WO2017116145A1 - 스티렌-부타디엔 고무의 제조방법 및 스티렌-부타디엔 고무 - Google Patents

스티렌-부타디엔 고무의 제조방법 및 스티렌-부타디엔 고무 Download PDF

Info

Publication number
WO2017116145A1
WO2017116145A1 PCT/KR2016/015423 KR2016015423W WO2017116145A1 WO 2017116145 A1 WO2017116145 A1 WO 2017116145A1 KR 2016015423 W KR2016015423 W KR 2016015423W WO 2017116145 A1 WO2017116145 A1 WO 2017116145A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
butadiene rubber
thiol
weight
pentamethylheptane
Prior art date
Application number
PCT/KR2016/015423
Other languages
English (en)
French (fr)
Inventor
이재민
이세은
김병윤
조인성
최우석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/741,538 priority Critical patent/US10501610B2/en
Priority to EP16882097.5A priority patent/EP3309184B1/en
Priority to CN201680043640.8A priority patent/CN107849195B/zh
Priority claimed from KR1020160181187A external-priority patent/KR101961918B1/ko
Publication of WO2017116145A1 publication Critical patent/WO2017116145A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Definitions

  • the present invention relates to a method for producing styrene-butadiene rubber and styrene-butadiene rubber produced through the above, and specifically, using a molecular weight regulator including two or more components in a polymerization reaction, adding each component of the molecular weight regulator.
  • the present invention relates to a method for preparing styrene-butadiene rubber which can improve the physical properties of styrene-butadiene rubber prepared by optimizing a viewpoint, and to styrene-butadiene rubber produced thereby.
  • Emulsion polymerized styrene-butadiene rubber is the most commonly used synthetic rubber in the manufacture of tires and has properties such as flat vulcanizability, stable scorch, high processability and the like.
  • US Pat. Nos. 3,575,913 and 3,563,946 disclose that styrene-butadiene or styrene-butadiene-acrylate copolymers are prepared using potassium persulfate or azobisisobutyronitrile in emulsion.
  • Japanese Patent Laid-Open No. 1999-0077755 discloses an emulsion styrene-butadiene rubber which can be used for the production of tire treads having improved rolling resistance and treadwear properties with improved static friction properties.
  • t-dodecylmercaptan (t-DDM) is used as a molecular weight regulator, and t-dodecylmercaptan is composed of a mixture of 35 isomers due to its manufacturing mechanism.
  • t-DDM t-dodecylmercaptan
  • An object of the present invention is to prepare a styrene-butadiene rubber that can improve the physical properties of the styrene-butadiene rubber prepared by optimizing the input time of each component of the molecular weight regulator, while using a molecular weight regulator comprising two or more components. Is to provide.
  • Another object of the present invention is to provide a styrene-butadiene rubber having improved physical properties produced by the above production method.
  • SBR styrene-butadiene rubber
  • t-dodecyl mercaptan and pentamethylheptanthiol are included in a weight ratio of 70:30 to 95: 5,
  • the pentamethylheptane thiol provides a process for preparing styrene-butadiene rubber, which is introduced at a time when the polymerization exhibits a conversion of 10% to 55%.
  • the present invention is produced by the above production method, the tensile strength (TS) is 250 kg ⁇ f / cm 2 to 300 kg ⁇ f / cm 2 , the tensile elongation ( ⁇ ) is 370-400%, Provides butadiene rubber.
  • the method for producing styrene-butadiene rubber according to the present invention can improve the physical properties of the styrene-butadiene rubber produced by optimizing the input time of each component of the molecular weight regulator, while using a molecular weight regulator comprising two or more components. Therefore, the styrene-butadiene rubber produced by the above manufacturing method is improved in the properties of tensile strength, tensile elongation, etc. can be usefully used in the production of tires having environmentally friendly, wear resistance and the like.
  • Example 1 is a graph showing the M H value with time in the manufacturing method of Example 3 and Comparative Example 1.
  • SBR styrene-butadiene rubber
  • the styrene monomer may be at least one selected from styrene, monochlorostyrene, methyl styrene, ⁇ -methyl styrene, divinylbenzene, p-tert-styrene, and dimethyl styrene.
  • the styrene-based monomer may be 10% to 60% by weight of the total amount of the monomers, specifically, may be 15 to 50% by weight.
  • the styrene-based monomer is less than 10% by weight, mechanical properties including tensile properties of the produced styrene-butadiene rubber may be lowered, and when it exceeds 60% by weight, the elasticity and abrasion resistance of the produced styrene-butadiene rubber may be reduced. Can be.
  • the butadiene monomer is composed of 1,3-butadiene, 1,4-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene, and isoprene It may be one or more.
  • the butadiene-based monomer may be 40% to 90% by weight of the total amount of the monomer, specifically, may be 50% to 85% by weight. If the butadiene-based monomer is less than 40% by weight, there may be a problem that the elasticity and wear resistance of the produced styrene-butadiene rubber is lowered, and when it exceeds 90% by weight, mechanical properties including tensile properties of the produced styrene-butadiene rubber This can be degraded.
  • the structure of the butadiene unit in the copolymer of the styrene-butadiene rubber produced may have one or more structures selected from the group consisting of trans, cis, and vinyl groups.
  • molecular weight modifiers including t-dodecylmercaptan and pentamethylheptane thiol (PMHT)
  • the molecular weight modifier includes t-dodecyl mercaptan and pentamethylheptane thiol (PMHT), and the t-dodecyl mercaptan and pentamethylheptane thiol are included in a weight ratio of 70:30 to 95: 5.
  • PMHT pentamethylheptane thiol
  • the t-dodecyl mercaptan may be prepared according to the following scheme, and will include at least 35 isomers in the preparation method.
  • R ⁇ 1> -R ⁇ 4> is an alkyl group each independently, and the sum of carbon number of said R ⁇ 1> -R ⁇ 4> is 10.
  • the pentamethylheptanethiol is 2,2,4,4,6-pentamethylheptan-4-thiol, 2,4,4,6,6-pentamethylheptan-2-thiol, 2,3 It may include one or more selected from the group consisting of 4,6,6-pentamethylheptan-2-thiol, and 2,3,4,6,6-pentamethylheptan-3-thiol.
  • the pentamethylheptane thiol may include 65 mol% or more of 2,2,4,4,6-pentamethylheptan-4-thiol based on the total moles of pentamethylheptane thiol.
  • the pentamethylheptane thiol may be prepared according to the following scheme, and in the preparation method, 65 mol% of 2,2,4,4,6-pentamethylheptan-4-thiol based on the total number of moles of the pentamethylheptane thiol It may include more.
  • the molecular weight modifier used in the method for preparing styrene-butadiene rubber of the present invention includes the pentamethylheptane thiol such that the t-dodecyl mercaptan and pentamethylheptane thiol satisfy a weight ratio of 70:30 to 95: 5,
  • the pentamethylheptane thiol may include 65 mol% or more of the 2,2,4,4,6-pentamethylheptan-4-thiol with respect to the total mole number of the pentamethylheptane thiol, 2,
  • the single isomer of 2,4,4,6-pentamethylheptane-4-thiol occupies the largest fraction, allowing the styrene-butadiene rubbers to be produced to have even physical properties, thus the tensile strength of the styrene-butadiene rubbers And tensile elongation can be increased.
  • the t-dodecyl mercaptan and pentamethylheptanthiol are weight ratios greater than 70: less than 30 to less than 95: more than 5, more specifically weight ratios greater than 80:20 to less than 95: more than 5, more specifically 80 It may be included in a weight ratio of: 20 to 90:10.
  • the molecular weight modifier may include 2,2,4,4,6-pentamethylheptan-4-thiol 5 mol% or more relative to the total mole number of the molecular weight regulator, specifically 5 mol% to 50 mol% Can be.
  • the composition may include 0.01 to 2 parts by weight of the molecular weight modifier, based on 100 parts by weight of the composition, specifically 0.05 to 2 parts by weight, and more specifically 0.1 to 1 parts by weight. can do.
  • the average molecular weight of the styrene-butadiene rubber can be adjusted according to the amount of the molecular weight modifier used.
  • the styrene-butadiene rubber prepared when the molecular weight modifier is used in a small amount close to 0.01 parts by weight based on 100 parts by weight of the composition has a high molecular weight.
  • the styrene-butadiene rubber produced may have a low molecular weight when used in large quantities close to 2 parts by weight.
  • the content of the molecular weight modifier is less than 0.01 parts by weight, a problem may occur in the gel, when the content of more than 2 parts by weight, the physical properties of the produced styrene-butadiene rubber may be lowered.
  • a styrene monomer in the method for producing styrene-butadiene rubber of the present invention 2) butadiene monomers; And 3) a molecular weight modifier comprising t-dodecylmercaptan and pentamethylheptanthiol (PMHT) can be radically polymerized in an emulsion state.
  • PMHT pentamethylheptanthiol
  • the radical polymerization may be performed at a temperature of 5 ° C to 90 ° C, specifically 10 ° C to 50 ° C, for 2 hours to 72 hours, and specifically for 4 hours to 48 hours.
  • the temperature of the radical polymerization is less than 5 °C, it is difficult to reach the activity of the reaction, if it exceeds 90 °C, a gel can be formed.
  • t-dodecylmercaptan and pentamethylheptane thiol (PMHT) included in the molecular weight regulator may be separately added according to the progress of the polymerization reaction, and specifically, the t- Dodecylmercaptan may be added at the beginning of the reaction, and the pentamethylheptane thiol (PMHT) may be added after the polymerization reaction has started.
  • the pentamethylheptane thiol may be added at the time when the polymerization shows a conversion rate of 10% to 55%, and specifically the pentamethylheptane thiol (PMHT) may show a conversion rate of 15% to 50% of the polymerization. It may be added at the time indicated, and more specifically may be added at the time when the polymerization shows a conversion of 15% to 45%.
  • the styrene-butadiene rubbers produced according to the use of a single isomer, such as a large amount of a single isomer of 4,4,6-pentamethylheptan-4-thiol, have even physical properties, and thus the tensile strength and tensile elongation of the styrene-butadiene rubber. It is possible to exhibit a high physical property improvement effect, such as increased physical properties.
