WO2017107399A1 - 一种集成led光源导热结构及其实现方法 - Google Patents

一种集成led光源导热结构及其实现方法 Download PDF

Info

Publication number
WO2017107399A1
WO2017107399A1 PCT/CN2016/085372 CN2016085372W WO2017107399A1 WO 2017107399 A1 WO2017107399 A1 WO 2017107399A1 CN 2016085372 W CN2016085372 W CN 2016085372W WO 2017107399 A1 WO2017107399 A1 WO 2017107399A1
Authority
WO
WIPO (PCT)
Prior art keywords
soldering
light source
insulating substrate
led light
chip
Prior art date
Application number
PCT/CN2016/085372
Other languages
English (en)
French (fr)
Inventor
叶尚辉
张杰钦
洪茂椿
林文雄
郭旺
张云峰
Original Assignee
福建中科芯源光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建中科芯源光电科技有限公司 filed Critical 福建中科芯源光电科技有限公司
Publication of WO2017107399A1 publication Critical patent/WO2017107399A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/644Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0075Processes relating to semiconductor body packages relating to heat extraction or cooling elements

Definitions

  • the invention relates to an integrated LED light source, in particular to a heat conduction structure of an integrated LED light source and an implementation method thereof.
  • LED light sources have been widely used in various fields due to their advantages of energy saving, environmental protection and long life.
  • the conventional LED light source generally adheres the chip to the substrate or the support by using an adhesive.
  • the adhesive is mostly a mixture of epoxy resin and ceramic or metal powder, and the chip is fixed by the adhesive property of the resin, and is filled. Material for heat conduction. Moreover, such adhesives are generally physically mixed and have poor stability and consistency. As power increases, thermal conductivity and long-term stability are greatly challenged.
  • the technical problem to be solved by the present invention is to provide a heat conduction structure of an integrated LED light source and an implementation method thereof, which can make the integrated LED light source have the characteristics of good heat conduction and stable performance.
  • An integrated LED light source heat conducting structure comprising an insulating substrate, a circuit layer and a soldering surface, the circuit layer being disposed on a front surface of the insulating substrate, the soldering surface
  • a metal solder soldering heat sink is provided on the reverse side of the insulating substrate and through a thermal conductivity of 60 W/m.k or more.
  • the circuit layer is divided into a plurality of solid crystal regions and a plurality of bonding wires regions, and there is no electrical connection between the solid crystal region and the bonding wire region, and the LED chips are soldered one by one to the corresponding solid crystal regions and correspondingly
  • the wire bond area forms an electrical connection.
  • the insulating substrate is provided with a through hole penetrating the insulating substrate corresponding to each of the LED chips, and the heat conducting body is filled in the through hole, and the heat conducting body is electrically connected to the die bonding region and the soldering surface, respectively.
  • the minimum distance of the periphery of any two adjacent through holes is greater than the thickness of the insulating substrate.
  • the welding surface is a metal silver layer, and the welding surface area occupies more than 90% of the area of the insulating substrate; the heat conductor is a metal silver paste.
  • the back surface of the LED chip is plated with a metal material.
  • the metal material is a silver tin alloy or a gold tin alloy.
  • soldering surface is welded to the insulating substrate and the heat sink by reflow soldering.
  • the LED chip is a positive loading chip or a flip chip
  • each LED chip When the chip is being mounted, each LED chip is integrally placed in a corresponding solid crystal region for soldering, and then electrically connected to the bonding wire region through the reverse arch wire;
  • each LED chip When flip chip, the back of each LED chip is designed for thermoelectric separation.
  • the electrodes are divided into two sides, the middle is the eutectic soldering of the heat conduction channel and the solid crystal region, and the electrode and the bonding wire area are eutectic soldered to form an electrical connection. .
  • the invention also provides a method for realizing the heat conduction structure of the integrated LED light source according to any of the preceding claims, comprising the following steps:
  • the soldering surface is welded to a heat sink having a thermal conductivity of 60 W/m.k or more.
  • the insulating substrate is a 96%-purity alumina ceramic substrate having a thickness of 0.5 mm; and the through holes are formed by laser laser;
  • the metal slurry is a silver paste, and the filling is filled by a thick film process.
  • the LED chip is a positive loading chip or a flip chip
  • each LED chip When the chip is being mounted, each LED chip is integrally placed in a corresponding solid crystal region for soldering, and then electrically connected to the bonding wire region through the reverse arch wire;
  • each LED chip is first designed for thermoelectric separation, the electrodes are divided into two sides, the middle is a eutectic soldering of the heat conduction channel and the solid crystal region, and the electrodes are soldered to the bonding wire region to form an electrical connection.
  • nano silver is used as the solder, and the soldering is eutectic soldering, and the soldering temperature is between 230 and 300 ° C, preferably 260 ° C.
  • the contact surface of the heat sink and the soldering surface is nickel-plated, the metal solder is a low-temperature solder paste, and the soldering is reflow soldering and reflow soldering.
  • the temperature is not lower than 125 ° C, preferably 160 ° C.
  • the heat generated by the LED chip of the present invention reaches the soldering surface through the circuit layer and the heat sink filled in the through hole, and the soldering surface can be firmly soldered together by the soldering surface.
  • the thermal conductivity of metal solder is about 60W/m.k or more, which is much higher than the common adhesive 1.0W/m.K.
  • the thermal conductivity, and the thermal interface between the chip and the heat sink is reduced, and the thermal resistance is greatly reduced, which is advantageous for extending the long-term life of the LED chip.
  • the invention adopts the method of separating the thermoelectric channels.
  • the direct heat conduction channel is formed by welding, and the electrical connection is completed by the gold wire connection on the surface, thereby avoiding the superposition of the thermoelectric effects to affect the overall reliability; for flip chip
  • the thermoelectric separation conducts heat through the intermediate insulating portion, and in addition to avoiding the superposition effect of the thermoelectric effects, the chip cracking leakage caused by the thermal expansion effect is also released.
  • FIG. 1 is a schematic top view of a thermally conductive structure of an integrated LED light source of the present invention.
  • FIG. 2 is a partial longitudinal cross-sectional view showing an embodiment of a thermally conductive structure of an integrated LED light source of the present invention.
  • FIG. 3 is a partial longitudinal cross-sectional view showing another embodiment of the heat conduction structure of the integrated LED light source of the present invention.
  • Figure 4 is a thermal resistance test chart of a common light source.
  • Fig. 5 is a heat resistance test chart of the light source of the present invention.
  • Figure 6 is a graph showing the temperature distribution of Sample 1.
  • Figure 7 is a graph showing the temperature distribution of Sample 2.
  • Figure 8 is a graph showing the temperature distribution of Sample 3.
  • the integrated LED light source heat conduction structure of the present invention comprises an insulating substrate 1.
  • the circuit layer 2 and the soldering surface 3, the circuit layer 2 is disposed on the front surface of the insulating substrate 1, and the soldering surface 3 is disposed on the reverse side of the insulating substrate 1 and is soldered by a metal solder having a thermal conductivity of 60 W/mk or more.
  • the circuit layer 2 is divided into a plurality of die bonding regions 21 and a plurality of bonding wires regions 22, and there is no electrical connection between the die bonding region 21 and the bonding wire region 22, and the LED chips 5 are respectively corresponding to the through holes 12 for soldering. On the die bonding region 21 and forming an electrical connection with the corresponding bonding wire region 22.
  • the insulating substrate 1 is provided with a through hole 12 penetrating the insulating substrate 1 for each of the die bonding regions 21, and the heat conductor 6 is filled in the through hole 12, and the heat conductor 6 is respectively associated with the die bonding region 21 and
  • the solder face 22 forms an electrical connection.
  • the minimum distance A of the periphery of any two adjacent through holes 12 is larger than the thickness H of the insulating substrate 1.
  • the welding surface 3 is a metal silver layer, and the area of the welding surface 3 occupies more than 90% of the area of the insulating substrate in which it is located; the heat conductor 6 is a metal silver paste.
  • the back surface of the LED chip 5 is plated with a metal material, preferably a silver tin alloy or a gold tin alloy.
  • the LED chip 5 is a front loading chip or a flip chip. As shown in FIG. 2, when the chip is mounted, each LED chip 5 is entirely placed in the corresponding solid crystal region 21 for soldering, and then electrically connected to the bonding wire region 22 through the reverse arch 52; When the chip is flip chip, the back of each LED chip 5 is first subjected to thermoelectric separation design, the electrodes 54 are arranged on both sides, and the heat conduction channel 56 and the die bonding region 21 are eutectic soldered in the middle, and the electrode 54 and the bonding wire region 22 are Eutectic soldering to form an electrical connection.
  • the method for realizing the heat conduction structure of the integrated LED light source of the present invention comprises the following steps:
  • the insulating substrate 1 is sputter coated on both sides, and a plurality of solid crystal regions 21 and a plurality of bonding regions 22 are formed on the front surface of the insulating substrate 1, and the soldering surface 3 is formed on the reverse surface;
  • the LED chips 5 are one-to-one corresponding to the through holes 12 and soldered to the die bonding region 21 and electrically connected with the corresponding bonding wire regions 22; nano silver is used as a solder during soldering, and eutectic soldering is used.
  • the welding temperature is between 230-300 ° C;
  • the LED chip 5 is a positive-loading chip or a flip-chip; as shown in FIG. 2, when it is a positive-loading chip, each LED chip 5 is entirely placed in a corresponding solid crystal region 21 for soldering, and then passed through a reverse arch 52. Forming an electrical connection with the bonding wire region 22; as shown in FIG. 3, when flipping the chip, the back of each LED chip 5 is first thermally and electrically separated, and the electrodes 54 are arranged on both sides, and the heat conducting channel 56 and the solid are in the middle.
  • the crystal region 21 is eutectic soldered
  • the electrode 54 is eutectic soldered to the bonding wire region 22 to form an electrical connection;
  • the soldering surface 3 is further passed through a heat sink of the metal soldering heat sink 4 having a thermal conductivity of 60 W/m.k or more, and reflow soldering may be employed, and the soldering temperature of the reflow soldering is not lower than 125 °C.
  • this step is performed after the eutectic completed LED light source is subjected to wire bonding, dam, and dispensing, and is packaged into an LED light source using a solid phosphor.
  • the insulating substrate is a 96%-purity alumina ceramic substrate having a thickness of 0.5 mm, but is not limited to the material, as long as the material has good insulation and stability;
  • the hole 12 is uniformly perforated by laser laser according to the design of the drawing, the diameter of the perforation is 0.2 mm, and the minimum gap between the hole and the hole is 0.5 mm.
  • the metal slurry is a silver paste, and the filling is filled by a thick film process.
  • the soldering temperature is 260 °C.
  • the contact surface of the heat sink 4 and the soldering surface 3 is nickel-plated, and the metal solder is a low-temperature solder paste, and the soldering temperature is 160 °C.
  • the invention also uses a transparent fluorescent ceramic for packaging, and we compare the thickness of the precipitated phosphor powder and the use of fluorescent ceramics by the same chip and heat dissipation conditions;
  • Sample 3 300 um YAG ceramic + 5 um organic silica gel.
  • the structure of the present invention is combined with the use of a transparent fluorescent ceramic for packaging, which can greatly improve the heat dissipation effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

一种集成LED光源导热结构及其制备方法,该集成LED光源导热结构包括绝缘基材(1)、电路层(2)和焊接面(3),电路层设在绝缘基材的正面,焊接面设在绝缘基材反面并通过导热率在60W/m.k以上的金属焊料焊接散热器(4)。LED芯片(5)产生的热量通过电路层、通孔(12)填埋的导热体(6)到达焊接面,焊接面通过回流焊的方式可以将基板和散热器牢靠的焊接在一起。金属焊料的导热率约60W/m.k以上,远高于常见粘接剂1.0W/m.K的导热率,而且芯片到散热器之间的热界面减少、热阻大幅降低,有利于延长LED芯片的长期寿命。

Description

一种集成LED光源导热结构及其实现方法 技术领域
本发明涉及一种集成LED光源,特别涉及一种集成LED光源导热结构及其实现方法。
背景技术
LED光源由于具有节能、环保、寿命长等优点已经在各个领域得到广泛应用。
现有的LED光源一般是将芯片利用粘接剂粘附在基板或者支架上,该粘接剂大多为环氧树脂与陶瓷或金属粉末的混合物,通过树脂的粘接特性来固定芯片,通过填充材料来进行导热。而且该类粘接剂一般为物理混合,稳定性和一致性都较差。随着功率的增加,导热性能和长期稳定性都受到较大的挑战。
因此,大功率LED封装需要对现有技术进行改善和提高。
发明内容
本发明要解决的技术问题,在于提供一种集成LED光源导热结构及其实现方法,能使集成LED光源拥有导热良好和性能稳定的特点。
本发明提出如下技术方案:
一种集成LED光源导热结构,该集成LED光源导热结构包括绝缘基材、电路层和焊接面,所述电路层设在绝缘基材的正面,所述焊接面 设在绝缘基材反面并通过导热率在60W/m.k以上的金属焊料焊接散热器。
进一步地,所述电路层分为复数个固晶区和复数个焊线区,且固晶区和焊线区之间无电气连接,LED芯片一一焊接于对应的固晶区上并与对应的焊线区形成电气连接。
进一步地,所述绝缘基材对应每个LED芯片设有贯穿绝缘基材的通孔,通孔内填埋导热体,且所述导热体分别与所述固晶区及焊接面形成电气连接。
进一步地,任意两相邻通孔的***的最小距离大于所述绝缘基材的厚度。
进一步地,所述焊接面为金属银层,且焊接面面积占所在的绝缘基材面积的90%以上;所述导热体为金属银浆体。
进一步地,所述LED芯片的背面镀有金属材质。
进一步地,所述金属材质为银锡合金或金锡合金。
进一步地,所述焊接面通过回流焊的方式将绝缘基材和散热器牢靠地焊接在一起。
进一步地,所述LED芯片为正装芯片或是倒装芯片;
当为正装芯片时,每个LED芯片整体置于对应的固晶区进行焊接,再通过反向拱丝与焊线区形成电气连接;
当为倒装芯片时,先将每个LED芯片的背部进行热电分离设计,电极分列两侧,中间为导热通道与固晶区共晶焊接,电极与焊线区共晶焊接来形成电气连接。
本发明还提出一种如前任一项所述的集成LED光源导热结构的实现方法,包括下述步骤:
(1)在绝缘基材上开设复数个通孔;
(2)使用金属浆填充通孔,高温烧结完成通孔填埋;
(3)在完成通孔填埋后,将绝缘基材两面溅射镀膜,在绝缘基材的正面形成复数个固晶区和复数个焊线区,反面形成焊接面;
(4)将LED芯片一一对应于所述通孔焊接于固晶区上并与对应的焊线区形成电气连接;
(5)将所述焊接面通过导热率在60W/m.k以上的金属焊料焊接散热器。
进一步地,所述步骤(1)中,所述绝缘基材为0.5mm厚度的96%纯度的氧化铝陶瓷基板;开设通孔是通过激光镭射方式进行的;
所述步骤(2)中,所述金属浆为银浆,所述填充通过厚膜工艺填充。
进一步地,所述LED芯片为正装芯片或倒装芯片;
当为正装芯片时,每个LED芯片整体置于对应的固晶区进行焊接,再通过反向拱丝与焊线区形成电气连接;
当为倒装芯片时,先将每个LED芯片的背部进行热电分离设计,电极分列两侧,中间为导热通道与固晶区共晶焊接,电极与焊线区焊接来形成电气连接。
进一步地,所述步骤(4)中,是采用纳米银作为焊料,所述焊接为共晶焊接,焊接温度为230-300℃之间,优选为260℃。
进一步地,所述步骤(5)在焊接前,先将散热器与所述焊接面的接触面作镀镍处理,所述金属焊料为低温锡膏,所述焊接为回流焊接,回流焊的焊接温度在不低于125℃,优选为160℃。
本发明的有益效果:
1.本发明LED芯片产生的热量通过电路层、通孔填埋的导热体到达焊接面,焊接面通过回流焊的方式可以将基板和散热器牢靠的焊接在一起。金属焊料的导热率约60W/m.k以上,远高于常见粘接剂1.0W/m.K 的导热率,而且芯片到散热器之间的热界面减少、热阻大幅降低,有利于延长LED芯片的长期寿命。
2.本发明采用热电通道分离的方式,对于正装芯片而言,通过焊接形成直接导热通道,而电气连接是在表面的金线连接完成,避免热电效应互相叠加影响整体可靠性;对于倒装芯片而言,热电分离通过中间绝缘部分进行导热,除了避免热电效应的相互叠加影响以外,也缓释了热膨胀效应导致的芯片拉裂漏电。
附图说明
下面参照附图结合实施例对本发明作进一步的说明。
图1为本发明的集成LED光源导热结构的俯视状态示意图。
图2为本发明的集成LED光源导热结构一实施例的局部纵向剖面示意图。
图3为本发明的集成LED光源导热结构另一实施例的局部纵向剖面示意图。
图4为普通光源的热阻测试图。
图5为本发明的光源热阻测试图。
图6为样品1的温度分布图。
图7为样品2的温度分布图。
图8为样品3的温度分布图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。但本领域技术人员知晓,本发明并不局限于附图和以下实施例。
如图1至图3所示,本发明的集成LED光源导热结构包括绝缘基材 1、电路层2和焊接面3,所述电路层2设在绝缘基材1的正面,所述焊接面3设在绝缘基材1反面并通过导热率在60W/m.k以上的金属焊料焊接散热器4。
所述电路层2分为复数个固晶区21和复数个焊线区22,且固晶区21和焊线区22之间无电气连接,LED芯片5一一对应于所述通孔12焊接于固晶区21上并与对应的焊线区22形成电气连接。
所述绝缘基材1对应每个固晶区21设有贯穿绝缘基材1的通孔12,通孔12内填埋导热体6,且所述导热体6分别与所述固晶区21及焊接面22形成电气连接。
任意两相邻的通孔12的***的最小距离A大于所述绝缘基材1的厚度H。
所述焊接面3为金属银层,且焊接面3面积占所在的绝缘基材面积的90%以上;所述导热体6为金属银浆体。
所述LED芯片5的背面镀有金属材质,优选为银锡合金或金锡合金。
所述LED芯片5为正装芯片或是倒装芯片。如图2所示,当为正装芯片时,每个LED芯片5整体置于对应的固晶区21进行焊接,再通过反向拱丝52与焊线区22形成电气连接;如图3所示,当为倒装芯片时,先将每个LED芯片5的背部进行热电分离设计,电极54分列两侧,中间为导热通道56与固晶区21共晶焊接,电极54与焊线区22共晶焊接来形成电气连接。
如图1至图3所示,本发明的集成LED光源导热结构的实现方法,包括下述步骤:
(1)在绝缘基材1上开设复数个通孔12;
(2)使用金属浆填充通孔12,高温烧结形成固态的导热体6完成通孔12的填埋;
(3)在完成通孔填埋后,将绝缘基材1两面溅射镀膜,在绝缘基材1的正面形成复数个固晶区21和复数个焊线区22,反面形成焊接面3;
(4)将LED芯片5一一对应于所述通孔12焊接于固晶区21上并与对应的焊线区22形成电气连接;焊接时可采用纳米银作为焊料,并采用共晶焊接,焊接温度为230-300℃之间;
所述LED芯片5为正装芯片或是倒装芯片;如图2所示,当为正装芯片时,每个LED芯片5整体置于对应的固晶区21进行焊接,再通过反向拱丝52与焊线区22形成电气连接;如图3所示,当为倒装芯片时,先将每个LED芯片5的背部进行热电分离设计,电极54分列两侧,中间为导热通道56与固晶区21共晶焊接,电极54与焊线区22共晶焊接来形成电气连接;
(5)再将所述焊接面3通过导热率在60W/m.k以上的金属焊料焊接散热器4的热沉,可采用回流焊接,回流焊的焊接温度在不低于125℃。通常该步骤是在将共晶完成后的LED光源进行焊线、围坝、点胶,使用固态荧光体进行封装成LED光源后进行。
在具体的实施例中:
所述步骤(1)中,所述绝缘基材为0.5mm厚度的96%纯度的氧化铝陶瓷基板,但不局限于该材质,只要该材质有良好的绝缘性和稳定性即可;开设通孔12是通过激光镭射方式按图纸设计均匀的完成穿孔,穿孔直径为0.2mm,孔和孔间的最小间隙为0.5mm。
所述步骤(2)中,所述金属浆为银浆,所述填充就通过厚膜工艺填充。
所述步骤(4)中,焊接温度为260℃。
所述步骤(5)在焊接前,先将散热器4与所述焊接面3的接触面作镀镍处理,所述金属焊料为低温锡膏,焊接温度是160℃。
我们将本发明的光源(500W)与普通光源(西铁城500W光源)进行了热阻对比测试,西铁城500W光源的热阻为0.015K/W,如图4所示;本发明的500W光源的热阻为0.008K/W,如图5所示。可见本发明的500W光源的热阻降低了46.7%。
同时本发明还使用了透明荧光陶瓷进行封装,我们通过相同的芯片和散热条件,通过改变沉淀的荧光粉胶厚度和使用荧光陶瓷进行对比;
实验条件:样品1:70um的荧光胶沉淀;
样品2:150um的荧光胶沉淀;
样品3:300um的YAG陶瓷+5um的有机硅胶。
样品1的温度分布图如图6所示,其中最低和最高温度如表1所示:
最低温度 最高温度 平均温度
167.369℃ 487.543℃ 222.641℃
表1
样品2的温度分布图如图7所示,其中最低和最高温度如表2所示:
最低温度 最高温度 平均温度
256.593℃ 413.1℃ 303.096℃
表2
样品3的温度分布图如图8所示,其中最低和最高温度如表3所示:
最低温度 最高温度 平均温度
120.496℃ 132.218℃ 126.264℃
表3
根据上述的实验结果可知,本发明的结构结合使用透明荧光陶瓷进行封装,可以大大提高散热效果。
虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用 于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。

Claims (11)

  1. 一种集成LED光源导热结构,其特征在于:该集成LED光源导热结构包括绝缘基材、电路层和焊接面,所述电路层设在绝缘基材的正面,所述焊接面设在绝缘基材反面并通过导热率在60W/m.k以上的金属焊料焊接散热器。
  2. 根据权利要求1所述的一种集成LED光源导热结构,其特征在于:所述电路层分为复数个固晶区和复数个焊线区,且固晶区和焊线区之间无电气连接,LED芯片一一焊接于对应的固晶区上并与对应的焊线区形成电气连接。
  3. 根据权利要求1或2所述的一种集成LED光源导热结构,其特征在于:所述绝缘基材对应每个LED芯片设有贯穿绝缘基材的通孔,通孔内填埋导热体,且所述导热体分别与所述固晶区及焊接面形成电气连接。
    优选地,任意两相邻通孔的***的最小距离大于所述绝缘基材的厚度。
  4. 根据权利要求1-3任一项所述的一种集成LED光源导热结构,其特征在于:所述焊接面为金属银层,且焊接面面积占所在的绝缘基材面积的90%以上;所述导热体为金属银浆体。
  5. 根据权利要求1-4任一项所述的一种集成LED光源导热结构,其特征在于:所述LED芯片的背面镀有金属材质。
    优选地,所述金属材质为银锡合金或金锡合金。
  6. 根据权利要求1-5任一项所述的一种集成LED光源导热结构,其特征在于:所述焊接面通过回流焊的方式将绝缘基材和散热器牢靠地焊接在一起。
  7. 根据权利要求1-6任一项所述的一种集成LED光源导热结构,其 特征在于:所述LED芯片为正装芯片或是倒装芯片;
    当为正装芯片时,每个LED芯片整体置于对应的固晶区进行焊接,再通过反向拱丝与焊线区形成电气连接;
    当为倒装芯片时,先将每个LED芯片的背部进行热电分离设计,电极分列两侧,中间为导热通道与固晶区共晶焊接,电极与焊线区共晶焊接来形成电气连接。
  8. 一种如权利要求1-7任一项所述的集成LED光源导热结构的实现方法,其特征在于:包括下述步骤:
    (1)在绝缘基材上开设复数个通孔;
    (2)使用金属浆填充通孔,高温烧结完成通孔填埋;
    (3)在完成通孔填埋后,将绝缘基材两面溅射镀膜,在绝缘基材的正面形成复数个固晶区和复数个焊线区,反面形成焊接面;
    (4)将LED芯片一一对应于所述通孔焊接于固晶区上并与对应的焊线区形成电气连接;
    (5)将所述焊接面通过导热率在60W/m.k以上的金属焊料焊接散热器。
  9. 根据权利要求8所述的集成LED光源导热结构的实现方法,其特征在于:
    所述步骤(1)中,所述绝缘基材为0.5mm厚度的96%纯度的氧化铝陶瓷基板;开设通孔是通过激光镭射方式进行的;
    所述步骤(2)中,所述金属浆为银浆,所述填充通过厚膜工艺填充。
  10. 根据权利要求8或9所述的集成LED光源导热结构的实现方法,其特征在于:
    所述LED芯片为正装芯片或倒装芯片;
    当为正装芯片时,每个LED芯片整体置于对应的固晶区进行焊接, 再通过反向拱丝与焊线区形成电气连接;
    当为倒装芯片时,先将每个LED芯片的背部进行热电分离设计,电极分列两侧,中间为导热通道与固晶区共晶焊接,电极与焊线区焊接来形成电气连接。
  11. 根据权利要求8-10任一项所述的集成LED光源导热结构的实现方法,其特征在于:所述步骤(4)中,是采用纳米银作为焊料,所述焊接为共晶焊接,焊接温度为230-300℃之间,优选为260℃。
    优选地,所述步骤(5)在焊接前,先将散热器与所述焊接面的接触面作镀镍处理,所述金属焊料为低温锡膏,所述焊接为回流焊接,回流焊的焊接温度在不低于125℃,优选为160℃。
PCT/CN2016/085372 2015-12-21 2016-06-08 一种集成led光源导热结构及其实现方法 WO2017107399A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510965432.0 2015-12-21
CN201510965432.0A CN105428514A (zh) 2015-12-21 2015-12-21 一种集成led光源导热结构及其实现方法

Publications (1)

Publication Number Publication Date
WO2017107399A1 true WO2017107399A1 (zh) 2017-06-29

Family

ID=55506565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085372 WO2017107399A1 (zh) 2015-12-21 2016-06-08 一种集成led光源导热结构及其实现方法

Country Status (2)

Country Link
CN (1) CN105428514A (zh)
WO (1) WO2017107399A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428514A (zh) * 2015-12-21 2016-03-23 福建中科芯源光电科技有限公司 一种集成led光源导热结构及其实现方法
CN108278501B (zh) * 2018-01-23 2020-04-24 苏州晶品新材料股份有限公司 一种16色集成led光源

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090115833A1 (en) * 2007-09-14 2009-05-07 Soulliaert Eric Light emitting array for printing or copying
CN202048545U (zh) * 2010-12-20 2011-11-23 浙江名芯半导体科技有限公司 一种led光源导热散热结构
CN102368532A (zh) * 2011-06-03 2012-03-07 王双喜 一种带金属散热片的led封装结构
CN202855802U (zh) * 2012-09-20 2013-04-03 苏州东山精密制造股份有限公司 一种cob型led封装单元的散热结构
CN105428514A (zh) * 2015-12-21 2016-03-23 福建中科芯源光电科技有限公司 一种集成led光源导热结构及其实现方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090115833A1 (en) * 2007-09-14 2009-05-07 Soulliaert Eric Light emitting array for printing or copying
CN202048545U (zh) * 2010-12-20 2011-11-23 浙江名芯半导体科技有限公司 一种led光源导热散热结构
CN102368532A (zh) * 2011-06-03 2012-03-07 王双喜 一种带金属散热片的led封装结构
CN202855802U (zh) * 2012-09-20 2013-04-03 苏州东山精密制造股份有限公司 一种cob型led封装单元的散热结构
CN105428514A (zh) * 2015-12-21 2016-03-23 福建中科芯源光电科技有限公司 一种集成led光源导热结构及其实现方法

Also Published As

Publication number Publication date
CN105428514A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
US8630097B2 (en) Power module using sintering die attach and manufacturing method thereof
TWI320975B (zh)
TW201301561A (zh) Led覆晶結構及其製造方法
CN104576905B (zh) 芯片安装方法以及芯片封装体
US9082760B2 (en) Dual layered lead frame
JP2019186326A (ja) 半導体装置およびその製造方法
TWI447975B (zh) 發光二極體晶片之結構、發光二極體封裝基板之結構、發光二極體封裝結構及其製法
WO2017041280A1 (zh) 一种具有过渡基板的led器件及其封装方法
WO2017107399A1 (zh) 一种集成led光源导热结构及其实现方法
CN102208498A (zh) 一种led高导热绝缘基座封装的方法及器件
CN104009028A (zh) 陶瓷基板和散热衬底的大功率led集成封装方法及结构
CN204130525U (zh) 陶瓷基板和散热衬底的大功率led集成封装结构
CN106252338A (zh) 一种高导热mcob的封装方法
WO2019062200A1 (zh) 一种超大功率 cob 光源及其制作工艺
CN104501013A (zh) Led灯具
CN112086372B (zh) 一种用于高结温功率模块芯片正面连接的封装材料结构层及其制作方法
CN209708967U (zh) 一种led发光模块
CN203760508U (zh) 一种全金属结构的led封装支架
JP5884625B2 (ja) 半導体デバイス
CN202058730U (zh) 一种led高导热绝缘基座封装的器件
CN105140371A (zh) 一种led基板及led封装
CN205666252U (zh) 一种垂直导电横向绝缘的倒装led
CN203491305U (zh) 电子元件
TWI450425B (zh) 晶粒結構、其製造方法及其基板結構
CN205622043U (zh) 一种可替换芯片的传导冷却型半导体激光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/11/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16877212

Country of ref document: EP

Kind code of ref document: A1