WO2017108501A1 - Procédé de fabrication d'une conduite et d'une structure tubulaire chemisées mécaniquement - Google Patents

Procédé de fabrication d'une conduite et d'une structure tubulaire chemisées mécaniquement Download PDF

Info

Publication number
WO2017108501A1
WO2017108501A1 PCT/EP2016/080788 EP2016080788W WO2017108501A1 WO 2017108501 A1 WO2017108501 A1 WO 2017108501A1 EP 2016080788 W EP2016080788 W EP 2016080788W WO 2017108501 A1 WO2017108501 A1 WO 2017108501A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer tube
inner liner
pipe
expander tool
manufacturing
Prior art date
Application number
PCT/EP2016/080788
Other languages
English (en)
Inventor
Jean-Louis Saltel
Romain Neveu
Samuel THIEBAULT
Original Assignee
Saltel Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saltel Industries filed Critical Saltel Industries
Publication of WO2017108501A1 publication Critical patent/WO2017108501A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/18Double-walled pipes; Multi-channel pipes or pipe assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/051Deforming double-walled bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/04Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/08Tube expanders
    • B21D39/20Tube expanders with mandrels, e.g. expandable
    • B21D39/203Tube expanders with mandrels, e.g. expandable expandable by fluid or elastic material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • C21D7/12Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars by expanding tubular bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • F16L1/12Laying or reclaiming pipes on or under water
    • F16L1/20Accessories therefor, e.g. floats, weights
    • F16L1/202Accessories therefor, e.g. floats, weights fixed on or to vessels
    • F16L1/203Accessories therefor, e.g. floats, weights fixed on or to vessels the pipes being wound spirally prior to laying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/08Coatings characterised by the materials used by metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • F16L9/04Reinforced pipes

Definitions

  • the invention relates to the field of pipes and tubular structures with internal lining adapted to the transport of fluids, and in particular corrosive fluids.
  • the invention relates in particular, but not exclusively, to submarine tubular conduits and structures.
  • the invention applies more particularly, but not exclusively, to the field of oil production or gas.
  • the inner wall of these pipes may be in direct contact with highly corrosive hydrocarbons extracted from a petroleum field. Under these very severe conditions, the inner wall of these pipes in which hydrocarbons circulate must be able to maintain its integrity for a service life of at least 20 years.
  • C A corrosion resistant alloy inner liner
  • a pipe of this type can be mechanically lined (this type of pipe is called “mechanically lined pipe” in English):
  • the radial expansion of the inner liner can be implemented by hydroforming, applying a hydraulic pressure of the order of 400 to 1200 bar, by for example, inside the jacket until the latter plastically deforms and comes into close contact with the outer tube. This radial expansion of the inner liner beyond its elastic limit is continued until elastically deforming the outer tube. The hydraulic pressure is then interrupted, which causes the elasticity of the outer tube which contracts around the liner (itself expanded against the inner surface of the outer pipe), causing the two parts to shrink. The outer tube and the inner liner are then mechanically linked (we speak of "mechanical bond" in English).
  • a disadvantage of this approach is that there is a risk that water remains present between the outer tube and the liner after hydroforming, which weakens the mechanical connection between these two parts.
  • the jacketed pipes are placed coaxially and assembled by welding. More specifically, a circumferential weld is implemented over the entire thickness of the outer tube and the inner liner. It can result:
  • the present invention aims to solve the weaknesses of prior pipe lining techniques for the transport of corrosive fluids.
  • the invention proposes, in a first aspect, a method of manufacturing a mechanically jacketed pipe for the transport of fluids, characterized in that it comprises the steps of:
  • the expansion tool may be a tool equipped with an elastic peripheral tubular membrane inflated hydraulically by a fluid under pressure, designated by the English term "packer".
  • the expander tool works step by step, with successive phases of inflation / deflation / advance of its peripheral tubular membrane.
  • the membrane After lining a portion of the outer tube, the membrane is deflated and moved to be repositioned to a new area of the outer tube to be lined.
  • the expansion is then interrupted by deflating the expander tool, which causes the elasticity of the outer tube which contracts around the inner liner (which is itself expanded against the inner surface of the outer tube) to shrink. outer tube on the inner liner.
  • the method of the invention makes a power of the outer part (outer tube) and a compression of the inner part (inner liner).
  • the outer tube and the expanded inner liner are then mechanically linked (we speak of "mechanical bond” in English).
  • This mechanical connection is a tight fit between the cylindrical outer surface of the inner liner and the cylindrical inner surface of the outer tube, making disassembly impossible without damaging the two parts.
  • This method of manufacturing a mechanically jacketed pipe is inexpensive, precise and relatively easy to implement compared to solutions of the prior art (hydroforming in particular).
  • the method of the invention can be implemented on site in which the outer tube to be lined is already arranged, and is suitable for lining tubes of various lengths.
  • the inflation of the expander tool causes the radial elastic expansion / deformation of at least a portion of the outer tube.
  • the diameter of the liner is smaller than that of the outer tube.
  • the expansion is then interrupted thereby forcing the outer tube on the liner and assemble the tube and liner by hooping.
  • the inflation of the expander tool is continued until causing the radial plastic expansion / deformation of at least a portion of the outer tube.
  • the manufacturing method comprises, prior to step c) and up to step d), a step of heating said outer tube.
  • This operation consists of heating the outer tube to expand it, the cooling coming to constrain the outer tube on the inner liner.
  • the invention also relates to a mechanically jacketed pipe according to the manufacturing method described above.
  • the inner liner is made of a material resistant to corrosion.
  • the outer tube is made of carbon steel.
  • the invention applies more particularly, but not necessarily, to pipes used on the surface or under water for the transport of petroleum products, gas, water or corrosive liquids.
  • This doubled bimetallic pipe consists of, for example, an outer tube of carbon steel and an inner sleeve of corrosion resistant metal.
  • the corrosion-resistant liner (about 3 mm thick, for example) is mechanically bonded along its entire length to the inner surface of the outer pipe with lower corrosion resistance.
  • the present invention also aims to solve the weaknesses of prior art welding of jacketed pipes placed end to end.
  • the invention proposes, according to a second aspect, a method of manufacturing a tubular structure or duct mechanically jacketed.
  • the method comprises the steps of:
  • Welding of the liners for forming the inner liner is performed prior to sliding the inner liner into the outer tube. Again, the welding of the liners for forming the inner liner is made of a homogeneous material that is not in contact with the metal of the outer tube.
  • steps a and b) are repeated until the predetermined length of the tubular structure (or pipeline, or "pipeline”) is reached.
  • the welds of said inner liners are not arranged opposite the welding of said first and second pipes along the longitudinal axis of the tubular structure.
  • the welds of two sections of the outer tube and two sections forming the inner liner are preferably not located at the same level (or facing). In this way, if a crack propagates on one of the materials of the outer tube or inner liner, it will be stopped when it reaches the second material. This preserves the integrity of the tubular structure during a service life of at least 20 years.
  • the method is easy to implement, of satisfactory cost and ensures effective holding of pipe sections, especially at their junction.
  • the junction of the pipes forming the pipeline is not weak.
  • the inflation of the expander tool causes the radial elastic expansion / deformation of at least a portion of the internal liner.
  • the inflation of the expander tool causes the radial plastic expansion / deformation of at least a portion of the inner liner.
  • the manufacturing method comprises a step of heating said outer tube.
  • the invention also relates to a mechanically jacketed tubular structure obtained according to the manufacturing method described above.
  • Such a tubular structure can be used in "onshore” or “offshore” operations.
  • the tubular structure of the invention comprises an internal liner capable of withstanding highly corrosive media, mechanically bonded to an outer tube having good mechanical strength and high crush resistance.
  • Figure 1 schematically illustrates the establishment of the elements forming a mechanically jacketed pipe according to the invention
  • Figure 2 is a schematic sectional view of a mechanically jacketed pipe according to the invention.
  • Figures 3 to 5 schematically illustrate different steps of the method of manufacturing a mechanically jacketed pipe according to a first embodiment of the invention
  • Figures 6 and 7A to 7D schematically illustrate different steps of the method of manufacturing a mechanically jacketed pipe according to a second embodiment of the invention
  • FIGS. 8A to 8G schematically illustrate different steps of the method of manufacturing a pipe according to the invention
  • FIG. 9 is a detailed view of a pipe according to the invention showing the weld between two pipes of the outer tube, and
  • Figure 10 is a detail view of a pipe according to the invention showing the welding between two liners of the inner liner. 5. Description
  • FIG. 2 is a sectional view of a tubular bimetallic pipe 1 intended to convey corrosive fluids in particular.
  • This pipe 1 is particularly suitable for the transport of hydrocarbons in the context of underwater oil production facilities and for this purpose has a high corrosion-resistant lining which is in direct contact with the fluid flowing in the pipe. 1.
  • This pipe 1 is mechanically lined according to a method which will be described later. It comprises an outer tube 11 of carbon steel (of the X65 type, for example) whose inner cylindrical surface is coated with an inner liner 12 made of material (preferably an alloy, such as AISI 304L or AISI 316L, for example) resistant to corrosion.
  • an inner liner 12 made of material (preferably an alloy, such as AISI 304L or AISI 316L, for example) resistant to corrosion.
  • This pipe 1 thus has a wall in two thicknesses so that the pipe 1 is able to resist corrosion and that it is, moreover, a robust structure resistant to mechanical stresses when in use.
  • This pipe 1 has a length of about 12 meters and a diameter of between 10 cm and 155 cm (between 4 and 60 inches). It can be assembled end to end with other pipes of the same type to form a tubular structure (or pipeline, or pipeline).
  • the inner liner 12 is disposed in the outer tube 11 coaxially, the diameter of the inner liner 12 being smaller than the diameter of the outer tube 11.
  • the length of the inner liner 12 is equal to that of the outer tube 11.
  • Such an expansion tool 2 is adapted to be inserted inside the inner liner 12, in the deflated state, and be positioned in a given zone of the inner liner 12 that is to be expanded (FIG. 3).
  • the expansion tool 2 is supplied with high pressure liquid, able to radially expand its peripheral tubular membrane outwards, so that it is pressed against the wall of the inner liner 12 and also causes radially outwardly expanding plastic, until the outer surface of the inner liner 12 is applied over a certain length against the inner surface of the outer tube 11 ( Figure 4).
  • the expansion is then interrupted by deflating the expansion tool, which causes the elasticity of the outer tube 11 which contracts around the internal liner 12 (itself expanded against the inner surface of the outer tube 11), and an elastic return. hooping of the outer tube 11 on the inner liner 12.
  • the outer tube 11 and the inner liner 12 undergo constraints of different nature.
  • the method of the invention realizes a tensioning of the outer part (outer tube 11) and a compression of the inner part (inner liner 12).
  • the outer tube 11 and the inner liner 12 expanded are then mechanically linked (we speak of "mechanical bond” in English).
  • This mechanical link is a tight fit between the cylindrical outer surface of the inner liner 12 and the cylindrical inner surface of the outer tube 11, making disassembly impossible without damaging the two parts 11, 12.
  • the expansion tool 2 is deflated and moved so as to be repositioned into a new zone to be expanded (FIG. 5).
  • the expansion tool 2 is connected to the surface by a rod for handling, its proper positioning, and the control members for inflating and deflating.
  • a conduit for supplying and discharging the inflation liquid can be integrated into the rod.
  • Figure 6 shows the expansion tool 2 disposed in the inner liner 12 before inflation, the outer tube 11 being heated.
  • Figures 7A to 7D are sectional views of the pipe 1 which show the different steps of the lining of the pipe 1, the expansion tool 2 is not illustrated for the sake of clarity.
  • the heating of the outer tube 11 is carried out to cause a slight expansion of its diameter in its elastic limit (FIGS. 7A and 7B).
  • the inner liner 12 is then expanded by inflating the expansion tool 2 until it comes into contact with the inner surface of the outer tube 11 (Fig. 7C).
  • the expansion tool 2 is still slightly inflated so that the inner liner 12 is further expanded, the diameter of the outer tube 11 also being slightly expanded (in FIG. 7C, the forces applied by the inner liner 12 on the outer tube 11 are represented by arrows located on the periphery of the inner surface of the inner liner 12).
  • the expansion and heating of the outer tube 11 are controlled so that the diameter of the outer tube 11 does not extend beyond its elastic limit.
  • the lining of the outer tube 11 is carried out in successive steps, by moving the expansion tool 2 progressively from one end to the other of the outer tube 11, always in the same direction.
  • the difference in diameter between the outer tube 11 and the inner liner 12 is chosen according to whether it is desired to expand elastically or plastically the outer tube.
  • the method of manufacturing a pipe 100 of great length (several kilometers, for example) which is adapted to convey fluids such as hydrocarbons.
  • the outer tube 110 of the pipe 100 is provided with an inner liner 120 manufactured using a material which, by its constitution and properties, is likely to provide effective protection against aggressiveness diverse environments.
  • the inner liner 120 is made of a corrosion resistant material, and the outer tube 110 is carbon steel in this example.
  • Line 100 is obtained by firstly connecting several pipes coaxially (between 2 and 4, for example) so as to obtain an outer tube 110.
  • a first pipe 110A is coaxially connected by a first solder 111A peripheral to a second pipe 110B, the latter being coaxially connected by a second peripheral weld 111B to a third pipe HOC.
  • several jackets are coaxially connected so as to obtain an internal liner 120.
  • several jackets 120A to 120E are connected end-to-end through 121A 121D peripheral welds.
  • the inner liner 120 is disposed within the outer tube 110, as shown in FIG. 8B.
  • the length of the inner liner 120 is greater than the length of the outer tube 110, so that the left ends of the outer tube 110 and the inner liner 120 are located in the same radial plane, the right end of the inner liner 120 protruding from the right end of the outer tube 110.
  • a deflated expander tool 2 is then placed within the inner liner 120, at the level of the first pipe 110A and the liner 120A which are facing each other.
  • the expander 2 is then inflated so as to initially cause the radial expansion / deformation of a part of the inner liner 120 (in this case of the liner 120A) until this portion comes in contact with the inner surface of a portion of the outer tube 110 (in this case the first pipe 110A).
  • the inflation of the expander 2 is continued until the elastic expansion / elastic deformation of the first pipe 110A (FIG. 8C) is achieved.
  • the expander tool 2 is then deflated, which causes, as explained above, the elastic return of the first pipe 110A which contracts around the liner 120A.
  • the expander tool 2 is moved from left to right (FIG. 8D) and these steps are repeated to liner the second pipe 110B with the liner 120B (FIG. 8E).
  • a new pipe 110D is connected to the free end of the HOC pipe via a peripheral weld 111C, the length of the inner liner 120 always being greater than the length of the outer pipe 110.
  • the pipe 100 consists of several mechanically jacketed pipes assembled end to end.
  • the expander tool 2 is moved from left to right (the expander tool is not shown in FIGS. 8E-8G for the sake of clarity) to line the third HOC pipe with the liner 120D (FIG. 8E). Once the pipe 100 mechanically jacketed, the expander tool 2 is then removed.
  • Figure 9 is a detailed view of a pipe 100 according to the invention showing the weld 111A between two pipes 110A and 110B of the outer tube 110.
  • Figure 10 is a detailed view of a pipe 100 according to the invention showing the weld 121A between two liners 120A and 120B of the inner liner 120.
  • welds of the pipes forming the outer tube 110 are made separately from the welds forming the inner liner 120.
  • the weld 111A of the two pipes 110A and 110B intended to partially form the outer tube 110 is performed separately from the weld 121A 120A shirts and 120B of the inner liner 120 ..
  • the weld 111A of the two pipes 110A and 110B is carried out on a homogeneous metal, which is not in contact with the corrosion resistant alloy (C A) of the inner liner 120, and in particular of the liner 120B.
  • the weld 121A 120A and 120B shirts intended to partially form the inner liner 120 is performed before sliding the inner liner 120 in the outer tube 110. Again, the welding of the shirts 121 and 122 is made with a homogeneous material (l corrosion resistant alloy in this case) which is not in contact with the metal of the outer tube.
  • the welds 121A to 121E and the welds 111A to 111C are preferably not located at the same level (or facing) along the longitudinal axis of the pipe. 100, and therefore do not come to flatten against each other once the pipe 100 mechanically jacketed (Figure 8G). In this way, if a crack appears at one of the welds of the outer tube or inner liner, it can not propagate to the other weld. This preserves the integrity of the tubular structure during a service life of at least 20 years.
  • the method is easy to implement, of satisfactory cost and ensures effective holding of the tubes forming the pipe especially at their junction, both mechanically and with regard to corrosive agents and / or abrasives.
  • each portion of the outer tube is heated before proceeding to lining.
  • the difference in diameter between the outer tube and the inner liner is chosen according to whether it is desired to elastically or plastically expand the outer tube.
  • Such pipeline and associated pipelines are used for the exploitation of oil and gas deposits, particularly onshore or offshore.
  • They can also be used to transport chemicals, corrosives and / or abrasives, or any other type of fluid.
  • They can be immersed in water, in the marine environment for example, or buried in the ground.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une conduite chemisée mécaniquement pour le transport de fluides, comprenant les étapes de : • a) insertion d'une chemise interne (12) cylindrique au sein d'un tube externe (11); • b) insertion d'un outil expanseur (2) au sein de ladite chemise interne (12); • c) gonflage de l'outil expanseur (2) de manière à provoquer dans un premier temps la déformation plastique radiale d'au moins une partie de la chemise interne (12) jusqu'à ce qu'elle vienne en contact avec la surface intérieure du tube externe (11), puis la déformation élastique radiale d'au moins une partie du tube externe (11); • d) dégonflage de l'outil expanseur (2); • e) déplacement de l'outil expanseur (2) dans ladite chemise interne (12); • f) répéter les étapes (c) et (d) pour chacune desdites au moins une partie de la chemise interne (12) afin de former la conduite chemisée mécaniquement, et • g) retrait de l'outil expanseur (2).

Description

Procédé de fabrication d'une conduite et d'une structure tubulaire chemisées mécaniquement
1. Domaine de l'invention
L'invention se rapporte au domaine des conduites et des structures tubulaires à chemisage interne adaptées au transport de fluides, et notamment de fluides corrosifs.
L'invention concerne notamment, mais non exclusivement, les conduites et structures tubulaires sous-marines.
L'invention s'applique plus particulièrement, mais non exclusivement, au domaine de la production pétrolière ou de gaz.
2. Solutions de l'art antérieur
Il est connu d'utiliser des conduites pour le transport de fluides corrosifs sous forte pression.
A titre d'exemple, la paroi intérieure de ces conduites peut être en contact direct avec des hydrocarbures extrêmement corrosifs extraits d'un champ pétrolier. Dans ces conditions très sévères, la paroi intérieure de ces conduites dans lesquelles circulent les hydrocarbures doit pouvoir conserver son intégrité pendant une durée de service d'au moins 20 ans.
Il est connu et l'on sait protéger contre la corrosion la paroi intérieure de ces conduites par un revêtement interne en alliage résistant à la corrosion (appelé "C A" en anglais pour "corrosion résistant alloy").
Selon une approche particulière connue, une conduite de ce type peut être chemisée mécaniquement (ce type de conduite est appelé "mechanically lined pipe" en anglais) :
- en positionnant, coaxialement ou non, dans un tube externe (appelé "Mother Pipe" en Anglais) en acier au carbone, un chemisage interne (appelé "lined pipe" en anglais) de diamètre légèrement inférieur à la conduite extérieure, puis
- en procédant à l'expansion plastique radiale de la chemise interne pour qu'elle vienne s'ajuster étroitement par un contact métallique contre la paroi interne du tube externe.
L'expansion radiale de la chemise interne peut être mise en œuvre par hydroformage, en appliquant une pression hydraulique de l'ordre 400 à 1200 bars, par exemple, à l'intérieur de la chemise jusqu'à ce que cette dernière se déforme plastiquement et vienne en contact étroit avec le tube externe. Cette expansion radiale de la chemise interne au-delà de sa limite élastique est poursuivie jusqu'à déformer élastiquement le tube externe. La pression hydraulique est alors interrompue, ce qui provoque le retour élastique du tube externe qui se contracte autour de la chemise (elle-même expansée contre la surface interne de la conduite extérieure), ce qui provoque un frettage des deux pièces. Le tube externe et la chemise interne sont alors liées mécaniquement (on parle de "mechanical bond" en anglais).
Un inconvénient de cette approche est qu'il existe un risque que de l'eau reste présente entre le tube externe et la chemise après hydroformage, ce qui fragilise le lien mécanique entre ces deux pièces.
On réalise par cette approche des conduites chemisées d'une longueur égale à 12m classiquement, qu'il convient alors de raccorder entre elles tout en assurant une continuité de la protection à la corrosion.
Pour ce faire, les conduites chemisées sont placées coaxialement et assemblées par soudage. Plus précisément, une soudure circonférentielle est mise en œuvre sur toute l'épaisseur du tube externe et de la chemise interne. Il peut en résulter :
- un risque de contamination due à la soudure de matériaux différents (acier au carbone pour le tube externe et alliage résistant à la corrosion pour la chemise interne), - un risque de corrosion ponctuelle du fait que le matériau carbone du tube externe puissent être en contact avec le fluide corrosif à l'intérieur de la conduite et
- un risque de propagation de fissure sur l'épaisseur de la soudure, ce qui créé une zone de faiblesse, pouvant mener à une fuite au niveau de la jonction entre deux conduites assemblées bout à bout.
3. Exposé de l'invention
La présente invention a pour but de solutionner les faiblesses des techniques antérieures de chemisage des conduites pour le transport de fluides corrosifs.
Pour ce faire, l'invention propose, selon un premier aspect, un procédé de fabrication d'une conduite chemisée mécaniquement pour le transport de fluides, caractérisé en ce qu'il comprend les étapes de :
a) insertion d'une chemise interne au sein d'un tube externe ;
b) insertion d'un outil expanseur au sein de la chemise interne ; c) gonflage de l'outil expanseur de manière à provoquer dans un premier temps la dilatation/déformation plastique radiale d'au moins une partie de la chemise interne jusqu'à ce qu'elle vienne en contact avec la surface intérieure du tube externe, puis la dilatation/déformation élastique radiale d'au moins une partie du tube externe ;
d) dégonflage de l'outil expanseur ;
e) déplacement de l'outil expanseur dans ladite chemise interne ;
f) répéter les étapes (c) et (d) pour chacune desdites au moins une partie de la chemise interne afin de former la conduite chemisée mécaniquement, et g) retrait de l'outil expanseur.
L'outil d'expansion peut être un outil équipé d'une membrane tubulaire périphérique élastique gonflée hydrauliquement par un fluide sous pression, désigné par le terme anglais « packer ». L'outil expanseur travaille pas à pas, avec des phases successives de gonflage/dégonflage/avance de sa membrane tubulaire périphérique.
Après chemisage d'une portion du tube externe, la membrane est dégonflée et déplacée afin d'être repositionnée en une nouvelle zone du tube externe à chemiser.
L'opération d'expansion plastique radiale de chaque portion de la chemise interne est poursuivie jusqu'à déformer élastiquement le tube externe.
L'expansion est alors interrompue en dégonflant l'outil expanseur, ce qui provoque le retour élastique du tube externe qui se contracte autour de la chemise interne (elle-même expansée contre la surface intérieure du tube externe), ce qui provoque un frettage du tube externe sur la chemise interne.
Après cette opération, le tube externe et la chemise interne subissent des contraintes de nature différente. Ainsi, le procédé de l'invention réalise une mise sous tension de la pièce extérieure (tube externe) et une compression de la pièce intérieure (chemise interne).
Le tube externe et la chemise interne expansée sont alors liées mécaniquement (on parle de "mechanical bond" en anglais).
Ce lien mécanique est un ajustement serré entre la surface extérieure cylindrique de la chemise interne et la surface intérieure cylindrique du tube externe, rendant le démontage impossible sans détérioration des deux pièces. Ce procédé de fabrication d'une conduite chemisée mécaniquement est peu coûteux, précis et relativement facile à mettre en œuvre par rapport aux solutions de l'art antérieur (hydroformage notamment).
Le procédé de l'invention peut être mis en œuvre sur site dans lequel le tube externe à chemiser est déjà disposé, et est adapté pour chemiser des tubes de longueurs variées.
Selon un aspect particulier de l'invention, le gonflage de l'outil expanseur provoque la dilatation/déformation élastique radiale d'au moins une partie du tube externe.
Le diamètre du chemisage est inférieur à celui du tube externe. Une fois le chemisage déformé plastiquement par l'outil expanseur, l'expansion du chemisage est poursuivi jusqu'à provoquer une légère déformation élastique du tube externe.
L'expansion est alors interrompue venant ainsi contraindre le tube externe sur le chemisage et assembler le tube et le chemisage par frettage.
Selon une alternative de mise en œuvre, le gonflage de l'outil expanseur est poursuivi jusqu'à provoquer la dilatation/déformation plastique radiale d'au moins une partie du tube externe.
Selon un aspect particulier de l'invention, le procédé de fabrication comprend, préalablement à l'étape c) et jusqu'à l'étape d), une étape de chauffage dudit tube externe.
Cette opération consiste à chauffer le tube externe pour le dilater, le refroidissement venant contraindre le tube externe sur la chemise interne.
L'invention concerne, par ailleurs, une conduite chemisée mécaniquement selon le procédé de fabrication décrit précédemment.
Selon un aspect particulier de l'invention, le chemisage interne est fabriqué dans un matériau résistant à la corrosion.
Selon un aspect particulier de l'invention, le tube externe est en acier au carbone.
L'invention s'applique plus particulièrement, mais non obligatoirement, aux conduites utilisées en surface ou sous l'eau pour le transport de produits pétroliers, de gaz, d'eau ou de liquides corrosifs. Cette conduite bimétallique doublée est constituée, par exemple, d'un tube externe en acier au carbone et d'une chemise interne en métal résistant à la corrosion. La doublure résistante à la corrosion (d'une épaisseur d'environ 3 mm, par exemple) est liée mécaniquement sur toute sa longueur à la surface interne du tuyau externe présentant une résistance à la corrosion inférieure.
La présente invention a également pour but de solutionner les faiblesses des techniques antérieures de soudure de conduites chemisées placées bout à bout.
Pour ce faire, l'invention propose, selon un deuxième aspect, un procédé de fabrication d'une structure tubulaire ou canalisation chemisée mécaniquement.
Selon l'invention, le procédé comprend les étapes de :
a) soudure d'au moins un premier tuyau et d'un deuxième tuyau placés bout à bout de façon à former un tube externe de longueur prédéterminée ; b) soudure de plusieurs chemises internes bout à bout de façon à former un chemisage interne dont la longueur est supérieure à la longueur prédéterminée du tube externe ;
c) insertion dudit chemisage interne au sein dudit tube externe, une première extrémité du chemisage interne dépassant d'une première extrémité du tube externe;
d) insertion d'un outil expanseur dégonflé au sein dudit chemisage interne; e) gonflage de l'outil expanseur à partir de la deuxième extrémité du chemisage interne de manière à provoquer dans un premier temps la dilatation/déformation plastique radiale d'au moins une partie du chemisage interne jusqu'à ce qu'il vienne en contact avec la surface intérieure du tube externe, puis la dilatation/déformation élastique radiale d'au moins une partie du tube externe ;
f) dégonflage de l'outil expanseur ;
g) déplacement de l'outil expanseur dans ledit chemisage interne ;
h) répéter les étapes (e) et (f) pour chacune des parties dudit chemisage interne, et
i) retrait de l'outil expanseur.
Ainsi, la soudure du tube externe (dit « Mother Pipe » en anglais) est effectuée avant l'expansion du chemisage interne (dit « Lined Pipe » en anglais). La soudure des tuyaux destinés à former le tube externe est effectuée sur un métal homogène, qui n'est pas contact avec l'alliage résistant à la corrosion (C A) du chemisage interne.
La soudure des chemises destinées à former le chemisage interne est effectuée avant de glisser le chemisage interne dans le tube externe. Là aussi, la soudure des chemises destinées à former le chemisage interne est réalisée avec un matériau homogène qui n'est pas en contact avec le métal du tube externe.
Selon un aspect particulier de l'invention, les étapes a et b) sont répétées jusqu'à ce que la longueur prédéterminée de la structure tubulaire (ou canalisation, ou « pipeline ») soit atteinte.
II peut être envisagé de souder d'autres tuyaux pour allonger le tube externe après l'insertion du chemisage interne dans le tube externe. Il est préférable toutefois que le chemisage interne dépasse encore de l'extrémité du tube externe une fois cette opération effectuée.
Selon un aspect particulier de l'invention, lors de l'étape c), les soudures desdites chemises internes ne sont pas disposées en regard de la soudure desdits premier et deuxième tuyaux le long de l'axe longitudinal de la structure tubulaire.
Les soudures de deux tronçons du tube externe et de deux tronçons formant le chemisage interne ne sont de préférence pas situées au même niveau (ou en regard). De cette façon, si une fissure se propage sur un des matériaux du tube externe ou du chemisage interne, elle sera stoppée quand elle arrivera au second matériau. On conserve ainsi l'intégrité de la structure tubulaire pendant une durée de service d'au moins 20 ans.
Le procédé est de mise en œuvre aisée, de coût satisfaisant et assure une tenue efficace des tronçons de conduites, notamment au niveau de leur jonction.
En d'autres termes, la jonction des conduites formant le pipeline ne présente pas de faiblesse.
Selon un aspect particulier de l'invention, le gonflage de l'outil expanseur provoque la dilatation/déformation élastique radiale d'au moins une partie du chemisage interne.
Selon une alternative de mise en œuvre, le gonflage de l'outil expanseur provoque la dilatation/déformation plastique radiale d'au moins une partie du chemisage interne. Selon un aspect particulier de l'invention, le procédé de fabrication comprend, une étape de chauffage dudit tube externe.
L'invention concerne, par ailleurs, une structure tubulaire chemisée mécaniquement obtenue selon le procédé de fabrication décrit précédemment.
Une telle structure tubulaire peut être utilisée dans les exploitations dites « onshore » ou « offshore ».
Elle est adaptée au transport de fluides, de gaz sous pression par exemple, entre une plate-forme située en surface et le fond marin.
La structure tubulaire de l'invention comporte un chemisage interne pouvant résister à des milieux fortement corrosifs, lié mécaniquement à un tube externe présentant une bonne tenue mécanique et une forte résistance à l'écrasement.
4. Liste des figures
D'autres caractéristiques et avantages de la technique décrite apparaîtront plus clairement à la lecture de la description suivante de plusieurs modes de réalisation, donnés à titre de simples exemples illustratifs et non limitatifs, et des dessins annexés, parmi lesquels :
la figure 1 illustre schématiquement la mise en place des éléments formant une conduite chemisée mécaniquement conforme à l'invention ;
la figure 2 est une vue en coupe schématique d'une conduite chemisée mécaniquement conforme à l'invention ;
les figures 3 à 5 illustrent schématiquement différentes étapes du procédé de fabrication d'une conduite chemisée mécaniquement selon un premier mode de réalisation de l'invention ;
les figures 6 et 7A à 7D illustrent schématiquement différentes étapes du procédé de fabrication d'une conduite chemisée mécaniquement selon un deuxième mode de réalisation de l'invention ;
les figures 8A à 8G illustrent schématiquement différentes étapes du procédé de fabrication d'une canalisation conforme à l'invention ;
la figure 9 est une vue de détail d'une canalisation conforme à l'invention montrant la soudure entre deux tuyaux du tube externe, et
la figure 10 est une vue de détail d'une canalisation conforme à l'invention montrant la soudure entre deux chemises du chemisage interne. 5. Description
5.1 Structure de la conduite
La figure 2 est une vue en coupe d'une conduite 1 bimétallique tubulaire destinée à véhiculer des fluides corrosifs en particulier.
Cette conduite 1 est notamment adaptée pour le transport d'hydrocarbures dans le cadre d'installations de production pétrolière sous-marines et présente à cet effet un revêtement intérieur à haute résistance à la corrosion qui est en contact direct avec le fluide circulant dans la conduite 1.
Cette conduite 1 est chemisée mécaniquement selon un procédé qui sera décrit par la suite. Elle comprend un tube externe 11 en acier au carbone (du type X65, par exemple) dont la surface interne cylindrique est revêtue d'un chemisage interne 12 en matériau (un alliage de préférence, comme l'AISI 304L ou l'AISI 316L, par exemple) résistant à la corrosion.
Cette conduite 1 présente ainsi une paroi en deux épaisseurs de sorte que la conduite 1 est apte à résister à la corrosion et qu'elle est, par ailleurs, d'une structure robuste résistant aux sollicitations mécaniques lorsqu'elle est en service.
Cette conduite 1 présente une longueur de 12 mètres environ et un diamètre compris entre 10 cm et 155 cm (soit entre 4 et 60 pouces). Elle peut être assemblée bout à bout avec d'autres conduites du même type pour former une structure tubulaire (ou canalisation, ou pipeline).
5.2 Procédés de fabrication de la conduite
On présente, en relation avec les figures 3 à 5, le procédé de fabrication d'une telle conduite selon une première approche.
Dans une première étape, illustrée sur la figure 1, le chemisage interne 12 est disposé dans le tube externe 11 de façon coaxiale, le diamètre du chemisage interne 12 étant inférieur au diamètre du tube externe 11. La longueur du chemisage interne 12 est égale à celle du tube externe 11.
On place ensuite un outil d'expansion 2 dans le chemisage interne 12. Ce type d'outil est usuellement désigné par le terme anglais « packer ».
Un tel outil d'expansion 2 est adapté pour être insérée à l'intérieur du chemisage interne 12, à l'état dégonflé, et être positionnée en une zone donnée du chemisage interne 12 que l'on souhaite expanser (figure 3). L'outil d'expansion 2 est alimenté en liquide à haute pression, apte à dilater radialement sa membrane tubulaire périphérique vers l'extérieur, de sorte que celle-ci s'applique contre la paroi du chemisage interne 12 et en provoque également l'expansion plastique radiale vers l'extérieur, jusqu'à ce que la surface extérieure du chemisage interne 12 soit appliquée sur une certaine longueur contre la surface intérieure du tube externe 11 (figure 4).
Bien que ceci ne soit pas illustré sur ces figures, l'opération d'expansion radiale de chaque portion du chemisage interne 12 est poursuivie jusqu'à déformer élastiquement le tube externe 11 sans atteindre la phase de déformation plastique de ce dernier.
L'expansion est alors interrompue en dégonflant l'outil d'expansion, ce qui provoque le retour élastique du tube externe 11 qui se contracte autour du chemisage interne 12 (elle-même expansée contre la surface intérieure du tube externe 11), et un frettage du tube externe 11 sur le chemisage interne 12.
Le tube externe 11 et le chemisage interne 12 subissent des contraintes de nature différente. Ainsi, le procédé de l'invention réalise une mise sous tension de la pièce extérieure (tube externe 11) et une compression de la pièce intérieure (chemisage interne 12).
Le tube externe 11 et le chemisage interne 12 expansée sont alors liées mécaniquement (on parle de "mechanical bond" en anglais).
Ce lien mécanique est un ajustement serré entre la surface extérieure cylindrique du chemisage interne 12 et la surface intérieure cylindrique du tube externe 11, rendant le démontage impossible sans détérioration des deux pièces 11, 12.
Une fois la zone du tube externe 11 chemisée, l'outil d'expansion 2 est dégonflé et déplacé afin d'être repositionnée en une nouvelle zone à expanser (figure 5).
L'outil d'expansion 2 est relié à la surface par une tige permettant sa manipulation, son bon positionnement, ainsi que les organes de commande permettant de la gonfler et de la dégonfler. A cet effet, un conduit d'amenée et d'évacuation du liquide de gonflage peut être intégré à la tige.
On procède ainsi au chemisage de toute la longueur du tube externe 11 par la déformation radiale de l'outil d'expansion 2 (packer), en travaillant pas-à-pas et de gauche à droite sur les figures, avec des phases successives de gonflage, dégonflage et d'avance de l'outil d'expansion 2.
On présente, en relation avec les figures 6 et 7A à 7D, le procédé de fabrication d'une conduite 1 selon une deuxième approche.
Cette deuxième approche met en œuvre les mêmes étapes que la première approche décrite précédemment. Toutefois, préalablement au gonflage de l'outil d'expansion 2 dans le chemisage interne 12, on réalise le chauffage du tube externe 11 pour provoquer sa dilatation et une légère expansion de son diamètre dans sa limite élastique (le chauffage est illustré schématiquement sur les figures 6 et 7A à 7C par des flèches situées sur la périphérie du tube externe 11).
La figure 6 montre l'outil d'expansion 2 disposé dans le chemisage interne 12 avant gonflage, le tube externe 11 étant chauffé.
Les figures 7A à 7D sont des vues en coupe de la conduite 1 qui montrent les différentes étapes du chemisage de la conduite 1, l'outil d'expansion 2 n'étant pas illustré pour des raisons de clarté.
Ainsi, on réalise le chauffage du tube externe 11 pour provoquer une légère expansion de son diamètre dans sa limite élastique (figures 7A et 7B).
On dilate ensuite le chemisage interne 12 en gonflant l'outil d'expansion 2 jusqu'à ce qu'elle vienne en contact avec la surface intérieure du tube externe 11 (figure 7C).
L'outil d'expansion 2 est encore légèrement gonflé de sorte que le chemisage interne 12 est dilaté davantage, le diamètre du tube externe 11 étant également légèrement expansé (sur la figure 7C, les forces appliquées par le chemisage interne 12 sur le tube externe 11 sont représentées par des flèches situées sur le pourtour de la surface intérieure du chemisage interne 12). L'expansion et le chauffage du tube externe 11 sont contrôlés de telle sorte à ce que le diamètre du tube externe 11 ne s'étende pas au-delà de sa limite élastique.
Lorsque l'expansion et le chauffage du tube externe 11 sont interrompus, le corps du tube externe 11 se contracte autour du chemisage interne 12 d'une part avec le refroidissement (sur la figure 7D, les forces appliquées par le tube externe 11 sur le chemisage interne 12 sont représentées par des flèches situées sur le pourtour de la surface extérieure du tube externe 11) et d'autre part avec le retour élastique du tube externe 11.
Le chemisage du tube externe 11 est effectué par étapes successives, en déplaçant l'outil d'expansion 2 progressivement d'une extrémité à l'autre du tube externe 11, toujours dans le même sens.
Cette deuxième approche réalise une mise sous tension de la pièce extérieure (tube externe 11) et une compression de la pièce intérieure (chemisage interne 12), résultant en un lien mécanique entre ces deux pièces 11, 12. Plus précisément, l'interruption de l'expansion par l'outil 2 et du chauffage du tube externe 11 provoquent le retour élastique de ce dernier qui se contracte autour du chemisage interne 12 (qui est elle-même expansée contre la surface intérieure du tube externe 11), ce qui provoque un frettage des deux pièces 11, 12.
Dans chacune de ces deux approches, la différence de diamètre entre le tube externe 11 et le chemisage interne 12 est choisie selon que l'on souhaite dilater élastiquement ou plastiquement le tube externe.
5.3 Procédé de fabrication d'une structure tubulaire chemisée mécaniquement
On présente ci-après, en relation avec les figures 8A à 8G, le procédé de fabrication d'une canalisation 100 de grande longueur (plusieurs kilomètres, par exemple) qui est adaptée pour véhiculer des fluides tels que les hydrocarbures. Pour ce faire, le tube externe 110 de la canalisation 100 est dotée d'un chemisage interne 120 fabriqué à l'aide d'une matière qui, par sa constitution et ses propriétés, est susceptible d'assurer une protection efficace contre l'agressivité des milieux les plus divers.
Le chemisage interne 120 est fabriqué dans un matériau résistant à la corrosion, et le tube externe 110 est en acier au carbone dans cet exemple.
On obtient la canalisation 100 en raccordant d'abord plusieurs tuyaux coaxialement (entre 2 et 4, par exemple) de façon à obtenir un tube externe 110. Dans l'exemple de la figure 8A, un premier tuyau 110A est raccordé coaxialement par une première soudure 111A périphérique à un second tuyau 110B, ce dernier .étant raccordé coaxialement par une deuxième soudure 111B périphérique à un troisième tuyau HOC. En parallèle, on raccorde plusieurs chemises coaxialement de façon à obtenir un chemisage interne 120. Dans l'exemple de la figure 8B, plusieurs chemises 120A à 120E sont raccordées bout à bout par le biais de soudures 121A à 121D périphériques.
Une fois les soudures du tube externe 110 et du chemisage interne 120 effectuées séparément, on dispose le chemisage interne 120 au sein du tube externe 110, comme illustré sur la figure 8B.
On note que la longueur du chemisage interne 120 est supérieure à la longueur du tube externe 110, de sorte que les extrémités gauche du tube externe 110 et du chemisage interne 120 sont situées dans un même plan radial, l'extrémité droite du chemisage interne 120 dépassant de l'extrémité droite du tube externe 110.
On place ensuite un outil expanseur 2 dégonflé au sein du chemisage interne 120, au niveau du premier tuyau 110A et de la chemise 120A qui sont en regard.
On procède ensuite au gonflage de l'outil expanseur 2 de manière à provoquer dans un premier temps la dilatation/déformation radiale d'une partie du chemisage interne 120 (en l'occurrence de la chemise 120A) jusqu'à ce que cette partie vienne en contact avec la surface intérieure d'une partie du tube externe 110 (en l'occurrence du premier tuyau 110A). Le gonflage de l'outil expanseur 2 est poursuivi jusqu'à provoquer la dilatation/déformation élastique radiale du premier tuyau 110A (figure 8C).
L'outil expanseur 2 est ensuite dégonflé, ce qui provoque, comme expliqué précédemment, le retour élastique du premier tuyau 110A qui se contracte autour de la chemise 120A.
On déplace l'outil expanseur 2 de gauche à droite (figure 8D) et on répète ces étapes pour chemiser le deuxième tuyau 110B avec la chemise 120B (figure 8E).
On raccorde ensuite, comme illustré sur la figure 8F, un nouveau tuyau 110D à l'extrémité libre du tuyau HOC par le biais d'une soudure 111C périphérique, la longueur du chemisage interne 120 étant toujours supérieure à la longueur du tube externe 110.
Comme illustré sur la figure 8G, la canalisation 100 est constituée de plusieurs conduites chemisées mécaniquement et assemblées bout à bout.
On déplace l'outil expanseur 2 de gauche à droite (l'outil expanseur n'est pas illustré sur les figures 8E à 8G par souci de clarté) pour chemiser le troisième tuyau HOC avec la chemise 120D (figure 8E). Une fois la canalisation 100 chemisée mécaniquement, on retire alors l'outil expanseur 2.
La figure 9 est une vue de détail d'une canalisation 100 conforme à l'invention montrant la soudure 111A entre deux tuyaux 110A et 110B du tube externe 110.
La figure 10 est une vue de détail d'une canalisation 100 conforme à l'invention montrant la soudure 121A entre deux chemises 120A et 120B du chemisage interne 120.
On note que les soudures des tuyaux formant le tube externe 110 sont effectuées séparément des soudures formant le chemisage interne 120.
En particulier, la soudure 111A des deux tuyaux 110A et 110B destinés à former en partie le tube externe 110 (dit « Mother Pipe » en anglais) est effectuée séparément de la soudure 121A des chemises 120A et 120B du chemisage interne 120..
La soudure 111A des deux tuyaux 110A et 110B est effectuée sur un métal homogène, qui n'est pas en contact avec l'alliage résistant à la corrosion (C A) du chemisage interne 120, et notamment de la chemise 120B.
La soudure 121A des chemises 120A et 120B destinées à former en partie le chemisage interne 120 est effectuée avant de glisser le chemisage interne 120 dans le tube externe 110. Là aussi, la soudure des chemises 121 et 122 est réalisée avec un matériau homogène (l'alliage résistant à la corrosion en l'occurrence) qui n'est pas contact avec le métal du tube externe.
Comme on le voit sur les figures 8A à 8G, 9 et 10, les soudures 121A à 121E et les soudures 111A à 111C ne sont de préférence pas situées au même niveau (ou en regard) le long de l'axe longitudinal de la canalisation 100, et ne viennent donc pas se plaquer les unes contre les autre une fois la canalisation 100 chemisée mécaniquement (figure 8G). De cette façon, si une fissure apparaît au niveau d'une des soudures du tube externe ou du chemisage interne, elle ne peut pas se propager à l'autre soudure. On conserve ainsi l'intégrité de la structure tubulaire pendant une durée de service d'au moins 20 ans.
Le procédé est de mise en œuvre aisée, de coût satisfaisant et assure une tenue efficace des tubes formant la canalisation notamment au niveau de leur jonction, tant sur le plan mécanique qu'à l'égard des agents corrosifs et/ou abrasifs.
Selon une mise en œuvre particulière, on chauffe chaque portion du tube externe avant de procéder au chemisage. La différence de diamètre entre le tube externe et la chemise interne est choisie selon que l'on souhaite dilater élastiquement ou plastiquement le tube externe.
5.4 Autres aspects et variantes
Une telle canalisation et conduites correspondantes sont utilisées pour l'exploitation des gisements de pétrole et de gaz, en particulier, onshore ou offshore.
Elles peuvent également être utilisées pour transporter des produits chimiques, corrosifs et/ou abrasifs, ou tout autre type de fluide.
Elles peuvent être immergées dans de l'eau, en milieu marin par exemple, ou enterrées dans le sol.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une conduite (1) chemisée mécaniquement pour le transport de fluides, caractérisé en ce qu'il comprend les étapes de :
a) insertion d'une chemise interne (12) cylindrique au sein d'un tube externe (11) ;
b) insertion d'un outil expanseur (2) au sein de ladite chemise interne (12) ; c) gonflage de l'outil expanseur (2) de manière à provoquer dans un premier temps la déformation plastique radiale d'au moins une partie de la chemise interne (12) jusqu'à ce qu'elle vienne en contact avec la surface intérieure du tube externe (11), puis la déformation élastique radiale d'au moins une partie du tube externe (11) ;
d) dégonflage de l'outil expanseur (2) ;
e) déplacement de l'outil expanseur (2) dans ladite chemise interne (12) ; f) répéter les étapes (c) et (d) pour chacune desdites au moins une partie de la chemise interne (12) afin de former la conduite (1) chemisée mécaniquement, et
g) retrait de l'outil expanseur (2).
2. Procédé selon la revendication 1, caractérisé en ce que le gonflage de l'outil expanseur (2) est poursuivi jusqu'à provoquer la déformation élastique radiale d'au moins une partie du tube externe (11).
3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'il comprend, préalablement à l'étape c) et jusqu'à l'étape d), une étape de chauffage dudit tube externe.
4. Conduite (1) chemisée mécaniquement selon le procédé de fabrication de l'une des revendications 1 à 3.
5. Conduite (1) selon la revendication 4, caractérisée en ce que la chemise interne (12) est fabriquée dans un matériau résistant à la corrosion.
6. Conduite (1) selon la revendication 4 ou 5, caractérisée en ce que le tube externe (11) est en acier au carbone.
7. Procédé de fabrication d'une structure tubulaire (100) chemisée mécaniquement, caractérisé en ce qu'il comprend les étapes de :
a) soudure d'au moins un premier tuyau (110A) et d'un deuxième tuyau (110B) placés bout à bout de façon à former un tube externe (110) de longueur prédéterminée ;
b) soudure de plusieurs chemises internes (120A,..., 120E) bout à bout de façon à former un chemisage interne (120) dont la longueur est supérieure à la longueur prédéterminée du tube externe (110) ;
c) insertion dudit chemisage interne (120) au sein dudit tube externe (110), une première extrémité du chemisage interne (120) dépassant d'une première extrémité du tube externe (110) ;
d) insertion d'un outil expanseur (2) dégonflé au sein dudit chemisage interne (120) ;
e) gonflage de l'outil expanseur (2) à partir de la deuxième extrémité du chemisage interne (120) de manière à provoquer dans un premier temps la déformation plastique radiale d'au moins une partie du chemisage interne (120) jusqu'à ce qu'il vienne en contact avec la surface intérieure du tube externe (110), puis la déformation élastique radiale d'au moins une partie du tube externe (110) ;
f) dégonflage de l'outil expanseur (2) ;
g) déplacement de l'outil expanseur (2) dans ledit chemisage interne (120); h) répéter les étapes (e) et (f) pour chacune des parties dudit chemisage interne (120), et
i) retrait de l'outil expanseur (2).
8. Procédé de fabrication selon la revendication 7, caractérisé en ce que les étapes a et b) sont répétées jusqu'à ce que la longueur prédéterminée de la structure tubulaire (100) soit atteinte.
9. Procédé de fabrication selon la revendication 7 ou 8, caractérisé en ce que lors de l'étape c), les soudures (121A,..., 121D) desdites chemises internes (120A,..., 120E) ne sont pas disposées en regard de la soudure (111A) desdits premier et deuxième tuyaux (110A, 110B) le long de l'axe longitudinal de la structure tubulaire (100).
PCT/EP2016/080788 2015-12-23 2016-12-13 Procédé de fabrication d'une conduite et d'une structure tubulaire chemisées mécaniquement WO2017108501A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1563236A FR3046213B1 (fr) 2015-12-23 2015-12-23 Procede de fabrication d'une conduite et d’une structure tubulaire chemisees mecaniquement
FR1563236 2015-12-23

Publications (1)

Publication Number Publication Date
WO2017108501A1 true WO2017108501A1 (fr) 2017-06-29

Family

ID=55542893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/080788 WO2017108501A1 (fr) 2015-12-23 2016-12-13 Procédé de fabrication d'une conduite et d'une structure tubulaire chemisées mécaniquement

Country Status (2)

Country Link
FR (1) FR3046213B1 (fr)
WO (1) WO2017108501A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113369816A (zh) * 2021-06-17 2021-09-10 高密天一机械科技有限公司 外涂塑内衬不锈钢复合钢管的生产方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2918700A1 (fr) * 2007-07-12 2009-01-16 Saltel Ind Soc Par Actions Sim Procede de chemisage d'un puits ou d'une canalisation au moyen d'une vessie gonflable.
FR2934634A1 (fr) * 2009-11-09 2010-02-05 Saltel Ind Dispositif de pose d'une chemise expansible avec controle du diametre de pose a l'avancement
GB2476457A (en) * 2009-12-22 2011-06-29 Technip France Method of manufacturing a mechanically lined pipe
DE102010044463A1 (de) * 2010-09-06 2012-03-08 AWS Schäfer Technologie GmbH Herstellung von Bimetallrohren
FR2988126A1 (fr) * 2012-03-16 2013-09-20 Saltel Ind Dispositif d'isolation d'une partie d'un puits
WO2014063950A1 (fr) * 2012-10-26 2014-05-01 Saltel Industries Procédé et dispositif de chemisage d'un puits par hydroformage
GB2521218A (en) * 2013-12-16 2015-06-17 Ceona Services Uk Ltd Methods and apparatuses for use in handling of lined pipe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2918700A1 (fr) * 2007-07-12 2009-01-16 Saltel Ind Soc Par Actions Sim Procede de chemisage d'un puits ou d'une canalisation au moyen d'une vessie gonflable.
FR2934634A1 (fr) * 2009-11-09 2010-02-05 Saltel Ind Dispositif de pose d'une chemise expansible avec controle du diametre de pose a l'avancement
GB2476457A (en) * 2009-12-22 2011-06-29 Technip France Method of manufacturing a mechanically lined pipe
DE102010044463A1 (de) * 2010-09-06 2012-03-08 AWS Schäfer Technologie GmbH Herstellung von Bimetallrohren
FR2988126A1 (fr) * 2012-03-16 2013-09-20 Saltel Ind Dispositif d'isolation d'une partie d'un puits
WO2014063950A1 (fr) * 2012-10-26 2014-05-01 Saltel Industries Procédé et dispositif de chemisage d'un puits par hydroformage
GB2521218A (en) * 2013-12-16 2015-06-17 Ceona Services Uk Ltd Methods and apparatuses for use in handling of lined pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113369816A (zh) * 2021-06-17 2021-09-10 高密天一机械科技有限公司 外涂塑内衬不锈钢复合钢管的生产方法

Also Published As

Publication number Publication date
FR3046213A1 (fr) 2017-06-30
FR3046213B1 (fr) 2018-08-17

Similar Documents

Publication Publication Date Title
EP1987280B1 (fr) Element de conduites coaxiales et procede de fabrication
EP1805444B1 (fr) Conduite sous-marine comportant une chemise interne
CA2410425C (fr) Joint filete tubulaire apte a subir une expansion diametrale
EP1987281B1 (fr) Element de conduites coaxiales dont la conduite interne est sous contrainte de traction et procede de fabrication
EP1771679B1 (fr) Ensemble d'au moins deux conduites coaxiale et procédé de réalisation d'un tel ensemblage
WO2012152875A1 (fr) Dispositif et procede d'isolation thermique d'une zone de raccordement d'embouts de connexion de deux conduites sous-marines calorifugees.
EP3164258B1 (fr) Dispositif et procédé de mise en place d'un manchon tubulaire de jonction pour conduite comportant un chemisage interne
EP3850256B1 (fr) Procédé de réalisation d'une conduite sous-marine en acier apte à véhiculer un fluide corrosif et élément de conduite
EP2454512B1 (fr) Ensemble de conduites coaxiales comprenant des pieces de jonction a cavites internes etanches et procede de realisation
EP1461561A1 (fr) Joint filete tubulaire comportant des surfaces d'etancheite
EP3600747B1 (fr) Procédé de chemisage d'une conduite en acier pour le transport sous-marin de fluides
WO2015169858A1 (fr) Ensemble de jonction pour former une conduite
FR3027338A1 (fr) Connexion polyvalente etanche a double butee
WO2017108501A1 (fr) Procédé de fabrication d'une conduite et d'une structure tubulaire chemisées mécaniquement
FR3058355B1 (fr) Methode d'assemblage de tubes thermoplastiques par soudage par induction
EP0071551A1 (fr) Elément de tube préfabriqué pour canalisations de transport de fluide à température différente de l'ambiante
FR3125577A1 (fr) Conduite pour le transport de fluides avec contrôle du flambement de la chemise interne anticorrosion
FR3129449A1 (fr) Organe de compression pour conduite de transport de fluides munie d’un chemisage interne de protection
WO2010070250A1 (fr) Dispositif d'isolation d'un tube de transport de fluide
OA19065A (en) Méthode d'assemblage de tubes thermoplastiques par soudage par induction.
FR3042577A1 (fr) Procede de pose d'un pipeline et barge pour la mise en oeuvre de ce procede
FR2491584A1 (fr) Dispositif d'isolation etanche de deux sections de p ipeline et procede pour la mise a l'epreuve de pression d'une section de pipeline
BE633376A (fr)
OA18144A (en) Device and method for placing a tubular junction sleeve for a pipe comprising an internal liner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16809082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16809082

Country of ref document: EP

Kind code of ref document: A1