  • the composition may further include an acrylonitrile monomer in addition to the 1) styrene monomer and 2) butadiene monomer.
  • the acrylonitrile monomer may be at least one selected from methacrylonitrile, etaacrylonitrile, ⁇ -chloronitrile, ⁇ -cyanoethylacrylonitrile, and crotononitrile.
  • the acrylonitrile monomer may be used in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the total amount of the monomers.
  • the styrene-butadiene copolymer may express hydrophilicity, and when the amount is 10 parts by weight or less, the elasticity may be lowered, or the problem may be prevented from increasing in strength to a problem in processability.
  • composition may further include a radical initiator, an emulsifier, a polymerization terminator and the like as necessary.
  • the radical initiators include inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium peroxide, potassium perphosphate, hydrogen peroxide, t-butyl peroxide, cumene hydroperoxide, p-mentane hydroperoxide, di-t-butyl peroxide organic, such as t-butylcumyl peroxide, acetyl peroxide, isobutyl peroxide, octanoyl peroxide, dibenzoyl peroxide, 3,5,5-trimethylhexanol peroxide, t-butyl peroxy isobutylate Nitrogen compounds such as peroxides, azobis isobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, azobis isobutane (butyl acid) methyl.
  • the polymerization initiator can be used alone or in combination of two or more
  • the radical initiator may be used in an amount of 0.01 to 3 parts by weight, specifically 0.02 to 1 part by weight, and more specifically 0.05 to 0.5 part by weight, based on 100 parts by weight of the total composition.
  • radical initiator When the radical initiator is used in an amount of 0.01 parts by weight or more based on 100 parts by weight of the total composition, sufficient polymerization may be achieved, and when used in an amount of 3 parts by weight or less, a polymer having a desired molecular weight may be more appropriately produced.
  • the emulsifier may be an anion, a cation, a nonionic surfactant, or the like, and specifically, may be at least one selected from a metal salt and an ammonium salt.
  • Specific examples of the emulsifier include at least one selected from alkyl sulfate metal salts, alkyl allyl sulfonic acid metal salts, alkyl phosphate metal salts, alkyl sulfate ammonium salts, alkyl allyl sulfonic acid ammonium salts, alkyl aryl sulfonic acid ammonium salts, allyl sulfonic acid ammonium salts and alkyl phosphate ammonium salts. And, more specifically, at least one selected from dodecylbenzene sulfonic acid, rosin acid, fatty acid, lauryl sulfonic acid, and hexadecylsulfonic acid.
  • the alkyl (allyl) and aryl (aryl) may each independently have 5 to 20 carbon atoms, if the carbon number is less than 5, there may be a problem in the role of dispersant, 20 carbon atoms If exceeded, the hydrophilicity of the styrene-butadiene copolymer may be lowered.
  • the emulsifier may be used in an amount of 0.1 to 10 parts by weight, specifically 0.5 to 10 parts by weight, based on 100 parts by weight of the total composition.
  • emulsifier is less than 0.1 parts by weight, micelles may not be formed, and if it exceeds 10 parts by weight, a microemulsion may be formed to generate low molecules.
  • polymerization terminator examples include diethyl hydroxyamine, N-isopropylhydroxyamine, monoethylhydroxyamine, sodium dimethyldithiocarbamate, and the like.
  • the polymerization terminator may be 0.01 parts by weight to 2 parts by weight with respect to 100 parts by weight of the total composition, and when less than 0.01 parts by weight, a reaction stopping effect may be insufficient and a gel may be generated.
  • the polymerization terminator is harmful to the human body is preferably used in less than 2 parts by weight, and when used in excess, may cause problems of odor caused by the unreacted polymerization terminator.
  • the method for producing styrene-butadiene rubber according to an example of the present invention may be based on the emulsion polymerization method commonly used in the art, except for the method of adding the above-described molecular weight regulator, 1) a styrene monomer and 2) Mixing of the butadiene monomer and the t-dodecyl mercaptan in the molecular weight regulator is not particularly limited and may be added to the polymerization reactor at the same time, or each component may be added to the polymerization reactor continuously.
  • the styrene-butadiene rubber prepared according to the method for preparing styrene-butadiene rubber is washed and removed to remove impurities (residue emulsifier, flocculant, etc.) from the coagulum of the produced styrene-butadiene copolymer and to obtain styrene-butadiene rubber.
  • the drying step can be further roughened.
  • the styrene-butadiene rubber prepared according to the polymerization method of the styrene-butadiene rubber of the present invention has a tensile strength (TS) of 250 kg ⁇ f / cm 2 to 300 kg ⁇ f / cm 2 and a tensile elongation ( ⁇ ) of 370 to May be 400%.
  • TS tensile strength
  • tensile elongation
  • the styrene-butadiene rubber may have a 300% modulus value of 190 to 200.
  • the styrene-butadiene copolymer may have a weight average molecular weight of 200,000 g / mol to 3,000,000 g / mol, and specifically 500,000 g / mol to 2,000,000 g / mol.
  • weight average molecular weight is less than 200,000 g / mol may cause a problem of deterioration of physical properties, and if the weight average molecular weight exceeds 3,000,000 g / mol, it may occur a problem difficult to process due to high gel generation and hardness.
  • Pentamethylheptane thiol (TIB-TDM, Chevron Phillips, 2,2) containing 65 mol% or more of 2,2,4,4,6-pentamethylheptan-4-thiol as a molecular weight regulator when the conversion rate reaches 15% 65 parts by weight of 4,4,6-pentamethylheptan-4-thiol and 35 parts by weight of the remaining isomers were added 0.05 parts by weight (10 parts by weight of 0.5 parts by weight of the total amount of the molecular weight regulator). It was. The polymerization was terminated at the conversion point of 63%, and the reaction time was 7 hours.
  • Example 1 a styrene-butadiene rubber was prepared in the same manner as in Example 1, except that the pentamethylheptanthiol was added at the time when the conversion rate reached 30%.
  • Example 1 styrene-butadiene rubber was prepared in the same manner as in Example 1, except that the pentamethylheptanthiol was added at the time when the conversion rate reached 45%.
  • Example 1 styrene-butadiene rubber was prepared in the same manner as in Example 1, except that the pentamethylheptanthiol was added at a time when the conversion rate reached 50%.
  • Example 1 0.4 parts by weight of t-dodecyl mercaptan (Isu Chemical) as a molecular weight regulator (95 parts by weight of 0.5 parts by weight of total molecular weight regulator), and 0.025 parts by weight of the pentamethylheptane thiol (total weight) Styrene-butadiene rubber was prepared in the same manner as in Example 1, except that the molecular weight regulator was added in an amount of 0.5 parts by weight (5% by weight).
  • t-dodecyl mercaptan Isu Chemical
  • Example 1 0.35 parts by weight of t-dodecyl mercaptan (Isu Chemical) as a molecular weight regulator (70% by weight of 0.5 parts by weight of the total molecular weight regulator), and 0.15 parts by weight of the pentamethylheptane thiol (total weight) Styrene-butadiene rubber was prepared in the same manner as in Example 1, except that the content of the molecular weight modifier was 0.5 parts by weight (30% by weight).
  • Example 1 a styrene-butadiene rubber was prepared in the same manner as in Example 1, except that only 0.5 part by weight of t-dodecyl mercaptan was added as the molecular weight regulator and the pentamethylheptane thiol was not added. .
  • Example 1 0.3 parts by weight of t-dodecyl mercaptan (Isu Chemical) as a molecular weight regulator (60 parts by weight of 0.5 parts by weight of the total molecular weight regulator), 0.2 parts by weight of the pentamethylheptane thiol (total molecular weight regulator) Styrene-butadiene rubber was prepared in the same manner as in Example 1, except that the amount was added in an amount of 0.5 parts by weight (40% by weight).
  • t-dodecyl mercaptan Isu Chemical
  • pentamethylheptane thiol total molecular weight regulator
  • Example 1 a styrene-butadiene rubber was prepared in the same manner as in Example 1, except that the pentamethylheptanthiol was added at a time when the conversion rate reached 60%.
  • Example 1 a styrene-butadiene rubber was prepared in the same manner as in Example 1, except that the pentamethylheptanthiol was added at a conversion rate of 5%.
  • Mooney viscosity was measured by using a Mooney viscometer (MV2000, Alpha Technologies, Inc.) at a temperature of 125 ° C. with a large rotor and reading and reading 4 minutes after the start of the rotor.
  • M H and M L The difference between M H and M L was recorded by measuring the M L (minimum torque) and M H (maximum torque) values with MDR, Ts ⁇ 1 (time to 1% vulcanization), Ts ⁇ 2 (2% The time required until vulcanization), Tc'50 (50% cure time) and Tc'90 (90% cure time) were measured. In this case, Tc'90 means the vulcanization speed.
  • Figure 1 shows the M H value over time of Example 3 and Comparative Example 1.
  • Elongation (e%) measured the elongation of the vulcanizate after vulcanizing each of the nitrile copolymer rubbers at 145 ° C. for 45 minutes.
  • Tensile strength (TS, kg, f / cm 2 ) measured the tensile strength of 300% vulcanizate after vulcanizing each of the nitrile copolymer rubber at 145 °C.
  • PMHT pentamethylheptane thiol
  • MV Mooney viscosity
  • c-MV Mooney viscosity after vulcanization
  • MDR Moving Die Rheometer
  • 300% M represents 300% modulus and the dosage represents weight percent of the total molecular weight modifier dosage.
  • the styrene-butadiene rubber prepared according to Comparative Example 1 did not use the pentamethylheptanedol as a molecular weight regulator, it was confirmed that showed a low modulus.
  • the method for preparing styrene-butadiene rubber of Example 3 includes pentamethylheptane thiol as the molecular weight regulator, the M H (maximum torque) value of the styrene-butadiene rubber produced is the molecular weight regulator. It can be seen that it is higher than the styrene-butadiene rubber prepared by the preparation method according to Comparative Example 1 that does not contain pentamethylheptane thiol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 중합반응에 있어서 2종 이상의 성분을 포함하는 분자량 조절제를 사용하면서, 상기 분자량 조절제의 각 성분의 투입 시점을 최적화하여 제조되는 스티렌-부타디엔 고무의 물성을 개선할 수 있는 스티렌-부타디엔 고무의 제조방법 및 이를 통해 제조된 스티렌-부타디엔 고무에 관한 것으로, 본 발명의 제조방법으로 제조된 스티렌-부타디엔 고무는 인장강도, 인장신율 등의 특성이 개선되어 친환경성, 내마모성 등을 갖는 타이어의 제조에 유용하게 사용될 수 있다.

Description

스티렌-부타디엔 고무의 제조방법 및 스티렌-부타디엔 고무
[관련출원과의 상호 인용]
본 출원은 2015년 12월 28일자 한국 특허 출원 제10-2015-0187671호 및 2016년 12월 28일자 한국 특허 출원 제10-2016-0181187호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 스티렌-부타디엔 고무의 제조방법 및 이를 통해 제조된 스티렌-부타디엔 고무에 관한 것으로, 구체적으로 중합반응에 있어서 2종 이상의 성분을 포함하는 분자량 조절제를 사용하면서, 상기 분자량 조절제의 각 성분의 투입 시점을 최적화하여 제조되는 스티렌-부타디엔 고무의 물성을 개선할 수 있는 스티렌-부타디엔 고무의 제조방법 및 이를 통해 제조된 스티렌-부타디엔 고무에 관한 것이다.
에멀젼 중합된 스티렌-부타디엔 고무(E-SBR)은 타이어의 제조에 있어서 가장 일반적으로 사용되는 합성 고무로 평탄한 가황성, 안정된 스코치, 높은 가공성 등의 특성을 가진다.
최근에는 에너지 효율과 관련하여 EU 라벨링 제도 등 자동차의 연비 규제가 강화되고 있으며, 이에 타이어의 소재에 있어서도 친환경, 내마모성 등을 발휘할 수 있는 스티렌-부타디엔 고무 소재에 대한 연구가 더욱 주목 받고 있다.
에멀젼 공중합체 기술로 스티렌-부타디엔 공중합체 혹은 스티렌-부타디엔-극성단량체 공중합체를 제조하는 방법에 관하여는 여러 특허가 공지되어 있다.
예를 들면, 미국특허 제3,575,913호 및 제3,563,946호에는 스티렌-부타디엔 혹은 스티렌-부타디엔-아크릴레이트 공중합체를 에멀젼 상태에서 과황산화 칼륨 혹은 아조비스이소부티로나이트릴을 이용해 제조한 것이 공지되어 있다. 또한, 특허공개 제1999-0077755호에는 정지 마찰 특성이 개선된 구름 저항 및 트레드웨어 특성을 갖는 타이어 트레드의 제조에 사용될 수 있는 에멀젼 스티렌-부타디엔 고무 및 이의 제조방법이 개시되어 있다.
이와 같은 기존의 스티렌-부타디엔 고무의 중합에는 분자량 조절제로서 t-도데실머캅탄(t-DDM)이 사용되는데, t-도데실머캅탄은 그 제조 메커니즘 상의 특징으로 인해 35개의 이성질체의 혼합물로 이루어져 있어, 이를 이용하여 스티렌-부타디엔 고무를 중합할 경우, 제조된 스티렌-부타디엔 고무의 최종 물성에 좋지 않은 영향을 미친다는 단점이 있다.
따라서, 상기 t-도데실머캅탄을 단점을 해결할 수 있는 새로운 스티렌-부타디엔 고무의 제조방법 및 이를 통해 물성이 개선된 스티렌-부타디엔 고무의 개발을 필요로 한다.
본 발명의 목적은 2종 이상의 성분을 포함하는 분자량 조절제를 사용하면서, 상기 분자량 조절제의 각 성분의 투입 시점을 최적화하여 제조되는 스티렌-부타디엔 고무의 물성을 개선할 수 있는 스티렌-부타디엔 고무의 제조방법을 제공하고자 하는 것이다.
본 발명의 다른 목적은 상기의 제조방법으로 제조된 물성이 개선된 스티렌-부타디엔 고무를 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명은
1) 스티렌계 단량체; 2) 부타디엔계 단량체; 및 3) t-도데실머캅탄 및 펜타메틸헵탄티올(PMHT)을 포함하는 분자량 조절제를 포함하는 조성물을 이용하여 에멀젼 상태로 중합하는 스티렌-부타디엔 고무(styrene-butadiene rubber, SBR)의 제조방법으로서,
상기 t-도데실 머캅탄 및 펜타메틸헵탄티올이 70:30 내지 95:5의 중량비로 포함되고,
상기 펜타메틸헵탄티올은 상기 중합이 10% 내지 55%의 전환율을 나타내는 시점에 투입되는, 스티렌-부타디엔 고무의 제조방법을 제공한다.
또한, 본 발명은 상기의 제조방법으로 제조되고, 인장강도(TS)가 250 kg·f/cm2 내지 300 kg·f/cm2이며, 인장신율(ε)이 370 내지 400%인, 스티렌-부타디엔 고무를 제공한다.
본 발명에 따른 스티렌-부타디엔 고무의 제조방법은 2종 이상의 성분을 포함하는 분자량 조절제를 사용하면서, 상기 분자량 조절제의 각 성분의 투입 시점을 최적화하여 제조되는 스티렌-부타디엔 고무의 물성을 개선할 수 있으며, 따라서 상기 제조방법으로 제조된 스티렌-부타디엔 고무는 인장강도, 인장신율 등의 특성이 개선되어 친환경성, 내마모성 등을 갖는 타이어의 제조에 유용하게 사용될 수 있다.
도 1은 실시예 3 및 비교예 1의 제조 방법에서의 시간에 따른 MH 값을 나타낸 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 스티렌-부타디엔 고무의 제조방법은
1) 스티렌계 단량체; 2) 부타디엔계 단량체; 및 3) t-도데실머캅탄 및 펜타메틸헵탄티올(PMHT)을 포함하는 분자량 조절제를 포함하는 조성물을 이용하여 에멀젼 상태로 중합하는 스티렌-부타디엔 고무(styrene-butadiene rubber, SBR)의 제조방법으로, 이때 상기 t-도데실 머캅탄 및 펜타메틸헵탄티올은 70:30 내지 95:5의 중량비로 포함되고, 상기 펜타메틸헵탄티올은 상기 중합이 10% 내지 55%의 전환율을 나타내는 시점에 투입된다.
1) 스티렌계 단량체
상기 스티렌계 단량체는 스티렌, 모노클로로스티렌, 메틸스티렌, α-메틸스티렌, 디비닐벤젠, p-tert-스티렌 및 디메틸스티렌 중에서 선택된 1종 이상일 수 있다.
상기 스티렌계 단량체는 전체 단량체의 총량 중 10 중량% 내지 60 중량%일 수 있고, 구체적으로 15 내지 50 중량%일 수 있다. 상기 스티렌계 단량체가 10 중량% 미만이면 제조된 스티렌-부타디엔 고무의 인장 물성을 비롯한 기계적 물성이 저하될 수 있고, 60 중량%를 초과할 경우, 제조된 스티렌-부타디엔 고무의 탄성 및 내마모도가 저하될 수 있다.
2) 부타디엔계 단량체
상기 부타디엔계 단량체는 1,3-부타디엔, 1,4-부타디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 1,3-펜타디엔, 및 이소프렌으로 이루어진 1종 이상일 수 있다.
상기 부타디엔계 단량체는 전체 단량체의 총량 중 40 중량% 내지 90 중량%일 수 있고, 구체적으로 50 중량% 내지 85 중량%일 수 있다. 상기 부타디엔계 단량체가 40 중량% 미만이면 제조된 스티렌-부타디엔 고무의 탄성 및 내마모도가 저하하는 문제가 생길 수 있고, 90 중량%를 초과할 경우, 제조된 스티렌-부타디엔 고무의 인장물성을 비롯한 기계적 물성이 저하될 수 있다.
제조된 스티렌-부타디엔 고무를 이루는 공중합체에서 부타디엔 단위의 구조는 트랜스, 시스, 및 비닐 그룹으로 이루어진 군으로부터 선택된 1종 이상의 구조를 가질 수 있다.
3) t-도데실머캅탄 및 펜타메틸헵탄티올(PMHT)을 포함하는 분자량 조절제
상기 분자량 조절제는 t-도데실머캅탄 및 펜타메틸헵탄티올(PMHT)을 포함하며, 상기 t-도데실 머캅탄 및 펜타메틸헵탄티올은 70:30 내지 95:5의 중량비로 포함된다.
상기 t-도데실머캅탄은 하기 반응식에 따라 제조되는 것일 수 있으며, 제조 방법 상 35개 이상의 이성질체를 포함하게 된다.
Figure PCTKR2016015423-appb-I000001
상기 식 (1)에서, R1 내지 R4는 각각 독립적으로 알킬기이며, 상기 R1 내지 R4의 탄소수의 합은 10이다.
상기 펜타메틸헵탄티올(pentamethylheptanethiol, PMHT)은 2,2,4,4,6-펜타메틸헵탄-4-티올, 2,4,4,6,6-펜타메틸헵탄-2-티올, 2,3,4,6,6-펜타메틸헵탄-2-티올, 및 2,3,4,6,6-펜타메틸헵탄-3-티올로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것일 수 있다.
또한, 상기 펜타메틸헵탄티올은 2,2,4,4,6-펜타메틸헵탄-4-티올을 상기 펜타메틸헵탄티올 총 몰수에 대하여 65 몰% 이상 포함하는 것일 수 있다.
상기 펜타메틸헵탄티올은 하기 반응식에 따라 제조되는 것일 수 있으며, 제조 방법 상, 2,2,4,4,6-펜타메틸헵탄-4-티올을 상기 펜타메틸헵탄티올 총 몰수에 대하여 65 몰% 이상 포함할 수 있다.
Figure PCTKR2016015423-appb-I000002
본 발명의 스티렌-부타디엔 고무의 제조방법에서 사용되는 분자량 조절제는 상기 펜타메틸헵탄티올을 상기 t-도데실 머캅탄 및 펜타메틸헵탄티올이 70:30 내지 95:5의 중량비를 만족하도록 포함하며, 또한 상기 펜타메틸헵탄티올은 상기 2,2,4,4,6-펜타메틸헵탄-4-티올을 상기 펜타메틸헵탄티올 총 몰수에 대하여 65 몰% 이상 포함할 수 있으므로, 상기 분자량 조절제에서 2,2,4,4,6-펜타메틸헵탄-4-티올의 단일 이성질체가 가장 큰 분율을 차지하게 되어, 제조되는 스티렌-부타디엔 고무가 고른 물성을 가지게 할 수 있고, 따라서 스티렌-부타디엔 고무의 인장 강도, 인장 신율 등의 물성을 증가시킬 수 있다.
또한, 구체적으로 상기 t-도데실 머캅탄 및 펜타메틸헵탄티올은 70 초과: 30 미만 내지 95 미만:5 초과의 중량비, 더욱 구체적으로 80:20 내지 95 미만:5 초과의 중량비, 더욱 구체적으로 80:20 내지 90:10의 중량비로 포함될 수 있다.
한편, 상기 분자량 조절제는 2,2,4,4,6-펜타메틸헵탄-4-티올을 분자량 조절제 총 몰수에 대하여 5 몰% 이상 포함할 수 있고, 구체적으로 5 몰% 내지 50몰% 포함할 수 있다.
상기 조성물은, 상기 분자량 조절제를 상기 조성물 100 중량부를 기준으로 0.01 중량부 내지 2 중량부 포함할 수 있고, 구체적으로 0.05 내지 2 중량부 포함할 수 있으며, 더욱 구체적으로 0.1 중량부 내지 1 중량부 포함할 수 있다.
상기 분자량 조절제의 사용량에 따라 스티렌-부타디엔 고무의 평균분자량을 조절할 수 있는데, 상기 조성물 100 중량부를 기준으로 상기 분자량 조절제가 0.01 중량부에 가까운 소량이 사용될 경우 제조되는 스티렌-부타디엔 고무가 고분자량을 가질 수 있고, 2 중량부에 가까운 다량이 사용될 경우 제조되는 스티렌-부타디엔 고무가 저분자량을 가질 수 있다. 상기 분자량 조절제의 함량이 0.01 중량부 미만일 경우, 겔이 발생하는 문제가 발생할 수 있고, 2 중량부를 초과할 경우, 제조된 스티렌-부타디엔 고무의 물성이 저하될 수 있다.
본 발명의 스티렌-부타디엔 고무의 제조방법에서 상기 1) 스티렌계 단량체; 2) 부타디엔계 단량체; 및 3) t-도데실머캅탄 및 펜타메틸헵탄티올(PMHT)을 포함하는 분자량 조절제를 포함하는 조성물은 에멀젼 상태에서 라디칼 중합될 수 있다.
상기 라디칼 중합은 5 ℃ 내지 90 ℃의 온도, 구체적으로 10 ℃ 내지 50 ℃의 온도에서 이루어질 수 있고, 2시간 내지 72시간 동안, 구체적으로 4시간 내지 48시간 동안 이루어질 수 있다.
상기 라디칼 중합의 온도가 5℃ 미만일 경우, 반응의 활성에 도달하기 어렵고, 90 ℃를 초과할 경우, 겔이 형성될 수 있다.
본 발명의 스티렌-부타디엔 고무의 제조방법에서 상기 분자량 조절제가 포함하는 t-도데실머캅탄 및 펜타메틸헵탄티올(PMHT)은 각각 중합 반응의 진행 정도에 따라 나뉘어 투입될 수 있으며, 구체적으로 상기 t-도데실머캅탄은 반응 초기에 투입될 수 있고, 상기 펜타메틸헵탄티올(PMHT)은 중합 반응이 시작된 이후에 투입될 수 있다.
상기 펜타메틸헵탄티올(PMHT)은 상기 중합이 10% 내지 55%의 전환율을 나타내는 시점에 투입될 수 있고, 구체적으로 상기 펜타메틸헵탄티올(PMHT)은 상기 중합이 15% 내지 50%의 전환율을 나타내는 시점에 투입될 수 있으며, 보다 구체적으로 상기 중합이 15% 내지 45%의 전환율을 나타내는 시점에 투입될 수 있다.
상기 펜타메틸헵탄티올(PMHT)을 중합 반응이 시작된 이후에 적정 시점, 즉 10% 내지 55%의 전환율을 나타내는 시점에 투입할 경우, 소량의 펜타메틸헵탄티올(PMHT)의 사용만으로도 2,2,4,4,6-펜타메틸헵탄-4-티올의 단일 이성질체가 다량 투입된 것과 같은, 단일 이성질체의 사용에 따라 제조되는 스티렌-부타디엔 고무가 고른 물성을 가지게 되어 스티렌-부타디엔 고무의 인장 강도, 인장 신율 등의 물성을 증가되는 것과 같은, 높은 물성 개선 효과를 나타낼 수 있다.
상기 펜타메틸헵탄티올(PMHT)이 10% 미만의 전환율을 나타내는 시점에 투입될 경우, 가류속도 개선 및 인장강도 향상의 정도가 부족할 수 있고, 55%를 초과하는 전환율을 나타내는 시점에 투입될 경우, 겔 생성에 의해 분자량 조절 효과가 미미할 수 있다.
한편, 본 발명의 스티렌-부타디엔 고무의 제조방법에서 상기 조성물은 상기 1) 스티렌계 단량체 및 2) 부타디엔계 단량체 이외에 아크릴로나이트릴계 단량체를 추가로 포함할 수 있다.
상기 아크릴로나이트릴계 단량체는 메타아크릴로나이트릴, 에타아크릴로나이트릴, α-클로로나이트릴, α-시아노에틸아크릴로나이트릴 및 크로토노나이드릴 중에서 선택된 1 종 이상일 수 있다. 상기 아크릴로나이트릴 단량체는 전체 단량체의 총량 100 중량부에 대하여 0.01 중량부 내지 10 중량부의 양으로 사용될 수 있다. 상기 사용량이 0.01 중량부 이상일 경우, 스티렌-부타디엔 공중합체가 친수성을 발현할 수 있고, 10 중량부 이하일 경우 탄성이 저하하거나, 가공성에 문제가 있을 정도로 강도가 높아지는 문제를 방지할 수 있다.
또한, 상기 조성물은 필요에 따라 라디칼 개시제, 유화제, 중합 정지제 등을 추가로 포함할 수 있다.
상기 라디칼 개시제는 과황산나트륨, 과황산칼륨, 과항산암모늄, 과인산칼륨, 과산화수소와 같은 무기과산화물, t-부틸 퍼옥사이드, 큐멘 하이드로 퍼옥사이ㄷ, p-멘탄하이드로 퍼옥사이드, 디-t-부틸 퍼옥사이드, t-부틸쿠밀 퍼옥사이드, 아세틸 퍼옥사이드, 이소부틸 퍼옥사이드, 옥타노일 퍼옥사이드, 디벤조일 퍼옥사이드, 3,5,5-트리메틸헥산올 퍼옥사이드, t-부틸 퍼옥시 이소부틸레이트와 같은 유기 과산화물, 아조비스 이소부티로니트릴, 아조비스-2,4-디메틸발레로니트릴, 아조비스시클로헥산카르보니트릴, 아조비스 이소낙산(부틸산) 메틸과 같은 질소화합물일 수 있다. 상기 중합개시제는 상기 성분 단독 또는 2종 이상을 조합하여 사용할 수 있다.
상기 라디칼 개시제는 상기 조성물 총 중량 100 중량부에 대하여 0.01 중량부 내지 3 중량부 사용될 수 있고, 구체적으로 0.02 중량부 내지 1 중량부, 더욱 구체적으로 0.05 중량부 내지 0.5 중량부의 양으로 사용될 수 있다.
상기 라디칼 개시제가 상기 조성물 총 중량 100 중량부에 대하여 0.01 중량부 이상 사용될 경우 충분한 중합반응이 이루어질 수 있고, 3 중량부 이하로 사용될 경우 목적하는 분자량을 가지는 중합체가 더욱 적절히 생성될 수 있다.
상기 유화제는 음이온, 양이온, 비이온성 계면활성제 등일 수 있고, 구체적으로 금속염 및 암모늄염 중에서 선택된 1 종 이상일 수 있다. 상기 유화제의 구체적인 예로는 알킬설페이트 금속염, 알킬알릴설포닉산 금속염, 알킬포스페이트 금속염, 알킬설페이트 암모늄염, 알킬알릴설포닉산 암모늄염, 알킬아릴설포닉산 암모늄염, 알릴설포닉산 암모늄염 및 알킬포스페이트 암모늄염 중에서 선택된 1 종 이상을 들 수 있고, 더욱 구체적으로 도데실벤젠 설포닉산, 로진산, 지방산, 로릴설폰산(lauryl sulfonic acid) 및 헥사데실설폰산 중에서 선택된 1 종 이상일 수 있다.
이때, 상기 알킬(alkyl), 알릴(allyl) 및 아릴(aryl)은 각각 독립적으로 5 내지 20 개의 탄소수를 가질 수 있고, 탄소수가 5 미만일 경우, 분산제 역할에 문제가 발생할 수 있고, 탄소수가 20을 초과하는 경우, 스티렌-부타디엔 공중합체의 친수성이 저하될 수 있다.
상기 유화제는 상기 조성물 총 중량 100 중량부에 대하여 0.1 중량부 내지 10 중량부 사용될 수 있고, 구체적으로 0.5 중량부 내지 10 중량부 사용될 수 있다.
상기 유화제가 0.1 중량부 미만일 경우 미셀이 형성되지 않을 수 있고, 10 중량부를 초과할 경우 마이크로에멀젼이 형성되어 저분자를 생성하는 문제가 발생할 수 있다.
상기 중합 정지제로는 다이에틸하이드록시아민, N-이소프로필하이드록시아민, 모노에틸하이드록시아민, 또는 소듐디메틸디티오카바메이트 등을 들 수 있다.
상기 중합 정지제는 상기 조성물 총 중량 100 중량부에 대하여 0.01 중량부 내지 2 중량부일 수 있고, 0.01 중량부 미만일 경우, 반응정지 효과가 부족하고 겔이 발생할 수 있다. 또한 중합 정지제는 인체에 유해하여 2 중량부 이하로 사용되는 것이 바람직하고, 과량 사용될 경우 미반응된 중합 정지제로 인한 냄새 유발 문제 역시 발생할 수 있다.
본 발명의 일례에 따른 스티렌-부타디엔 고무의 제조방법은 전술한 상기 분자량 조절제의 투입 방법을 제외한 부분은 당업계에서 통상적으로 사용되는 유화중합 방법에 의할 수 있으며, 1) 스티렌계 단량체 및 2) 부타디엔계 단량체 및 상기 분자량 조절제 중 상기 t-도데실머캅탄의 혼합은 특별히 한정되지 않고 동시에 중합 반응기에 첨가되거나, 각 구성성분이 중합 반응기에 연속적으로 첨가될 수 있다.
상기 스티렌-부타디엔 고무의 제조방법에 따라 제조된 스티렌-부타디엔 고무는 제조된 스티렌-부타디엔 공중합체의 응고물로부터 불순물(잔류 유화제, 응집제 등)을 제거하고 스티렌-부타디엔 고무를 수득하기 위한, 세척 및 건조 단계를 추가로 거칠 수 있다.
본 발명의 스티렌-부타디엔 고무의 중합방법에 따라 제조된 스티렌-부타디엔 고무는 인장강도(TS)가 250 kg·f/cm2 내지 300 kg·f/cm2이며, 인장신율(ε)이 370 내지 400%일 수 있다.
또한, 상기 스티렌-부타디엔 고무는 300% 모듈러스 값이 190 내지 200일 수 있다.
상기 스티렌-부타디엔 공중합체는 중량평균분자량이 200,000 g/mol 내지 3,000,000 g/mol일 수 있고, 구체적으로 500,000 g/mol 내지 2,000,000 g/mol일 수 있다.
상기 중량평균분자량이 200,000 g/mol 미만이면 물성이 저하하는 문제가 발생할 수 있고, 3,000,000 g/mol를 초과할 경우, 겔 발생 및 경도가 높아 가공이 어려운 문제가 발생할 수 있다.
이하, 하기 실시예 및 실험예에 의하여 본 발명을 보다 상세히 설명한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
실시예 1
10 ℃에서 6 L의 압력반응기에 스티렌 29 중량부, 1,3-부타디엔 71 중량부, 물 178 중량부, 개시제(p-멘탄하이드로 퍼옥사이드) 0.05 중량부, 우드로진산-지방산 유화제(우드로진산: C12-18 수소화 혼합 지방산=50:50 중량비) 5중량부, 및 분자량 조절제로서 t-도데실 머캅탄(이수화학) 0.45 중량부(전체 분자량 조절제 총 투입량 0.5 중량부의 90중량%)를 투입하고 중합반응을 개시하였다.
전환율이 15%에 이른 시점에서 분자량 조절제로서 2,2,4,4,6-펜타메틸헵탄-4-티올을 65 몰% 이상 포함하는 펜타메틸헵탄티올(TIB-TDM, Chevron Phillips, 2,2,4,4,6-펜타메틸헵탄-4-티올을 65 몰% 이상 포함하고, 나머지 이성질체를 35 몰% 포함) 0.05 중량부(전체 분자량 조절제 총 투입량 0.5 중량부의 10중량%)를 추가로 투입하였다. 전환율 63% 시점에서 중합반응을 종료하였으며, 반응 시간은 7시간이 소요되었다.
실시예 2
상기 실시예 1에서, 상기 펜타메틸헵탄티올을 전환율이 30%에 이른 시점에 투입한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 스티렌-부타디엔 고무를 제조하였다.
실시예 3
상기 실시예 1에서, 상기 펜타메틸헵탄티올을 전환율이 45%에 이른 시점에 투입한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 스티렌-부타디엔 고무를 제조하였다.
실시예 4
상기 실시예 1에서, 상기 펜타메틸헵탄티올을 전환율이 50%에 이른 시점에 투입한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 스티렌-부타디엔 고무를 제조하였다.
실시예 5
상기 실시예 1에서, 분자량 조절제로서 t-도데실 머캅탄(이수화학)을 0.475 중량부(전체 분자량 조절제 투입량 0.5 중량부의 95 중량%)로, 상기 펜타메틸헵탄티올의 투입량을 0.025 중량부(전체 분자량 조절제 투입량 0.5 중량부의 5 중량%)로 달리한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 스티렌-부타디엔 고무를 제조하였다.
실시예 6
상기 실시예 1에서, 분자량 조절제로서 t-도데실 머캅탄(이수화학)을 0.35 중량부(전체 분자량 조절제 투입량 0.5 중량부의 70 중량%)로, 상기 펜타메틸헵탄티올의 투입량을 0.15 중량부(전체 분자량 조절제 투입량 0.5 중량부의 30 중량%)로 달리한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 스티렌-부타디엔 고무를 제조하였다.
비교예 1
상기 실시예 1에서, 분자량 조절제로서 t-도데실 머캅탄 0.5 중량부만을 투입하고 상기 펜타메틸헵탄티올을 투입하지 않은 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 스티렌-부타디엔 고무를 제조하였다.
비교예 2
상기 실시예 1에서, 분자량 조절제로서 t-도데실 머캅탄(이수화학)을 0.3 중량부(전체 분자량 조절제 투입량 0.5 중량부의 60 중량%)로, 상기 펜타메틸헵탄티올을 0.2 중량부(전체 분자량 조절제 투입량 0.5 중량부의 40 중량%)로 달리한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 스티렌-부타디엔 고무를 제조하였다.
비교예 3
상기 실시예 1에서, 상기 펜타메틸헵탄티올을 전환율이 60%에 이른 시점에 투입한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 스티렌-부타디엔 고무를 제조하였다.
비교예 4
상기 실시예 1에서, 상기 펜타메틸헵탄티올을 전환율이 5%인 시점에 투입한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 스티렌-부타디엔 고무를 제조하였다.
실험예
상기 실시예 및 비교예에서 제조한 각 니트릴계 공중합체 고무의 가공특성 및 기계적 특성의 비교분석을 위하여, 하기의 방법을 통하여 무니점도(Mooney viscosity), 가류특성, 신율(%), 300% 모듈러스(%), 인장강도(kg·f/cm2) 및 오염도를 측정하여 그 결과를 표 1에 나타내었다.
(1) 무니점도(Mooney viscosity, MV) 및 C-MV
무니점도계(MV2000, 알파테크놀로지사)를 사용하여 125℃에서 큰 로우터로 예열 1분에서 로우터 시동 후 4분 후의 값을 측정 판독하여 무니점도를 측정하였다.
(2) 가류특성
MDR로 ML(최소 토크) 및 MH(최대토크) 값을 측정하여 MH와 ML의 차를 기록하였으며, Ts´1(1% 가류시까지의 소요 시간), Ts´2(2% 가류시까지의 소요 시간), Tc´50(50% 가류되는 시간), Tc´90(90% 가류되는 시간)을 측정하였다. 이때, 상기 Tc´90은 가류속도를 의미한다. 도 1에 실시예 3 및 비교예 1의 시간에 따른 MH 값을 그래프로 나타내었다.
(3) 기계적 특성
신율(elongation, e%)은 상기 각 니트릴계 공중합체 고무를 145℃에서 45분 가류 후 가류물의 신율을 측정하였다.
인장강도(tensile strength, TS, kg·f/cm2)는 상기 각 니트릴계 공중합체 고무를 145℃에서 가류 후 300% 가류물의 인장강도를 측정하였다.
300% 모듈러스는 상기 각 니트릴계 공중합체 고무를 145℃에서 45분 가류 후, 300% 신장시의 모듈러스를 측정하였다.
Figure PCTKR2016015423-appb-T000001
상기 표 1에서 PMHT는 펜타메틸헵탄티올, MV는 무니점도, c-MV는 가류 후의 무니점도, MDR은 Moving DieRheometer. 300% M은 300% 모듈러스를 나타내며, 투입량은 전체 분자량 조절제 투입량에 대한 중량%를 나타낸다.
상기 표 1을 참조하면, 실시예 1 내지 6에 따라 제조된 스티렌-부타디엔 고무는 우수한 인장특성 및 모듈러스를 나타내었음을 확인할 수 있다.
반면, 비교예 1에 따라 제조된 스티렌-부타디엔 고무는 분자량 조절제로서 펜타메틸헵탄티올을 사용하지 않음에 따라 낮은 값의 모듈러스를 나타내었음을 확인할 수 있었다.
한편, 비교예 2에서와 같이 분자량 조절제로서 펜타메틸헵탄티올을 적정량 이상 첨가할 경우에도 스티렌-부타디엔 고무의 추가적인 물성 향상은 관찰되지 않아, 상대적으로 고가인 펜타메틸헵탄티올의 투입량을 적절히 조절하는 것이 바람직함을 확인할 수 있었다.
또한, 비교예 3에서와 같이, 펜타메틸헵탄티올의 투입 시점이 너무 늦어질 경우, 스티렌-부타디엔 고무의 무니 점도가 상승하여 겔이 발생하며 신율이 저하되고, 낮아진 신율로 인해 300% 신장시 모듈러스의 측정이 불가능할 정도로 고무의 물성이 저하되었으며, 비교예 4에서와 같이, 펜타메틸헵탄티올의 투입 시점이 너무 이를 경우, 인장강도 및 300% 신장 모듈러스가 저하됨을 확인할 수 있었다.
이와 더불어, 도 1을 참조하면, 실시예 3의 스티렌-부타디엔 고무의 제조방법은 분자량 조절제로서 펜타메틸헵탄티올을 포함하므로 제조되는 스티렌-부타디엔 고무의 MH(최대토크) 값이, 분자량 조절제로서 펜타메틸헵탄티올을 포함하지 않는 비교예 1에 따른 제조방법에 의해 제조되는 스티렌-부타디엔 고무에 비해 높음을 확인할 수 있다.

Claims (8)

1) 스티렌계 단량체; 2) 부타디엔계 단량체; 및 3) t-도데실머캅탄 및 펜타메틸헵탄티올(PMHT)을 포함하는 분자량 조절제를 포함하는 조성물을 이용하여 에멀젼 상태로 중합하는 스티렌-부타디엔 고무(styrene-butadiene rubber, SBR)의 제조방법으로서,
상기 t-도데실 머캅탄 및 펜타메틸헵탄티올은 70:30 내지 95:5의 중량비로 포함되고,
상기 펜타메틸헵탄티올은 상기 중합이 10% 내지 55%의 전환율을 나타내는 시점에 투입되는, 스티렌-부타디엔 고무의 제조방법.
제 1 항에 있어서,
상기 펜타메틸헵탄티올은 2,2,4,4,6-펜타메틸헵탄-4-티올, 2,4,4,6,6-펜타메틸헵탄-2-티올, 2,3,4,6,6-펜타메틸헵탄-2-티올, 및 2,3,4,6,6-펜타메틸헵탄-3-티올로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 스티렌-부타디엔 고무의 제조방법.
제 1 항에 있어서,
상기 펜타메틸헵탄티올은 2,2,4,4,6-펜타메틸헵탄-4-티올을 상기 펜타메틸헵탄티올 총 몰수에 대하여 65 몰% 이상 포함하는, 스티렌-부타디엔 고무의 제조방법.
제 1 항에 있어서,
상기 t-도데실 머캅탄 및 펜타메틸헵탄티올이 80:20 내지 95:5의 중량비로 포함되는, 스티렌-부타디엔 고무의 제조방법.
제 1 항에 있어서,
상기 분자량 조절제가 2,2,4,4,6-펜타메틸헵탄-4-티올을 분자량 조절제 총 몰수에 대하여 5 몰% 이상 포함하는, 스티렌-부타디엔 고무의 제조방법.
제 1 항에 있어서,
상기 조성물이 상기 분자량 조절제를 상기 조성물 100 중량부를 기준으로 0.05 내지 2 중량부 포함하는, 스티렌-부타디엔 고무의 제조방법.
제 1 항의 제조방법에 의하여 제조되고,
인장강도(TS)가 250 kg·f/cm2 내지 300 kg·f/cm2이며, 인장신율(ε)이 370 내지 400%인, 스티렌-부타디엔 고무.
제 7 항에 있어서,
상기 스티렌-부타디엔 고무는 300% 모듈러스 값이 190 내지 200인, 스티렌-부타디엔 고무.
PCT/KR2016/015423 2015-12-28 2016-12-28 스티렌-부타디엔 고무의 제조방법 및 스티렌-부타디엔 고무 WO2017116145A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/741,538 US10501610B2 (en) 2015-12-28 2016-12-28 Method for preparing styrene-butadiene rubber and styrene-butadiene rubber
EP16882097.5A EP3309184B1 (en) 2015-12-28 2016-12-28 Method for preparing styrene-butadiene rubber and styrene-butadiene rubber
CN201680043640.8A CN107849195B (zh) 2015-12-28 2016-12-28 丁苯橡胶的制备方法和丁苯橡胶

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150187671 2015-12-28
KR10-2015-0187671 2015-12-28
KR10-2016-0181187 2016-12-28
KR1020160181187A KR101961918B1 (ko) 2015-12-28 2016-12-28 스티렌-부타디엔 고무의 제조방법 및 스티렌-부타디엔 고무

Publications (1)

Publication Number Publication Date
WO2017116145A1 true WO2017116145A1 (ko) 2017-07-06

Family

ID=59225187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015423 WO2017116145A1 (ko) 2015-12-28 2016-12-28 스티렌-부타디엔 고무의 제조방법 및 스티렌-부타디엔 고무

Country Status (1)

Country Link
WO (1) WO2017116145A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807941A (en) * 1994-08-29 1998-09-15 Nippon Zeon Co., Ltd. Unsaturated nitrile-conjugated diene copolymer process for producing same and vulcanizable rubber composition
US6342559B1 (en) * 1998-03-31 2002-01-29 Zeon Corporation Conjugated diene rubber, process for producing the same, and rubber composition
US6642315B2 (en) * 2000-08-01 2003-11-04 The Yokohama Rubber Co., Ltd. Rubber composition and crosslinked rubber
US6649724B2 (en) * 2000-06-07 2003-11-18 Zeon Corporation Conjugated diene rubber gel, rubber compositions containing the same and process for production of conjugated diene rubber
KR101484380B1 (ko) * 2009-12-23 2015-01-19 스타이런 유럽 게엠베하 냄새가 적은 공중합체 라텍스의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807941A (en) * 1994-08-29 1998-09-15 Nippon Zeon Co., Ltd. Unsaturated nitrile-conjugated diene copolymer process for producing same and vulcanizable rubber composition
US6342559B1 (en) * 1998-03-31 2002-01-29 Zeon Corporation Conjugated diene rubber, process for producing the same, and rubber composition
US6649724B2 (en) * 2000-06-07 2003-11-18 Zeon Corporation Conjugated diene rubber gel, rubber compositions containing the same and process for production of conjugated diene rubber
US6642315B2 (en) * 2000-08-01 2003-11-04 The Yokohama Rubber Co., Ltd. Rubber composition and crosslinked rubber
KR101484380B1 (ko) * 2009-12-23 2015-01-19 스타이런 유럽 게엠베하 냄새가 적은 공중합체 라텍스의 제조 방법

Similar Documents

Publication Publication Date Title
US9328176B2 (en) Functional styrene-butadiene copolymer
WO2016093616A1 (ko) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 열가소성 수지
WO2016072577A1 (ko) 니트릴계 고무의 제조방법
US10501610B2 (en) Method for preparing styrene-butadiene rubber and styrene-butadiene rubber
US3998998A (en) Novel copolymers of dicyano-substituted 1,3-dienes
WO2022193837A1 (zh) 一种富马酸酯/共轭二烯共聚物型生物基橡胶及其制备方法和其硫化胶制品
WO2017116145A1 (ko) 스티렌-부타디엔 고무의 제조방법 및 스티렌-부타디엔 고무
WO2016099129A1 (ko) 디엔계 고무 중합체의 제조방법, 이로부터 제조된 디엔계 고무 중합체 및 이를 포함하는 코어-쉘 구조의 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
WO2019124744A1 (ko) 공액디엔계 공중합체 조성물, 이의 제조방법 및 이를 포함하는 고무 조성물
US2698318A (en) Rubbery interpolymers of butadiene-1, 3 hydrocarbons with polyunsaturated carboxylic acids
JP5485528B2 (ja) 共役ジエンゴム組成物
US20130289200A1 (en) Novel hydrophilic chain transfer agent and end-modified styrene-butadiene copolymer using them
US6147154A (en) Chloroprene rubber composition
JP2015110687A (ja) キサントゲン変性クロロプレンゴム及びその製造方法
KR101731745B1 (ko) 크산토겐 변성 클로로프렌 고무 및 그 제조 방법
US2681331A (en) Synthetic rubbery tripolymers of butadiene, alkyl-butadienes, and vinyl pyridines
WO2019045319A1 (ko) 공액디엔계 공중합체 제조방법, 이로부터 제조된 공액디엔계 공중합체 및 이를 포함하는 고무 조성물
DE2456821C3 (de) Verfahren zur Herstellung von modifizierten Elastomeren
US3697489A (en) High temperature nitrile elastomer
JP3858365B2 (ja) 耐動的疲労性に優れたクロロプレンゴム組成物用クロロプレンゴム、クロロプレンゴム組成物及びそれを用いてなる自動車用ブーツ
KR101997538B1 (ko) Raft제 및 이를 이용한 공중합체의 제조방법
WO2015005597A1 (ko) 니트릴 고무 및 이의 제조방법
JPH08245841A (ja) 振動減衰材用クロロプレンゴム組成物及び振動減衰材用クロロプレンゴム成型加硫物
WO2020122422A1 (ko) 아크릴계 공중합체, 이의 제조방법 및 이를 포함하는 아크릴계 공중합체 조성물
WO2017095087A1 (ko) 결합 스티렌 함량이 낮은 스티렌-부타디엔 고무의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882097

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15741538

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016882097

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE