WO2017107534A1 - 夹角测量方法、装置及夹角调节方法、装置 - Google Patents

夹角测量方法、装置及夹角调节方法、装置 Download PDF

Info

Publication number
WO2017107534A1
WO2017107534A1 PCT/CN2016/096898 CN2016096898W WO2017107534A1 WO 2017107534 A1 WO2017107534 A1 WO 2017107534A1 CN 2016096898 W CN2016096898 W CN 2016096898W WO 2017107534 A1 WO2017107534 A1 WO 2017107534A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
axis
motion mechanism
axis direction
target point
Prior art date
Application number
PCT/CN2016/096898
Other languages
English (en)
French (fr)
Inventor
廖明熙
Original Assignee
广州视源电子科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州视源电子科技股份有限公司 filed Critical 广州视源电子科技股份有限公司
Publication of WO2017107534A1 publication Critical patent/WO2017107534A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • the invention relates to the field of industrial testing, in particular to an angle measuring method, a device and an angle adjusting method and device.
  • a camera and a motion mechanism are usually included. Under normal circumstances, it is possible to ensure a certain positional relationship between the camera and a certain direction of the moving mechanism by mechanical precision and installation method.
  • mechanical precision and installation method In the following three cases: First, there is no direct connection mechanism between the camera and the motion mechanism; second, the camera installation machine needs to move; third, the accuracy of the camera installation device is not high enough, and the two cannot be ensured by mechanical precision and installation method. Positional relationship.
  • an embodiment of the present invention provides an angle measuring method, a device, and an angle adjusting method and device, which can accurately measure an angle between a camera and a motion mechanism, and adjust the camera based on the measured angle to ensure that the camera and the motion mechanism satisfy a certain degree.
  • the positional relationship satisfies the usage requirements.
  • Embodiments of the present invention provide a method for measuring an angle, including the following steps:
  • a target point on the two-axis motion mechanism recorded by the camera is moved by a predetermined distance before the movement of the two-axis motion mechanism and in the X-axis direction and the Y-axis direction of the two-axis motion mechanism, respectively.
  • the location information image it also includes:
  • the target point is located on a measuring board, and the measuring board is fixed to the two-axis moving mechanism.
  • the position of the target point in the position information image before the movement of the two-axis motion mechanism is the first position point
  • a straight line segment formed by connecting the first position point and the second position point is a motion trajectory of the target point along an X-axis direction of the two-axis motion mechanism, connecting the first position point and the first
  • the straight line segment formed by the three position points is a motion locus of the target point along the Y-axis direction of the two-axis motion mechanism.
  • the embodiment of the invention further provides an angle measuring device, comprising:
  • a position recording module configured to acquire, by the camera, a target point on the two-axis motion mechanism before the movement of the two-axis motion mechanism and after moving a predetermined distance along the X-axis direction and the Y-axis direction of the two-axis motion mechanism respectively Location information image;
  • a motion trajectory obtaining module configured to obtain, according to the position information image of the target point before and after the movement of the two-axis motion mechanism, obtaining a position of the target point in any one of the position information images The movement trajectory of the two-axis motion mechanism in the X-axis direction and the Y-axis direction;
  • An angle calculation module configured to calculate a movement trajectory of the target point along the X-axis direction and the Y-axis direction of the two-axis motion mechanism and a first clip of the x-axis and the y-axis of the plane coordinate system of the position information image And an angle between the angle and the second angle, wherein the first angle and the second angle are respectively an angle between the camera and the X-axis direction and the Y-axis direction of the two-axis motion mechanism.
  • the angle measuring device further includes:
  • the position recording module is further configured to acquire, by the calibrated camera, a target point on the two-axis motion mechanism before the movement of the two-axis motion mechanism and in the X-axis direction and the Y-axis direction of the two-axis motion mechanism respectively A position information image after moving a predetermined distance.
  • the position of the target point in the position information image before the movement of the two-axis motion mechanism is the first position point
  • the motion track acquisition module includes:
  • a marking unit configured to mark, in the position information image before the movement of the two-axis motion mechanism, the target point position in the position information image after the two-axis motion mechanism moves in the X-axis direction and the Y-axis direction by a predetermined distance Corresponding second position point and third position point;
  • a connecting unit wherein a straight line segment formed by connecting the first position point and the second position point is a movement trajectory of the target point along an X-axis direction of the two-axis motion mechanism, and the first position is connected
  • a straight line segment formed by the point and the third position point is a motion locus of the target point along the Y-axis direction of the two-axis motion mechanism.
  • the embodiment of the invention further provides an angle adjustment method, comprising the following steps:
  • the first angle and the second angle are measured by using the above-mentioned angle measurement method
  • S2 Calculating an adjustment angle according to the first angle and the second angle, and adjusting an installation angle of the camera according to the adjustment angle.
  • the above steps S1 to S2 are cyclically executed until the first angle or the second angle is calculated. 0°.
  • the embodiment of the invention further provides an angle adjusting device, comprising:
  • the above-mentioned angle measuring device for measuring the first angle and the second angle
  • the angle adjustment module is configured to calculate an adjustment angle according to the first angle and the second angle, and adjust an installation angle of the camera according to the adjustment angle.
  • the method and device for measuring the angle of the angle and the method and device for adjusting the angle provided by the embodiment of the present invention obtain the movement trajectory of a target point on the two-axis motion mechanism along the X-axis direction and the Y-axis direction of the two-axis motion mechanism.
  • calculating a first angle between the motion trajectory of the target point along the X-axis direction and the x-axis of the imaging plane coordinate system of the camera that is, an angle between the camera and the X-axis direction of the two-axis motion mechanism
  • a second angle between the motion trajectory of the target point along the Y-axis direction and the y-axis of the imaging plane coordinate system of the camera that is, the angle between the camera and the Y-axis direction of the two-axis motion mechanism
  • the technical solution provided by the embodiment of the invention can accurately measure the angle between the X-axis direction and the Y-axis direction of the camera and the two-axis motion mechanism, and adjust the camera based on the measured angle to ensure the camera and the second The X-axis direction or the Y-axis direction of the axis motion mechanism satisfies a certain positional relationship.
  • FIG. 1 is a schematic flow chart of an angle measurement method according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of the entire mechanism before the movement of the two-axis motion mechanism according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a first location information image obtained based on FIG. 2 according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of the entire mechanism after the two-axis motion mechanism is moved along the X-axis direction by a predetermined distance according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a second location information image obtained based on FIG. 4 according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of the entire mechanism after the two-axis motion mechanism is moved along the Y-axis direction by a predetermined distance according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a third location information image obtained based on FIG. 6 according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a method for acquiring a motion trajectory and calculating an included angle according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an angle measuring device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of the motion trajectory acquiring module shown in FIG. 9.
  • FIG. 11 is a schematic flow chart of an angle adjustment method according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an angle adjusting device according to an embodiment of the present invention.
  • the angle measuring method and device and the angle adjusting method and device provided by the embodiments of the present invention can accurately measure the angle between the X-axis direction and the Y-axis direction of the camera and the two-axis motion mechanism, and are based on the measured clip.
  • the camera is angularly adjusted to ensure that the camera and the X-axis direction or the Y-axis direction of the two-axis motion mechanism satisfy a certain positional relationship.
  • an embodiment of the present invention provides a method for measuring an included angle, which includes steps S11 to S13, as follows:
  • the camera calibration may be performed first, in order to Obtain specific and accurate internal and external parameters, so that the image recorded by the camera can be restored to a real plane without distortion.
  • traditional calibration The active visual calibration and the self-calibration are not specifically limited in the present invention.
  • the camera 11 is mounted above the two-axis motion mechanism 12, and records the position information image of a target point 20 on the two-axis motion mechanism.
  • the target point 20 is located on a measuring board 13 which is fixed on the two-axis moving mechanism 12, and the measuring board 13 can be a calibration board or other flat reference measuring tool for checking measurement work, the present invention No specific restrictions are made.
  • the target 11 is recorded by the camera 11 after calibration, before the movement of the two-axis motion mechanism 12 and in the X-axis direction and the Y-axis direction of the two-axis motion mechanism 12, respectively.
  • the position information image after moving a predetermined distance is specifically:
  • FIG. 3 is a schematic diagram of the first position information image obtained based on FIG. 2 , specifically, acquiring the first position information image 31 of the target point 20 recorded by the camera 11 after calibration.
  • the point at which the target point 20 is located in the first location information image 31 is point A.
  • FIG. 4 is a schematic diagram of the entire mechanism after the two-axis motion mechanism is moved by a predetermined distance along the X-axis direction thereof
  • FIG. 5 is a second position information image obtained based on FIG.
  • the schematic diagram is specifically: after the two-axis motion mechanism 12 moves a predetermined distance along the X-axis direction of the two-axis motion mechanism 12, acquiring the second target point 20 recorded by the camera 11 after calibration
  • the position information image 32 returns the two-axis motion mechanism 12 to the position before the movement, wherein the point at which the target point 20 is located in the second position information image 32 is point B, and the predetermined distance is smaller than The distance from point A to any boundary line of the image in the first position information image 31.
  • FIG. 6 is a schematic diagram of the entire mechanism after the two-axis motion mechanism moves a predetermined distance along the Y-axis direction thereof
  • FIG. 7 is a third position information image obtained based on FIG.
  • the schematic diagram is specifically: after the two-axis motion mechanism 12 is moved by a predetermined distance along the Y-axis direction of the two-axis motion mechanism 12, the third camera that records the target point 20 by the camera 11 after calibration is acquired.
  • the position information image 33 returns the two-axis motion mechanism 12 to the position before the movement, wherein the point at which the target point 20 is located in the third position information image 33 is point C.
  • the method specifically includes:
  • a straight line segment formed by connecting points A and B' is a motion trajectory of the target point 20 along the X-axis direction of the two-axis motion mechanism 12, and a straight line segment formed by connecting points A and C' is the target.
  • the present invention can also obtain the movement of the target point 20 along the X-axis direction and the Y-axis direction of the two-axis motion mechanism 12 in the second position information image 32 or the third position information image 33.
  • the trajectory, the present invention is not specifically described herein.
  • the first position information image 31 is a rectangular image, and a plane coordinate system is established with the point A as an origin, and the x-axis of the plane coordinate system is the same as the calibration.
  • the X C axis of the coordinate system of the camera 11 is parallel, and is also parallel to the horizontal boundary line of the first position information image 31, the y axis of the plane coordinate system and the Y C axis of the coordinate system of the camera 11 after calibration Parallel, which is also parallel to the vertical boundary line of the first position information image 31, the step S13 is specifically:
  • the coordinates of the points A, B', and C' are obtained as (0, 0), (x 1 , y 1 ), and (x 2 , y, respectively. 2 ).
  • the present invention also provides an angle measuring device that can perform all the processes of the angle measuring method provided by the above embodiments.
  • FIG. 9 is a schematic structural diagram of an angle measuring device according to an embodiment of the present invention.
  • the angle measuring device 100 includes a calibration module 110, a position recording module 120, a motion track acquiring module 130, and an angle calculating module 140, as follows:
  • the calibration module 110 is configured to perform camera calibration.
  • the calibration module 110 performs camera calibration in order to obtain specific and accurate internal and external parameters, so that the image recorded by the camera can be restored to a real plane without distortion.
  • calibration methods for the camera which can be mainly divided into three categories: traditional calibration, active visual calibration, and self-calibration, and the present invention is not specifically limited.
  • the position recording module 120 is configured to acquire, by the camera after the calibration, a target point on the two-axis motion mechanism before the movement of the two-axis motion mechanism and in the X-axis direction of the two-axis motion mechanism, A position information image after the Y-axis direction is moved by a predetermined distance.
  • the camera 11 is mounted above the two-axis motion mechanism 12, and records a position information image of a target point 20 on the two-axis motion mechanism 12, wherein
  • the target point 20 is located on a measuring board 13
  • the measuring board 13 is fixed on the two-axis moving mechanism 12
  • the measuring board 13 can be a calibration board or other flat reference measuring tool for verifying the measurement work.
  • the invention is not specifically limited.
  • the location recording module 120 is specifically configured to:
  • FIG. 3 is a schematic diagram of the first location information image obtained based on FIG. 2 .
  • the location recording module 120 acquires the target point 20 recorded by the camera 11 after calibration.
  • the first position information image 31, wherein the point at which the target point 20 is located in the first position information image 31 is point A.
  • FIG. 4 is a schematic diagram of the entire mechanism after the two-axis motion mechanism is moved by a predetermined distance along the X-axis direction thereof
  • FIG. 5 is a second position information image obtained based on FIG.
  • the position recording module 120 acquires the second position information of the target point 20 recorded by the calibrated camera 11 after the two-axis motion mechanism 12 moves a predetermined distance in the X-axis direction.
  • FIG. 6 is a schematic diagram of the entire mechanism after the two-axis motion mechanism moves a predetermined distance along the Y-axis direction thereof
  • FIG. 7 is a third position information image obtained based on FIG.
  • the position recording module 120 acquires the third position information of the target point 20 recorded by the calibrated camera 11 after the two-axis motion mechanism 12 moves a predetermined distance in the Y-axis direction.
  • the image 33 returns the two-axis motion mechanism 12 to the position before the movement, wherein the point at which the target point 20 is located in the third position information image 33 is point C.
  • the motion trajectory obtaining module 130 is configured to obtain, according to the position information image of the target point before and after the movement of the two-axis motion mechanism, the target point in the any one of the position information images.
  • the motion track acquiring module 130 specifically includes:
  • the marking unit 131 is configured to mark, in the first location information image 31, a B′ point corresponding to the B point position in the second location information image 32, and a C point point in the third location information image 33 C' point;
  • the connecting unit 132 the straight line segment formed by connecting the point A and the point B' is formed by moving the target point 20 along the X-axis direction of the two-axis motion mechanism 12, connecting the point A and the point C'.
  • the straight line segment is a motion locus of the target point 20 along the Y-axis direction of the two-axis motion mechanism 12.
  • the present invention can also obtain the movement of the target point 20 along the X-axis direction and the Y-axis direction of the two-axis motion mechanism 12 in the second position information image 32 or the third position information image 33.
  • the trajectory, the present invention is not specifically described herein.
  • the angle calculation module 140 is configured to calculate a motion trajectory of the target point along the X-axis direction and the Y-axis direction of the two-axis motion mechanism and an x-axis and a y-axis of the plane coordinate system of the position information image.
  • the first angle and the second angle are respectively an angle between the camera and the X-axis direction and the Y-axis direction of the two-axis motion mechanism.
  • the first position information image 31 is a rectangular image, and a plane coordinate system is established with the point A as an origin, and the x-axis of the plane coordinate system is the same as the calibration.
  • the X C axis of the coordinate system of the camera 11 is parallel, and is also parallel to the horizontal boundary line of the first position information image 31, the y axis of the plane coordinate system and the Y C axis of the coordinate system of the camera 11 after calibration Parallel, which is also parallel to the vertical boundary line of the first position information image 31, the angle calculation module is specifically configured to:
  • the coordinates of the points A, B', and C' are obtained as (0, 0), (x 1 , y 1 ), and (x 2 , y, respectively. 2 ).
  • the present invention also provides an angle adjustment method.
  • an embodiment of the present invention further provides an angle adjustment method, including steps S1 to S2, as follows:
  • the loop performs steps S1 to S2 until the first angle or the second angle is calculated to be 0°, that is, the camera 11 is parallel to the X-axis or the Y-axis of the two-axis motion mechanism 12. At this time, the sharpness of the picture taken by the camera 11 with respect to the two-axis motion mechanism 12 is superior.
  • the angle is in a certain direction. or Adjusting the camera 11 and then recalculating the adjusted first angle and the second angle.
  • Adjusting the angle of the camera 11 according to the adjusted first angle or the adjusted second angle and thus circulating until the X-axis or the Y-axis of the camera 11 and the two-axis motion mechanism 12 Parallel, wherein the certain direction may be a clockwise direction or a counterclockwise direction, and these may be set according to actual needs, and the invention is not specifically limited.
  • the first angle is equal to the second angle, and the installation angle of the camera 11 is adjusted until It is calculated that the first angle and the second angle are both 0, and the present invention is not specifically described herein.
  • the present invention also provides an angle adjusting device that can perform all the processes of the angle adjusting method provided by the above embodiments.
  • an embodiment of the present invention further provides an angle adjusting device 200, including: an angle measuring device 100 and an angle adjusting module 250, as follows:
  • the angle measuring device 100 is configured to measure the first angle and the second angle. Wherein the angle measuring device adopts the angle measuring device 100 shown in FIG.
  • the angle adjustment module 250 is configured to calculate an adjustment angle according to the first angle and the second angle, and adjust an installation angle of the camera according to the adjustment angle.
  • the steps S1 to S2 of the above-mentioned angle adjustment method are cyclically executed until the first clip is calculated.
  • the angle or the second angle is 0°, that is, the camera 11 is parallel to the X-axis or the Y-axis of the two-axis motion mechanism 12. At this time, the camera 11 captures the second axis motion mechanism 12 The clarity of the picture is superior.
  • the angle is in a certain direction. or Adjusting the camera 11 and then recalculating the adjusted first angle and the second angle.
  • Adjusting the angle of the camera 11 according to the adjusted first angle or the adjusted second angle and thus circulating until the X-axis or the Y-axis of the camera 11 and the two-axis motion mechanism 12 Parallel, wherein the certain direction may be a clockwise direction or a counterclockwise direction, and these may be set according to actual needs, and the invention is not specifically limited.
  • the first angle is equal to the second angle, and the installation angle of the camera 11 is adjusted until It is calculated that the first angle and the second angle are both 0, and the present invention is not specifically described herein.
  • the method and device for measuring the angle of the angle and the method and device for adjusting the angle provided by the embodiment of the present invention obtain the movement trajectory of a target point on the two-axis motion mechanism along the X-axis direction and the Y-axis direction of the two-axis motion mechanism.
  • calculating a first angle between the motion trajectory of the target point along the X-axis direction and the x-axis of the imaging plane coordinate system of the camera that is, an angle between the camera and the X-axis direction of the two-axis motion mechanism
  • a second angle between the motion trajectory of the target point along the Y-axis direction and the y-axis of the imaging plane coordinate system of the camera that is, the angle between the camera and the Y-axis direction of the two-axis motion mechanism
  • the technical solution provided by the embodiment of the invention can accurately measure the angle between the X-axis direction and the Y-axis direction of the camera and the two-axis motion mechanism, and adjust the camera based on the measured angle to ensure the camera and the second The X-axis direction or the Y-axis direction of the axis motion mechanism satisfies a certain positional relationship.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport the software for use by the instruction execution system, apparatus, or apparatus, or in conjunction with the instruction execution system, apparatus, or apparatus.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the software can be printed, as may be for example by paper Optical scanning is performed on other media, followed by editing, interpretation or, if necessary, processing in other suitable manner to electronically obtain the software and then store it in computer memory.
  • a plurality of steps or methods may be stored in a memory and understood by appropriate instructions, and portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • the software or firmware executed by the system is implemented.
  • it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals.
  • PGAs programmable gate arrays
  • FPGAs field programmable gate arrays
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种夹角测量方法和测量装置,该方法包括如下步骤:获取二轴运动机构(12)上的一目标点沿二轴运动机构(12)的X轴方向、Y轴方向的运动轨迹;计算目标点沿X轴方向、Y轴方向的运动轨迹与摄像头(11)的成像平面坐标系的x轴、y轴的第一夹角和第二夹角,第一夹角和第二夹角分别为摄像头(11)与二轴运动机构(12)的X轴方向、Y轴方向的夹角。一种夹角调节方法和调节装置,根据测量得到的第一夹角和第二夹角计算得到调节角度,并根据调节角度调节摄像头(11)的安装角度。能够精确测量摄像头(11)与二轴运动机构(12)的夹角,并基于测量的夹角调整摄像头(11)以保证摄像头(11)与二轴运动机构(12)满足一定位置关系。

Description

夹角测量方法、装置及夹角调节方法、装置 技术领域
本发明涉及工业检测领域,尤其涉及夹角测量方法、装置及夹角调节方法、装置。
背景技术
在AOI(Automatic Optic Inspection,自动光学检测)检测设备中,通常包括摄像头和运动机构。一般情况下,可以通过机械精度及安装方法保证摄像头与运动机构的某个方向成一定位置关系。但是在以下三种情况下:一是摄像头与运动机构之间没有直接连接机构;二是摄像头安装机械需要运动;三是摄像头安装装置精度不够高,则无法通过机械精度及安装方法保证两者的位置关系。
发明内容
针对上述问题,本发明实施例提供夹角测量方法、装置及夹角调节方法、装置,能够精确测量摄像头与运动机构的夹角,并基于测量的夹角调整摄像头以保证摄像头与运动机构满足一定位置关系,满足了使用要求。
本发明实施例提供一种夹角测量方法,包括如下步骤:
获取由摄像头记录二轴运动机构上的一目标点在所述二轴运动机构移动前以及分别沿所述二轴运动机构的X轴方向、Y轴方向移动一预定距离后的位置信息图像;
根据所述目标点在所述二轴运动机构移动前和移动后的位置信息图像,得到所述目标点在任意一个所述位置信息图像中的沿所述二轴运动机构的X轴方向、Y轴方向的运动轨迹;
计算所述目标点沿所述二轴运动机构的X轴方向、Y轴方向的运动轨迹与 所述位置信息图像的平面坐标系的x轴、y轴的第一夹角和第二夹角,所述第一夹角和第二夹角分别为所述摄像头与所述二轴运动机构的X轴方向、Y轴方向的夹角。
作为上述方案的改进,在所述获取由摄像头记录二轴运动机构上的一目标点在所述二轴运动机构移动前以及分别沿二轴运动机构的X轴方向、Y轴方向移动一预定距离后的位置信息图像之前,还包括:
进行摄像头标定。
作为上述方案的改进,所述目标点位于一测量板上,所述测量板固定在所述二轴运动机构上。
作为上述方案的改进,所述二轴运动机构移动前的位置信息图像中所述目标点所在的位置为第一位置点;
所述根据所述目标点在所述二轴运动机构移动前和移动后的位置信息图像,得到所述目标点在任意一个所述位置信息图像中的沿所述二轴运动机构的X轴方向、Y轴方向的运动轨迹,具体包括:
在所述二轴运动机构移动前的位置信息图像中标记与所述二轴运动机构沿X轴方向、Y轴方向移动一预定距离后的位置信息图像中所述目标点位置对应的第二位置点、第三位置点;
连接所述第一位置点与所述第二位置点而形成的直线段为所述目标点沿所述二轴运动机构的X轴方向的运动轨迹,连接所述第一位置点与所述第三位置点而形成的直线段为所述目标点沿所述二轴运动机构的Y轴方向的运动轨迹。
本发明实施例还提供一种夹角测量装置,包括:
位置记录模块,用于获取由摄像头记录二轴运动机构上的一目标点在所述二轴运动机构移动前以及分别沿所述二轴运动机构的X轴方向、Y轴方向移动一预定距离后的位置信息图像;
运动轨迹获取模块,用于根据所述目标点在所述二轴运动机构移动前和移动后的位置信息图像,得到所述目标点在任意一个所述位置信息图像中的沿所 述二轴运动机构的X轴方向、Y轴方向的运动轨迹;
夹角计算模块,用于计算所述目标点沿所述二轴运动机构的X轴方向、Y轴方向的运动轨迹与所述位置信息图像的平面坐标系的x轴、y轴的第一夹角和第二夹角,所述第一夹角和第二夹角分别为所述摄像头与所述二轴运动机构的X轴方向、Y轴方向的夹角。
作为上述方案的改进,所述夹角测量装置还包括:
标定模块,用于进行摄像头标定;
所述位置记录模块进一步用于获取由标定后的摄像头记录二轴运动机构上的一目标点在所述二轴运动机构移动前以及分别沿所述二轴运动机构的X轴方向、Y轴方向移动一预定距离后的位置信息图像。
作为上述方案的改进,所述二轴运动机构移动前的位置信息图像中所述目标点所在的位置为第一位置点;
所述运动轨迹获取模块包括:
标记单元,用于在所述二轴运动机构移动前的位置信息图像中标记与所述二轴运动机构沿X轴方向、Y轴方向移动一预定距离后的位置信息图像中所述目标点位置对应的第二位置点、第三位置点;
连接单元,用于连接所述第一位置点与所述第二位置点而形成的直线段为所述目标点沿所述二轴运动机构的X轴方向的运动轨迹,连接所述第一位置点与所述第三位置点而形成的直线段为所述目标点沿所述二轴运动机构的Y轴方向的运动轨迹。
本发明实施例还提供一种夹角调节方法,包括如下步骤:
S1、利用上述夹角测量方法测量得到第一夹角和第二夹角;
S2、根据所述第一夹角和第二夹角计算得到调节角度,并根据所述调节角度对所述摄像头的安装角度进行调节。
作为上述方案的改进,在根据所述调节角度对所述摄像头的安装角度进行调节后,循环执行上述步骤S1~S2,直至计算得到所述第一夹角或第二夹角为 0°。
本发明实施例还提供一种夹角调节装置,包括:
上述的夹角测量装置,用于测量得到第一夹角和第二夹角;及
夹角调节模块,用于根据所述第一夹角和第二夹角计算得到调节角度,并根据所述调节角度对所述摄像头的安装角度进行调节。
本发明实施例提供的夹角测量方法、装置及夹角调节方法、装置,通过获取二轴运动机构上的一目标点沿所述二轴运动机构的X轴方向、Y轴方向的运动轨迹,然后,计算所述目标点沿X轴方向的运动轨迹与摄像头的成像平面坐标系的x轴的第一夹角,即为所述摄像头与所述二轴运动机构的X轴方向的夹角;所述目标点沿Y轴方向的运动轨迹与摄像头的成像平面坐标系的y轴的第二夹角,即为所述摄像头与所述二轴运动机构的Y轴方向的夹角,最后,根据所述第一夹角和第二夹角计算得到调节角度,从而可根据所述调节角度对所述摄像头的安装角度进行调节。本发明实施例提供的技术方案能够精确测量所述摄像头与所述二轴运动机构的X轴方向和Y轴方向的夹角,并基于测量的夹角调整摄像头以保证所述摄像头与所述二轴运动机构的X轴方向或Y轴方向满足一定位置关系。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的夹角测量方法的流程示意图。
图2是本发明实施例提供的二轴运动机构移动前的整个机构的结构示意图。
图3是本发明实施例提供的基于图2得到的第一位置信息图像的示意图。
图4是本发明实施例提供的二轴运动机构沿其X轴方向移动一预定距离后的整个机构的结构示意图。
图5是本发明实施例提供的基于图4得到的第二位置信息图像的示意图。
图6是本发明实施例提供的二轴运动机构沿其Y轴方向移动一预定距离后的整个机构的结构示意图。
图7是本发明实施例提供的基于图6得到的第三位置信息图像的示意图。
图8是本发明实施例提供的用于获取运动轨迹及计算夹角的示意图。
图9是本发明实施例提供的夹角测量装置的结构示意图。
图10是图9所示的运动轨迹获取模块的结构示意图。
图11是本发明实施例提供的夹角调节方法的流程示意图。
图12是本发明实施例提供的夹角调节装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供的夹角测量方法、装置及夹角调节方法、装置,能够精确测量所述摄像头与所述二轴运动机构的X轴方向和Y轴方向的夹角,并基于测量的夹角调整摄像头以保证所述摄像头与所述二轴运动机构的X轴方向或Y轴方向满足一定位置关系。下面分别进行详细的描述。
请参阅图1,本发明实施例提供一种夹角测量方法,包括步骤S11~S13,具体如下:
S11,获取由摄像头记录二轴运动机构上的一目标点在所述二轴运动机构移动前以及分别沿所述二轴运动机构的X轴方向、Y轴方向移动一预定距离后的位置信息图像。
优选的,在采用所述摄像头记录图像前,可先进行摄像头标定,其是为了 获取具体且精确的内参及外参数,从而能让所述摄像头记录的图像还原成真实平面,而不至于发生畸变,其中,所述摄像头标定方法有很多,其主要可分为三类:传统标定、主动视觉标定和自标定,本发明不做具体的限定。
请一并参阅图2,在本发明实施例中,所述摄像头11架设于所述二轴运动机构12上方,并记录所述二轴运动机构上一目标点20的位置信息图像,其中,所述目标点20位于一测量板13上,所述测量板13固定在所述二轴运动机构12上,所述测量板13可以为标定板或其他用于检验测量工作的平面基准量具,本发明不做具体的限定。
在本发明实施例中,获取由标定后的所述摄像头11记录所述目标点20在所述二轴运动机构12移动前以及分别沿所述二轴运动机构12的X轴方向、Y轴方向移动一预定距离后的位置信息图像,具体为:
首先,请一并参阅图3,图3是基于图2得到的第一位置信息图像的示意图,具体为,获取由标定后的所述摄像头11记录所述目标点20的第一位置信息图像31,其中,所述第一位置信息图像31中所述目标点20所在的点为A点。
接着,请一并参阅图4及图5,图4是所述二轴运动机构沿其X轴方向移动一预定距离后的整个机构的示意图,图5是基于图4得到的第二位置信息图像的示意图,具体为,在所述二轴运动机构12沿所述二轴运动机构12的X轴方向移动一预定距离后,获取由标定后的所述摄像头11记录所述目标点20的第二位置信息图像32,并将所述二轴运动机构12返回至移动前的位置,其中,所述第二位置信息图像32中所述目标点20所在的点为B点,所述预定距离为小于所述第一位置信息图像31中点A到图像的任一边界线的距离。
最后,请一并参阅图6及图7,图6是所述二轴运动机构沿其Y轴方向移动一预定距离后的整个机构的示意图,图7是基于图6得到的第三位置信息图像的示意图,具体为,在所述二轴运动机构12沿所述二轴运动机构12的Y轴方向移动一预定距离后,获取由标定后的所述摄像头11记录所述目标点20的第三位置信息图像33,并将所述二轴运动机构12返回至移动前的位置,其中,所述第三位置信息图像33中所述目标点20所在的点为C点。
S12,根据所述目标点在所述二轴运动机构移动前和移动后的位置信息图像,得到所述目标点在任意一个所述位置信息图像中的沿所述二轴运动机构的X轴方向、Y轴方向的运动轨迹。
请一并参阅图8,在本发明实施例中,具体包括:
在所述第一位置信息图像31中标记与所述第二位置信息图像32中B点位置对应的B′点、与所述第三位置信息图像33中C点位置对应的C′点;
连接A点与B′点而形成的直线段为所述目标点20沿所述二轴运动机构12的X轴方向的运动轨迹,连接A点与C′点而形成的直线段为所述目标点20沿所述二轴运动机构12的Y轴方向的运动轨迹。
可以理解的是,本发明也可以在所述第二位置信息图像32或第三位置信息图像33中获取所述目标点20沿所述二轴运动机构12的X轴方向、Y轴方向的运动轨迹,本发明在这里不进行具体描述。
S13,计算所述目标点沿所述二轴运动机构的X轴方向、Y轴方向的运动轨迹与所述位置信息图像的平面坐标系的x轴、y轴的第一夹角和第二夹角,所述第一夹角和第二夹角分别为所述摄像头与所述二轴运动机构的X轴方向、Y轴方向的夹角。
请一并参阅图8,在本发明实施例中,所述第一位置信息图像31为矩形图像,以A点为原点建立平面坐标系,所述平面坐标系的x轴与标定后的所述摄像头11的坐标系的XC轴平行,也与所述第一位置信息图像31的水平边界线平行,所述平面坐标系的y轴与标定后的所述摄像头11的坐标系的YC轴平行,也与所述第一位置信息图像31的垂直边界线平行,则所述步骤S13具体为:
首先,根据以A点为原点建立的所述平面坐标系,获取A点、B′点和C′点的坐标分别为(0,0)、(x1,y1)和(x2,y2)。
然后,计算直线段AB′与所述平面坐标系的x轴的第一夹角
Figure PCTCN2016096898-appb-000001
以及直线段AC′与所述平面坐标系的y轴的第二夹角
Figure PCTCN2016096898-appb-000002
为所述 摄像头11的坐标系的XC轴与所述二轴运动机构12的X轴的夹角,
Figure PCTCN2016096898-appb-000003
为所述摄像头11的坐标系的YC轴与所述二轴运动机构12的Y轴的夹角。
相应地,本发明还提供一种夹角测量装置,可执行上述实施例提供的夹角测量方法的所有流程。
请参阅图9,是本发明实施例提供的夹角测量装置的结构示意图。所述夹角测量装置100包括标定模块110、位置记录模块120、运动轨迹获取模块130及夹角计算模块140,具体如下:
所述标定模块110,用于进行摄像头标定。
在本发明实施例中,所述标定模块110进行摄像头标定,是为了获取具体且精确的内参及外参数,从而能让所述摄像头记录的图像还原成真实平面,而不至于发生畸变,其中,所述摄像头标定方法有很多,其主要可分为三类:传统标定、主动视觉标定和自标定,本发明不做具体的限定。
所述位置记录模块120,用于获取由标定后的所述摄像头记录二轴运动机构上的一目标点在所述二轴运动机构移动前以及分别沿所述二轴运动机构的X轴方向、Y轴方向移动一预定距离后的位置信息图像。
请一并参阅图2,在本发明实施例中,所述摄像头11架设于所述二轴运动机构12上方,并记录所述二轴运动机构12上一目标点20的位置信息图像,其中,所述目标点20位于一测量板13上,所述测量板13固定在所述二轴运动机构12上,所述测量板13可以为标定板或其他用于检验测量工作的平面基准量具,本发明不做具体的限定。
在本发明实施例中,所述位置记录模块120具体用于:
首先,请一并参阅图3,图3是基于图2得到的第一位置信息图像的示意图,具体为,所述位置记录模块120获取由标定后的所述摄像头11记录所述目标点20的第一位置信息图像31,其中,所述第一位置信息图像31中所述目标点20所在的点为A点。
接着,请一并参阅图4及图5,图4是所述二轴运动机构沿其X轴方向移动一预定距离后的整个机构的示意图,图5是基于图4得到的第二位置信息图像的示意图,具体为,所述位置记录模块120在所述二轴运动机构12沿X轴方向移动一预定距离后,获取由标定后的所述摄像头11记录所述目标点20的第二位置信息图像32,并将所述二轴运动机构12返回至移动前的位置,其中,所述第二位置信息图像32中所述目标点所在的点为B点,所述预定距离为小于所述第一位置信息图像31中A点到图像的任一边界线的距离。
最后,请一并参阅图6及图7,图6是所述二轴运动机构沿其Y轴方向移动一预定距离后的整个机构的示意图,图7是基于图6得到的第三位置信息图像的示意图,具体为,所述位置记录模块120在所述二轴运动机构12沿Y轴方向移动一预定距离后,获取由标定后的所述摄像头11记录所述目标点20的第三位置信息图像33,并将所述二轴运动机构12返回至移动前的位置,其中,所述第三位置信息图像33中所述目标点20所在的点为C点。
所述运动轨迹获取模块130,用于根据所述目标点在所述二轴运动机构移动前和移动后的位置信息图像,得到所述目标点在任意一个所述位置信息图像中的沿所述二轴运动机构的X轴方向、Y轴方向的运动轨迹。
请一并参阅图8及图10,在本发明实施例中,所述运动轨迹获取模块130具体包括:
标记单元131,用于在所述第一位置信息图像31中标记与所述第二位置信息图像32中B点位置对应的B′点、与所述第三位置信息图像33中C点位置对应的C′点;
连接单元132,用于连接A点与B′点而形成的直线段为所述目标点20沿所述二轴运动机构12的X轴方向的运动轨迹,连接A点与C′点而形成的直线段为所述目标点20沿所述二轴运动机构12的Y轴方向的运动轨迹。
可以理解的是,本发明也可以在所述第二位置信息图像32或第三位置信息图像33中获取所述目标点20沿所述二轴运动机构12的X轴方向、Y轴方向的运动轨迹,本发明在这里不进行具体描述。
所述夹角计算模块140,用于计算所述目标点沿所述二轴运动机构的X轴方向、Y轴方向的运动轨迹与所述位置信息图像的平面坐标系的x轴、y轴的第一夹角和第二夹角,所述第一夹角和第二夹角分别为所述摄像头与所述二轴运动机构的X轴方向、Y轴方向的夹角。
请一并参阅图8,在本发明实施例中,所述第一位置信息图像31为矩形图像,以A点为原点建立平面坐标系,所述平面坐标系的x轴与标定后的所述摄像头11的坐标系的XC轴平行,也与所述第一位置信息图像31的水平边界线平行,所述平面坐标系的y轴与标定后的所述摄像头11的坐标系的YC轴平行,也与所述第一位置信息图像31的垂直边界线平行,则所述夹角计算模块具体用于:
首先,根据以A点为原点建立的所述平面坐标系,获取A点、B′点和C′点的坐标分别为(0,0)、(x1,y1)和(x2,y2)。
然后,计算直线段AB′与所述平面坐标系的x轴的第一夹角
Figure PCTCN2016096898-appb-000004
以及直线段AC′与所述平面坐标系的y轴的第二夹角
Figure PCTCN2016096898-appb-000005
为所述摄像头11的坐标系的XC轴与所述二轴运动机构12的X轴的夹角,
Figure PCTCN2016096898-appb-000006
为所述摄像头11的坐标系的YC轴与所述二轴运动机构12的Y轴的夹角。
此外,本发明还提供一种夹角调节方法。
请参阅图11,本发明实施例还提供一种夹角调节方法,包括步骤S1~S2,具体如下:
S1,利用图1所示的夹角测量方法测量得到第一夹角和第二夹角。
S2,根据所述第一夹角和第二夹角计算得到调节角度,并根据所述调节角度对所述摄像头的安装角度进行调节。
优选的,在根据所述调节角度对所述摄像头11的安装角度进行调节后,循 环执行步骤S1~S2,直至计算得到所述第一夹角或第二夹角为0°,即所述摄像头11与所述二轴运动机构12的X轴或Y轴平行。此时,所述摄像头11拍摄出的关于所述二轴运动机构12的图片的清晰度是较优的。
在本发明实施例中,具体为,按一定方向以角度
Figure PCTCN2016096898-appb-000007
Figure PCTCN2016096898-appb-000008
调节所述摄像头11,然后重新计算调节后的第一夹角和第二夹角,同理,当所述调节后的第一夹角或所述调节后的第二夹角不为零时,根据所述调节后的第一夹角或所述调节后的第二夹角调节所述摄像头11的角度,这样循环下去直到所述摄像头11与所述二轴运动机构12的X轴或Y轴平行,其中,所述一定方向可为顺时针方向或逆时针方向,这些可根据实际的需要进行设置,本发明不做具体的限定。
可以理解的是,当所述二轴运动机构12的X轴与Y轴互相垂直时,所述第一夹角与所述第二夹角相等,则对所述摄像头11的安装角度进行调节直至计算得到所述第一夹角和第二夹角同时为0,本发明在这里不进行具体描述。
相应地,本发明还提供一种夹角调节装置,可执行上述实施例提供的夹角调节方法的所有流程。
请参阅图12,本发明实施例还提供一种夹角调节装置200,包括:夹角测量装置100及夹角调节模块250,具体如下:
所述夹角测量装置100,用于测量得到第一夹角和第二夹角。其中所述夹角测量装置采用图9所示的夹角测量装置100。
所述夹角调节模块250,用于根据所述第一夹角和第二夹角计算得到调节角度,并根据所述调节角度对所述摄像头的安装角度进行调节。
优选的,在所述夹角调节模块250根据所述调节角度对所述摄像头11的安装角度进行调节后,循环执行上述的夹角调节方法的步骤S1~S2,直至计算得到所述第一夹角或第二夹角为0°,即所述摄像头11与所述二轴运动机构12的X轴或Y轴平行。此时,所述摄像头11拍摄出的关于所述二轴运动机构12的 图片的清晰度是较优的。
在本发明实施例中,具体为,按一定方向以角度
Figure PCTCN2016096898-appb-000009
Figure PCTCN2016096898-appb-000010
调节所述摄像头11,然后重新计算调节后的第一夹角和第二夹角,同理,当所述调节后的第一夹角或所述调节后的第二夹角不为零时,根据所述调节后的第一夹角或所述调节后的第二夹角调节所述摄像头11的角度,这样循环下去直到所述摄像头11与所述二轴运动机构12的X轴或Y轴平行,其中,所述一定方向可为顺时针方向或逆时针方向,这些可根据实际的需要进行设置,本发明不做具体的限定。
可以理解的是,当所述二轴运动机构12的X轴与Y轴互相垂直时,所述第一夹角与所述第二夹角相等,则对所述摄像头11的安装角度进行调节直至计算得到所述第一夹角和第二夹角同时为0,本发明在这里不进行具体描述。
本发明实施例提供的夹角测量方法、装置及夹角调节方法、装置,通过获取二轴运动机构上的一目标点沿所述二轴运动机构的X轴方向、Y轴方向的运动轨迹,然后,计算所述目标点沿X轴方向的运动轨迹与摄像头的成像平面坐标系的x轴的第一夹角,即为所述摄像头与所述二轴运动机构的X轴方向的夹角;所述目标点沿Y轴方向的运动轨迹与摄像头的成像平面坐标系的y轴的第二夹角,即为所述摄像头与所述二轴运动机构的Y轴方向的夹角,最后,根据所述第一夹角和第二夹角计算得到调节角度,从而可根据所述调节角度对所述摄像头的安装角度进行调节。本发明实施例提供的技术方案能够精确测量所述摄像头与所述二轴运动机构的X轴方向和Y轴方向的夹角,并基于测量的夹角调整摄像头以保证所述摄像头与所述二轴运动机构的X轴方向或Y轴方向满足一定位置关系。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明 书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,″计算机可读介质″可以是任何可以包含、存储、通信、传播或传输软件以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述软件的纸或其他合适的介质,因为可以例如通过对纸 或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述软件,然后将其存储在计算机存储器中。
在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。行***执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过软件来指令相关的硬件完成,所述的软件可以存储于一种计算机可读存储介质中,该软件在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种夹角测量方法,其特征在于,包括如下步骤:
    获取由摄像头记录二轴运动机构上的一目标点在所述二轴运动机构移动前以及分别沿所述二轴运动机构的X轴方向、Y轴方向移动一预定距离后的位置信息图像;
    根据所述目标点在所述二轴运动机构移动前和移动后的位置信息图像,得到所述目标点在任意一个所述位置信息图像中的沿所述二轴运动机构的X轴方向、Y轴方向的运动轨迹;
    计算所述目标点沿所述二轴运动机构的X轴方向、Y轴方向的运动轨迹与所述位置信息图像的平面坐标系的x轴、y轴的第一夹角和第二夹角,所述第一夹角和第二夹角分别为所述摄像头与所述二轴运动机构的X轴方向、Y轴方向的夹角。
  2. 如权利要求1所述的夹角测量方法,其特征在于,在所述获取由摄像头记录二轴运动机构上的一目标点在所述二轴运动机构移动前以及分别沿二轴运动机构的X轴方向、Y轴方向移动一预定距离后的位置信息图像之前,还包括:
    进行摄像头标定。
  3. 如权利要求1所述的夹角测量方法,其特征在于,所述目标点位于一测量板上,所述测量板固定在所述二轴运动机构上。
  4. 如权利要求1所述的夹角测量方法,其特征在于,所述二轴运动机构移动前的位置信息图像中所述目标点所在的位置为第一位置点;
    所述根据所述目标点在所述二轴运动机构移动前和移动后的位置信息图像,得到所述目标点在任意一个所述位置信息图像中的沿所述二轴运动机构的X轴方向、Y轴方向的运动轨迹,具体包括:
    在所述二轴运动机构移动前的位置信息图像中标记与所述二轴运动机构沿 X轴方向、Y轴方向移动一预定距离后的位置信息图像中所述目标点位置对应的第二位置点、第三位置点;
    连接所述第一位置点与所述第二位置点而形成的直线段为所述目标点沿所述二轴运动机构的X轴方向的运动轨迹,连接所述第一位置点与所述第三位置点而形成的直线段为所述目标点沿所述二轴运动机构的Y轴方向的运动轨迹。
  5. 一种夹角测量装置,其特征在于,包括:
    位置记录模块,用于获取由摄像头记录二轴运动机构上的一目标点在所述二轴运动机构移动前以及分别沿所述二轴运动机构的X轴方向、Y轴方向移动一预定距离后的位置信息图像;
    运动轨迹获取模块,用于根据所述目标点在所述二轴运动机构移动前和移动后的位置信息图像,得到所述目标点在任意一个所述位置信息图像中的沿所述二轴运动机构的X轴方向、Y轴方向的运动轨迹;
    夹角计算模块,用于计算所述目标点沿所述二轴运动机构的X轴方向、Y轴方向的运动轨迹与所述位置信息图像的平面坐标系的x轴、y轴的第一夹角和第二夹角,所述第一夹角和第二夹角分别为所述摄像头与所述二轴运动机构的X轴方向、Y轴方向的夹角。
  6. 如权利要求5所述的夹角测量装置,其特征在于,所述夹角测量装置还包括:
    标定模块,用于进行摄像头标定;
    所述位置记录模块进一步用于获取由标定后的所述摄像头记录二轴运动机构上的一目标点在所述二轴运动机构移动前以及分别沿所述二轴运动机构的X轴方向、Y轴方向移动一预定距离后的位置信息图像。
  7. 如权利要求5所述的夹角测量装置,其特征在于,所述二轴运动机构移动前的位置信息图像中所述目标点所在的位置为第一位置点;
    所述运动轨迹获取模块包括:
    标记单元,用于在所述二轴运动机构移动前的位置信息图像中标记与所述二轴运动机构沿X轴方向、Y轴方向移动一预定距离后的位置信息图像中所述目标点位置对应的第二位置点、第三位置点;
    连接单元,用于连接所述第一位置点与所述第二位置点而形成的直线段为所述目标点沿所述二轴运动机构的X轴方向的运动轨迹,连接所述第一位置点与所述第三位置点而形成的直线段为所述目标点沿所述二轴运动机构的Y轴方向的运动轨迹。
  8. 一种夹角调节方法,其特征在于,包括如下步骤:
    S1、利用如权利要求1至4任一项所述的夹角测量方法测量得到第一夹角和第二夹角;
    S2、根据所述第一夹角和第二夹角计算得到调节角度,并根据所述调节角度对所述摄像头的安装角度进行调节。
  9. 如权利要求8所述的夹角调节方法,其特征在于,在根据所述调节角度对所述摄像头的安装角度进行调节后,循环执行步骤S1~S2,直至计算得到所述第一夹角或第二夹角为0°。
  10. 一种夹角调节装置,其特征在于,包括:
    如权利要求5至7任一项所述的夹角测量装置,用于测量得到第一夹角和第二夹角;及
    夹角调节模块,用于根据所述第一夹角和第二夹角计算得到调节角度,并根据所述调节角度对所述摄像头的安装角度进行调节。
PCT/CN2016/096898 2015-12-21 2016-08-26 夹角测量方法、装置及夹角调节方法、装置 WO2017107534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510975930.3 2015-12-21
CN201510975930.3A CN105627954B (zh) 2015-12-21 2015-12-21 夹角测量方法、装置及夹角调节方法、装置

Publications (1)

Publication Number Publication Date
WO2017107534A1 true WO2017107534A1 (zh) 2017-06-29

Family

ID=56043107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096898 WO2017107534A1 (zh) 2015-12-21 2016-08-26 夹角测量方法、装置及夹角调节方法、装置

Country Status (2)

Country Link
CN (1) CN105627954B (zh)
WO (1) WO2017107534A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109543665A (zh) * 2017-09-22 2019-03-29 凌云光技术集团有限责任公司 图像定位方法及装置
CN113808212A (zh) * 2020-06-17 2021-12-17 深圳科瑞技术股份有限公司 一种线扫描图像同步的标定方法和***

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105627954B (zh) * 2015-12-21 2019-05-28 广州视源电子科技股份有限公司 夹角测量方法、装置及夹角调节方法、装置
CN110220471B (zh) * 2019-06-27 2023-12-08 广西柳钢东信科技有限公司 一种熔融金属槽侵蚀程度检测方法
CN110561435B (zh) * 2019-09-17 2021-04-27 北京康视杰视觉技术有限公司 一种引导机械手的方法、装置、***及上位机
CN111664810B (zh) * 2020-05-08 2022-01-14 河北津西钢铁集团股份有限公司 型钢夹角检测与图像采集装置及其检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1153451A (zh) * 1995-10-10 1997-07-02 Lg产电株式会社 表面安装器件安装机的器件识别方法和装置
CN1501770A (zh) * 2002-11-13 2004-06-02 ��ʿ��е������ʽ���� 电子部件安装装置的校正方法及装置
CN101058164A (zh) * 2006-04-18 2007-10-24 上海富安工厂自动化有限公司 一种用于芯片划片机的图像校准方法
CN102689032A (zh) * 2012-06-12 2012-09-26 杭州九博科技有限公司 柔性线路板自动打孔控制方法
CN105021127A (zh) * 2015-06-25 2015-11-04 哈尔滨工业大学 一种贴片机的基准相机校正方法
CN105627954A (zh) * 2015-12-21 2016-06-01 广州视源电子科技股份有限公司 夹角测量方法、装置及夹角调节方法、装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115107A (en) * 1991-01-11 1992-05-19 Ncr Corporation Method of correcting skew between a digitizer and a digital display
KR20020097172A (ko) * 2001-02-08 2002-12-31 닛폰 고칸 가부시키가이샤 3차원 좌표 계측방법, 3차원 좌표 계측장치 및 대형구조물의 건조방법
CN101407134B (zh) * 2008-11-10 2011-05-04 深圳市大族激光科技股份有限公司 影像传感器位置的校正方法
JP2014163892A (ja) * 2013-02-27 2014-09-08 Umemura Gakuen レーザ計測システム
CN103305410B (zh) * 2013-05-10 2015-11-25 苏州大学 显微注射***及坐标误差补偿和精确重复定位方法
CN103676976B (zh) * 2013-12-23 2016-01-13 中国地质科学院地质研究所 三维工作台重复定位误差的校正方法
CN104460698B (zh) * 2014-11-03 2017-02-15 北京凌云光技术有限责任公司 Uvw平台校准方法及装置
CN104820344A (zh) * 2015-03-31 2015-08-05 合肥芯硕半导体有限公司 一种精密定位平台Yaw值的测量方法
CN104819690B (zh) * 2015-04-21 2017-05-31 上海瑞伯德智能***股份有限公司 一种表面贴装元件的双相机机器视觉定位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1153451A (zh) * 1995-10-10 1997-07-02 Lg产电株式会社 表面安装器件安装机的器件识别方法和装置
CN1501770A (zh) * 2002-11-13 2004-06-02 ��ʿ��е������ʽ���� 电子部件安装装置的校正方法及装置
CN101058164A (zh) * 2006-04-18 2007-10-24 上海富安工厂自动化有限公司 一种用于芯片划片机的图像校准方法
CN102689032A (zh) * 2012-06-12 2012-09-26 杭州九博科技有限公司 柔性线路板自动打孔控制方法
CN105021127A (zh) * 2015-06-25 2015-11-04 哈尔滨工业大学 一种贴片机的基准相机校正方法
CN105627954A (zh) * 2015-12-21 2016-06-01 广州视源电子科技股份有限公司 夹角测量方法、装置及夹角调节方法、装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109543665A (zh) * 2017-09-22 2019-03-29 凌云光技术集团有限责任公司 图像定位方法及装置
CN109543665B (zh) * 2017-09-22 2020-10-16 凌云光技术集团有限责任公司 图像定位方法及装置
CN113808212A (zh) * 2020-06-17 2021-12-17 深圳科瑞技术股份有限公司 一种线扫描图像同步的标定方法和***

Also Published As

Publication number Publication date
CN105627954A (zh) 2016-06-01
CN105627954B (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2017107534A1 (zh) 夹角测量方法、装置及夹角调节方法、装置
US9928595B2 (en) Devices, systems, and methods for high-resolution multi-view camera calibration
WO2019127406A1 (zh) 一种adas摄像头的标定方法、装置、存储介质及终端设备
CN111263142B (zh) 一种摄像模组光学防抖的测试方法、装置、设备及介质
CN103559708A (zh) 基于方靶模型的工业定焦相机参数标定装置
CN104111059A (zh) 一种测距和定位装置、方法及终端
CN104133076A (zh) 一种测速装置、方法及终端
TW201837424A (zh) 物件厚度量測系統、方法、檢測設備、及其電腦可讀取記錄媒體及電腦程式產品
CN110806182A (zh) 基于远心镜头的高精度光学引伸计及测量方法
JPWO2020188799A1 (ja) カメラ校正装置、カメラ校正方法、及びプログラム
EP3306919A1 (en) Projection terminal keystone correction method and device, and projection terminal and storage medium
CN106643518A (zh) 一种利用双目摄像装置测量距离和大小的方法和装置
WO2019127408A1 (zh) 一种adas摄像头的标定方法、装置、存储介质及终端设备
CN111145247B (zh) 基于视觉的位置度检测方法及机器人、计算机存储介质
CN116678322A (zh) 考虑平行激光束倾斜角度的裂缝宽度测量方法及***
JP2017040482A (ja) 曲面を基準面とする三次元形状計測方法
CN108038871A (zh) 旋转平台的旋转中心确定方法、装置、服务器和存储介质
CN114841925A (zh) 一种测试设备对位计算方法、终端及存储介质
CN109544639B (zh) 一种多镜面单相机三维振动测试装置及方法
Hlotov et al. Method for determining the focal length in a digital non-metric camera
TWI650530B (zh) 檢測系統及其方法
CN116883516B (zh) 相机参数标定方法及装置
CN113658248B (zh) 自移机尾的姿态监测方法、装置及电子设备
JP6225719B2 (ja) 真直度測定装置、真直度測定方法、およびプログラム
US20210240196A1 (en) Positioning apparatus, recording medium, and positioning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/11/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16877346

Country of ref document: EP

Kind code of ref document: A1