WO2017110704A1 - 液晶表示装置、及び、液晶表示装置の製造方法 - Google Patents

液晶表示装置、及び、液晶表示装置の製造方法 Download PDF

Info

Publication number
WO2017110704A1
WO2017110704A1 PCT/JP2016/087699 JP2016087699W WO2017110704A1 WO 2017110704 A1 WO2017110704 A1 WO 2017110704A1 JP 2016087699 W JP2016087699 W JP 2016087699W WO 2017110704 A1 WO2017110704 A1 WO 2017110704A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
photo
alignment film
display device
Prior art date
Application number
PCT/JP2016/087699
Other languages
English (en)
French (fr)
Inventor
真伸 水▲崎▼
博司 土屋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201680075807.9A priority Critical patent/CN108431683B/zh
Priority to US16/065,280 priority patent/US11009749B2/en
Publication of WO2017110704A1 publication Critical patent/WO2017110704A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133738Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homogeneous alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/42Materials having a particular dielectric constant

Definitions

  • the present invention relates to a liquid crystal display device and a method for manufacturing the liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device in which the alignment of liquid crystal molecules is controlled by a photo-alignment film, and a method for manufacturing the liquid crystal display device.
  • a liquid crystal display device is a display device that uses a liquid crystal composition for display.
  • a typical display method is to irradiate light from a backlight onto a liquid crystal panel in which the liquid crystal composition is sealed between a pair of substrates. The amount of light transmitted through the liquid crystal panel is controlled by applying a voltage to the liquid crystal composition to change the orientation of the liquid crystal molecules.
  • Such a liquid crystal display device has features such as thinness, light weight, and low power consumption, and thus is used in electronic devices such as smartphones, tablet PCs, and car navigation systems. In recent years, in applications such as smartphones, higher definition of pixels has progressed, and accordingly, the number and area of wirings and black matrices provided in a liquid crystal panel have tended to increase.
  • the alignment of liquid crystal molecules in a state where no voltage is applied is generally controlled by an alignment film that has been subjected to an alignment treatment.
  • a rubbing method of rubbing the alignment film surface with a roller or the like has been widely used.
  • a step is likely to occur on the substrate surface in the liquid crystal panel. If there is a step on the substrate surface, the vicinity of the step may not be properly rubbed by the rubbing method. If the alignment treatment is not uniform, the contrast ratio is lowered in the liquid crystal display device.
  • the alignment process can be performed without contacting the surface of the alignment film, so even if there are steps on the substrate surface, the alignment process is less likely to be uneven, and good liquid crystal alignment is achieved over the entire surface of the substrate. There is an advantage that you can.
  • a liquid crystal display device using a photo-alignment film having a photoreactive functional group (hereinafter also referred to as a photo-alignment liquid crystal display), the display screen is likely to be burned and stained.
  • a functional group that absorbs light in a wavelength region of 360 nm or more such as a group was introduced as a photoreactive functional group, image sticking and spots were likely to occur.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to Comparative Example 1.
  • the liquid crystal display device according to Comparative Example 1 includes a pair of substrates 10 and 20, a liquid crystal layer 30 sandwiched between the pair of substrates 10 and 20, and the substrates 10 and 20 and the liquid crystal layer 30.
  • a photo-alignment film 40 disposed between the pair of substrates 10 and 20, a sealing material 60 for bonding the pair of substrates 10 and 20, a polarizing plate 70 bonded to each of the substrates 10 and 20, and a backlight (not shown).
  • the photo-alignment film 40 includes a polymer having a photoreactive functional group.
  • a photoreactive functional group particularly an azobenzene group, a chalcone group, a cinnamate group.
  • Decomposition of the photoreactive functional group that absorbs light occurs to generate radicals.
  • an azobenzene group generates a radical by light absorption as described below.
  • the contrast may be lowered. This is also caused by radicals generated from the photo-alignment film being transferred to liquid crystal molecules and finally ionizing. it is conceivable that.
  • Patent Document 1 The technique described in Patent Document 1 is for improving a display defect caused by a sealing material component, assumes a general alignment film, and has a photoreactive functional group as described above. There was room for improvement in terms of suppressing burn-in and spots caused by the photo-alignment film.
  • the present invention has been made in view of the above situation, and can maintain a good voltage holding ratio over a long period of time in a high-temperature environment while using a photo-alignment film. It is an object of the present invention to provide a liquid crystal display device capable of suppressing the above and a method for manufacturing a liquid crystal display device capable of manufacturing such a liquid crystal display device.
  • the present inventors paid attention to the fact that radicals generated from the photoreactive functional group of the photo-alignment film are eluted into the liquid crystal layer and are finally ionized, resulting in a decrease in VHR. Therefore, as a result of intensive studies, the present inventors thermally polymerize a specific monomer using a specific polymerization initiator, and provide a polymer layer containing the polymer of the monomer between the liquid crystal layer and the photo-alignment film. As a result, it was conceived that the above problem can be solved brilliantly, and the present invention has been achieved.
  • a pair of substrates a liquid crystal layer sandwiched between the pair of substrates, a photo-alignment film disposed between at least one of the pair of substrates and the liquid crystal layer
  • a liquid crystal display device comprising a polymer layer provided between the liquid crystal layer and the photo-alignment film,
  • the photo-alignment film includes a polymer having a photoreactive functional group
  • the polymer layer may be a liquid crystal display device including a polymer having a structure derived from a polymerization initiator represented by the following chemical formula (1) and a structure derived from a monomer represented by the following chemical formula (2).
  • P 1 represents an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, or a vinyloxy group.
  • Z 1 and Z 2 may be the same or different and represent —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —NHCO— group, —CONH— Group, —CH 2 — group, —CH (CH 3 ) — group, —C (CH 3 ) 2 — group, —CF 2 — group, —C (OH) CO (CO) — group, —C (OH) C (HN) — represents a direct bond.
  • R 1 and R 2 are the same or different and are —H group, —CH 3 group, —C 2 H 5 group, —C 3 H 7 group, —X group (X is halogen), —CN group, —NH 2 groups, —NH (CH 3 ) group, —N (CH 3 ) 2 group, —OH group, —OCH 3 group, —OC 2 H 5 group, or —OC 3 H 7 group are represented.
  • a 1 represents a 1,4-phenylene group, a naphthalene-2,6-diyl group, a 1,4-cyclohexylene group, or a saturated or unsaturated alkylene group having 1 to 18 carbon atoms.
  • the —CH 2 — group of A 1 may be substituted with an —O— group or an —S— group as long as they are not adjacent to each other. At least one hydrogen atom of A 1 is substituted with a fluorine atom, a chlorine atom, a —CN group, or an alkyl group having 1 to 6 carbon atoms, an alkoxy group, an alkylcarbonyl group, an alkoxycarbonyl group, or an alkylcarbonyloxy group. May be.
  • n is 0, 1 or 2. When n is 2, two A 1 on the same side with respect to the azo group may be the same or different from each other, and two Z 1 on the same side with respect to the azo group are These may be the same or different from each other. )
  • P 2 and P 3 are the same or different and each represents an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, or a vinyloxy group.
  • a 2 and A 3 are the same or different and each represents 1,4-phenylene group, 4,4′-biphenyl group, naphthalene-2,6-diyl group, anthracene 2,6-diyl group, or phenanthrene-2, Represents a 7-diyl group.
  • Z 2 represents —COO— group, —OCO— group, —O— group, —CO— group, —NHCO— group, —CONH— group or —S— group, or A 2 and A 3 or A 3 It represents that A 3 is directly bonded.
  • m is 0, 1 or 2.
  • S 1 and S 2 are the same or different and are (CH 2 ) j (1 ⁇ j ⁇ 18), (CH 2 —CH 2 —O) k (1 ⁇ k ⁇ 6), or P 2 and A 2.
  • a 2 and P 3 or A 3 and P 3 are directly bonded. At least one of the hydrogen atoms of A 2 and A 3 may be substituted with a halogen group, a methyl group, or an ethyl group.
  • the photoreactive functional group may be an azobenzene group, a chalcone group, or a cinnamate group.
  • the polymer contained in the photo-alignment film may be polyamic acid, polyimide, polysiloxane, polyvinyl, or polymaleimide.
  • the polymer contained in the photo-alignment film may be bonded to the polymer contained in the polymer layer.
  • the photo-alignment film may align liquid crystal molecules in the liquid crystal layer substantially horizontally.
  • the photo-alignment film may align liquid crystal molecules in the liquid crystal layer substantially vertically.
  • the liquid crystal layer may contain a liquid crystal material having a negative dielectric anisotropy.
  • the alignment modes of the liquid crystal display are twisted nematic (TN) mode, electric field controlled birefringence (ECB) mode, in-plane switching (IPS) mode, fringe field switching (FFS) mode, and vertical alignment (VA). It may be a mode or a twisted nematic vertical alignment (VATN) mode.
  • a step of preparing a pair of substrates Forming a photo-alignment film containing a polymer having a photoreactive functional group on at least one of the pair of substrates; Forming a liquid crystal layer between the pair of substrates on which at least one of the photo-alignment films is formed; And a step of thermally polymerizing a monomer represented by the following chemical formula (2) using a polymerization initiator represented by the following chemical formula (1) to form a polymer layer between the photo-alignment film and the liquid crystal layer. It may be a method for manufacturing an apparatus.
  • P 1 represents an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, or a vinyloxy group.
  • Z 1 and Z 2 may be the same or different and represent —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —NHCO— group, —CONH— Group, —CH 2 — group, —CH (CH 3 ) — group, —C (CH 3 ) 2 — group, —CF 2 — group, —C (OH) CO (CO) — group, —C (OH) C (HN) — represents a direct bond.
  • R 1 and R 2 are the same or different and are —H group, —CH 3 group, —C 2 H 5 group, —C 3 H 7 group, —X group (X is halogen), —CN group, —NH 2 groups, —NH (CH 3 ) group, —N (CH 3 ) 2 group, —OH group, —OCH 3 group, —OC 2 H 5 group, or —OC 3 H 7 group are represented.
  • a 1 represents a 1,4-phenylene group, a naphthalene-2,6-diyl group, a 1,4-cyclohexylene group, or a saturated or unsaturated alkylene group having 1 to 18 carbon atoms.
  • the —CH 2 — group of A 1 may be substituted with an —O— group or an —S— group as long as they are not adjacent to each other. At least one hydrogen atom of A 1 is substituted with a fluorine atom, a chlorine atom, a —CN group, or an alkyl group having 1 to 6 carbon atoms, an alkoxy group, an alkylcarbonyl group, an alkoxycarbonyl group, or an alkylcarbonyloxy group. May be.
  • n is 0, 1 or 2. When n is 2, two A 1 on the same side with respect to the azo group may be the same or different from each other, and two Z 1 on the same side with respect to the azo group are These may be the same or different from each other. )
  • P 2 and P 3 are the same or different and each represents an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, or a vinyloxy group.
  • a 2 and A 3 are the same or different, 1,4-phenylene group, 4,4'-biphenyl group, naphthalene-2,6-diyl group, an anthracene 2,6-diyl group, or a phenanthrene -2, Represents a 7-diyl group.
  • Z 2 represents —COO— group, —OCO— group, —O— group, —CO— group, —NHCO— group, —CONH— group or —S— group, or A 2 and A 3 or A 3 It represents that A 3 is directly bonded.
  • m is 0, 1 or 2.
  • S 1 and S 2 are the same or different and are (CH 2 ) j (1 ⁇ j ⁇ 18), (CH 2 —CH 2 —O) k (1 ⁇ k ⁇ 6), or P 2 and A 2.
  • a 2 and P 3 or A 3 and P 3 are directly bonded. At least one of the hydrogen atoms of A 2 and A 3 may be substituted with a halogen group, a methyl group, or an ethyl group.
  • the thermal polymerization may be performed at a temperature lower than the nematic-isotropic transition point of the liquid crystal material in the liquid crystal layer and higher than the radical generation temperature of the polymerization initiator.
  • the photo-alignment film may be irradiated with polarized ultraviolet light.
  • the photoreactive functional group may be an azobenzene group, a chalcone group, or a cinnamate group.
  • the polymer contained in the photo-alignment film may be polyamic acid, polyimide, polysiloxane, polyvinyl, or polymaleimide.
  • the polymer contained in the photo-alignment film and the polymer contained in the polymer layer may be bonded to each other by light irradiation and / or heat.
  • the photo-alignment film may align liquid crystal molecules in the liquid crystal layer substantially horizontally by polarized light irradiation.
  • the photo-alignment film may align liquid crystal molecules in the liquid crystal layer substantially vertically by irradiation with polarized light.
  • the liquid crystal layer may contain a liquid crystal material having a negative dielectric anisotropy.
  • the alignment modes of the liquid crystal display are twisted nematic (TN) mode, electric field controlled birefringence (ECB) mode, in-plane switching (IPS) mode, fringe field switching (FFS) mode, and vertical alignment (VA). It may be a mode or a twisted nematic vertical alignment (VATN) mode.
  • the liquid crystal display device includes a photo-alignment film containing a polymer having a photoreactive functional group, but has the above-described polymer layer between the liquid crystal layer and the photo-alignment film.
  • a good voltage holding ratio can be maintained over a long period of time, and the occurrence of image sticking and spots and a decrease in contrast can be suppressed.
  • the manufacturing method of the liquid crystal display device which concerns on the said aspect of this invention includes the process of forming the photo-alignment film containing the polymer which has a photoreactive functional group, the polymer mentioned above between the photo-alignment film and the liquid crystal layer. Since it includes a step of forming a layer by thermal polymerization, a liquid crystal display device that can maintain a good voltage holding ratio over a long period of time in a high-temperature environment and that can suppress the occurrence of image sticking and spots and a decrease in contrast is manufactured. Can do.
  • FIG. 1 is a cross-sectional view schematically showing a liquid crystal display device of Embodiment 1.
  • FIG. It is a cross-sectional schematic diagram of the liquid crystal display device which concerns on the comparative form 2.
  • FIG. 2 is a cross-sectional view schematically showing the liquid crystal display device of the first embodiment.
  • the liquid crystal display device according to the present embodiment includes a pair of substrates 10 and 20, a liquid crystal layer 30 sandwiched between the pair of substrates 10 and 20, and the substrates 10 and 20 and the liquid crystal layer 30. And a polymer layer 50 provided between the liquid crystal layer 30 and each of the photo-alignment films 40.
  • the photo-alignment film 40 is a polymer having a photoreactive functional group.
  • the polymer layer 50 has a structure derived from a polymerization initiator represented by the following chemical formula (1) (hereinafter also referred to as polymerization initiator (1)) and a monomer represented by the following chemical formula (2) (hereinafter referred to as “polymerization initiator (1)”).
  • a polymer having a structure derived from a bifunctional monomer (2)) hereinafter also referred to as a PSA polymer.
  • the liquid crystal display device of the present embodiment further includes a backlight 80 behind the pair of substrates 10 and 20, and the pair of substrates 10 and 20 are bonded together by a sealing material 60.
  • the photo-alignment film 40 may be provided on only one of the pair of substrates 10 and 20. In this case, for example, on the substrate on which the photo-alignment film 40 is not provided, an alignment film other than the photo-alignment film (for example, a rubbed alignment film, an alignment film without alignment treatment) and the polymer layer 50 are provided.
  • the polymer layer 50 may be provided without providing the alignment film.
  • P 1 represents an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, or a vinyloxy group.
  • Z 1 and Z 2 may be the same or different and represent —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —NHCO— group, —CONH— Group, —CH 2 — group, —CH (CH 3 ) — group, —C (CH 3 ) 2 — group, —CF 2 — group, —C (OH) CO (CO) — group, —C (OH) C (HN) — represents a direct bond.
  • R 1 and R 2 are the same or different and are —H group, —CH 3 group, —C 2 H 5 group, —C 3 H 7 group, —X group (X is halogen), —CN group, —NH 2 groups, —NH (CH 3 ) group, —N (CH 3 ) 2 group, —OH group, —OCH 3 group, —OC 2 H 5 group, or —OC 3 H 7 group are represented.
  • a 1 represents a 1,4-phenylene group, a naphthalene-2,6-diyl group, a 1,4-cyclohexylene group, or a saturated or unsaturated alkylene group having 1 to 18 carbon atoms.
  • the —CH 2 — group of A 1 may be substituted with an —O— group or an —S— group as long as they are not adjacent to each other. At least one hydrogen atom of A 1 is substituted with a fluorine atom, a chlorine atom, a —CN group, or an alkyl group having 1 to 6 carbon atoms, an alkoxy group, an alkylcarbonyl group, an alkoxycarbonyl group, or an alkylcarbonyloxy group. May be.
  • n is 0, 1 or 2. When n is 2, two A 1 on the same side with respect to the azo group may be the same or different from each other, and two Z 1 on the same side with respect to the azo group are These may be the same or different from each other. )
  • P 2 and P 3 are the same or different and each represents an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, or a vinyloxy group.
  • a 2 and A 3 are the same or different and each represents 1,4-phenylene group, 4,4′-biphenyl group, naphthalene-2,6-diyl group, anthracene 2,6-diyl group, or phenanthrene-2, Represents a 7-diyl group.
  • Z 2 represents —COO— group, —OCO— group, —O— group, —CO— group, —NHCO— group, —CONH— group or —S— group, or A 2 and A 3 or A 3 It represents that A 3 is directly bonded.
  • m is 0, 1 or 2.
  • S 1 and S 2 are the same or different and are (CH 2 ) j (1 ⁇ j ⁇ 18), (CH 2 —CH 2 —O) k (1 ⁇ k ⁇ 6), or P 2 and A 2.
  • a 2 and P 3 or A 3 and P 3 are directly bonded. At least one of the hydrogen atoms of A 2 and A 3 may be substituted with a halogen group, a methyl group, or an ethyl group.
  • the liquid crystal display device of the present embodiment includes the polymer layer 50 provided between the liquid crystal layer 30 and the photo-alignment film 40, the photoreactive functional group in the photo-alignment film 40 and the liquid crystal molecules in the liquid crystal layer 30 are included. It is possible to reduce the area (area) in which and are in direct contact. Therefore, even if radicals are generated from the photoreactive functional group in the photo-alignment film 40 by ultraviolet rays or visible light from the backlight 80, the radicals can be prevented from transferring to liquid crystal molecules. The same applies to a high temperature environment.
  • the polymerization initiator (1) since the polymerization initiator (1) generates radicals by heating, the polymerization initiator (1) and the bifunctional monomer (2) are dissolved in the liquid crystal layer 30, and then the liquid crystal layer 30 is heated. In the liquid crystal layer 30, radical polymerization of the bifunctional monomer (2) starts. Then, the polymer layer 50 is formed between the liquid crystal layer 30 and the photo-alignment film 40 by phase separation of the polymer of the bifunctional monomer (2), that is, the PSA polymer, from the liquid crystal layer 30. Thus, since the polymer layer 50 can be formed by thermal polymerization of the bifunctional monomer (2), it is not necessary to irradiate the liquid crystal layer 30 with light when the polymer layer 50 is formed.
  • radicals can be prevented from being generated from the photo-alignment film 40 when the polymer layer 50 is formed.
  • a polymer layer is formed by photopolymerizing a monomer
  • radicals are generated from the photoreactive functional group of the photo-alignment film (particularly a photoreactive functional group that absorbs light in a wavelength region of 360 nm or more) during the formation process. Generated, the radicals are transferred to liquid crystal molecules, leading to a decrease in VHR.
  • the unreacted thermal polymerization initiator (1) is used during the use of the liquid crystal display device. Radicals are generated, and some of them are ionized, causing a reduction in VHR.
  • the polymerization initiator (1) is a polymerization initiator with a polymerization group in which a polymerization group (P 1 ) is added on both sides of the azo group, it does not contribute to the initiation of polymerization during the thermal polymerization step. However, it can be taken into the PSA polymer, and the unreacted polymerization initiator (1) can be prevented from remaining in the liquid crystal layer 30. Therefore, radicals resulting from the unreacted polymerization initiator (1) can be reduced.
  • FIG. 3 is a schematic cross-sectional view of a liquid crystal display device according to Comparative Example 2.
  • the liquid crystal display device according to Comparative Example 2 is related to Embodiment 1 except that a radical scavenger 31 is added to the liquid crystal layer 30 instead of the polymer layer 50 being formed.
  • a radical scavenger 31 is added to the liquid crystal layer 30 instead of the polymer layer 50 being formed.
  • the radical scavenger 31 continues to exist in the liquid crystal layer. Since the radical scavenger 31 can diffuse freely, it may thermally react with specific components of the photo-alignment film 40 and the sealing material 60 to generate impurities or slightly change the physical property value of the liquid crystal material.
  • paragraph [0057] of Patent Document 1 describes that a polymerization initiator may be used in order to promote polymerization of the polymerizable compound added to the liquid crystal composition. 1) is not described.
  • all of the polymerization initiators listed in paragraph [0057] of Patent Document 1 generate radicals by both light and heat, it is considered that reliability is likely to decrease due to radical generation if they remain in the liquid crystal layer. It is done.
  • the polymerization initiator (1) of this embodiment requires temperature control of the liquid crystal material, it tends to generate radicals due to heat, but hardly causes radical generation due to light.
  • the liquid crystal display device of this embodiment is provided with the photo-alignment film 40 containing the polymer which has a photoreactive functional group, the structure derived from a polymerization initiator (1) and the bifunctional monomer (2) origin Since the polymer layer 50 including the polymer having the structure (PSA polymer) is provided between the liquid crystal layer 30 and the photo-alignment film 40, the transfer of radicals to liquid crystal molecules and the generation of radicals themselves can be suppressed. As a result, a good voltage holding ratio can be maintained over a long period of time in a high-temperature environment, and furthermore, the occurrence of image sticking and stains and a decrease in contrast can be suppressed.
  • PSA polymer polymer having the structure
  • Examples of the pair of substrates 10 and 20 include a combination of an active matrix substrate (TFT substrate) and a color filter (CF) substrate.
  • TFT substrate active matrix substrate
  • CF color filter
  • the active matrix substrate those normally used in the field of liquid crystal display devices can be used.
  • the configuration is such that a plurality of parallel gate signal lines on a transparent substrate; a plurality of sources extending in a direction perpendicular to the gate signal lines and parallel to each other Signal lines; active elements such as thin film transistors (TFTs) arranged corresponding to the intersections of gate signal lines and source signal lines; pixels arranged in a matrix in a region defined by the gate signal lines and source signal lines
  • TFTs thin film transistors
  • the structure provided with the electrode etc. is mentioned.
  • a common wiring; a counter electrode connected to the common wiring, and the like are further provided.
  • a TFT in which a channel is formed by amorphous silicon, polysilicon, or IGZO (indium-gallium-zinc-oxygen) which is an oxide semiconductor is preferably used.
  • an oxide semiconductor has low off-leakage, which is advantageous for low-frequency driving of a liquid crystal display device.
  • VHR when VHR is low, low-frequency driving cannot be performed. Since the VHR can be increased according to this embodiment, low-frequency driving is possible. That is, it can be said that the combination of the oxide semiconductor and this embodiment is particularly preferable. Note that, in the active matrix display method, normally, when the TFT provided in each pixel is on, a signal voltage is applied to the electrode through the TFT, and the charge charged in the pixel at this time is turned off.
  • a voltage holding ratio indicates a ratio of the charged charge held during one frame period (for example, 16.7 ms). That is, a low VHR means that the voltage applied to the liquid crystal layer tends to decay with time. In the active matrix display method, it is required to increase the VHR.
  • the color filter substrate those usually used in the field of liquid crystal display devices can be used.
  • the configuration of the color filter substrate include a configuration in which a black matrix formed in a lattice shape, a color filter formed inside a lattice, that is, a pixel, and the like are provided on a transparent substrate.
  • the pair of substrates 10 and 20 may be one in which both the color filter and the active matrix are formed on one substrate.
  • the photo-alignment film 40 has a function of controlling the alignment of liquid crystal molecules in the liquid crystal layer 30.
  • the photo-alignment film 40 is mainly used.
  • the orientation of the liquid crystal molecules in the liquid crystal layer 30 is controlled by the action of.
  • an angle formed by the major axis of the liquid crystal molecules with respect to the surfaces of the pair of substrates 10 and 20 is referred to as a “pretilt angle”.
  • the “pretilt angle” means an angle of inclination of liquid crystal molecules from a direction parallel to the substrate surface, the angle parallel to the substrate surface is 0 °, and the normal angle of the substrate surface is 90 °. It is.
  • the size of the pretilt angle of the liquid crystal molecules provided by the photo-alignment film 40 is not particularly limited, and the photo-alignment film 40 aligns the liquid crystal molecules in the liquid crystal layer 30 substantially horizontally (horizontal alignment film). Alternatively, it may be one that aligns the liquid crystal molecules in the liquid crystal layer 30 substantially vertically (vertical alignment film).
  • the term “substantially horizontal” means that the pretilt angle is preferably substantially 0 ° (for example, less than 10 °), and 0 ° from the viewpoint of obtaining an effect of maintaining good contrast characteristics over a long period of time.
  • the pretilt angle is preferably 0 ° from the viewpoint of viewing angle characteristics, but when the display mode is the TN mode, Due to restrictions, the pretilt angle is set to about 2 °, for example.
  • the term “substantially vertical” means that the pretilt angle is preferably 83.0 ° or more, viewing angle characteristics, response characteristics, dark line thickness at the time of four-domain divided alignment (influence on transmittance), and From the viewpoint of orientation stability, it is more preferably 88.0 ° or more.
  • the pretilt angle of 83.0 ° or more is set to a display mode that employs a voltage application type PSA (photoalignment film utilizing type PSA) technology (in this mode, the pretilt angle may be set to 85 ° or less). Is preferred.
  • PSA photoalignment film utilizing type PSA
  • the photo-alignment film 40 includes a polymer having a photoreactive functional group (hereinafter also referred to as a photoreactive group-containing polymer).
  • the photoreactive functional group means a functional group capable of causing a structural change when irradiated with light (electromagnetic waves) such as ultraviolet light and visible light. Then, due to this structural change of the photoreactive functional group, the alignment regulating force of the photo-alignment film 40 is expressed, or the magnitude and / or direction of the alignment regulating force of the photo-alignment film 40 is changed.
  • the alignment regulating force refers to the property of regulating the alignment of liquid crystal molecules existing in the vicinity of the alignment film.
  • the photo-alignment film 40 When the photo-alignment film 40 includes the photoreactive functional group, the photo-alignment film 40 can be subjected to an alignment process (photo-alignment process) by light irradiation.
  • the photo-alignment treatment is a liquid crystal alignment method that has excellent in-plane uniformity and high reliability due to dust stress.
  • an alignment control means using protrusions and structures is not necessary, and a factor for decreasing the transmittance can be eliminated, so that a high transmittance can be obtained.
  • Examples of the structural change of the photoreactive functional group include dimerization (dimer formation), isomerization, photofleece transition, decomposition, etc.
  • Specific examples of the photoreactive functional group include, for example, a cinnamate group. , Chalcone group, azobenzene group, coumarin group, tolan group, stilbene group and the like.
  • Photoreactive functional groups (especially photoreactive functional groups that absorb light in the wavelength region of 360 nm or more) are decomposed by light emitted during photo-alignment treatment or light from the backlight 80 when using a liquid crystal display device. , May become radicals.
  • the polymer layer 50 is provided between the liquid crystal layer 30 and the photo-alignment film 40, even if radicals are generated from the photo-alignment film 40 by light irradiation, it can be suppressed from being eluted into the liquid crystal layer 30.
  • the photoreactive functional group that absorbs light in a wavelength region of 360 nm or more include an azobenzene group, a chalcone group, and a cinnamate group. Therefore, when the photoreactive functional group is any of these functional groups, The liquid crystal display device can remarkably exhibit the effect of suppressing radical elution into the liquid crystal layer 30.
  • the structure other than the photoreactive functional group of the photoreactive group-containing polymer contained in the photoalignment film 40 is not particularly limited, but the photoreactive group-containing polymer is polyamic acid, polyimide, polysiloxane, polyvinyl, or polymaleimide. It is preferable.
  • the photoreactive group-containing polymer may be a homopolymer, but is preferably a copolymer.
