WO2017115562A1 - Acoustic wave filter and duplexer - Google Patents

Acoustic wave filter and duplexer Download PDF

Info

Publication number
WO2017115562A1
WO2017115562A1 PCT/JP2016/083567 JP2016083567W WO2017115562A1 WO 2017115562 A1 WO2017115562 A1 WO 2017115562A1 JP 2016083567 W JP2016083567 W JP 2016083567W WO 2017115562 A1 WO2017115562 A1 WO 2017115562A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
duplexer
resonator
acoustic wave
elastic wave
Prior art date
Application number
PCT/JP2016/083567
Other languages
French (fr)
Japanese (ja)
Inventor
憲良 太田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017115562A1 publication Critical patent/WO2017115562A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave filter and a duplexer.
  • the duplexer transmission filter described in Patent Document 1 is a ladder-type elastic wave filter.
  • the series arm resonator and the parallel arm resonator of the acoustic wave filter are composed of surface acoustic wave resonators.
  • a bridging inductor is connected in parallel to the series arm resonator connected to the transmission terminal.
  • An object of the present invention is to provide an elastic wave filter and a duplexer which can easily achieve impedance matching and can be miniaturized.
  • An elastic wave filter includes a signal terminal, an elastic wave resonator connected to the signal terminal, a first inductor that is a bridging inductor connected in parallel to the elastic wave resonator, The first inductor has a first end connected to the signal terminal, and a second end opposite to the first end, the first end and the first end A second inductor connected between one of the second ends and the ground potential.
  • the acoustic wave resonator is directly connected to the signal terminal without passing through other circuit elements. In this case, it is easier to perform impedance matching.
  • the second inductor is connected between the second end of the first inductor and a ground potential. In this case, it is easier to perform impedance matching. In addition, since the second inductor can be reduced in size, the elastic wave filter can be reduced in size.
  • the signal terminal is an input terminal.
  • impedance matching can be easily performed, and the resistance to electrostatic breakdown of the elastic wave filter can be effectively increased.
  • the elastic wave filter is a ladder type filter having a series arm resonator and a parallel arm resonator, and the elastic wave resonator is the signal terminal most. It is the said series arm resonator located in the side.
  • the duplexer according to the present invention includes a first bandpass filter that is an elastic wave filter configured according to the present invention, and a second bandpass filter that has a different passband from the first bandpass filter. Is provided.
  • an elastic wave filter and a duplexer that can easily achieve impedance matching and can be miniaturized.
  • FIG. 1 is a circuit diagram of a duplexer according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a duplexer of a comparative example.
  • FIG. 3 is a schematic plan view showing the electrode configuration of the series arm resonator connected to the input terminal according to the first embodiment of the present invention.
  • FIG. 4 is a schematic plan view showing the electrode configuration of the first and second longitudinally coupled resonator type acoustic wave filters in the first embodiment of the present invention.
  • Time 5 is a Smith chart at the input terminal of the duplexer of the first embodiment of the present invention and the comparative example.
  • FIG. 6 is a circuit diagram of a duplexer according to the second embodiment of the present invention.
  • FIG. 7 is a Smith chart at the input terminals of the duplexers of the first and second embodiments and the comparative example of the present invention.
  • FIG. 8 is a circuit diagram of a duplexer according to the third embodiment of the present invention.
  • FIG. 1 is a circuit diagram of a duplexer according to the first embodiment of the present invention.
  • the duplexer 1 includes a first band pass filter 2a and a second band pass filter 2b having a different pass band from the first band pass filter 2a.
  • the duplexer 1 has an antenna terminal 4 connected to an antenna.
  • the first and second band-pass filters 2 a and 2 b are commonly connected to the antenna terminal 4.
  • the duplexer 1 is not particularly limited, the duplexer 1 is a duplexer whose frequency band is located in Band66. More specifically, the first band-pass filter 2a is a transmission filter having a pass band of 1710 MHz or more and 1780 MHz or less. The second band pass filter 2b is a reception filter having a pass band of 2110 MHz or more and 2200 MHz or less.
  • the first band-pass filter 2a is an elastic wave filter according to an embodiment of the present invention.
  • the first band-pass filter 2a is not particularly limited, but is a ladder filter.
  • the first band-pass filter 2a includes series arm resonators S1 to S5 and parallel arm resonators P1 to P4.
  • the series arm resonators S1 to S5 and the parallel arm resonators P1 to P4 are all acoustic wave resonators.
  • the first band-pass filter 2a has an input terminal 3 as a signal terminal.
  • the series arm resonators S 1 to S 5 are connected in series between the input terminal 3 and the antenna terminal 4.
  • the series arm resonator S 1 is a series arm resonator located closest to the input terminal 3 and is directly connected to the input terminal 3.
  • the series arm resonator S1 is directly connected to the input terminal 3 without passing through other circuit elements.
  • the first band-pass filter 2a has a first inductor L1, which is a bridging inductor connected in parallel to the series arm resonator S1.
  • the first inductor L1 has a first end L1a connected to the input terminal 3, and a second end L1b opposite to the first end L1a.
  • the second end L1b is connected to the series arm resonator S2 side of the series arm resonator S1.
  • a second inductor L2 is connected between the second end L1b and the ground potential.
  • the second inductor L2 is an inductor for adjusting impedance.
  • the inductance of the second inductor L2 is not particularly limited, but is 9 nH.
  • a parallel arm resonator P1 is connected between the connection point between the series arm resonator S1 and the series arm resonator S2 and the ground potential.
  • a parallel arm resonator P2 is connected between a connection point between the series arm resonator S2 and the series arm resonator S3 and the ground potential.
  • a parallel arm resonator P3 is connected between a connection point between the series arm resonator S3 and the series arm resonator S4 and the ground potential.
  • a parallel arm resonator P4 is connected between a connection point between the series arm resonator S4 and the series arm resonator S5 and the ground potential.
  • the parallel arm resonators P1 to P4 are commonly connected to the ground potential. More specifically, the first bandpass filter 2a includes an inductor L3. The ends on the ground potential side of the parallel arm resonators P1 to P4 are commonly connected to the inductor L3. The inductor L3 is connected to the ground potential.
  • the first band-pass filter 2a may not include the inductor L3.
  • the configuration in which the parallel arm resonators P1 to P4 are commonly connected to the ground potential is not particularly limited.
  • the number of series arm resonators and parallel arm resonators of the first bandpass filter 2a is not particularly limited.
  • the second band-pass filter 2 b has an output terminal 5.
  • the second band pass filter 2b includes first and second longitudinally coupled resonator type acoustic wave filters 6a and 6b connected in parallel between the antenna terminal 4 and the output terminal 5. Further, the second band pass filter 2b has an acoustic wave resonator S11 connected between the antenna terminal 4 and the first and second longitudinally coupled resonator type acoustic wave filters 6a and 6b.
  • the first and second longitudinally coupled resonator type acoustic wave filters 6a and 6b are 3IDT type longitudinally coupled resonator type acoustic wave filters.
  • the configuration of the second bandpass filter 2b is not particularly limited.
  • the feature of this embodiment is that the first inductor L1 is connected in parallel to the acoustic wave resonator connected to the signal terminal, and between the second end L1b of the first inductor L1 and the ground potential.
  • the second inductor L2 is connected to the second inductor L2.
  • FIG. 2 is a circuit diagram of a duplexer of a comparative example.
  • the duplexer 31 is different from the first embodiment in that the first band-pass filter 32a does not have an inductor connected between the end of the first inductor L1 and the ground potential. In other respects, the duplexer 31 has the same configuration as the duplexer 1 of the first embodiment.
  • each elastic wave resonator in the first embodiment and the comparative example specifically has a configuration shown in FIG. In FIG. 3, the configuration of the series arm resonator S1 is shown as a representative.
  • FIG. 3 is a schematic plan view showing an electrode configuration of the series arm resonator connected to the input terminal in the first embodiment.
  • the serial arm resonator S1 has an IDT electrode 7 provided on a piezoelectric body. Reflectors 8 are provided on both sides of the IDT electrode 7 in the elastic wave propagation direction.
  • the series arm resonators S2 to S5, the parallel arm resonators P1 to P4, and the elastic wave resonator S11 shown in FIGS. 1 and 2 also have the same configuration as the series arm resonator S1.
  • first and second longitudinally coupled resonator type acoustic wave filters 6a and 6b have a configuration shown in FIG.
  • FIG. 4 is a schematic plan view showing an electrode configuration of the first and second longitudinally coupled resonator type acoustic wave filters in the first embodiment.
  • the first longitudinally coupled resonator type acoustic wave filter 6a includes IDT electrodes 6a1 to 6a3. Reflectors 9 are provided on both sides of the IDT electrodes 6a1 to 6a3 in the elastic wave propagation direction.
  • the second longitudinally coupled resonator type acoustic wave filter 6b includes IDT electrodes 6b1 to 6b3. Reflectors 10 are provided on both sides of the IDT electrodes 6b1 to 6b3 in the elastic wave propagation direction.
  • the duplexer of the first embodiment was manufactured.
  • the logarithm, cross width, and electrode finger pitch of the electrode fingers of the IDT electrodes of the series arm resonators S1 to S5, the parallel arm resonators P1 to P4, and the acoustic wave resonator S11 shown in FIG. I made it.
  • the number of electrode fingers and the electrode finger pitch of each reflector are as shown in Table 1.
  • the number of electrode fingers and the electrode finger pitch of each reflector 9, 10 are as shown in Table 2.
  • a comparative duplexer was also produced.
  • the configurations of the acoustic wave resonators and the longitudinally coupled resonator type acoustic wave filters in the comparative example are the same as those of the acoustic wave resonators and the longitudinally coupled resonator type acoustic wave filters in the first embodiment.
  • FIG. 5 is a Smith chart at the input terminals of the duplexers of the first embodiment and the comparative example.
  • Solid line A shows the result of the first embodiment
  • alternate long and short dash line B shows the result of the comparative example.
  • each thick line part of a continuous line and a dashed-dotted line is corresponded to the pass band of the duplexer of 1st Embodiment and a comparative example. The same applies to FIG. 7 described later.
  • the impedance in the pass band of the duplexer of the comparative example is far from the characteristic impedance (50 ⁇ ).
  • the impedance in the pass band of the duplexer of the first embodiment is sufficiently close to 50 ⁇ .
  • the spread of the thick line portion of the solid line A is smaller than the spread of the thick line portion of the one-dot chain line B. Therefore, in the first embodiment, it is easy to perform impedance matching of the duplexer.
  • the series arm resonator S1 is connected to the input terminal 3, and the burden at the time of voltage application is larger than the other series arm resonators S2 to S5.
  • the input terminal 3 is connected to the ground potential via the first inductor L1 and the second inductor L2. Therefore, the electrostatic breakdown of the series arm resonator S1 hardly occurs. Accordingly, the resistance of the duplexer 1 to electrostatic breakdown can be effectively increased.
  • the second inductor L2 is connected to the second end L1b of the first inductor L1. Thereby, the inductance of the second inductor L2 for impedance matching can be further reduced. Therefore, the second inductor L2 can be reduced in size. Therefore, the duplexer 1 can be reduced in size.
  • FIG. 6 is a circuit diagram of the duplexer according to the second embodiment.
  • the duplexer 11 is the first implementation in the first band-pass filter 12a in that the second inductor L12 is connected between the first end L1a of the first inductor L1 and the ground potential. Different from form. In other respects, the duplexer 11 has the same configuration as the duplexer 1 of the first embodiment.
  • the inductance of the second inductor L12 is 12 nH.
  • the input terminal 3 is connected to the series arm resonator S1, and is also connected to the ground potential via the second inductor L12. Therefore, as in the first embodiment, electrostatic breakdown of the series arm resonator S1 hardly occurs.
  • FIG. 7 is a Smith chart at the input terminals of the duplexers of the first and second embodiments and the comparative example.
  • a broken line C indicates the result of the second embodiment, and a thick line portion of the broken line C corresponds to the passband of the duplexer of the second embodiment.
  • the impedance in the passband of the duplexer of the second embodiment is closer to 50 ⁇ than the comparative example. Therefore, it can be understood that impedance matching of the duplexer can be easily performed.
  • the second inductor L2 is connected to the second end L1b of the first inductor L1. This makes it easier to achieve impedance matching.
  • FIG. 8 is a circuit diagram of a duplexer according to the third embodiment.
  • the duplexer 21 is different from the first embodiment in the arrangement of the first inductor L21 and the second inductor L22 connected to the first inductor L21.
  • the duplexer 21 also differs from that of the first embodiment in that it includes an acoustic wave resonator S22 connected between the first and second longitudinally coupled resonator type acoustic wave filters 6a and 6b and the output terminal 5.
  • the duplexer 21 has the same configuration as the duplexer 1 of the first embodiment.
  • the first inductor L21 is connected in parallel to the acoustic wave resonator S22.
  • the first end L21a of the first inductor L21 is connected to the output terminal 5.
  • a second inductor L22 is connected between the second end L21b opposite to the first end L21a of the first inductor L21 and the ground potential. Note that the first band-pass filter 22a does not have a bridging inductor.
  • impedance matching at the output terminal 5 is easy to be performed, and electrostatic breakdown of the acoustic wave resonator S22 hardly occurs.
  • the second band-pass filter 22b is an elastic wave filter according to an embodiment of the present invention. As described above, the present invention can also be suitably applied to an elastic wave filter other than a ladder type filter.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

Provided is an acoustic wave filter with which impedance matching can be performed easily, and with which a reduction in size can be achieved. This acoustic wave filter is provided with: an input terminal 3 (signal terminal); a series-arm resonator S1 (acoustic wave resonator) connected to the input terminal 3; a first inductor L1, which is a bridging inductor connected in parallel with the series-arm resonator S1; a first end portion L1a where the first inductor L1 is connected to the input terminal 3; a second end portion L1b on the opposite side to the first end portion L1a; and a second inductor L2 connected between either the first end portion L1a or the second end portion L1b and a ground potential.

Description

弾性波フィルタ及びデュプレクサElastic wave filter and duplexer
 本発明は、弾性波フィルタ及びデュプレクサに関する。 The present invention relates to an elastic wave filter and a duplexer.
 従来、弾性波フィルタは携帯電話機のデュプレクサなどに広く用いられている。 Conventionally, elastic wave filters have been widely used for duplexers of mobile phones.
 例えば、特許文献1に記載のデュプレクサの送信フィルタは、ラダー型の弾性波フィルタである。この弾性波フィルタの直列腕共振子及び並列腕共振子は、弾性表面波共振子からなる。送信端子に接続されている直列腕共振子に並列に、橋絡インダクタが接続されている。 For example, the duplexer transmission filter described in Patent Document 1 is a ladder-type elastic wave filter. The series arm resonator and the parallel arm resonator of the acoustic wave filter are composed of surface acoustic wave resonators. A bridging inductor is connected in parallel to the series arm resonator connected to the transmission terminal.
特許第5510694号公報Japanese Patent No. 5510694
 特許文献1における直列腕共振子は容量性としても機能するため、送信端子のインピーダンスは容量性となりやすく、そのままではインピーダンスの整合がとれないという問題があった。 Since the series arm resonator in Patent Document 1 also functions as a capacitive element, the impedance of the transmission terminal tends to be capacitive, and there is a problem that impedance matching cannot be achieved as it is.
 本発明の目的は、インピーダンス整合を容易にとることができ、かつ小型化が達成可能な、弾性波フィルタ及びデュプレクサを提供することにある。 An object of the present invention is to provide an elastic wave filter and a duplexer which can easily achieve impedance matching and can be miniaturized.
 本発明に係る弾性波フィルタは、信号端子と、前記信号端子に接続されている弾性波共振子と、前記弾性波共振子に並列に接続されている橋絡インダクタである第1のインダクタと、前記第1のインダクタが前記信号端子に接続されている第1の端部と、該第1の端部とは反対側の第2の端部とを有し、前記第1の端部及び前記第2の端部の内のいずれか一方とグラウンド電位との間に接続されている第2のインダクタとを備える。 An elastic wave filter according to the present invention includes a signal terminal, an elastic wave resonator connected to the signal terminal, a first inductor that is a bridging inductor connected in parallel to the elastic wave resonator, The first inductor has a first end connected to the signal terminal, and a second end opposite to the first end, the first end and the first end A second inductor connected between one of the second ends and the ground potential.
 本発明に係る弾性波フィルタのある特定の局面では、前記弾性波共振子が、他の回路要素を介さずに、前記信号端子に直接接続されている。この場合には、インピーダンス整合をより一層とり易い。 In a specific aspect of the acoustic wave filter according to the present invention, the acoustic wave resonator is directly connected to the signal terminal without passing through other circuit elements. In this case, it is easier to perform impedance matching.
 本発明に係る弾性波フィルタの他の特定の局面では、前記第2のインダクタが、前記第1のインダクタの前記第2の端部とグラウンド電位との間に接続されている。この場合には、インピーダンス整合をより一層とり易い。加えて、第2のインダクタを小型にすることができるため、弾性波フィルタの小型化を図ることができる。 In another specific aspect of the acoustic wave filter according to the present invention, the second inductor is connected between the second end of the first inductor and a ground potential. In this case, it is easier to perform impedance matching. In addition, since the second inductor can be reduced in size, the elastic wave filter can be reduced in size.
 本発明に係る弾性波フィルタのさらに他の特定の局面では、前記信号端子が入力端子である。この場合には、インピーダンス整合をとり易く、かつ弾性波フィルタの静電破壊に対する耐性を効果的に高めることができる。 In yet another specific aspect of the acoustic wave filter according to the present invention, the signal terminal is an input terminal. In this case, impedance matching can be easily performed, and the resistance to electrostatic breakdown of the elastic wave filter can be effectively increased.
 本発明に係る弾性波フィルタの別の特定の局面では、前記弾性波フィルタは、直列腕共振子及び並列腕共振子を有するラダー型フィルタであって、前記弾性波共振子が、最も前記信号端子側に位置する前記直列腕共振子である。 In another specific aspect of the elastic wave filter according to the present invention, the elastic wave filter is a ladder type filter having a series arm resonator and a parallel arm resonator, and the elastic wave resonator is the signal terminal most. It is the said series arm resonator located in the side.
 本発明に係るデュプレクサは、本発明に従い構成されている弾性波フィルタである第1の帯域通過型フィルタと、前記第1の帯域通過型フィルタとは通過帯域が異なる第2の帯域通過型フィルタとを備える。 The duplexer according to the present invention includes a first bandpass filter that is an elastic wave filter configured according to the present invention, and a second bandpass filter that has a different passband from the first bandpass filter. Is provided.
 本発明によれば、インピーダンス整合を容易にとることができ、かつ小型化が達成可能である、弾性波フィルタ及びデュプレクサを提供することができる。 According to the present invention, it is possible to provide an elastic wave filter and a duplexer that can easily achieve impedance matching and can be miniaturized.
図1は、本発明の第1の実施形態に係るデュプレクサの回路図である。FIG. 1 is a circuit diagram of a duplexer according to the first embodiment of the present invention. 図2は、比較例のデュプレクサの回路図である。FIG. 2 is a circuit diagram of a duplexer of a comparative example. 図3は、本発明の第1の実施形態における入力端子に接続された直列腕共振子の電極構成を示す模式的平面図である。FIG. 3 is a schematic plan view showing the electrode configuration of the series arm resonator connected to the input terminal according to the first embodiment of the present invention. 図4は、本発明の第1の実施形態における第1,第2の縦結合共振子型弾性波フィルタの電極構成を示す模式的平面図である。FIG. 4 is a schematic plan view showing the electrode configuration of the first and second longitudinally coupled resonator type acoustic wave filters in the first embodiment of the present invention. 時5は、本発明の第1の実施形態及び比較例のデュプレクサの入力端子におけるスミスチャートである。 Time 5 is a Smith chart at the input terminal of the duplexer of the first embodiment of the present invention and the comparative example. 図6は、本発明の第2の実施形態に係るデュプレクサの回路図である。FIG. 6 is a circuit diagram of a duplexer according to the second embodiment of the present invention. 図7は、本発明の第1,第2の実施形態及び比較例のデュプレクサの入力端子におけるスミスチャートである。FIG. 7 is a Smith chart at the input terminals of the duplexers of the first and second embodiments and the comparative example of the present invention. 図8は、本発明の第3の実施形態に係るデュプレクサの回路図である。FIG. 8 is a circuit diagram of a duplexer according to the third embodiment of the present invention.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 It should be pointed out that each embodiment described in this specification is an example, and a partial replacement or combination of configurations is possible between different embodiments.
 図1は、本発明の第1の実施形態に係るデュプレクサの回路図である。 FIG. 1 is a circuit diagram of a duplexer according to the first embodiment of the present invention.
 デュプレクサ1は、第1の帯域通過型フィルタ2aと、第1の帯域通過型フィルタ2aとは通過帯域が異なる第2の帯域通過型フィルタ2bとを有する。デュプレクサ1は、アンテナに接続されるアンテナ端子4を有する。第1,第2の帯域通過型フィルタ2a,2bは、アンテナ端子4に共通接続されている。 The duplexer 1 includes a first band pass filter 2a and a second band pass filter 2b having a different pass band from the first band pass filter 2a. The duplexer 1 has an antenna terminal 4 connected to an antenna. The first and second band- pass filters 2 a and 2 b are commonly connected to the antenna terminal 4.
 デュプレクサ1は、特に限定されないが、周波数帯域がBand66に位置するデュプレクサである。より具体的には、第1の帯域通過型フィルタ2aは、通過帯域が1710MHz以上、1780MHz以下の送信フィルタである。第2の帯域通過型フィルタ2bは、通過帯域が2110MHz以上、2200MHz以下の受信フィルタである。 Although the duplexer 1 is not particularly limited, the duplexer 1 is a duplexer whose frequency band is located in Band66. More specifically, the first band-pass filter 2a is a transmission filter having a pass band of 1710 MHz or more and 1780 MHz or less. The second band pass filter 2b is a reception filter having a pass band of 2110 MHz or more and 2200 MHz or less.
 ここで、第1の帯域通過型フィルタ2aは、本発明の一実施形態に係る弾性波フィルタである。 Here, the first band-pass filter 2a is an elastic wave filter according to an embodiment of the present invention.
 第1の帯域通過型フィルタ2aは、特に限定されないが、ラダー型フィルタである。第1の帯域通過型フィルタ2aは、直列腕共振子S1~S5及び並列腕共振子P1~P4を有する。直列腕共振子S1~S5及び並列腕共振子P1~P4は、いずれも弾性波共振子である。 The first band-pass filter 2a is not particularly limited, but is a ladder filter. The first band-pass filter 2a includes series arm resonators S1 to S5 and parallel arm resonators P1 to P4. The series arm resonators S1 to S5 and the parallel arm resonators P1 to P4 are all acoustic wave resonators.
 第1の帯域通過型フィルタ2aは、信号端子としての入力端子3を有する。直列腕共振子S1~S5は、入力端子3とアンテナ端子4との間に、互いに直列に接続されている。 The first band-pass filter 2a has an input terminal 3 as a signal terminal. The series arm resonators S 1 to S 5 are connected in series between the input terminal 3 and the antenna terminal 4.
 直列腕共振子S1は、最も入力端子3側に位置する直列腕共振子であり、入力端子3に直接接続されている。なお、直列腕共振子S1は、他の回路要素を介さずに、入力端子3に直接接続されている。第1の帯域通過型フィルタ2aは、直列腕共振子S1に並列に接続されている橋絡インダクタである、第1のインダクタL1を有する。第1のインダクタL1は、入力端子3に接続されている第1の端部L1aと、第1の端部L1aとは反対側の第2の端部L1bとを有する。第2の端部L1bは、直列腕共振子S1の直列腕共振子S2側に接続されている。 The series arm resonator S 1 is a series arm resonator located closest to the input terminal 3 and is directly connected to the input terminal 3. The series arm resonator S1 is directly connected to the input terminal 3 without passing through other circuit elements. The first band-pass filter 2a has a first inductor L1, which is a bridging inductor connected in parallel to the series arm resonator S1. The first inductor L1 has a first end L1a connected to the input terminal 3, and a second end L1b opposite to the first end L1a. The second end L1b is connected to the series arm resonator S2 side of the series arm resonator S1.
 第2の端部L1bとグラウンド電位との間には、第2のインダクタL2が接続されている。第2のインダクタL2は、インピーダンス調整用のインダクタである。第2のインダクタL2のインダクタンスは、特に限定されないが、9nHである。 A second inductor L2 is connected between the second end L1b and the ground potential. The second inductor L2 is an inductor for adjusting impedance. The inductance of the second inductor L2 is not particularly limited, but is 9 nH.
 直列腕共振子S1と直列腕共振子S2との間の接続点とグラウンド電位との間には、並列腕共振子P1が接続されている。直列腕共振子S2と直列腕共振子S3との間の接続点とグラウンド電位との間には、並列腕共振子P2が接続されている。直列腕共振子S3と直列腕共振子S4との間の接続点とグラウンド電位との間には、並列腕共振子P3が接続されている。直列腕共振子S4と直列腕共振子S5との間の接続点とグラウンド電位との間には、並列腕共振子P4が接続されている。 A parallel arm resonator P1 is connected between the connection point between the series arm resonator S1 and the series arm resonator S2 and the ground potential. A parallel arm resonator P2 is connected between a connection point between the series arm resonator S2 and the series arm resonator S3 and the ground potential. A parallel arm resonator P3 is connected between a connection point between the series arm resonator S3 and the series arm resonator S4 and the ground potential. A parallel arm resonator P4 is connected between a connection point between the series arm resonator S4 and the series arm resonator S5 and the ground potential.
 並列腕共振子P1~P4は、グラウンド電位に共通接続されている。より具体的には、第1の帯域通過型フィルタ2aは、インダクタL3を有する。並列腕共振子P1~P4のグラウンド電位側の各端部は、インダクタL3に共通接続されている。インダクタL3がグラウンド電位に接続されている。 The parallel arm resonators P1 to P4 are commonly connected to the ground potential. More specifically, the first bandpass filter 2a includes an inductor L3. The ends on the ground potential side of the parallel arm resonators P1 to P4 are commonly connected to the inductor L3. The inductor L3 is connected to the ground potential.
 なお、第1の帯域通過型フィルタ2aは、インダクタL3を有しなくともよい。並列腕共振子P1~P4がグラウンド電位に共通接続されている構成には特に限定されない。第1の帯域通過型フィルタ2aの直列腕共振子及び並列腕共振子の個数も特に限定されない。 Note that the first band-pass filter 2a may not include the inductor L3. The configuration in which the parallel arm resonators P1 to P4 are commonly connected to the ground potential is not particularly limited. The number of series arm resonators and parallel arm resonators of the first bandpass filter 2a is not particularly limited.
 他方、第2の帯域通過型フィルタ2bは、出力端子5を有する。第2の帯域通過型フィルタ2bは、アンテナ端子4と出力端子5との間に並列に接続されている第1,第2の縦結合共振子型弾性波フィルタ6a,6bを有する。さらに、第2の帯域通過型フィルタ2bは、アンテナ端子4と第1,第2の縦結合共振子型弾性波フィルタ6a,6bとの間に接続されている、弾性波共振子S11を有する。 On the other hand, the second band-pass filter 2 b has an output terminal 5. The second band pass filter 2b includes first and second longitudinally coupled resonator type acoustic wave filters 6a and 6b connected in parallel between the antenna terminal 4 and the output terminal 5. Further, the second band pass filter 2b has an acoustic wave resonator S11 connected between the antenna terminal 4 and the first and second longitudinally coupled resonator type acoustic wave filters 6a and 6b.
 第1,第2の縦結合共振子型弾性波フィルタ6a,6bは、3IDT型の縦結合共振子型弾性波フィルタである。なお、第2の帯域通過型フィルタ2bの構成は特に限定されない。 The first and second longitudinally coupled resonator type acoustic wave filters 6a and 6b are 3IDT type longitudinally coupled resonator type acoustic wave filters. The configuration of the second bandpass filter 2b is not particularly limited.
 本実施形態の特徴は、信号端子に接続された弾性波共振子に並列に第1のインダクタL1が接続されており、かつ第1のインダクタL1の第2の端部L1bとグラウンド電位との間に第2のインダクタL2が接続されていることにある。それによって、信号端子におけるインピーダンス整合を容易にとることができる。さらに、デュプレクサの小型化を達成することができる。これを、比較例と比較することにより、以下において説明する。 The feature of this embodiment is that the first inductor L1 is connected in parallel to the acoustic wave resonator connected to the signal terminal, and between the second end L1b of the first inductor L1 and the ground potential. The second inductor L2 is connected to the second inductor L2. Thereby, impedance matching at the signal terminal can be easily achieved. Further, the duplexer can be miniaturized. This will be described below by comparing with a comparative example.
 図2は、比較例のデュプレクサの回路図である。 FIG. 2 is a circuit diagram of a duplexer of a comparative example.
 デュプレクサ31は、第1の帯域通過型フィルタ32aにおいて、第1のインダクタL1の端部とグラウンド電位との間に接続されているインダクタを有しない点で第1の実施形態と異なる。上記以外の点においては、デュプレクサ31は第1の実施形態のデュプレクサ1と同様の構成を有する。 The duplexer 31 is different from the first embodiment in that the first band-pass filter 32a does not have an inductor connected between the end of the first inductor L1 and the ground potential. In other respects, the duplexer 31 has the same configuration as the duplexer 1 of the first embodiment.
 なお、第1の実施形態及び比較例における各弾性波共振子は、具体的には、下記の図3に示す構成を有する。なお、図3には、直列腕共振子S1の構成を代表して示す。 In addition, each elastic wave resonator in the first embodiment and the comparative example specifically has a configuration shown in FIG. In FIG. 3, the configuration of the series arm resonator S1 is shown as a representative.
 図3は、第1の実施形態における入力端子に接続された直列腕共振子の電極構成を示す模式的平面図である。 FIG. 3 is a schematic plan view showing an electrode configuration of the series arm resonator connected to the input terminal in the first embodiment.
 直列腕共振子S1は、圧電体上に設けられたIDT電極7を有する。IDT電極7の弾性波伝搬方向両側には、反射器8が設けられている。図1及び図2に示した直列腕共振子S2~S5、並列腕共振子P1~P4及び弾性波共振子S11も、直列腕共振子S1と同様の構成を有する。 The serial arm resonator S1 has an IDT electrode 7 provided on a piezoelectric body. Reflectors 8 are provided on both sides of the IDT electrode 7 in the elastic wave propagation direction. The series arm resonators S2 to S5, the parallel arm resonators P1 to P4, and the elastic wave resonator S11 shown in FIGS. 1 and 2 also have the same configuration as the series arm resonator S1.
 他方、第1,第2の縦結合共振子型弾性波フィルタ6a,6bは、下記の図4に示す構成を有する。 On the other hand, the first and second longitudinally coupled resonator type acoustic wave filters 6a and 6b have a configuration shown in FIG.
 図4は、第1の実施形態における第1,第2の縦結合共振子型弾性波フィルタの電極構成を示す模式的平面図である。 FIG. 4 is a schematic plan view showing an electrode configuration of the first and second longitudinally coupled resonator type acoustic wave filters in the first embodiment.
 第1の縦結合共振子型弾性波フィルタ6aは、IDT電極6a1~6a3を有する。IDT電極6a1~6a3の弾性波伝搬方向両側には、反射器9が設けられている。同様に、第2の縦結合共振子型弾性波フィルタ6bは、IDT電極6b1~6b3を有する。IDT電極6b1~6b3の弾性波伝搬方向両側には、反射器10が設けられている。 The first longitudinally coupled resonator type acoustic wave filter 6a includes IDT electrodes 6a1 to 6a3. Reflectors 9 are provided on both sides of the IDT electrodes 6a1 to 6a3 in the elastic wave propagation direction. Similarly, the second longitudinally coupled resonator type acoustic wave filter 6b includes IDT electrodes 6b1 to 6b3. Reflectors 10 are provided on both sides of the IDT electrodes 6b1 to 6b3 in the elastic wave propagation direction.
 ここで、第1の実施形態のデュプレクサを作製した。図1に示した直列腕共振子S1~S5、並列腕共振子P1~P4及び弾性波共振子S11の各IDT電極の電極指の対数、交差幅及び電極指ピッチは、下記の表1のようにした。同様に、各反射器の電極指の本数及び電極指ピッチは、表1のようにした。図4に示した第1,第2の縦結合共振子型弾性波フィルタ6a,6bの各IDT電極6a1~6a3,6b1~6b3の電極指の対数、交差幅及び電極指ピッチは下記の表2のようにした。同様に、各反射器9,10の電極指の本数及び電極指ピッチは表2のようにした。 Here, the duplexer of the first embodiment was manufactured. The logarithm, cross width, and electrode finger pitch of the electrode fingers of the IDT electrodes of the series arm resonators S1 to S5, the parallel arm resonators P1 to P4, and the acoustic wave resonator S11 shown in FIG. I made it. Similarly, the number of electrode fingers and the electrode finger pitch of each reflector are as shown in Table 1. The logarithm, intersection width, and electrode finger pitch of the electrode fingers of the IDT electrodes 6a1 to 6a3 and 6b1 to 6b3 of the first and second longitudinally coupled resonator type acoustic wave filters 6a and 6b shown in FIG. It was like. Similarly, the number of electrode fingers and the electrode finger pitch of each reflector 9, 10 are as shown in Table 2.
 比較例のデュプレクサも作製した。比較例における各弾性波共振子及び各縦結合共振子型弾性波フィルタの構成は、第1の実施形態における各弾性波共振子及び各縦結合共振子型弾性波フィルタと同様とした。 A comparative duplexer was also produced. The configurations of the acoustic wave resonators and the longitudinally coupled resonator type acoustic wave filters in the comparative example are the same as those of the acoustic wave resonators and the longitudinally coupled resonator type acoustic wave filters in the first embodiment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図5は、第1の実施形態及び比較例のデュプレクサの入力端子におけるスミスチャートである。実線Aは第1の実施形態の結果を示し、一点鎖線Bは比較例の結果を示す。なお、実線及び一点鎖線の各太線部は、第1の実施形態及び比較例のデュプレクサの通過帯域に相当する。後述する図7においても同様である。 FIG. 5 is a Smith chart at the input terminals of the duplexers of the first embodiment and the comparative example. Solid line A shows the result of the first embodiment, and alternate long and short dash line B shows the result of the comparative example. In addition, each thick line part of a continuous line and a dashed-dotted line is corresponded to the pass band of the duplexer of 1st Embodiment and a comparative example. The same applies to FIG. 7 described later.
 図5に示すように、比較例のデュプレクサの通過帯域におけるインピーダンスは、特性インピーダンス(50Ω)から大きく離れている。これに対して、第1の実施形態のデュプレクサの通過帯域におけるインピーダンスは、50Ωに充分に近い。さらに、実線Aの太線部の広がりは、一点鎖線Bの太線部の広がりよりも小さい。よって、第1の実施形態では、デュプレクサのインピーダンス整合をとり易い。 As shown in FIG. 5, the impedance in the pass band of the duplexer of the comparative example is far from the characteristic impedance (50Ω). On the other hand, the impedance in the pass band of the duplexer of the first embodiment is sufficiently close to 50Ω. Further, the spread of the thick line portion of the solid line A is smaller than the spread of the thick line portion of the one-dot chain line B. Therefore, in the first embodiment, it is easy to perform impedance matching of the duplexer.
 図1に戻り、直列腕共振子S1は入力端子3に接続されており、電圧印加時における負担が他の直列腕共振子S2~S5よりも大きい。しかしながら、第1の実施形態では、入力端子3は、第1のインダクタL1及び第2のインダクタL2を経てグラウンド電位に接続されている。よって、直列腕共振子S1の静電破壊が生じ難い。従って、デュプレクサ1の静電破壊に対する耐性を効果的に高めることができる。 Returning to FIG. 1, the series arm resonator S1 is connected to the input terminal 3, and the burden at the time of voltage application is larger than the other series arm resonators S2 to S5. However, in the first embodiment, the input terminal 3 is connected to the ground potential via the first inductor L1 and the second inductor L2. Therefore, the electrostatic breakdown of the series arm resonator S1 hardly occurs. Accordingly, the resistance of the duplexer 1 to electrostatic breakdown can be effectively increased.
 第1の実施形態では、第2のインダクタL2が第1のインダクタL1の第2の端部L1bに接続されている。これにより、インピーダンス整合をとるための第2のインダクタL2のインダクタンスをより一層小さくすることができる。そのため、第2のインダクタL2を小型にすることができる。従って、デュプレクサ1の小型化を図ることができる。 In the first embodiment, the second inductor L2 is connected to the second end L1b of the first inductor L1. Thereby, the inductance of the second inductor L2 for impedance matching can be further reduced. Therefore, the second inductor L2 can be reduced in size. Therefore, the duplexer 1 can be reduced in size.
 図6は、第2の実施形態に係るデュプレクサの回路図である。 FIG. 6 is a circuit diagram of the duplexer according to the second embodiment.
 デュプレクサ11は、第1の帯域通過型フィルタ12aにおいて、第2のインダクタL12が第1のインダクタL1の第1の端部L1aとグラウンド電位との間に接続されている点で、第1の実施形態と異なる。上記以外の点においては、デュプレクサ11は、第1の実施形態のデュプレクサ1と同様の構成を有する。なお、第2のインダクタL12のインダクタンスは12nHである。 The duplexer 11 is the first implementation in the first band-pass filter 12a in that the second inductor L12 is connected between the first end L1a of the first inductor L1 and the ground potential. Different from form. In other respects, the duplexer 11 has the same configuration as the duplexer 1 of the first embodiment. The inductance of the second inductor L12 is 12 nH.
 デュプレクサ11では、入力端子3が直列腕共振子S1に接続されているとともに、第2のインダクタL12を介してグラウンド電位にも接続されている。よって、第1の実施形態と同様に、直列腕共振子S1の静電破壊が生じ難い。 In the duplexer 11, the input terminal 3 is connected to the series arm resonator S1, and is also connected to the ground potential via the second inductor L12. Therefore, as in the first embodiment, electrostatic breakdown of the series arm resonator S1 hardly occurs.
 図7は、第1,第2の実施形態及び比較例のデュプレクサの入力端子におけるスミスチャートである。破線Cは第2の実施形態の結果を示し、破線Cの太線部は、第2の実施形態のデュプレクサの通過帯域に相当する。 FIG. 7 is a Smith chart at the input terminals of the duplexers of the first and second embodiments and the comparative example. A broken line C indicates the result of the second embodiment, and a thick line portion of the broken line C corresponds to the passband of the duplexer of the second embodiment.
 図7に示すように、第2の実施形態のデュプレクサの通過帯域におけるインピーダンスは、上記比較例よりも50Ωに近い。よって、デュプレクサのインピーダンス整合をとり易いことがわかる。 As shown in FIG. 7, the impedance in the passband of the duplexer of the second embodiment is closer to 50Ω than the comparative example. Therefore, it can be understood that impedance matching of the duplexer can be easily performed.
 もっとも、図1に示す第1の実施形態のように、第2のインダクタL2は第1のインダクタL1の第2の端部L1bに接続されていることがより好ましい。それによって、インピーダンス整合をより一層とり易い。 However, as in the first embodiment shown in FIG. 1, it is more preferable that the second inductor L2 is connected to the second end L1b of the first inductor L1. This makes it easier to achieve impedance matching.
 図8は、第3の実施形態に係るデュプレクサの回路図である。 FIG. 8 is a circuit diagram of a duplexer according to the third embodiment.
 デュプレクサ21は、第1のインダクタL21及び第1のインダクタL21に接続されている第2のインダクタL22の配置が第1の実施形態と異なる。デュプレクサ21は、第1,第2の縦結合共振子型弾性波フィルタ6a,6bと出力端子5との間に接続されている弾性波共振子S22を有する点においても第1の実施形態と異なる。上記以外の点においては、デュプレクサ21は、第1の実施形態のデュプレクサ1と同様の構成を有する。 The duplexer 21 is different from the first embodiment in the arrangement of the first inductor L21 and the second inductor L22 connected to the first inductor L21. The duplexer 21 also differs from that of the first embodiment in that it includes an acoustic wave resonator S22 connected between the first and second longitudinally coupled resonator type acoustic wave filters 6a and 6b and the output terminal 5. . In other respects, the duplexer 21 has the same configuration as the duplexer 1 of the first embodiment.
 より具体的には、第1のインダクタL21は、弾性波共振子S22に並列に接続されている。第1のインダクタL21の第1の端部L21aは、出力端子5に接続されている。第1のインダクタL21の第1の端部L21aとは反対側の第2の端部L21bと、グラウンド電位との間に第2のインダクタL22が接続されている。なお、第1の帯域通過型フィルタ22aは、橋絡インダクタを有しない。 More specifically, the first inductor L21 is connected in parallel to the acoustic wave resonator S22. The first end L21a of the first inductor L21 is connected to the output terminal 5. A second inductor L22 is connected between the second end L21b opposite to the first end L21a of the first inductor L21 and the ground potential. Note that the first band-pass filter 22a does not have a bridging inductor.
 本実施形態では、出力端子5におけるインピーダンス整合をとり易く、かつ弾性波共振子S22の静電破壊が生じ難い。 In the present embodiment, impedance matching at the output terminal 5 is easy to be performed, and electrostatic breakdown of the acoustic wave resonator S22 hardly occurs.
 なお、第2の帯域通過型フィルタ22bは、本発明の一実施形態に係る弾性波フィルタである。このように、ラダー型フィルタ以外の弾性波フィルタにおいても、本発明を好適に適用することができる。 Note that the second band-pass filter 22b is an elastic wave filter according to an embodiment of the present invention. As described above, the present invention can also be suitably applied to an elastic wave filter other than a ladder type filter.
1…デュプレクサ
2a,2b…第1,第2の帯域通過型フィルタ
3…入力端子
4…アンテナ端子
5…出力端子
6a,6b…第1,第2の縦結合共振子型弾性波フィルタ
6a1~6a3,6b1~6b3,7…IDT電極
8~10…反射器
11…デュプレクサ
12a…第1の帯域通過型フィルタ
21…デュプレクサ
22a,22b…第1,第2の帯域通過型フィルタ
31…デュプレクサ
32a…第1の帯域通過型フィルタ
L1…第1のインダクタ
L1a,L1b…第1,第2の端部
L2…第2のインダクタ
L3…インダクタ
L12…第2のインダクタ
L21…第1のインダクタ
L21a,L21b…第1,第2の端部
L22…第2のインダクタ
S1~S5…直列腕共振子
S11,S22…弾性波共振子
P1~P4…並列腕共振子
DESCRIPTION OF SYMBOLS 1 ... Duplexer 2a, 2b ... 1st, 2nd band pass filter 3 ... Input terminal 4 ... Antenna terminal 5 ... Output terminal 6a, 6b ... 1st, 2nd longitudinal coupling resonator type | mold elastic wave filter 6a1-6a3 , 6b1 to 6b3, 7 ... IDT electrodes 8 to 10 ... reflector 11 ... duplexer 12a ... first band pass filter 21 ... duplexer 22a, 22b ... first and second band pass filters 31 ... duplexer 32a ... first. 1 band-pass filter L1, first inductors L1a, L1b, first and second end portions L2, second inductor L3, inductor L12, second inductor L21, first inductors L21a, L21b, first 1, second end L22 ... second inductors S1 to S5 ... series arm resonators S11 and S22 ... elastic wave resonators P1 to P4 ... parallel arm resonators

Claims (6)

  1.  信号端子と、
     前記信号端子に接続されている弾性波共振子と、
     前記弾性波共振子に並列に接続されている橋絡インダクタである第1のインダクタと、
     前記第1のインダクタが前記信号端子に接続されている第1の端部と、該第1の端部とは反対側の第2の端部と、を有し、前記第1の端部及び前記第2の端部の内のいずれか一方とグラウンド電位との間に接続されている第2のインダクタと、
    を備える、弾性波フィルタ。
    A signal terminal;
    An acoustic wave resonator connected to the signal terminal;
    A first inductor that is a bridging inductor connected in parallel to the acoustic wave resonator;
    The first inductor has a first end connected to the signal terminal, and a second end opposite to the first end, the first end and A second inductor connected between any one of the second ends and a ground potential;
    An elastic wave filter comprising:
  2.  前記弾性波共振子が、他の回路要素を介さずに、前記信号端子に直接接続されている、請求項1に記載の弾性波フィルタ。 The elastic wave filter according to claim 1, wherein the elastic wave resonator is directly connected to the signal terminal without passing through other circuit elements.
  3.  前記第2のインダクタが、前記第1のインダクタの前記第2の端部とグラウンド電位との間に接続されている、請求項1または2に記載の弾性波フィルタ。 The elastic wave filter according to claim 1 or 2, wherein the second inductor is connected between the second end of the first inductor and a ground potential.
  4.  前記信号端子が入力端子である、請求項1~3のいずれか1項に記載の弾性波フィルタ。 The elastic wave filter according to any one of claims 1 to 3, wherein the signal terminal is an input terminal.
  5.  直列腕共振子及び並列腕共振子を有するラダー型フィルタであって、
     前記弾性波共振子が、最も前記信号端子側に位置する前記直列腕共振子である、請求項1~4のいずれか1項に記載の弾性波フィルタ。
    A ladder filter having a series arm resonator and a parallel arm resonator,
    The acoustic wave filter according to any one of claims 1 to 4, wherein the acoustic wave resonator is the series arm resonator located closest to the signal terminal.
  6.  請求項1~5のいずれか1項に記載の弾性波フィルタである第1の帯域通過型フィルタと、
     前記第1の帯域通過型フィルタとは通過帯域が異なる第2の帯域通過型フィルタと、
    を備える、デュプレクサ。
    A first band-pass filter that is an elastic wave filter according to any one of claims 1 to 5,
    A second bandpass filter having a different passband from the first bandpass filter;
    A duplexer.
PCT/JP2016/083567 2015-12-28 2016-11-11 Acoustic wave filter and duplexer WO2017115562A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015255811 2015-12-28
JP2015-255811 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017115562A1 true WO2017115562A1 (en) 2017-07-06

Family

ID=59225413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083567 WO2017115562A1 (en) 2015-12-28 2016-11-11 Acoustic wave filter and duplexer

Country Status (1)

Country Link
WO (1) WO2017115562A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020102A1 (en) * 2019-07-30 2021-02-04 京セラ株式会社 Elastic wave device and communication device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011151A (en) * 2006-06-29 2008-01-17 Kyocera Kinseki Corp Bandpass filter
JP5510694B1 (en) * 2012-08-30 2014-06-04 株式会社村田製作所 Elastic wave filter device and duplexer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011151A (en) * 2006-06-29 2008-01-17 Kyocera Kinseki Corp Bandpass filter
JP5510694B1 (en) * 2012-08-30 2014-06-04 株式会社村田製作所 Elastic wave filter device and duplexer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020102A1 (en) * 2019-07-30 2021-02-04 京セラ株式会社 Elastic wave device and communication device

Similar Documents

Publication Publication Date Title
JP6024863B1 (en) Ladder type filter and duplexer
KR101914890B1 (en) Ladder-type filter, acoustic wave filter module and duplexer
JP5088412B2 (en) Ladder type elastic wave filter
JP4640502B2 (en) SAW filter device
WO2014064987A1 (en) Filter device
WO2015040922A1 (en) Duplexer
WO2014192754A1 (en) Tunable filter
KR101686006B1 (en) Ladder filter and duplexer
WO2015040921A1 (en) Duplexer
CN110365307B (en) Multiplexer
CN107306122B (en) Elastic wave filter device
CN109690944B (en) Elastic wave filter device and composite filter device
JP7251530B2 (en) Composite filter device
WO2017115562A1 (en) Acoustic wave filter and duplexer
CN110771040B (en) Elastic wave filter device, composite filter device, and multiplexer
WO2016031391A1 (en) Ladder filter and duplexer
CN109643985B (en) Elastic wave device
WO2017208856A1 (en) Acoustic wave filter device
JP6750528B2 (en) Elastic wave filter device
CN218514362U (en) Multiplexer
WO2017154260A1 (en) Elastic wave apparatus and duplexer
CN215186666U (en) Filter and multiplexer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP