WO2017111172A1 - カチオン性脂質としての化合物 - Google Patents

カチオン性脂質としての化合物 Download PDF

Info

Publication number
WO2017111172A1
WO2017111172A1 PCT/JP2016/088751 JP2016088751W WO2017111172A1 WO 2017111172 A1 WO2017111172 A1 WO 2017111172A1 JP 2016088751 W JP2016088751 W JP 2016088751W WO 2017111172 A1 WO2017111172 A1 WO 2017111172A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
compound
nucleic acid
lipid
present
Prior art date
Application number
PCT/JP2016/088751
Other languages
English (en)
French (fr)
Inventor
慎太郎 細江
智幸 直井
Original Assignee
協和発酵キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵キリン株式会社 filed Critical 協和発酵キリン株式会社
Priority to JP2017558336A priority Critical patent/JP6774965B2/ja
Priority to US16/065,222 priority patent/US10525138B2/en
Priority to EP16879056.6A priority patent/EP3395797A4/en
Priority to CA3009131A priority patent/CA3009131A1/en
Publication of WO2017111172A1 publication Critical patent/WO2017111172A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/543Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/397Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having four-membered rings, e.g. azetidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D205/00Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
    • C07D205/02Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D205/04Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present invention relates to a novel compound as a cationic lipid, a composition containing the novel compound, and the like.
  • Cationic lipids are amphiphilic molecules having a lipophilic region containing one or more hydrocarbon groups and a hydrophilic region containing at least one positively charged polar head group.
  • Cationic lipids and macromolecules such as nucleic acids form a positively charged complex as a total charge, so that macromolecules such as nucleic acids easily pass through the cell membrane of cells and enter the cytoplasm. Useful. This process, which can be performed in vitro and in vivo, is known as transfection.
  • Patent Documents 1-4 describe cationic lipids useful for delivering nucleic acids into cells in vivo and for use in nucleic acid-lipid particle compositions suitable for disease treatment and lipids containing the lipids Disclosed are particles.
  • Patent Document 1 for example, 2,2-dilinoleyl-4- (2-dimethylaminoethyl)-[1,3] -dioxolane; DLin-KC2- (DMA) etc.
  • Patent Document 2 for example, (6Z, 9Z, 28Z, 31Z) -Heptatriaconta-6,9,28,31-Tetraen-19-yl 4- (dimethylamino) butanoate ((6Z, 9Z, 28Z, 31Z) -heptatriaconta-6,9 , 28, 31-tetraen-19-yl 4- (dimethylamino) butanoate; DLin-MC3-DMA), etc.
  • Patent Document 4 2- (1-Methylpyrrolidin-2-yl) ethyl di [(9Z, 12Z) -octadeca-9,12-dienyl] carbamate (2- (1-methylpyrrolidin-2-yl) ethyl di [(9Z, 12Z) Cationic lipids such as -octadeca-9,12-dienyl] carbamate) are disclosed.
  • Non-patent document 1 describes that by introducing a biodegradable group into a part of the fatty chain of the cationic lipid, the toxicity in the liver can be reduced while maintaining the ability to deliver nucleic acid to cells in vivo.
  • Di [(Z) -non-2-en-1-yl] 9- ⁇ [4- (dimethylamino) butanoyl] oxy ⁇ heptadecandioate Di [(Z) -non-2-en-1-yl] Cationic lipids such as 9- ⁇ [4- (dimethylamino) butanoyl] oxy ⁇ heptadecanedioate) are disclosed.
  • An object of the present invention is to provide, for example, a novel compound as a cationic lipid capable of introducing a nucleic acid into a cell or the like, a composition containing the novel compound, and the like.
  • the present invention relates to the following (1) to (30).
  • N 3 is an integer from 2 to 6), or formula (B) (Wherein R 4 and R 5 are the same or different and are a hydrogen atom or C1-C3 alkyl, or together with the nitrogen atom to which R 4 and R 5 are bonded, a C2-C6 nitrogen-containing heterocyclic ring is formed.
  • N 4 is an integer from 1 to 6).
  • n 1 is an integer from 0 to 4
  • n 2 is an integer from 1 to 4 (except when n 1 is 0 and n 2 is 1)
  • Z 1 is each independently a hydrogen atom or C1-C3 alkyl for each carbon to be bonded
  • Z 2 is each independently a hydrogen atom or C1-C3 alkyl for each carbon to be bonded
  • a 1 and A 2 are the same or different and are linear or branched C8-C20 alkylene or C8-C20 alkenylene, or C6-C18 alkyleneoxy C1-C3 alkylene or C6-C18 alkenyleneoxy C1-C3 Alkylene
  • M 1 and M 2 are the same or different, and -OC (O)-, -C (O) O-, -N (R 6 ) C (O)-and -C (O) N (R 6 )-, Or a pharmaceutically acceptable salt thereof (cationic lipid) selected from the group consisting of: (3)
  • M 1 and M 2 are the same or different and are —OC (O) — or —C (O) O—, or a pharmaceutically acceptable salt thereof (cationic Lipids).
  • n 1 is 1 and n 2 is an integer of 1 to 3, or a pharmaceutically acceptable salt thereof (cationic lipid) .
  • n 1 and n 2 are both 1, or a pharmaceutically acceptable salt thereof (cationic lipid).
  • a composition comprising the compound according to any one of (1) to (8) above, or a pharmaceutically acceptable salt thereof (cationic lipid) and a nucleic acid.
  • a compound, or a pharmaceutically acceptable salt thereof (cationic lipid) and a nucleic acid form a complex, or a compound, or a pharmaceutically acceptable salt thereof (cationic lipid), and a neutral lipid And / or the composition according to (9) or (10) above, wherein a combination of a polymer and a nucleic acid forms a complex.
  • the nucleic acid is a nucleic acid having an action of suppressing the expression of a target gene using RNA interference (RNAi).
  • composition according to (14) The composition according to (13) above, wherein the target gene is a gene expressed in the liver, lung, kidney, gastrointestinal tract, central nervous system or spleen.
  • (16) A method for introducing a nucleic acid into a cell using the composition according to any one of (9) to (15) above.
  • 17.) The method according to (16) above, wherein the cell is a cell in the liver, lung, kidney, gastrointestinal tract, central nervous system or spleen of a mammal.
  • the method according to (16) or (17) above, wherein the nucleic acid is introduced into the cell by intravenous administration of the composition.
  • a method for treating a disease associated with the liver, lung, kidney, gastrointestinal tract, central nervous system or spleen comprising a step of administering the composition according to any one of (9) to (15) to a mammal. .
  • a medicament comprising the composition according to any one of (9) to (15) above.
  • a medicament for use in the treatment of a disease comprising the composition according to any one of (9) to (15) above.
  • the medicament according to (22) above, wherein the disease is a disease related to the liver, lung, kidney, gastrointestinal tract, central nervous system or spleen.
  • a therapeutic agent for a disease associated with the liver, lung, kidney, gastrointestinal tract, central nervous system or spleen comprising the composition according to any one of (9) to (15) above.
  • the present invention can provide, for example, a novel compound as a cationic lipid capable of introducing a nucleic acid into a cell or the like, a composition containing the novel compound, and the like.
  • the amount of mRNA in the sample was calculated as a relative ratio when the amount of HPRT1 mRNA relative to the amount of GAPDH mRNA was calculated, and the value in the negative control treatment group was 1.
  • the vertical axis represents the relative value of the mRNA amount of the sample thus calculated, and the horizontal axis represents the formulation number and the siRNA concentration (nM) in the formulation.
  • compositions containing each of the compounds 1 to 3) obtained in Examples 5 and 6 were each treated with the human lung cancer cell line NCI-H358, the expression level of HPRT1 mRNA was expressed as RT- Evaluation was performed by semi-quantification by PCR.
  • the amount of mRNA in the sample was calculated as a relative ratio when the amount of HPRT1 mRNA relative to the amount of GAPDH mRNA was calculated, and the value in the negative control treatment group was 1.
  • the vertical axis represents the relative value of the mRNA amount of the sample thus calculated, and the horizontal axis represents the formulation number and the siRNA concentration (nM) in the formulation.
  • the amount of mRNA in the sample was calculated as a relative ratio when the amount of HPRT1 mRNA relative to the amount of GAPDH mRNA was calculated, and the value in the negative control treatment group was 1.
  • the vertical axis represents the relative value of the mRNA amount of the sample thus calculated, and the horizontal axis represents the formulation number and the siRNA concentration (nM) in the formulation.
  • compositions containing each of the compounds 1 to 4) obtained in Examples 7 and 8 were treated with the human lung cancer cell line NCI-H358, the expression level of HPRT1 mRNA was RT- Evaluation was performed by semi-quantification by PCR.
  • the amount of mRNA in the sample was calculated as a relative ratio when the amount of HPRT1 mRNA relative to the amount of GAPDH mRNA was calculated, and the value in the negative control treatment group was 1.
  • the vertical axis represents the relative value of the mRNA amount of the sample thus calculated, and the horizontal axis represents the formulation number and the siRNA concentration (nM) in the formulation.
  • R 1 is a hydrogen atom, C1-C3 alkyl, hydroxy C2-C4 alkyl, di-C1-C3 alkylamino C2-C4 alkyl, formula (A) (Wherein R 2 and R 3 are the same or different and are a hydrogen atom or C1-C3 alkyl, or together with the nitrogen atom to which R 2 and R 3 are bonded, a C2-C6 nitrogen-containing heterocyclic ring is formed.
  • N 3 is an integer from 2 to 6), or formula (B) (Wherein R 4 and R 5 are the same or different and are a hydrogen atom or C1-C3 alkyl, or together with the nitrogen atom to which R 4 and R 5 are bonded, a C2-C6 nitrogen-containing heterocyclic ring is formed.
  • N 4 is an integer from 1 to 6).
  • n 1 is an integer from 0 to 4
  • n 2 is an integer from 1 to 4 (except when n 1 is 0 and n 2 is 1)
  • Z 1 is each independently a hydrogen atom or C1-C3 alkyl for each carbon to be bonded
  • Z 2 is each independently a hydrogen atom or C1-C3 alkyl for each carbon to be bonded
  • a 1 and A 2 are the same or different and are linear or branched C8-C20 alkylene or C8-C20 alkenylene, or C6-C18 alkyleneoxy C1-C3 alkylene or C6-C18 alkenyleneoxy C1-C3 Alkylene
  • the compound represented by the formula (I) has a lipophilic region containing two hydrocarbon groups and a hydrophilic region containing one positively charged polar head group, and has properties as a cationic lipid. Have.
  • the compound represented by the formula (I) may be referred to as the compound (I).
  • the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof may be collectively referred to as “cationic lipid”.
  • C1-C3 alkyl includes methyl, ethyl, propyl, isopropyl and cyclopropyl. In the present invention, the case of C1-C3 alkyl will be described as an example.
  • C1-C3 of C1-C3 alkyl means having 1 to 3 carbon atoms.
  • Hydroxy C2-C4 alkyl means that any carbon of C2-C4 alkyl is substituted with hydroxy, and examples of the C2-C4 alkyl moiety include ethyl, propyl and butyl.
  • DiC1-C3 alkylamino C2-C4 alkyl means that any carbon of C2-C4 alkyl is substituted with diC1-C3 alkylamino, and examples of the C2-C4 alkyl moiety include ethyl, And propyl and butyl.
  • Examples of the C1-C3 alkyl moiety in the diC1-C3 alkylamino include methyl, ethyl, propyl, isopropyl and cyclopropyl, and the C1-C3 alkyl moiety may be the same or different.
  • Examples of the C2-C6 nitrogen-containing heterocycle include an aziridine ring, azetidine ring, pyrrolidine ring, piperidine ring, and azepane ring.
  • the C2-C6 nitrogen-containing heterocycle is the same or different and includes 1 to 3 C1- It may be substituted with C3 alkyl (as defined above), hydroxy or methoxy.
  • linear or branched C8-C20 alkylene examples include octylene, nonylene, undecylene, tridecylene, tetradecylene, 2,6,10-trimethylundecylene, pentadecylene, 3,7,11-trimethyldodecylene, hexadecylene, heptadecylene.
  • 2,6,10-trimethylundecylene will be described as an example.
  • 2,6,10- indicating the substitution position of a substituent is a nitrogen-containing heterocyclic ring.
  • the carbon atom in A 1 and A 2 bonded to the carbon atom of is defined as the first position.
  • the linear or branched C8-C20 alkenylene may be a group containing one or more double bonds in the linear or branched C8-C20 alkylene, such as (Z) -tetradec-9-enylene. , (Z) -hexadeca-9-enylene, (Z) -octadeca-6-enylene, (Z) -octadeca-9-enylene, (E) -octadeca-9-enylene, (Z) -octadeca-11-enylene (9Z, 12Z) -octadeca-9,12-dienylene and (9Z, 12Z, 15Z) -octadeca-9,12,15-trienylene, and the like, preferably (Z) -tetradec-9-enylene, ( Z) -hexadeca-9-enylene, (Z) -octadeca-9-enylene, (Z)
  • Examples of the C1-C3 alkylene moiety in C6-C18 alkyleneoxy C1-C3 alkylene include methylene, ethylene, propylene, and the like.
  • Examples of C6-C18 alkylene moiety in C6-C18 alkyleneoxy C1-C3 alkylene include hexylene, heptylene, octylene, nonylene, decylene, undecylene, tridecylene, tetradecylene, 2,6,10-trimethylundecylene, pentadecylene, 3,7, Examples include 11-trimethyldodecylene, hexadecylene, heptadecylene, and octadecylene, and preferably hexylene, heptylene, octylene, nonylene, and decylene.
  • Examples of the C1-C3 alkylene moiety in C6-C18 alkenyleneoxy C1-C3 alkylene include methylene, ethylene and propylene, and examples of the C6-C18 alkenylene moiety include C6-C18 alkylene in C6-C18 alkyleneoxy C1-C3 alkylene.
  • the moiety contains one or more double bonds, such as (Z) -tetradec-9-enyl, (Z) -hexadeca-9-enyl, (Z) -octadeca-6-enyl, (Z) -Octadec-9-enyl and (E) -octadeca-9-enyl, etc., preferably (Z) -hexadeca-9-enyl, (Z) -octadeca-6-enyl, (Z) -octadeca-9 -Enyl, (9Z, 12Z) -octadeca-9,12-dienyl, (Z) -icosa-11-enyl or (11Z, 14Z) -icosa-11,14-dienyl.
  • double bonds such as (Z) -tetradec-9-enyl, (Z) -hexadeca-9-enyl, (Z) -octa
  • the C1-C3 alkylene moiety constituting C6-C18 alkyleneoxy C1-C3 alkylene and C6-C18 alkenyleneoxy C1-C3 alkylene is located on the nitrogen-containing heterocyclic ring side in formula (I).
  • C1-C4 alkyl examples include methyl, ethyl, propyl, isopropyl, cyclopropyl, butyl, iso-butyl, sec-butyl, tert-butyl and cyclobutyl.
  • linear or branched C1-C16 alkyl examples include methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, hexyl, octyl, nonyl, decyl, dodecyl, tetradecyl, 3,7,11-trimethyldodecyl and Hexadecyl and the like can be mentioned, and octyl, nonyl, decyl or dodecyl is preferable.
  • 3,7,11-trimethyldodecyl will be described as an example. 3,7,11- indicating the substitution position of the substituent is M 1 and M and 1-position carbon atom in B 1 and B 2 bind to two.
  • the linear or branched C2-C16 alkenyl may be a group containing one or more double bonds in the linear or branched C2-C16 alkyl in the linear or branched C1-C16 alkyl.
  • a group having a cyclopropane ring in which a methylene biradical is added formally to a double bond of a linear or branched C8-C20 alkenylene is also included in the C8-C20 linear or branched alkenylene. Is done. The same applies to the C6-C18 alkenylene moiety in C6-C18 alkenyleneoxy C1-C3 alkylene and linear or branched C2-C16 alkenyl. Taking (Z) -non-2-ene as an example, the following groups having a cyclopropane ring are also included in the linear or branched C8-C20 alkenylene in the present invention.
  • a 1 and A 2 are the same or different and are preferably linear or branched C8-C20 alkylene or C8-C20 alkenylene, and are the same or different, linear C8-C20 alkylene It is preferable.
  • a 1 and A 2 are the same and are preferably linear or branched C8-C20 alkylene or C8-C20 alkenylene, more preferably the same and linear C8-C20 alkylene. preferable.
  • M 1 and M 2 are the same or different, and —OC (O) —, —C (O) O—, —C (S) O—, —SS—, —N (R 6 ) C (O) —, -C (O) N (R 6 )-, -C (S) (NR 6 )-, -N (R 6 ) C (O) N (R 7 )-, -N (R 6 ) C (O) O-, -OC (O) N (R 6 )-or -OC (O) O- is preferred, -OC (O)-, -C (O) O-, -N (R 6 ) C (O)-, -C (O) N (R 6 )-, -N (R 6 ) C (O) N (R 7 )-, -N (R 6 ) C (O) O-, -OC ( More preferably O) N (R 6 )-or -OC (O) O-, -
  • M 1 and M 2 is -OC (O) - will be described with an example where a, -OC (O) - is, B 1 -OC (O) -A 1 or means connected as B 2 -OC (O) -A 2 .
  • R 6 and R 7 are the same or different and are preferably a hydrogen atom, methyl or ethyl, more preferably the same or different, a hydrogen atom or methyl, more preferably the same, a hydrogen atom or methyl. Is more preferable, and a hydrogen atom is even more preferable.
  • B 1 and B 2 are the same or different and are preferably linear C1-C16 alkyl or C2-C16 alkenyl, and are the same, linear C1-C16 alkyl or C2-C16 alkenyl. Are more preferably the same and more preferably linear C2-C16 alkenyl.
  • B 1 -M 1 -A 1 and B 2 -M 2 -A 2 are preferably the same.
  • B 1 -M 1 -A 1 and B 2 -M 2 -A 2 are the same or different and are preferably the following structures (1) to (11), and are the same and have the following (1) to ( 11)
  • the structure is more preferable, and the following structures (1) to (4) are more preferable.
  • n 5 is preferably an integer of 1 to 10, more preferably an integer of 1 to 5, still more preferably an integer of 2 to 4, and even more preferably 2 or 4.
  • R 1 is preferably C1-C3 alkyl, the above formula (A) or the above formula (B), more preferably C1-C3 alkyl or the above formula (A), and is C1-C3 alkyl. Is more preferable.
  • R 1 is C1-C3 alkyl, it is preferably methyl, ethyl, propyl or cyclopropyl, more preferably methyl or ethyl, and even more preferably methyl.
  • R 1 is formula (A)
  • R 2 and R 3 are the same or different and are preferably a hydrogen atom or C1-C3 alkyl
  • R 4 and R 5 is the same or different and is preferably a hydrogen atom or C1-C3 alkyl.
  • R 2 and R 3 are combined with the nitrogen atom to which C 2 -C 6 is bonded to form a C2-C6 nitrogen-containing heterocyclic ring
  • R 2 and R 3 are combined with the nitrogen atom to be bonded to the azetidine ring, pyrrolidine ring, piperidine ring
  • an azepane ring is preferable, and a pyrrolidine ring or piperidine ring is more preferable.
  • R 3 is preferably methyl or ethyl, more preferably methyl.
  • R 2 and R 3 are the same and are preferably methyl.
  • n 3 is preferably an integer of 2 to 4, and more preferably 3.
  • R 4 and R 5 form a C2-C6 nitrogen-containing heterocyclic ring together with the nitrogen atom to which they are attached that R 4 and R 5 are pyrrolidine ring or piperidine ring together with the nitrogen atom bonded Is preferred.
  • R 4 and R 5 are the same or different and are C1-C3 alkyl, R 4 and R 5 are preferably methyl or ethyl, and more preferably methyl. R 4 and R 5 are the same and are preferably methyl.
  • n 4 is preferably an integer of 2 to 4, and more preferably 3.
  • n 1 is preferably 1.
  • n 2 is preferably an integer of 1 to 3, more preferably 1 or 2, and even more preferably 1.
  • Z 1 is preferably independently a hydrogen atom or methyl, and more preferably a hydrogen atom, for each carbon to be bonded.
  • Z 2 is preferably independently a hydrogen atom or C1-C3 alkyl for each carbon to be bonded, more preferably a hydrogen atom or methyl, and even more preferably a hydrogen atom.
  • each of Z 1 when there are two or more Z 1 in formula (I), and each carbon atom to which Z 1 is bonded, each of Z 1 Are the same or different, meaning that a hydrogen atom or C1-C3 alkyl can be selected.
  • Z 1 when two Z 1 are present in the formula (I), not only does each Z 1 be the same, but one Z 1 is a hydrogen atom and the other Z 1 is C1- It is meant to include the case of C3 alkyl and the case where two Z 1 are different C1-C3 alkyl. The same applies when two or more Z 2 are present in the formula (I).
  • Z 1 and Z 2 are the same or different and are preferably a hydrogen atom or methyl
  • Z 1 is a hydrogen atom or methyl
  • Z 2 is a hydrogen atom More preferably, Z 1 and Z 2 are the same and more preferably a hydrogen atom.
  • the production method of the compound represented by the formula (I) of the present invention or a pharmaceutically acceptable salt thereof (cationic lipid) will be described.
  • a method for introducing and removing a protective group commonly used in organic synthetic chemistry For example, using the method described in Protective Groups in Organic Synthesis, third edition, TW Greene, John Wiley & Sons Inc. (1999), etc.]
  • the target compound can be produced.
  • the order of reaction steps such as introduction of substituents can be changed as necessary.
  • n 1 and n 2 are both 1, Z 1 and Z 2 are both hydrogen atoms, R 1 is a hydrogen atom, C1-C3 alkyl, hydroxy C2-C4 alkyl or di-C1- Compound (Ia) which is C3 alkylamino C2-C4 alkyl, M 1 and M 2 are the same, and —OC (O) — can be produced, for example, by the following method.
  • a 1 , A 2 , B 1 and B 2 are as defined above, and R 1a is a hydrogen atom, C1-C3 alkyl, hydroxy C2-C4 alkyl or di-C1-C3 alkylamino C2-C4 alkyl.
  • X 1 , X 2 and X 3 are the same or different and represent a leaving group such as chlorine atom, bromine atom, iodine atom, trifluoromethanesulfonyloxy, methanesulfonyloxy, benzenesulfonyloxy and p-toluenesulfonyloxy.
  • Compound (IIIa) is obtained by mixing compound (IIa) and compound (IIb) with or without solvent in the presence of 1 to 10 equivalents of a condensing agent and 1 to 10 equivalents of a base at room temperature to 200 ° C. for 5 minutes. It can be produced by reacting for ⁇ 100 hours.
  • solvent examples include dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N, N-dimethylformamide, N, N -Dimethylacetamide, N-methylpyrrolidone, pyridine and the like can be mentioned, and these can be used alone or in combination.
  • condensing agent examples include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-dicyclohexylcarbodiimide, 4- (4,6-dimethoxy-1,3,5-triazine-2- ⁇ ⁇ yl ) -4-Methylmorpholinium chloride n hydrate, 1H-benzotriazol-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate and O- (7-azabenzotriazol-1-yl) -N , N, N ′, N ′,-tetramethyluronium hexafluorophosphate and the like.
  • Examples of the base include potassium carbonate, cesium carbonate, triethylamine, diisopropylethylamine, N-methylmorpholine and pyridine.
  • Compound (IIa) can be obtained commercially or by a known method [eg, “New Experimental Chemistry Lecture 14 Synthesis and Reaction of Organic Compounds (II)”, First Edition, Maruzen (1977)] or a method analogous thereto.
  • Compound (IIb) can be obtained as a commercial product.
  • Step 2 and 3 Compound (IIc) is obtained by reacting ditert-butyl malonate with compound (IIIa) in the absence of solvent or in the presence of 1 to 10 equivalents of a base at room temperature to 200 ° C. for 5 minutes to 100 hours. Can be manufactured.
  • Compound (IId) is produced by reacting compound (IIc) and compound (IIIb) in the presence of 1 to 10 equivalents of base without solvent or in a solvent at room temperature to 200 ° C. for 5 minutes to 100 hours. can do.
  • solvent examples include methanol, ethanol, dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N, N-dimethylformamide. , N, N-dimethylacetamide, N-methylpyrrolidone, pyridine and the like, and these can be used alone or in combination.
  • Examples of the base include potassium carbonate, cesium carbonate, sodium methoxide, potassium tert-butoxide, sodium hydride, triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine and 1,8-diazabicyclo [5.4.0] -7-undecene. (DBU).
  • DBU 1,8-diazabicyclo [5.4.0] -7-undecene.
  • Compound (IId) when A 1 and A 2 and B 1 and B 2 are the same can be produced by using 2 equivalents or more of compound (IIIa) in Step 2.
  • Di-tert-butyl malonate can be obtained as a commercial product.
  • Compound (IIIb) can be produced by a method similar to that for compound (IIIa).
  • Compound (IIe) can be produced by reacting compound (IId) with 5 to 100 equivalents of acid without solvent or in a solvent at ⁇ 78 ° C. to 100 ° C. for 5 minutes to 100 hours.
  • Examples of the solvent include those exemplified in Step 1.
  • Examples of the acid include trifluoroacetic acid, trichloroacetic acid, hydrochloric acid, sulfuric acid, and hydrobromic acid.
  • Process 5 Compound (IIf) is obtained by mixing Compound (IIe) in a solvent at ⁇ 20 ° C. to 150 ° C. for 5 minutes in the presence of 4 equivalents to a large excess of a reducing agent and optionally a catalytic amount to 10 equivalents of an additive. It can be produced by reacting for ⁇ 72 hours.
  • the catalyst amount means 0.01 equivalent to 0.5 equivalent.
  • solvent examples include toluene, dichloromethane, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane and the like, and these can be used alone or in combination.
  • Examples of the reducing agent include borane / tetrahydrofuran complex, borane / dimethyl sulfide complex, lithium aluminum hydride, lithium borohydride, lithium triethylborohydride, diisobutylaluminum hydride and bis (2-methoxyethoxy) aluminum hydride. Sodium etc. are mentioned.
  • additives include aluminum chloride, cerium chloride, titanium tetrachloride and titanium tetraisopropoxide.
  • Compound (IIg) is obtained by reacting Compound (IIf) in the absence of or in a solvent with at least 2 equivalents of a halogenating reagent or pseudohalogenating reagent, preferably 1 to 10 equivalents of a base, and preferably 1 to 10 equivalents. It can be produced by reacting at ⁇ 20 ° C. to 150 ° C. for 5 minutes to 100 hours in the presence of an equivalent amount of additives.
  • Examples of the solvent include those exemplified in Step 5.
  • halogenating reagent or pseudo-halogenating reagent examples include thionyl chloride, sulfuryl chloride, phosphorus trichloride, phosphorus pentachloride, phosphorus oxychloride, phosphorus tribromide, hydrogen bromide, hydrogen iodide, mesyl anhydride, mesylate chloride. , Tosylic anhydride, benzenesulfonic acid chloride, anhydrous benzenesulfonic acid, tosylic acid chloride, trifluoromethanesulfonic anhydride, and the like.
  • Examples of the base include pyridine, 2,6-lutidine, 2,4,6-collidine, triethylamine, N, N-diisopropylethylamine and the like.
  • Examples of the additive include sodium chloride, sodium bromide, lithium bromide and lithium chloride.
  • Compound (Ia) can be produced by reacting compound (IIf) with 1 equivalent to a large excess of compound (IVa) without solvent or in a solvent at room temperature to 200 ° C. for 5 minutes to 100 hours. .
  • Examples of the solvent include those exemplified in Steps 2 and 3.
  • Compound (IVa) can be obtained as a commercial product.
  • n 1 and n 2 are both 1, Z 1 and Z 2 are both hydrogen atoms, R 1 is a hydrogen atom, C1-C3 alkyl, hydroxy C2-C4 alkyl or di-C1- Compound (Ia ′) which is C3 alkylamino C2-C4 alkyl can be produced, for example, by the following method.
  • Step 8 and Step 9 Compound (IIc ′) can be produced in the same manner as in Step 2 by using compound (IIIa ′) instead of compound (IIIa).
  • Compound (IId ′) can be produced in the same manner as in Step 3, using compounds (IIc ′) and (IIIb ′) instead of compounds (IIc) and (IIIb).
  • Step 11 Compound (IIf ′) can be produced in the same manner as in Step 5 by using compound (IIe ′) instead of compound (IIe).
  • Process 12 Compound (IIg ′) can be produced in the same manner as in Step 6 by using compound (IIf ′) instead of compound (IIf).
  • Process 13 Compound (Ia ′) can be produced in the same manner as in Step 7 by using compound (IIg ′) instead of compound (IIg).
  • a 1 , A 2 , B 1 , B 2 , M 1 , M 2 , R 2 , R 3 and n 3 are as defined above,
  • Ar represents p-nitrophenyl, o-nitrophenyl and (Represents a substituted or unsubstituted phenyl group such as p-chlorophenyl)
  • Compound (VII) comprises compound (V) and compound (VI), in the absence of or in a solvent, preferably in the presence of 1 to 10 equivalents of an additive and / or preferably 1 to 10 equivalents of a base if necessary. It can be produced by reacting at -20 ° C to 150 ° C for 5 minutes to 72 hours.
  • solvent examples include dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N, N-dimethylformamide, N, N -Dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide and the like can be mentioned, and these can be used alone or in combination.
  • additives examples include 1-hydroxybenzotriazole and 4-dimethylaminopyridine.
  • Examples of the base include potassium carbonate, potassium hydroxide, sodium hydroxide, sodium methoxide, potassium tert-butoxide, triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine and 1,8-diazabicyclo [5.4.0] -7- Undecene (DBU) and the like.
  • Compound (V) can be obtained as a commercial product.
  • Compound (VI) is a commercially available product or a known method (for example, “5th edition Experimental Chemistry Course 14 Synthesis of Organic Compounds II”, 5th edition, p.1, Maruzen (2005)) or a method analogous thereto. Can be obtained by:
  • Compound (Ic) is obtained by reacting Compound (Ib) and Compound (VII) in the absence of a solvent or in a solvent, optionally in the presence of 1 to 10 equivalents of an additive and / or optionally 1 to 10 equivalents of a base at ⁇ 20 ° C. It can be produced by reacting at ⁇ 150 ° C. for 5 minutes to 72 hours.
  • Compound (Ib) can be produced by using ammonia as compound (IVa) in Step 13 of Production Method 2.
  • Examples of the solvent, additive, and base include those exemplified in Step 14, respectively.
  • Step 16 Compound (IIh) is obtained by reacting Compound (Ib) and Compound (VIII) without solvent or in a solvent, preferably in the presence of 1 to 10 equivalents of a base, at ⁇ 20 ° C. to 150 ° C. for 5 minutes to 72 hours. It can be produced by reacting.
  • Examples of the solvent include those exemplified in Step 14.
  • Examples of the base include those exemplified in Step 6.
  • Compound (VIII) can be obtained as a commercial product.
  • Step 17 Compound (Id) is compound (IIh) and 1 to 20 equivalents of compound (VIb), without solvent or in a solvent, and optionally in the presence of 1 to 10 equivalents of base at room temperature to 200 ° C. for 5 minutes to 100 It can manufacture by making it react for time.
  • Examples of the solvent include those exemplified in Steps 2 and 3.
  • Examples of the base include those exemplified in Step 14.
  • Compound (VIb) can be obtained as a commercial product.
  • n 1 and n 2 are the same or different and are an integer of 1 to 4 (except when n 1 and n 2 are both 1), R 1 is a hydrogen atom, C 1- Compound (Ie) which is C3 alkyl, hydroxy C2-C4 alkyl or C1-C3 dialkylamino C2-C4 alkyl, and Z 1 and Z 2 are hydrogen atoms can be produced, for example, by the following method.
  • a 1 , A 2 , M 1 , M 2 , B 1 , B 2 , R 3a , X 1 , X 2 and X 3 are the same as defined above, and m 1 and m 2 are the same or different. And an integer of 1 to 4 (except when m 1 and m 2 are both 1), and P 1 and P 2 are the same or different and represent a protecting group]
  • Step 18 and Step 19 Compound (IXb) can be produced in the same manner as in Step 2, except that compound (IXa) is used instead of ditert-butyl malonate.
  • Compound (IXc) can be produced in the same manner as in step 3, using compound (IXb) instead of compound (IIc).
  • Compound (IXc) in the case where B 1 -M 1 -A 1 and B 2 -M 2 -A 2 are the same can be produced by using 2 equivalents or more of compound (IIIa ′) in Step 18. it can.
  • P 1 and P 2 are protecting groups commonly used in organic synthetic chemistry (for example, Protective Groups in Organic Synthesis, third edition, TW Greene, John Wiley & Sons Inc. 1999)) can be used.
  • Compound (IXa) can be obtained by a known method [for example, “New Experimental Chemistry Lecture 14, Synthesis and Reaction of Organic Compounds (II)”, First Edition, p.751, Maruzen (1977)] or a method analogous thereto.
  • Step 21 Compound (IXe) can be produced by removing protecting groups P 1 and P 2 of compound (IXd) by an appropriate method.
  • Methods for removing protecting groups include those commonly used in organic synthetic chemistry (for example, Protective Groups in Organic Synthesis, third edition, TW Greene, John The removal method described in Wiley & Sons Inc. (1999), etc.] can be used, whereby the target compound can be produced.
  • Step 22 Compound (IXf) can be produced in the same manner as in Step 6, using compound (IXe) instead of compound (IIf).
  • Step 23 Compound (Ie) can be produced in the same manner as in step 7, using compound (IXf) instead of compound (IIg).
  • compounds other than the compounds (Ia) to (Ie) can be prepared in accordance with the above production method or organic synthesis by employing raw materials and reagents suitable for the structure of the target compound. It can be produced by applying a general production method commonly used in chemistry.
  • the intermediates and target compounds in the above production methods should be isolated and purified by separation and purification methods commonly used in organic synthetic chemistry, such as filtration, extraction, washing, drying, concentration, recrystallization, and / or various chromatography. Can do.
  • the intermediate may be subjected to the next reaction without particular purification.
  • a hydrogen ion may be coordinated to a lone electron pair on the nitrogen atom in the structure, and in that case, a salt with a pharmaceutically acceptable anion may be formed.
  • a cationic lipid in which a hydrogen ion is coordinated to a lone pair on a nitrogen atom in the structure is also included as a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof.
  • examples of pharmaceutically acceptable anions include inorganic ions such as chloride ions, bromide ions, nitrate ions, sulfate ions and phosphate ions, and acetate ions, oxalate ions, maleate ions, and fumarate ions.
  • organic acid ions such as citrate ion, benzoate ion and methanesulfonate ion.
  • examples of the pharmaceutically acceptable salt of the compound represented by the formula (I) of the present invention include hydrochloride, odorate, nitrate, sulfate, phosphate, acetate, oxalate, maleate, Examples include fumarate, citrate, benzoate and methanesulfonate.
  • Some of the compounds (I) of the present invention may have stereoisomers such as geometric isomers or optical isomers, tautomers, etc., but the compounds (I) of the present invention may be selected from these. Includes all possible isomers and mixtures thereof.
  • Some or all of the atoms in the compound (I) of the present invention may be replaced by corresponding isotope atoms, and the compound (I) also includes compounds replaced by these isotope atoms.
  • some or all of the hydrogen atoms in compound (I) may be hydrogen atoms having an atomic weight of 2 (deuterium atoms).
  • a compound in which part or all of each atom in the compound (I) of the present invention is replaced by the corresponding isotope atom, should be produced by a method similar to each of the above production methods using a commercially available building block. Can do.
  • a compound in which some or all of the hydrogen atoms in compound (I) are replaced with deuterium atoms is, for example, iridium complex as a catalyst, deuterium as a deuterium source, alcohol, carboxylic acid and the like as deuterium. (See Journal of American Chemical Society (J. Am. Chem. Soc.), Vol. 124, No. 10, 2092 (2002)).
  • the nucleic acid used in the present invention may be any molecule as long as it is a molecule obtained by polymerizing nucleotides and / or molecules having functions equivalent to nucleotides.
  • the nucleic acid include ribonucleic acid (RNA) that is a polymer of ribonucleotides, deoxyribonucleic acid (DNA) that is a polymer of deoxyribonucleotides, chimeric nucleic acids composed of RNA and DNA, and at least one nucleotide of these nucleic acids.
  • RNA ribonucleic acid
  • DNA deoxyribonucleic acid
  • chimeric nucleic acids composed of RNA and DNA and at least one nucleotide of these nucleic acids.
  • examples thereof include a nucleotide polymer substituted with a molecule having a function equivalent to that of the nucleotide.
  • a nucleic acid used in the present invention also includes a derivative containing at least a part of the structure of a molecule obtained by polymerizing nucleotides and / or molecules having functions equivalent to nucleotides.
  • uracil U and thymine T can be replaced with each other.
  • nucleotide derivatives examples include nucleotide derivatives.
  • the nucleotide derivative may be any molecule as long as it is a modified molecule, for example, in order to improve nuclease resistance or stabilize from other degradation factors compared to RNA or DNA, for example.
  • a molecule in which ribonucleotide or deoxyribonucleotide is modified is preferably used.
  • nucleotide derivatives include sugar-modified nucleotides, phosphodiester bond-modified nucleotides, and base-modified nucleotides.
  • the sugar-modified nucleotide may be any nucleotide as long as part or all of the chemical structure of the sugar of the nucleotide is modified or substituted with any substituent, or substituted with any atom.
  • '-Modified nucleotides are preferably used.
  • Examples of the modifying group in the sugar moiety-modified nucleotide include 2′-cyano, 2′-alkyl, 2′-substituted alkyl, 2′-alkenyl, 2′-substituted alkenyl, 2′-halogen and 2′-O-cyano.
  • sugar-modified nucleotide examples include a crosslinked nucleic acid (BNA) having two cyclic structures by introducing a crosslinked structure into the sugar moiety.
  • BNA crosslinked nucleic acid
  • cross-linked artificial nucleic acids include, for example, Locked Nucleic Acid (LNA) (“Tetrahedron Letters”) in which the 2′-position oxygen atom and the 4′-position carbon atom are cross-linked via methylene. , Volume 38, Issue 50, 1997, Pages 8735-8738 and “Tetrahedron”, Volume 54, Issue 14, 1998, Pages 3607-3630] and Ethylene bridged nucleic acid (Ethylene bridged nucleic acid) ENA) ["Nucleic Acid Research", 32, e175 (2004)].
  • LNA Locked Nucleic Acid
  • ENA Ethylene bridged nucleic acid
  • Sugar-modified nucleotides include peptide nucleic acids (PNA) [Acc. Chem. Res., 32, 624 (1999)], oxypeptide nucleic acids (OPNA) [J. Am. Chem. Soc., 123, 4653 (2001). ], Peptide ribonucleic acid (PRNA) [J. Am. Chem. Soc., 122, 6900 (2000)] and the like.
  • PNA peptide nucleic acids
  • OPNA oxypeptide nucleic acids
  • PRNA Peptide ribonucleic acid
  • Examples of the modifying group in the sugar-modified nucleotide include 2'-cyano, 2'-halogen, 2'-O-cyano, 2'-alkyl, 2'-substituted alkyl, 2'-O-alkyl, 2'-O- Preferred are substituted alkyl, 2′-O-alkenyl, 2′-O-substituted alkenyl, 2′-Se-alkyl, 2′-Se-substituted alkyl, 2′-cyano, 2′-fluoro, 2′-chloro, 2'-bromo, 2'-trifluoromethyl, 2'-O-methyl, 2'-O-ethyl, 2'-O-isopropyl, 2'-O-trifluoromethyl, 2'-O- [2- (Methoxy) ethyl], 2'-O- (3-aminopropyl), 2'-O- [2- (N, N-dimethylamin
  • the modifying group in the sugar moiety-modified nucleotide can also define a preferred range from the size of the modifying group, and is preferably a modifying group corresponding to a size from fluoro to -O-butyl, from -O-methyl More preferred is a modifying group corresponding to a size up to -O-ethyl.
  • alkyl in the modifying group in the sugar-modified nucleotide examples include C1-C6 alkyl, specifically, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, Examples include neopentyl and hexyl.
  • alkenyl in the modifying group in the sugar moiety-modified nucleotide examples include C3-C6 alkenyl, and specifically include allyl, 1-propenyl, butenyl, pentenyl, hexenyl and the like.
  • halogen in the modifying group in the sugar-modified nucleotide examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • amino acids in the amino acid residue include aliphatic amino acids (specifically, glycine, alanine, valine, leucine and isoleucine), hydroxy amino acids (specifically, serine and threonine), acidic amino acids (specifically, Is aspartic acid and glutamic acid), acidic amino acid amide (specifically asparagine and glutamine etc.), basic amino acid (specifically lysine, hydroxylysine, arginine and ornithine etc.), sulfur-containing amino acid (specifically Include cysteine, cystine and methionine) and imino acids (specifically, proline and 4-hydroxyproline).
  • aliphatic amino acids specifically, glycine, alanine, valine, leucine and isoleucine
  • hydroxy amino acids specifically, serine and threonine
  • acidic amino acids specifically, Is aspartic acid and glutamic acid
  • acidic amino acid amide specifically asparagine and glutamine etc.
  • Examples of the substituted alkyl and the substituted alkenyl in the modified group in the sugar-modified nucleotide include halogen (as defined above), hydroxy, sulfanyl, amino, oxo, -O-alkyl (the alkyl part of -O-alkyl is the above-mentioned C1 -S6 alkyl), -S-alkyl (the alkyl part of -S-alkyl is the same as C1-C6 alkyl), -NH-alkyl (the alkyl part of -NH-alkyl is the same as C1-C6 alkyl) Dialkylaminooxy (the two alkyl parts of dialkylaminooxy are the same or different and have the same meaning as the C1-C6 alkyl), dialkylamino (the two alkyl parts of dialkylamino are the same or different and are the same as the C1-C6 alkyl), And dialkylaminoalkylene
  • the phosphodiester bond-modified nucleotide may be any nucleotide as long as part or all of the chemical structure of the phosphodiester bond of the nucleotide is modified or substituted with any substituent, or with any atom. Good.
  • Examples of phosphodiester bond-modified nucleotides include nucleotides in which the phosphodiester bond is replaced with phosphorothioate bonds, nucleotides in which the phosphodiester bond is replaced with phosphorodithioate bonds, and phosphodiester bonds are replaced with alkylphosphonate bonds. And nucleotides in which a phosphodiester bond is substituted with a phosphoramidate bond.
  • the base-modified nucleotide may be any nucleotide as long as a part or all of the nucleotide base chemical structure is modified or substituted with an arbitrary substituent, or substituted with an arbitrary atom.
  • Examples of the base-modified nucleotide include those in which the oxygen atom in the base is substituted with a sulfur atom, those in which a hydrogen atom is substituted with C1-C6 alkyl, those in which methyl is substituted with a hydrogen atom or C2-C6 alkyl, and Examples include amino protected with a protecting group such as C1-C6 alkyl or C1-C6 alkanoyl.
  • Nucleotide derivatives include nucleotides, sugar moieties, nucleotide derivatives modified with at least one of phosphodiester bonds or bases, lipids, phospholipids, phenazine, folate, phenanthridine, anthraquinone, acridine, fluorescein, rhodamine, coumarin, and dyes
  • 5'-polyamine addition nucleotide derivative for example, 5'-polyamine addition nucleotide derivative, cholesterol addition nucleotide derivative, steroid addition nucleotide derivative, bile acid addition nucleotide derivative, vitamin addition nucleotide derivative, green fluorescent dye (Cy3) addition Examples include nucleotide derivatives, red fluorescent dye (Cy5) -added nucleotide derivatives, fluorescein (6-FAM) -added nucleotide derivatives, and biotin-added nucleotide derivatives.
  • a nucleotide or a nucleotide derivative is an alkylene structure, a peptide structure, a nucleotide structure, an ether structure, an ester structure, or a combination of two or more of these with other nucleotides or nucleotide derivatives in the nucleic acid.
  • a cross-linked structure such as
  • the nucleic acid used in the present invention is preferably a nucleic acid that suppresses the expression of the target gene, and more preferably a nucleic acid that has an action of suppressing the expression of the target gene using RNA interference (RNAi).
  • RNAi RNA interference
  • the target gene in the present invention is not particularly limited as long as it is a gene that produces and expresses mRNA, and examples thereof include genes associated with tumors or inflammation.
  • Specific examples of genes related to tumor or inflammation as target genes include vascular endothelial growth factor receptor, fibroblast growth factor receptor, fibroblast growth factor receptor, and platelet-derived growth.
  • Ets express sequence tag (Ets) transcription factor, nuclear factor, hypoxia-inducible factor, cell Examples include genes encoding proteins such as cycle-related factors, chromosome replication-related factors, chromosome repair-related factors, microtubule-related factors, growth signal pathway-related factors, growth-related transcription factors, and apoptosis-related factors.
  • Endothelial growth factor gene vascular endothelial growth factor receptor gene, fibroblast growth factor gene, fibroblast growth factor receptor gene, platelet Human growth factor gene, platelet-derived growth factor receptor gene, hepatocyte growth factor gene, hepatocyte growth factor receptor gene, kruppel-like factor gene, express sequence tag (Ets) transcription factor gene, nuclear factor gene, hypoxia induction Factor genes, cell cycle-related factor genes, chromosome replication-related factor genes, chromosome repair-related factor genes, microtubule-related factor genes (for example, CKAP5 gene), proliferation signal pathway-related factor genes (for example, KRAS gene), proliferation-related Examples include transcription factor genes and apoptosis-related factors (for example, BCL-2 gene).
  • the target gene in the present invention is preferably a gene expressed in the liver, lung, kidney, gastrointestinal tract, central nervous system or spleen, for example, a gene associated with tumor or inflammation, hepatitis B virus genome, hepatitis C virus genome, Apolipoprotein (APO), hydroxymethylglutaryl (HMG) CoA reductase, kexin 9-type serine protease (PCSK9), factor 12, glucagon receptor, glucocorticoid receptor, leukotriene receptor, thromboxane A2 receptor, histamine H1 receptor, carbonic anhydrase, angiotensin converting enzyme, renin, p53, tyrosine phosphatase (PTP), sodium-dependent glucose transporter, tumor necrosis factor, interleukin, hepcidin, transthyretin, antithrombin, protein C and matriptase Enzymes (for example, TMPRSS6 Such as genes encoding the
  • the nucleic acid that suppresses the expression of the target gene includes, for example, a nucleic acid that includes a base sequence complementary to a partial base sequence of mRNA of a gene encoding a protein (target gene) and suppresses the expression of the target gene. If so, for example, using any nucleic acid such as double-stranded nucleic acid such as siRNA (short interference (RNA) and miRNA (micro RNA), shRNA (short hairpin RNA), single-stranded nucleic acid such as antisense nucleic acid and ribozyme, etc. However, double-stranded nucleic acids are preferred.
  • a nucleic acid containing a base sequence complementary to a part of the base sequence of the target gene mRNA is called an antisense strand nucleic acid
  • a nucleic acid containing a base sequence complementary to the base sequence of the antisense strand nucleic acid is a sense strand.
  • a sense strand nucleic acid refers to a nucleic acid capable of forming a double strand forming part by pairing with an antisense strand nucleic acid, such as a nucleic acid itself consisting of a partial base sequence of a target gene.
  • a double-stranded nucleic acid refers to a nucleic acid in which two strands are paired and have a duplex forming part.
  • the duplex forming part refers to a part (duplex forming part) in which a nucleotide or a derivative thereof constituting a double-stranded nucleic acid forms a base pair to form a duplex.
  • the base pair constituting the duplex forming part is usually 15 to 27 base pairs, preferably 15 to 25 base pairs, more preferably 15 to 23 base pairs, further preferably 15 to 21 base pairs, and 15 to 19 base pairs. Even more preferred is base pairing.
  • the antisense strand nucleic acid of the duplex forming part for example, a nucleic acid consisting of a partial sequence of the mRNA of the target gene, or 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base in the nucleic acid, A nucleic acid that is deleted or added and has the activity of suppressing the expression of the target protein is preferably used.
  • the single-stranded nucleic acid constituting the double-stranded nucleic acid usually consists of a series of 15 to 30 bases (nucleosides), preferably 15 to 29 bases, more preferably 15 to 27 bases, and further preferably 15 to 25 bases. 17 to 23 bases are more preferred, and 19 to 21 bases are particularly preferred.
  • Either the antisense strand, the sense strand, or both of the nucleic acids constituting the double-stranded nucleic acid have a portion that does not form a duplex on the 3 ′ side or 5 ′ side following the duplex forming portion. Also good.
  • the part that does not form a double chain is also referred to as a protrusion (overhang).
  • Examples of the double-stranded nucleic acid having a protruding portion include a double-stranded nucleic acid having a protruding portion consisting of 1 to 4 bases, usually 1 to 3 bases at the 3 ′ end or 5 ′ end of at least one strand.
  • the protruding portion is preferably a protruding portion consisting of two bases, and more preferably a protruding portion consisting of dTdT or UU.
  • the overhang can be present only in the antisense strand, only in the sense strand, and both in the antisense strand and the sense strand, but a double-stranded nucleic acid having a protrusion in both the antisense strand and the sense strand is preferred.
  • nucleic acids that suppress the expression of the target gene include nucleic acid molecules that generate double-stranded nucleic acids by the action of ribonucleases such as Dicer (International Publication No. 2005/089287), and protrusions at the 3 ′ end and 5 ′ end.
  • Dicer International Publication No. 2005/089287
  • a double-stranded nucleic acid or the like that does not exist can also be used.
  • the antisense strand preferably has a sequence of at least the 1st to 17th bases (nucleosides) from the 5 ′ end to the 3 ′ end and the target gene mRNA is continuous. It is a base sequence complementary to the 17 base sequence, and more preferably, the antisense strand has the sequence of the 1st to 19th bases from the 5 ′ end to the 3 ′ end, and the target gene mRNA is continuous.
  • base sequence complementary to the 19 base sequence, or the sequence of the 1st to 21st bases from the 5 'end to the 3' end are complementary to the base sequence of 25 consecutive bases of the target gene mRNA. It is.
  • nucleic acid used in the present invention is siRNA, preferably 10 to 70%, more preferably 15 to 60%, and still more preferably 20 to 50% of the sugar in the nucleic acid is substituted with a modifying group at the 2 ′ position.
  • Ribose ribose substituted with a modifying group at the 2′-position means that the hydroxyl group at the 2′-position of ribose is substituted with the modifying group, and has the same configuration as the hydroxyl group at the 2′-position of ribose. Although it may be present or different, the configuration is preferably the same as the hydroxyl group at the 2 ′ position of ribose.
  • Examples of the modifying group in ribose substituted with a modifying group at the 2′-position include those exemplified as the modifying group in the 2′-modified nucleotide in the sugar moiety-modified nucleotide and the hydrogen atom, and include 2′-cyano, 2′-halogen.
  • 2′-O-cyano, 2′-alkyl, 2′-substituted alkyl, 2′-O-alkyl, 2′-O-substituted alkyl, 2′-O-alkenyl, 2′-O-substituted alkenyl, 2 '-Se-alkyl or 2'-Se-substituted alkyl is preferred, 2'-cyano, 2'-fluoro, 2'-chloro, 2'-bromo, 2'-trifluoromethyl, 2'-O-methyl, 2'-O-ethyl, 2'-O-isopropyl, 2'-O-trifluoromethyl, 2'-O- [2- (methoxy) ethyl], 2'-O- (3-aminopropyl), 2 '-O- [2- (N, N-dimethyl) aminooxy] ethyl, 2'-O- [3- (N, N-dimethylamin
  • the nucleic acid used in the present invention includes a derivative in which an oxygen atom or the like contained in a phosphoric acid part, an ester part or the like in the structure of the nucleic acid is substituted with another atom such as a sulfur atom.
  • the sugar that binds to the 5 ′ terminal base of the antisense strand and the sense strand has a 5′-position hydroxyl group, either a phosphate group or the modifying group, or a phosphate group or the modifying group by an in vivo nucleolytic enzyme, etc. It may be modified by a group that is converted into
  • the sugar that binds to the 3 ′ terminal base of the antisense strand and the sense strand is such that the hydroxyl group at the 3 ′ position is a phosphate group or the modifying group, or a phosphate group or the modifying group by an in vivo nucleolytic enzyme, etc. It may be modified by a group that is converted into
  • Examples of the single-stranded nucleic acid include 15 to 27 bases (nucleosides) of the target gene, preferably 15 to 25 bases, more preferably 15 to 23 bases, still more preferably 15 to 21 bases, and still more preferably 15 to 25 bases.
  • a nucleic acid comprising a sequence complementary to a sequence comprising 19 bases, or 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base substituted or deleted or added in the nucleic acid, and having an activity of suppressing the expression of the target protein Any nucleic acid can be used.
  • the single-stranded nucleic acid preferably consists of a sequence of 15 to 30 bases (nucleosides), more preferably 15 to 27 bases, still more preferably 15 to 25 bases, and even more preferably 15 to 23 bases.
  • the single-stranded nucleic acid one obtained by linking an antisense strand and a sense strand constituting a double-stranded nucleic acid via a spacer sequence (spacer oligonucleotide) may be used.
  • the spacer oligonucleotide is preferably a 6- to 12-base single-stranded nucleic acid, and its 5 ′ terminal sequence is preferably 2 U.
  • An example of the spacer oligonucleotide is a single-stranded nucleic acid having a UUCAAGAGA sequence. Either the antisense strand or the sense strand connected by the spacer oligonucleotide may be on the 5 ′ side.
  • Examples of the single-stranded nucleic acid in which the antisense strand and the sense strand constituting the double-stranded nucleic acid are linked via a spacer oligonucleotide include, for example, a single-stranded nucleic acid such as shRNA having a double-stranded forming part by a stem-loop structure. Preferably there is.
  • Single-stranded nucleic acids such as shRNA are usually 50 to 70 bases in length.
  • a nucleic acid having a length of 70 bases or less, preferably 50 bases or less, more preferably 30 bases or less, designed to generate a single-stranded nucleic acid or a double-stranded nucleic acid by the action of ribonuclease or the like may be used.
  • the nucleic acid used in the present invention can be produced using known RNA or DNA synthesis methods and RNA or DNA modification methods.
  • the composition of the present invention contains the compound represented by the formula (I) of the present invention, or a pharmaceutically acceptable salt thereof (cationic lipid) and a nucleic acid.
  • the composition of the present invention may be, for example, a complex of the cationic lipid of the present invention and a nucleic acid.
  • the composition of the present invention is a composition containing the cationic lipid of the present invention, a neutral lipid and / or polymer, and a nucleic acid.
  • the composition of the present invention may contain a lipid membrane, and the complex may be encapsulated by the lipid membrane.
  • the lipid membrane may be a lipid monolayer (lipid monomolecular membrane) or a lipid bilayer membrane (lipid bimolecular membrane).
  • the lipid membrane may contain the cationic lipid, neutral lipid and / or polymer of the present invention.
  • the complex and / or lipid membrane may contain a cationic lipid other than the cationic lipid which is the compound represented by the formula (I) of the present invention or a pharmaceutically acceptable salt thereof.
  • compositions of the present invention include a complex of a cationic lipid other than the cationic lipid of the present invention and a nucleic acid, or a cationic lipid other than the cationic lipid of the present invention and a neutral lipid and / or a polymer.
  • a composition containing a complex with a nucleic acid and a lipid membrane encapsulating the complex and containing the cationic lipid of the present invention in the lipid membrane is also included.
  • the lipid membrane in this case may also be a lipid monolayer (lipid monomolecular membrane) or a lipid bilayer membrane (lipid bimolecular membrane).
  • the lipid membrane may contain a cationic lipid other than the cationic lipid of the present invention, a neutral lipid and / or a polymer.
  • composition of the present invention a composition containing the complex of the cationic lipid and nucleic acid of the present invention, a complex of the cationic lipid and nucleic acid of the present invention and a lipid membrane encapsulating the complex, and a lipid A composition containing the cationic lipid of the present invention in the membrane, a complex of a cationic lipid other than the cationic lipid of the present invention and a nucleic acid encapsulating the complex, and a lipid membrane containing the complex of the present invention in the lipid membrane
  • a composition containing a cationic lipid is preferred, a composition containing the complex of the cationic lipid of the present invention and a nucleic acid, and a lipid membrane encapsulating the complex of the cationic lipid of the present invention and a complex
  • a composition containing the cationic lipid of the present invention in a lipid membrane is more preferred.
  • the lipid membrane may contain a neutral lipid and / or
  • Examples of the form of the complex include a complex of a nucleic acid and a membrane composed of a single lipid (single molecule) layer (reverse micelle), a complex of a nucleic acid and a liposome, and a complex of a nucleic acid and a micelle.
  • a complex of a membrane composed of a nucleic acid and a lipid monolayer or a complex of a nucleic acid and a liposome Is a complex of a membrane composed of a nucleic acid and a lipid monolayer or a complex of a nucleic acid and a liposome.
  • composition containing a lipid membrane that encapsulates the complex examples include liposomes and lipid nanoparticles that encapsulate the complex with an arbitrary number of lipid membranes.
  • the cationic lipids of the present invention include, in addition to the cationic lipids of the present invention, other than the cationic lipids of the present invention.
  • the cationic lipid may be mixed.
  • Examples of the cationic lipid other than the cationic lipid which is the compound represented by the formula (I) of the present invention or a pharmaceutically acceptable salt thereof include, for example, JP-A-61-161246 (US Pat. No. 5,049,386).
  • cationic lipids other than the cationic lipid of the present invention preferably DOTMA, DOTAP, DORIE, DOSPA, 1,2-dilinoleyloxy-N, N-dimethylaminopropane (DLinDMA), 2,2-dilinoleyl- Cations with tertiary amine moieties with two unsubstituted alkyl groups, such as 4-dimethylaminomethyl- [1,3] -dioxolane (DLin-K-DMA), or quaternary ammonium moieties with three unsubstituted alkyl groups
  • a cationic lipid, more preferably a cationic lipid having a tertiary amine moiety preferably a cationic lipid having a tertiary amine moiety.
  • the unsubstituted alkyl group at the tertiary amine moiety and the quaternary ammonium moiety is preferably a methyl group.
  • the composition of the present invention may contain a compound chemically similar to the nucleic acid.
  • the composition of this invention can be manufactured according to a well-known manufacturing method or it, and may be manufactured by what kind of manufacturing method.
  • a known method for preparing liposomes can be applied to the production of a composition containing liposome, which is one of the compositions.
  • Known liposome preparation methods include, for example, Bangham et al.'S liposome preparation method [“J. Mol. Biol.”, 1965, Vol. 13, p.238- 252], ethanol injection method [“J. Cell Biol.”, 1975, Vol. 66, pp. 621-634], French press method [“FBS Letters (FEBS Lett.), 1979, Vol. 99, p. 210-214], freeze-thaw method [“Arch. Biochem.
  • antioxidants such as citric acid, ascorbic acid, cysteine and ethylenediaminetetraacetic acid (EDTA), for example, isotonic agents such as glycerin, glucose and sodium chloride may be added.
  • EDTA ethylenediaminetetraacetic acid
  • isotonic agents such as glycerin, glucose and sodium chloride
  • the cationic lipid of the present invention, or a mixture of the cationic lipid of the present invention and a cationic lipid other than the cationic lipid of the present invention is dissolved in an organic solvent such as ethanol, and the solvent is distilled off.
  • Liposomes can be formed by adding saline and stirring with shaking.
  • composition of the present invention can be prepared, for example, by dissolving a cationic lipid of the present invention or a mixture of the cationic lipid of the present invention and a cationic lipid other than the cationic lipid in chloroform in advance, and then an aqueous nucleic acid solution. And methanol are added and mixed to form a cationic lipid / nucleic acid complex, and the chloroform layer is taken out, and then the polyethylene glycolated phospholipid, neutral lipid, and water are added to the extracted chloroform layer to form a water-in-oil type. (W / O) emulsion is formed and processed by the reverse phase evaporation method (see Japanese Patent Application Publication No.
  • nucleic acid is dissolved in an acidic electrolyte aqueous solution, for example, the cation of the present invention Or a mixture of the cationic lipid of the present invention and a cationic lipid other than the cationic lipid of the present invention (in ethanol), and the ethanol concentration is lowered to 20 v / v% to encapsulate the nucleic acid.
  • an acidic electrolyte aqueous solution for example, the cation of the present invention Or a mixture of the cationic lipid of the present invention and a cationic lipid other than the cationic lipid of the present invention (in ethanol), and the ethanol concentration is lowered to 20 v / v% to encapsulate the nucleic acid.
  • posomes are prepared, sizing filtered, excess ethanol is removed by dialysis, and then the sample is dialyzed at a higher pH to remove nucleic acids adhering to the surface of the composition (Special Table 2002-50151
  • compositions of the present invention a complex of the cationic lipid of the present invention and a nucleic acid, or a complex of a neutral lipid and / or polymer and a nucleic acid, and a complex are encapsulated in the cationic lipid of the present invention.
  • the composition containing lipid nanoparticles containing the lipid membrane can be produced, for example, according to the production method described in WO 02/28367 and WO 2006/080118.
  • the cationic lipid, nucleic acid, neutral lipid and / or high lipid of the present invention are used.
  • a complex is produced using molecules and components appropriately selected from cationic lipids other than the cationic lipid of the present invention, and the complex is dispersed in water or a 0-40% ethanol aqueous solution without dissolving it (A Separately, the lipid membrane component encapsulating the complex is dissolved in, for example, an ethanol aqueous solution (B solution), and the A and B solutions having a volume ratio of 1: 1 to 10: 1 are mixed, and water is appropriately added.
  • cationic lipid in the liquid A and the liquid B one or plural kinds of the cationic lipid of the present invention or a cationic lipid other than the cationic lipid of the present invention may be used.
  • a cationic lipid other than the cationic lipid of the invention may be used in combination.
  • a complex of the cationic lipid of the present invention and a nucleic acid, or a complex of the cationic lipid of the present invention, a neutral lipid and / or polymer, and a nucleic acid, and a lipid membrane encapsulating the complex A composition comprising a cationic lipid other than the cationic lipid of the present invention and a nucleic acid, or a cationic lipid other than the cationic lipid of the present invention, a neutral lipid and / or a polymer, and a nucleic acid And a lipid membrane encapsulating the complex, and the composition containing the cationic lipid of the present invention in the lipid membrane, and after the production, the nucleic acid in the complex and the cationic property in the lipid membrane
  • the composition of the present invention also includes those in which the structure of the complex and the membrane is mutated due to electrostatic interaction with the lipid or fusion of the cationic lipid in the complex and the cationic property
  • a nucleic acid preferably a double-stranded nucleic acid
  • the cationic lipid of the present invention and / or the cationic lipid of the present invention
  • a complex with a liposome containing a cationic lipid is produced and dispersed in water or a 0-40% ethanol aqueous solution without dissolving the complex (solution A).
  • the cationic lipid of the present invention and / or Alternatively, a cationic lipid other than the cationic lipid of the present invention is dissolved in an aqueous ethanol solution (liquid B), and liquid A and liquid B with a volume ratio of 1: 1 to 10: 1 are mixed, or more appropriately.
  • a composition containing the composition of the present invention and a nucleic acid can also be produced by adding water.
  • the composition obtained by this production method is preferably a composition containing a complex of a cationic lipid and a nucleic acid and a lipid membrane encapsulating the complex, or from a lipid monolayer containing a nucleic acid and a cationic lipid.
  • a composition comprising a membrane (reverse micelle) and a lipid membrane encapsulating the complex.
  • the lipid membrane in the composition may be any of a lipid monolayer (lipid monomolecular membrane), a lipid bilayer membrane (lipid bimolecular membrane), or a multilayer membrane.
  • the size of the liposome in the complex of nucleic acid and liposome in the present invention is preferably adjusted in advance to an average particle size of preferably 10 nm to 400 nm, more preferably 20 nm to 110 nm, and still more preferably 20 nm to 80 nm. .
  • the complex and / or lipid membrane may contain a neutral lipid and / or a polymer. As long as the solution A can form a complex of liposomes and nucleic acids, the ethanol concentration may be 20 to 70%.
  • the complex does not dissolve after mixing liquid A and liquid B, and the ratio is such that ethanol concentration does not dissolve the cationic lipid in liquid B.
  • the liquid may be mixed. Instead of mixing the A liquid and the B liquid in such a ratio that preferably the complex does not dissolve, the cationic lipid in the B liquid does not dissolve, and the ethanol concentration is 20 to 60%.
  • the ethanol concentration is 20 to 60%.
  • mix liquid A and liquid B mix liquid A and liquid B at a ratio that will result in an ethanol concentration that does not dissolve the complex, and then add water to add cationic lipid in liquid B. It is also possible to use an ethanol concentration at which no dissolution occurs.
  • the composition obtained by this production method is preferably a composition containing a complex of a cationic lipid and a nucleic acid and a lipid membrane encapsulating the complex, or a membrane comprising a lipid monolayer containing a cationic lipid (Reverse micelle) and nucleic acid complex and a lipid membrane that encapsulates the complex, and a lipid membrane containing a cationic lipid, and the productivity (yield and / or uniformity) of this production method Is excellent.
  • the total number of molecules of the cationic lipid of the present invention in the complex is preferably 0.5 to 4 times, more preferably 1.5 to 3.5 times the number of phosphorus atoms of the nucleic acid. More preferably, it is 2 to 3 times.
  • the total number of the cationic lipid molecules of the present invention and cationic lipid molecules other than the cationic lipid of the present invention in the complex is preferably 0.5 to 4 times the number of phosphorus atoms of the nucleic acid, and preferably 1.5 to 3.5. It is more preferable that the ratio is twice, and it is more preferable that the ratio is 2 to 3 times.
  • the total number of molecules of the cationic lipid of the present invention in the composition containing the complex and the lipid membrane encapsulating the complex is 1 to 10 times the number of phosphorus atoms of the nucleic acid. Preferably, it is 2.5 to 9 times, more preferably 3.5 to 8 times.
  • the total number of the cationic lipid molecules of the present invention and the cationic lipid molecules other than the cationic lipid of the present invention in the composition is preferably 1 to 10 times the number of phosphorus atoms of the nucleic acid, and preferably 2.5 to 9
  • the ratio is more preferably double, and further preferably 3.5 to 8 times.
  • the neutral lipid may be any of simple lipids, complex lipids or derived lipids, and examples thereof include phospholipids, glyceroglycolipids, sphingoglycolipids, sphingoids and sterols.
  • the total number of neutral lipid molecules is based on the total number of cationic lipid molecules of the present invention and cationic lipids other than the cationic lipids of the present invention.
  • the ratio is preferably 0.1 to 2 times, more preferably 0.2 to 1.5 times, and still more preferably 0.3 to 1.2 times.
  • the composition of the present invention may contain a neutral lipid in a complex, or may be contained in a lipid membrane encapsulating the complex.
  • the neutral lipid is preferably contained in the lipid membrane encapsulating the complex, and more preferably contained in both the complex and the lipid membrane encapsulating the complex.
  • phospholipids in neutral lipids include phosphatidylcholine (specifically soybean phosphatidylcholine, egg yolk phosphatidylcholine (EPC), distearoylphosphatidylcholine (DSPC), dipalmitoylphosphatidylcholine (DPPC), palmitoyloleoylphosphatidylcholine (POPC), dimyristoylphosphatidylcholine).
  • EPC egg yolk phosphatidylcholine
  • DSPC distearoylphosphatidylcholine
  • DPPC dipalmitoylphosphatidylcholine
  • POPC palmitoyloleoylphosphatidylcholine
  • dimyristoylphosphatidylcholine dimyristoylphosphatidylcholine
  • DMPC dioleoylphosphatidylcholine
  • phosphatidylethanolamine specifically distearoylphosphatidylethanolamine (DSPE), dipalmitoylphosphatidylethanolamine (DPPE), dioleoylphosphatidylethanolamine (DOPE)), Dimyristoylphosphatidylethanolamine (DMPE), 16-0-monomethylphosphatidylethanolamine, 16-0-dimethylphosphatidylethanolamine 18-1-transphosphatidylethanolamine, palmitoyl oleoyl phosphatidylethanolamine (POPE) and 1-stearoyl-2-oleoyl-phosphatidylethanolamine (SOPE), glycerophospholipid (specifically phosphatidylserine, phosphatidic acid, Phosphatidylglycerol, phosphatidylinositol, palmitoyl oleoyl phosphati
  • Examples of the glyceroglycolipid in the neutral lipid include sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride and glycosyl diglyceride.
  • glycosphingolipids in neutral lipids include galactosyl cerebroside, lactosyl cerebroside, and ganglioside.
  • sphingoids in neutral lipids include sphingan, icosasphingan, sphingosine, and derivatives thereof.
  • Derivatives include, for example, —NH 2 such as sphingan, icosasphingan, or sphingosine —NHCO (CH 2 ) xCH 3 (wherein x is an integer of 0 to 18, among which 6, 12 or 18 is preferred) And the like converted to.
  • sterols in neutral lipids include cholesterol, dihydrocholesterol, lanosterol, ⁇ -sitosterol, campesterol, stigmasterol, brassicasterol, ergocasterol, fucostosterol and 3 ⁇ - [N- (N ', N'-dimethyl Aminoethyl) carbamoyl] cholesterol (DC-Chol) and the like.
  • macromolecules include protein, albumin, dextran, polyfect, chitosan, dextran sulfate, poly-L-lysine, polyethyleneimine, polyaspartic acid, styrene maleic acid copolymer, isopropylacrylamide-acryl pyrrolidone copolymer.
  • the polymer may be a micelle composed of one or more of the exemplified polymer salts.
  • Examples of the polymer salt include metal salts, ammonium salts, acid addition salts, organic amine addition salts, amino acid addition salts, and the like.
  • Examples of the metal salt include alkali metal salts such as lithium salt, sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, aluminum salt and zinc salt.
  • Examples of ammonium salts include salts such as ammonium and tetramethylammonium.
  • Examples of the acid addition salt include inorganic acid salts such as hydrochloride, sulfate, nitrate and phosphate, and organic acid salts such as acetate, maleate, fumarate and citrate.
  • Examples of organic amine addition salts include addition salts such as morpholine and piperidine.
  • Examples of amino acid addition salts include addition salts such as glycine, phenylalanine, aspartic acid, glutamic acid, and lysine.
  • composition of the present invention preferably contains, for example, a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids and water-soluble polymers, or a surfactant, etc., and is contained in the complex.
  • a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids and water-soluble polymers, or a surfactant, etc. may be contained in the lipid membrane encapsulating the complex, and more preferably contained in both the complex and the lipid membrane encapsulating the complex.
  • composition of the present invention contains a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers, they are selected from sugars, peptides, nucleic acids, and water-soluble polymers.
  • the total number of lipid derivatives and fatty acid derivative molecules of one or more substances is preferably 0.01 to 0.3 times the total number of cationic lipid molecules of the present invention and cationic lipids other than the cationic lipids of the present invention.
  • the ratio is more preferably 0.02 to 0.25 times, and further preferably 0.03 to 0.15 times.
  • the lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers, or the surfactant is preferably a glycolipid or a lipid derivative or fatty acid derivative of a water-soluble polymer. More preferably, it is a lipid derivative or fatty acid derivative of a water-soluble polymer.
  • a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers, or a surfactant is a part of the molecule that is, for example, hydrophobic with other components in the composition of the present invention. It has the property of binding by affinity or electrostatic interaction, etc., and other parts have the property of binding to the solvent at the time of production of the composition, for example, hydrophilic affinity or electrostatic interaction, etc. A substance is preferred.
  • lipid derivatives or fatty acid derivatives of sugars, peptides or nucleic acids include sugars such as sucrose, sorbitol and lactose, such as casein-derived peptides, egg white-derived peptides, soybean-derived peptides and peptides such as glutathione, or DNA, RNA, plasmids, etc.
  • sugar lipid derivative or fatty acid derivative examples include glyceroglycolipid and glycosphingolipid.
  • water-soluble polymer lipid derivative or fatty acid derivative examples include polyethylene glycol, polyglycerin, polyethyleneimine, polyvinyl alcohol, polyacrylic acid, polyacrylamide, oligosaccharide, dextrin, water-soluble cellulose, dextran, chondroitin sulfate, polyglycerin, Chitosan, polyvinylpyrrolidone, polyaspartic acid amide, poly-L-lysine, mannan, pullulan or oligoglycerol etc.
  • lipid derivative or fatty acid derivative of the water-soluble polymer may be a salt.
  • lipid derivatives or fatty acid derivatives of polyethylene glycol examples include polyethylene glycolated lipids [specifically, polyethylene glycol-phosphatidylethanolamine (more specifically, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine- N- [methoxy (polyethylene glycol) -2000] (PEG-DSPE) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol) -2000] (PEG-DMPE) Etc.), polyoxyethylene hydrogenated castor oil 60, Cremophor EL, etc., polyethylene glycol sorbitan fatty acid esters (specifically polyoxyethylene sorbitan monooleate, etc.) and polyethylene glycol fatty acid esters, etc.
  • it is a polyethylene glycolated lipid.
  • Examples of the lipid derivative or fatty acid derivative of polyglycerin include polyglycerinized lipid (specifically, polyglycerin-phosphatidylethanolamine) or polyglycerin fatty acid esters, and the polyglycerinized lipid is preferable.
  • surfactant examples include polyoxyethylene sorbitan monooleate (specifically polysorbate 80 and the like), polyoxyethylene polyoxypropylene glycol (specifically Pluronic (registered trademark) F68 and the like), sorbitan fatty acid ester (specifically Sorbitan monolaurate and sorbitan monooleate), polyoxyethylene derivatives (specifically polyoxyethylene hydrogenated castor oil 60 and polyoxyethylene lauryl alcohol), glycerin fatty acid ester and polyethylene glycol alkyl ether, etc.
  • it is polyoxyethylene polyoxypropylene glycol, glycerin fatty acid ester or polyethylene glycol alkyl ether.
  • the complex and the lipid membrane in the composition of the present invention can optionally be subjected to surface modification with, for example, a water-soluble polymer [Radasic, edited by F. Martin, “Stealth liposomes” Stealth Liposomes "(USA), CRC Press Inc., 1995, p. 93-102].
  • a water-soluble polymer [Radasic, edited by F. Martin, “Stealth liposomes” Stealth Liposomes "(USA), CRC Press Inc., 1995, p. 93-102].
  • water-soluble polymers that can be used for surface modification include polyethylene glycol, polyglycerin, polyethyleneimine, polyvinyl alcohol, polyacrylic acid, polyacrylamide, oligosaccharide, dextrin, water-soluble cellulose, dextran, chondroitin sulfate, and polyglycerin.
  • Chitosan Chitosan, polyvinylpyrrolidone, polyaspartic acid amide, poly-L-lysine, mannan, pullulan and oligoglycerol, and the like, preferably dextran, pullulan, mannan, amylopectin or hydroxyethyl starch.
  • lipid derivatives or fatty acid derivatives of one or more substances selected from sugars, peptides, nucleic acids and water-soluble polymers can be used.
  • the surface modification is a method in which the complex and lipid membrane in the composition of the present invention contain a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers, or a surfactant. One of them.
  • the targeting ligand can also be directly bound to the surface of the composition of the present invention by covalently binding to the polar head residue of the lipid component of the composition of the present invention (see International Publication No. 2006/116107).
  • the average particle size of the complex or the lipid membrane encapsulating the complex in the composition of the present invention can be freely selected as desired.
  • a method for adjusting the average particle size for example, an extrusion method, a method of mechanically pulverizing large multilamellar liposomes (MLV) or the like (specifically using a manton gourin or a microfluidizer, etc.) [Müller (RHMuller ), S. Benita, B.
  • the average size of the composite in the composition of the present invention is preferably about 5 nm to 200 nm, more preferably about 20 nm to 150 nm, and further preferably about 20 nm to 80 nm.
  • the size of the composition of the present invention is preferably about 10 nm to 300 nm, more preferably about 30 nm to 200 nm, and more preferably about 50 nm to 150 nm. Is more preferable.
  • the average particle size of the complex in the composition of the present invention or the lipid membrane encapsulating the complex can be measured, for example, by a dynamic light scattering method.
  • the nucleic acid in the composition of the present invention can be introduced into cells by introducing the composition of the present invention into mammalian cells.
  • the introduction of the composition of the present invention into mammalian cells in vivo may be performed according to known transfection procedures that can be performed in vivo.
  • the composition of the present invention is intravenously administered to a mammal, including a human, so that the composition is delivered to, for example, a tumor or an inflamed organ or site, and the cells of the delivery organ or site are contained in the composition of the present invention.
  • the organ or site where the tumor or inflammation has occurred is not particularly limited, but for example, the digestive tract such as the stomach and large intestine, the central nervous system such as the liver, lung, spleen, pancreas, kidney, bladder, brain and spinal cord, skin and blood vessels And eyeballs.
  • composition of the present invention can be delivered intravenously to mammals including humans, for example, to the liver, lungs, kidneys, gastrointestinal tract, central nervous system and / or spleen.
  • the nucleic acid in the composition of the present invention can be introduced.
  • Liver, lung, kidney, gastrointestinal tract, central nervous system or spleen cells can be normal cells, cells associated with tumors or inflammation or cells associated with other diseases.
  • the nucleic acid in the composition of the present invention is a nucleic acid having an inhibitory effect on the expression of a target gene using RNA interference (RNAi), a nucleic acid or the like that suppresses the expression of the target gene in vivo in a mammalian cell. Can be introduced, and the expression of the target gene can be suppressed.
  • RNAi RNA interference
  • the administration subject is preferably a human.
  • the target gene in the present invention is a gene expressed in, for example, the liver, lung, kidney, gastrointestinal tract, central nervous system or spleen
  • the composition of the present invention is expressed in the liver, lung, kidney, gastrointestinal tract, central nervous system or It can be used as a therapeutic or prophylactic agent for diseases related to the spleen.
  • the present invention also provides a method for treating diseases related to liver, lung, kidney, gastrointestinal tract, central nervous system or spleen, wherein the composition of the present invention is administered to a mammal.
  • the administration subject is preferably a human, more preferably a patient suffering from a disease related to the liver, lung, kidney, gastrointestinal tract, central nervous system or spleen.
  • composition of the present invention verifies the effectiveness of suppressing a target gene in an in vivo drug efficacy evaluation model for a therapeutic or prophylactic agent for diseases related to liver, lung, kidney, gastrointestinal tract, central nervous system or spleen. It can also be used as a tool for
  • composition of the present invention can stabilize nucleic acids in biological components such as blood components (e.g. blood and digestive tract), reduce side effects, or accumulate drugs in tissues or organs containing target gene expression sites. It can also be used as a preparation for the purpose of increase or the like.
  • the administration route is the most effective in the treatment. It is desirable to use the route of administration, and examples include parenteral or oral administration such as buccal, intratracheal, rectal, subcutaneous, intramuscular or intravenous, preferably intravenous or intramuscular administration, More preferred is intravenous administration.
  • the dose of the composition of the present invention varies depending on the medical condition, age, route of administration, etc. of the subject of administration, but may be administered such that the daily dose converted to nucleic acid is about 0.1 ⁇ g to 1000 mg.
  • a preparation suitable for intravenous administration or intramuscular administration for example, an injection is exemplified, and the prepared dispersion of the composition of the present invention is directly used as an injection or the like.
  • Suitable preparations preferably include preparations obtained by removing the solvent from the dispersion, for example, by filtration or centrifugation, lyophilized preparations, and excipients such as mannitol, lactose, trehalose, maltose and glycine. It is the formulation which freeze-dried the added dispersion liquid.
  • the dispersion or solvent of the composition of the present invention is removed or lyophilized, for example, water, acid, alkali, various buffers, physiological saline or amino acid infusion, etc. are mixed for injection.
  • an injection can be prepared by adding an antioxidant such as citric acid, ascorbic acid, cysteine and EDTA or an isotonic agent such as glycerin, glucose and sodium chloride.
  • an isotonic agent such as glycerin, glucose and sodium chloride.
  • a cryopreservation agent such as glycerin may be added for cryopreservation.
  • Reference example 1 Dinonyl 11,11-bis (hydroxymethyl) henicosangioate (Compound IIf-1) Process 1 Nonan-1-ol (Tokyo Chemical Industry Co., Ltd., 6.03 g, 41.8 mmol) was dissolved in dichloromethane (30 mL), 10-bromodecanoic acid (Tokyo Chemical Industry Co., Ltd., 7.00 g, 27.9 mmol), 1-ethyl- 3- (3-Dimethylaminopropyl) carbodiimide hydrochloride (manufactured by Tokyo Chemical Industry Co., Ltd., 8.01 g, 41.8 mmol) and dimethylaminopyridine (3.40 g, 27.9 mmol) were sequentially added and reacted at room temperature overnight.
  • a saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure to give 10,10-di-tert-butyl 1,19-dinonyl nonadecane-1,10,10,19-tetra
  • a crude product of carboxylate was obtained.
  • the obtained crude product was dissolved in dichloromethane (20 mL), trifluoroacetic acid (10 mL, 130 mmol) was added at 0 ° C., and the mixture was stirred at room temperature for 2 hr.
  • Reference Example 2 Dinonyl 13,13-bis (hydroxymethyl) pentacosandioate (Compound IIf-2)
  • 12-bromododecanoic acid Sigma-Aldrich, 5.00 g, 17.9 mmol
  • 10-bromodecanoic acid compound IIf-2 (0.180 g, yield 7%)
  • a composition was prepared as follows.
  • the nucleic acid used was a sense strand [5'-rGrCrCrArGrArCrUrUrUrGrUrUrGrGrArUrUrGrGrArUrUrGrArUrUrGrA-3 '(the sugar bound to the base to which r is attached is a ribose): SEQ ID NO: 1] and an antisense strand [5'-rArAmArUmCrUmCmUmCrCmArAmGrUmCrUm
  • hypoxanthine-guanine phosphoribosyl group transfer An anti-HPRT1 siRNA that suppresses the expression of an enzyme (Hypoxanthine-
  • the average particle size of the liposomes obtained with a particle size measuring device was measured and confirmed to be within the range of 30 nm to 100 nm.
  • -A dispersion of DMPE Na / HPRT1 siRNA complex was prepared.
  • the obtained crude preparation was concentrated using Amicon Ultra (manufactured by Millipore), diluted with physiological saline, and filtered in a clean bench using a 0.2 ⁇ m filter (manufactured by Toyo Roshi Kaisha, Ltd.).
  • the siRNA concentration of the obtained preparation was measured, and diluted with physiological saline according to the administration concentration to obtain preparation 1 (composition containing Compound 1 and HPRT1 siRNA).
  • compositions containing compounds 2 and 3, respectively, and HPRT1 siRNA were obtained in the same manner as in Example 5.
  • the average particle diameters of the preparations 1 to 3 (compositions) obtained in Examples 5 and 6 were measured with a particle diameter measuring apparatus. The results are shown in Table 4.
  • the obtained crude preparation was concentrated using Amicon Ultra (manufactured by Millipore), diluted with physiological saline, and filtered in a clean bench using a 0.2 ⁇ m filter (manufactured by Toyo Roshi Kaisha, Ltd.).
  • the siRNA concentration of the obtained composition was measured, and diluted with physiological saline in accordance with the administration concentration to obtain Formulation 4 (a composition containing Compound 1 and HPRT1 siRNA).
  • compositions containing each of compounds 2 to 4 and HPRT1 siRNA were obtained in the same manner as in Example 7.
  • the average particle size of the preparations (compositions) obtained in Examples 7 and 8 was measured with a particle size measuring device. The results are shown in Table 5.
  • Test example 1 In order to examine the activity of the preparations 1 to 3 (compositions containing each of the compounds 1 to 3 and HPRT1 siRNA) obtained in Examples 5 and 6, they were evaluated by the method described below.
  • RPMI1640 medium Nacalai Tesque, 30264-85
  • HPRT1 gene and constitutive expression by TaqMan PCR (TaqMan Gene Expression, 4311882) using Applied Biosystems QuantStudio 12K Flex (ABI) PCR amplification specific for the GAPDH (D-glyceraldehyde-3-phosphate dehydrogenase) gene, which is a gene, was performed, and the amount of mRNA was quantified.
  • the conditions for the PCR reaction were in accordance with the instruction manual attached to TaqMan Gene Expression.
  • the amount of mRNA in the sample was calculated as a relative ratio when the amount of HPRT1 mRNA relative to the amount of GAPDH mRNA was calculated, and the value in the negative control treatment group was 1.
  • the results regarding the mRNA amount of HPRT1 are shown in FIG. 1 and FIG.
  • Test example 2 In order to examine the activities of the preparations 4 to 8 (compositions containing each of the compounds 1 to 4 and HPRT1 siRNA) obtained in Examples 7 and 8, they were evaluated in the same manner as in Test Example 1. The results regarding the mRNA amount of HPRT1 are shown in FIG. 3 and FIG.
  • composition of the present invention can introduce a nucleic acid into a cell or the like, and the cationic lipid of the present invention facilitates delivery of the nucleic acid into a cell in vivo.
  • the nucleic acid can be easily introduced into a cell, for example.
  • SEQ ID NO: 1 hypoxanthine-guanine phosphoribosyltransferase siRNA sense strand
  • SEQ ID NO: 2 hypoxanthine-guanine phosphoribosyltransferase siRNA antisense strand

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Dermatology (AREA)
  • Neurology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Neurosurgery (AREA)
  • Pulmonology (AREA)
  • Urology & Nephrology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrrole Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本発明は、カチオン性脂質としての式(I)で表わされる化合物、またはその製薬上許容し得る塩等を提供する。

Description

カチオン性脂質としての化合物
 本発明は、カチオン性脂質としての新規化合物および該新規化合物を含有する組成物等に関する。
 カチオン性脂質は、一つまたは複数の炭化水素基を含む脂質親和性領域と、少なくとも一つのプラスに帯電した極性ヘッドグループを含む親水性領域を有する両親媒性分子である。カチオン性脂質と核酸等の巨大分子が、総荷電としてプラスに帯電する複合体を形成することにより、核酸等の巨大分子が細胞の細胞膜を通過して細胞質に入りやすくなるため、カチオン性脂質は有用である。インビトロおよびインビボにおいて行うことのできるこのプロセスは、トランスフェクションとして知られている。
 特許文献1~4は、インビボにて核酸を細胞内に送達するために、および疾患の治療に好適な核酸-脂質粒子組成物に使用するために有用であるカチオン性脂質および該脂質を含む脂質粒子を開示している。
 特許文献1には、例えば、
Figure JPOXMLDOC01-appb-C000004
2,2-ジリノレイル-4-(2-ジメチルアミノエチル)-[1,3]-ジオキソラン(2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane; DLin-KC2-DMA)等、特許文献2には、例えば、
Figure JPOXMLDOC01-appb-C000005
(6Z,9Z,28Z,31Z)-ヘプタトリアコンタ-6,9,28,31-テトラエン-19-イル 4-(ジメチルアミノ)ブタノアート((6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate; DLin-MC3-DMA)等、特許文献3には、例えば、
Figure JPOXMLDOC01-appb-C000006
1-メチル-3,3-ビス{[(9Z,12Z)-オクタデカ-9,12-ジエン-1-イルオキシ]メチル}アゼチジン(1-methyl-3,3-bis{[(9Z,12Z)-octadeca-9,12-diene-1-yloxy]methyl}azetidine)等、特許文献4には、例えば、
Figure JPOXMLDOC01-appb-C000007
2-(1-メチルピロリジン-2-イル)エチル ジ[(9Z,12Z)-オクタデカ-9,12-ジエニル]カルバマート(2-(1-methylpyrrolidin-2-yl)ethyl di[(9Z,12Z)-octadeca-9,12-dienyl]carbamate)等のカチオン性脂質が開示されている。
 また、非特許文献1には、カチオン性脂質の脂肪鎖の一部に生分解性基を入れることにより、インビボでの核酸の細胞への送達能はそのままに、肝臓での毒性を軽減できることが開示され、例えば、
Figure JPOXMLDOC01-appb-C000008
ジ[(Z)-ノナ-2-エン-1-イル] 9-{[4-(ジメチルアミノ)ブタノイル]オキシ}ヘプタデカンジオアート(Di[(Z)-non-2-en-1-yl] 9-{[4-(dimethylamino)butanoyl]oxy}heptadecanedioate)等のカチオン性脂質が開示されている。
国際公開第2010/042877号 国際公開第2010/054401号 国際公開第2012/108397号 国際公開第2014/007398号
Molecular Therapy [モレキュラー・セラピー], 2013年, 第21巻, p.1570-1578.
 本発明の目的は、例えば、細胞内等に核酸を導入することのできるカチオン性脂質としての新規化合物および該新規化合物を含有する組成物等を提供することにある。
 本発明は以下の(1)~(30)に関する。
 (1) 式(I) 
Figure JPOXMLDOC01-appb-C000009
[式中、R1は、水素原子、C1-C3アルキル、ヒドロキシC2-C4アルキル、ジC1-C3アルキルアミノC2-C4アルキル、式(A)
Figure JPOXMLDOC01-appb-C000010
 (式中、R2およびR3は同一または異なって、水素原子もしくはC1-C3アルキルであるか、またはR2およびR3が結合する窒素原子と一緒になってC2-C6含窒素複素環を形成してもよく、n3は2~6の整数である)、または式(B)
Figure JPOXMLDOC01-appb-C000011
 (式中、R4およびR5は同一または異なって、水素原子もしくはC1-C3アルキルであるか、またはR4およびR5が結合する窒素原子と一緒になってC2-C6含窒素複素環を形成してもよく、n4は1~6の整数である)であり、
 n1は0~4の整数であり、n2は1~4の整数であり(但し、n1が0であり、n2が1である場合を除く)、
 Z1は、結合する炭素ごとにそれぞれ独立して、水素原子またはC1-C3アルキルであり、
 Zは、結合する炭素ごとにそれぞれ独立して、水素原子またはC1-C3アルキルであり、
 A1およびA2は同一または異なって、直鎖状または分岐状のC8-C20アルキレンもしくはC8-C20アルケニレンであるか、またはC6-C18アルキレンオキシC1-C3アルキレンもしくはC6-C18アルケニレンオキシC1-C3アルキレンであり、
 M1およびM2は同一または異なって、-OC(O)-、-C(O)O-、-SC(O)-、-C(O)S-、-OC(S)-、-C(S)O-、-SS-、-C(R6)=N-、-N=C(R6)-、-C(R6)=N-O-、-O-N=C(R6)-、-N(R6)C(O)-、-C(O)N(R6)-、-N(R6)C(S)-、-C(S)N(R6)-、-N(R6)C(O)N(R7)-、-N(R6)C(O)O-、-OC(O)N(R6)-および-OC(O)O-からなる群から選ばれ、
 R6およびR7は同一または異なって、水素原子またはC1-C4アルキルであり、
 B1およびB2は同一または異なって、直鎖状または分岐状のC1-C16アルキルまたはC2-C16アルケニルである]で表わされる化合物、またはその製薬上許容し得る塩(カチオン性脂質)。
 (2) M1およびM2が同一または異なって、-OC(O)-、-C(O)O-、-N(R6)C(O)-および-C(O)N(R6)-からなる群から選ばれる、上記(1)記載の化合物、またはその製薬上許容し得る塩(カチオン性脂質)。
 (3) M1およびM2が同一または異なって、-OC(O)-または-C(O)O-である、上記(2)記載の化合物、またはその製薬上許容し得る塩(カチオン性脂質)。
 (4) A1およびA2が同一または異なって、直鎖状または分岐状のC8-C20アルキレンまたはC8-C20アルケニレンである、上記(1)~(3)のいずれかに記載の化合物、またはその製薬上許容し得る塩(カチオン性脂質)。
 (5) B1-M1-A1-およびB2-M2-A2-が同一である、上記(1)~(4)のいずれかに記載の化合物、またはその製薬上許容し得る塩(カチオン性脂質)。
 (6) R1がC1-C3アルキルである、上記(1)~(5)のいずれかに記載の化合物、またはその製薬上許容し得る塩(カチオン性脂質)。
 (7) n1が1であり、n2が1~3の整数である、上記(1)~(6)のいずれかに記載の化合物、またはその製薬上許容し得る塩(カチオン性脂質)。
 (8) n1およびn2がともに1である、上記(1)~(7)のいずれかに記載の化合物、またはその製薬上許容し得る塩(カチオン性脂質)。
 (9) 上記(1)~(8)のいずれかに記載の化合物、またはその製薬上許容し得る塩(カチオン性脂質)および核酸を含有する組成物。
 (10) 中性脂質および/または高分子をさらに含有する、上記(9)記載の組成物。
 (11) 化合物、またはその製薬上許容し得る塩(カチオン性脂質)と核酸とが複合体を形成しているか、または化合物、またはその製薬上許容し得る塩(カチオン性脂質)に中性脂質および/もしくは高分子を組み合わせたものと核酸とが複合体を形成している、上記(9)または(10)記載の組成物。
 (12) 複合体を封入する脂質膜を含有する、上記(11)記載の組成物。
 (13) 核酸が、RNA干渉(RNAi)を利用した標的遺伝子の発現抑制作用を有する核酸である、上記(9)~(12)のいずれかに記載の組成物。
 (14) 標的遺伝子が、肝臓、肺、腎臓、消化管、中枢神経系または脾臓において発現する遺伝子である、上記(13)記載の組成物。
 (15)静脈内投与用である、上記(9)~(14)のいずれかに記載の組成物。
 (16) 上記(9)~(15)のいずれかに記載の組成物を用いて核酸を細胞内に導入する方法。
 (17) 細胞が、哺乳動物の肝臓、肺、腎臓、消化管、中枢神経系または脾臓にある細胞である、上記(16)記載の方法。
 (18) 組成物の静脈内投与によって核酸を細胞内に導入する、上記(16)または(17)記載の方法。
 (19) 上記(9)~(15)のいずれかに記載の組成物を哺乳動物に投与する工程を含む、肝臓、肺、腎臓、消化管、中枢神経系または脾臓に関連する疾患の治療方法。
 (20) 静脈内投与する、上記(19)記載の方法。
 (21) 上記(9)~(15)のいずれかに記載の記載の組成物を含む、医薬。
 (22) 上記(9)~(15)のいずれかに記載の記載の組成物を含む、疾患の治療に用いるための医薬。
 (23) 疾患が、肝臓、肺、腎臓、消化管、中枢神経系または脾臓に関連する疾患である、上記(22)に記載の医薬。
 (24) 静脈内投与用である、上記(21)~(23)のいずれかに記載の医薬。
 (25) 上記(9)~(15)のいずれかに記載の組成物を含む、肝臓、肺、腎臓、消化管、中枢神経系または脾臓に関連する疾患の治療剤。
 (26) 静脈内投与用である、上記(25)記載の肝臓、肺、腎臓、消化管、中枢神経系または脾臓治療剤。
 (27) 上記(9)~(15)のいずれかに記載の組成物をそれを必要とする患者に投与することを含む、肝臓、肺、腎臓、消化管、中枢神経系または脾臓に関連する疾患の治療方法。
 (28) 静脈内投与する、上記(27)記載の方法。
 (29) 肝臓、肺、腎臓、消化管、中枢神経系または脾臓に関連する疾患の治療用の上記(9)~(15)のいずれかに記載の組成物。
 (30) 静脈内投与用の、上記(29)記載の組成物。
 本発明により、例えば、細胞内等に核酸を導入することのできるカチオン性脂質としての新規化合物および該新規化合物を含有する組成物等を提供することができる。
実施例5および6で得られた製剤1~3(化合物1~3のそれぞれを含有する組成物)を、それぞれヒト膵臓癌細胞株MIA-PaCa2に処理した際のHPRT1のmRNAの発現量をRT-PCRによる準定量により評価した。検体のmRNA量は、GAPDHのmRNA量に対するHPRT1のmRNA量を算出し、陰性対照処理群における当該値を1としたときの相対的な割合として算出した。縦軸はこのように算出した検体のmRNA量の相対値を示し、横軸は製剤番号および製剤中のsiRNA濃度(nM)を示す。 実施例5および6で得られた製剤1~3(化合物1~3のそれぞれを含有する組成物)を、それぞれヒト肺癌細胞株NCI-H358に処理した際のHPRT1のmRNAの発現量をRT-PCRによる準定量により評価した。検体のmRNA量は、GAPDHのmRNA量に対するHPRT1のmRNA量を算出し、陰性対照処理群における当該値を1としたときの相対的な割合として算出した。縦軸はこのように算出した検体のmRNA量の相対値を示し、横軸は製剤番号および製剤中のsiRNA濃度(nM)を示す。 実施例7および8で得られた製剤4~8(化合物1~4のそれぞれを含有する組成物)を、それぞれヒト膵臓癌細胞株MIA-PaCa2に処理した際のHPRT1のmRNAの発現量をRT-PCRによる準定量により評価した。検体のmRNA量は、GAPDHのmRNA量に対するHPRT1のmRNA量を算出し、陰性対照処理群における当該値を1としたときの相対的な割合として算出した。縦軸はこのように算出した検体のmRNA量の相対値を示し、横軸は製剤番号および製剤中のsiRNA濃度(nM)を示す。 実施例7および8で得られた製剤4~8(化合物1~4のそれぞれを含有する組成物)を、それぞれヒト肺癌細胞株NCI-H358に処理した際のHPRT1のmRNAの発現量をRT-PCRによる準定量により評価した。検体のmRNA量は、GAPDHのmRNA量に対するHPRT1のmRNA量を算出し、陰性対照処理群における当該値を1としたときの相対的な割合として算出した。縦軸はこのように算出した検体のmRNA量の相対値を示し、横軸は製剤番号および製剤中のsiRNA濃度(nM)を示す。
 本発明の化合物は、
 式(I)
Figure JPOXMLDOC01-appb-C000012
[式中、R1は、水素原子、C1-C3アルキル、ヒドロキシC2-C4アルキル、ジC1-C3アルキルアミノC2-C4アルキル、式(A)
Figure JPOXMLDOC01-appb-C000013
 (式中、R2およびR3は同一または異なって、水素原子もしくはC1-C3アルキルであるか、またはR2およびR3が結合する窒素原子と一緒になってC2-C6含窒素複素環を形成してもよく、n3は2~6の整数である)、または式(B)
Figure JPOXMLDOC01-appb-C000014
 (式中、R4およびR5は同一または異なって、水素原子もしくはC1-C3アルキルであるか、またはR4およびR5が結合する窒素原子と一緒になってC2-C6含窒素複素環を形成してもよく、n4は1~6の整数である)であり、
 n1は0~4の整数であり、n2は1~4の整数であり(但し、n1が0であり、n2が1である場合を除く)、
 Z1は、結合する炭素ごとにそれぞれ独立して、水素原子またはC1-C3アルキルであり、
 Zは、結合する炭素ごとにそれぞれ独立して、水素原子またはC1-C3アルキルであり、
 A1およびA2は同一または異なって、直鎖状または分岐状のC8-C20アルキレンもしくはC8-C20アルケニレンであるか、またはC6-C18アルキレンオキシC1-C3アルキレンもしくはC6-C18アルケニレンオキシC1-C3アルキレンであり、
 M1およびM2は同一または異なって、-OC(O)-、-C(O)O-、-SC(O)-、-C(O)S-、-OC(S)-、-C(S)O-、-SS-、-C(R6)=N-、-N=C(R6)-、-C(R6)=N-O-、-O-N=C(R6)-、-N(R6)C(O)-、-C(O)N(R6)-、-N(R6)C(S)-、-C(S)N(R6)-、-N(R6)C(O)N(R7)-、-N(R6)C(O)O-および-OC(O)N(R6)-、-OC(O)O-からなる群から選ばれ、
 R6およびR7は同一または異なって、水素原子またはC1-C4アルキルであり、
 B1およびB2は同一または異なって、直鎖状または分岐状のC1-C16アルキルまたはC2-C16アルケニル]で表わされる化合物である。
 式(I)で表される化合物は、二つの炭化水素基を含む脂質親和性領域と、一つのプラスに帯電し得る極性ヘッドグループを含む親水性領域を有し、カチオン性脂質としての性質を有する。
 以下、式(I)で表される化合物を化合物(I)ということもある。他の式番号の化合物についても同様である。また、以下、式(I)で表される化合物、またはその製薬上許容し得る塩を、総称して「カチオン性脂質」ということもある。
 C1-C3アルキルとしては、メチル、エチル、プロピル、イソプロピルおよびシクロプロピル等が挙げられる。
 本発明において、C1-C3アルキルである場合を例示して説明すると、C1-C3アルキルのC1-C3は、炭素数が1~3であることを意味する。
 ヒドロキシC2-C4アルキルとは、C2-C4アルキルのいずれかの炭素にヒドロキシが置換されていることを意味し、C2-C4アルキル部分としては、例えばエチル、プロピルおよびブチル等が挙げられる。
 ジC1-C3アルキルアミノC2-C4アルキルとは、C2-C4アルキルのいずれかの炭素にジC1-C3アルキルアミノが置換されていることを意味し、C2-C4アルキル部分としては、例えばエチル、プロピルおよびブチル等が挙げられる。
 ジC1-C3アルキルアミノにおけるC1-C3アルキル部分としては、メチル、エチル、プロピル、イソプロピルおよびシクロプロピル等が挙げられ、C1-C3アルキル部分は同一でも異なっていてもよい。
 C2-C6含窒素複素環としては、例えばアジリジン環、アゼチジン環、ピロリジン環、ピペリジン環およびアゼパン環等が挙げられ、C2-C6含窒素複素環は同一または異なって、1~3個のC1-C3アルキル(前記と同義)、ヒドロキシまたはメトキシ等で置換されていてもよい。
 直鎖状または分岐状のC8-C20アルキレンとしては、例えばオクチレン、ノニレン、ウンデシレン、トリデシレン、テトラデシレン、2,6,10-トリメチルウンデシレン、ペンタデシレン、3,7,11-トリメチルドデシレン、ヘキサデシレン、ヘプタデシレン、オクタデシレン、ノナデシレン、2,6,10,14-テトラメチルペンタデシレンおよび3,7,11,15-テトラメチルヘキサデシレン等が挙げられ、好ましくはノニレン、ウンデシレン、トリデシレンまたはヘキサデシレンであり、より好ましくはノニレンまたはウンデシレンである。
 直鎖状または分岐状のC8-C20アルキレンとしての記載において、2,6,10-トリメチルウンデシレンを例にして説明すると、置換基の置換位置を示す2,6,10-は、含窒素複素環の炭素原子に結合するA1およびA2における炭素原子を1位とする。
 直鎖状または分岐状のC8-C20アルケニレンとしては、直鎖状または分岐状のC8-C20アルキレンにおいて1以上の2重結合を含む基であればよく、例えば(Z)-テトラデカ-9-エニレン、(Z)-ヘキサデカ-9-エニレン、(Z)-オクタデカ-6-エニレン、(Z)-オクタデカ-9-エニレン、(E)-オクタデカ-9-エニレン、(Z)-オクタデカ-11-エニレン、(9Z,12Z)-オクタデカ-9,12-ジエニレンおよび(9Z,12Z,15Z)-オクタデカ-9,12,15-トリエニレン等が挙げられ、好ましくは(Z)-テトラデカ-9-エニレン、(Z)-ヘキサデカ-9-エニレン、(Z)-オクタデカ-9-エニレン、(Z)-オクタデカ-11-エニレンまたは(9Z,12Z)-オクタデカ-9,12-ジエニレンである。
 直鎖状または分岐状のC8-C20アルケニレンとしての記載において、(Z)-テトラデカ-9-エニレンを例にして説明すると、二重結合の位置を示す-9-は、含窒素複素環の炭素原子に結合するA1およびA2における炭素原子を1位とする。
 C6-C18アルキレンオキシC1-C3アルキレンにおけるC1-C3アルキレン部分としては、例えばメチレン、エチレンおよびプロピレン等が挙げられる。
 C6-C18アルキレンオキシC1-C3アルキレンにおけるC6-C18アルキレン部分としては、例えばヘキシレン、ヘプチレン、オクチレン、ノニレン、デシレン、ウンデシレン、トリデシレン、テトラデシレン、2,6,10-トリメチルウンデシレン、ペンタデシレン、3,7,11-トリメチルドデシレン、ヘキサデシレン、ヘプタデシレンおよびオクタデシレン等が挙げられ、好ましくは、ヘキシレン、ヘプチレン、オクチレン、ノニレン、デシレンが挙げられる。
 C6-C18アルケニレンオキシC1-C3アルキレンにおけるC1-C3アルキレン部分としては、例えばメチレン、エチレンおよびプロピレンが挙げられ、C6-C18アルケニレン部分としては、C6-C18アルキレンオキシC1-C3アルキレンにおけるC6-C18アルキレン部分において1以上の2重結合を含む部分であればよく、例えば(Z)-テトラデカ-9-エニル、(Z)-ヘキサデカ-9-エニル、(Z)-オクタデカ-6-エニル、(Z)-オクタデカ-9-エニルおよび(E)-オクタデカ-9-エニル等が挙げられ、好ましくは(Z)-ヘキサデカ-9-エニル、(Z)-オクタデカ-6-エニル、(Z)-オクタデカ-9-エニル、(9Z,12Z)-オクタデカ-9,12-ジエニル、(Z)-イコサ-11-エニルまたは(11Z,14Z)-イコサ-11,14-ジエニルである。
 C6-C18アルキレンオキシC1-C3アルキレンおよびC6-C18アルケニレンオキシC1-C3アルキレンを構成するC1-C3アルキレン部分は、式(I)中の含窒素複素環側に位置する。
 C1-C4アルキルとしては、例えばメチル、エチル、プロピル、イソプロピル、シクロプロピル、ブチル、iso-ブチル、sec-ブチル、tert-ブチルおよびシクロブチル等が挙げられる。
 直鎖状または分岐状のC1-C16アルキルとしては、例えばメチル、エチル、プロピル、イソプロピル、ブチル、tert-ブチル、ヘキシル、オクチル、ノニル、デシル、ドデシル、テトラデシル、3,7,11-トリメチルドデシルおよびヘキサデシル等が挙げられ、好ましくはオクチル、ノニル、デシルまたはドデシルである。
 直鎖状または分岐状のC1-C16アルキルとしての記載において、3,7,11-トリメチルドデシルを例にして説明すると、置換基の置換位置を示す3,7,11-は、M1およびM2に結合するB1およびB2における炭素原子を1位とする。
 直鎖状または分岐状のC2-C16のアルケニルとしては、直鎖状または分岐状のC1-C16アルキルにおける直鎖状または分岐状のC2-C16アルキルにおいて1以上の2重結合を含む基であればよく、例えば(Z)-ブタ-2-エニル、(Z)-ペンタ-2-エニル、(Z)-ヘキサ-2-エニル、(Z)-ヘプタ-2-エニル、(Z)-オクタ-2-エニル、(Z)-ノナ-2-エニル、(Z)-ノナ-3-エニル、(E)-ノナ-2-エニル、ノナ-8-エニル、(Z)-ドデカ-2-エニル、(Z)-ドデカ-2-エニルおよび(Z)-トリデカ-2-エニル等が挙げられ、好ましくは(Z)-ヘプタ-2-エニル、(Z)-ノナ-2-エニル、(Z)-ノナ-3-エニル、ノナ-8-エニル、(Z)-ドデカ-2-エニルまたは(Z)-トリデカ-2-エニルである。
 直鎖状または分岐状のC2-C16のアルケニルとしての記載において、(Z)-ブタ-2-エンを例にして説明すると、置換基の置換位置を示す-2-は、M1およびM2に結合するB1およびB2における炭素原子を1位とする。
 本発明においては、直鎖状または分岐状のC8-C20アルケニレンの二重結合にメチレンビラジカルが形式的に付加したシクロプロパン環を有する基も、C8-C20直鎖状または分岐状のアルケニレンに包含される。さらに、C6-C18アルケニレンオキシC1-C3アルキレンにおけるC6-C18アルケニレン部分および直鎖状または分岐状のC2-C16アルケニルの場合も同様である。
 (Z)-ノナ-2-エンを例にして説明すると、シクロプロパン環を有する以下の基も、本発明における直鎖または分岐状のC8-C20アルケニレンに包含される。
Figure JPOXMLDOC01-appb-C000015
 A1およびA2は同一または異なって、直鎖状または分枝状のC8-C20アルキレンまたはC8-C20アルケニレンであることが好ましく、同一または異なって、直鎖状のC8-C20のアルキレンであることが好ましい。A1およびA2は同一であり、直鎖状または分枝状のC8-C20アルキレンまたはC8-C20アルケニレンであることが好ましく、同一であり、直鎖状のC8-C20アルキレンであることがより好ましい。
 M1およびM2は同一または異なって、-OC(O)-、-C(O)O-、-C(S)O-、-SS-、-N(R6)C(O)-、-C(O)N(R6)-、-C(S)(NR6)-、-N(R6)C(O)N(R7)-、-N(R6)C(O)O-、-OC(O)N(R6)-または-OC(O)O-であることが好ましく、-OC(O)-、-C(O)O-、-N(R6)C(O)-、-C(O)N(R6)-、-N(R6)C(O)N(R7)-、-N(R6)C(O)O-、-OC(O)N(R6)-または-OC(O)O-であることがより好ましく、-OC(O)-、-C(O)O-、-N(R6)C(O)-または-C(O)N(R6)-であることがさらに好ましく、-OC(O)-または-C(O)O-であることがよりさらに好ましい。
 M1およびM2としての記載において、M1およびM2が-OC(O)-である場合を例にして説明すると、-OC(O)-は、B1-OC(O)-A1またはB2-OC(O)-A2として結合していることを意味する。
 R6およびR7は同一または異なって、水素原子、メチルまたはエチルであることが好ましく、同一または異なって、水素原子またはメチルであることがより好ましく、同一であり、水素原子またはメチルであることがさらに好ましく、水素原子であることがよりさらに好ましい。
 B1およびB2は同一または異なって、直鎖状のC1-C16アルキルまたはC2-C16アルケニルであることが好ましく、同一であり、直鎖状のC1-C16アルキルまたはC2-C16アルケニルであることがより好ましく、同一であり、直鎖状のC2-C16アルケニルであることがさらに好ましい。
 B1-M1-A1およびB2-M2-A2は同一であることが好ましい。B1-M1-A1およびB2-M2-A2は同一または異なって、以下の構造(1)~(11)であることが好ましく、同一であり、以下の(1)~(11)構造であることがより好ましく、以下の(1)~(4)構造であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000016
 上記(1)~(11)構造において、波線の結合は、式(I)中の含窒素複素環の炭素原子への結合手である。
 n5は、1~10の整数であることが好ましく、1~5の整数であることがより好ましく、2~4の整数であることがさらに好ましく、2または4であることがよりさらに好ましい。
 R1は、C1-C3アルキル、上記式(A)または上記式(B)であることが好ましく、C1-C3アルキルまたは上記式(A)であることがより好ましく、C1-C3アルキルであることがさらに好ましい。
 R1がC1-C3アルキルである場合、メチル、エチル、プロピルまたはシクロプロピルであることが好ましく、メチルまたはエチルであることがより好ましく、メチルであることがさらに好ましい。
 R1が式(A)である場合、R2およびR3は、同一または異なって、水素原子またはC1-C3アルキルであることが好ましく、R1が式(B)である場合、R4およびR5は、同一または異なって、水素原子またははC1-C3アルキルであることが好ましい。
 R2とR3が結合する窒素原子と一緒になってC2-C6含窒素複素環を形成する場合、R2とR3は結合する窒素原子と一緒になってアゼチジン環、ピロリジン環、ピペリジン環またはアゼパン環であることが好ましく、ピロリジン環またはピペリジン環であることがより好ましい。
 R2とR3が同一または異なって、C1-C3アルキルである場合、R3はメチルまたはエチルであることが好ましく、メチルであることがより好ましい。
 R2とR3が同一であり、メチルであることが好ましい。
 n3は2~4の整数であることが好ましく、3であることがより好ましい。
 R4とR5が結合する窒素原子と一緒になってC2-C6含窒素複素環を形成する場合、R4とR5は結合する窒素原子と一緒になってピロリジン環またはピペリジン環であることが好ましい。
 R4とR5が同一または異なって、C1-C3アルキルである場合、R4とR5はメチルまたはエチルであることが好ましく、メチルであることがより好ましい。
 R4とR5が同一であり、メチルであることが好ましい。
 n4は2~4の整数であることが好ましく、3であることがより好ましい。
 n1は1であることが好ましい。n1が1である場合、n2は1~3の整数であることが好ましく、1または2であることがより好ましく、1であることがさらに好ましい。
 Z1は、結合する炭素ごとにそれぞれ独立して、水素原子またはメチルであることが好ましく、水素原子であることがより好ましい。
 Z2は、結合する炭素ごとにそれぞれ独立して、水素原子またはC1-C3アルキルであることが好ましく、水素原子またはメチルであることがより好ましく、水素原子であることがさらに好ましい。
 本発明において、用語「結合する炭素ごとにそれぞれ独立して」とは、式(I)に2つ以上のZ1が存在する場合において、Z1が結合する炭素原子ごとに、それぞれのZ1が同一または異なって、水素原子またはC1-C3アルキルを選択できることを意味する。例えば、式(I)中にZ1が2つ存在する場合、それぞれのZ1が同一であることを意味するだけでなく、一方のZ1が水素原子であり、他方のZ1がC1-C3アルキルである場合や、2つのZ1が異なるC1-C3アルキルである場合も包含することを意味する。式(I)に2つ以上のZ2が存在する場合においても同様である。
 n1とn2がともに1である時、Z1とZ2が同一または異なって、水素原子またはメチルであることが好ましく、Z1が水素原子またはメチルであり、Z2が水素原子であることがより好ましく、Z1とZ2が同一であり、水素原子であることがさらに好ましい。
 本発明の式(I)で表わされる化合物、またはその製薬上許容し得る塩(カチオン性脂質)の製造法について説明する。
 以下に示す製造法において、定義した基が該製造法の条件下で変化するかまたは該製造法を実施するのに不適切な場合、有機合成化学で常用される保護基の導入および除去方法[例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス第3版(Protective Groups in Organic Synthesis, third edition)、グリーン(T.W.Greene)著、John Wiley&Sons Inc.(1999年)等に記載の方法]等を用いることにより、目的化合物を製造することができる。また、必要に応じて置換基導入等の反応工程の順序を変えることもできる。
 製造法1
 化合物(I)のうち、n1およびn2がともに1であり、Z1およびZ2がともに水素原子であり、R1が水素原子、C1-C3アルキル、ヒドロキシC2-C4アルキルまたはジC1-C3アルキルアミノC2-C4アルキルであり、M1およびM2が同一であり、-OC(O)-である化合物(Ia)は、例えば、以下の方法によって製造することができる。
Figure JPOXMLDOC01-appb-C000017
 (式中、A1、A2、B1およびB2はそれぞれ前記と同義であり、R1aは水素原子、C1-C3アルキル、ヒドロキシC2-C4アルキルまたはジC1-C3アルキルアミノC2-C4アルキルであり、X1、X2およびX3は同一または異なって、塩素原子、臭素原子、ヨウ素原子、トリフルオロメタンスルホニルオキシ、メタンスルホニルオキシ、ベンゼンスルホニルオキシおよびp-トルエンスルホニルオキシ等の脱離基を表す)
 工程1
 化合物(IIIa)は化合物(IIa)と化合物(IIb)を、無溶媒でまたは溶媒中、1~10当量の縮合剤と、1~10当量の塩基の存在下、室温~200℃で、5分間~100時間反応させることにより製造することができる。
 溶媒としては、例えばジクロロメタン、クロロホルム、1,2-ジクロロエタン、トルエン、酢酸エチル、アセトニトリル、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドンおよびピリジン等が挙げられ、これらは単独でまたは混合して用いることができる。
 縮合剤としては、例えば塩酸1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド、N,N'-ジシクロヘキシルカルボジイミド、4-(4,6-ジメトキシ-1,3,5-トリアジン-2- イル)-4-メチルモルホリニウムクロリドn水和物、1H-ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロリン酸塩およびO-(7-アザベンゾトリアゾール-1-イル)-N,N,N',N',-テトラメチルウロニウムヘキサフルオロリン酸塩等が挙げられる。
 塩基としては、例えば炭酸カリウム、炭酸セシウム、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリンおよびピリジン等が挙げられる。
 化合物(IIa)は市販品、または公知の方法[例えば「新実験化学講座14 有機化合物の合成と反応(II)」、初版、丸善(1977年)] もしくはそれに準じた方法によって得ることができる。
 化合物(IIb)は市販品として得ることができる。
 工程2および3
 化合物(IIc)は、マロン酸ジtert-ブチルと化合物(IIIa)を、無溶媒でまたは溶媒中、1~10当量の塩基の存在下、室温~200℃で、5分間~100時間反応させることにより製造することができる。
 化合物(IId)は、化合物(IIc)と化合物(IIIb)を、無溶媒でまたは溶媒中、1~10当量の塩基の存在下、室温~200℃で、5分間~100時間反応させることにより製造することができる。
 溶媒としては、例えばメタノール、エタノール、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、トルエン、酢酸エチル、アセトニトリル、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドンおよびピリジン等が挙げられ、これらは単独でまたは混合して用いることができる。
 塩基としては、例えば炭酸カリウム、炭酸セシウム、ナトリウムメトキシド、カリウム tert-ブトキシド、水素化ナトリウム、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、ピリジンおよび1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)等が挙げられる。
 A1とA2およびB1とB2が同一である場合の化合物(IId)は、工程2において、2当量以上の化合物(IIIa)を用いることにより製造することができる。
 マロン酸ジtert-ブチルは市販品として得ることができる。
 化合物(IIIb)は化合物(IIIa)と同様の方法で製造することができる。
 工程4
 化合物(IIe)は化合物(IId)を、無溶媒でまたは溶媒中、5~100当量の酸と、-78℃~100℃で、5分間~100時間反応させることにより製造することができる。
 溶媒としては、例えば、工程1で例示したものが挙げられる。
 酸としては、例えば、トリフルオロ酢酸、トリクロロ酢酸、塩酸、硫酸および臭化水素酸等が挙げられる。
 工程5
 化合物(IIf)は化合物(IIe)を、溶媒中、4当量~大過剰量の還元剤と、必要に応じて触媒量~10当量の添加剤の存在下、-20℃~150で、5分間~72時間反応させることにより製造することができる。触媒量は0.01当量~0.5当量であることを意味する。
 溶媒としては、例えばトルエン、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタンおよび1,4-ジオキサン等が挙げられ、これらは単独でまたは混合して用いることができる。
 還元剤としては、例えばボラン・テトラヒドロフラン錯体、ボラン・ジメチルスルフィド錯体、水素化アルミウニウムリチウム、水素化ホウ素リチウム、水素化トリエチルホウ素リチウム、水素化ジイソブチルアルミニウムおよび水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム等が挙げられる。
 添加剤としては、例えば塩化アルミニウム、塩化セリウム、四塩化チタンおよびチタニウムテトライソプロポキシド等が挙げられる。
 工程6
 化合物(IIg)は化合物(IIf)を、無溶媒でまたは溶媒中、2当量以上のハロゲン化試薬または擬ハロゲン化試薬と、必要により好ましくは1~10当量の塩基および必要により好ましくは1~10当量の添加剤の存在下、-20℃~150℃で、5分間~100時間反応させることにより製造することができる。
 溶媒としては、例えば、工程5で例示したものが挙げられる。
 ハロゲン化試薬または擬ハロゲン化試薬としては、例えば塩化チオニル、塩化スルフリル、三塩化リン、五塩化リン、オキシ塩化リン、三臭化リン、臭化水素、ヨウ化水素、無水メシル酸、メシル酸クロリド、無水トシル酸、ベンゼンスルホン酸クロリド、無水ベンゼンスルホン酸、トシル酸クロリドおよび無水トリフルオロメタンスルホン酸等が挙げられる。
 塩基としては、例えばピリジン、2,6-ルチジン、2,4,6-コリジン、トリエチルアミンおよびN,N-ジイソプロピルエチルアミン等が挙げられる。
 添加剤としては、例えば塩化ナトリウム、臭化ナトリウム、臭化リチウムおよび塩化リチウム等が挙げられる。
 工程7
 化合物(Ia)は化合物(IIf)と1当量~大過剰量の化合物(IVa)を、無溶媒でまたは溶媒中、室温~200℃で、5分間~100時間反応させることにより製造することができる。
 溶媒としては、例えば、工程2および3で例示したものが挙げられる。
 化合物(IVa)は、市販品として得ることができる。
 製造法2
 化合物(I)のうち、n1およびn2がともに1であり、Z1およびZ2がともに水素原子であり、R1が水素原子、C1-C3アルキル、ヒドロキシC2-C4アルキルまたはジC1-C3アルキルアミノC2-C4アルキルである化合物(Ia’)は、例えば、以下の方法によって製造することができる。
Figure JPOXMLDOC01-appb-C000018
 (式中、A1、A2、M1、M2、B1、B2、R1a、X1、X2およびX3はそれぞれ前記と同義である)
 工程8および工程9
 化合物(IIc’)は、化合物(IIIa)の代わりに化合物(IIIa’)を用いることで、工程2と同様の方法により製造することができる。
 化合物(IId’)は、化合物(IIc)および(IIIb)の代わりに化合物(IIc’)および(IIIb’)を用い、工程3と同様の方法により製造することができる。
 化合物(IIIa’)および化合物(IIIb’)のうち、M1およびM2が-OC(O)-であるものは製造法1の工程1で示した方法で製造することができる。
 化合物(IIIa’)および化合物(IIIb’)のうち、M1およびM2が-OC(O)-以外であるものも対応する市販原料を用いることで製造することができる。
 工程10
 化合物(IIe’)は化合物(IId)の代わりに化合物(IId’)を用いることで、工程4と同様の方法により製造することができる。
 工程11
 化合物(IIf’)は化合物(IIe)の代わりに化合物(IIe’)を用いることで、工程5と同様の方法により製造することができる。
 工程12
 化合物(IIg’)は化合物(IIf)の代わりに化合物(IIf’)を用いることで、工程6と同様の方法により製造することができる。
 工程13
 化合物(Ia’)は化合物(IIg)の代わりに化合物(IIg’)を用いることで、工程7と同様の方法により製造することができる。
 製造法3
 化合物(I)のうち、n1およびn2がともに1であり、Z1およびZ2がともに水素原子であり、R3が式(A)である化合物(Ic)は、例えば、以下の方法によって製造することができる。
Figure JPOXMLDOC01-appb-C000019
 (式中、A1、A2、B1、B2、M1、M2、R2、R3およびn3はそれぞれ前記と同義であり、Arはp-ニトロフェニル、o-ニトロフェニルおよびp-クロロフェニル等の置換フェニル基または無置換フェニル基を表す)
 工程14
 化合物(VII)は化合物(V)と化合物(VI)を、無溶媒でまたは溶媒中、必要により好ましくは1~10当量の添加剤および/または必要により好ましくは1~10当量の塩基の存在下、-20℃~150℃で、5分間~72時間反応させることにより製造することができる。
 溶媒としては、例えばジクロロメタン、クロロホルム、1,2-ジクロロエタン、トルエン、酢酸エチル、アセトニトリル、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシド等が挙げられ、これらは単独でまたは混合して用いることができる。
 添加剤としては、例えば、1-ヒドロキシベンゾトリアゾールおよび4-ジメチルアミノピリジン等が挙げられる。
 塩基としては、例えば炭酸カリウム、水酸化カリウム、水酸化ナトリウム、ナトリウムメトキシド、カリウム tert-ブトキシド、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、ピリジンおよび1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)等が挙げられる。
 化合物(V)は、市販品として得ることができる。
 化合物(VI)は、市販品としてまたは公知の方法(例えば、「第5版実験化学講座14 有機化合物の合成II」、第5版、p.1、丸善(2005年))もしくはそれに準じた方法によって得ることができる。
 工程15
 化合物(Ic)は化合物(Ib)と化合物(VII)を、無溶媒でまたは溶媒中、必要により1~10当量の添加剤および/または必要により1~10当量の塩基の存在下、-20℃~150℃で、5分間~72時間反応させることにより製造することができる。
 化合物(Ib)は製造法2の工程13で化合物(IVa)としてアンモニアを用いることによって製造することができる。
 溶媒、添加剤および塩基としては、例えば、それぞれ工程14で例示したものが挙げられる。
 製造法4
 化合物(I)のうち、n1およびn2がともに1であり、Z1およびZ2がともに水素原子であり、R3が式(B)である化合物(Id)は、例えば、以下の方法によって製造することができる。
Figure JPOXMLDOC01-appb-C000020
 (式中、A1、A2、M1、M2、B1、B2、R4、R5およびn4はそれぞれ前記と同義である)
 工程16
 化合物(IIh)は化合物(Ib)と化合物(VIII)を、無溶媒でまたは溶媒中、必要により好ましくは1~10当量の塩基の存在下、-20℃~150℃で、5分間~72時間反応させることにより製造することができる。
 溶媒としては、例えば、工程14で例示したものが挙げられる。
 塩基としては、例えば、工程6で例示したものが挙げられる。
 化合物(VIII)は、市販品として得ることができる。
 工程17
 化合物(Id)は化合物(IIh)と1~20当量の化合物(VIb)を、無溶媒でまたは溶媒中、必要により1~10当量の塩基の存在下、室温~200℃で、5分間~100時間反応させることにより製造することができる。
 溶媒としては、例えば、工程2および3で例示したものが挙げられる。
 塩基としては、例えば、工程14で例示したものが挙げられる。
 化合物(VIb)は、市販品として得ることができる。
 製造法5
 化合物(I)のうち、n1およびn2が同一または異なって1~4の整数であり(但し、n1およびn2がともに1である場合を除く)、R1が水素原子、C1-C3のアルキル、ヒドロキシC2-C4アルキルまたはC1-C3ジアルキルアミノC2-C4アルキルであり、Z1およびZ2が水素原子である化合物(Ie)は、例えば、以下の方法によって製造することができる。
Figure JPOXMLDOC01-appb-C000021
 [式中、A1、A2、M1、M2、B1、B2、R3a、X1、X2およびX3はそれぞれ前記と同義であり、m1およびm2は同一または異なって、1~4の整数であり(但し、m1およびm2がともに1である場合を除く)、P1およびP2は同一または異なって、保護基を表す]
 工程18および工程19
 化合物(IXb)は、マロン酸ジtert-ブチルの代わりに化合物(IXa)を用い、工程2と同様の方法により製造することができる。
 化合物(IXc)は、化合物(IIc)の代わりに化合物(IXb)を用い、工程3と同様の方法により製造することができる。
 B1-M1-A1とB2-M2-A2が同一である場合の化合物(IXc)は、工程18において、2当量以上の化合物(IIIa’)を用いることにより製造することができる。
 P1およびP2としては有機合成化学で常用される保護基[例えば、プロテクティブ グループス イン オーガニック シンセシス第3版(Protective Groups in Organic Synthesis, third edition)、グリーン(T.W.Greene)著、John Wiley&Sons Inc.(1999年)等に記載の保護基]を用いることができる。
 化合物(IXa)は公知の方法[例えば、「新実験化学講座14 有機化合物の合成と反応(II)」、初版、p.751、丸善(1977年)]もしくはそれに準じた方法によって得られる。
 工程20
 化合物(IXd)は、化合物(IXc)を公知の方法[例えば、「新実験化学講座15 酸化と還元(II)」、初版、丸善(1977年)]もしくはそれに準じた方法で還元することにより製造することができる。
 工程21
 化合物(IXe)は、化合物(IXd)の保護基P1およびP2をそれぞれ適切な方法で除去することにより製造することができる。
 保護基の除去方法としては、有機合成化学で常用される保護基の除去方法[例えば、プロテクティブ グループス イン オーガニック シンセシス第3版(Protective Groups in Organic Synthesis, third edition)、グリーン(T.W.Greene)著、John Wiley&Sons Inc.(1999年)等に記載の除去方法]を用いることができ、これにより目的とする化合物を製造することができる。
 工程22
 化合物(IXf)は、化合物(IIf)の代わりに化合物(IXe)を用い、工程6と同様の方法により製造することができる。
 工程23
 化合物(Ie)は、化合物(IIg)の代わりに化合物(IXf)を用い、工程7と同様の方法により製造することができる。
 化合物(I)のうち、化合物(Ia)~(Ie)以外の化合物は、目的とする化合物の構造に適した原料や試薬等を採用することにより、上記の製造法に準じて、または有機合成化学で常用される一般的な製造方法を適用することによって製造することができる。
 上記各製造法における中間体および目的化合物は、有機合成化学で常用される分離精製法、例えば、ろ過、抽出、洗浄、乾燥、濃縮、再結晶および/または各種クロマトグラフィー等により単離精製することができる。中間体を特に精製することなく次の反応に供してもよい。
 本発明の化合物(I)において、構造中の窒素原子上の孤立電子対に水素イオンが配位してもよく、その場合には、製薬上許容し得る陰イオンと塩を形成していてもよく、本発明においては、式(I)で表される化合物、またはその製薬上許容し得る塩として、構造中の窒素原子上の孤立電子対に水素イオンが配位したカチオン性脂質も包含される。
 本発明において、製薬上許容し得る陰イオンとしては、例えば塩化物イオン、臭化物イオン、硝酸イオン、硫酸イオンおよびリン酸イオン等の無機イオンならびに酢酸イオン、シュウ酸イオン、マレイン酸イオン、フマル酸イオン、クエン酸イオン、安息香酸イオンおよびメタンスルホン酸イオン等の有機酸イオン等が挙げられる。
 本発明の式(I)で表される化合物の製薬上許容し得る塩としては、例えば塩酸塩、臭酸塩、硝酸塩、硫酸塩、リン酸塩、酢酸塩、シュウ酸塩、マレイン酸塩、フマル酸塩、クエン酸塩、安息香酸塩およびメタンスルホン酸塩等が挙げられる。
 本発明の化合物(I)の中には、幾何異性体もしくは光学異性体等の立体異性体または互変異性体等が存在し得るものもあるが、本発明の化合物(I)は、これらを含め、全ての可能な異性体およびそれらの混合物を包含する。
 本発明の化合物(I)中の各原子の一部またはすべては、それぞれ対応する同位体原子で置き換わっていてもよく、化合物(I)は、これら同位体原子で置き換わった化合物も包含する。例えば、化合物(I)中の水素原子の一部またはすべては、原子量2の水素原子(重水素原子)であってもよい。
 本発明の化合物(I)中の各原子の一部またはすべてが、それぞれ対応する同位体原子で置き換わった化合物は、市販のビルディングブロックを用いて、上記各製造法と同様な方法で製造することができる。また、化合物(I)中の水素原子の一部またはすべてが重水素原子で置き換わった化合物は、例えば、イリジウム錯体を触媒として用い、重水を重水素源として用いてアルコール、カルボン酸等を重水素化する方法[ジャーナル・オブ・アメリカン・ケミカル・ソサイアティ(J.Am.Chem.Soc.), Vol.124,No.10,2092(2002)参照]等を用いて製造することができる。
 本発明の化合物(I)の具体例を表1~表3に示す。ただし、本発明の化合物(I)はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 本発明で用いられる核酸としては、例えばヌクレオチドおよび/またはヌクレオチドと同等の機能を有する分子が重合した分子であれば、いかなる分子であってもよい。
 核酸としては、例えばリボヌクレオチドの重合体であるリボ核酸(RNA)、デオキシリボヌクレオチドの重合体であるデオキシリボ核酸(DNA)、RNAとDNAとからなるキメラ核酸、およびこれらの核酸の少なくとも一つのヌクレオチドが該ヌクレオチドと同等の機能を有する分子で置換されたヌクレオチド重合体等が挙げられる。
 ヌクレオチドおよび/またはヌクレオチドと同等の機能を有する分子が重合した分子の構造を少なくとも一部に含む誘導体も、本発明で用いられる核酸に含まれる。
 本発明において、ウラシルUと、チミンTとは、それぞれ読み替えることができる。
 ヌクレオチドと同等の機能を有する分子としては、例えばヌクレオチド誘導体等が挙げられる。
 ヌクレオチド誘導体としては、例えばヌクレオチドに修飾を施した分子であればいかなる分子であってもよいが、例えばRNAまたはDNAと比較して、ヌクレアーゼ耐性を向上させるかもしくはその他の分解因子から安定化させるため、相補鎖核酸とのアフィニティーをあげるため、細胞透過性をあげるため、または可視化させるために、リボヌクレオチドまたはデオキシリボヌクレオチドに修飾を施した分子等が好適に用いられる。
 ヌクレオチド誘導体としては、例えば糖部修飾ヌクレオチド、リン酸ジエステル結合修飾ヌクレオチドおよび塩基修飾ヌクレオチド等が挙げられる。
 糖部修飾ヌクレオチドとしては、例えばヌクレオチドの糖の化学構造の一部またはすべてが、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよいが、2’-修飾ヌクレオチドが好ましく用いられる。
 糖部修飾ヌクレオチドにおける修飾基としては、例えば、2’-シアノ、2’-アルキル、2’-置換アルキル、2’-アルケニル、2’-置換アルケニル、2’-ハロゲン、2’-O-シアノ、2’-O-アルキル、2’-O-置換アルキル、2’-O-アルケニル、2’-O-置換アルケニル、2’-S-アルキル、2’-S-置換アルキル、2’-S-アルケニル、2’-S-置換アルケニル、2’-アミノ、2’-NH-アルキル、2’-NH-置換アルキル、2’-NH-アルケニル、2’-NH-置換アルケニル、2’-SO-アルキル、2’-SO-置換アルキル、2’-カルボキシ、2’-CO-アルキル、2’-CO-置換アルキル、2’-Se-アルキル、2’-Se-置換アルキル、2’-SiH2-アルキル、2’-SiH2-置換アルキル、2’-ONO2、2’-NO2、2’-N3、2’-アミノ酸残基(アミノ酸のカルボン酸から水酸基が除去されたもの)および2’-O-アミノ酸残基(前記アミノ酸残基と同義)等が挙げられる。
 糖部修飾ヌクレオチドとしては、例えば糖部に架橋構造を導入することにより2つの環状構造を有する架橋構造型人工核酸(Bridged Nucleic Acid)(BNA)が挙げられる。
 架橋構造型人工核酸としては、例えば2’位の酸素原子と4’位の炭素原子がメチレンを介して架橋したロックト人工核酸(Locked Nucleic Acid)(LNA) [“テトラヘドロンレターズ(Tetrahedron Letters)”, Volume 38, Issue 50, 1997, Pages 8735-8738、および“テトラヘドロン (Tetrahedron)”, Volume 54, Issue 14, 1998, Pages 3607-3630]ならびにエチレン架橋構造型人工核酸(Ethylene bridged nucleic acid)(ENA)[“ヌクレイックアシッドリサーチ(Nucleic Acid Research)”, 32, e175(2004)]等が挙げられる。
 糖部修飾ヌクレオチドとしては、ペプチド核酸(PNA)[Acc. Chem. Res., 32, 624(1999)]、オキシペプチド核酸(OPNA)[J. Am. Chem. Soc., 123, 4653(2001)]、ペプチドリボ核酸(PRNA)[J. Am. Chem. Soc., 122, 6900(2000)]等も挙げられる。
 糖部修飾ヌクレオチドにおける修飾基としては、2’-シアノ、2’-ハロゲン、2’-O-シアノ、2’-アルキル、2’-置換アルキル、2’-O-アルキル、2’-O-置換アルキル、2’-O-アルケニル、2’-O-置換アルケニル、2’-Se-アルキル、2’-Se-置換アルキルが好ましく、2’-シアノ、2’-フルオロ、2’-クロロ、2’-ブロモ、2’-トリフルオロメチル、2’-O-メチル、2’-O-エチル、2’-O-イソプロピル、2’-O-トリフルオロメチル、2'-O-[2-(メトキシ)エチル]、2'-O-(3-アミノプロピル)、2'-O-[2-(N,N-ジメチルアミノオキシ)エチル]、2'-O-[3-(N,N-ジメチルアミノ)プロピル]、2'-O-{2-[2-(N,N-ジメチルアミノ)エトキシ]エチル}、2'-O-[2-(メチルアミノ)-2-オキソエチル]、2’-Se-メチルがより好ましく、2’-O-メチル、2’-O-エチル、2’-フルオロがさらに好ましく、2’-O-メチルおよび2’-O-エチルがよりさらに好ましい。
 糖部修飾ヌクレオチドにおける修飾基は、修飾基の大きさから好ましい範囲を定義することもでき、フルオロから-O-ブチルまでの大きさに相当する修飾基であることが好ましく、-O-メチルから-O-エチルまでの大きさに相当する修飾基であることがより好ましい。
 糖部修飾ヌクレオチドにおける修飾基におけるアルキルとしては、例えばC1-C6アルキル等が挙げられ、具体的にはメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチルおよびヘキシル等が挙げられる。
 糖部修飾ヌクレオチドにおける修飾基におけるアルケニルとしては、例えばC3-C6のアルケニル等が挙げられ、具体的にはアリル、1-プロペニル、ブテニル、ペンテニルおよびヘキセニル等が挙げられる。
 糖部修飾ヌクレオチドにおける修飾基におけるハロゲンとしては、例えばフッ素原子、塩素原子、臭素原子およびヨウ素原子等が挙げられる。
 アミノ酸残基におけるアミノ酸としては、例えば脂肪族アミノ酸(具体的には、グリシン、アラニン、バリン、ロイシンおよびイソロイシン等)、ヒドロキシアミノ酸(具体的には、セリンおよびトレオニン等)、酸性アミノ酸(具体的には、アスパラギン酸およびグルタミン酸等)、酸性アミノ酸アミド(具体的には、アスパラギンおよびグルタミン等)、塩基性アミノ酸(具体的には、リジン、ヒドロキシリジン、アルギニンおよびオルニチン等)、含硫アミノ酸(具体的には、システイン、シスチンおよびメチオニン等)ならびにイミノ酸(具体的には、プロリンおよび4-ヒドロキシプロリン等)等が挙げられる。
 糖部修飾ヌクレオチドにおける修飾基における置換アルキルおよび置換アルケニルにおける置換基としては、例えばハロゲン(前記と同義)、ヒドロキシ、スルファニル、アミノ、オキソ、-O-アルキル(-O-アルキルのアルキル部分は前記C1-C6アルキルと同義)、-S-アルキル(-S-アルキルのアルキル部分は前記C1-C6アルキルと同義)、-NH-アルキル(-NH-アルキルのアルキル部分は前記C1-C6アルキルと同義)、ジアルキルアミノオキシ(ジアルキルアミノオキシの2つのアルキル部分は同一または異なって前記C1-C6アルキルと同義)、ジアルキルアミノ(ジアルキルアミノの2つのアルキル部分は同一または異なって前記C1-C6アルキルと同義)およびジアルキルアミノアルキレンオキシ(ジアルキルアミノアルキレンオキシのアルキル部分は同一または異なって前記C1-C6アルキルと同義であり、アルキレン部分は前記C1-C6アルキルから水素原子が1つ除かれたものを意味する)等が挙げられ、置換数は好ましくは1~3である。
 リン酸ジエステル結合修飾ヌクレオチドとしては、ヌクレオチドのリン酸ジエステル結合の化学構造の一部またはすべてが、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよい。
 リン酸ジエステル結合修飾ヌクレオチドとしては、例えばリン酸ジエステル結合がホスホロチオエート結合に置換されたヌクレオチド、リン酸ジエステル結合がホスホロジチオエート結合に置換されたヌクレオチド、リン酸ジエステル結合がアルキルホスホネート結合に置換されたヌクレオチドおよびリン酸ジエステル結合がホスホロアミデート結合に置換されたヌクレオチド等が挙げられる。
 塩基修飾ヌクレオチドとしては、ヌクレオチドの塩基の化学構造の一部またはすべてが、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよい。
 塩基修飾ヌクレオチドとしては、例えば、塩基内の酸素原子が硫黄原子で置換されたもの、水素原子がC1-C6アルキルで置換されたもの、メチルが水素原子もしくはC2-C6アルキルで置換されたものおよびアミノがC1-C6アルキルまたはC1-C6アルカノイル等の保護基で保護されたもの等が挙げられる。
 ヌクレオチド誘導体として、ヌクレオチドまたは糖部、リン酸ジエステル結合もしくは塩基の少なくとも一つが修飾されたヌクレオチド誘導体に脂質、リン脂質、フェナジン、フォレート、フェナントリジン、アントラキノン、アクリジン、フルオレセイン、ローダミン、クマリンおよび色素等の別の化学物質を付加したものも挙げられ、例えば5’-ポリアミン付加ヌクレオチド誘導体、コレステロール付加ヌクレオチド誘導体、ステロイド付加ヌクレオチド誘導体、胆汁酸付加ヌクレオチド誘導体、ビタミン付加ヌクレオチド誘導体、緑色蛍光色素(Cy3)付加ヌクレオチド誘導体、赤色蛍光色素(Cy5)付加ヌクレオチド誘導体、フルオロセイン(6-FAM)付加ヌクレオチド誘導体およびビオチン付加ヌクレオチド誘導体等が挙げられる。
 本発明で用いられる核酸においては、ヌクレオチドまたはヌクレオチド誘導体が、該核酸内の他のヌクレオチドまたはヌクレオチド誘導体とアルキレン構造、ペプチド構造、ヌクレオチド構造、エーテル構造およびエステル構造ならびにこれらの2つ以上を組み合わせた構造等の架橋構造を形成してもよい。
 本発明で用いられる核酸としては、好ましくは標的遺伝子の発現を抑制する核酸であり、より好ましくはRNA干渉(RNAi)を利用した標的遺伝子の発現抑制作用を有する核酸である。
 本発明における標的遺伝子としては、mRNAを産生して発現する遺伝子であれば特に限定されないが、例えば腫瘍または炎症に関連する遺伝子が挙げられる。
 標的遺伝子となる腫瘍または炎症に関連する遺伝子としては、具体的には、血管内皮増殖因子受容体(vascular endothelial growth factor receptor)、線維芽細胞増殖因子、線維芽細胞増殖因子受容体、血小板由来増殖因子、血小板由来増殖因子受容体、肝細胞増殖因子、肝細胞増殖因子受容体、クルッペル様因子(Kruppel-like factor)、エクスプレスドシーケンスタグ(Ets)転写因子、核因子、低酸素誘導因子、細胞周期関連因子、染色体複製関連因子、染色体修復関連因子、微小管関連因子、増殖シグナル経路関連因子、増殖関連転写因子およびアポトーシス関連因子等のタンパク質をコードする遺伝子等が挙げられ、具体的には血管内皮増殖因子遺伝子、血管内皮増殖因子受容体遺伝子、線維芽細胞増殖因子遺伝子、線維芽細胞増殖因子受容体遺伝子、血小板由来増殖因子遺伝子、血小板由来増殖因子受容体遺伝子、肝細胞増殖因子遺伝子、肝細胞増殖因子受容体遺伝子、クルッペル様因子遺伝子、エクスプレスドシーケンスタグ(Ets)転写因子遺伝子、核因子遺伝子、低酸素誘導因子遺伝子、細胞周期関連因子遺伝子、染色体複製関連因子遺伝子、染色体修復関連因子遺伝子、微小管関連因子遺伝子(例えば、CKAP5遺伝子等)、増殖シグナル経路関連因子遺伝子(例えば、KRAS遺伝子等)、増殖関連転写因子遺伝子およびアポトーシス関連因子(例えば、BCL-2遺伝子等)等が挙げられる。
 本発明における標的遺伝子としては、肝臓、肺、腎臓、消化管、中枢神経系または脾臓において発現する遺伝子が好ましく、例えば腫瘍または炎症に関連する遺伝子、B型肝炎ウイルスゲノム、C型肝炎ウイルスゲノム、アポリポタンパク質(APO)、ヒドロキシメチルグルタリル(HMG)CoA還元酵素、ケキシン 9 型セリンプロテアーゼ(PCSK9)、第12因子、グルカゴン受容体、グルココルチコイド受容体、ロイコトリエン受容体、トロンボキサンA2受容体、ヒスタミンH1受容体、炭酸脱水酵素、アンギオテンシン変換酵素、レニン、p53、チロシンホスファターゼ(PTP)、ナトリウム依存性グルコース輸送担体、腫瘍壊死因子、インターロイキン、ヘプシジン、トランスサイレチン、アンチトロンビン、プロテインCおよびマトリプターゼ酵素(例えば、TMPRSS6遺伝子等)等のタンパク質をコードする遺伝子等が挙げられる。
 標的遺伝子の発現を抑制する核酸としては、例えば蛋白質等をコードする遺伝子(標的遺伝子)のmRNAの一部の塩基配列に対して相補的な塩基配列を含み、かつ標的遺伝子の発現を抑制する核酸であれば、例えばsiRNA(short interference RNA)およびmiRNA(micro RNA)等の二本鎖核酸、shRNA(short hairpin RNA)、アンチセンス核酸およびリボザイム等の一本鎖核酸等、いずれの核酸を用いてもよいが、二本鎖核酸が好ましい。
 標的遺伝子のmRNAの一部の塩基配列に対して相補的な塩基配列を含む核酸をアンチセンス鎖核酸といい、アンチセンス鎖核酸の塩基配列に対して相補的な塩基配列を含む核酸をセンス鎖核酸ともいう。センス鎖核酸は、標的遺伝子の一部の塩基配列からなる核酸そのもの等、アンチセンス鎖核酸と対合して二重鎖形成部ができる核酸をいう。
 二本鎖核酸とは、二本の鎖が対合し二重鎖形成部を有する核酸をいう。二重鎖形成部とは、二本鎖核酸を構成するヌクレオチドまたはその誘導体が塩基対を構成して二重鎖を形成している部分(二十鎖形成部)をいう。
 二重鎖形成部を構成する塩基対は、通常15~27塩基対であり、15~25塩基対が好ましく、15~23塩基対がより好ましく、15~21塩基対がさらに好ましく、15~19塩基対がよりさらに好ましい。
 二重鎖形成部のアンチセンス鎖核酸としては、例えば標的遺伝子のmRNAの一部配列からなる核酸、または該核酸において1~3塩基、好ましくは1~2塩基、より好ましくは1塩基が置換、欠失もしくは付加され、かつ標的蛋白質の発現抑制活性を有する核酸が好適に用いられる。二本鎖核酸を構成する一本鎖の核酸は、通常15~30塩基(ヌクレオシド)の連なりからなるが、15~29塩基が好ましく、15~27塩基がより好ましく、15~25塩基がさらに好ましく、17~23塩基がよりさらに好ましく、19~21塩基が特に好ましい。
 二本鎖核酸を構成するアンチセンス鎖、センス鎖のいずれか一方、または両方の核酸は、二重鎖形成部に続く3’側または5’側に二重鎖を形成しない部分を有してもよい。この二重鎖を形成しない部分を突出部(オーバーハング)ともいう。
 突出部を有する二本鎖核酸としては、例えば少なくとも一方の鎖の3’末端または5’末端に1~4塩基、通常は1~3塩基からなる突出部を有する二本鎖核酸が挙げられる。
 突出部を有する二本鎖核酸において、突出部は、2塩基からなる突出部であることが好ましく、dTdTまたはUUからなる突出部であることがより好ましい。
 突出部は、アンチセンス鎖のみ、センス鎖のみ、およびアンチセンス鎖とセンス鎖の両方に有することができるが、アンチセンス鎖とセンス鎖の両方に突出部を有する二本鎖核酸が好ましい。
 二重鎖形成部に続いて標的遺伝子のmRNAの塩基配列と一部またはすべてが一致する配列、または、二重鎖形成部に続いて標的遺伝子のmRNAの相補鎖の塩基配列と一部またはすべてが一致する配列を用いてもよい。
 標的遺伝子の発現を抑制する核酸としては、例えばDicer等のリボヌクレアーゼの作用により二本鎖核酸を生成する核酸分子(国際公開第2005/089287号)や、3’末端や5’末端の突出部を有していない二本鎖核酸等を用いることもできる。
 二本鎖核酸がsiRNAである場合、好ましくはアンチセンス鎖は、5’末端側から3’末端側に向って少なくとも1~17番目の塩基(ヌクレオシド)の配列が、標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列であり、より好ましくはアンチセンス鎖は、5’末端側から3’末端側に向って1~19番目の塩基の配列が、標的遺伝子のmRNAの連続する19塩基の配列と相補的な塩基の配列であるか、5’末端側から3’末端側に向って1~21番目の塩基の配列が、標的遺伝子のmRNAの連続する21塩基の配列と相補的な塩基の配列であるか、5’末端側から3’末端側に向って1~25番目の塩基の配列が、標的遺伝子のmRNAの連続する25塩基の配列と相補的な塩基の配列である。
 本発明で用いられる核酸がsiRNAである場合、好ましくは核酸中の糖の10~70%、より好ましくは15~60%、さらに好ましくは20~50%が、2’位において修飾基で置換されたリボースである。本発明における2’位において修飾基で置換されたリボースとは、リボースの2’位の水酸基が修飾基に置換されているものを意味し、リボースの2’位の水酸基と立体配置が同じであっても異なっていてもよいが、好ましくはリボースの2’位の水酸基と立体配置が同じである。2’位において修飾基で置換されたリボースにおける修飾基としては、糖部修飾ヌクレオチドにおける2’-修飾ヌクレオチドにおける修飾基として例示したものおよび水素原子が挙げられ、2’-シアノ、2’-ハロゲン、2’-O-シアノ、2’-アルキル、2’-置換アルキル、2’-O-アルキル、2’-O-置換アルキル、2’-O-アルケニル、2’-O-置換アルケニル、2’-Se-アルキルまたは2’-Se-置換アルキルが好ましく、2’-シアノ、2’-フルオロ、2’-クロロ、2’-ブロモ、2’-トリフルオロメチル、2’-O-メチル、2’-O-エチル、2’-O-イソプロピル、2’-O-トリフルオロメチル、2'-O-[2-(メトキシ)エチル]、2'-O-(3-アミノプロピル)、2'-O-[2-(N,N-ジメチル)アミノオキシ]エチル、2'-O-[3-(N,N-ジメチルアミノ)プロピル]、2'-O-{2-[2-(N,N-ジメチルアミノ)エトキシ]エチル}、2'-O-[2-(メチルアミノ)-2-オキソエチル]、2’-Se-メチル、水素原子がより好ましく、2’-O-メチル、2’-O-エチル、2’-フルオロまたは水素原子がさらに好ましく、2’-O-メチルまたは2’-O-フルオロがよりさらに好ましい。
 本発明で用いられる核酸は、核酸の構造中のリン酸部、エステル部等に含まれる酸素原子等が、例えば硫黄原子等の他の原子に置換された誘導体を包含する。
 アンチセンス鎖およびセンス鎖の5’末端の塩基に結合する糖は、それぞれ5’位の水酸基が、リン酸基もしくは前記修飾基、または生体内の核酸分解酵素等でリン酸基もしくは前記修飾基に変換される基によって修飾されていてもよい。
 アンチセンス鎖およびセンス鎖の3’末端の塩基に結合する糖は、それぞれ3’位の水酸基が、リン酸基もしくは前記修飾基、または生体内の核酸分解酵素等でリン酸基もしくは前記修飾基に変換される基によって修飾されていてもよい。
 一本鎖核酸としては、例えば標的遺伝子の連続する15~27塩基(ヌクレオシド)、好ましくは15~25塩基、より好ましくは15~23塩基、さらに好ましくは15~21塩基、よりさらに好ましくは15~19塩基からなる配列の相補配列からなる核酸、または該核酸において1~3塩基、好ましくは1~2塩基、より好ましくは1塩基が置換、欠失もしくは付加され、かつ標的蛋白質の発現抑制活性を有する核酸であればいずれでもよい。
 一本鎖核酸は、好ましくは15~30塩基(ヌクレオシド)、より好ましくは15~27塩基、さらに好ましくは15~25塩基、よりさらに好ましくは15~23塩基の連なりからなる。
 一本鎖核酸として、二本鎖核酸を構成するアンチセンス鎖およびセンス鎖を、スペーサー配列(スペーサーオリゴヌクレオチド)を介して連結したものを用いてもよい。スペーサーオリゴヌクレオチドとしては6~12塩基の一本鎖核酸が好ましく、その5’末端側の配列は2個のUであるのが好ましい。スペーサーオリゴヌクレオチドの例として、UUCAAGAGAの配列からなる一本鎖核酸が挙げられる。スペーサーオリゴヌクレオチドによってつながれるアンチセンス鎖およびセンス鎖の順番はどちらが5’側になってもよい。
 二本鎖核酸を構成するアンチセンス鎖およびセンス鎖が、スペーサーオリゴヌクレオチドを介して連結した一本鎖核酸としては、例えばステムループ構造によって二重鎖形成部を有するshRNA等の一本鎖核酸であることが好ましい。shRNA等の一本鎖核酸は、通常50~70塩基長である。
 リボヌクレアーゼ等の作用により、一本鎖核酸または二本鎖核酸を生成するように設計した、70塩基長以下、好ましくは50塩基長以下、さらに好ましくは30塩基長以下の核酸を用いてもよい。
 本発明で用いられる核酸は、既知のRNAまたはDNA合成法、およびRNAまたはDNA修飾法を用いて製造することができる。
 本発明の組成物は、本発明の式(I)で表される化合物、またはその製薬上許容し得る塩(カチオン性脂質)および核酸を含有する。
 本発明の組成物は、例えば本発明のカチオン性脂質と核酸との複合体であってよい。
 本発明の組成物は、本発明のカチオン性脂質と、中性脂質および/または高分子と、核酸とを含有する組成物であり、例えば、本発明のカチオン性脂質と、中性脂質および/または高分子と、核酸との複合体であってよい。
 本発明の組成物は、脂質膜を含有し、複合体が脂質膜により封入されていてもよい。
 脂質膜は、脂質一重膜(脂質1分子膜)でも脂質二重膜(脂質2分子膜)であってもよい。脂質膜に、本発明のカチオン性脂質、中性脂質および/または高分子を含有していてもよい。
 複合体および/または脂質膜に、本発明の式(I)で表される化合物、またはその製薬上許容し得る塩であるカチオン性脂質以外のカチオン性脂質を含有していてもよい。
 本発明の組成物としては、例えば本発明のカチオン性脂質以外のカチオン性脂質と核酸との複合体、または本発明のカチオン性脂質以外のカチオン性脂質に中性脂質および/または高分子と、核酸との複合体、ならびに複合体を封入する脂質膜を含有し、脂質膜に本発明のカチオン性脂質を含有する組成物等も挙げられる。この場合の脂質膜も、脂質一重膜(脂質1分子膜)でも脂質二重膜(脂質2分子膜)であってもよい。また、脂質膜に、本発明のカチオン性脂質以外のカチオン性脂質、中性脂質および/または高分子を含有していてもよい。
 本発明の組成物において、本発明のカチオン性脂質と核酸との複合体を含有する組成物、本発明のカチオン性脂質と核酸との複合体および複合体を封入する脂質膜を含有し、脂質膜に本発明のカチオン性脂質を含有する組成物、ならびに本発明のカチオン性脂質以外のカチオン性脂質と核酸との複合体および複合体を封入する脂質膜を含有し、脂質膜に本発明のカチオン性脂質を含有する組成物が好ましく、本発明のカチオン性脂質と核酸との複合体を含有する組成物、ならびに本発明のカチオン性脂質と核酸との複合体および複合体を封入する脂質膜を含有し、脂質膜に本発明のカチオン性脂質を含有する組成物がより好ましい。
 いずれの組成物においても、脂質膜に、中性脂質および/または高分子を含有していてもよい。また、複合体および/または脂質膜に、本発明のカチオン性脂質以外のカチオン性脂質を含有していてもよい。
 複合体の形態としては、例えば核酸と脂質一重(一分子)層からなる膜(逆ミセル)との複合体、核酸とリポソームとの複合体および核酸とミセルとの複合体等が挙げられ、好ましくは核酸と脂質一重層からなる膜との複合体または核酸とリポソームとの複合体である。
 複合体を封入する脂質膜を含有する組成物としては、例えば複合体を任意の数の脂質膜で封入するリポソームおよび脂質ナノ粒子等が挙げられる。
 本発明の組成物には、一種または複数種の本発明のカチオン性脂質を使用してよく、本発明のカチオン性脂質には、本発明のカチオン性脂質に加え、本発明のカチオン性脂質以外のカチオン性脂質を混合してもよい。
 本発明の式(I)で表される化合物、またはその製薬上許容し得る塩であるカチオン性脂質以外のカチオン性脂質としては、例えば特開昭61-161246号公報(米国特許5049386号明細書)中で開示される、N-[1-(2,3-ジオレイルオキシ)プロピル]-N,N,N-トリメチルアンモニウムクロリド(DOTMA)およびN-(2,3-ジ-(9-(Z)-オクタデセノイルオキシ))-プロパ-1-イル-N,N,N-トリメチルアンモニウムクロリド(DOTAP)等、国際公開第91/16024号および国際公開第97/019675号中で開示される、N-[1-(2,3-ジオレイルオキシプロピル)]-N,N-ジメチル-N-ヒドロキシエチル臭化アンモニウム(DORIE)および2,3-ジオレイルオキシ-N-[2-(スペルミンカルボキシアミド)エチル]-N,N-ジメチル-1-プロパナミニウムトリフルオロ酢酸(DOSPA)等、国際公開第2005/121348号中で開示される、DLinDMA等、国際公開第2009/086558号中で開示される、DLin-K-DMA等、国際公開第2011/136368号中で開示される、(3R2R)-3,4-ビス((Z)-ヘキサデカ-9-エニルオキシ)-1-メチルピロリジンおよびN-メチル-N,N-ビス(2-((Z)-オクタデカ-6-エニルオキシ)エチル)アミン等が挙げられる。
 本発明のカチオン性脂質以外のカチオン性脂質としては、好ましくはDOTMA、DOTAP、DORIE、DOSPA、1,2-ジリノレイルオキシ- N,N-ジメチルアミノプロパン(DLinDMA)、2,2-ジリノレイル-4-ジメチルアミノメチル-[1,3]-ジオキソラン(DLin-K-DMA)等の2つの非置換アルキル基を有する3級アミン部位または3つの非置換アルキル基を有する4級アンモニウム部位を有するカチオン性脂質であり、より好ましくは、3級アミン部位を有するカチオン性脂質である。
 3級アミン部位および4級アンモニウム部位の非置換アルキル基はメチル基であることが好ましい。
 本発明の組成物は、核酸に加え、核酸と化学的に近似した化合物を含有してもよい。
 本発明の組成物は、公知の製造方法またはそれに準じて製造することができ、いかなる製造方法で製造されたものであってよい。例えば、組成物の1つであるリポソームを含有する組成物の製造には、公知のリポソームの調製方法が適用できる。
 公知のリポソームの調製方法としては、例えばバンガム(Bangham)らのリポソーム調製法[“ジャーナル・オブ・モレキュラー・バイオロジー(J.Mol.Biol.)”,1965年,第13巻,p.238-252参照]、エタノール注入法[“ジャーナル・オブ・セル・バイオロジー(J.Cell Biol.)”,1975年,第66巻,p.621-634参照]、フレンチプレス法[“エフイービーエス・レターズ(FEBS Lett.)”,1979年,第99巻,p.210-214参照]、凍結融解法[“アーカイブス・オブ・バイオケミストリー・アンド・バイオフィジックス(Arch.Biochem.Biophys.)”,1981年,第212巻,p.186-194参照]、逆相蒸発法[“プロシーディングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス・ユナイテッド・ステイツ・オブ・アメリカ(Proc.Natl.Acad.Sci.USA)”,1978年,第75巻, p.4194-4198参照]およびpH勾配法(例えば特許第2572554号公報、特許第2659136号公報等参照)等が挙げられる。
 リポソームの製造の際にリポソームを分散させる溶液としては、例えば水、酸、アルカリ、種々の緩衝液、生理食塩水およびアミノ酸輸液等が挙げられる。
 リポソームの製造の際には、例えばクエン酸、アスコルビン酸、システインおよびエチレンジアミン四酢酸(EDTA)等の抗酸化剤、例えばグリセリン、ブドウ糖および塩化ナトリウム等の等張化剤等を添加してもよい。
 本発明のカチオン性脂質、または本発明のカチオン性脂質と本発明のカチオン性脂質以外のカチオン性脂質との混合物等を、例えばエタノール等の有機溶媒に溶解し、溶媒を留去した後、生理食塩水等を添加、振とう攪拌することで、リポソームを形成させることができる。
 本発明の組成物は、例えば、本発明のカチオン性脂質、または本発明のカチオン性脂質と本発明のカチオン性脂質以外のカチオン性脂質との混合物を、クロロホルムに予め溶解し、次いで核酸の水溶液とメタノールを加えて混合してカチオン性脂質/核酸の複合体を形成させ、さらにクロロホルム層を取り出し、取り出したクロロホルム層にポリエチレングリコール化リン脂質と中性の脂質と水を加えて油中水型(W/O)エマルジョンを形成し、逆相蒸発法で処理して製造する方法(特表2002-508765号公報参照)や、核酸を、酸性の電解質水溶液に溶解し、例えば、本発明のカチオン性脂質、または本発明のカチオン性脂質と本発明のカチオン性脂質以外のカチオン性脂質との混合物(エタノール中)を加え、エタノール濃度を20v/v%まで下げて核酸内包リポソームを調製し、サイジングろ過し、透析によって、過剰のエタノールを除去した後、試料をさらにpHを上げて透析して組成物表面に付着した核酸を除去して製造する方法(特表2002-501511号公報およびバイオキミカ・エト・バイオフィジカ・アクタ(Biochimica et Biophysica Acta),2001年,第1510巻,p.152-166参照)等によって製造することができる。
 本発明の組成物のうち、本発明のカチオン性脂質と核酸との複合体、または本発明のカチオン性脂質に中性脂質および/または高分子と、核酸との複合体、ならびに複合体を封入した脂質膜を含有する脂質ナノ粒子を含有する組成物は、例えば、国際公開第02/28367号および国際公開第2006/080118号等に記載の製造方法に従って製造することができる。
 国際公開第02/28367号および国際公開第2006/080118号等に記載の製造方法に従って本発明の組成物を製造する場合には、本発明のカチオン性脂質、核酸、中性脂質および/または高分子、ならびに本発明のカチオン性脂質以外のカチオン性脂質から適宜選択した成分を用いて複合体を製造し、水または0~40%エタノール水溶液中に、複合体を溶解させずに分散させ(A液)、別途、複合体を封入する脂質膜成分を、例えばエタノール水溶液中に溶解させ(B液)、体積比1:1~10:1のA液とB液を混合し、さらに適宜に水を加えることで本発明の組成物を製造することができる。
 A液およびB液中のカチオン性脂質としては、一種または複数種の本発明のカチオン性脂質または本発明のカチオン性脂質以外のカチオン性脂質を使用してよく、本発明のカチオン性脂質と本発明のカチオン性脂質以外のカチオン性脂質を組み合わせて混合して使用してもよい。
 本発明において、本発明のカチオン性脂質と核酸との複合体、または本発明のカチオン性脂質と、中性脂質および/または高分子と、核酸との複合体、ならびに複合体を封入した脂質膜を含有する組成物、本発明のカチオン性脂質以外のカチオン性脂質と核酸との複合体、または本発明のカチオン性脂質以外のカチオン性脂質と、中性脂質および/または高分子と、核酸との複合体、ならびに複合体を封入する脂質膜を含有し、脂質膜に本発明のカチオン性脂質を含有する組成物等の製造中および製造後に、複合体中の核酸と脂質膜中のカチオン性脂質との静電相互作用や、複合体中のカチオン性脂質と脂質膜中のカチオン性脂質との融合によって、複合体および膜の構造が変異したものも、本発明の組成物に包含される。
 国際公開第02/28367号および国際公開第2006/080118号等に記載の製造方法に従って、核酸、好ましくは二本鎖核酸と、本発明のカチオン性脂質および/または本発明のカチオン性脂質以外のカチオン性脂質を含有するリポソームとの複合体を製造し、水または0~40%エタノール水溶液中に、複合体を溶解させずに分散させ(A液)、別途、本発明のカチオン性脂質および/または本発明のカチオン性脂質以外のカチオン性脂質を、エタノール水溶液中に溶解させ(B液)、体積比1:1~10:1のA液とB液を混合すること、または、さらに適宜に水を加えることでも、本発明の組成物と核酸を含有する組成物を製造することができる。
 本製法により得られる組成物は、好ましくはカチオン性脂質と核酸との複合体および複合体を封入する脂質膜を含有する組成物であるか、または核酸とカチオン性脂質を含有する脂質一重層からなる膜(逆ミセル)との複合体および複合体を封入する脂質膜を含有する組成物である。該組成物における脂質膜は、脂質一重膜(脂質1分子膜)、脂質二重膜(脂質2分子膜)または多重膜のいずれであってもよい。
 本発明における核酸とリポソームとの複合体中のリポソームの大きさを、平均粒子径として、予め、好ましくは10nm~400nm、より好ましくは20nm~110nm、さらに好ましくは20nm~80nmに調節することが好ましい。複合体および/または脂質膜に、中性脂質および/または高分子を含有していてもよい。
 A液は、リポソームと核酸との複合体を形成させることができれば、エタノール濃度は、20~70%であってもよい。
 等量のA液とB液を混合する代わりに、A液とB液を混合後に複合体が溶解せず、かつB液中のカチオン性脂質が溶解しないエタノール濃度となる比でA液とB液を混合してもよい。好ましくは複合体が溶解せず、B液中のカチオン性脂質が溶解せず、かつエタノール濃度が20~60%のエタノール水溶液になるような比でA液とB液を混合することに代えてもよく、またはA液とB液を混合後に複合体が溶解しないようなエタノール濃度になるような比でA液とB液を混合し、さらに水を加えることで、B液中のカチオン性脂質が溶解しなくなるエタノール濃度にしてもよい。
 本製法により得られる組成物は、好ましくはカチオン性脂質と核酸との複合体および複合体を封入する脂質膜を含有する組成物であり、または、カチオン性脂質を含有する脂質一重層からなる膜(逆ミセル)と核酸との複合体および複合体を封入する脂質膜を含有し、脂質膜にカチオン性脂質を含有する組成物であり、本製法の製造性(収率および/または均一性)は優れている。
 本発明の組成物において、複合体中の本発明のカチオン性脂質の分子の総数は、核酸のリン原子の数に対して0.5~4倍であるのが好ましく、1.5~3.5倍であるのがより好ましく、2~3倍であるのがさらに好ましい。
 複合体中の本発明のカチオン性脂質および本発明のカチオン性脂質以外のカチオン性脂質の分子の総数は、核酸のリン原子の数に対して0.5~4倍であるのが好ましく、1.5~3.5倍であるのがより好ましく、2~3倍であるのがさらに好ましい。
 本発明の組成物において、複合体および複合体を封入する脂質膜を含有する組成物中の本発明のカチオン性脂質の分子の総数は、核酸のリン原子の数に対して1~10倍であるのが好ましく、2.5~9倍であるのがより好ましく、3.5~8倍であるのがさらに好ましい。
 組成物中の本発明のカチオン性脂質および本発明のカチオン性脂質以外のカチオン性脂質の分子の総数は、核酸のリン原子の数に対して1~10倍であるのが好ましく、2.5~9倍であるのがより好ましく、3.5~8倍であるのがさらに好ましい。
 中性脂質としては、単純脂質、複合脂質または誘導脂質のいかなるものであってもよく、例えばリン脂質、グリセロ糖脂質、スフィンゴ糖脂質、スフィンゴイドおよびステロール等が挙げられる。
 本発明の組成物において中性脂質を含有する場合には、中性脂質の分子の総数は、本発明のカチオン性脂質および本発明のカチオン性脂質以外のカチオン性脂質の分子の総数に対して0.1~2倍であるのが好ましく、0.2~1.5倍であるのがより好ましく、0.3~1.2倍であるのがさらに好ましい。
 本発明の組成物は、中性脂質を、複合体に含有してもよく、複合体を封入する脂質膜に含有していてもよい。
 中性脂質を、複合体を封入する脂質膜に含有していることが好ましく、複合体および複合体を封入する脂質膜のどちらにも含有していることがより好ましい。
 中性脂質におけるリン脂質としては、例えばホスファチジルコリン(具体的には大豆ホスファチジルコリン、卵黄ホスファチジルコリン(EPC)、ジステアロイルホスファチジルコリン(DSPC)、ジパルミトイルホスファチジルコリン(DPPC)、パルミトイルオレオイルホスファチジルコリン(POPC)、ジミリストイルホスファチジルコリン(DMPC)およびジオレオイルホスファチジルコリン(DOPC)等)、ホスファチジルエタノールアミン(具体的にはジステアロイルホスファチジルエタノールアミン(DSPE)、ジパルミトイルホスファチジルエタノールアミン(DPPE)、ジオレオイルホスファチジルエタノールアミン(DOPE)、ジミリストイルホスファチジルエタノールアミン(DMPE)、16-0-モノメチルホスファチジルエタノールアミン、16-0-ジメチルホスファチジルエタノールアミン、18-1-トランスホスファチジルエタノールアミン、パルミトイルオレオイルホスファチジルエタノールアミン(POPE)および1-ステアロイル-2-オレオイル-ホスファチジルエタノールアミン(SOPE)等)、グリセロリン脂質(具体的にはホスファチジルセリン、ホスファチジン酸、ホスファチジルグリセロール、ホスファチジルイノシトール、パルミトイルオレオイルホスファチジルグリセロール(POPG)およびリゾホスファチジルコリン等)、スフィンゴリン脂質(具体的にはスフィンゴミエリン、セラミドホスホエタノールアミン、セラミドホスホグリセロールおよびセラミドホスホグリセロリン酸等)、グリセロホスホノ脂質、スフィンゴホスホノ脂質、天然レシチン(具体的には卵黄レシチンおよび大豆レシチン等)ならびに水素添加リン脂質(具体的には水素添加大豆ホスファチジルコリン等)等の天然または合成のリン脂質が挙げられる。
 中性脂質におけるグリセロ糖脂質としては、例えばスルホキシリボシルグリセリド、ジグリコシルジグリセリド、ジガラクトシルジグリセリド、ガラクトシルジグリセリドおよびグリコシルジグリセリド等が挙げられる。
 中性脂質におけるスフィンゴ糖脂質としては、例えばガラクトシルセレブロシド、ラクトシルセレブロシドおよびガングリオシド等が挙げられる。
 中性脂質におけるスフィンゴイドとしては、例えばスフィンガン、イコサスフィンガンおよびスフィンゴシンならびにそれらの誘導体等が挙げられる。
 誘導体としては、例えばスフィンガン、イコサスフィンガンまたはスフィンゴシン等の-NH2を-NHCO(CH2)xCH3(式中、xは0~18の整数であり、中でも6、12または18が好ましい)に変換したもの等が挙げられる。
 中性脂質におけるステロールとしては、例えばコレステロール、ジヒドロコレステロール、ラノステロール、β-シトステロール、カンペステロール、スチグマステロール、ブラシカステロール、エルゴカステロール、フコステロールおよび3β-[N-(N',N'-ジメチルアミノエチル)カルバモイル]コレステロール(DC-Chol)等が挙げられる。
 高分子としては、例えばタンパク質、アルブミン、デキストラン、ポリフェクト(polyfect)、キトサン、デキストラン硫酸、ポリ-L-リジン、ポリエチレンイミン、ポリアスパラギン酸、スチレンマレイン酸共重合体、イソプロピルアクリルアミド-アクリルピロリドン共重合体、ポリエチレングリコール修飾デンドリマー、ポリ乳酸、ポリ乳酸ポリグリコール酸およびポリエチレングリコール化ポリ乳酸等が挙げられる。
 高分子としては、例示した高分子の塩の1以上からなるミセルであってもよい。
 高分子の塩は、例えば金属塩、アンモニウム塩、酸付加塩、有機アミン付加塩およびアミノ酸付加塩等が挙げられる。
 金属塩としては、例えばリチウム塩、ナトリウム塩およびカリウム塩等のアルカリ金属塩、マグネシウム塩およびカルシウム塩等のアルカリ土類金属塩、アルミニウム塩ならびに亜鉛塩等が挙げられる。
 アンモニウム塩としては、例えばアンモニウムおよびテトラメチルアンモニウム等の塩が挙げられる。
 酸付加塩としては、例えば塩酸塩、硫酸塩、硝酸塩およびリン酸塩等の無機酸塩、ならびに酢酸塩、マレイン酸塩、フマル酸塩およびクエン酸塩等の有機酸塩が挙げられる。
 有機アミン付加塩としては、例えばモルホリンおよびピペリジン等の付加塩が挙げられる。
 アミノ酸付加塩としては、例えばグリシン、フェニルアラニン、アスパラギン酸、グルタミン酸およびリジン等の付加塩が挙げられる。
 本発明の組成物は、例えば糖、ペプチド、核酸および水溶性高分子から選ばれる1以上の物質の脂質誘導体もしくは脂肪酸誘導体、または界面活性剤等を含有することが好ましく、複合体に含有していてもよく、複合体を封入する脂質膜に含有していてもよく、複合体および複合体を封入する脂質膜ともに含有していることがより好ましい。
 本発明の組成物が、糖、ペプチド、核酸および水溶性高分子から選ばれる1以上の物質の脂質誘導体もしくは脂肪酸誘導体を含有する場合には、糖、ペプチド、核酸および水溶性高分子から選ばれる1以上の物質の脂質誘導体および脂肪酸誘導体の分子の総数は、本発明のカチオン性脂質および本発明のカチオン性脂質以外のカチオン性脂質の分子の総数に対して0.01~0.3倍であるのが好ましく、0.02~0.25倍であるのがより好ましく、0.03~0.15倍であるのがさらに好ましい。
 糖、ペプチド、核酸および水溶性高分子から選ばれる1以上の物質の脂質誘導体もしくは脂肪酸誘導体、または界面活性剤としては、好ましくは、糖脂質、または水溶性高分子の脂質誘導体もしくは脂肪酸誘導体であり、より好ましくは、水溶性高分子の脂質誘導体または脂肪酸誘導体である。
 糖、ペプチド、核酸および水溶性高分子から選ばれる1以上の物質の脂質誘導体もしくは脂肪酸誘導体、または界面活性剤は、分子の一部が本発明の組成物中の他の構成成分と例えば疎水性親和力または静電的相互作用等で結合する性質をもち、他の部分が組成物の製造時の溶媒と例えば親水性親和力または静電的相互作用等で結合する性質をもつ、2面性をもつ物質であるのが好ましい。
 糖、ペプチドまたは核酸の脂質誘導体または脂肪酸誘導体としては、例えばショ糖、ソルビトールおよび乳糖等の糖、例えばカゼイン由来ペプチド、卵白由来ペプチド、大豆由来ペプチドおよびグルタチオン等のペプチド、または例えばDNA、RNA、プラスミド、siRNAおよびオリゴデオキシヌクレオチド(ODN)等の核酸と、中性脂質もしくは本発明のカチオン性脂質、または例えばステアリン酸、パルミチン酸、ミリスチン酸およびラウリン酸等の脂肪酸とが結合した化合物等が挙げられる。
 糖の脂質誘導体または脂肪酸誘導体としては、例えばグリセロ糖脂質またはスフィンゴ糖脂質等も含まれる。
 水溶性高分子の脂質誘導体または脂肪酸誘導体としては、例えばポリエチレングリコール、ポリグリセリン、ポリエチレンイミン、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、オリゴ糖、デキストリン、水溶性セルロース、デキストラン、コンドロイチン硫酸、ポリグリセリン、キトサン、ポリビニルピロリドン、ポリアスパラギン酸アミド、ポリ-L-リジン、マンナン、プルランもしくはオリゴグリセロール等またはそれらの誘導体と、中性脂質もしくは本発明のカチオン性脂質、または例えばステアリン酸、パルミチン酸、ミリスチン酸およびラウリン酸等の脂肪酸とが結合した化合物等が挙げられ、好ましくは、ポリエチレングリコールもしくはポリグリセリンの脂質誘導体または脂肪酸誘導体であり、より好ましくは、ポリエチレングリコールの脂質誘導体または脂肪酸誘導体である。
 水溶性高分子の脂質誘導体または脂肪酸誘導体は、塩であってもよい。
 ポリエチレングリコールの脂質誘導体または脂肪酸誘導体としては、例えばポリエチレングリコール化脂質[具体的にはポリエチレングリコール-ホスファチジルエタノールアミン(より具体的には1,2-ジステアロイル-sn-グリセロ-3-ホスホエタノールアミン-N-[メトキシ(ポリエチレングリコール)-2000](PEG-DSPE)および1,2-ジミリストイル-sn-グリセロ-3-ホスホエタノールアミン-N-[メトキシ(ポリエチレングリコール)-2000](PEG-DMPE)等)、ポリオキシエチレン硬化ヒマシ油60、クレモフォアイーエル(CREMOPHOR EL)等]、ポリエチレングリコールソルビタン脂肪酸エステル類(具体的にはモノオレイン酸ポリオキシエチレンソルビタン等)ならびにポリエチレングリコール脂肪酸エステル類等が挙げられ、好ましくは、ポリエチレングリコール化脂質である。
 ポリグリセリンの脂質誘導体または脂肪酸誘導体としては、例えばポリグリセリン化脂質(具体的にはポリグリセリン-ホスファチジルエタノールアミン等)またはポリグリセリン脂肪酸エステル類等が挙げられ、好ましくは、ポリグリセリン化脂質である。
 界面活性剤としては、例えばモノオレイン酸ポリオキシエチレンソルビタン(具体的にはポリソルベート80等)、ポリオキシエチレンポリオキシプロピレングリコール(具体的にはプルロニック(登録商標)F68等)、ソルビタン脂肪酸エステル(具体的にはソルビタンモノラウレートおよびソルビタンモノオレエート等)、ポリオキシエチレン誘導体(具体的にはポリオキシエチレン硬化ヒマシ油60およびポリオキシエチレンラウリルアルコール等)、グリセリン脂肪酸エステルおよびポリエチレングリコールアルキルエーテル等が挙げられ、好ましくは、ポリオキシエチレンポリオキシプロピレングリコール、グリセリン脂肪酸エステルまたはポリエチレングリコールアルキルエーテルである。
 本発明の組成物中の複合体および脂質膜には、例えば水溶性高分子等による表面改質も任意に行うことができる[ラジック(D.D.Lasic)、マーティン(F.Martin)編,“ステルス・リポソームズ(Stealth Liposomes)”(米国),シーアールシー・プレス・インク(CRC Press Inc),1995年,p.93-102参照]。
 表面改質に使用し得る水溶性高分子としては、例えばポリエチレングリコール、ポリグリセリン、ポリエチレンイミン、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、オリゴ糖、デキストリン、水溶性セルロース、デキストラン、コンドロイチン硫酸、ポリグリセリン、キトサン、ポリビニルピロリドン、ポリアスパラギン酸アミド、ポリ-L-リジン、マンナン、プルランおよびオリゴグリセロール等が挙げられ、好ましくはデキストラン、プルラン、マンナン、アミロペクチンまたはヒドロキシエチルデンプンである。
 表面改質には、糖、ペプチド、核酸および水溶性高分子から選ばれる1以上の物質の脂質誘導体または脂肪酸誘導体等を用いることができる。表面改質は、本発明の組成物中の複合体および脂質膜に糖、ペプチド、核酸および水溶性高分子から選ばれる1以上の物質の脂質誘導体もしくは脂肪酸誘導体、または界面活性剤を含有させる方法の1つである。
 標的化リガンドを、本発明の組成物の脂質成分の極性ヘッド残基に共有結合することにより本発明の組成物の表面に直接結合させることもできる(国際公開第2006/116107号参照)。
 本発明の組成物中の複合体または複合体を封入する脂質膜の平均粒子径は、所望により自由に選択できる。
 平均粒子径を調節する方法としては、例えばエクストルージョン法、大きな多重膜リポソーム(MLV)等を機械的に粉砕(具体的にはマントンゴウリンまたはマイクロフルイダイザー等を使用)する方法[ミュラー(R.H.Muller)、ベニタ(S.Benita)、ボーム(B.Bohm)編著,“エマルジョン・アンド・ナノサスペンジョンズ・フォー・ザ・フォーミュレーション・オブ・ポアリー・ソラブル・ドラッグズ(Emulsion and Nanosuspensions for the Formulation of Poorly Soluble Drugs)”,ドイツ,サイエンティフィック・パブリッシャーズ・スチュットガルト(Scientific Publishers Stuttgart),1998年,p.267-294参照]等が挙げられる。
 本発明の組成物中の複合体の大きさは、平均粒子径が約5nm~200nmであるのが好ましく、約20nm~150nmであるのがより好ましく、約20nm~80nmであるのがさらに好ましい。
 本発明の組成物(複合体を封入する脂質膜)の大きさは、平均粒子径が約10nm~300nmであるのが好ましく、約30nm~200nmであるのがより好ましく、約50nm~150nmであるのがさらに好ましい。
 本発明の組成物中の複合体または複合体を封入する脂質膜の平均粒子径は、例えば動的光散乱法で測定することができる。
 本発明の組成物を、哺乳動物の細胞に導入することで、本発明の組成物中の核酸を細胞内に導入することができる。
 インビボにおける本発明の組成物の哺乳動物の細胞への導入は、インビボにおいて行うことのできる公知のトランスフェクションの手順に従って行えばよい。例えば、本発明の組成物を、人を含む哺乳動物に静脈内投与することで、例えば腫瘍または炎症の生じた臓器または部位へ送達され、送達臓器または部位の細胞内に本発明の組成物中の核酸を導入することができる。腫瘍または炎症の生じた臓器または部位としては、特に限定されないが、例えば胃および大腸等の消化管、肝臓、肺、脾臓、膵臓、腎臓、膀胱、脳および脊髄等の中枢神経系、皮膚、血管ならびに眼球等が挙げられる。また、本発明の組成物を、人を含む哺乳動物に静脈内投与することで、例えば肝臓、肺、腎臓、消化管、中枢神経系および/または脾臓へ送達され、送達臓器または部位の細胞内に本発明の組成物中の核酸を導入することができる。肝臓、肺、腎臓、消化管、中枢神経系または脾臓の細胞は、正常細胞、腫瘍もしくは炎症に関連した細胞またはその他の疾患に関連した細胞のいずれでもよい。
 本発明の組成物中の核酸が、RNA干渉(RNAi)を利用した標的遺伝子の発現抑制作用を有する核酸であれば、インビボで哺乳動物の細胞内に、標的遺伝子の発現を抑制する核酸等を導入することができ、標的遺伝子の発現の抑制ができる。
 投与対象は、人であることが好ましい。
 本発明における標的遺伝子が、例えば肝臓、肺、腎臓、消化管、中枢神経系または脾臓において発現する遺伝子である場合、本発明の組成物を、肝臓、肺、腎臓、消化管、中枢神経系または脾臓に関連する疾患の治療剤または予防剤として使用することができる。
 本発明は、本発明の組成物を哺乳動物に投与する肝臓、肺、腎臓、消化管、中枢神経系または脾臓に関連する疾患の治療方法も提供する。投与対象は、人であることが好ましく、肝臓、肺、腎臓、消化管、中枢神経系または脾臓に関連する疾患に罹患している患者がより好ましい。
 本発明の組成物は、肝臓、肺、腎臓、消化管、中枢神経系または脾臓に関連する疾患の治療剤または予防剤に関するインビボの薬効評価モデルにおいて、標的遺伝子を抑制することの有効性を検証するためのツールとして使用することもできる。
 本発明の組成物は、例えば血液成分等の生体成分(例えば血液および消化管等)中での核酸の安定化、副作用の低減または標的遺伝子の発現部位を含む組織または臓器への薬剤集積性の増大等を目的とする製剤としても使用できる。
 本発明の組成物を、医薬品の肝臓、肺、腎臓、消化管、中枢神経系または脾臓に関連する疾患等の治療剤または予防剤として使用する場合、投与経路としては、治療に際し最も効果的な投与経路を使用するのが望ましく、例えば口腔内、気道内、直腸内、皮下、筋肉内または静脈内等の非経口投与または経口投与が挙げられ、好ましくは静脈内投与または筋肉内投与であり、より好ましくは静脈内投与である。
 本発明の組成物の投与量は、投与対象の病状や年齢、投与経路等によって異なるが、例えば核酸に換算した1日投与量が約0.1μg~1000mgとなるように投与すればよい。
 静脈内投与または筋肉内投与に適当な製剤としては、例えば注射剤が挙げられ、調製した本発明の組成物の分散液をそのまま注射剤等の形態としたものが挙げられる。
 適当な製剤としては、好ましくは、分散液から例えば濾過または遠心分離等によって溶媒を除去した製剤、分散液を凍結乾燥した製剤、ならびに例えばマンニトール、ラクトース、トレハロース、マルトースおよびグリシン等の賦形剤を加えた分散液を凍結乾燥した製剤である。
 注射剤の場合、本発明の組成物の分散液または溶媒を除去または凍結乾燥した組成物に、例えば水、酸、アルカリ、種々の緩衝液、生理食塩水またはアミノ酸輸液等を混合して注射剤を調製することが好ましい。例えばクエン酸、アスコルビン酸、システインおよびEDTA等の抗酸化剤またはグリセリン、ブドウ糖および塩化ナトリウム等の等張化剤等を添加して注射剤を調製することも可能である。例えばグリセリン等の凍結保存剤を加えて凍結保存してもよい。
 次に、実施例、参考例および試験例により、本発明を具体的に説明する。ただし、本発明はこれら実施例、参考例および試験例に限定されるものではない。
 なお、実施例および参考例に示されたプロトン核磁気共鳴スペクトル(1H NMR)は、400MHzで測定されたものであり、化合物および測定条件によっては交換性プロトンが明瞭には観測されないことがある。なお、シグナルの多重度の表記としては通常用いられるものを用いている。
 参考例1
ジノニル11,11-ビス(ヒドロキシメチル)ヘニコサンジオアート(化合物IIf-1)
工程1
 ノナン-1-オール (東京化成工業社製, 6.03 g, 41.8 mmol)をジクロロメタン (30 mL)に溶解させ、10-ブロモデカン酸 (東京化成工業社製, 7.00 g, 27.9 mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(東京化成工業社製, 8.01 g, 41.8 mmol)およびジメチルアミノピリジン (3.40 g, 27.9 mmol)を順次加えて、室温で終夜反応させた。反応混合物を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=98/2)で精製することにより、ノニル 10-ブロモデカノアート (5.75 g, 収率55%)を得た。
1H-NMR (CDCl3) δ: 0.88 (t, J = 6.8 Hz, 3H), 1.23-1.37 (m, 20H), 1.37-1.45 (m, 2H), 1.57-1.66 (m, 4H), 1.80-1.89 (m, 2H), 2.29 (t, J = 7.6 Hz, 2H), 3.40 (t, J = 6.8 Hz, 2H), 4.06 (t, J = 6.8 Hz, 2H).
工程2
 マロン酸ジtert-ブチル (東京化成工業社製, 1.03 mL, 4.62 mmol)をテトラヒドロフラン (15 mL)に溶解させ、0℃にて水素化ナトリウム (ナカライテスク社製, 油性60%, 0.555 g, 11.4 mmol)を加えて、発泡が収まるまでしばらく撹拌した。工程1にて得られたノニル 10-ブロモデカノアート (5.24 g, 13.9 mmol)のテトラヒドロフラン溶液(5 mL)を0℃にて加えた後、70℃にて2時間撹拌した。反応混合物に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後ろ過し、減圧濃縮することで、10,10-ジ-tert-ブチル1,19-ジノニル ノナデカン-1,10,10,19-テトラカルボキシラートの粗生成物を得た。
 得られた粗生成物をジクロロメタン (20 mL)に溶解させ、0℃にてトリフルオロ酢酸 (10 mL, 130 mmol)を加えて、室温にて2時間撹拌した。反応混合物を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=99/1~90/10)で精製することにより、2,2-ビス(10-(ノニロキシ)-10-オキソデシル)マロン酸(1.89 g, 収率37%)を得た。
ESI-MS m/z: 695 (M - H)-
工程3
 工程2で得られた2,2-ビス(10-(ノニロキシ)-10-オキソデシル)マロン酸(1.84 g, 2.64 mmol)をテトラヒドロフラン (10 mL)に溶解させ、0℃にてボラン・テトラヒドロフラン錯体 (シグマアルドリッチ(Sigma-Aldrich)社製, 1 mol/L, 7.92 mL, 7.92 mmol)を加え、室温で終夜撹拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=90/10~40/60)で精製することで化合物IIf-1 (0.400g, 収率23%)を得た。
ESI-MS m/z: 670 (M + H)+
ジノニル 10,10'-(1-メチルアゼチジン-3,3-ジイル)ビス(デカノアート)(化合物1)
 工程1
 参考例1で得られた化合物IIf-1 (0.400 g, 0.598 mmol)をジクロロメタン(4 mL)に溶解させ、ピリジン (0.484 mL, 5.98 mmol)を加えた。0℃にて、無水トリフルオロメタンスルホン酸 (ナカライテスク社製, 0.303 mL, 1.79 mmol)を加え、30分撹拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮することで、ジノニル11,11-ビス((((トリフルオロメチル)スルフォニル)オキシ)メチル)ヘニコサンジオアートの粗生成物 (0.558g)を得た。
 得られた粗生成物 (0.558 g)をN,N-ジメチルアセトアミド (4 mL)に溶解させ、メチルアミン (東京化成工業社製, 約9.8 mol/Lメタノール溶液, 0.35 mL, 2.99 mmol)を加え、60℃で1時間撹拌した。室温まで冷却後、反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(NHシリカゲル、ヘキサン/酢酸エチル=99/1~70/30)で精製することで、化合物1 (0.220 g, 収率55%)を得た。
ESI-MS m/z: 664(M + H)+1H-NMR (CDCl3) δ: 0.88 (t, J = 6.8 Hz, 6H), 1.09-1.20 (m, 4H), 1.20-1.38 (m, 44H), 1.46-1.54 (m, 4H), 1.56-1.72 (m, 8H), 2.29 (t, J = 7.7 Hz, 4H), 2.31 (s, 3H), 2.93 (s, 4H), 4.06 (t, J = 6.7 Hz, 4H).
 ジ((Z)-ノナ-2-エン-1-イル) 10,10'-(1-メチルアゼチジン-3,3-ジイル)ビス(デカノアート)(化合物2)
 工程1
 実施例1で得られた化合物1 (0.170 g, 0.205 mmol)をテトラヒドロフラン (1.5 mL)に溶解させ、水酸化リチウム1水和物 (Sigma-Aldrich社製, 0.086 g, 2.05 mmol)の水(0.5 mL)溶液を加え、1時間撹拌した。反応の進行が確認できなかったので、エタノール(1 mL)を加え、60℃で2時間撹拌した。反応混合物に水を加え、酢酸エチルにて水層を2回洗浄した。水層を1 mol/Lの塩酸にてpH4程度にした後、酢酸エチルで2回、クロロホルム/メタノール=9/1の混合溶媒で1回抽出した。得られた有機層を無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮することで、10,10'-(1-メチルアゼチジン-3,3-ジイル)ビス(デカン酸)の粗生成物を得た。
ESI-MS m/z: 410(M - H)-
 工程2
 工程1で得られた10,10'-(1-メチルアゼチジン-3,3-ジイル)ビス(デカン酸) をジクロロメタン(1.5 mL)に溶解させ、(Z)-ノナ-2-エン-1-オール (東京化成工業社製, 0.138 g, 0.972 mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(0.140 g, 0.729 mmol)、ジメチルアミノピリジン (0.0590 g, 0.486 mmol)を順次加えて、室温で終夜反応させた。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(NHシリカゲル、ヘキサン/酢酸エチル=99/2~80/20)で精製することにより、化合物2 (0.0640 g, 収率47%)を得た。
ESI-MS m/z: 660(M + H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J = 7.0 Hz, 6H), 1.12-1.20 (m, 4H), 1.22-1.41 (m, 32H), 1.50-1.56 (m, 4H), 1.56-1.71 (m, 8H), 2.10 (dd, J = 14.4, 7.2 Hz, 4H), 2.30 (t, J = 7.6 Hz, 4H), 2.36 (s, 3H), 3.01 (s, 4H), 4.62 (d, J = 6.8 Hz, 4H), 5.49-5.55 (m, 2H), 5.61-5.67 (m, 2H).
参考例2 ジノニル 13,13-ビス(ヒドロキシメチル)ペンタコサンジオエート(化合物IIf-2)
 参考例1と同様の方法で、10-ブロモデカン酸の代わりに12-ブロモドデカン酸(Sigma-Aldrich社製, 5.00 g, 17.9 mmol)を用い、化合物IIf-2 (0.180 g, 収率7%)を得た。
ESI-MS m/z: 726(M + H)+
ジノニル 12,12'-(1-メチルアゼチジン-3,3-ジイル)ジドデカノアート(化合物3)
 実施例1と同様の方法で、参考例1で得られた化合物IIf-1の代わりに参考例2で得られた化合物IIf-2 (0.180 g, 0.248 mmol)を用い、化合物3 (0.120 g, 収率67%)を得た。
 ESI-MS m/z: 720(M + H)+1H-NMR (CDCl3) δ: 0.88 (t, J = 6.8 Hz, 6H), 1.11-1.20 (m, 4H), 1.23-1.35 (m, 52H), 1.49-1.55 (m, 4H), 1.57-1.66 (m, 8H), 2.29 (t, J = 7.6 Hz, 4H), 2.31 (s, 3H), 2.94 (s, 4H), 4.06 (t, J = 6.7 Hz, 4H).
ジ((Z)-ノナ-2-エン-1-イル) 12,12'-(1-メチルアゼチジン-3,3-ジイル)ジドデカノアート(化合物4)
 実施例2と同様の方法で、実施例1で得られた化合物1の代わりに実施例3で得られた化合物3を用い、化合物4 (0.0390 g、収率36%)を得た。
 ESI-MS m/z: 716(M + H)+1H-NMR (CDCl3) δ: 0.88 (t, J = 6.8 Hz, 6H), 1.10-1.21 (m, 4H), 1.21-1.39 (m, 44H), 1.51-1.67 (m, 8H), 2.10 (q, J = 6.9 Hz, 4H), 2.30 (t, J = 7.6 Hz, 4H), 2.42 (s, 3H), 3.11 (s, 4H), 4.62 (dt, J = 6.8, 0.6 Hz, 4H), 5.49-5.56 (m, 2H), 5.61-5.67 (m, 2H).
 実施例1で得られた化合物1を用いて、以下のように組成物を調製した。用いた核酸は、センス鎖[5'-rGrCrCrArGrArCrUrUrUrGrUrUrGrGrArUrUrUrGrA-3'(rが付された塩基に結合する糖はリボースである):配列番号1]と、アンチセンス鎖[5'-rArAmArUmCrCmArAmCrAmArAmGrUmCrUmGrGmCmUmU-3' (r、mが付された塩基に結合する糖は、それぞれリボース、2’位の水酸基がメトキシ基で置換されているリボースである):配列番号2]からなる、ヒポキサンチン-グアニンホスホリボシル基転移酵素(Hypoxanthine-guanine phosphoribosyltransferase 1、以下HPRT1と表す)遺伝子の発現を抑制する抗HPRT1 siRNAであり、ジーンデザイン社から入手した(以下HPRT1 siRNAという)。核酸は蒸留水で24 mg/mLに調製して用いた。
 化合物1/PEG-DMPE Na(日油社製)=57.3/5.52 (すべての数値単位はmmol/Lである)となるように、各試料を秤量し、塩酸およびエタノールを含有する水溶液に懸濁させ、vortex攪拌ミキサーで攪拌および、加温を繰り返して均一な懸濁液を得た。得られた懸濁液を室温下で、0.05 μmのポリカーボネートメンブランフィルターに通し、化合物1/PEG-DMPE Naの粒子(リポソーム)の分散液を得た。粒子径測定装置で得られたリポソームの平均粒子径を測定し、30 nmから100 nmの範囲内であることを確認した。得られたリポソームの分散液と、HPRT1 siRNA溶液を、リポソームの分散液: HPRT1 siRNA溶液=3:1の割合で混合し、さらに29倍量の蒸留水を加えて混合することで化合物1/PEG-DMPE Na/ HPRT1 siRNA複合体の分散液を調製した。
 化合物1/PEG-DMPE Na(日油社製)/DSPC(日油社製)/コレステロール(日油社製)= 8.947/0.147/5.981/14.355(すべての数値単位はmmol/Lである)となるように、各試料を秤量しエタノールに溶解させ、脂質膜構成成分の溶液を調製した。
 得られた脂質膜構成成分の溶液に4倍量のエタノールを追加し、得られた化合物1/PEG-DMPE Na/ HPRT1 siRNA複合体の分散液と、2:3の割合で混合し、さらに数倍量の蒸留水と混合し、粗製剤を得た。
 得られた粗製剤はアミコンウルトラ(Millipore社製)を用いて濃縮後、生理食塩水で希釈し、0.2 μmのフィルター(東洋濾紙社製)を用いてクリーンベンチ内でろ過した。得られた製剤のsiRNA濃度を測定し、投与濃度にあわせて生理食塩水を用いて希釈することで、製剤1(化合物1およびHPRT1 siRNAを含有する組成物)を得た。
 実施例2、3で得られた化合物2、3をそれぞれ用いて、実施例5と同様にして製剤2および3(化合物2、3のそれぞれ、およびHPRT1 siRNAを含有する組成物)を得た。
 実施例5および6で得られた製剤1~3(組成物)の平均粒子径を粒子径測定装置で測定し、その結果を表4に示した。
Figure JPOXMLDOC01-appb-T000025
 実施例5と同様にして、化合物1/PEG-DMPE Na/ HPRT1 siRNA複合体の分散液を調製した。
 化合物1/PEG-DMPE Na(日油社製)/コレステロール(日油社製)= 8.947/0.147/20.336(すべての数値単位はmmol/Lである)となるように、各試料を秤量しエタノールに溶解させ、脂質膜構成成分の溶液を調製した。
 得られた脂質膜構成成分の溶液に4倍量のエタノールを追加し、得られた化合物1/PEG-DMPE Na/ HPRT1 siRNA複合体の分散液と、2:3の割合で混合し、さらに数倍量の蒸留水と混合し、粗製剤を得た。
 得られた粗製剤はアミコンウルトラ(Millipore社製)を用いて濃縮後、生理食塩水で希釈し、0.2 μmのフィルター(東洋濾紙社製)を用いてクリーンベンチ内でろ過した。得られた組成物のsiRNA濃度を測定し、投与濃度にあわせて生理食塩水を用いて希釈することで、製剤4(化合物1およびHPRT1 siRNAを含有する組成物)を得た。
 実施例2~4で得られた化合物2~4をそれぞれ用いて、実施例7と同様にして製剤5~8(化合物2~4のそれぞれ、およびHPRT1 siRNAを含有する組成物)を得た。
 実施例7および8で得られた製剤(組成物)の平均粒子径を粒子径測定装置で測定し、その結果を表5に示した。
Figure JPOXMLDOC01-appb-T000026
 試験例1
 実施例5および6で得られた製剤1~3(化合物1~3のそれぞれと、HPRT1 siRNAを含有する組成物)の活性を調べるため、以下に記載の方法で評価した。
 ヒト膵臓癌細胞株MIA-PaCa2を、10%ウシ胎仔血清(FBS)を含むDMEM培地(ナカライテスク、08458-45)中、またヒト肺癌細胞株NCI-H358を、10%ウシ胎仔血清(FBS)を含むRPMI1640培地(ナカライテスク、30264-85)中、7500細胞数/80uL/ウェルで播種し、37℃、5%CO2条件下で24時間培養した。その後、実施例5および6で調製した各種製剤をsiRNA濃度として終濃度0.3~100nMとなるようOpti-MEM培地(サーモフィッシャー(Thermo Fisher)、11058021)で希釈し、20uLを細胞に添加した。また陰性対照として、Opti-MEM培地20uLを細胞に添加した。
 各種製剤を処理した細胞を37℃の5%CO2インキュベーター内で24時間培養し、氷冷したリン酸緩衝生理食塩水(Phosphate buffered saline, PBS)で洗浄し、Thermo Fisher社 Cells-to-Ct Kit(Thermo Fisher、AM1729)を用い、添付の使用説明書に従いtotal RNAを回収、cDNAを作成した。
 得られたcDNAをPCR反応の鋳型に用い、アプライド バイオシステムズ クァントスタジオ 12K フレックス(Applied Biosystems QuantStudio 12K Flex)(ABI社)を用いたTaqMan PCR (TaqMan Gene Expression、4331182)によりHPRT1遺伝子および構成的発現遺伝子であるGAPDH(D-glyceraldehyde-3-phosphate dehydrogenase)遺伝子に特異的なPCR増幅をそれぞれ行い、mRNA量の定量を行った。PCR反応の条件はTaqMan Gene Expression添付の使用説明書に従った。検体のmRNA量は、GAPDHのmRNA量に対するHPRT1のmRNA量を算出し、陰性対照処理群における当該値を1としたときの相対的な割合として算出した。HPRT1のmRNA量についての結果を図1および図2に示す。
 試験例2
実施例7および8で得られた製剤4~8(化合物1~4のそれぞれと、HPRT1 siRNAを含有する組成物)の活性を調べるため、試験例1と同様の方法で評価した。HPRT1のmRNA量についての結果を図3および図4に示す。
 図1、図2、図3および図4から明らかなように、実施例5~8で得られた製剤1~7を投与することによって、HPRT1 mRNA量が低下した。
 よって、本発明の組成物は、核酸を細胞内等に導入することができ、本発明のカチオン性脂質は、インビボで細胞内に核酸を送達することを容易にすることが明らかとなった。
 本発明のカチオン性脂質および核酸を含有する組成物を、哺乳動物等に投与することにより、該核酸を、例えば細胞内等に容易に導入することができる。
 配列番号1:ヒポキサンチン-グアニンホスホリボシル基転移酵素siRNA センス鎖
 配列番号2:ヒポキサンチン-グアニンホスホリボシル基転移酵素siRNA アンチセンス鎖

Claims (17)

  1.  式(I)
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1は、水素原子、C1-C3アルキル、ヒドロキシC2-C4アルキル、ジC1-C3アルキルアミノC2-C4アルキル、式(A)
    Figure JPOXMLDOC01-appb-C000002
     (式中、R2およびR3は同一または異なって、水素原子もしくはC1-C3アルキルであるか、またはR2およびR3が結合する窒素原子と一緒になってC2-C6含窒素複素環を形成してもよく、n3は2~6の整数である)、または式(B)
    Figure JPOXMLDOC01-appb-C000003
     (式中、R4およびR5は同一または異なって、水素原子もしくはC1-C3アルキルであるか、またはR4およびR5が結合する窒素原子と一緒になってC2-C6含窒素複素環を形成してもよく、n4は1~6の整数である)であり、
     n1は0~4の整数であり、n2は1~4の整数であり(但し、n1が0であり、n2が1である場合を除く)、
     Z1は、結合する炭素ごとにそれぞれ独立して、水素原子またはC1-C3アルキルであり、
     Zは、結合する炭素ごとにそれぞれ独立して、水素原子またはC1-C3アルキルであり、
     A1およびA2は同一または異なって、直鎖状または分岐状のC8-C20アルキレンもしくはC8-C20アルケニレンであるか、またはC6-C18アルキレンオキシC1-C3アルキレンもしくはC6-C18アルケニレンオキシC1-C3アルキレンであり、
     M1およびM2は同一または異なって、-OC(O)-、-C(O)O-、-SC(O)-、-C(O)S-、-OC(S)-、-C(S)O-、-SS-、-C(R6)=N-、-N=C(R6)-、-C(R6)=N-O-、-O-N=C(R6)-、-N(R6)C(O)-、-C(O)N(R6)-、-N(R6)C(S)-、-C(S)N(R6)-、-N(R6)C(O)N(R7)-、-N(R6)C(O)O-、-OC(O)N(R6)-および-OC(O)O-からなる群から選ばれ、
     R6およびR7は同一または異なって、水素原子またはC1-C4アルキルであり、
     B1およびB2は同一または異なって、直鎖状または分岐状のC1-C16アルキルまたはC2-C16アルケニルである]で表わされる化合物、またはその製薬上許容し得る塩。
  2.  M1およびM2が同一または異なって、-OC(O)-、-C(O)O-、-N(R6)C(O)-および-C(O)N(R6)-からなる群から選ばれる、請求項1記載の化合物、またはその製薬上許容し得る塩。
  3.  M1およびM2が同一または異なって、-OC(O)-または-C(O)O-である、請求項2記載の化合物、またはその製薬上許容し得る塩。
  4.  A1およびA2が同一または異なって、直鎖状または分岐状のC8-C20アルキレンまたはC8-C20アルケニレンである、請求項1~3のいずれか1項に記載の化合物、またはその製薬上許容し得る塩。
  5.  B1-M1-A1-およびB2-M2-A2-が同一である、請求項1~4のいずれか1項に記載の化合物、またはその製薬上許容し得る塩。
  6.  R1がC1-C3アルキルである、請求項1~5のいずれか1項に記載の化合物、またはその製薬上許容し得る塩。
  7.  n1が1であり、n2が1~3の整数である、請求項1~6のいずれか1項に記載の化合物、またはその製薬上許容し得る塩。
  8.  n1およびn2がともに1である、請求項1~7のいずれか1項に記載の化合物、またはその製薬上許容し得る塩。
  9.  請求項1~8のいずれか1項に記載の化合物、またはその製薬上許容し得る塩および核酸を含有する組成物。
  10.  中性脂質および/または高分子をさらに含む、請求項9記載の組成物。
  11.  核酸が、RNA干渉(RNAi)を利用した標的遺伝子の発現抑制作用を有する核酸である、請求項9または10に記載の組成物。
  12.  標的遺伝子が、肝臓、肺、腎臓、消化管、中枢神経系または脾臓において発現する遺伝子である、請求項11記載の組成物。
  13.  静脈内投与用である、請求項9~12のいずれか1項に記載の組成物。
  14.  請求項9~13のいずれか1項に記載の組成物を含む、医薬。
  15.  請求項9~13のいずれか1項に記載の組成物を含む、肝臓、肺、腎臓、消化管、中枢神経系または脾臓に関連する疾患の治療剤。
  16.  請求項9~13のいずれか1項に記載の組成物をそれを必要とする患者に投与することを含む、肝臓、肺、腎臓、消化管、中枢神経系または脾臓に関連する疾患の治療方法。
  17.  肝臓、肺、腎臓、消化管、中枢神経系または脾臓に関連する疾患の治療用の請求項9~13のいずれか1項に記載の組成物。
PCT/JP2016/088751 2015-12-25 2016-12-26 カチオン性脂質としての化合物 WO2017111172A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017558336A JP6774965B2 (ja) 2015-12-25 2016-12-26 カチオン性脂質としての化合物
US16/065,222 US10525138B2 (en) 2015-12-25 2016-12-26 Compound as cationic lipid
EP16879056.6A EP3395797A4 (en) 2015-12-25 2016-12-26 COMPOUNDS AS CATIONIC LIPIDS
CA3009131A CA3009131A1 (en) 2015-12-25 2016-12-26 Compounds as cationic lipids and their use in nucleic acid delivery compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015254113 2015-12-25
JP2015-254113 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017111172A1 true WO2017111172A1 (ja) 2017-06-29

Family

ID=59090569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088751 WO2017111172A1 (ja) 2015-12-25 2016-12-26 カチオン性脂質としての化合物

Country Status (6)

Country Link
US (1) US10525138B2 (ja)
EP (1) EP3395797A4 (ja)
JP (1) JP6774965B2 (ja)
CA (1) CA3009131A1 (ja)
TW (1) TW201726614A (ja)
WO (1) WO2017111172A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022025076A (ja) * 2018-08-21 2022-02-09 株式会社東芝 脂質粒子を含むキット、脂質粒子を利用した活性剤送達方法、および細胞の作製方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230054672A (ko) * 2020-08-20 2023-04-25 쑤저우 아보젠 바이오사이언시스 컴퍼니 리미티드 지질 화합물 및 지질 나노입자 조성물

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161246A (ja) 1985-01-07 1986-07-21 シンテツクス(ユー・エス・エイ)インコーポレイテツド 置換アルキルートリ置換アンモニウム界面活性剤
US5049386A (en) 1985-01-07 1991-09-17 Syntex (U.S.A.) Inc. N-ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)Alk-1-YL-N,N,N-tetrasubstituted ammonium lipids and uses therefor
WO1991016024A1 (en) 1990-04-19 1991-10-31 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
JP2572554B2 (ja) 1984-08-08 1997-01-16 ザ リポソーム カンパニー、インコーポレーテッド リポソームからの薬剤の放出速度低減方法
WO1997019675A2 (en) 1995-11-30 1997-06-05 Vical Incorporated Complex cationic lipids
JP2659136B2 (ja) 1988-09-28 1997-09-30 イッサム リサーチ デベロップメント カンパニー オブ ザ ヒーブルー ユニバーシティー オブ エルサレム 両親媒性分子を有効に充填かつ制御放出するリポソーム
JP2002501511A (ja) 1997-05-14 2002-01-15 イネックス ファーマスーティカルズ コーポレイション 脂質小胞への荷電した治療剤の高率封入
JP2002508765A (ja) 1997-06-23 2002-03-19 アルザ コーポレイション リポソーム被包ポリヌクレオチド組成物および方法
WO2002028367A1 (fr) 2000-10-04 2002-04-11 Kyowa Hakko Kogyo Co., Ltd. Procede de revetement de particules fines avec un film de lipides
WO2005089287A2 (en) 2004-03-15 2005-09-29 City Of Hope Methods and compositions for the specific inhibition of gene expression by double-stranded rna
WO2005121348A1 (en) 2004-06-07 2005-12-22 Protiva Biotherapeutics, Inc. Lipid encapsulated interfering rna
WO2006080118A1 (ja) 2005-01-28 2006-08-03 Kyowa Hakko Kogyo Co., Ltd. 標的遺伝子の発現を抑制する組成物
WO2006116107A2 (en) 2005-04-22 2006-11-02 Alza Corporation Immunoliposome composition for targeting to a her2 cell receptor
WO2009086558A1 (en) 2008-01-02 2009-07-09 Tekmira Pharmaceuticals Corporation Improved compositions and methods for the delivery of nucleic acids
WO2010042877A1 (en) 2008-10-09 2010-04-15 Tekmira Pharmaceuticals Corporation Improved amino lipids and methods for the delivery of nucleic acids
WO2010054401A1 (en) 2008-11-10 2010-05-14 Alnylam Pharmaceuticals, Inc. Novel lipids and compositions for the delivery of therapeutics
WO2011136368A1 (ja) 2010-04-28 2011-11-03 協和発酵キリン株式会社 カチオン性脂質
WO2012108397A1 (ja) 2011-02-08 2012-08-16 第一三共株式会社 新規脂質
WO2013086373A1 (en) * 2011-12-07 2013-06-13 Alnylam Pharmaceuticals, Inc. Lipids for the delivery of active agents
WO2013116126A1 (en) * 2012-02-01 2013-08-08 Merck Sharp & Dohme Corp. Novel low molecular weight, biodegradable cationic lipids for oligonucleotide delivery
WO2013148541A1 (en) * 2012-03-27 2013-10-03 Merck Sharp & Dohme Corp. DIETHER BASED BIODEGRADABLE CATIONIC LIPIDS FOR siRNA DELIVERY
WO2014007398A1 (ja) 2012-07-06 2014-01-09 協和発酵キリン株式会社 カチオン性脂質
WO2015074085A1 (en) * 2013-11-18 2015-05-21 Arcturus Therapeutics, Inc. Ionizable cationic lipid for rna delivery
WO2016002753A1 (ja) * 2014-06-30 2016-01-07 協和発酵キリン株式会社 カチオン性脂質

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2526113B1 (en) * 2010-01-22 2016-08-10 Sirna Therapeutics, Inc. Post-synthetic chemical modification of rna at the 2'-position of the ribose ring via "click" chemistry
US9365610B2 (en) 2013-11-18 2016-06-14 Arcturus Therapeutics, Inc. Asymmetric ionizable cationic lipid for RNA delivery
TW201815736A (zh) 2016-09-27 2018-05-01 日商協和醱酵麒麟有限公司 作為陽離子性脂質之化合物

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572554B2 (ja) 1984-08-08 1997-01-16 ザ リポソーム カンパニー、インコーポレーテッド リポソームからの薬剤の放出速度低減方法
JPS61161246A (ja) 1985-01-07 1986-07-21 シンテツクス(ユー・エス・エイ)インコーポレイテツド 置換アルキルートリ置換アンモニウム界面活性剤
US5049386A (en) 1985-01-07 1991-09-17 Syntex (U.S.A.) Inc. N-ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)Alk-1-YL-N,N,N-tetrasubstituted ammonium lipids and uses therefor
JP2659136B2 (ja) 1988-09-28 1997-09-30 イッサム リサーチ デベロップメント カンパニー オブ ザ ヒーブルー ユニバーシティー オブ エルサレム 両親媒性分子を有効に充填かつ制御放出するリポソーム
WO1991016024A1 (en) 1990-04-19 1991-10-31 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
WO1997019675A2 (en) 1995-11-30 1997-06-05 Vical Incorporated Complex cationic lipids
JP2002501511A (ja) 1997-05-14 2002-01-15 イネックス ファーマスーティカルズ コーポレイション 脂質小胞への荷電した治療剤の高率封入
JP2002508765A (ja) 1997-06-23 2002-03-19 アルザ コーポレイション リポソーム被包ポリヌクレオチド組成物および方法
WO2002028367A1 (fr) 2000-10-04 2002-04-11 Kyowa Hakko Kogyo Co., Ltd. Procede de revetement de particules fines avec un film de lipides
WO2005089287A2 (en) 2004-03-15 2005-09-29 City Of Hope Methods and compositions for the specific inhibition of gene expression by double-stranded rna
WO2005121348A1 (en) 2004-06-07 2005-12-22 Protiva Biotherapeutics, Inc. Lipid encapsulated interfering rna
WO2006080118A1 (ja) 2005-01-28 2006-08-03 Kyowa Hakko Kogyo Co., Ltd. 標的遺伝子の発現を抑制する組成物
WO2006116107A2 (en) 2005-04-22 2006-11-02 Alza Corporation Immunoliposome composition for targeting to a her2 cell receptor
WO2009086558A1 (en) 2008-01-02 2009-07-09 Tekmira Pharmaceuticals Corporation Improved compositions and methods for the delivery of nucleic acids
WO2010042877A1 (en) 2008-10-09 2010-04-15 Tekmira Pharmaceuticals Corporation Improved amino lipids and methods for the delivery of nucleic acids
WO2010054401A1 (en) 2008-11-10 2010-05-14 Alnylam Pharmaceuticals, Inc. Novel lipids and compositions for the delivery of therapeutics
WO2011136368A1 (ja) 2010-04-28 2011-11-03 協和発酵キリン株式会社 カチオン性脂質
WO2012108397A1 (ja) 2011-02-08 2012-08-16 第一三共株式会社 新規脂質
WO2013086373A1 (en) * 2011-12-07 2013-06-13 Alnylam Pharmaceuticals, Inc. Lipids for the delivery of active agents
WO2013116126A1 (en) * 2012-02-01 2013-08-08 Merck Sharp & Dohme Corp. Novel low molecular weight, biodegradable cationic lipids for oligonucleotide delivery
WO2013148541A1 (en) * 2012-03-27 2013-10-03 Merck Sharp & Dohme Corp. DIETHER BASED BIODEGRADABLE CATIONIC LIPIDS FOR siRNA DELIVERY
WO2014007398A1 (ja) 2012-07-06 2014-01-09 協和発酵キリン株式会社 カチオン性脂質
WO2015074085A1 (en) * 2013-11-18 2015-05-21 Arcturus Therapeutics, Inc. Ionizable cationic lipid for rna delivery
WO2016002753A1 (ja) * 2014-06-30 2016-01-07 協和発酵キリン株式会社 カチオン性脂質

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
"New Experimental Chemistry 14, Synthesis and Reaction of Organic Compound (II", 1977, MARUZEN CO., LTD.
"New Experimental Chemistry 14, Synthesis and Reaction of Organic Compound (II", 1977, MARUZEN CO., LTD., pages: 751
"New Experimental Chemistry 15, Oxidation and Reduction (II", 1977, MARUZEN CO., LTD.
ACC. CHEM. RES., vol. 32, 1999, pages 624
ARCH. BIOCHEM. BIOPHYS., vol. 212, 1981, pages 186 - 194
BANGHAM ET AL., J. MOL. BIOL., vol. 13, 1965, pages 238 - 252
BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1510, 2001, pages 152 - 166
D.D. LASIC; F. MARTIN: "Stealth Liposomes", 1995, CRC PRESS INC., pages: 93 - 102
FEBS LETT., vol. 99, 1979, pages 210 - 214
J. AM. CHEM. SOC., vol. 122, 2000, pages 6900
J. AM. CHEM. SOC., vol. 123, 2001, pages 4653
J. AM. CHEM. SOC., vol. 124, no. 10, 2002, pages 2092
J. CELL BIOL., vol. 66, 1975, pages 621 - 634
MAIER M. A. ET AL.: "Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics", MOLECULAR THERAPY, vol. 21, no. 8, 2013, pages 1570 - 1578, XP055237159, ISSN: 2372-7705 *
MOLECULAR THERAPY, vol. 21, 2013, pages 1570 - 1578
NUCLEIC ACID RESEARCH, vol. 32, 2004, pages e175
PROC. NATL. ACAD. SCI. USA, vol. 75, 1978, pages 4194 - 4198
R.H. MULLER, S. BENITA AND B. BOHM: "Emulsion and Nanosuspensions for the Formulation of Poorly Soluble Drugs", 1998, SCIENTIFIC PUBLISHERS, pages: 267 - 294
See also references of EP3395797A4
T.W. GREENE: "Protective Groups in Organic Synthesis, third edition,", 1999, JOHN WILEY & SONS INC.
TETRAHEDRON LETTERS, vol. 38, no. 50, 1997, pages 8735 - 8738
TETRAHEDRON, vol. 54, no. 14, 1998, pages 3607 - 3630

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022025076A (ja) * 2018-08-21 2022-02-09 株式会社東芝 脂質粒子を含むキット、脂質粒子を利用した活性剤送達方法、および細胞の作製方法
JP7209066B2 (ja) 2018-08-21 2023-01-19 株式会社東芝 脂質粒子を含むキット、脂質粒子を利用した活性剤送達方法、および細胞の作製方法
JP2023016905A (ja) * 2018-08-21 2023-02-02 株式会社東芝 生分解性化合物、脂質粒子、脂質粒子を含むキット、脂質粒子を利用した活性剤送達方法、および細胞の作製方法
JP7431929B2 (ja) 2018-08-21 2024-02-15 株式会社東芝 生分解性化合物、脂質粒子、脂質粒子を含むキット、脂質粒子を利用した活性剤送達方法、および細胞の作製方法

Also Published As

Publication number Publication date
JPWO2017111172A1 (ja) 2018-10-18
EP3395797A1 (en) 2018-10-31
JP6774965B2 (ja) 2020-10-28
EP3395797A4 (en) 2019-09-04
CA3009131A1 (en) 2017-06-29
US10525138B2 (en) 2020-01-07
TW201726614A (zh) 2017-08-01
US20190008975A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP6182457B2 (ja) カチオン性脂質を含有するドラックデリバリーシステムのための脂質ナノ粒子
AU2012353463B2 (en) Lipid nanoparticles containing combinations of cationic lipids
JP6272226B2 (ja) KRAS遺伝子発現抑制RNAi医薬組成物
WO2018225871A1 (ja) カチオン性脂質としての化合物
CA2959358C (en) Cationic lipid
WO2017111172A1 (ja) カチオン性脂質としての化合物
WO2015186770A1 (ja) CKAP5遺伝子発現抑制RNAi医薬組成物
EP3521270B1 (en) Cationic lipid compound
WO2018225873A1 (ja) 核酸含有ナノ粒子
CA3009131C (en) Compounds as cationic lipids and their use in nucleic acid delivery compositions
US20140294978A1 (en) Cationic lipid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558336

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3009131

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016879056

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016879056

Country of ref document: EP

Effective date: 20180725