  • the arrangement of monomer units is not particularly limited, and the photoreactive group-containing polymer may be, for example, an alternating copolymer, a random copolymer, a block copolymer, or a graft copolymer. Good.
  • the photoreactive group-containing polymer when the photoreactive group-containing polymer is a polyamic acid, the photoreactive group-containing polymer may include a repeating structural unit represented by the following chemical formula (3).
  • X1 represents a structure represented by any one of the following chemical formulas (X1-1) to (X1-12) and (X1-P1) to (X1-P4)).
  • Two hydrogen atoms may be substituted with a halogen, a methyl group, or an ethyl group
  • Y1 is represented by the following chemical formulas (Y1-1) to (Y1-16) and (Y1-P1) to (Y1-P8).
  • each structure may be substituted with a halogen, a methyl group, or an ethyl group, wherein Z1 represents a side chain, provided that At least one of X1, Y1, and Z1 includes a photoreactive functional group, wherein one molecule of the photoreactive group-containing polymer has at least one of a plurality of structures represented by the chemical formula (3) or Even if Z1 is not introduced in all It has.)
  • X1 contains a photoreactive functional group
  • X1 is any one of the structures represented by the chemical formulas (X1-P1) to (X1-P4).
  • Y1 contains a photoreactive functional group
  • Y1 is any one of the structures represented by the chemical formulas (Y1-P1) to (Y1-P8).
  • Z1 contains a photoreactive functional group
  • a structure represented by the following chemical formula (Z1-HP1) or (Z1-HP2) is suitable as Z1.
  • the photo-alignment film 40 can function as a horizontal alignment film.
  • the methyl group may be bonded to any carbon atom in the benzene ring.
  • the photo-alignment film 40 is a horizontal alignment film
  • one or more of the plurality of structures represented by the chemical formula (3) (however, excluding all) is Z1.
  • a functional group capable of aligning liquid crystal molecules substantially horizontally without being irradiated with light (hereinafter also referred to as a horizontal alignment functional group) may be separately introduced.
  • horizontal alignment functional group examples include, for example, the following chemical formulas (Z1-H1), (Z1-H2), (Z1-H3), (Z1-H4), (Z1-H5), (Z1-H6), Examples include the structure represented by (Z1-H7) or (Z1-H8).
  • Z1 contains a photoreactive functional group
  • a structure represented by any of the following chemical formulas (Z1-VP1) to (Z1-VP21) is also suitable as Z1.
  • the photo-alignment film 40 can function as a vertical alignment film.
  • the photo-alignment film 40 is a vertical alignment film
  • one or more of the plurality of structures represented by the chemical formula (3) (however, excluding all) is Z1.
  • a functional group capable of aligning liquid crystal molecules substantially vertically without being irradiated with light (hereinafter also referred to as a vertical alignment functional group) may be separately introduced.
  • vertical alignment functional group examples include, for example, the following chemical formulas (Z1-V1), (Z1-V2), (Z1-V3), (Z1-V4), (Z1-V5), (Z1-V6) or A structure represented by (Z1-V7) can be given.
  • X1 and Y1 may be one kind or two or more kinds, respectively.
  • one molecule of the photoreactive group-containing polymer may contain both the structure represented by the chemical formula (X1-1) and the structure represented by the chemical formula (X1-2).
  • the photo-alignment film 40 may contain only one type of photoreactive group-containing polymer containing the repeating structural unit represented by the chemical formula (3), or the repeating structural unit represented by the chemical formula (3). Two or more types of photoreactive group-containing polymers containing each of them may be contained.
  • the weight average molecular weight is preferably 2,500 or more, and preferably 1,000,000 or less. If the weight average molecular weight exceeds 1,000,000, the viscosity of the liquid crystal aligning agent may become so large that the photo-alignment film 40 cannot be formed.
  • the weight average molecular weight can be determined by GPC (gel permeation chromatography).
  • a side chain when a side chain is introduced only in a part of the plurality of structures represented by the chemical formula (3) and no side chain is introduced in the other structure,
  • the arrangement of these multiple types of structures is not particularly limited.
  • a structural unit having a side chain introduced is represented by “A” and a structural unit having no side chain introduced is represented by “B”, both of them are alternated as “ABABAB” in the photoreactive group-containing polymer. May be arranged in a random manner such as “AABABB”, or may be arranged in block units such as “AAABBB”.
  • the photoreactive group-containing polymer is polyimide
  • the photoreactive group-containing polymer is a polyamic acid containing a repeating structural unit represented by the above chemical formula (3), which is dehydrated and closed (imidized) by heating or a catalyst. It may be.
  • only a part of the plurality of structures represented by the chemical formula (3) may be imidized or all of them may be imidized.
  • the weight average molecular weight is preferably 2,500 or more, and preferably 1,000,000 or less. If the weight average molecular weight exceeds 1,000,000, the viscosity of the liquid crystal aligning agent may become so large that the photo-alignment film 40 cannot be formed.
  • the photoreactive group-containing polymer when the photoreactive group-containing polymer is polysiloxane, the photoreactive group-containing polymer may include a repeating structural unit represented by the following chemical formula (4).
  • represents a —H group, —OH group, methoxy group, or ethoxy group.
  • X2 represents a side chain containing a photoreactive functional group.
  • Y2 represents a saturated group having 1 to 6 carbon atoms. Or an unsaturated alkylene group or an alkyleneoxy group, Z2 represents an epoxy group, and p is a real number in the range of 0 ⁇ p ⁇ 0.5.
  • a horizontal alignment functional group or a vertical alignment functional group is separately introduced as X2 in one or more (but not all) of the plurality of structures represented by the chemical formula (4). May be.
  • horizontal alignment functional group examples include the above chemical formulas (Z1-H1), (Z1-H2), (Z1-H3), (Z1-H4), (Z1-H5), (Z1-H6), (Z1 -H7) or (Z1-H8)
  • vertical alignment functional group examples include the chemical formulas (Z1-V1), (Z1-V2), (Z1-V3), (Z1 -V4), (Z1-V5), (Z1-V6) or (Z1-V7) is exemplified.
  • photoreactive group-containing polymer containing a repeating structural unit represented by the chemical formula (4) include a repeating structural unit represented by the following chemical formula (4-1) or (4-2) Things.
  • represents an —H group, —OH group, methoxy group, or ethoxy group.
  • ⁇ 1 represents a structure represented by the following chemical formula ( ⁇ 1-1) or ( ⁇ 1-2).
  • P I is a real number in the range of 0 ⁇ p ⁇ 0.5.
  • represents an —H group, —OH group, methoxy group, or ethoxy group.
  • ⁇ 1 represents a structure represented by the above chemical formula ( ⁇ 1-1) or ( ⁇ 1-2).
  • P I is a real number in the range of 0 ⁇ p ⁇ 0.5.
  • ⁇ , X2 and Y2 may each be one type or two or more types.
  • one molecule of the photoreactive group-containing polymer may contain both the structure represented by the chemical formula ( ⁇ 1-1) and the structure represented by the chemical formula ( ⁇ 1-2).
  • the photo-alignment film 40 may contain only one type of photoreactive group-containing polymer containing the repeating structural unit represented by the chemical formula (4), or the repeating structural unit represented by the chemical formula (4). You may contain 2 or more types of each photoreactive group containing polymer containing.
  • the weight average molecular weight is preferably 2,500 or more, and preferably 1,000,000 or less. If the weight average molecular weight exceeds 1,000,000, the viscosity of the liquid crystal aligning agent may become so large that the photo-alignment film 40 cannot be formed.
  • the arrangement of the unit into which X2 is introduced and the unit into which Y2 is introduced is not particularly limited.
  • a unit in which X2 is introduced is represented by “C” and a unit in which Y2 is introduced is represented by “D”, they are alternately arranged as “CDCDCD” in the photoreactive group-containing polymer. It may be arranged randomly such as “CCDCDD”, or may be arranged in block units such as “CCCDDD”.
  • the photoreactive group-containing polymer when the photoreactive group-containing polymer is polyvinyl, the photoreactive group-containing polymer may include a repeating structural unit represented by the following chemical formula (5).
  • gamma is -H group, -CH 3 group, or, .X3 representing a -C 2 H 5 groups, .Y3 representing a side chain containing a photoreactive functional group is 1 to 6 carbon atoms
  • a horizontal alignment functional group or a vertical alignment functional group is separately introduced as X3 in one or more (but not all) of the plurality of structures represented by the chemical formula (5). May be.
  • horizontal alignment functional group examples include the above chemical formulas (Z1-H1), (Z1-H2), (Z1-H3), (Z1-H4), (Z1-H5), (Z1-H6), (Z1 -H7) or (Z1-H8)
  • vertical alignment functional group examples include the chemical formulas (Z1-V1), (Z1-V2), (Z1-V3), (Z1 -V4), (Z1-V5), (Z1-V6) or (Z1-V7) is exemplified.
  • photoreactive group-containing polymer containing the repeating structural unit represented by the chemical formula (5) include those containing the repeating structural unit represented by the following chemical formula (5-1).
  • represents a —H group, —CH 3 group, or —C 2 H 5 group.
  • ⁇ 1 represents a structure represented by the above chemical formula ( ⁇ 1-1) or ( ⁇ 1-2)
  • Q is a real number in the range of 0 ⁇ q ⁇ 0.5.
  • ⁇ , X3, and Y3 may each be one type or two or more types.
  • one molecule of the photoreactive group-containing polymer may contain both the structure represented by the chemical formula ( ⁇ 1-1) and the structure represented by the chemical formula ( ⁇ 1-2).
  • the photo-alignment film 40 may contain only one type of photoreactive group-containing polymer containing the repeating structural unit represented by the chemical formula (5), or the repeating structural unit represented by the chemical formula (5). You may contain 2 or more types of each photoreactive group containing polymer containing.
  • the weight average molecular weight is preferably 2,500 or more, and preferably 1,000,000 or less. If the weight average molecular weight exceeds 1,000,000, the viscosity of the liquid crystal aligning agent may become so large that the photo-alignment film 40 cannot be formed.
  • the arrangement of the unit into which X3 is introduced and the unit into which Y3 is introduced is not particularly limited.
  • the unit in which X3 is introduced is represented by “E” and the unit in which Y3 is introduced is represented by “F”, both of them are alternately arranged as “EFEFEF” in the photoreactive group-containing polymer. It may be arranged randomly such as “EEFEFF”, or may be arranged in block units such as “EEEFFF”.
  • the photo-alignment film 40 may further contain other components in addition to the photoreactive group-containing polymer.
  • other components include polymers other than the photoreactive group-containing polymer, curing agents, curing accelerators, catalysts, and the like.
  • Polymers other than the photoreactive group-containing polymer can be used to further improve the solution characteristics of the liquid crystal aligning agent and the electrical characteristics of the alignment film. Examples of such polymers include photoreactive functional groups. Examples of the polymer for a general alignment film that do not have s.
  • the photo-alignment film 40 may have a two-layer structure, and for an alignment film that does not have a photoreactive functional group There may be a lower layer mainly composed of a polymer and an upper layer mainly composed of a photoreactive group-containing polymer, and the upper layer may be in contact with the liquid crystal layer.
  • the film thickness of the photo-alignment film 40 is not particularly limited, but is preferably 1 nm or more, more preferably 3 nm or more, still more preferably 5 nm or more, and particularly preferably 8 nm or more.
  • the film thickness of the photo-alignment film 40 is preferably 300 nm or less, more preferably 150 nm or less, still more preferably 120 nm or less, and particularly preferably 100 nm or less.
  • radical transfer is less likely to occur as the distance increases.
  • the thinner the photo-alignment film the smaller the absolute total amount of photoreactive functional groups, and the lower the probability of radical transfer. Therefore, from the viewpoint of effectively suppressing the transfer of radicals to liquid crystal molecules, the thickness of the photo-alignment film 40 is preferably as small as possible.
  • a polymer layer 50 is provided between the liquid crystal layer 30 and the photo-alignment film 40.
  • the polymer layer 50 has a structure derived from the polymerization initiator (1) and a bifunctional monomer (2).
  • a polymer having a structure derived from (PSA polymer) is included.
  • the polymer layer 50 is formed by using a polymer supported alignment (PSA) technique.
  • PSA polymer supported alignment
  • a liquid crystal composition containing a polymerizable monomer is sealed between a pair of substrates, and then the polymerizable monomer is polymerized to form a polymer (polymer) on the alignment film surface.
  • the initial alignment state of the liquid crystal molecules is fixed by coalescence. Therefore, according to the polymer layer 50, in addition to the above-described effects, the initial alignment state of the liquid crystal molecules in the liquid crystal layer 30 can be fixed.
  • the PSA polymer is a polymer obtained by polymerizing at least the bifunctional monomer (2).
  • the polymerization initiator (1) decomposes with an azo group by heating to generate two radicals, and initiates a radical polymerization reaction of the bifunctional monomer (2). Therefore, the PSA polymer may have a structure derived from the polymerization initiator (1) at least at the terminal. That is, the PSA polymer may have a structure represented by the following chemical formula (1-1) at least at the terminal.
  • the PSA polymer may be a polymer obtained by polymerizing at least the polymerization initiator (1) and the bifunctional monomer (2).
  • Each of the polymerization initiator (1) and the bifunctional monomer (2) may be one kind or two or more kinds.
  • P 1 preferably represents an acryloyloxy group or a methacryloyloxy group.
  • Z 1 and Z 2 are preferably the same or different and represent an —O— group or a direct bond.
  • R 1 preferably represents a —CH 3 group.
  • R 2 preferably represents a —CH 3 group or a —CN group.
  • a 1 preferably represents a saturated or unsaturated alkylene group having 1 to 8 carbon atoms.
  • n is preferably 1 or 2.
  • bifunctional monomer (2) include the following formulas (2-1) to (2-4).
  • P 4 is the same or different and represents an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, or a methacryloylamino group.
  • At least one of the hydrogen atoms of the ring structure is , A halogen atom, a methyl group, or an ethyl group may be substituted.
  • the weight average molecular weight of the PSA polymer is not particularly limited, and may be the same as that of a polymer formed by a general PSA technique.
  • the photoreactive group-containing polymer contained in the photo-alignment film 40 is a polymer layer. 50 is preferably bonded to the PSA polymer contained in 50 (particularly the terminal thereof).
  • the photoreactive functional group of the photoreactive group-containing polymer absorbs light in a wavelength region of 360 nm or more, radicals are easily generated in the photo-alignment film 40 by visible light such as light from the backlight 80, and A chemical bond can be effectively generated between the terminal radicals of the PSA polymer. Therefore, from the viewpoint of effectively combining the photoreactive group-containing polymer with the PSA polymer, the photoreactive functional group of the photoreactive group-containing polymer is preferably an azobenzene group, a chalcone group, or a cinnamate group.
  • the thickness of the polymer layer 50 is preferably larger, specifically, preferably 5 nm or more, more preferably 10 nm or more, Especially preferably, it is 20 nm or more.
  • the film thickness of the polymer layer 50 is preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 25 nm or less.
  • the liquid crystal layer 30 is not particularly limited as long as it contains at least one liquid crystal molecule, but usually includes a thermotropic liquid crystal, and preferably includes a liquid crystal molecule exhibiting a nematic phase (nematic liquid crystal). 40 preferably exhibits a nematic phase.
  • the liquid crystal molecules may have a negative dielectric anisotropy ( ⁇ ) defined by the following formula (P), or may have a positive value. That is, the liquid crystal molecules may have a negative dielectric anisotropy or a positive dielectric anisotropy.
  • dielectric anisotropy
  • the liquid crystal molecules having negative dielectric anisotropy for example, those having ⁇ of ⁇ 1 to ⁇ 20 can be used.
  • liquid crystal molecules having positive dielectric anisotropy for example, those having ⁇ of 1 to 20 can be used.
  • the liquid crystal layer 30 may contain liquid crystal molecules (neutral liquid crystal molecules) having no polarity, that is, ⁇ is substantially zero.
  • liquid crystal display device when using liquid crystal molecules having negative dielectric anisotropy, defects of image sticking and spots are caused more than when using liquid crystal molecules having positive dielectric anisotropy. Tended to appear more manifest. This is presumably because the liquid crystal molecules having negative dielectric anisotropy have a large polarization in the minor axis direction, so that the influence of a decrease in VHR when ionized becomes large. That is, the liquid crystal display device of this embodiment exhibits a greater effect when using a liquid crystal material having negative dielectric anisotropy than when using a liquid crystal material having positive dielectric anisotropy. To do.
  • the sealing material 60 is disposed so as to surround the periphery of the liquid crystal layer 30.
  • a material (sealing agent) of the sealing material 60 for example, an epoxy resin containing an inorganic filler or an organic filler and a curing agent can be used.
  • the alignment mode (display mode) of the liquid crystal display device is not particularly limited, but is twisted nematic (TN) mode, electric field controlled birefringence (ECB) mode, in-plane switching (IPS) mode, fringe field switching (FFS). ) Mode, vertical alignment (VA) mode, or twisted nematic vertical alignment (VATN) mode.
  • TN twisted nematic
  • EBC electric field controlled birefringence
  • IPS in-plane switching
  • FFS fringe field switching
  • VA vertical alignment
  • VATN twisted nematic vertical alignment
  • the alignment mode is a horizontal alignment mode
  • radicals are easily generated from the photo-alignment film, so that the effects of the present invention are remarkably obtained. That is, in the vertical alignment mode photo-alignment process (polarized UV irradiation), the pretilt angle only needs to be slightly tilted from 90 °, but in the horizontal alignment mode photo-alignment process, the orientation of the liquid crystal alignment (the direction in the substrate plane) ) Must be controlled with higher accuracy. Therefore, the irradiation amount in the photo-alignment process in the horizontal alignment mode is usually larger by one digit or more than in the vertical alignment mode, and more radicals are likely to be generated due to side reactions than in the vertical alignment mode.
  • the polymer layer 50 of the present embodiment can effectively prevent the radicals generated during the photo-alignment treatment from eluting into the liquid crystal layer 30.
  • the photo-alignment film 40 preferably aligns the liquid crystal molecules in the liquid crystal layer 30 substantially horizontally, and the alignment mode of the liquid crystal display device of this embodiment is TN mode or IPS mode. Or it is preferable that it is FFS mode.
  • At least one of the substrates 10 and 20 is provided with a structure (FFS electrode structure) including a planar electrode, a slit electrode, and an insulating film disposed between the planar electrode and the slit electrode.
  • An oblique electric field (fringe field) is formed in the layer 30.
  • the slit electrode, the insulating film, and the planar electrode are arranged in this order from the liquid crystal layer 30 side.
  • the slit electrode for example, a slit having a linear opening surrounded by the electrode around the entire circumference, or a linear notch provided with a plurality of comb teeth and disposed between the comb teeth.
  • the comb-shaped thing which comprises a slit can be used.
  • a pair of comb electrodes is provided on at least one of the substrates 10 and 20, and a lateral electric field is formed in the liquid crystal layer 30.
  • the pair of comb-shaped electrodes for example, an electrode pair that includes a plurality of comb-tooth portions and is arranged so that the comb-tooth portions mesh with each other can be used.
  • a pixel electrode is provided on one of the substrates 10 and 20
  • a common electrode is provided on the other of the substrates 10 and 20
  • a vertical electric field is formed in the liquid crystal layer 30.
  • the photo-alignment films 40 on the substrates 10 and 20 are vertical alignment films, and their alignment processing directions are orthogonal to each other.
  • a photo-alignment process is preferably used.
  • a polarizing plate (linear polarizer) 70 may be disposed on the opposite side of the pair of substrates 10 and 20 from the liquid crystal layer 30.
  • the polarizing plate 70 typically includes a polyvinyl alcohol (PVA) film obtained by adsorbing and orienting an anisotropic material such as an iodine complex having dichroism.
  • PVA polyvinyl alcohol
  • a protective film such as a triacetyl cellulose film is laminated on both sides of the PVA film and put to practical use.
  • An optical film such as a retardation film may be disposed between the polarizing plate 70 and the pair of substrates 10 and 20.
  • a backlight 80 is disposed on the back side of the liquid crystal panel.
  • a liquid crystal display device having such a configuration is generally called a transmissive liquid crystal display device.
  • the backlight 80 is not particularly limited as long as it emits light including visible light, may emit light including only visible light, and emits light including both visible light and ultraviolet light. It may be. In order to enable color display by the liquid crystal display device, the backlight 80 preferably emits white light.
  • the light source of the backlight 80 for example, a light emitting diode (LED) is preferably used.
  • LED light emitting diode
  • visible light means light (electromagnetic wave) having a wavelength of 380 nm or more and less than 800 nm.
  • the polymer layer 50 prevents radicals generated from the photo-alignment film 40 from being eluted into the liquid crystal layer 30 when exposed to the light of the backlight 80. Therefore, the polymer layer 50 can function particularly effectively when at least part of the emission spectrum of the backlight 80 overlaps with at least part of the absorption spectrum of the photo-alignment film 40.
  • the liquid crystal display device of this embodiment includes external circuits such as TCP (tape carrier package) and PCB (printed wiring board); optical films such as a viewing angle widening film and a brightness enhancement film.
  • external circuits such as TCP (tape carrier package) and PCB (printed wiring board); optical films such as a viewing angle widening film and a brightness enhancement film.
  • a plurality of members such as a bezel (frame), and some members may be incorporated in other members.
  • Members other than those already described are not particularly limited, and those normally used in the field of liquid crystal display devices can be used, and thus description thereof is omitted.
  • the manufacturing method of the liquid crystal display device of this embodiment includes a step of preparing a pair of substrates 10 and 20, a step of forming a photo-alignment film 40 including a polymer having a photoreactive functional group on each of the substrates 10 and 20, and The step of forming the liquid crystal layer 30 between the pair of substrates 10 and 20 on which the photo-alignment film 40 is formed and the polymerization initiator (polymerization initiator (1)) represented by the chemical formula (1) And a step of thermally polymerizing a monomer represented by the chemical formula (2) (bifunctional monomer (2)) to form a polymer layer 50 between each photo-alignment film 40 and the liquid crystal layer 30.
  • the manufacturing method of the liquid crystal display device of this embodiment includes the process of forming the polymer layer 50 between the photo-alignment film 40 and the liquid crystal layer 30, the photoreactive functional group in the photo-alignment film 40 and the liquid crystal layer 30 are included.
  • the region (area) in direct contact with the liquid crystal molecules inside can be reduced. Therefore, even if radicals are generated from the photoreactive functional group in the photo-alignment film 40 by ultraviolet rays or visible light from the backlight 80, the radicals can be prevented from transferring to liquid crystal molecules. The same applies to a high temperature environment.
  • the polymer layer is formed by thermally polymerizing the bifunctional monomer (2) using the polymerization initiator (1), it is not necessary to irradiate the liquid crystal layer 30 with light when the polymer layer 50 is formed. Therefore, radicals can be prevented from being generated from the photo-alignment film 40 when the polymer layer 50 is formed.
  • radicals are generated from the photoreactive functional group of the photo-alignment film (particularly a photoreactive functional group that absorbs light in a wavelength region of 360 nm or more) during the formation process. Generated, the radicals are transferred to liquid crystal molecules, leading to a decrease in VHR.
  • the unreacted thermal polymerization initiator (1) is used during the use of the liquid crystal display device. Radicals are generated, and some of them are ionized, causing a reduction in VHR.
  • the polymerization initiator (1) is a polymerization initiator with a polymerization group in which a polymerization group (P 1 ) is added on both sides of the azo group, it does not contribute to the initiation of polymerization during the thermal polymerization step. However, it can be taken into the PSA polymer, and the unreacted polymerization initiator (1) can be prevented from remaining in the liquid crystal layer 30. Therefore, radicals resulting from the unreacted polymerization initiator (1) can be reduced.
  • the additive continues to be present in the liquid crystal layer, and the thermal reaction of the additive may occur or the physical property value of the liquid crystal material may slightly change. is there.
  • the additives such as the bifunctional monomer (2) and the polymerization initiator (1) are suppressed from remaining in the liquid crystal layer 30, a new thermal reaction of the additive occurs. It is possible to suppress changes in physical property values of the liquid crystal material.
  • paragraph [0057] of Patent Document 1 describes that a polymerization initiator may be used in order to promote polymerization of the polymerizable compound added to the liquid crystal composition. 1) is not described, and all the polymerization initiators listed in paragraph [0057] of Patent Document 1 generate radicals by both light and heat. It is considered that the reliability is likely to decrease.
  • the polymerization initiator (1) of this embodiment requires temperature control of the liquid crystal material, it tends to generate radicals due to heat, but hardly causes radical generation due to light.
  • the manufacturing method of the liquid crystal display device of this embodiment includes the process of forming the photo-alignment film 40 containing the polymer which has a photoreactive functional group
  • a bifunctional monomer is used using a polymerization initiator (1). Since (2) is thermally polymerized and includes the step of forming the polymer layer 50 between the photo-alignment film 40 and the liquid crystal layer 30, the transfer of radicals to liquid crystal molecules and the generation of radicals themselves can be suppressed. As a result, it is possible to manufacture a liquid crystal display device that can maintain a good voltage holding ratio over a long period of time in a high-temperature environment, and can suppress the occurrence of image sticking and stains and a decrease in contrast.
  • a polymer (photoreactive group-containing polymer) having a photoreactive functional group preferably an azobenzene group, a chalcone group, or a cinnamate group
  • a solvent for example, an organic solvent
  • a liquid crystal aligning agent is prepared.
  • the photoreactive group-containing polymer as described above, polyamic acid, polyimide, polysiloxane, polyvinyl, or polymaleimide is suitable.
  • the liquid crystal aligning agent may contain other arbitrary components as necessary, and is preferably prepared as a solution-like composition in which each component is dissolved in a solvent.
  • dissolves a photoreactive group containing polymer and other arbitrary components, and does not react with these is suitable.
  • curing agent, a hardening accelerator, a catalyst etc. can be mentioned, for example.
  • Polymers other than the photoreactive group-containing polymer can be used to further improve the solution characteristics of the liquid crystal aligning agent and the electrical characteristics of the alignment film. Examples of such polymers include photoreactive functional groups. Examples of the polymer for a general alignment film that do not have s.
  • a liquid crystal aligning agent is applied on the surface of each of the substrates 10 and 20.
  • the coating method is not particularly limited, and examples thereof include a roll coater method, a spinner method, a printing method, and an ink jet method.
  • the substrates 10 and 20 are heated. Thereby, the solvent in a liquid crystal aligning agent volatilizes, and the photo-alignment film 40 is formed. Heating may be performed in two stages of pre-baking (pre-baking) and main baking (post-baking).
  • pre-baking pre-baking
  • main baking post-baking
  • the liquid crystal alignment agent contains a polymer for alignment film that does not have a photoreactive functional group
  • the formed photoalignment film 40 may have a two-layer structure, and the alignment does not have a photoreactive functional group.
  • You may have the lower layer mainly comprised from the polymer for films
  • the photo-alignment film 40 is subjected to a photo-alignment treatment to give a desired alignment regulating force to the photo-alignment film 40.
  • the photo-alignment film 40 is irradiated (exposed) with light such as ultraviolet rays and visible light.
  • the above-described structural change occurs in the photoreactive functional group of the photoreactive group-containing polymer, and the molecular structure and / or orientation of at least a part of the photoreactive group-containing polymer changes.
  • the photo-alignment film 40 can control the alignment of liquid crystal molecules in contact with the surface. Note that it is not normal for all of the photoreactive functional groups to cause the above-described structural change. Therefore, at least a part of the photoreactive functional group continues to exist in the photo-alignment film 40 even after the photo-alignment process.
  • Examples of light used for the photo-alignment treatment include ultraviolet light, visible light, or both.
  • the light used for the photo-alignment treatment may be polarized light or non-polarized light.
  • linearly polarized light, elliptically polarized light, circularly polarized light, or non-polarized light can be used.
  • a photo-alignment film that aligns liquid crystal molecules in the liquid crystal layer 30 substantially horizontally by polarized light irradiation or a photo-alignment film that aligns liquid crystal molecules in the liquid crystal layer 30 substantially vertically by polarized light irradiation. Is preferred.
  • the photo-alignment film 40 may be formed only on either the substrate 10 or 20. Moreover, you may perform a division
  • liquid crystal layer forming step first, at least one polymerization initiator (1) and at least one bifunctional monomer (2) are added to a liquid crystal material containing at least one liquid crystal molecule to prepare a liquid crystal composition. .
  • the concentration of the polymerization initiator (1) in the entire liquid crystal composition is preferably 0.0001 wt% or more and 0.05 wt% or less. If it is less than 0.0001 wt%, the polymerization reaction may not be effectively started. When it is larger than 0.05 wt%, there is a possibility that an unreacted polymerization initiator remains.
  • the concentration of the polymerization initiator (1) in the entire liquid crystal composition is more preferably 0.001 wt% or more and 0.02 wt% or less.
  • the concentration of the bifunctional monomer (2) in the entire liquid crystal composition is preferably 0.1 wt% or more and 1 wt% or less. If it is less than 0.1 wt%, the polymer layer 50 of the PSA polymer may not be formed on the entire photo-alignment film 40. If it is greater than 1 wt%, there is a risk that burn-in and stains are likely to occur due to the remaining unreacted monomer.
  • the concentration of the bifunctional monomer (2) in the entire liquid crystal composition is more preferably 0.2 wt% or more and 0.5 wt% or less.
  • the liquid crystal composition is filled between the substrates 10 and 20 by the vacuum injection method or the drop injection method, and the liquid crystal layer 30 is formed.
  • the liquid crystal layer 30 preferably contains a liquid crystal material having a negative dielectric anisotropy.
  • the sealing agent is applied, the substrates 10 and 20 are bonded together, the sealing agent is cured, the liquid crystal composition is injected, and the injection port is sealed in this order.
  • the dropping injection method is employed, the sealing agent is applied, the liquid crystal composition is dropped, the substrates 10 and 20 are bonded together, and the sealing agent is cured in this order. As a result, a liquid crystal cell filled with the liquid crystal composition is produced.
  • the liquid crystal layer 30 is heated to decompose the polymerization initiator (1) to generate radicals.
  • radical polymerization (thermal polymerization) of the bifunctional monomer (2) starts in the liquid crystal layer 30 and a PSA polymer is generated.
  • the PSA polymer is phase-separated from the liquid crystal layer 30, and a polymer layer 50 containing a PSA polymer is formed between the liquid crystal layer 30 and each photo-alignment film 40.
  • Conditions such as heating temperature, heating time, and heating means are not particularly limited, but thermal polymerization is lower than the nematic-isotropic transition point of the liquid crystal material in the liquid crystal layer 30, and radical generation of the polymerization initiator (1). It is preferable to be performed at a temperature equal to or higher than the temperature. By making the heating temperature lower than the nematic-isotropic transition point, the effect of stabilizing the liquid crystal alignment can be obtained. On the other hand, the polymerization reaction can be effectively started by setting the heating temperature to be equal to or higher than the radical generation temperature of the polymerization initiator (1).
  • the nematic-isotropic transition point of a liquid crystal material is measured by differential scanning calorimetry (DSC) or a method of directly observing a phase transition due to temperature change by filling a capillary with a liquid crystal material.
  • the radical generation temperature of the polymerization initiator (1) is measured by differential scanning calorimetry, or by temperature-dependent measurement using electron spin resonance (RSR).
  • the liquid crystal layer 30 is usually realigned. Specifically, the liquid crystal layer 40 is heated at a temperature higher than the nematic-isotropic transition point of the liquid crystal material in the liquid crystal layer 30 and then cooled to room temperature. Thereby, the flow alignment of the liquid crystal molecules is removed, the liquid crystal molecules are regularly arranged according to the molecular structure of the photo-alignment film 40, and the liquid crystal layer 30 exhibits a desired alignment state.
  • the liquid crystal display device of this embodiment is completed through an attaching step of a polarizing plate and attaching a control unit, a power supply unit, a backlight, and the like.
  • a TN mode, an ECB mode, an IPS mode, an FFS mode, a VA mode, or a VATN mode is preferable as the orientation mode (display mode) of the manufactured liquid crystal display device.
  • the polymer (photoreactive group-containing polymer) contained in the photo-alignment film 40 and the polymer (PSA polymer) contained in the polymer layer 50 are mutually irradiated by light irradiation and / or heat. Bonding is preferred. Thereby, the elution to the liquid crystal layer 30 of a PSA polymer can be reduced, and the long-term reliability of the manufactured liquid crystal display device can be improved further.
  • the photoreactive functional group of the photoreactive group-containing polymer is a functional group that absorbs light in a wavelength region of 360 nm or more. Specifically, it is preferably an azobenzene group, a chalcone group or a cinnamate group, and the irradiated light is preferably visible light.
  • the bond formation by light irradiation can be performed at any time as long as it is after the polymer layer forming process, and may be performed, for example, in an aging process performed in a lighting state of a backlight.
  • the bond between the photoreactive group-containing polymer and the PSA polymer may be formed during use of the liquid crystal display device.
  • the formation of the bond by heat can be performed at any time as long as it is during the polymer layer forming step or after the polymer layer forming step.
  • the PSA polymer may be combined with the photo-alignment film polymer simultaneously with the formation of the polymer layer 50.
  • the PSA polymer may be combined with the photoalignment film polymer.
  • the conditions for forming the bond such as heating temperature, heating time, and heating means, are not particularly limited, but the heating temperature is preferably equal to or higher than the radical generation temperature of the polymerization initiator (1).
  • the solid powder of the following chemical formula (b) is dissolved in 300 mL of dry THF (tetrahydrofuran), and contains 4.5 g (31 mmol) of hydroxypropyl methacrylate and 4 g (51 mmol) of pyridine represented by the following chemical formula (c).
  • 100 mL of a dry THF solution was added and stirred at 0 ° C. for 5 hours. Thereafter, THF was removed, and the crude crystals were dissolved in diethyl ether. The solution was washed with aqueous sodium bicarbonate followed by anhydrous sodium sulfate. After removing the solvent, recrystallization with a mixed solvent of diethyl ether / methanol (1: 1) gave 2.1 g (3.95 mmol: yield 12.7%) of the target compound represented by the following chemical formula (d).
  • An FFS mode liquid crystal cell was actually fabricated by the following method. First, an ITO substrate having an FFS electrode structure made of indium tin oxide (ITO) and a counter substrate having no electrode were prepared. Further, a polyamic acid having an azobenzene group in the main chain (initial chemical imidization rate: 0%) and a polyamic acid having no azobenzene group (initial chemical imidization rate: shown in the following chemical formula (A-1) 0%) was prepared.
  • X4 is a structure represented by the following (X4-1)
  • Y4 is a unit having an azobenzene group represented by the following (Y4-1), or
  • the unit represented by the following (Y4-2), the unit having the azobenzene group represented by the following (Y4-1) and the unit represented by the following (Y4-2) are in a ratio of 1: 1.
  • a polyamic acid having no azobenzene group is also represented by the following chemical formula (A-1), but as Y4, only a unit represented by the following (Y4-2) is introduced, and the following (Y4-1): The unit having the azobenzene group represented is not introduced.
  • the obtained liquid crystal aligning agent was apply
  • the photo-alignment film having a two-layer structure is formed of a lower layer made of a polyamic acid having no photoreactive functional group and an upper layer made of a polyamic acid having a photoreactive functional group (azobenzene group). It will be in contact with the liquid crystal layer.
  • an ultraviolet curable sealant manufactured by Sekisui Chemical Co., Ltd., trade name: Photorec S-WB
  • a negative liquid crystal composition was dropped at a predetermined position on the other substrate.
  • a polymerization initiator with a polymerization group represented by the following chemical formula (A-2) and 0.25 wt% of a bifunctional monomer represented by the following chemical formula (A-3) has been introduced.
  • both substrates were bonded together under vacuum, and the sealing agent was irradiated with ultraviolet light and cured in a state where the display area was shielded from light, thereby forming a liquid crystal cell.
  • the liquid crystal cell was heated to form a polymer layer by thermal polymerization.
  • the liquid crystal cell is further heated at 130 ° C. (temperature higher than the nematic-isotropic transition point of the liquid crystal material) for 40 minutes to perform a realignment treatment to make the liquid crystal an isotropic phase. Then, it was cooled to room temperature to obtain an FFS mode liquid crystal cell.
  • the nematic-isotropic transition point of the liquid crystal material of this example is 75 ° C., and the minimum temperature at which the polymerization initiator with a polymerization group represented by the chemical formula (A-2) generates radicals (the above-mentioned radical generation temperature). Is equivalent to about 55 ° C.
  • the negative liquid crystal composition used in this comparative example is a nitroxy radical scavenger 0 in place of the polymerization initiator with a polymerization group represented by the chemical formula (A-2) and the bifunctional monomer represented by the chemical formula (A-3). The same as Example 1 except that .001 wt% is introduced.
  • Comparative Example 6 The FFS mode liquid crystal cell of Comparative Example 6 was prepared in the same manner as Comparative Example 5 except that a negative liquid crystal composition different from Comparative Example 5 was used and the polymer layer formation step by thermal polymerization was not performed. Produced.
  • the negative type liquid crystal composition used in this comparative example shows that both the polymerization initiator with a polymerization group represented by the chemical formula (A-2) and the bifunctional monomer represented by the chemical formula (A-3) are not introduced. Except for this, it is the same as that of Comparative Example 5.
  • Example 1 As shown in Table 1 above, from the results of Example 1, by forming a polymer layer by thermal polymerization using a polymerization initiator with a polymerization group represented by the chemical formula (A-2), compared with Comparative Example 1 The VHR and contrast were kept high after leaving for 5000 hours. From this, it is considered that the radical formed by the photo-alignment film having an azobenzene group can be effectively suppressed by the polymer layer formation, and as a result, the reduction in VHR and contrast can be suppressed.
  • VHR is low from the beginning, and the effect is confirmed by leaving for 5000 hours compared to the case without the polymer layer, but compared with Example 1. A large decrease in VHR was confirmed. Unreacted polymerization initiator remains in the liquid crystal layer, the initial VHR is low, and further, the unreacted polymerization initiator remaining in the liquid crystal layer is radicalized during standing, further reducing VHR. It is thought that caused.
  • VHR was as low as 80% and contrast was as low as 800 in the initial stage (before standing). It is thought that the generation of radicals from the photofunctional group of the photo-alignment film and the ionization thereof were caused by the irradiation with ultraviolet light for forming the polymer layer. The VHR and contrast were further reduced by the 5000 hour standing test.
  • Example 2 Instead of the polyamic acid used in Example 1, a polyamic acid having an azobenzene group in the main chain represented by the above chemical formula (A-1), provided that Y4 represents an azobenzene group represented by the above (Y4-1) Example 1 was carried out in the same manner as in Example 1 except that only the unit having the above was introduced and the unit represented by (Y4-2) above was not introduced (initial chemical imidization rate: 0%). The FFS mode liquid crystal cell of Example 2 was produced.
  • Table 2 shows the results of an evaluation test similar to that of Example 1 and the like for the FFS mode liquid crystal cell fabricated in Example 2.
  • Example 2 the amount of azobenzene groups, which are photoreactive functional groups of the polyamic acid photoalignment film, was doubled compared to Example 1. In addition, VHR and contrast are higher after being left as compared with Example 1. From this result, compared with Example 1, the bond by reaction of the radical which an azobenzene group produces
  • An IPS mode liquid crystal cell was actually fabricated by the following method. First, a substrate having a comb-shaped electrode made of indium tin oxide (ITO) and a counter substrate having no electrode were prepared. In addition, a liquid crystal aligning agent containing a polyvinyl polymer having a chalcone group and a carboxyl group represented by the following chemical formula (B-1) and polyimide was prepared.
  • the obtained liquid crystal aligning agent is applied onto a substrate having a comb-shaped electrode and a counter substrate, respectively, and subjected to provisional baking at 90 ° C. for 5 minutes, followed by main baking at 200 ° C. for 40 minutes.
  • a photo-alignment film was obtained.
  • the surface on which the photo-alignment film was applied was subjected to alignment treatment by irradiating 2 J / cm 2 with linearly polarized ultraviolet light having a center wavelength of 365 nm.
  • the photo-alignment film having a two-layer structure is formed of a lower layer made of polyimide and an upper layer made of a polyvinyl polymer having a photoreactive functional group (chalcone group), and the upper layer is in contact with the liquid crystal layer.
  • an ultraviolet curable sealant manufactured by Sekisui Chemical Co., Ltd., trade name: Photorec S-WB
  • a negative liquid crystal composition was dropped at a predetermined position on the other substrate.
  • a polymerization initiator with a polymerization group represented by the following chemical formula (B-2) 0.005 wt%, and a bifunctional monomer 0.25 wt% represented by the following chemical formula (B-3) has been introduced.
  • both substrates were bonded together under vacuum, and the sealing agent was irradiated with ultraviolet light and cured in a state where the display area was shielded from light, thereby forming a liquid crystal cell.
  • the liquid crystal cell was heated to form a polymer layer by thermal polymerization.
  • the liquid crystal cell is further heated at 130 ° C. (temperature higher than the nematic-isotropic transition point of the liquid crystal material) for 40 minutes to perform a realignment treatment to make the liquid crystal an isotropic phase. Then, it was cooled to room temperature to obtain an IPS mode liquid crystal cell.
  • the nematic-isotropic transition point of the liquid crystal material of this example is 75 ° C., and the minimum temperature at which the polymerization initiator with a polymerization group represented by the chemical formula (B-2) generates radicals (the above-mentioned radical generation temperature). Is equivalent to about 55 ° C.
  • Table 3 shows the results of the same evaluation test as in Example 1 for the FFS mode liquid crystal cells fabricated in Example 3 and Comparative Example 7.
  • a VATN mode liquid crystal cell was actually fabricated by the following method.
  • two ITO substrates each having an electrode made of indium tin oxide (ITO) were prepared.
  • a liquid crystal aligning agent containing polysiloxane having a cinnamate group and an epoxy group represented by the following chemical formula (C-1) and polyimide was prepared.
  • ⁇ 1 is a structure represented by the following (C-2).
  • the obtained liquid crystal aligning agent was applied on two ITO substrates, respectively, preliminarily baked at 90 ° C. for 5 minutes, and subsequently baked at 230 ° C. for 40 minutes to obtain a photo-alignment film having a two-layer structure. . Subsequently, alignment treatment was performed by irradiating the surface coated with the photo-alignment film with 20 mJ / cm 2 of linearly polarized ultraviolet light having a wavelength range of 320 to 380 nm.
  • the photo-alignment film having a two-layer structure is formed of a lower layer made of polyimide and an upper layer made of polysiloxane having a photoreactive functional group (cinnamate group), and the upper layer is in contact with the liquid crystal layer.
  • an ultraviolet curable sealant manufactured by Sekisui Chemical Co., Ltd., trade name: Photorec S-WB
  • a negative liquid crystal composition was dropped at a predetermined position on the other substrate.
  • 0.3 wt% of a bifunctional monomer represented by the following chemical formula (C-4) has been introduced.
  • both substrates were bonded together under vacuum, and the sealing agent was irradiated with ultraviolet light and cured in a state where the display area was shielded from light, thereby forming a liquid crystal cell.
  • the liquid crystal cell was heated to form a polymer layer by thermal polymerization.
  • the liquid crystal cell is further heated at 130 ° C. (temperature higher than the nematic-isotropic transition point of the liquid crystal material) for 40 minutes to perform a realignment treatment to make the liquid crystal an isotropic phase. After that, it was cooled to room temperature to obtain a VATN mode liquid crystal cell.
  • the nematic-isotropic transition point of the liquid crystal material of this example is 75 ° C., and the minimum temperature at which the polymerization initiator with a polymerization group represented by the chemical formula (C-3) generates radicals (the above-mentioned radical generation temperature). Is equivalent to about 55 ° C.
  • Example 8 A VATN mode liquid crystal cell of Comparative Example 8 was prepared in the same manner as in Example 4 except that a negative liquid crystal composition different from that in Example 4 was used and the polymer layer formation step by thermal polymerization was not performed. Produced.
  • the negative type liquid crystal composition used in this comparative example shows that both the polymerization initiator with a polymerization group represented by the chemical formula (C-3) and the bifunctional monomer represented by the chemical formula (C-4) are not introduced. Except for this, it is the same as in Example 4.
  • Table 4 shows the results of evaluation tests similar to those of Example 1 and the like for the VATN mode liquid crystal cells fabricated in Example 4 and Comparative Example 8.
  • Example 4 As shown in Table 4 above, from the results of Example 4, by forming a polymer layer by thermal polymerization using a polymerization initiator with a polymerization group represented by the chemical formula (C-3), compared with Comparative Example 8, High VHR and contrast were maintained after leaving for 5000 hours. As a result, even in the case of vertical alignment, the formation of the polymer layer can effectively suppress the radical formed in the photo-alignment film having a cinnamate group from transferring to the negative liquid crystal material, resulting in a decrease in VHR and contrast. It is thought that we were able to suppress.
  • One embodiment of the present invention includes a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, a photo-alignment film disposed between at least one of the pair of substrates and the liquid crystal layer, and the liquid crystal
  • a liquid crystal display device comprising a layer and a polymer layer provided between the photo-alignment film
  • the photo-alignment film includes a polymer having a photoreactive functional group
  • the polymer layer may be a liquid crystal display device including a polymer having a structure derived from a polymerization initiator represented by the following chemical formula (1) and a structure derived from a monomer represented by the following chemical formula (2).
  • P 1 represents an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, or a vinyloxy group.
  • Z 1 and Z 2 may be the same or different and represent —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —NHCO— group, —CONH— Group, —CH 2 — group, —CH (CH 3 ) — group, —C (CH 3 ) 2 — group, —CF 2 — group, —C (OH) CO (CO) — group, —C (OH) C (HN) — represents a direct bond.
  • R 1 and R 2 are the same or different and are —H group, —CH 3 group, —C 2 H 5 group, —C 3 H 7 group, —X group (X is halogen), —CN group, —NH 2 groups, —NH (CH 3 ) group, —N (CH 3 ) 2 group, —OH group, —OCH 3 group, —OC 2 H 5 group, or —OC 3 H 7 group are represented.
  • a 1 represents a 1,4-phenylene group, a naphthalene-2,6-diyl group, a 1,4-cyclohexylene group, or a saturated or unsaturated alkylene group having 1 to 18 carbon atoms.
  • the —CH 2 — group of A 1 may be substituted with an —O— group or an —S— group as long as they are not adjacent to each other. At least one hydrogen atom of A 1 is substituted with a fluorine atom, a chlorine atom, a —CN group, or an alkyl group having 1 to 6 carbon atoms, an alkoxy group, an alkylcarbonyl group, an alkoxycarbonyl group, or an alkylcarbonyloxy group. May be.
  • n is 0, 1 or 2. When n is 2, two A 1 on the same side with respect to the azo group may be the same or different from each other, and two Z 1 on the same side with respect to the azo group are These may be the same or different from each other. )
  • P 2 and P 3 are the same or different, acryloyloxy group, methacryloyloxy group, acryloyloxy group, methacryloyloxy group, a vinyl group, or a vinyloxy group.
  • a 2 and A 3 are the same or different and each represents 1,4-phenylene group, 4,4′-biphenyl group, naphthalene-2,6-diyl group, anthracene 2,6-diyl group, or phenanthrene-2, Represents a 7-diyl group.
  • Z 2 represents —COO— group, —OCO— group, —O— group, —CO— group, —NHCO— group, —CONH— group or —S— group, or A 2 and A 3 or A 3 It represents that A 3 is directly bonded.
  • m is 0, 1 or 2.
  • S 1 and S 2 are the same or different and are (CH 2 ) j (1 ⁇ j ⁇ 18), (CH 2 —CH 2 —O) k (1 ⁇ k ⁇ 6), or P 2 and A 2.
  • a 2 and P 3 or A 3 and P 3 are directly bonded. At least one of the hydrogen atoms of A 2 and A 3 may be substituted with a halogen group, a methyl group, or an ethyl group.
  • the liquid crystal display device includes a photo-alignment film including a polymer having a photoreactive functional group, and the structure derived from the polymerization initiator represented by the chemical formula (1) and the chemical formula (2). Since a polymer layer containing a polymer having a monomer-derived structure is provided between the liquid crystal layer and the photo-alignment film, the transfer of radicals to liquid crystal molecules and the generation of radicals themselves can be suppressed. As a result, a good voltage holding ratio can be maintained over a long period of time in a high-temperature environment, and furthermore, the occurrence of image sticking and stains and a decrease in contrast can be suppressed.
  • the photoreactive functional group may be an azobenzene group, a chalcone group, or a cinnamate group. According to this aspect, the effect of suppressing radical elution into the liquid crystal layer can be obtained more effectively.
  • the polymer contained in the photo-alignment film may be polyamic acid, polyimide, polysiloxane, polyvinyl, or polymaleimide.
  • the polymer contained in the photo-alignment film may be bonded to the polymer contained in the polymer layer. According to this aspect, elution of the polymer contained in the photo-alignment film into the liquid crystal layer can be reduced, and the long-term reliability of the liquid crystal display device can be further improved.
  • the photo-alignment film may align liquid crystal molecules in the liquid crystal layer substantially horizontally. According to this aspect, the effect of suppressing radical elution into the liquid crystal layer can be effectively obtained. In this embodiment, many radicals are likely to be generated, but the polymer layer can also effectively suppress the elution of these many radicals.
  • the photo-alignment film may align liquid crystal molecules in the liquid crystal layer substantially vertically. According to this aspect, the effect of suppressing radical elution into the liquid crystal layer can be effectively obtained.
  • the liquid crystal layer may contain a liquid crystal material having a negative dielectric anisotropy. According to this aspect, it is possible to more effectively suppress the occurrence of image sticking and spots.
  • the alignment modes of the liquid crystal display are twisted nematic (TN) mode, electric field controlled birefringence (ECB) mode, in-plane switching (IPS) mode, fringe field switching (FFS) mode, and vertical alignment (VA). It may be a mode or a twisted nematic vertical alignment (VATN) mode.
  • a step of preparing a pair of substrates Forming a photo-alignment film containing a polymer having a photoreactive functional group on at least one of the pair of substrates; Forming a liquid crystal layer between the pair of substrates on which at least one of the photo-alignment films is formed; And a step of thermally polymerizing a monomer represented by the following chemical formula (2) using a polymerization initiator represented by the following chemical formula (1) to form a polymer layer between the photo-alignment film and the liquid crystal layer. It may be a method for manufacturing an apparatus.
  • P 1 represents an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, or a vinyloxy group.
  • Z 1 and Z 2 may be the same or different and represent —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —NHCO— group, —CONH— Group, —CH 2 — group, —CH (CH 3 ) — group, —C (CH 3 ) 2 — group, —CF 2 — group, —C (OH) CO (CO) — group, —C (OH) C (HN) — represents a direct bond.
  • R 1 and R 2 are the same or different and are —H group, —CH 3 group, —C 2 H 5 group, —C 3 H 7 group, —X group (X is halogen), —CN group, —NH 2 groups, —NH (CH 3 ) group, —N (CH 3 ) 2 group, —OH group, —OCH 3 group, —OC 2 H 5 group, or —OC 3 H 7 group are represented.
  • a 1 represents a 1,4-phenylene group, a naphthalene-2,6-diyl group, a 1,4-cyclohexylene group, or a saturated or unsaturated alkylene group having 1 to 18 carbon atoms.
  • the —CH 2 — group of A 1 may be substituted with an —O— group or an —S— group as long as they are not adjacent to each other. At least one hydrogen atom of A 1 is substituted with a fluorine atom, a chlorine atom, a —CN group, or an alkyl group having 1 to 6 carbon atoms, an alkoxy group, an alkylcarbonyl group, an alkoxycarbonyl group, or an alkylcarbonyloxy group. May be.
  • n is 0, 1 or 2. When n is 2, two A 1 on the same side with respect to the azo group may be the same or different from each other, and two Z 1 on the same side with respect to the azo group are These may be the same or different from each other. )
  • P 2 and P 3 are the same or different and each represents an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, or a vinyloxy group.
  • a 2 and A 3 are the same or different and each represents 1,4-phenylene group, 4,4′-biphenyl group, naphthalene-2,6-diyl group, anthracene 2,6-diyl group, or phenanthrene-2, Represents a 7-diyl group.
  • Z 2 represents —COO— group, —OCO— group, —O— group, —CO— group, —NHCO— group, —CONH— group or —S— group, or A 2 and A 3 or A 3 It represents that A 3 is directly bonded.
  • m is 0, 1 or 2.
  • S 1 and S 2 are the same or different and are (CH 2 ) j (1 ⁇ j ⁇ 18), (CH 2 —CH 2 —O) k (1 ⁇ k ⁇ 6), or P 2 and A 2.
  • a 2 and P 3 or A 3 and P 3 are directly bonded. At least one of the hydrogen atoms of A 2 and A 3 may be substituted with a halogen group, a methyl group, or an ethyl group.
  • the method for producing a liquid crystal display device of the above aspect includes a step of forming a photo-alignment film containing a polymer having a photoreactive functional group, and the chemical formula (2) is obtained using a polymerization initiator represented by the chemical formula (1). ) Is thermally polymerized to form a polymer layer between the photo-alignment film and the liquid crystal layer, so that the transfer of radicals to liquid crystal molecules and the generation of radicals themselves can be suppressed. As a result, it is possible to manufacture a liquid crystal display device that can maintain a good voltage holding ratio over a long period of time in a high-temperature environment, and can suppress the occurrence of image sticking and stains and a decrease in contrast.
  • the thermal polymerization may be performed at a temperature lower than the nematic-isotropic transition point of the liquid crystal material in the liquid crystal layer and higher than the radical generation temperature of the polymerization initiator.
  • the photo-alignment film may be irradiated with polarized ultraviolet light.
  • the orientation of the liquid crystal alignment and the pretilt angle can be controlled easily and with high accuracy.
  • the photoreactive functional group may be an azobenzene group, a chalcone group, or a cinnamate group. According to this aspect, the effect of suppressing radical elution into the liquid crystal layer can be obtained more effectively.
  • the polymer contained in the photo-alignment film may be polyamic acid, polyimide, polysiloxane, polyvinyl, or polymaleimide.
  • the polymer contained in the photo-alignment film and the polymer contained in the polymer layer may be bonded to each other by light irradiation and / or heat. According to this aspect, elution of the polymer contained in the photo-alignment film into the liquid crystal layer can be reduced, and the long-term reliability of the liquid crystal display device can be further improved.
  • the photo-alignment film may align liquid crystal molecules in the liquid crystal layer substantially horizontally by polarized light irradiation.
  • the photo-alignment film may align liquid crystal molecules in the liquid crystal layer substantially vertically by irradiation with polarized light.
  • the liquid crystal layer may contain a liquid crystal material having a negative dielectric anisotropy. According to this aspect, it is possible to more effectively suppress the occurrence of image sticking and spots.
  • the alignment modes of the liquid crystal display are twisted nematic (TN) mode, electric field controlled birefringence (ECB) mode, in-plane switching (IPS) mode, fringe field switching (FFS) mode, and vertical alignment (VA). It may be a mode or a twisted nematic vertical alignment (VATN) mode.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、光配向膜を用いながら、高温環境下で長期にわたって、良好な電圧保持率を維持でき、更に、焼き付き及びシミの発生とコントラストの低下とを抑制できる液晶表示装置、及び、そのような液晶表示装置を製造可能な液晶表示装置の製造方法を提供する。本発明は、一対の基板と、前記一対の基板間に挟持された液晶層と、前記一対の基板の少なくとも一方と前記液晶層との間に配置された光配向膜と、前記液晶層及び前記光配向膜の間に設けられたポリマー層とを備える液晶表示装置であって、前記光配向膜は、光反応性官能基を有するポリマーを含み、前記ポリマー層は、特定の重合開始剤由来の構造、及び、特定のモノマー由来の構造を有するポリマーを含む液晶表示装置である。

