4所述的方法,其中,所述另一无线网络通信节点为预先配置的无线网络通信节点或者通过所述RRC消息中的内容动态选择的无线网络通信节点。
  7. 如权利要求3所述的方法,所述无线网络通信节点获取RRC配置信息之后,所述无线网络通信节点在有线接口上传输所述RRC配置信息之前,所述方法还包括:
    所述无线网络通信节点将接收到的所述RRC消息解封装至无线链路控制RLC层,获得携带所述RRC配置信息的RLC服务数据单元SDU,通过X2接口的控制面协议栈实体将携带RRC配置信息的RLC SDU封装在X2-AP信令的容器中;或者,
    所述无线网络通信节点的数据包收敛协议PDCP实体将RRC实体生成的RRC配置信息进行封装,得到携带RRC配置信息的PDCP协议数据单元PDU,所述无线网络通信节点通过X2接口的控制面协议栈实体将携带RRC配置信息的PDCP PDU封装在X2-AP信令的容器中。
  8. 如权利要求7所述的方法,其中,所述无线网络通信节点在有线接口上传输所述RRC配置信息,包括:
    所述无线网络通信节点通过所述X2接口发送X2-AP信令,其中,所述X2-AP信令的容器中封装有携带RRC配置信息的RLC SDU,或者,所述X2-AP信令的容器中封装有携带RRC配置信息的PDCP PDU。
  9. 如权利要求1所述的方法,所述无线网络通信节点在有线接口上传输所述RRC配置信息之前,所述方法还包括以下至少之一:
    所述无线网络通信节点在所述有线接口上和通过所述有线接口与本无线网络通信节点相连的另一无线网络通信节点建立至少一个公共的通用数据包无线***隧道协议用户面GTP-U隧道,用于传递在无线接口上以信令无线承载SRB0承载的信息;
    所述无线网络通信节点在所述有线接口上和通过所述有线接口与本无线网络通信节点相连的另一无线网络通信节点建立至少一个GTP-U隧道,用于传递在无线接口上以信令无线承载SRB1或者SRB2承载的信息。
  10. 如权利要求9所述的方法,其中,所述无线网络通信节点在有线接口上传输所述RRC配置信息,包括以下至少之一:
    所述无线网络通信节点通过所述公共的GTP-U隧道以用户数据报协议UDP的形式发送所述RRC配置信息;
    所述无线网络通信节点通过所述GTP-U隧道以X2接口的用户面协议栈的封装形式发送所述RRC配置信息。
  11. 如权利要求1所述的方法,其中,所述无线网络通信节点包括:小基站SeNB,或者,通过有线接口与SeNB相连的宏基站MeNB,或者,满足第三代合作伙伴计划3GPP接入网规范要求的其他网络节点。
  12. 一种控制面信息的传输装置,应用于部署在接入网的无线网络通信节点,包括:
    获取模块,设置为获取无线资源控制RRC配置信息;
    传输模块,设置为通过以下至少一种方式在有线接口上传输所述RRC配置信息:
    传输X2应用层协议X2-AP信令,其中,所述X2-AP信令的容器中包括所述RRC配置信息;
    通过隧道传输携带所述RRC配置信息的数据包。
  13. 如权利要求12所述的装置,其中,所述传输模块设置为执行以下至少之一:
    在有线接口上发送所述RRC配置信息;
    在有线接口上接收所述RRC配置信息。
  14. 如权利要求12所述的装置,其中,所述获取模块包括:
    接收单元,设置为接收携带RRC配置信息的RRC消息;或者,
    RRC实体,设置为生成RRC配置信息。
  15. 如权利要求12或13所述的装置,所述装置还包括:判断模块,设置为在所述获取模块接收到来自用户设备UE的携带RRC配置信息的RRC消息时,判断所述RRC消息是否需要发送给另一无线网络通信节点,其中, 判断的依据包括至少一个条款:
    根据所收到的RRC消息所使用的逻辑信道类型判断;
    根据所收到的RRC消息所使用的传输信道类型判断;
    根据所收到的RRC消息所使用的物理资源判断;
    根据所收到的RRC消息中的内容判断。
  16. 如权利要求15所述的装置,所述装置还包括:第一处理模块,设置为当所述判断模块判决不转发所收到的RRC消息时,处理所述RRC消息。
  17. 如权利要求15所述的装置,其中,所述另一无线网络通信节点为预先配置的无线网络通信节点或者通过所述RRC消息中的内容动态选择的无线网络通信节点。
  18. 如权利要求14所述的装置,所述装置还包括:第二处理模块,设置为将接收到的所述RRC消息解封装至无线链路控制RLC层,获得携带所述RRC配置信息的RLC服务数据单元SDU,通过X2接口的控制面协议栈实体携带RRC配置信息的RLC SDU封装在X2-AP信令的容器。
  19. 如权利要求14所述的装置,所述装置还包括:PDCP实体以及封装模块;所述PDCP实体,设置为将RRC实体生成的RRC配置信息进行封装,得到携带RRC配置信息的PDCP协议数据单元PDU;所述封装模块,设置为通过X2接口的控制面协议栈实体将所述携带RRC配置信息的PDCP PDU封装在X2-AP信令的容器中。
  20. 如权利要求12所述的装置,所述装置还包括:隧道建立模块,设置为执行以下至少之一:
    在有线接口上和通过所述有线接口与本无线网络通信节点相连的另一无线网络通信节点建立至少一个公共的通用数据包无线***隧道协议用户面GTP-U隧道,用于传递在无线接口上以信令无线承载SRB0承载的信息;
    在所述有线接口上和通过所述有线接口与本无线网络通信节点相连的另一无线网络通信节点建立至少一个GTP-U隧道,用于传递在无线接口上以信令无线承载SRB1或者SRB2承载的信息。
  21. 如权利要求20所述的装置,其中,所述传输模块设置为执行以下 至少之一:
    通过所述公共的GTP-U隧道以用户数据报协议UDP的形式发送所述RRC配置信息;
    通过所述GTP-U隧道以X2接口的用户面协议栈的封装形式发送所述RRC配置信息。
  22. 如权利要求12所述的装置,其中,所述无线网络通信节点包括:小基站SeNB,或者,通过有线接口与SeNB相连的宏基站MeNB,或者,满足第三代合作伙伴计划3GPP接入网规范要求的其他网络节点。
PCT/CN2016/104238 2016-01-04 2016-11-01 一种控制面信息的传输方法及装置 WO2017118191A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610006248.8 2016-01-04
CN201610006248.8A CN106941477A (zh) 2016-01-04 2016-01-04 一种控制面信息的传输方法及装置

Publications (1)

Publication Number Publication Date
WO2017118191A1 true WO2017118191A1 (zh) 2017-07-13

Family

ID=59273374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104238 WO2017118191A1 (zh) 2016-01-04 2016-11-01 一种控制面信息的传输方法及装置

Country Status (2)

Country Link
CN (1) CN106941477A (zh)
WO (1) WO2017118191A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112119674A (zh) * 2018-05-17 2020-12-22 株式会社Ntt都科摩 网络节点

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109963351B (zh) * 2017-12-25 2021-07-13 大唐移动通信设备有限公司 一种会话建立的方法及装置
CN110351889B (zh) * 2018-04-03 2022-02-01 维沃移动通信有限公司 一种连接建立方法和设备
CN110661592B (zh) * 2018-06-29 2022-11-15 中兴通讯股份有限公司 信令传输方法以及***、集中单元、分布单元、存储介质
EP3823360A4 (en) 2018-07-13 2022-03-09 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR COMMUNICATION CONTROL
TWI674808B (zh) * 2018-11-01 2019-10-11 財團法人資訊工業策進會 無線通訊系統及控制平面之管理之切換方法
CN112306579B (zh) * 2020-11-12 2023-09-01 北京轩宇信息技术有限公司 一种数据传输***及方法
WO2024011462A1 (zh) * 2022-07-13 2024-01-18 Oppo广东移动通信有限公司 一种通信方法及装置、通信设备、接入网架构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101677451A (zh) * 2008-09-19 2010-03-24 大唐移动通信设备有限公司 小区切换准备过程中节点间传递***信息的方法和装置
WO2012158959A1 (en) * 2011-05-17 2012-11-22 Interdigital Patent Holdings, Inc. Nodeb power adaptation for reducing references
CN102883440A (zh) * 2011-07-15 2013-01-16 华为技术有限公司 一种无线宽带通信方法,装置和***
CN104010381A (zh) * 2013-02-25 2014-08-27 电信科学技术研究院 一种建立直接通信路径的方法、设备及***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101677451A (zh) * 2008-09-19 2010-03-24 大唐移动通信设备有限公司 小区切换准备过程中节点间传递***信息的方法和装置
WO2012158959A1 (en) * 2011-05-17 2012-11-22 Interdigital Patent Holdings, Inc. Nodeb power adaptation for reducing references
CN102883440A (zh) * 2011-07-15 2013-01-16 华为技术有限公司 一种无线宽带通信方法,装置和***
CN104010381A (zh) * 2013-02-25 2014-08-27 电信科学技术研究院 一种建立直接通信路径的方法、设备及***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112119674A (zh) * 2018-05-17 2020-12-22 株式会社Ntt都科摩 网络节点
CN112119674B (zh) * 2018-05-17 2024-05-14 株式会社Ntt都科摩 网络节点

Also Published As

Publication number Publication date
CN106941477A (zh) 2017-07-11

Similar Documents

Publication Publication Date Title
US11722947B2 (en) Apparatus and method for routing data packet to user equipment in LTE-WLAN aggregation system
WO2021159906A1 (zh) sidelink中继通信方法、装置、设备及介质
WO2017118191A1 (zh) 一种控制面信息的传输方法及装置
CN108307472B (zh) 设备直通***的通信方法及装置、通信***
TWI638575B (zh) Data radio bearer configuration method, data transmission method and device
CN108307536B (zh) 一种路由方法和设备
EP3016469B1 (en) Method and device for mode switching
JP5088091B2 (ja) 基地局装置、通信方法及び移動通信システム
US11832322B2 (en) Wireless backhaul communication processing method and related device
US10342061B2 (en) Radio communication system and control method
EP3668266B1 (en) Communication processing method and apparatus using relay
US20200344843A1 (en) Node and communication method
EP3506674B1 (en) Handover method, apparatus and system
WO2019242749A1 (zh) 一种切换方法及装置
WO2015032043A1 (zh) 传输数据的方法、装置和***
WO2016173078A1 (zh) 一种数据中转传输方法、***和具备中继功能的ue
WO2017219355A1 (zh) 多连接通信方法和设备
WO2022041249A1 (zh) 一种节点的切换方法以及相关设备
WO2015124104A1 (zh) 一种路径建立方法、设备及***、核心网设备
US20230239940A1 (en) Data transmission method and apparatus
CN108781403B (zh) 终端设备、接入网设备、空口配置方法和无线通信***
CN115699816A (zh) 用于在双连接下进行侧行链路中继通信的方法
US20230276313A1 (en) Managing sidelink communication
CN117643163A (zh) 用于无线网络中的中继配置的方法、设备和***
CN113518475B (zh) 通信方法、装置及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883319

Country of ref document: EP

Kind code of ref document: A1