Description

液晶表示装置、及び、液晶表示装置の製造方法
本発明は、液晶表示装置、及び、液晶表示装置の製造方法に関する。より詳しくは、光配向膜によって液晶分子の配向が制御される液晶表示装置、及び、液晶表示装置の製造方法に関するものである。
液晶表示装置は、表示のために液晶組成物を利用する表示装置であり、その代表的な表示方式は、一対の基板間に液晶組成物を封入した液晶パネルに対してバックライトから光を照射し、液晶組成物に電圧を印加して液晶分子の配向を変化させることにより、液晶パネルを透過する光の量を制御するものである。このような液晶表示装置は、薄型、軽量及び低消費電力といった特長を有することから、スマートフォン、タブレットPC、カーナビゲーション等の電子機器に利用されている。近年、スマートフォン等の用途では、画素の高精細化が進展しており、これに伴い、液晶パネル内に設ける配線、ブラックマトリクスの数や面積が増加する傾向にあった。
液晶表示装置において、電圧が印加されていない状態における液晶分子の配向は、配向処理が施された配向膜によって制御されるのが一般的である。配向処理の方法としては、配向膜表面をローラー等で擦るラビング法が従来広く用いられてきた。しかしながら、液晶パネル内に設ける配線、ブラックマトリクスの数や面積が増加しているため、液晶パネル内の基板表面には段差が生じやすくなってきている。基板表面に段差があると、ラビング法によって段差近傍を適切に擦ることができない場合がある。配向処理が不均一であると、液晶表示装置においてコントラスト比の低下が引き起こされてしまう。
これに対して、近年では、ラビング法に代わる配向処理の方法として、配向膜表面に光を照射する光配向法に関する研究開発が進められている。光配向法によれば、配向膜の表面に接触することなく配向処理を実施できるので、基板表面に段差があったとしても配向処理にムラが発生しにくく、基板全面にわたって良好な液晶配向を実現できるという利点がある。
しかしながら、従来の液晶表示装置では、焼き付き、シミ等の表示不良が発生することがあり、その改善が求められていた例えば、特許文献1においては、液晶層の電圧保持率(VHR)の低下、イオン密度(ID)の増加を防止し、白抜け、配向むら、焼き付け等の表示不良の問題を解決するため、特定の液晶組成物と特定の硬化性樹脂組成物の硬化物を使用したシール材を用いることが開示されている。
国際公開第2015/071976号
以上のように、従来の液晶表示装置では、焼き付き、シミ等の表示不良が生じることがある。なかでも光反応性官能基を有する光配向膜を用いた液晶表示装置(以下、光配向液晶ディスプレイとも言う。)では、表示画面に焼き付き及びシミが発生しやすく、特にアゾベンゼン基、カルコン基、シンナメート基等の360nm以上の波長域で光を吸収する官能基が光反応性官能基として導入された場合に焼き付き及びシミが発生しやすかった。
本発明者による種々の検討の結果、光配向液晶ディスプレイにおいて焼き付き及びシミは、以下のフローによって発生すると考えた。
図1は、比較形態1に係る液晶表示装置の断面模式図である。図1に示すように、比較形態1に係る液晶表示装置は、一対の基板10及び20と、一対の基板10、20間に挟持された液晶層30と、各基板10、20と液晶層30との間に配置された光配向膜40と、一対の基板10、20を貼り合わせるシール材60と、各基板10、20に貼り付けられた偏光板70と、バックライト(図示せず)とを備えた光配向液晶ディスプレイであり、光配向膜40は、光反応性官能基を有するポリマーを含んでいる。そして、光配向膜40に光(例えば、可視光及び紫外光を含むバックライト光)が照射されると、光反応性官能基(特にアゾベンゼン基、カルコン基、シンナメート基等の360nm以上の波長域で光を吸収する光反応性官能基)の分解が起こり、ラジカルが発生する。例えば、アゾベンゼン基は、下記のように、光吸収によってラジカルを発生する。
Figure JPOXMLDOC01-appb-C000005
発生したラジカルの一部は液晶層30中の液晶分子に容易に転移する。そして、転移したラジカルが最終的にイオン化することで電圧保持率(以下、VHRとも言う。)が低下し、焼き付き及び/又はシミが発生する。一般的に、配向膜の構成材料である高分子化合物中でラジカルが発生した場合、その一部は、液晶層中のネガ型液晶分子、及び/又は、アルケン構造を有するニュートラル液晶分子(極性を有さない液晶分子)に転移し、VHRの低下を引き起こす。ここでポイントは、光配向膜の光反応性官能基から発生したラジカルが液晶材料(特にネガ型液晶材料)に転移し、最終的にラジカルがイオン化し、VHRの低下が起こることである。
また、光配向液晶ディスプレイを高温環境下で放置した場合には、光配向膜中のラジカルが液晶層に溶出しやすくなるため、VHRの低下に起因する焼き付き及びシミが発生しやすくなる。
更に、光配向液晶ディスプレイを高温環境下で長期間放置するとコントラストが低下することがあるが、この原因についても、光配向膜から発生したラジカルが液晶分子に転移し、最終的にイオン化することによると考えられる。
なお、特許文献1に記載の技術は、シール材成分に起因する表示不良を改善するためのものであり、一般的な配向膜を想定しており、上述のような光反応性官能基を有する光配向膜に起因する焼き付き及びシミを抑制するという点で改善の余地があった。
本発明は、上記現状に鑑みてなされたものであり、光配向膜を用いながら、高温環境下で長期にわたって、良好な電圧保持率を維持でき、更に、焼き付き及びシミの発生とコントラストの低下とを抑制できる液晶表示装置、及び、そのような液晶表示装置を製造可能な液晶表示装置の製造方法を提供することを目的とするものである。
本発明者らは、光配向液晶ディスプレイにおいて、光配向膜の光反応性官能基から発生したラジカルが液晶層に溶出し、最終的にイオン化し、VHRの低下が起こることに着目した。そこで、本発明者らは、鋭意検討した結果、特定の重合開始剤を用いて特定のモノマーを熱重合させ、該モノマーのポリマーを含むポリマー層を液晶層と光配向膜との間に設けることによって、上記課題をみごとに解決することができることに想到し、本発明に到達することができた。
すなわち、本発明の一態様は、一対の基板と、前記一対の基板間に挟持された液晶層と、前記一対の基板の少なくとも一方と前記液晶層との間に配置された光配向膜と、前記液晶層及び前記光配向膜の間に設けられたポリマー層とを備える液晶表示装置であって、
前記光配向膜は、光反応性官能基を有するポリマーを含み、
前記ポリマー層は、下記化学式(1)で示される重合開始剤由来の構造、及び、下記化学式(2)で示されるモノマー由来の構造を有するポリマーを含む液晶表示装置であってもよい。
Figure JPOXMLDOC01-appb-C000006
(式中、Pは、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
及びZは、同一又は異なって、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-NHCO-基、-CONH-基、-CH-基、-CH(CH)-基、-C(CH-基、-CF-基、-C(OH)CO(CO)-基、-C(OH)C(HN)-基、又は、直接結合を表す。
及びRは、同一又は異なって、-H基、-CH基、-C基、-C基、-X基(Xはハロゲン)、-CN基、-NH基、-NH(CH)基、-N(CH基、-OH基、-OCH基、-OC基、又は、-OC基を表す。
は、1,4-フェニレン基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、又は、炭素数1~18の飽和若しくは不飽和アルキレン基を表す。
が有する-CH-基は、互いに隣接しない限り、-O-基、又は、-S-基で置換されていてもよい。
が有する水素原子の少なくとも一つは、フッ素原子、塩素原子、-CN基、又は、炭素数1~6のアルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基若しくはアルキルカルボニルオキシ基で置換されていてもよい。
nは、0、1又は2である。
nが2の場合、アゾ基に対して同じ側にある2つのAは、同一であってもよいし、互いに異なっていてもよく、アゾ基に対して同じ側にある2つのZは、同一であってもよいし、互いに異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000007
(式中、P及びPは、同一又は異なって、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
及びAは、同一又は異なって、1,4-フェニレン基、4,4´-ビフェニル基、ナフタレン-2,6-ジイル基、アントラセン2,6-ジイル基、又は、フェナントレン-2,7-ジイル基を表す。
は、-COO-基、-OCO-基、-O-基、-CO-基、-NHCO-基、-CONH-基若しくは-S-基、又は、AとA若しくはAとAとが直接結合していることを表す。
mは、0、1又は2である。
及びSは、同一又は異なって、(CH(1≦j≦18)、(CH-CH-O)(1≦k≦6)、又は、PとA、AとP若しくはAとPとが直接結合していることを表す。
及びAが有する水素原子の少なくとも一つは、ハロゲン基、メチル基、又は、エチル基に置換されていてもよい。)
前記光反応性官能基は、アゾベンゼン基、カルコン基、又は、シンナメート基であってもよい。
前記光配向膜に含まれる前記ポリマーは、ポリアミック酸、ポリイミド、ポリシロキサン、ポリビニル、又は、ポリマレイミドであってもよい。
前記光配向膜に含まれる前記ポリマーは、前記ポリマー層に含まれる前記ポリマーと結合されていてもよい。
前記光配向膜は、前記液晶層中の液晶分子を略水平に配向させてもよい。
前記光配向膜は、前記液晶層中の液晶分子を略垂直に配向させてもよい。
前記液晶層は、誘電率異方性が負の液晶材料を含有してもよい。
前記液晶表示装置の配向モードは、ねじれネマティック(TN)モード、電界制御複屈折(ECB)モード、イン・プレーン・スイッチング(IPS)モード、フリンジ・フィールド・スイッチング(FFS)モード、垂直配向(VA)モード、又は、ねじれネマティック垂直配向(VATN)モードであってもよい。
本発明の他の態様は、一対の基板を準備する工程と、
前記一対の基板の少なくとも一方に、光反応性官能基を有するポリマーを含む光配向膜を形成する工程と、
少なくとも一方に前記光配向膜が形成された前記一対の基板の間に液晶層を形成する工程と、
下記化学式(1)で示される重合開始剤を用いて下記化学式(2)で示されるモノマーを熱重合し、前記光配向膜及び前記液晶層の間にポリマー層を形成する工程とを含む液晶表示装置の製造方法であってもよい。
Figure JPOXMLDOC01-appb-C000008
(式中、Pは、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
及びZは、同一又は異なって、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-NHCO-基、-CONH-基、-CH-基、-CH(CH)-基、-C(CH-基、-CF-基、-C(OH)CO(CO)-基、-C(OH)C(HN)-基、又は、直接結合を表す。
及びRは、同一又は異なって、-H基、-CH基、-C基、-C基、-X基(Xはハロゲン)、-CN基、-NH基、-NH(CH)基、-N(CH基、-OH基、-OCH基、-OC基、又は、-OC基を表す。
は、1,4-フェニレン基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、又は、炭素数1~18の飽和若しくは不飽和アルキレン基を表す。
が有する-CH-基は、互いに隣接しない限り、-O-基、又は、-S-基で置換されていてもよい。
が有する水素原子の少なくとも一つは、フッ素原子、塩素原子、-CN基、又は、炭素数1~6のアルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基若しくはアルキルカルボニルオキシ基で置換されていてもよい。
nは、0、1又は2である。
nが2の場合、アゾ基に対して同じ側にある2つのAは、同一であってもよいし、互いに異なっていてもよく、アゾ基に対して同じ側にある2つのZは、同一であってもよいし、互いに異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000009
(式中、P及びPは、同一又は異なって、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
及びAは、同一又は異なって、1,4-フェニレン基、4,4´-ビフェニル基、ナフタレン-2,6-ジイル基、アントラセン2,6-ジイル基、又は、フェナントレン-2,7-ジイル基を表す。
は、-COO-基、-OCO-基、-O-基、-CO-基、-NHCO-基、-CONH-基若しくは-S-基、又は、AとA若しくはAとAとが直接結合していることを表す。
mは、0、1又は2である。
及びSは、同一又は異なって、(CH(1≦j≦18)、(CH-CH-O)(1≦k≦6)、又は、PとA、AとP若しくはAとPとが直接結合していることを表す。
及びAが有する水素原子の少なくとも一つは、ハロゲン基、メチル基、又は、エチル基に置換されていてもよい。)
前記熱重合は、前記液晶層中の液晶材料のネマティック-アイソトロピック転移点より低く、かつ、前記重合開始剤のラジカル発生温度以上の温度で行われてもよい。
前記光配向膜を形成する工程において、前記光配向膜に偏光紫外光を照射してもよい。
前記光反応性官能基は、アゾベンゼン基、カルコン基、又は、シンナメート基であってもよい。
前記光配向膜に含まれる前記ポリマーは、ポリアミック酸、ポリイミド、ポリシロキサン、ポリビニル、又は、ポリマレイミドであってもよい。
前記光配向膜に含まれる前記ポリマーと、前記ポリマー層に含まれる前記ポリマーとを光照射及び/又は熱により互いに結合させてもよい。
前記光配向膜は、偏光照射により前記液晶層中の液晶分子を略水平に配向してもよい。
前記光配向膜は、偏光照射により前記液晶層中の液晶分子を略垂直に配向してもよい。
前記液晶層は、誘電率異方性が負の液晶材料を含有してもよい。
前記液晶表示装置の配向モードは、ねじれネマティック(TN)モード、電界制御複屈折(ECB)モード、イン・プレーン・スイッチング(IPS)モード、フリンジ・フィールド・スイッチング(FFS)モード、垂直配向(VA)モード、又は、ねじれネマティック垂直配向(VATN)モードであってもよい。
以上に示した本発明の各態様は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
本発明の上記態様に係る液晶表示装置は、光反応性官能基を有するポリマーを含む光配向膜を備えるが、上述したポリマー層を液晶層及び光配向膜の間に有するので、高温環境下で長期にわたって、良好な電圧保持率を維持でき、更に、焼き付き及びシミの発生とコントラストの低下とを抑制できる。
また、本発明の上記態様に係る液晶表示装置の製造方法は、光反応性官能基を有するポリマーを含む光配向膜を形成する工程を含むが、光配向膜及び液晶層の間に上述したポリマー層を熱重合により形成する工程を含むので、高温環境下で長期にわたって、良好な電圧保持率を維持でき、更に、焼き付き及びシミの発生とコントラストの低下とを抑制できる液晶表示装置を製造することができる。
比較形態1に係る液晶表示装置の断面模式図である。 実施形態1の液晶表示装置を模式的に示した断面図である。 比較形態2に係る液晶表示装置の断面模式図である。
以下、本発明の実施形態について説明する。本発明は、以下の実施形態に記載された内容に限定されるものではなく、本発明の構成を充足する範囲内で、適宜設計変更を行うことが可能である。
<液晶表示装置>
まず、本実施形態の液晶表示装置について説明する。
図2は、実施形態1の液晶表示装置を模式的に示した断面図である。図2に示すように、本実施形態の液晶表示装置は、一対の基板10及び20と、一対の基板10、20間に挟持された液晶層30と、各基板10、20と液晶層30との間に配置された光配向膜40と、液晶層30及び各光配向膜40の間に設けられたポリマー層50とを備えており、光配向膜40は、光反応性官能基を有するポリマーを含んでおり、ポリマー層50は、下記化学式(1)で示される重合開始剤(以下、重合開始剤(1)とも言う。)由来の構造及び下記化学式(2)で示されるモノマー(以下、二官能モノマー(2)とも言う。)由来の構造を有するポリマー(以下、PSAポリマーとも言う。)を含んでいる。本実施形態の液晶表示装置は、更に一対の基板10、20の後方にバックライト80を備えており、一対の基板10、20は、シール材60によって貼り合わされている。
なお、光配向膜40は、一対の基板10、20のいずれか一方のみに設けられてもよい。この場合、例えば、光配向膜40が設けられていない方の基板上には、光配向膜以外の配向膜(例えば、ラビングされた配向膜、無配向処理の配向膜)とポリマー層50とが設けられてもよいし、配向膜が設けられずにポリマー層50が設けられてもよい。
Figure JPOXMLDOC01-appb-C000010
(式中、Pは、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
及びZは、同一又は異なって、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-NHCO-基、-CONH-基、-CH-基、-CH(CH)-基、-C(CH-基、-CF-基、-C(OH)CO(CO)-基、-C(OH)C(HN)-基、又は、直接結合を表す。
及びRは、同一又は異なって、-H基、-CH基、-C基、-C基、-X基(Xはハロゲン)、-CN基、-NH基、-NH(CH)基、-N(CH基、-OH基、-OCH基、-OC基、又は、-OC基を表す。
は、1,4-フェニレン基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、又は、炭素数1~18の飽和若しくは不飽和アルキレン基を表す。
が有する-CH-基は、互いに隣接しない限り、-O-基、又は、-S-基で置換されていてもよい。
が有する水素原子の少なくとも一つは、フッ素原子、塩素原子、-CN基、又は、炭素数1~6のアルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基若しくはアルキルカルボニルオキシ基で置換されていてもよい。
nは、0、1又は2である。
nが2の場合、アゾ基に対して同じ側にある2つのAは、同一であってもよいし、互いに異なっていてもよく、アゾ基に対して同じ側にある2つのZは、同一であってもよいし、互いに異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000011
(式中、P及びPは、同一又は異なって、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
及びAは、同一又は異なって、1,4-フェニレン基、4,4´-ビフェニル基、ナフタレン-2,6-ジイル基、アントラセン2,6-ジイル基、又は、フェナントレン-2,7-ジイル基を表す。
は、-COO-基、-OCO-基、-O-基、-CO-基、-NHCO-基、-CONH-基若しくは-S-基、又は、AとA若しくはAとAとが直接結合していることを表す。
mは、0、1又は2である。
及びSは、同一又は異なって、(CH(1≦j≦18)、(CH-CH-O)(1≦k≦6)、又は、PとA、AとP若しくはAとPとが直接結合していることを表す。
及びAが有する水素原子の少なくとも一つは、ハロゲン基、メチル基、又は、エチル基に置換されていてもよい。)
本実施形態の液晶表示装置は、液晶層30及び光配向膜40の間に設けられたポリマー層50を備えることから、光配向膜40中の光反応性官能基と液晶層30中の液晶分子とが直接接触する領域(面積)を小さくすることができる。したがって、バックライト80からの紫外線又は可視光により、例え光配向膜40中の光反応性官能基からラジカルが発生したとしても、該ラジカルが液晶分子に転移することを抑制できる。これは、高温環境下においても同様である。
また、重合開始剤(1)は、加熱によりラジカルを発生することから、液晶層30中に重合開始剤(1)及び二官能モノマー(2)を溶解させ、その後、液晶層30を加熱すると、液晶層30内で二官能モノマー(2)のラジカル重合が開始する。そして、二官能モノマー(2)のポリマー、すなわちPSAポリマーが液晶層30からの相分離することで液晶層30と光配向膜40の間にポリマー層50が形成される。このように、ポリマー層50は、二官能モノマー(2)の熱重合により形成可能であるため、ポリマー層50の形成時に液晶層30に光を照射する必要がない。そのため、ポリマー層50の形成時に光配向膜40からラジカルが発生することを抑制できる。他方、モノマーを光重合させてポリマー層を形成する場合は、その形成工程時に光配向膜の光反応性官能基(特に360nm以上の波長域で光を吸収する光反応性官能基)からラジカルが発生し、該ラジカルが液晶分子への転移し、VHRの低下につながる。
更に、一般的な熱重合開始剤を用いた場合は、熱重合工程終了後に熱重合開始剤の一部が未反応のまま残存すると、液晶表示装置の使用中に未反応の熱重合開始剤からラジカルが発生し、その一部がイオン化し、VHRの低下を引き起こす。それに対して、重合開始剤(1)は、アゾ基の両側に重合基(P)が付加された重合基付き重合開始剤であることから、例え熱重合工程中に重合開始に寄与しなくても、PSAポリマー中に取り込まれることが可能であり、未反応の重合開始剤(1)が液晶層30中に残存することを抑制できる。したがって、未反応の重合開始剤(1)に起因するラジカルを低減することができる。
図3は、比較形態2に係る液晶表示装置の断面模式図である。図3に示すように、比較形態2に係る液晶表示装置は、ポリマー層50が形成される代わりに液晶層30中にラジカル捕捉剤31が添加されていることを除いて、実施形態1に係る液晶表示装置と実質的に同じである。このように、液晶層30中にラジカル捕捉剤31を添加(溶解)するだけの方法では、ラジカル捕捉剤31が液晶層中に存在し続けることになる。ラジカル捕捉剤31は、自由に拡散できるため、光配向膜40やシール材60の特定の成分と熱反応し、不純物を生成したり、液晶材料の物性値をわずかに変化したりすることがある。一方、本実施形態では、二官能モノマー(2)や重合開始剤(1)のような添加剤が液晶層30中に残存することが抑制されるため、添加剤の新たな熱反応が起こったり、液晶材料の物性値が変化したりすることを抑制できる。
また、特許文献1の段落[0057]には、液晶組成物に添加された重合性化合物の重合を促進するために重合開始剤を用いてもよいことが記載されているが、重合開始剤(1)は記載されていない。また、特許文献1の段落[0057]に挙げられた重合開始剤はいずれも光及び熱の両方によりラジカルを発生するため、液晶層中に残存するとラジカル発生による信頼性の低下が起こりやすいと考えられる。それに対して、本実施形態の重合開始剤(1)は、液晶材料の温度管理が必要になるものの、熱によるラジカル発生を起こしやすい一方、光によるラジカル発生をほとんど起こさない。
更に、特許文献1に記載の重合開始剤を含む多くの重合開始剤の分子中には、重合基が導入されておらず、未反応の重合開始剤が液晶層中に残存することになるが、この点においても本実施形態の重合開始剤(1)と異なる。上述のように、重合開始剤(1)では、一分子中に2個(アゾ基の両側にそれぞれ1個)の重合基が導入されているため、重合開始剤(1)は、重合開始に寄与しない場合でも、重合には寄与することができる。そのため、重合開始剤(1)が重合開始に寄与しなくても、未反応の重合開始剤(1)が液晶層30中に残存することを抑制できる。
このように、本実施形態の液晶表示装置は、光反応性官能基を有するポリマーを含む光配向膜40を備えるが、重合開始剤(1)由来の構造、及び、二官能モノマー(2)由来の構造を有するポリマー(PSAポリマー)を含むポリマー層50を液晶層30及び光配向膜40の間に有するので、ラジカルの液晶分子への転移、及び、ラジカルの発生そのものを抑制できる。その結果、高温環境下で長期にわたって、良好な電圧保持率を維持でき、更に、焼き付き及びシミの発生とコントラストの低下とを抑制することができる。
一対の基板10、20としては、例えば、アクティブマトリクス基板(TFT基板)及びカラーフィルタ(CF)基板の組み合わせが挙げられる。アクティブマトリクス基板としては、液晶表示装置の分野において通常使用されるものを用いることができる。アクティブマトリクス基板を平面視したときの構成としては、透明基板上に、複数本の平行なゲート信号線;ゲート信号線に対して直交する方向に伸び、かつ互いに平行に形成された複数本のソース信号線;ゲート信号線とソース信号線との交点に対応して配置された薄膜トランジスタ(TFT)等のアクティブ素子;ゲート信号線とソース信号線とによって区画された領域にマトリクス状に配置された画素電極等が設けられた構成が挙げられる。水平配向モードの場合には、更に、共通配線;共通配線に接続された対向電極等が設けられる。
TFTは、アモルファスシリコン、ポリシリコン、又は、酸化物半導体であるIGZO(インジウム-ガリウム-亜鉛-酸素)によって、チャネルを形成したものが好適に用いられる。特に酸化物半導体はオフリークが小さいため、液晶表示装置の低周波駆動に有利であるが、VHRが低い場合は、低周波駆動を行えなくなる。本実施形態によりVHRを高めることができるので、低周波駆動が可能となる。すなわち、酸化物半導体と本実施形態の組み合わせは、特に好適と言える。
なお、アクティブマトリクス型の表示方式では、通常、各画素に設けられたTFTがオンのときに、TFTを通じて信号電圧が電極に印加され、このときに画素に充電された電荷を、TFTがオフの期間中に保持する。充電された電荷を1フレーム期間(例えば、16.7ms)中に保持した割合を示すのが電圧保持率(VHR:Voltage Holding Ratio)である。すなわち、VHRが低いということは、液晶層に印加される電圧が時間とともに減衰しやすいことを意味し、アクティブマトリクス型の表示方式においては、VHRを高くすることが求められる。
上記カラーフィルタ基板としては、液晶表示装置の分野において通常使用されるものを用いることができる。カラーフィルタ基板の構成としては、透明基板上に、格子状に形成されたブラックマトリクス、格子すなわち画素の内側に形成されたカラーフィルタ等が設けられた構成が挙げられる。
なお、一対の基板10、20は、カラーフィルタ及びアクティブマトリクスの両方が片側の基板に形成されたものであってもよい。
光配向膜40は、液晶層30中の液晶分子の配向を制御する機能を有し、液晶層30への印加電圧が閾値電圧未満(電圧無印加を含む)のときには、主に光配向膜40の働きによって液晶層30中の液晶分子の配向が制御される。この状態(以下、初期配向状態とも言う。)において、一対の基板10、20の表面に対して液晶分子の長軸が形成する角度が「プレチルト角」と呼ばれる。なお、本明細書において「プレチルト角」とは、基板面と平行な方向からの液晶分子の傾きの角度を表し、基板面と平行な角度が0°、基板面の法線の角度が90°である。
光配向膜40によって付与される液晶分子のプレチルト角の大きさは特に限定されず、光配向膜40は、液晶層30中の液晶分子を略水平に配向させるもの(水平配向膜)であってもよいし、液晶層30中の液晶分子を略垂直に配向させるもの(垂直配向膜)であってもよい。水平配向膜の場合、略水平とは、プレチルト角が実質的に0°(例えば、10°未満)であることが好ましく、長期にわたって良好なコントラスト特性を維持する効果を得る観点からは、0°であることがより好ましい。なお、表示モードがIPSモード又はFFSモードである場合には、視野角特性の観点からも、プレチルト角は0°であることが好ましいが、表示モードがTNモードである場合には、モードとしての制約のため、プレチルト角は例えば約2°に設定される。垂直配向膜の場合、略垂直とは、プレチルト角が83.0°以上であることが好ましく、視野角特性、応答特性、4ドメイン分割配向時の暗線太さ(透過率に影響する)、及び、配向安定性の観点からは、88.0°以上であることがより好ましい。83.0°以上のプレチルト角は、電圧印加型PSA(光配向膜利用型PSA)技術を採用した表示モード(このモードの場合、85°以下のプレチルト角に設定されることがある。)に好適である。
光配向膜40は、光反応性官能基を有するポリマー(以下、光反応基含有ポリマーとも言う。)を含む。なお、光反応性官能基とは、紫外光、可視光等の光(電磁波)が照射されることによって構造変化を生じ得る官能基を意味する。そして、光反応性官能基のこの構造変化に起因して、光配向膜40の配向規制力が発現したり、光配向膜40の配向規制力の大きさ及び/又は向きが変化することとなる。配向規制力とは、配向膜近傍に存在する液晶分子の配向を規制する性質をいう。
光配向膜40が光反応性官能基を含むことにより、光配向膜40に対して光の照射によって配向処理(光配向処理)を施すことができる。光配向処理は、面内均一性に優れ、かつダストレスで信頼性の高い液晶配向方法である。また、光配向膜40に直接配向処理がなされるので、突起物や構造物による配向制御手段が不要となり、透過率低下要因をなくすことができるので、高透過率を得ることができる。
光反応性官能基の構造変化としては、例えば、二量化(二量体形成)、異性化、光フリース転移、分解等が挙げられ、光反応性官能基の具体例としては、例えば、シンナメート基、カルコン基、アゾベンゼン基、クマリン基、トラン基、スチルベン基等が挙げられる。光反応性官能基(特に360nm以上の波長域で光を吸収する光反応性官能基)は、光配向処理時に照射される光や液晶表示装置の使用時のバックライト80からの光によって分解し、ラジカルとなるおそれがある。しかしながら、ポリマー層50が液晶層30及び光配向膜40の間に設けられていることから、光照射によって光配向膜40からラジカルが発生したとしても、液晶層30中に溶出することを抑制できる。360nm以上の波長域で光を吸収する光反応性官能基としては、アゾベンゼン基、カルコン基、シンナメート基が挙げられることから、光反応性官能基がこれらの官能基である場合、本実施形態の液晶表示装置は、液晶層30中へのラジカル溶出抑制効果を顕著に発揮することができる。
光配向膜40に含まれる光反応基含有ポリマーの光反応性官能基以外の構造は特に限定されないが、光反応基含有ポリマーは、ポリアミック酸、ポリイミド、ポリシロキサン、ポリビニル、又は、ポリマレイミドであることが好ましい。
光反応基含有ポリマーは、単独重合体であってもよいが、共重合体であることが好ましい。共重合体の場合、モノマー単位の配列は特に限定されず、光反応基含有ポリマーは、例えば、交互共重合体、ランダム共重合体、ブロック共重合体、又は、グラフト共重合体であってもよい。
上記光反応基含有ポリマーがポリアミック酸である場合、光反応基含有ポリマーは、下記化学式(3)で表される繰り返し構造単位を含むものであってもよい。
Figure JPOXMLDOC01-appb-C000012
(式中、X1は、下記化学式(X1-1)~(X1-12)及び(X1-P1)~(X1-P4)のいずれかで表される構造を表し、各構造に含まれる少なくとも一つの水素原子は、ハロゲン、メチル基、又は、エチル基に置換されていてもよい。Y1は、下記化学式(Y1-1)~(Y1-16)及び(Y1-P1)~(Y1-P8)のいずれかで表される構造を表し、各構造に含まれる少なくとも一つの水素原子は、ハロゲン、メチル基、又は、エチル基に置換されていてもよい。Z1は、側鎖を表す。ただし、X1、Y1及びZ1の少なくとも一つは、光反応性官能基を含む。なお、光反応基含有ポリマーの一分子において、上記化学式(3)で表される複数の構造のうち、少なくとも一つ又は全部には、Z1が導入されていなくてもよい。)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
X1が光反応性官能基を含む場合、X1は、上記化学式(X1-P1)~(X1-P4)で表される構造のいずれかである。
Y1が光反応性官能基を含む場合、Y1は、上記化学式(Y1-P1)~(Y1-P8)で表される構造のいずれかである。
Z1が光反応性官能基を含む場合、Z1としては、下記化学式(Z1-HP1)又は(Z1-HP2)で表される構造が好適である。これらの構造を用いると、光配向膜40を水平配向膜として機能させることが可能である。なお、下記化学式(Z1-HP2)において、メチル基は、ベンゼン環中の任意の炭素原子に結合してよい。
Figure JPOXMLDOC01-appb-C000017
光配向膜40が水平配向膜である場合、光反応基含有ポリマーの一分子において、上記化学式(3)で表される複数の構造の1以上(ただし、全部を除く)には、Z1として、光の照射によらずに略水平に液晶分子を配向可能な官能基(以下、水平配向官能基とも言う。)が別途導入されていてもよい。
水平配向官能基の具体例としては、例えば、下記化学式(Z1-H1)、(Z1-H2)、(Z1-H3)、(Z1-H4)、(Z1-H5)、(Z1-H6)、(Z1-H7)又は(Z1-H8)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000018
Z1が光反応性官能基を含む場合、Z1としては、下記化学式(Z1-VP1)~(Z1-VP21)のいずれかで表される構造も好適である。これらの構造を用いると、光配向膜40を垂直配向膜として機能させることが可能である。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
光配向膜40が垂直配向膜である場合、光反応基含有ポリマーの一分子において、上記化学式(3)で表される複数の構造の1以上(ただし、全部を除く)には、Z1として、光の照射によらずに略垂直に液晶分子を配向可能な官能基(以下、垂直配向官能基とも言う。)が別途導入されていてもよい。
垂直配向官能基の具体例としては、例えば、下記化学式(Z1-V1)、(Z1-V2)、(Z1-V3)、(Z1-V4)、(Z1-V5)、(Z1-V6)又は(Z1-V7)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000023
光反応基含有ポリマーの一分子において、X1及びY1(Z1を含む場合は、X1、Y1及びZ1)は、それぞれ、1種類であってもよく、2種類以上であってもよい。例えば、光反応基含有ポリマーの一分子中に、上記化学式(X1-1)で表される構造と上記化学式(X1-2)で表される構造の両方が含まれていてもよい。
また、光配向膜40は、上記化学式(3)で表される繰り返し構造単位を含む光反応基含有ポリマーを1種類のみ含有してもよいし、上記化学式(3)で表される繰り返し構造単位を各々含む光反応基含有ポリマーを2種類以上含有してもよい。
上記光反応基含有ポリマーがポリアミック酸である場合、その重量平均分子量は、2,500以上であることが好ましく、1,000,000以下であることが好ましい。重量平均分子量が1,000,000を超えると、液晶配向剤の粘度が光配向膜40を成膜できないほど大きくなるおそれがある。なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により決定できる。
光反応基含有ポリマーの一分子において、上記化学式(3)で表される複数の構造のうち、一部の構造のみに側鎖が導入され、その他の構造に側鎖が導入されていない場合、これらの複数種の構造の配列は特に限定されない。例えば、側鎖が導入された構造単位を「A」、側鎖が導入されていな構造単位を「B」で表したときに、両者が、光反応基含有ポリマーにおいて「ABABAB」のように交互に配列されていてもよいし、「AABABB」のようにランダムに配列されていてもよいし、「AAABBB」のようにブロック単位で配列されていてもよい。
上記光反応基含有ポリマーがポリイミドである場合、光反応基含有ポリマーは、上述の化学式(3)で表される繰り返し構造単位を含むポリアミック酸を、加熱又は触媒により脱水閉環(イミド化)したものであってもよい。なお、光反応基含有ポリマーの一分子において、上記化学式(3)で表される複数の構造のうち、一部のみがイミド化していてもよいし、全部がイミド化していてもよい。
上記光反応基含有ポリマーがポリイミドである場合、その重量平均分子量は、2,500以上であることが好ましく、1,000,000以下であることが好ましい。重量平均分子量が1,000,000を超えると、液晶配向剤の粘度が光配向膜40を成膜できないほど大きくなるおそれがある。
上記光反応基含有ポリマーがポリシロキサンである場合、光反応基含有ポリマーは、下記化学式(4)で表される繰り返し構造単位を含むものであってもよい。
Figure JPOXMLDOC01-appb-C000024
(式中、αは、-H基、-OH基、メトキシ基、又は、エトキシ基を表す。X2は、光反応性官能基を含む側鎖を表す。Y2は、炭素数1~6の飽和又は不飽和のアルキレン基又はアルキレンオキシ基を表す。Z2は、エポキシ基を表す。pは、0<p≦0.5の範囲の実数である。)
光反応基含有ポリマーの一分子において、上記化学式(4)で表される複数の構造の1以上(ただし、全部を除く)には、X2として、水平配向官能基又は垂直配向官能基が別途導入されていてもよい。
水平配向官能基の具体例としては、上記化学式(Z1-H1)、(Z1-H2)、(Z1-H3)、(Z1-H4)、(Z1-H5)、(Z1-H6)、(Z1-H7)又は(Z1-H8)で表される構造が挙げられ、垂直配向官能基の具体例としては、上記化学式(Z1-V1)、(Z1-V2)、(Z1-V3)、(Z1-V4)、(Z1-V5)、(Z1-V6)又は(Z1-V7)で表される構造が挙げられる。
上記化学式(4)で表される繰り返し構造単位を含む光反応基含有ポリマーのより具体的な例としては、下記化学式(4-1)又は(4-2)で表される繰り返し構造単位を含むものが挙げられる。
Figure JPOXMLDOC01-appb-C000025
(式中、αは、-H基、-OH基、メトキシ基、又は、エトキシ基を表す。β1は、下記化学式(β1-1)又は(β1-2)で表される構造を表す。pは、0<p≦0.5の範囲の実数である。)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
(式中、αは、-H基、-OH基、メトキシ基、又は、エトキシ基を表す。β1は、上記化学式(β1-1)又は(β1-2)で表される構造を表す。pは、0<p≦0.5の範囲の実数である。)
光反応基含有ポリマーの一分子において、α、X2及びY2は、それぞれ、1種類であってもよく、2種類以上であってもよい。例えば、光反応基含有ポリマーの一分子中に、上記化学式(β1-1)で表される構造と上記化学式(β1-2)で表される構造の両方が含まれていてもよい。
また、光配向膜40は、上記化学式(4)で表される繰り返し構造単位を含む光反応基含有ポリマーを1種類のみ含有してもよいし、上記化学式(4)で表される繰り返し構造単位を含む各々光反応基含有ポリマーを2種類以上含有してもよい。
上記光反応基含有ポリマーがポリシロキサンである場合、その重量平均分子量は、2,500以上であることが好ましく、1,000,000以下であることが好ましい。重量平均分子量が1,000,000を超えると、液晶配向剤の粘度が光配向膜40を成膜できないほど大きくなるおそれがある。
上記繰り返し構造単位において、X2が導入されているユニットと、Y2が導入されているユニットの配列は特に限定されない。例えば、X2が導入されているユニットを「C」、Y2が導入されているユニットを「D」で表したときに、両者が、光反応基含有ポリマーにおいて「CDCDCD」のように交互に配列されていてもよいし、「CCDCDD」のようにランダムに配列されていてもよいし、「CCCDDD」のようにブロック単位で配列されていてもよい。
上記光反応基含有ポリマーがポリビニルである場合、光反応基含有ポリマーは、下記化学式(5)で表される繰り返し構造単位を含むものであってもよい。
Figure JPOXMLDOC01-appb-C000028
(式中、γは、-H基、-CH基、又は、-C基を表す。X3は、光反応性官能基を含む側鎖を表す。Y3は、炭素数1~6の飽和若しくは不飽和のアルキレン基若しくはアルキレンオキシ基、繰り返し数1~6のエチレングリコール基、又は、直接結合を表す。qは、0<q≦0.5の範囲の実数である。)
光反応基含有ポリマーの一分子において、上記化学式(5)で表される複数の構造の1以上(ただし、全部を除く)には、X3として、水平配向官能基又は垂直配向官能基が別途導入されていてもよい。
水平配向官能基の具体例としては、上記化学式(Z1-H1)、(Z1-H2)、(Z1-H3)、(Z1-H4)、(Z1-H5)、(Z1-H6)、(Z1-H7)又は(Z1-H8)で表される構造が挙げられ、垂直配向官能基の具体例としては、上記化学式(Z1-V1)、(Z1-V2)、(Z1-V3)、(Z1-V4)、(Z1-V5)、(Z1-V6)又は(Z1-V7)で表される構造が挙げられる。
上記化学式(5)で表される繰り返し構造単位を含む光反応基含有ポリマーのより具体的な例としては、下記化学式(5-1)で表される繰り返し構造単位を含むものが挙げられる。
Figure JPOXMLDOC01-appb-C000029
(式中、γは、-H基、-CH基、又は、-C基を表す。β1は、上記化学式(β1-1)又は(β1-2)で表される構造を表す。qは、0<q≦0.5の範囲の実数である。)
光反応基含有ポリマーの一分子において、γ、X3及びY3は、それぞれ、1種類であってもよく、2種類以上であってもよい。例えば、光反応基含有ポリマーの一分子中に、上記化学式(β1-1)で表される構造と上記化学式(β1-2)で表される構造の両方が含まれていてもよい。
また、光配向膜40は、上記化学式(5)で表される繰り返し構造単位を含む光反応基含有ポリマーを1種類のみ含有してもよいし、上記化学式(5)で表される繰り返し構造単位を含む各々光反応基含有ポリマーを2種類以上含有してもよい。
上記光反応基含有ポリマーがポリビニルである場合、その重量平均分子量は、2,500以上であることが好ましく、1,000,000以下であることが好ましい。重量平均分子量が1,000,000を超えると、液晶配向剤の粘度が光配向膜40を成膜できないほど大きくなるおそれがある。
上記繰り返し構造単位において、X3が導入されているユニットと、Y3が導入されているユニットの配列は特に限定されない。例えば、X3が導入されているユニットを「E」、Y3が導入されているユニットを「F」で表したときに、両者が、光反応基含有ポリマーにおいて「EFEFEF」のように交互に配列されていてもよいし、「EEFEFF」のようにランダムに配列されていてもよいし、「EEEFFF」のようにブロック単位で配列されていてもよい。
光配向膜40は、上記光反応基含有ポリマーのほかに、他の成分を更に含有していてもよい。他の成分としては、例えば、上記光反応基含有ポリマー以外のポリマー、硬化剤、硬化促進剤、触媒等を挙げることができる。上記光反応基含有ポリマー以外のポリマーは、液晶配向剤の溶液特性や、配向膜の電気特性をより向上するために使用することができ、そのようなポリマーとしては、例えば、光反応性官能基を有さない一般的な配向膜用ポリマーが挙げられる。光配向膜40が光反応性官能基を有さない配向膜用ポリマーを含有する場合、光配向膜40は、二層構造であってもよく、光反応性官能基を有さない配向膜用ポリマーから主に構成される下層と、光反応基含有ポリマーから主に構成される上層とを有してもよく、上層が液晶層と接してもよい。
光配向膜40の膜厚は、特に限定されないが、好ましくは1nm以上であり、より好ましくは3nm以上であり、更に好ましくは5nm以上であり、特に好ましくは8nm以上である。また、光配向膜40の膜厚は、好ましくは300nm以下であり、より好ましくは150nm以下であり、更に好ましくは120nm以下であり、特に好ましくは100nm以下である。一般的に、ラジカルの転移は、その距離が大きいほど起こりにくくなるが、光配向膜については、薄い方が光反応性官能基の絶対的な総量が減るため、ラジカルの転移確率は小さくなる。したがって、ラジカルの液晶分子への転移を効果的に抑制する観点からは、光配向膜40の膜厚は、可能な限り小さいことが好ましい。
また、本実施形態において、液晶層30及び光配向膜40の間には、ポリマー層50が設けられており、ポリマー層50は、重合開始剤(1)由来の構造及び二官能モノマー(2)由来の構造を有するポリマー(PSAポリマー)を含んでいる。ポリマー層50は、ポリマー支持配向(PSA:Polymer Sustained Alignment)技術を用いて形成されたものである。PSA技術とは、重合性モノマーを含有させた液晶組成物を一対の基板間に封入し、その後に重合性モノマーを重合させることにより、配向膜表面に重合体(ポリマー)を形成し、この重合体により液晶分子の初期配向状態を固定化するものである。したがって、ポリマー層50によれば、上述の作用効果の他に、液晶層30中の液晶分子の初期配向状態を固定化することができる。
PSAポリマーは、少なくとも二官能モノマー(2)が重合した重合体である。しかしながら、重合開始剤(1)は、加熱によってアゾ基で分解し、2つのラジカルを生成し、二官能モノマー(2)のラジカル重合反応を開始させる。そのため、PSAポリマーは、少なくとも末端に重合開始剤(1)由来の構造を有していてもよい。すなわち、PSAポリマーは、少なくとも末端に下記化学式(1-1)で示される構造を有するものであってもよい。
Figure JPOXMLDOC01-appb-C000030
また、重合開始剤(1)は、一分子中に、2つの重合基(=P)を含んでいることから、重合開始に寄与しなくても、二官能モノマー(2)の重合に寄与することが可能である。したがって、PSAポリマーは、主鎖中に重合開始剤(1)由来の構造を有していてもよい。
このように、PSAポリマーは、少なくとも重合開始剤(1)及び二官能モノマー(2)が重合した重合体であってもよい。なお、重合開始剤(1)及び二官能モノマー(2)は、各々、1種類であっても、2種類以上であってもよい。
重合開始剤(1)の好ましい構造として、以下が挙げられる。
上記化学式(1)中、Pは、アクリロイルオキシ基、又は、メタクリロイルオキシ基を表すことが好ましい。
上記化学式(1)中、Z及びZは、同一又は異なって、-O-基、又は、直接結合を表すことが好ましい。
上記化学式(1)中、Rは、-CH基を表すことが好ましい。
上記化学式(1)中、Rは、-CH基、又は、-CN基を表すことが好ましい。
上記化学式(1)中、Aは、炭素数1~8の飽和若しくは不飽和アルキレン基を表すことが好ましい。
上記化学式(1)中、nは、1又は2であることが好ましい。
二官能モノマー(2)の好ましい具体例としては、下記式(2-1)~(2-4)が挙げられる。
Figure JPOXMLDOC01-appb-C000031
(式中、Pは、同一又は異なって、アクロイルオキシ基、メタアクロイルオキシ基、アクロイルアミノ基、又は、メタアクロイルアミノ基を表す。環構造が有する水素原子の少なくとも一つは、ハロゲン原子、メチル基、又は、エチル基に置換されていてもよい。)
PSAポリマーの重量平均分子量は、特に限定されず、一般的なPSA技術により形成されるポリマーと同程度であってもよい。
ラジカル重合で形成されるポリマーの末端には、多くの場合、ラジカルが残存している状態である。したがって、ポリマー層50中のPSAポリマーが若干液晶層30中に溶出すると、VHRの低下を引き起こす可能性がある。それに対して、PSAポリマーが光配向膜40に含まれる光反応基含有ポリマーと化学結合した状態では、PSAポリマーが液晶層30に溶出する可能性は小さくなる。したがって、PSAポリマーの液晶層30への溶出を低減し、本実施形態の液晶表示装置の長期信頼性を更に向上する観点からは、光配向膜40に含まれる光反応基含有ポリマーは、ポリマー層50に含まれるPSAポリマー(特にその末端)と結合されていることが好ましい。
また、光反応基含有ポリマーの光反応性官能基が360nm以上の波長域で光を吸収する場合、バックライト80の光等の可視光によって光配向膜40でラジカルが発生しやすく、該ラジカルとPSAポリマーの末端のラジカルとの間で化学結合を効果的に起こすことができる。したがって、光反応基含有ポリマーをPSAポリマーと効果的に結合させる観点からも、光反応基含有ポリマーの光反応性官能基としてはアゾベンゼン基、カルコン基、シンナメート基が好適である。
なお、このような光配向膜40とポリマー層50との化学結合についても特許文献1には記載されていない。
ラジカルの液晶分子への転移を効果的に抑制する観点からは、ポリマー層50の膜厚は、大きい方が好ましく、具体的には、好ましくは5nm以上であり、更に好ましくは10nm以上であり、特に好ましくは20nm以上である。他方、ポリマー層50の膜厚を大きくするためには液晶組成物中に導入する二官能モノマー(2)の濃度を高くする必要があるが、該濃度を高くすると、未反応モノマーが液晶層30中に残存したり、未反応モノマーがそのままポリマー層50中に取り込まれたりするおそれがある。その場合、信頼性の低下を引き起こすことが考えられる。したがって、本実施形態の液晶表示装置の信頼性の観点からは、ポリマー層50の膜厚は、好ましくは100nm以下であり、より好ましくは50nm以下であり、特に好ましくは25nm以下である。
液晶層30は、少なくとも1種の液晶分子を含有する層であれば特に限定されないが、通常、サーモトロピック液晶を含み、好適には、ネマティック相を呈する液晶分子(ネマチック液晶)を含み、液晶層40は、ネマティック相を呈することが好ましい。液晶分子は、下記式(P)で定義される誘電率異方性(Δε)が負の値を有するものであってもよく、正の値を有するものであってもよい。すなわち、液晶分子は、負の誘電率異方性を有するものであってもよく、正の誘電率異方性であってもよい。負の誘電率異方性を有する液晶分子としては、例えば、Δεが-1~-20のものを用いることができる。正の誘電率異方性を有する液晶分子としては、例えば、Δεが1~20のものを用いることができる。更に、液晶層30は、極性を有さない、すなわちΔεが実質的に0である液晶分子(ニュートラル液晶分子)を含有していてもよい。ニュートラル液晶分子としては、アルケン構造を有する液晶分子が挙げられる。
Δε=(長軸方向の誘電率)-(短軸方向の誘電率)  (P)
なお、従来の液晶表示装置では、負の誘電異方性を有する液晶分子を用いたときの方が、正の誘電率異方性を有する液晶分子を用いたときよりも、焼き付き及びシミの不具合はより顕在化して現れる傾向にあった。これは、負の誘電異方性を有する液晶分子では短軸方向に大きな分極が存在するため、イオン化した際のVHRの低下の影響が大きくなるためと推測される。すなわち、本実施形態の液晶表示装置は、負の誘電異方性を有する液晶材料を用いた場合において、正の誘電異方性を有する液晶材料を用いた場合に比べて、より大きな効果を発揮する。
シール材60は、液晶層30の周囲を囲むように配置されている。シール材60の材料(シール剤)としては、例えば無機フィラー又は有機フィラー及び硬化剤を含有するエポキシ樹脂等を用いることができる。
上記液晶表示装置の配向モード(表示モード)は特に限定されないが、ねじれネマティック(TN)モード、電界制御複屈折(ECB)モード、イン・プレーン・スイッチング(IPS)モード、フリンジ・フィールド・スイッチング(FFS)モード、垂直配向(VA)モード、又は、ねじれネマティック垂直配向(VATN)モードが好ましい。
上記配向モードが水平配向モードであるときには、光配向膜からラジカルが発生しやすいことから、本発明の効果が顕著に得られる。すなわち、垂直配向モードの光配向処理(偏光UV照射)では、プレチルト角を90°からわずかに傾かせるだけでよいが、水平配向モードの光配向処理では、液晶配向の方位(基板面内における向き)をより高精度に制御する必要がある。そのため、水平配向モードの光配向処理における照射量は、通常、垂直配向モードの場合よりも一桁以上大きく、副反応によりラジカルが、垂直配向モードの場合より多く発生しやすい。これに対して、本実施形態のポリマー層50は、光配向処理時に発生したラジカルが液晶層30中に溶出することを効果的に防止できる。このような観点からは、光配向膜40は、液晶層30中の液晶分子を略水平に配向させるものであることが好ましく、本実施形態の液晶表示装置の配向モードは、TNモード、IPSモード、又は、FFSモードであることが好ましい。
FFSモードでは、基板10及び20の少なくとも一方に、面状電極と、スリット電極と、面状電極及びスリット電極の間に配置された絶縁膜とを含む構造(FFS電極構造)が設けられ、液晶層30中に斜め電界(フリンジ電界)が形成される。通常では、液晶層30側から、スリット電極、絶縁膜、面状電極の順に配置される。スリット電極としては、例えば、その全周を電極に囲まれた線状の開口部をスリットとして備えるものや、複数の櫛歯部を備え、かつ櫛歯部間に配置された線状の切れ込みがスリットを構成する櫛型形状のものを用いることができる。
IPSモードでは、基板10及び20の少なくとも一方に一対の櫛形電極が設けられ、液晶層30中に横電界が形成される。一対の櫛形電極としては、例えば、それぞれ複数の櫛歯部を備え、かつ櫛歯部が互いに噛み合うように配置された電極対を用いることができる。
VATNモードでは、基板10及び20の一方に画素電極が設けられ、基板10及び20の他方に共通電極が設けられ、液晶層30中に縦電界が形成される。各基板10、20上の光配向膜40は垂直配向膜であり、それらの配向処理方向が互いに直交する。VATNモードでは、プレチルト角を高精度に制御する必要があるため、光配向処理が好適に用いられる。
また、一対の基板10、20の液晶層30とは反対側にはそれぞれ、偏光板(直線偏光子)70が配置されてもよい。偏光板70としては、典型的には、ポリビニルアルコール(PVA)フィルムに、二色性を有するヨウ素錯体等の異方性材料を、吸着配向させたものが挙げられる。通常は、PVAフィルムの両面にトリアセチルセルロースフィルム等の保護フィルムをラミネートして実用に供される。また、偏光板70と一対の基板10、20との間には、位相差フィルム等の光学フィルムが配置されていてもよい。
図2に示したように、本実施形態の液晶表示装置においては、バックライト80が液晶パネルの背面側に配置されている。このような構成を有する液晶表示装置は、一般的に、透過型の液晶表示装置と呼ばれる。バックライト80としては、可視光を含む光を発するものであれば特に限定されず、可視光のみを含む光を発するものであってもよく、可視光及び紫外光の両方を含む光を発するものであってもよい。液晶表示装置によるカラー表示が可能とするためには、バックライト80は、白色光を発することが好ましい。バックライト80の光源としては、例えば、発光ダイオード(LED)が好適に用いられる。なお、本明細書において、「可視光」とは、波長380nm以上、800nm未満の光(電磁波)を意味する。
本実施形態の主な特徴の一つは、バックライト80の光に曝露されることで光配向膜40から発生するラジカルが液晶層30に溶出することをポリマー層50によって抑制することである。したがって、バックライト80の発光スペクトルの少なくとも一部が、光配向膜40の吸収スペクトルの少なくとも一部と重複している場合に、ポリマー層50を特に有効に機能させることができる。
本実施形態の液晶表示装置は、液晶パネル及びバックライト80の他、TCP(テープ・キャリア・パッケージ)、PCB(プリント配線基板)等の外部回路;視野角拡大フィルム、輝度向上フィルム等の光学フィルム;ベゼル(フレーム)等の複数の部材により構成されるものであり、部材によっては、他の部材に組み込まれていてもよい。既に説明した部材以外の部材については特に限定されず、液晶表示装置の分野において通常使用されるものを用いることができるので、説明を省略する。
<液晶表示装置の製造方法>
次に、本実施形態の液晶表示装置の製造方法について説明する。
本実施形態の液晶表示装置の製造方法は、一対の基板10及び20を準備する工程と、各基板10、20に、光反応性官能基を有するポリマーを含む光配向膜40を形成する工程と、光配向膜40が形成された一対の基板10及び20の間に液晶層30を形成する工程と、上記化学式(1)で示される重合開始剤(重合開始剤(1))を用いて上記化学式(2)で示されるモノマー(二官能モノマー(2))を熱重合し、各光配向膜40及び液晶層30の間にポリマー層50を形成する工程とを含む。
本実施形態の液晶表示装置の製造方法は、光配向膜40及び液晶層30の間にポリマー層50を形成する工程を含むことから、光配向膜40中の光反応性官能基と液晶層30中の液晶分子とが直接接触する領域(面積)を小さくすることができる。したがって、バックライト80からの紫外線又は可視光により、例え光配向膜40中の光反応性官能基からラジカルが発生したとしても、該ラジカルが液晶分子に転移することを抑制できる。これは、高温環境下においても同様である。
また、重合開始剤(1)を用いて二官能モノマー(2)を熱重合させてポリマー層を形成することから、ポリマー層50の形成時に液晶層30に光を照射する必要がない。そのため、ポリマー層50の形成時に光配向膜40からラジカルが発生することを抑制できる。他方、モノマーを光重合させてポリマー層を形成する場合は、その形成工程時に光配向膜の光反応性官能基(特に360nm以上の波長域で光を吸収する光反応性官能基)からラジカルが発生し、該ラジカルが液晶分子への転移し、VHRの低下につながる。
更に、一般的な熱重合開始剤を用いた場合は、熱重合工程終了後に熱重合開始剤の一部が未反応のまま残存すると、液晶表示装置の使用中に未反応の熱重合開始剤からラジカルが発生し、その一部がイオン化し、VHRの低下を引き起こす。それに対して、重合開始剤(1)は、アゾ基の両側に重合基(P)が付加された重合基付き重合開始剤であることから、例え熱重合工程中に重合開始に寄与しなくても、PSAポリマー中に取り込まれることが可能であり、未反応の重合開始剤(1)が液晶層30中に残存することを抑制できる。したがって、未反応の重合開始剤(1)に起因するラジカルを低減することができる。
なお、液晶層中にラジカル捕捉剤を添加する方法では、添加剤が液晶層中に存在し続けることになり、添加剤の熱反応が起こったり、液晶材料の物性値がわずかに変化することがある。一方、本実施形態では、二官能モノマー(2)や重合開始剤(1)のような添加剤が液晶層30中に残存することが抑制されるため、添加剤の新たな熱反応が起こったり、液晶材料の物性値が変化したりすることを抑制できる。
また、特許文献1の段落[0057]には、液晶組成物に添加された重合性化合物の重合を促進するために重合開始剤を用いてもよいことが記載されているが、重合開始剤(1)は記載されておらず、また、特許文献1の段落[0057]に挙げられた重合開始剤はいずれも光及び熱の両方によりラジカルを発生するため、液晶層中に残存するとラジカル発生による信頼性の低下が起こりやすいと考えられる。それに対して、本実施形態の重合開始剤(1)は、液晶材料の温度管理が必要になるものの、熱によるラジカル発生を起こしやすい一方、光によるラジカル発生をほとんど起こさない。
更に、特許文献1に記載の重合開始剤を含む多くの重合開始剤の分子中には、重合基が導入されておらず、未反応の重合開始剤が液晶層中に残存することになるが、この点においても本実施形態の重合開始剤(1)と異なる。上述のように、重合開始剤(1)では、一分子中に2個(アゾ基の両側にそれぞれ1個)の重合基が導入されているため、重合開始剤(1)は、重合開始に寄与しない場合でも、重合には寄与することができる。そのため、重合開始剤(1)が重合開始に寄与しなくても、未反応の重合開始剤(1)が液晶層30中に残存することを抑制できる。
このように、本実施形態の液晶表示装置の製造方法は、光反応性官能基を有するポリマーを含む光配向膜40を形成する工程を含むが、重合開始剤(1)を用いて二官能モノマー(2)を熱重合し、光配向膜40及び液晶層30の間にポリマー層50を形成する工程を含むので、ラジカルの液晶分子への転移、及び、ラジカルの発生そのものを抑制できる。その結果、高温環境下で長期にわたって、良好な電圧保持率を維持でき、更に、焼き付き及びシミの発生とコントラストの低下とを抑制可能な液晶表示装置を製造することができる。
以下、各工程について更に説明するが、各部材については上述した通りであるので説明を省略する。
光配向膜形成工程では、まず、光反応性官能基(好適にはアゾベンゼン基、カルコン基、又は、シンナメート基)を有するポリマー(光反応基含有ポリマー)を溶剤(例えば有機溶媒)に溶解させて液晶配向剤を準備する。光反応基含有ポリマーとしては、上述のように、ポリアミック酸、ポリイミド、ポリシロキサン、ポリビニル、又は、ポリマレイミドが好適である。液晶配向剤は、必要に応じて他の任意成分を含有してもよく、好ましくは各成分が溶媒に溶解された溶液状の組成物として調製される。上記有機溶媒としては、光反応基含有ポリマー、及び、他の任意成分を溶解し、これらと反応しないものが好適である。上記他の任意成分としては、例えば、上記光反応基含有ポリマー以外のポリマー、硬化剤、硬化促進剤、触媒等を挙げることができる。上記光反応基含有ポリマー以外のポリマーは、液晶配向剤の溶液特性や、配向膜の電気特性をより向上するために使用することができ、そのようなポリマーとしては、例えば、光反応性官能基を有さない一般的な配向膜用ポリマーが挙げられる。
次に、各基板10、20の表面上に液晶配向剤を塗布する。塗布方法としては特に限定されず、ロールコーター法、スピンナー法、印刷法、インクジェット法等が挙げられる。
次に、各基板10、20を加熱する。これにより、液晶配向剤中の溶剤が揮発し、光配向膜40が形成される。加熱は、仮焼成(プリベーク)及び本焼成(ポストベーク)の2段階で行ってもよい。液晶配向剤が光反応性官能基を有さない配向膜用ポリマーを含有する場合、形成される光配向膜40は、二層構造であってもよく、光反応性官能基を有さない配向膜用ポリマーから主に構成される下層と、光反応基含有ポリマーから主に構成される上層とを有してもよい。上層が液晶層と接することになる。
次に、光配向膜40を光配向処理することによって光配向膜40に所望の配向規制力を付与する。具体的には、紫外線、可視光等の光を光配向膜40に照射(露光)する。この結果、光反応基含有ポリマーの光反応性官能基において上述の構造変化が生じ、光反応基含有ポリマーの少なくとも一部の分子構造及び/又は配向が変化する。そして、光配向膜40は、その表面に接する液晶分子の配向を制御できるようになる。なお、光反応性官能基の全部が上述の構造変化を生じることは通常はない。したがって、光反応性官能基の少なくとも一部は、光配向処理後も光配向膜40中に存在し続けることになる。
光配向処理に利用される光としては、紫外線、可視光線、又は、これらの両方が挙げられる。また、光配向処理に利用される光は、偏光であってもよいし、無偏光であってもよく、例えば、直線偏光、楕円偏光若しくは円偏光の偏光、又は、無偏光を用いることができる。特に光配向膜40に偏光紫外光を照射することが好ましく、これにより、液晶配向の方位、及び、プレチルト角の制御を容易かつ高精度に行うことができる。
また、光配向膜40としては、偏光照射により液晶層30中の液晶分子を略水平に配向させる光配向膜、又は、偏光照射により液晶層30中の液晶分子を略垂直に配向させる光配向膜が好適である。
なお、基板10又は20のいずれか一方のみに光配向膜40を形成してもよい。また、マルチドメイン化のために分割配向処理を行ってもよい。
液晶層形成工程では、まず、少なくとも1種の液晶分子を含む液晶材料に少なくとも1種の重合開始剤(1)及び少なくとも1種の二官能モノマー(2)を添加し、液晶組成物を準備する。
液晶組成物全体における重合開始剤(1)の濃度は、0.0001wt%以上、0.05wt%以下であることが好ましい。0.0001wt%未満であると、重合反応を効果的に開始できないおそれがある。0.05wt%より大きいと、未反応重合開始剤が残存するおそれがある。液晶組成物全体における重合開始剤(1)の濃度は、0.001wt%以上、0.02wt%以下であることが更に好ましい。
液晶組成物全体における二官能モノマー(2)の濃度は、0.1wt%以上、1wt%以下であることが好ましい。0.1wt%未満であると、PSAポリマーによるポリマー層50が光配向膜40上全体に形成されないおそれがある。1wt%より大きいと、未反応モノマーの残存により焼き付きやシミが発生しやすくなるおそれがある。液晶組成物全体における二官能モノマー(2)の濃度は、0.2wt%以上、0.5wt%以下であることが更に好ましい。
次に、真空注入法又は滴下注入法により、基板10及び20の間に液晶組成物を充填し、液晶層30を形成する。上述のように、液晶層30は、誘電率異方性が負の液晶材料を含有することが好ましい。真空注入法を採用する場合は、シール剤の塗布、基板10及び20の貼り合せ、シール剤の硬化、液晶組成物の注入、及び、注入口の封止をこの順に行う。滴下注入法を採用する場合は、シール剤の塗布、液晶組成物の滴下、基板10及び20の貼り合せ、及び、シール剤の硬化をこの順に行う。この結果、液晶組成物が充填された液晶セルが作成される。
ポリマー層形成工程では、液晶層30を加熱し、重合開始剤(1)を分解してラジカルを発生させる。その結果、液晶層30内で二官能モノマー(2)のラジカル重合(熱重合)が開始し、PSAポリマーが生成される。最終的に、PSAポリマーは、液晶層30からの相分離し、液晶層30と各光配向膜40の間にPSAポリマーを含むポリマー層50が形成される。
加熱温度、加熱時間、加熱手段等の条件は、特に限定されないが、熱重合は、液晶層30中の液晶材料のネマティック-アイソトロピック転移点より低く、かつ、重合開始剤(1)のラジカル発生温度以上の温度で行われることが好ましい。加熱温度をネマティック-アイソトロピック転移点より低くすることによって、液晶配向を安定化させる効果が得られる。他方、加熱温度を重合開始剤(1)のラジカル発生温度以上とすることによって、重合反応を効果的に開始することができる。
なお、本明細書において、液晶材料のネマティック-アイソトロピック転移点は、示差走査熱量測定(DSC)、又は、キャピラリーに液晶材料を充填し、温度変化による相転移を直接観測する手法により測定される。また、重合開始剤(1)のラジカル発生温度は、示差走査熱量測定により測定されるか、又は、電子スピン共鳴(RSR)を用いた温度依存測定により測定される。
ポリマー層形成工程後は、通常、液晶層30の再配向処理を行う。詳細には、液晶層30中の液晶材料のネマティック-アイソトロピック転移点よりも高い温度で液晶層40を加熱した後、室温まで冷却する。これにより、液晶分子の流動配向が除去され、液晶分子が光配向膜40の分子構造にならって規則的に並び、液晶層30が所望の配向状態を示す。
上記工程の後、偏光板の貼り付け工程、及び、制御部、電源部、バックライト等の取り付け工程を経て、本実施形態の液晶表示装置が完成する。
作製された液晶表示装置の配向モード(表示モード)としては、上述のように、TNモード、ECBモード、IPSモード、FFSモード、VAモード、又は、VATNモードが好適である。
本実施形態の液晶表示装置の製造方法において、光配向膜40に含まれるポリマー(光反応基含有ポリマー)と、ポリマー層50に含まれるポリマー(PSAポリマー)とを光照射及び/又は熱により互いに結合させることが好ましい。これにより、PSAポリマーの液晶層30への溶出を低減でき、製造される液晶表示装置の長期信頼性を更に向上することができる。上述のように、光反応基含有ポリマーとPSAポリマーとを互いに効果的に結合する観点からは、光反応基含有ポリマーの光反応性官能基は、360nm以上の波長域で光を吸収する官能基、具体的にはアゾベンゼン基、カルコン基又はシンナメート基であることが好ましく、更に、照射される光は、可視光であることが好ましい。
なお、光照射による上記結合の形成は、ポリマー層形成工程後であれば、任意の時に行うことができ、例えば、バックライトの点灯状態で行われるエージング工程に行ってもよい。また、この光反応基含有ポリマーとPSAポリマーとの結合は、液晶表示装置の使用中に形成されたものであってもよい。
また、熱による上記結合の形成は、ポリマー層形成工程中又はポリマー層形成工程後であれば、任意の時に行うことができる。例えば、ポリマー層形成工程において、ポリマー層50の形成と同時に、PSAポリマーを光配向膜ポリマーと結合させてもよい。また、液晶の流動配向を消すための再配向処理において、PSAポリマーを光配向膜ポリマーと結合させてもよい。加熱温度、加熱時間、加熱手段等の、上記結合の形成のための条件は、特に限定されないが、加熱温度は、重合開始剤(1)のラジカル発生温度以上であることが好ましい。
以上、本発明の実施形態について説明したが、説明された個々の事項は、すべて本発明全般に対して適用され得るものである。
以下に実施例及び比較例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
<合成例1>
下記化学式(a)に示す4,4´-アゾビス(4-シアノ吉草酸)が10g(35.7mmol)含まれるDMF(N,N-ジメチルホルムアミド)溶液(3mL)を塩化チオニル(10mL)中に滴下し、0℃下で4時間撹拌した。その後、減圧下で塩化チオニルを除去し、下記化学式(b)に示す4,4´-アゾビス(4-シアノ吉草酸クロリド)の固体粉末を得た。引き続き、下記化学式(b)の固体粉末を300mLの乾燥THF(テトラヒドロフラン)に溶解し、そこに下記化学式(c)に示すメタクリル酸ヒドロキシプロピルを4.5g(31mmol)とピリジンを4g(51mmol)含む乾燥THF溶液100mLを添加し、0℃下で5時間撹拌した。その後、THFを除去し、粗結晶をジエチルエーテルに溶解させた。その溶液を炭酸水素ナトリウム水溶液、続いて無水硫酸ナトリウムで洗った。溶媒除去後、ジエチルエーテル/メタノール(1:1)の混合溶媒で再結晶化させることで、下記化学式(d)に示す目的の化合物を2.1g(3.95mmol:収率12.7%)を得た。
Figure JPOXMLDOC01-appb-C000032
<実施例1>
FFSモードの液晶セルを以下の方法により実際に作製した。
まず、酸化インジウム錫(Indium Tin Oxide:ITO)製のFFS電極構造を有するITO基板と、電極を有さない対向基板を用意した。また、下記化学式(A-1)に示す、主鎖中にアゾベンゼン基を有するポリアミック酸(初期化学イミド化率:0%)と、アゾベンゼン基を全く有さないポリアミック酸(初期化学イミド化率:0%)とを含有する液晶配向剤を用意した。下記化学式(A-1)に示すポリアミック酸において、X4は、下記(X4-1)で表される構造であり、Y4は、下記(Y4-1)で表されるアゾベンゼン基を有するユニット、又は、下記(Y4-2)で表されるユニットであり、下記(Y4-1)で表されるアゾベンゼン基を有するユニットと、下記(Y4-2)で表されるユニットは、1:1の比率で導入されている。アゾベンゼン基を全く有さないポリアミック酸も下記化学式(A-1)に示すものであるが、Y4として、下記(Y4-2)で表されるユニットのみが導入され、下記(Y4-1)で表されるアゾベンゼン基を有するユニットが導入されていないものである。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
得られた液晶配向剤を、ITO基板上、及び、対向基板上にそれぞれ塗布し、90℃5分間の仮焼成を行った。続いて、液晶配向剤が塗布された面に対して、365nmを中心波長とする直線偏光紫外光を2J/cm照射することで配向処理を施した。その後、230℃40分間の本焼成を行うことで二層構造の光配向膜を得た。二層構造の光配向膜は、光反応性官能基を有さないポリアミック酸からなる下層と、光反応性官能基(アゾベンゼン基)を有するポリアミック酸からなる上層とから形成されており、上層が液晶層と接することになる。
次に、一方の基板に、ディスペンサを使用して紫外線硬化性シール剤(積水化学社製、商品名:フォトレックS-WB)を描画した。また、もう一方の基板上の所定の位置に、ネガ型液晶組成物を滴下した。ネガ型液晶組成物には、液晶材料の他、下記化学式(A-2)に示す重合基付き重合開始剤0.005wt%と、下記化学式(A-3)に示す二官能モノマー0.25wt%を導入している。続いて、真空下にて両基板を貼り合わせ、表示領域を遮光した状態でシール剤に紫外光を照射して硬化させ、液晶セルを形成した。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
続いて、60℃(液晶材料のネマティック-アイソトロピック転移点より低く、かつ、上記化学式(A-2)に示す重合基付き重合開始剤がラジカルを生成する最低温度以上)で120分間、液晶セルを加熱することで熱重合によるポリマー層の形成を行った。続いて、液晶の流動配向を消すために、更に130℃(液晶材料のネマティック-アイソトロピック転移点より高い温度)で40分間、液晶セルを加熱し、液晶を等方相にする再配向処理を行い、その後室温まで冷却してFFSモードの液晶セルを得た。なお、本実施例の液晶材料のネマティック-アイソトロピック転移点は、75℃であり、上記化学式(A-2)に示す重合基付き重合開始剤がラジカルを生成する最低温度(上記ラジカル発生温度に相当)は、略55℃である。
<比較例1>
実施例1とは異なるネガ型液晶組成物を用いたことと、熱重合によるポリマー層の形成工程を行わなかったこと以外は実施例1と同様にして、比較例1のFFSモードの液晶セルを作製した。本比較例で用いたネガ型液晶組成物は、上記化学式(A-2)に示す重合基付き重合開始剤及び上記化学式(A-3)に示す二官能モノマーの両方が導入されていないことを除いて実施例1のものと同じである。
<比較例2>
実施例1とは異なるネガ型液晶組成物を用いたことと、熱重合によるポリマー層の形成工程を行わなかったこと以外は実施例1と同様にして、比較例2のFFSモードの液晶セルを作製した。本比較例で用いたネガ型液晶組成物は、上記化学式(A-2)に示す重合基付き重合開始剤及び上記化学式(A-3)に示す二官能モノマーの代わりにニトロキシ系ラジカル捕捉剤0.001wt%が導入されていることを除いて実施例1のものと同じである。
<比較例3>
実施例1とは異なるネガ型液晶組成物を用いたこと以外は実施例1と同様にして、比較例3のFFSモードの液晶セルを作製した。本比較例で用いたネガ型液晶組成物は、上記化学式(A-2)に示す重合基付き重合開始剤の代わりに下記化学式(A-4)に示す重合基無し重合開始剤0.005wt%が導入されていることを除いて実施例1のものと同じである。なお、下記化学式(A-4)に示す重合基無し重合開始剤がラジカルを生成する最低温度(上記ラジカル発生温度に相当)は、略55℃である。
Figure JPOXMLDOC01-appb-C000038
<比較例4>
以下の点を除いて実施例1と同様にして、比較例4のFFSモードの液晶セルを作製した。本比較例では、上記化学式(A-2)に示す重合基付き重合開始剤の代わりに光重合開始剤(BASF社製、商品名:イルガキュア(登録商標) 651)を用いた。また、本比較例では、重合によるポリマー層の形成工程において、実施例1のように60℃で120分間加熱する代わりに、東芝ライテック社製の紫外線ランプを使用して液晶セルに紫外光を2J/cm照射した。
<比較例5>
以下の点を除いて実施例1と同様にして、比較例5のFFSモードの液晶セルを作製した。本比較例では、上記化学式(A-1)に示す、主鎖中にアゾベンゼン基を有するポリアミック酸を含有せずに、アゾベンゼン基を全く有さないポリアミック酸(初期化学イミド化率:0%)を含有する液晶配向剤を用いて配向膜を形成した。このポリアミック酸は、上述のように、上記化学式(A-1)に示すものであるが、Y4として、上記(Y4-2)で表されるユニットのみが導入され、上記(Y4-1)で表されるアゾベンゼン基を有するユニットが導入されていないものである。また、本比較例では、光配向処理に代わり、ラビング処理を実施した。
<比較例6>
比較例5とは異なるネガ型液晶組成物を用いたことと、熱重合によるポリマー層の形成工程を行わなかったこと以外は比較例5と同様にして、比較例6のFFSモードの液晶セルを作製した。本比較例で用いたネガ型液晶組成物は、上記化学式(A-2)に示す重合基付き重合開始剤及び上記化学式(A-3)に示す二官能モノマーの両方が導入されていないことを除いて比較例5のものと同じである。
<バックライト上での高温試験>
実施例1及び比較例1~6で作製したFFSモードの液晶セルの耐熱性を評価するため、点灯したバックライト上に液晶セルを配置し、液晶セルの温度を75℃に昇温した状態で5000時間放置する試験を行った。放置の前後で電圧保持率(VHR)及びコントラストの測定を行った結果を下記表1に示した。なお、VHRは東陽テクニカ社製の6254型VHR測定システムを用いて、1V、70℃の条件で測定した。コントラスト測定は、トプコンテクノハウス社製の分光放射計「SR-UL1R」を用いて、25℃環境下で測定した。
Figure JPOXMLDOC01-appb-T000039
上記表1に示したように、実施例1の結果より、上記化学式(A-2)に示す重合基付き重合開始剤を用いて熱重合によりポリマー層を形成することで、比較例1と比べ、5000時間放置後のVHR及びコントラストが高く維持された。これより、ポリマー層形成により、アゾベンゼン基を有する光配向膜で形成されたラジカルがネガ型液晶材料に転移することを効果的に抑制でき、結果としてVHR及びコントラストの低下を抑制できたと考えられる。
一方、従来から用いられるニトロキシ系ラジカル捕捉剤を液晶組成物中に導入する比較例2では、5000時間放置試験によるVHR及びコントラストの低下を抑制できる効果は得られたものの、コントラストが初めから低い値であった。ラジカル捕捉剤が液晶層中で自由に拡散できる状況であり、結果として液晶の配向揺らぎが大きくなり、コントラストの若干の低下が起こったものと考えられる。
また、重合基の無い重合開始剤を用いた比較例3では、初めからVHRが低く、また5000時間放置により、ポリマー層が無い場合と比べて効果は確認されるものの、実施例1に比べて大きいVHRの低下が確認された。未反応の重合開始剤が液晶層に残存しており、初期のVHRが低くなっており、更に、液晶層に残存している未反応重合開始剤が放置中にラジカル化し、更なるVHRの低下を起こしたと考えられる。
更に、光重合開始剤を用いた比較例4では、初期段階(放置前)で、VHRは80%台と低く、コントラストも800と低い値であった。ポリマー層形成のための紫外光照射により、光配向膜の光官能基からのラジカル発生、及び、そのイオン化が起こったことが要因と考えられる。5000時間放置試験により、VHR、及び、コントラストは更に低下した。
そして、比較例5、6では、ラビングされた配向膜を用いているため、初期段階(放置前)でもコントラストは1000未満であったが、VHRは高かった。5000時間放置後のVHR、及び、コントラストの低下は小さかった。しかしながら、ラビングされた配向膜を用いた場合、ポリマー層の有無によって結果はほとんど変わらず、ポリマー層形成による効果はなかった。
<実施例2>
実施例1で用いたポリアミック酸の代わりに、上記化学式(A-1)に示す、主鎖中にアゾベンゼン基を有するポリアミック酸、ただし、Y4として、上記(Y4-1)で表されるアゾベンゼン基を有するユニットのみが導入され、上記(Y4-2)で表されるユニットが導入されていないもの(初期化学イミド化率:0%)を用いたこと以外は実施例1と同様にして、実施例2のFFSモードの液晶セルを作製した。
<バックライト上での高温試験>
実施例2で作製したFFSモードの液晶セルについて、実施例1等と同様の評価試験を行った結果を下記表2に示した。
Figure JPOXMLDOC01-appb-T000040
上記表2に示すように、実施例2では、実施例1に比べ、ポリアミック酸系光配向膜の光反応性官能基であるアゾベンゼン基を2倍量とした。また、実施例1と比べ、放置後にVHR及びコントラストが高くなっている。この結果から、実施例1に比べて、アゾベンゼン基が生成するラジカルとポリマー層中のポリマーの末端ラジカルとの反応による結合がより効果的に形成され、ポリマー層中のポリマーの溶出がより抑えられたと考えられる。
<実施例3>
IPSモードの液晶セルを以下の方法により実際に作製した。
まず、酸化インジウム錫(Indium Tin Oxide:ITO)からなる櫛形電極を有する基板と、電極を有さない対向基板を用意した。また、下記化学式(B-1)に示す、カルコン基及びカルボキシル基を有するポリビニル系ポリマーと、ポリイミドとを含有する液晶配向剤を用意した。
Figure JPOXMLDOC01-appb-C000041
得られた液晶配向剤を、櫛形電極を有する基板上、及び、対向基板上にそれぞれ塗布し、90℃5分間の仮焼成、続いて200℃40分間の本焼成を行うことで二層構造の光配向膜を得た。続いて、光配向膜が塗布された面に対して、365nmを中心波長とする直線偏光紫外光を2J/cm照射することで配向処理を施した。二層構造の光配向膜は、ポリイミドからなる下層と、光反応性官能基(カルコン基)を有するポリビニル系ポリマーからなる上層とから形成されており、上層が液晶層と接することになる。
次に、一方の基板に、ディスペンサを使用して紫外線硬化性シール剤(積水化学社製、商品名:フォトレックS-WB)を描画した。また、もう一方の基板上の所定の位置に、ネガ型液晶組成物を滴下した。ネガ型液晶組成物には、液晶材料の他、下記化学式(B-2)に示す重合基付き重合開始剤0.005wt%と、下記化学式(B-3)に示す二官能モノマー0.25wt%を導入している。続いて、真空下にて両基板を貼り合わせ、表示領域を遮光した状態でシール剤に紫外光を照射して硬化させ、液晶セルを形成した。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
続いて、60℃(液晶材料のネマティック-アイソトロピック転移点より低く、かつ、上記化学式(B-2)に示す重合基付き重合開始剤がラジカルを生成する最低温度以上)で120分間、液晶セルを加熱することで熱重合によるポリマー層の形成を行った。続いて、液晶の流動配向を消すために、更に130℃(液晶材料のネマティック-アイソトロピック転移点より高い温度)で40分間、液晶セルを加熱し、液晶を等方相にする再配向処理を行い、その後室温まで冷却してIPSモードの液晶セルを得た。なお、本実施例の液晶材料のネマティック-アイソトロピック転移点は、75℃であり、上記化学式(B-2)に示す重合基付き重合開始剤がラジカルを生成する最低温度(上記ラジカル発生温度に相当)は、略55℃である。
<比較例7>
実施例3とは異なるネガ型液晶組成物を用いたことと、熱重合によるポリマー層の形成工程を行わなかったこと以外は実施例3と同様にして、比較例7のFFSモードの液晶セルを作製した。本比較例で用いたネガ型液晶組成物は、上記化学式(B-2)に示す重合基付き重合開始剤及び上記化学式(B-3)に示す二官能モノマーの両方が導入されていないことを除いて実施例3のものと同じである。
<バックライト上での高温試験>
実施例3及び比較例7で作製したFFSモードの液晶セルについて、実施例1等と同様の評価試験を行った結果を下記表3に示した。
Figure JPOXMLDOC01-appb-T000044
上記表3に示すように、実施例3の結果より、上記化学式(B-2)に示す重合基付き重合開始剤を用いて熱重合によりポリマー層を形成することで、比較例7と比べ、5000時間放置後のVHR及びコントラストが高く維持された。これより、ポリマー層形成により、カルコン基を有する光配向膜で形成されたラジカルがネガ型液晶材料に転移することを効果的に抑制でき、結果としてVHR及びコントラストの低下を抑制できたと考えられる。
<実施例4>
VATNモードの液晶セルを以下の方法により実際に作製した。
まず、酸化インジウム錫(Indium Tin Oxide:ITO)製の電極を各々有する2枚のITO基板を用意した。また、下記化学式(C-1)に示す、シンナメート基及びエポキシ基を有するポリシロキサンと、ポリイミドとを含有する液晶配向剤を用意した。下記化学式(C-1)に示すポリシロキサンにおいて、β1は、下記(C-2)で表される構造である。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
得られた液晶配向剤を、2枚のITO基板上にそれぞれ塗布し、90℃5分間の仮焼成、続いて230℃40分間の本焼成を行うことで二層構造の光配向膜を得た。続いて、光配向膜が塗布された面に対して、320~380nmの波長範囲の直線偏光紫外光を20mJ/cm照射することで配向処理を施した。二層構造の光配向膜は、ポリイミドからなる下層と、光反応性官能基(シンナメート基)を有するポリシロキサンからなる上層とから形成されており、上層が液晶層と接することになる。
次に、一方の基板に、ディスペンサを使用して紫外線硬化性シール剤(積水化学社製、商品名:フォトレックS-WB)を描画した。また、もう一方の基板上の所定の位置に、ネガ型液晶組成物を滴下した。ネガ型液晶組成物には、液晶材料の他、下記化学式(C-3)に示す重合基付き重合開始剤0.005wt%と、下記化学式(C-4)に示す二官能モノマー0.3wt%を導入している。続いて、真空下にて両基板を貼り合わせ、表示領域を遮光した状態でシール剤に紫外光を照射して硬化させ、液晶セルを形成した。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
続いて、60℃(液晶材料のネマティック-アイソトロピック転移点より低く、かつ、上記化学式(C-3)に示す重合基付き重合開始剤がラジカルを生成する最低温度以上)で120分間、液晶セルを加熱することで熱重合によるポリマー層の形成を行った。続いて、液晶の流動配向を消すために、更に130℃(液晶材料のネマティック-アイソトロピック転移点より高い温度)で40分間、液晶セルを加熱し、液晶を等方相にする再配向処理を行い、その後室温まで冷却してVATNモードの液晶セルを得た。なお、本実施例の液晶材料のネマティック-アイソトロピック転移点は、75℃であり、上記化学式(C-3)に示す重合基付き重合開始剤がラジカルを生成する最低温度(上記ラジカル発生温度に相当)は、略55℃である。
<比較例8>
実施例4とは異なるネガ型液晶組成物を用いたことと、熱重合によるポリマー層の形成工程を行わなかったこと以外は実施例4と同様にして、比較例8のVATNモードの液晶セルを作製した。本比較例で用いたネガ型液晶組成物は、上記化学式(C-3)に示す重合基付き重合開始剤及び上記化学式(C-4)に示す二官能モノマーの両方が導入されていないことを除いて実施例4のものと同じである。
<バックライト上での高温試験>
実施例4及び比較例8で作製したVATNモードの液晶セルについて、実施例1等と同様の評価試験を行った結果を下記表4に示した。
Figure JPOXMLDOC01-appb-T000049
上記表4に示すように、実施例4の結果より、上記化学式(C-3)に示す重合基付き重合開始剤を用いて熱重合によりポリマー層を形成することで、比較例8と比べ、5000時間放置後のVHR及びコントラストが高く維持された。これより、垂直配向の場合においても、ポリマー層形成により、シンナメート基を有する光配向膜で形成されたラジカルがネガ型液晶材料に転移することを効果的に抑制でき、結果としてVHR及びコントラストの低下を抑制できたと考えられる。
[付記]
本発明の一態様は、一対の基板と、前記一対の基板間に挟持された液晶層と、前記一対の基板の少なくとも一方と前記液晶層との間に配置された光配向膜と、前記液晶層及び前記光配向膜の間に設けられたポリマー層とを備える液晶表示装置であって、
前記光配向膜は、光反応性官能基を有するポリマーを含み、
前記ポリマー層は、下記化学式(1)で示される重合開始剤由来の構造、及び、下記化学式(2)で示されるモノマー由来の構造を有するポリマーを含む液晶表示装置であってもよい。
Figure JPOXMLDOC01-appb-C000050
(式中、Pは、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
及びZは、同一又は異なって、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-NHCO-基、-CONH-基、-CH-基、-CH(CH)-基、-C(CH-基、-CF-基、-C(OH)CO(CO)-基、-C(OH)C(HN)-基、又は、直接結合を表す。
及びRは、同一又は異なって、-H基、-CH基、-C基、-C基、-X基(Xはハロゲン)、-CN基、-NH基、-NH(CH)基、-N(CH基、-OH基、-OCH基、-OC基、又は、-OC基を表す。
は、1,4-フェニレン基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、又は、炭素数1~18の飽和若しくは不飽和アルキレン基を表す。
が有する-CH-基は、互いに隣接しない限り、-O-基、又は、-S-基で置換されていてもよい。
が有する水素原子の少なくとも一つは、フッ素原子、塩素原子、-CN基、又は、炭素数1~6のアルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基若しくはアルキルカルボニルオキシ基で置換されていてもよい。
nは、0、1又は2である。
nが2の場合、アゾ基に対して同じ側にある2つのAは、同一であってもよいし、互いに異なっていてもよく、アゾ基に対して同じ側にある2つのZは、同一であってもよいし、互いに異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000051
(式中、P及びPは、同一又は異なって、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
及びAは、同一又は異なって、1,4-フェニレン基、4,4´-ビフェニル基、ナフタレン-2,6-ジイル基、アントラセン2,6-ジイル基、又は、フェナントレン-2,7-ジイル基を表す。
は、-COO-基、-OCO-基、-O-基、-CO-基、-NHCO-基、-CONH-基若しくは-S-基、又は、AとA若しくはAとAとが直接結合していることを表す。
mは、0、1又は2である。
及びSは、同一又は異なって、(CH(1≦j≦18)、(CH-CH-O)(1≦k≦6)、又は、PとA、AとP若しくはAとPとが直接結合していることを表す。
及びAが有する水素原子の少なくとも一つは、ハロゲン基、メチル基、又は、エチル基に置換されていてもよい。)
前記態様の液晶表示装置は、光反応性官能基を有するポリマーを含む光配向膜を備えるが、前記化学式(1)で示される重合開始剤由来の構造、及び、前記化学式(2)で示されるモノマー由来の構造を有するポリマーを含むポリマー層を液晶層及び光配向膜の間に有するので、ラジカルの液晶分子への転移、及び、ラジカルの発生そのものを抑制できる。その結果、高温環境下で長期にわたって、良好な電圧保持率を維持でき、更に、焼き付き及びシミの発生とコントラストの低下とを抑制することができる。
前記光反応性官能基は、アゾベンゼン基、カルコン基、又は、シンナメート基であってもよい。この態様によれば、液晶層中へのラジカル溶出抑制効果をより効果的に得ることができる。
前記光配向膜に含まれる前記ポリマーは、ポリアミック酸、ポリイミド、ポリシロキサン、ポリビニル、又は、ポリマレイミドであってもよい。
前記光配向膜に含まれる前記ポリマーは、前記ポリマー層に含まれる前記ポリマーと結合されていてもよい。この態様によれば、光配向膜に含まれるポリマーの液晶層への溶出を低減でき、液晶表示装置の長期信頼性を更に向上できる。
前記光配向膜は、前記液晶層中の液晶分子を略水平に配向させてもよい。この態様によれば、液晶層中へのラジカル溶出抑制効果を効果的に得ることができる。また、この態様の場合は、多くのラジカルが発生しやすいが、ポリマー層は、これらの多くのラジカルの溶出も効果的に抑制することができる。
前記光配向膜は、前記液晶層中の液晶分子を略垂直に配向させてもよい。この態様によれば、液晶層中へのラジカル溶出抑制効果を効果的に得ることができる。
前記液晶層は、誘電率異方性が負の液晶材料を含有してもよい。この態様によれば、焼き付き及びシミの発生をより効果的に抑制することができる。
前記液晶表示装置の配向モードは、ねじれネマティック(TN)モード、電界制御複屈折(ECB)モード、イン・プレーン・スイッチング(IPS)モード、フリンジ・フィールド・スイッチング(FFS)モード、垂直配向(VA)モード、又は、ねじれネマティック垂直配向(VATN)モードであってもよい。
本発明の他の態様は、一対の基板を準備する工程と、
前記一対の基板の少なくとも一方に、光反応性官能基を有するポリマーを含む光配向膜を形成する工程と、
少なくとも一方に前記光配向膜が形成された前記一対の基板の間に液晶層を形成する工程と、
下記化学式(1)で示される重合開始剤を用いて下記化学式(2)で示されるモノマーを熱重合し、前記光配向膜及び前記液晶層の間にポリマー層を形成する工程とを含む液晶表示装置の製造方法であってもよい。
Figure JPOXMLDOC01-appb-C000052
(式中、Pは、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
及びZは、同一又は異なって、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-NHCO-基、-CONH-基、-CH-基、-CH(CH)-基、-C(CH-基、-CF-基、-C(OH)CO(CO)-基、-C(OH)C(HN)-基、又は、直接結合を表す。
及びRは、同一又は異なって、-H基、-CH基、-C基、-C基、-X基(Xはハロゲン)、-CN基、-NH基、-NH(CH)基、-N(CH基、-OH基、-OCH基、-OC基、又は、-OC基を表す。
は、1,4-フェニレン基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、又は、炭素数1~18の飽和若しくは不飽和アルキレン基を表す。
が有する-CH-基は、互いに隣接しない限り、-O-基、又は、-S-基で置換されていてもよい。
が有する水素原子の少なくとも一つは、フッ素原子、塩素原子、-CN基、又は、炭素数1~6のアルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基若しくはアルキルカルボニルオキシ基で置換されていてもよい。
nは、0、1又は2である。
nが2の場合、アゾ基に対して同じ側にある2つのAは、同一であってもよいし、互いに異なっていてもよく、アゾ基に対して同じ側にある2つのZは、同一であってもよいし、互いに異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000053
(式中、P及びPは、同一又は異なって、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
及びAは、同一又は異なって、1,4-フェニレン基、4,4´-ビフェニル基、ナフタレン-2,6-ジイル基、アントラセン2,6-ジイル基、又は、フェナントレン-2,7-ジイル基を表す。
は、-COO-基、-OCO-基、-O-基、-CO-基、-NHCO-基、-CONH-基若しくは-S-基、又は、AとA若しくはAとAとが直接結合していることを表す。
mは、0、1又は2である。
及びSは、同一又は異なって、(CH(1≦j≦18)、(CH-CH-O)(1≦k≦6)、又は、PとA、AとP若しくはAとPとが直接結合していることを表す。
及びAが有する水素原子の少なくとも一つは、ハロゲン基、メチル基、又は、エチル基に置換されていてもよい。)
前記態様の液晶表示装置の製造方法は、光反応性官能基を有するポリマーを含む光配向膜を形成する工程を含むが、前記化学式(1)で示される重合開始剤を用いて前記化学式(2)で示されるモノマーを熱重合し、光配向膜及び液晶層の間にポリマー層を形成する工程を含むので、ラジカルの液晶分子への転移、及び、ラジカルの発生そのものを抑制できる。その結果、高温環境下で長期にわたって、良好な電圧保持率を維持でき、更に、焼き付き及びシミの発生とコントラストの低下とを抑制可能な液晶表示装置を製造することができる。
前記熱重合は、前記液晶層中の液晶材料のネマティック-アイソトロピック転移点より低く、かつ、前記重合開始剤のラジカル発生温度以上の温度で行われてもよい。
前記光配向膜を形成する工程において、前記光配向膜に偏光紫外光を照射してもよい。これにより、液晶配向の方位、及び、プレチルト角の制御を容易かつ高精度に行うことができる。
前記光反応性官能基は、アゾベンゼン基、カルコン基、又は、シンナメート基であってもよい。この態様によれば、液晶層中へのラジカル溶出抑制効果をより効果的に得ることができる。
前記光配向膜に含まれる前記ポリマーは、ポリアミック酸、ポリイミド、ポリシロキサン、ポリビニル、又は、ポリマレイミドであってもよい。
前記光配向膜に含まれる前記ポリマーと、前記ポリマー層に含まれる前記ポリマーとを光照射及び/又は熱により互いに結合させてもよい。この態様によれば、光配向膜に含まれるポリマーの液晶層への溶出を低減でき、液晶表示装置の長期信頼性を更に向上できる。
前記光配向膜は、偏光照射により前記液晶層中の液晶分子を略水平に配向してもよい。
前記光配向膜は、偏光照射により前記液晶層中の液晶分子を略垂直に配向してもよい。
前記液晶層は、誘電率異方性が負の液晶材料を含有してもよい。この態様によれば、焼き付き及びシミの発生をより効果的に抑制することができる。
前記液晶表示装置の配向モードは、ねじれネマティック(TN)モード、電界制御複屈折(ECB)モード、イン・プレーン・スイッチング(IPS)モード、フリンジ・フィールド・スイッチング(FFS)モード、垂直配向(VA)モード、又は、ねじれネマティック垂直配向(VATN)モードであってもよい。
以上に示した本発明の各態様は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
10、20:基板
30:液晶層
31:ラジカル捕捉剤
40:光配向膜
50:ポリマー層
60:シール材
70:偏光板
80:バックライト

Claims (18)

  1. 一対の基板と、前記一対の基板間に挟持された液晶層と、前記一対の基板の少なくとも一方と前記液晶層との間に配置された光配向膜と、前記液晶層及び前記光配向膜の間に設けられたポリマー層とを備える液晶表示装置であって、
    前記光配向膜は、光反応性官能基を有するポリマーを含み、
    前記ポリマー層は、下記化学式(1)で示される重合開始剤由来の構造、及び、下記化学式(2)で示されるモノマー由来の構造を有するポリマーを含む液晶表示装置。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Pは、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
    及びZは、同一又は異なって、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-NHCO-基、-CONH-基、-CH-基、-CH(CH)-基、-C(CH-基、-CF-基、-C(OH)CO(CO)-基、-C(OH)C(HN)-基、又は、直接結合を表す。
    及びRは、同一又は異なって、-H基、-CH基、-C基、-C基、-X基(Xはハロゲン)、-CN基、-NH基、-NH(CH)基、-N(CH基、-OH基、-OCH基、-OC基、又は、-OC基を表す。
    は、1,4-フェニレン基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、又は、炭素数1~18の飽和若しくは不飽和アルキレン基を表す。
    が有する-CH-基は、互いに隣接しない限り、-O-基、又は、-S-基で置換されていてもよい。
    が有する水素原子の少なくとも一つは、フッ素原子、塩素原子、-CN基、又は、炭素数1~6のアルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基若しくはアルキルカルボニルオキシ基で置換されていてもよい。
    nは、0、1又は2である。
    nが2の場合、アゾ基に対して同じ側にある2つのAは、同一であってもよいし、互いに異なっていてもよく、アゾ基に対して同じ側にある2つのZは、同一であってもよいし、互いに異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、P及びPは、同一又は異なって、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
    及びAは、同一又は異なって、1,4-フェニレン基、4,4´-ビフェニル基、ナフタレン-2,6-ジイル基、アントラセン2,6-ジイル基、又は、フェナントレン-2,7-ジイル基を表す。
    は、-COO-基、-OCO-基、-O-基、-CO-基、-NHCO-基、-CONH-基若しくは-S-基、又は、AとA若しくはAとAとが直接結合していることを表す。
    mは、0、1又は2である。
    及びSは、同一又は異なって、(CH(1≦j≦18)、(CH-CH-O)(1≦k≦6)、又は、PとA、AとP若しくはAとPとが直接結合していることを表す。
    及びAが有する水素原子の少なくとも一つは、ハロゲン基、メチル基、又は、エチル基に置換されていてもよい。)
  2. 前記光反応性官能基は、アゾベンゼン基、カルコン基、又は、シンナメート基である請求項1記載の液晶表示装置。
  3. 前記光配向膜に含まれる前記ポリマーは、ポリアミック酸、ポリイミド、ポリシロキサン、ポリビニル、又は、ポリマレイミドである請求項1又は2記載の液晶表示装置。
  4. 前記光配向膜に含まれる前記ポリマーは、前記ポリマー層に含まれる前記ポリマーと結合されている請求項1~3のいずれかに記載の液晶表示装置。
  5. 前記光配向膜は、前記液晶層中の液晶分子を略水平に配向させる請求項1~4のいずれかに記載の液晶表示装置。
  6. 前記光配向膜は、前記液晶層中の液晶分子を略垂直に配向させる請求項1~4のいずれかに記載の液晶表示装置。
  7. 前記液晶層は、誘電率異方性が負の液晶材料を含有する請求項1~6のいずれかに記載の液晶表示装置。
  8. 前記液晶表示装置の配向モードは、ねじれネマティック(TN)モード、電界制御複屈折(ECB)モード、イン・プレーン・スイッチング(IPS)モード、フリンジ・フィールド・スイッチング(FFS)モード、垂直配向(VA)モード、又は、ねじれネマティック垂直配向(VATN)モードである請求項1~7のいずれかに記載の液晶表示装置。
  9. 一対の基板を準備する工程と、
    前記一対の基板の少なくとも一方に、光反応性官能基を有するポリマーを含む光配向膜を形成する工程と、
    少なくとも一方に前記光配向膜が形成された前記一対の基板の間に液晶層を形成する工程と、
    下記化学式(1)で示される重合開始剤を用いて下記化学式(2)で示されるモノマーを熱重合し、前記光配向膜及び前記液晶層の間にポリマー層を形成する工程とを含む液晶表示装置の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Pは、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
    及びZは、同一又は異なって、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-NHCO-基、-CONH-基、-CH-基、-CH(CH)-基、-C(CH-基、-CF-基、-C(OH)CO(CO)-基、-C(OH)C(HN)-基、又は、直接結合を表す。
    及びRは、同一又は異なって、-H基、-CH基、-C基、-C基、-X基(Xはハロゲン)、-CN基、-NH基、-NH(CH)基、-N(CH基、-OH基、-OCH基、-OC基、又は、-OC基を表す。
    は、1,4-フェニレン基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、又は、炭素数1~18の飽和若しくは不飽和アルキレン基を表す。
    が有する-CH-基は、互いに隣接しない限り、-O-基、又は、-S-基で置換されていてもよい。
    が有する水素原子の少なくとも一つは、フッ素原子、塩素原子、-CN基、又は、炭素数1~6のアルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基若しくはアルキルカルボニルオキシ基で置換されていてもよい。
    nは、0、1又は2である。
    nが2の場合、アゾ基に対して同じ側にある2つのAは、同一であってもよいし、互いに異なっていてもよく、アゾ基に対して同じ側にある2つのZは、同一であってもよいし、互いに異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、P及びPは、同一又は異なって、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
    及びAは、同一又は異なって、1,4-フェニレン基、4,4´-ビフェニル基、ナフタレン-2,6-ジイル基、アントラセン2,6-ジイル基、又は、フェナントレン-2,7-ジイル基を表す。
    は、-COO-基、-OCO-基、-O-基、-CO-基、-NHCO-基、-CONH-基若しくは-S-基、又は、AとA若しくはAとAとが直接結合していることを表す。
    mは、0、1又は2である。
    及びSは、同一又は異なって、(CH(1≦j≦18)、(CH-CH-O)(1≦k≦6)、又は、PとA、AとP若しくはAとPとが直接結合していることを表す。
    及びAが有する水素原子の少なくとも一つは、ハロゲン基、メチル基、又は、エチル基に置換されていてもよい。)
  10. 前記熱重合は、前記液晶層中の液晶材料のネマティック-アイソトロピック転移点より低く、かつ、前記重合開始剤のラジカル発生温度以上の温度で行われる請求項9記載の液晶表示装置の製造方法。
  11. 前記光配向膜を形成する工程において、前記光配向膜に偏光紫外光を照射する請求項9又は10記載の液晶表示装置の製造方法。
  12. 前記光反応性官能基は、アゾベンゼン基、カルコン基、又は、シンナメート基である請求項9~11のいずれかに記載の液晶表示装置の製造方法。
  13. 前記光配向膜に含まれる前記ポリマーは、ポリアミック酸、ポリイミド、ポリシロキサン、ポリビニル、又は、ポリマレイミドである請求項9~12のいずれかに記載の液晶表示装置の製造方法。
  14. 前記光配向膜に含まれる前記ポリマーと、前記ポリマー層に含まれる前記ポリマーとを光照射及び/又は熱により互いに結合させる請求項9~13のいずれかに記載の液晶表示装置の製造方法。
  15. 前記光配向膜は、偏光照射により前記液晶層中の液晶分子を略水平に配向する請求項9~14のいずれかに記載の液晶表示装置の製造方法。
  16. 前記光配向膜は、偏光照射により前記液晶層中の液晶分子を略垂直に配向する請求項9~14のいずれかに記載の液晶表示装置の製造方法。
  17. 前記液晶層は、誘電率異方性が負の液晶材料を含有する請求項9~16のいずれかに記載の液晶表示装置の製造方法。
  18. 前記液晶表示装置の配向モードは、ねじれネマティック(TN)モード、電界制御複屈折(ECB)モード、イン・プレーン・スイッチング(IPS)モード、フリンジ・フィールド・スイッチング(FFS)モード、垂直配向(VA)モード、又は、ねじれネマティック垂直配向(VATN)モードである請求項9~17のいずれかに記載の液晶表示装置の製造方法。
PCT/JP2016/087699 2015-12-25 2016-12-19 液晶表示装置、及び、液晶表示装置の製造方法 WO2017110704A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680075807.9A CN108431683B (zh) 2015-12-25 2016-12-19 液晶显示装置、以及液晶显示装置的制造方法
US16/065,280 US11009749B2 (en) 2015-12-25 2016-12-19 Liquid crystal display device and method for manufacturing liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015254219 2015-12-25
JP2015-254219 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017110704A1 true WO2017110704A1 (ja) 2017-06-29

Family

ID=59090300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087699 WO2017110704A1 (ja) 2015-12-25 2016-12-19 液晶表示装置、及び、液晶表示装置の製造方法

Country Status (3)

Country Link
US (1) US11009749B2 (ja)
CN (1) CN108431683B (ja)
WO (1) WO2017110704A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967241B (zh) * 2022-04-11 2023-06-09 汕头大学 一种多组分复合体系的光驱液晶光调控器的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076950A (ja) * 2006-09-25 2008-04-03 Sharp Corp 液晶表示パネル及びその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100465445B1 (ko) * 2001-07-31 2005-01-13 삼성전자주식회사 액정배향막용 광배향재
US7425394B2 (en) * 2004-02-10 2008-09-16 Dai Nippon Printing Co., Ltd. Liquid crystal display
EP2222740B1 (en) * 2007-12-21 2017-10-11 Rolic AG Functionalized photoreactive compounds
CN103097945B (zh) * 2010-08-03 2015-09-30 夏普株式会社 液晶显示装置及液晶显示装置的制造方法
US20130169906A1 (en) * 2010-09-08 2013-07-04 Sharp Kabushiki Kaisha Liquid crystal display device
TWI574994B (zh) * 2010-10-14 2017-03-21 Merck Patent Gmbh Liquid crystal display device
WO2012121319A1 (ja) * 2011-03-09 2012-09-13 シャープ株式会社 液晶組成物、液晶表示装置及び液晶表示装置の製造方法
US9651828B2 (en) * 2011-06-27 2017-05-16 Merck Patent Gmbh Liquid crystal display device and method for manufacturing liquid crystal display device
JP2013011755A (ja) * 2011-06-29 2013-01-17 Sony Corp 液晶表示装置及びその製造方法
WO2013008727A1 (ja) * 2011-07-14 2013-01-17 シャープ株式会社 液晶表示装置及び液晶表示装置の製造方法
KR102020755B1 (ko) * 2011-08-02 2019-09-11 롤리크 아게 광배향 재료
WO2013050121A1 (en) * 2011-10-03 2013-04-11 Rolic Ag Photoaligning materials
EP2763958B1 (en) * 2011-10-03 2021-08-25 ROLIC Technologies AG Photoaligning materials
WO2014061756A1 (ja) * 2012-10-19 2014-04-24 シャープ株式会社 モノマー、液晶組成物、液晶表示装置及び液晶表示装置の製造方法
JP5598642B1 (ja) * 2013-11-13 2014-10-01 Dic株式会社 液晶表示装置
WO2017146180A1 (ja) * 2016-02-25 2017-08-31 富士フイルム株式会社 反射防止フィルム、及び反射防止フィルムの製造方法
WO2018079427A1 (ja) * 2016-10-28 2018-05-03 シャープ株式会社 シール材組成物、液晶セル及び走査アンテナ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076950A (ja) * 2006-09-25 2008-04-03 Sharp Corp 液晶表示パネル及びその製造方法

Also Published As

Publication number Publication date
US20210109409A1 (en) 2021-04-15
US11009749B2 (en) 2021-05-18
CN108431683A (zh) 2018-08-21
CN108431683B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2013103153A1 (ja) 液晶表示装置、及び、その製造方法
US9671650B2 (en) Method for manufacturing liquid crystal display device
CN107037635B (zh) 液晶显示装置的制造方法
TWI544258B (zh) Liquid crystal display device
US20130271713A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
US20160363794A1 (en) Liquid Crystal Display Device and Method of Manufacturing the Same
WO2016017483A1 (ja) 液晶表示装置
WO2014038431A1 (ja) 配向膜用重合体、及び、液晶表示装置
TW201310143A (zh) 液晶顯示面板及液晶顯示裝置
TWI675096B (zh) 液晶配向劑、液晶配向膜、液晶顯示元件、相位差膜及其製造方法、聚合物以及二胺
US8411238B2 (en) Liquid crystal display panel and process for production thereof
JP5951936B2 (ja) 液晶表示素子の製造方法
TWI522699B (zh) Liquid crystal display panel and liquid crystal display device
US9488869B2 (en) Liquid crystal display device and method for manufacturing same
WO2017119376A1 (ja) 液晶表示装置、及び、液晶表示装置の製造方法
US20130342798A1 (en) Liquid crystal display panel, liquid crystal display apparatus, and liquid crystal display cell
WO2017110704A1 (ja) 液晶表示装置、及び、液晶表示装置の製造方法
TWI711671B (zh) 液晶配向劑、液晶配向膜、液晶元件、以及液晶配向膜及液晶元件的製造方法
JP2019056036A (ja) ネガ型液晶材料、液晶セル及び液晶表示装置
JP6568640B2 (ja) 液晶表示装置
WO2017213072A1 (ja) 液晶表示装置
WO2013161865A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
CN111793502A (zh) 液晶元件及其制造方法、液晶组合物及包含其的制造方法、及有机层形成用聚合物
JP2021101208A (ja) 液晶配向剤、液晶配向膜、液晶素子及び重合体
TW202009265A (zh) 液晶配向劑、液晶配向膜、液晶元件及液晶元件的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP