WO2017107140A1 - 一种功放控制方法、装置及功放控制*** - Google Patents

一种功放控制方法、装置及功放控制*** Download PDF

Info

Publication number
WO2017107140A1
WO2017107140A1 PCT/CN2015/098723 CN2015098723W WO2017107140A1 WO 2017107140 A1 WO2017107140 A1 WO 2017107140A1 CN 2015098723 W CN2015098723 W CN 2015098723W WO 2017107140 A1 WO2017107140 A1 WO 2017107140A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
signal
envelope
phase
link
Prior art date
Application number
PCT/CN2015/098723
Other languages
English (en)
French (fr)
Inventor
张立鹏
蔡中华
王开展
焦伟
庞志远
朱胜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2018533252A priority Critical patent/JP6751147B2/ja
Priority to EP15911139.2A priority patent/EP3386102B1/en
Priority to BR112018012904-6A priority patent/BR112018012904B1/pt
Priority to PCT/CN2015/098723 priority patent/WO2017107140A1/zh
Priority to CN201580085531.8A priority patent/CN108432129B/zh
Publication of WO2017107140A1 publication Critical patent/WO2017107140A1/zh
Priority to US16/016,394 priority patent/US10511266B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3282Acting on the phase and the amplitude of the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/336A I/Q, i.e. phase quadrature, modulator or demodulator being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/408Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising three power stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/423Amplifier output adaptation especially for transmission line coupling purposes, e.g. impedance adaptation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a power amplifier control method and apparatus, and a power amplifier control system.
  • wireless communication uses a variety of different modulation signals, such as OFDM (Orthogonal Frequency Division Multiplexing), CDMA (Code Division Multiple Access), and TDMA (Time). Division Multiple Access, Time Division Multiple Access, etc.
  • OFDM Orthogonal Frequency Division Multiplexing
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • OFDM Orthogonal Frequency Division Multiplexing
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • the base station power amplifier can adopt two methods, one is power back-off, that is, the working state of the power amplifier is set to class A or class AB, but, due to the power amplifier tube Limited characteristics, this method will cause a significant drop in power amplifier efficiency, in the case of the same output power, will make the base station consume more energy; the other is high-efficiency power amplifier technology, this method can not only get higher The efficiency of the amplifier, and the linearity of the amplifier can also meet the requirements of the relevant agreements.
  • the high-efficiency power amplifier technology commonly used in the industry may include Doherty technology and ET (Envelope Tracking) technology. Specifically, it can be classified into the following three types:
  • the first is a high-efficiency power amplifier technology based on traditional ET power amplifiers.
  • the ET power amplifier generally includes an envelope modulator and a class AB power amplifier, wherein the envelope modulator generates an envelope voltage instead of a fixed voltage to power the power amplifier to perform envelope tracking on the power amplifier, thereby The power amplifier is always in a near-saturated working state, which improves the working efficiency of the retreat.
  • the overall working efficiency of the ET power amplifier is equal to the product of the working efficiency of the envelope modulator and the working efficiency of the power amplifier, and the working efficiency of the envelope modulator cannot reach 100%, there is a certain efficiency loss, especially in Under the peak-to-average modulation signal, the back-off efficiency is difficult to reach very high due to the limitation of the power amplifier itself.
  • the envelope voltage is too low, the power tube gain is also caused. A significant drop in PAE (Power Add Efficiency) will further deteriorate, which makes the power amplifier effect or power amplifier performance of this method not good.
  • the Doherty ET power amplifier may include an envelope modulator, a Doherty main power amplifier, and a Doherty auxiliary power amplifier (ie, a peak power amplifier), wherein
  • the envelope modulator is connected to the main power amplifier to perform envelope tracking on the main power amplifier, and the auxiliary power amplifier is powered by a fixed voltage, so that Doherty's fallback efficiency advantage can be utilized to improve the efficiency of the peak-to-average ratio signal under the retreat.
  • the Doherty ET power amplifier may include an envelope modulator, a Doherty main power amplifier, and a Doherty auxiliary power amplifier, and an envelope.
  • the modulator is connected to the main power amplifier and the auxiliary power amplifier to separately track the envelope of Doherty's main power amplifier and auxiliary power amplifier, so that Doherty's fallback efficiency advantage can be utilized to improve the efficiency of the peak-to-average ratio signal under the retreat.
  • the signal of the Doherty main power amplifier link and the signal of the auxiliary power amplifier link have different phases, so the phase of the Doherty power amplifier cannot be optimized under different envelope voltages, thereby making this method
  • the power amplifier has a poor effect and the power amplifier performance is not good.
  • the existing high-efficiency power amplifier technology has problems such as poor performance and poor performance. Therefore, a new power amplifier technology is needed to solve the above problems.
  • the embodiment of the invention provides a power amplifier control method and device and a power amplifier control system, so as to solve the problems of poor performance and poor performance of the existing high-efficiency power amplifier technology.
  • a power amplifier control method which is applicable to an envelope control circuit and a plurality of a power amplifier system of a Hermit power amplifier circuit, wherein the envelope control circuit includes an envelope modulator for generating an envelope voltage according to an envelope signal output from the baseband unit and outputting the power supply voltage to the Doherty power amplifier circuit;
  • the Herti power amplifier circuit comprises a main power amplifier and an auxiliary power amplifier, wherein the main power amplifier and the auxiliary power amplifier are respectively used for amplifying the baseband signal output by the baseband unit according to an envelope voltage output by the envelope modulator, the method comprising:
  • the signals of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit are phase-modulated, so that the signal of the main power amplifier link and the signal of the auxiliary power amplifier link after phase modulation are performed.
  • the phase difference between the two is a set value corresponding to the current value of the envelope signal, and the set value is when the supply voltage of the Doherty power amplifier circuit is an envelope voltage corresponding to the current value of the envelope signal, The optimum phase value of the Hertty power amplifier circuit.
  • the phase modulation control signal is generated according to the envelope signal output by the baseband unit, including:
  • the first phase-modulation control signal enables the phase-modulated main power amplifier
  • the phase difference between the signal of the link and the signal of the auxiliary power amplifier link is a first phase value, and the first phase value is a minimum envelope voltage of the Doherty power amplifier circuit, and the Doherty power amplifier circuit Optimal phase value; or,
  • the second phase modulation control signal enables the phased main power amplifier
  • the phase difference between the signal of the link and the signal of the auxiliary power amplifier link is a second phase value, and the second phase value is a maximum envelope voltage of the Doherty power amplifier circuit, and the Doherty power amplifier circuit An optimal phase value; wherein the set envelope signal maximum value is greater than the set envelope turn-on threshold; or
  • the third phase modulation control signal can make the phase between the phased main power amplifier link signal and the auxiliary power amplifier link signal
  • the third phase value is a third phase value; the third phase value is corresponding to an envelope opening threshold and a second phase value corresponding to a current value of the envelope signal, the first phase value, the second phase value, and the first phase value
  • the maximum value of the envelope signal is obtained by linear interpolation.
  • the signals of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit are phase-modulated according to the generated phase modulation control signal.
  • the signals of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit are adjusted. Phase; or,
  • the signals of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit are adjusted. phase.
  • the number of the auxiliary power amplifiers of the Doherty power amplifier circuit is one or more; and, if the Doherty power amplifier circuit is assisted If the number of power amplifiers is multiple, the signals of the auxiliary power amplifier link of the Doherty power amplifier circuit are phase-modulated, including:
  • the signals of the auxiliary power amplifier links of the Doherty power amplifier circuit are phase-modulated.
  • the envelope control circuit includes an envelope modulator respectively connected to each power amplifier in the Doherty power amplifier circuit, the one An envelope modulator for outputting an envelope voltage to each of the power amplifiers in the Doherty power amplifier circuit; or
  • each of the plurality of envelope modulators being used for a corresponding one of the Doherty power amplifier circuits
  • the amplifier outputs the envelope voltage
  • the phase modulation is digital phase modulation or analog phase modulation.
  • a power amplifier control apparatus for use in a power amplifier system including an envelope control circuit and a Doherty power amplifier circuit, wherein the envelope control circuit includes a baseband unit The output envelope signal generates an envelope voltage and is output as a supply voltage to an envelope modulator of the Doherty power amplifier circuit; the Doherty power amplifier circuit includes a main power amplifier and an auxiliary power amplifier, and the main power amplifier and the auxiliary power amplifier are respectively used according to The envelope voltage output by the envelope modulator amplifies the baseband signal output by the baseband unit, and the device includes:
  • a signal generating unit configured to generate a phase modulation control signal according to an envelope signal output by the baseband unit
  • a signal phase modulating unit configured to modulate a signal of a main power amplifier link and/or an auxiliary power amplifier link of the Doherty power amplifier circuit according to the generated phase modulation control signal, so that the signal of the main power amplifier link after phase modulation
  • the phase difference between the signal and the auxiliary power amplifier link is a set value corresponding to the current value of the envelope signal, and the set value is the power supply voltage of the Doherty power amplifier circuit corresponding to the current value of the envelope signal.
  • the envelope voltage is the optimum phase value of the Doherty power amplifier circuit.
  • the signal generating unit is specifically configured to: if it is determined that a current value of the envelope signal is not greater than a set envelope turn-on threshold, Encapsulating a signal, generating a first phase modulation control signal; the first phase modulation control signal is capable of causing a phase difference between a signal of the phase-modulated main power amplifier link and a signal of the auxiliary power amplifier link to be a first phase value,
  • the first phase value is an optimum phase value of the Doherty power amplifier circuit when the power supply voltage of the Doherty power amplifier circuit is the minimum envelope voltage; or
  • the second phase modulation control signal enables the phased main power amplifier
  • the phase difference between the signal of the link and the signal of the auxiliary power amplifier link is a second phase value, and the second phase value is a maximum envelope voltage of the Doherty power amplifier circuit, and the Doherty power amplifier circuit An optimal phase value; wherein the set envelope signal maximum value is greater than the set envelope turn-on threshold; or
  • the third phase modulation control signal can be such that the phase difference between the phase-modulated main power amplifier link signal and the auxiliary power amplifier link signal is a third phase value; the third phase value is based on the current value of the envelope signal and the first phase value And an envelope signal corresponding to the second phase value and the first phase value corresponding to the envelope opening threshold and the second phase value The maximum value of the number is obtained by linear interpolation.
  • the signal phase modulation unit is specifically configured to be corresponding to a main power amplifier link and/or an auxiliary power amplifier link of the Doherty power amplifier circuit. After the baseband signal is subjected to frequency conversion processing, the signals of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit are phase-modulated; or
  • the signals of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit are adjusted. phase.
  • the number of the auxiliary power amplifiers of the Doherty power amplifier circuit is one or more;
  • the signal phase modulation unit is specifically configured to: when the number of auxiliary power amplifiers of the Doherty power amplifier circuit is multiple, and the phase modulation signal of the auxiliary power amplifier link of the Doherty power amplifier circuit needs to be phase-modulated, The signals of the auxiliary power amplifier links of the Doherty power amplifier circuit are phase-modulated.
  • the envelope control circuit includes an envelope modulator respectively connected to each power amplifier in the Doherty power amplifier circuit, the one An envelope modulator for outputting an envelope voltage to each of the power amplifiers in the Doherty power amplifier circuit;
  • each of the plurality of envelope modulators being used for a corresponding one of the Doherty power amplifier circuits
  • the amplifier outputs the envelope voltage
  • the phase modulation is digital phase modulation or analog phase modulation.
  • a power amplifier control apparatus for use in a power amplifier system including an envelope control circuit and a Doherty power amplifier circuit, wherein the envelope control circuit includes a packet generation signal for generating an envelope signal according to a baseband unit The voltage is output as a supply voltage to an envelope modulator of the Doherty power amplifier circuit; the Doherty power amplifier circuit includes a main power amplifier and an auxiliary power amplifier, and the main power amplifier and the auxiliary power amplifier are respectively used for a packet output according to the envelope modulator a voltage that amplifies the baseband signal output by the baseband unit, the device comprising:
  • a signal generator configured to generate a phase modulation control signal according to an envelope signal output by the baseband unit
  • a signal modulator for modulating a signal of a main power amplifier link and/or an auxiliary power amplifier link of the Doherty power amplifier circuit according to the generated phase modulation control signal, so that the signal of the main power amplifier link after the phase modulation is
  • the phase difference between the signals of the auxiliary power amplifier link is a set value corresponding to the current value of the envelope signal, and the set value is a power supply voltage of the Doherty power amplifier circuit corresponding to the current value of the envelope signal.
  • the optimum phase value of the Doherty power amplifier circuit when envelope voltage.
  • the signal generator is specifically configured to determine, if the current value of the envelope signal is not greater than a set envelope turn-on threshold, Encapsulating a signal, generating a first phase modulation control signal; the first phase modulation control signal is capable of causing a phase difference between a signal of the phase-modulated main power amplifier link and a signal of the auxiliary power amplifier link to be a first phase value,
  • the first phase value is an optimum phase value of the Doherty power amplifier circuit when the power supply voltage of the Doherty power amplifier circuit is the minimum envelope voltage; or
  • the second phase modulation control signal enables the phased main power amplifier
  • the phase difference between the signal of the link and the signal of the auxiliary power amplifier link is a second phase value, and the second phase value is a maximum envelope voltage of the Doherty power amplifier circuit, and the Doherty power amplifier circuit An optimal phase value; wherein the set envelope signal maximum value is greater than the set envelope turn-on threshold; or
  • the third phase modulation control signal can be such that the phase difference between the phase-modulated main power amplifier link signal and the auxiliary power amplifier link signal is a third phase value; the third phase value is based on the current value of the envelope signal and the first phase value And the second phase value and the envelope opening threshold corresponding to the first phase value and the maximum envelope signal corresponding to the second phase value are linearly interpolated.
  • the signal modulator is specifically configured to be used in a baseband corresponding to a main power amplifier link and/or an auxiliary power amplifier link of the Doherty power amplifier circuit After the signal is frequency-converted, the main power amplifier link and/or auxiliary power amplifier chain of the Doherty power amplifier circuit The signal of the road is phase-modulated; or,
  • the signals of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit are adjusted. phase.
  • the number of the auxiliary power amplifiers of the Doherty power amplifier circuit is one or more;
  • the signal modulator is specifically configured to: when the number of auxiliary power amplifiers of the Doherty power amplifier circuit is multiple, and the phase modulation signal of the auxiliary power amplifier link of the Doherty power amplifier circuit needs to be phase-modulated, The signals of the auxiliary power amplifier links of the Doherty power amplifier circuit are all phase-modulated.
  • the envelope control circuit includes an envelope modulator respectively connected to each power amplifier in the Doherty power amplifier circuit, the one An envelope modulator for outputting an envelope voltage to each of the power amplifiers in the Doherty power amplifier circuit; or
  • each of the plurality of envelope modulators being used for a corresponding one of the Doherty power amplifier circuits
  • the amplifier outputs the envelope voltage
  • the phase modulation is digital phase modulation or analog phase modulation.
  • a power amplifier control system comprising: a power amplifier system including an envelope control circuit and a Doherty power amplifier circuit, wherein the envelope control circuit includes an envelope for generating an envelope signal according to a baseband unit output The voltage is output as a supply voltage to an envelope modulator of the Doherty power amplifier circuit; the Doherty power amplifier circuit includes a main power amplifier and an auxiliary power amplifier, and the main power amplifier and the auxiliary power amplifier are respectively used for an envelope according to an envelope modulator output And amplifying the baseband signal output by the baseband unit, the power amplifier control system further comprising the second aspect, or the implementation of any one of the first to fifth possible implementations of the second aspect Power amplifier control device.
  • the phase modulation control signal can be generated according to the envelope signal output by the baseband unit, and the main body of the Doherty power amplifier circuit is generated according to the phase modulation control signal.
  • the signals of the power amplifier link and/or the auxiliary power amplifier link are phase-modulated, so that The phase difference between the signal of the main power amplifier link and the signal of the auxiliary power amplifier link is a set value corresponding to the current value of the envelope signal, and the set value is the power supply voltage of the Doherty power amplifier circuit.
  • the main power amplifier link and/or the auxiliary power amplifier link can be phase compensated for different envelope voltages, so that between the main power amplifier link and the auxiliary power amplifier link of the Doherty power amplifier circuit at different envelope voltages
  • the phase difference can be optimized to improve the performance and performance of the amplifier.
  • FIG. 1 is a schematic structural view of a conventional ET power amplifier described in the prior art
  • FIG. 2 is a schematic structural view of a separately fed Doherty ET power amplifier described in the prior art
  • FIG. 3 is a schematic structural diagram of a separately fed Doherty ET power amplifier according to the prior art
  • FIG. 4 is a schematic flow chart of a power amplifier control method according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram showing a relationship between a phase difference between a signal of a main power amplifier link and a signal of an auxiliary power amplifier link and an envelope signal according to the first embodiment of the present invention
  • FIG. 6 is a schematic structural view 1 of a power amplifier system according to Embodiment 1 of the present invention.
  • FIG. 7 is a second schematic structural diagram of a power amplifier system according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic structural view 3 of a power amplifier system according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic structural diagram of a power amplifier control apparatus according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic diagram 1 of a power amplifier control structure according to Embodiment 2 of the present invention.
  • FIG. 11 is a second schematic diagram of a power amplifier control structure according to Embodiment 2 of the present invention.
  • FIG. 12 is a third schematic diagram of a power amplifier control structure according to Embodiment 2 of the present invention.
  • FIG. 13 is a schematic diagram 4 of a power amplifier control structure according to Embodiment 2 of the present invention.
  • FIG. 14 is a schematic diagram 5 of a power amplifier control structure according to Embodiment 2 of the present invention.
  • FIG. 15 is a schematic structural diagram of a power amplifier control apparatus according to Embodiment 3 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the first embodiment of the present invention provides a power amplifier control method, as shown in FIG. 4 , which is the first embodiment of the present invention.
  • FIG. 4 A schematic flowchart of a power amplifier control method applicable to a power amplifier system including an envelope control circuit and a Doherty power amplifier circuit, wherein the envelope control circuit includes an envelope for output according to a baseband unit The signal generates an envelope voltage and is output as a supply voltage to an envelope modulator of the Doherty power amplifier circuit; the Doherty power amplifier circuit includes a main power amplifier and an auxiliary power amplifier, and the main power amplifier and the auxiliary power amplifier are respectively used according to an envelope modulator The output envelope voltage is amplified by the baseband signal output by the baseband unit.
  • the control method may include the following steps:
  • Step 401 Generate a phase modulation control signal according to an envelope signal output by the baseband unit.
  • Step 402 Perform phase modulation on the signal of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit according to the generated phase modulation control signal, so that the signal of the main power amplifier link and the auxiliary power amplifier chain after phase adjustment are performed.
  • the phase difference between the signals of the roads is a set value corresponding to the current value of the envelope signal, and the set value is the envelope voltage of the Doherty power amplifier circuit corresponding to the current value of the envelope signal.
  • the optimum phase value of the Doherty power amplifier circuit is performed.
  • the Doherty power amplifier circuit when the Doherty power amplifier circuit is phase-modulated according to the generated phase-modulation control signal, only the signal of the main power amplifier link can be phase-modulated, and the phase of the signal of the auxiliary power amplifier link is kept unchanged; Only phase-modulate the signal of the auxiliary power amplifier link, keep the phase of the signal of the main power amplifier link unchanged; or phase-modulate the signal of the main power amplifier link and the signal of the auxiliary power amplifier link; that is, the root According to the actual demand, the power amplifier link that needs to be phase-modulated is selected, as long as the phase difference between the signal of the Doherty main power amplifier link and the signal of the auxiliary power amplifier link reaches the required value, which is not described herein.
  • the signal of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit can be phase-modulated by the generated phase modulation control signal, so that the main power amplifier of the Doherty power amplifier circuit
  • the phase difference between the signal of the link and the signal of the auxiliary power amplifier link reaches the optimal phase of the Doherty power amplifier circuit under the envelope voltage value corresponding to the current envelope signal, that is, the main envelope voltage can be different for the main
  • the power amplifier link and/or the auxiliary power amplifier link are phase-compensated so that the phase difference between the main power amplifier link and the auxiliary power amplifier link can reach an optimum value under different envelope voltages, thereby improving
  • the effect and performance of the power amplifier solve the problems of poor performance and poor performance of the existing high-efficiency power amplifier technology.
  • generating the phase modulation control signal according to the envelope signal output by the baseband unit, as described in step 401, may include:
  • the first phase-modulation control signal enables the phase-modulated main power amplifier
  • the phase difference between the signal of the link and the signal of the auxiliary power amplifier link is a first phase value, and the first phase value is a minimum envelope voltage of the Doherty power amplifier circuit, and the Doherty power amplifier circuit Optimal phase value; or,
  • the second phase modulation control signal enables the phased main power amplifier
  • the phase difference between the signal of the link and the signal of the auxiliary power amplifier link is a second phase value, and the second phase value is a maximum envelope voltage of the Doherty power amplifier circuit, and the Doherty power amplifier circuit An optimal phase value; wherein the set envelope signal maximum value is greater than the set envelope turn-on threshold; or
  • the third phase modulation control signal can be such that the phase difference between the phase-modulated main power amplifier link signal and the auxiliary power amplifier link signal is a third phase value; the third phase value is based on the current value of the envelope signal and the first phase value , The second phase value and the envelope opening threshold corresponding to the first phase value and the maximum envelope signal corresponding to the second phase value are linearly interpolated.
  • a phase between the signal of the main power amplifier link and the signal of the auxiliary power amplifier link can be generated.
  • the difference follows a phase-modulated control signal that linearly changes the envelope signal.
  • the reason why the first phase value is the minimum envelope voltage is the optimal phase value of the Doherty power amplifier circuit because the current value of the envelope signal is not greater than the set envelope turn-on threshold (The threshold can be flexibly adjusted according to the actual situation.
  • VDDL ie, the minimum envelope voltage
  • the second phase value is the optimum phase value of the Doherty power amplifier circuit when the maximum envelope voltage is because the power amplifier system operates at Doherty when the envelope signal is greater than the set envelope turn-on threshold.
  • the output voltage of the envelope modulator follows the envelope signal envelope change.
  • the envelope modulator outputs a The maximum output voltage VDDH (ie, the maximum envelope voltage) is supplied to the drain levels of the power amplifiers in the Doherty power amplifier circuit, and will not be described herein.
  • the generated phase modulation control signal may specifically be a voltage signal; for example, it is assumed that the Doherty power amplifier circuit includes a main power amplifier, an auxiliary power amplifier, and a Doherty power amplifier is required.
  • the signal of the auxiliary power amplifier link in the circuit is phase-modulated, then:
  • the envelope modulator When the envelope signal is not greater than the set envelope turn-on threshold, the envelope modulator outputs a fixed voltage VDDL (ie, the minimum envelope voltage) to provide the drain level of each power amplifier in the Doherty power amplifier circuit, and at the same time, the power amplifier
  • the control device ie, the execution body of each step of the embodiment of the present invention
  • V0 the fixed voltage V0
  • the phase of the auxiliary power amplifier link to be in the phase a state, that is,
  • the phase difference between the main power amplifier link and the auxiliary power amplifier link of the Doherty power amplifier circuit is a
  • the phase a is the optimum phase of the Doherty power amplifier circuit at the voltage VDDL;
  • the voltage output from the envelope modulator will follow The envelope signal envelope changes, and the maximum envelope corresponds to the maximum output voltage VDDH (ie, the maximum envelope voltage).
  • VDDH the maximum envelope voltage
  • the voltage signal generated by the power amplifier control device according to the envelope signal output by the baseband unit also follows the change of the envelope.
  • the voltage V1 output by the power amplifier control device causes the phase of the auxiliary power amplifier link to be in the phase b state, that is, between the main power amplifier link and the auxiliary power amplifier link of the Doherty power amplifier circuit
  • the phase difference is b, which is the optimum phase of the Doherty power amplifier circuit at voltage VDDH; and when the envelope signal changes between the set envelope turn-on threshold and the set envelope signal maximum value
  • the voltage generated by the power amplifier control device according to the envelope signal output by the baseband unit causes the phase of the auxiliary power amplifier link to follow the envelope signal to change linearly.
  • the specific variation curve can be as shown in FIG. 5.
  • the signal of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit is phase-modulated according to the generated phase modulation control signal, as described in step 402, including:
  • the signals of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit are adjusted. Phase; or,
  • the signals of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit are adjusted. phase.
  • the phase-modulating operation can be performed after the frequency conversion or before the frequency conversion, which is not limited in the embodiment of the present invention.
  • the baseband signal generated by the baseband unit in the up-conversion device can be frequency-converted to obtain a multi-channel and Doherty power amplifier circuit.
  • the RF signal corresponding to the auxiliary power amplifier link is phase-modulated; at this time, in order to simplify the system structure and reduce the number of up-conversion devices, the baseband unit can output only one baseband signal to the power amplifier system.
  • the baseband signal corresponding to each power amplifier in the Doherty power amplifier circuit may be outputted, and is not limited herein; or
  • the baseband signal generated by the baseband unit and required to be input to the auxiliary power amplifier link of the Doherty power amplifier circuit may also be adjusted before the upconversion device performs frequency conversion processing on the baseband signal generated by the baseband unit.
  • the baseband unit can output a baseband signal corresponding to each power amplifier in the Doherty power amplifier circuit, or can output only two baseband signals, wherein one baseband signal corresponds to the main power amplifier link, The other baseband signal corresponds to all the auxiliary power amplifier links; in addition, it should be noted that the phase modulation of the baseband signal corresponding to the auxiliary power amplifier link can be completed in the process of generating the corresponding baseband signal by the baseband unit (that is, At this time, the power amplifier control device may be equivalent to being integrated in the baseband unit as a subunit of the baseband unit, or may be completed after the baseband unit generates the corresponding baseband signal and before the frequency conversion processing is performed on the baseband signal. Let me repeat.
  • the number of auxiliary power amplifiers of the Doherty power amplifier circuit is one (as shown in FIG. 6) or multiple (as shown in FIG. 7); and, if the auxiliary power amplifier of the Doherty power amplifier circuit If there are multiple numbers, the signals of the auxiliary power amplifier link of the Doherty power amplifier circuit are phase-modulated, including:
  • the signals of the auxiliary power amplifier links of the Doherty power amplifier circuit are phase-modulated.
  • the Doherty power amplifier circuit includes a main power amplifier and N (N is a positive integer greater than 1) auxiliary power amplifiers, if the signal of the main power amplifier link of the Doherty power amplifier circuit and the auxiliary power amplifier chain are required.
  • the signals of the road are phase-modulated
  • the signals of the main power amplifier link are phase-modulated
  • the signals of each auxiliary power amplifier link are phase-modulated, so that the signal of the main power amplifier link after phase modulation and each auxiliary
  • the phase difference between the signals of the power amplifier link is a set value corresponding to the current value of the envelope signal, and details are not described herein again.
  • the power amplifier circuit ie, the multi-stage Doherty power amplifier circuit
  • the power amplifier circuit is used to achieve high power requirements, which will not be described in detail in the embodiments of the present invention.
  • the number of envelope modulators in the envelope control circuit is one or more; and when the envelope modulator in the envelope control circuit is one, the envelope modulator can be
  • the power amplifiers in the Doherty power amplifier circuit are respectively connected to output an envelope voltage to each power amplifier in the Doherty power amplifier circuit, as shown in FIG. 6 and FIG. 7;
  • the envelope control circuit has a plurality of envelope modulators
  • the envelope control circuit includes a plurality of envelope modulators connected in a one-to-one correspondence with each power amplifier in the Doherty power amplifier circuit.
  • Each of the plurality of envelope modulators can be used to output an envelope voltage to a corresponding power amplifier in the Doherty power amplifier circuit, as shown in FIG.
  • each of the plurality of envelope modulators may not only correspond to a single power amplifier but also Corresponding to multiple power amplifiers, it will not be described here.
  • the Doherty power amplifier circuit described in the embodiment of the present invention may include, in addition to the main power amplifier and the auxiliary power amplifier, a driver for providing power to each power amplifier.
  • the driving amplifier of the signal, and the related equipment such as the quarter-wavelength transmission line are not described here.
  • phase modulation is digital phase modulation or analog phase modulation.
  • the digital phase modulation may include QPSK (Quadrature Phase Shift Keying), etc.
  • the analog phase modulation may include loop parameter phase shifting, RC network phase shifting, and variable delay method tuning, which is not Let me repeat.
  • the mode of phase modulation can be flexibly selected according to actual needs, further improving the flexibility of power amplifier control.
  • Embodiment 1 of the present invention provides a power amplifier control method, which is applicable to a power amplifier system including an envelope control circuit and a Doherty power amplifier circuit, which can generate a phase modulation control signal according to an envelope signal output from a baseband unit, and according to phase modulation
  • the control signal modulates the signal of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit, so that the phase difference between the signal of the phased main power amplifier link and the signal of the auxiliary power amplifier link is a set value corresponding to the current value of the envelope signal.
  • the supply voltage of the Doherty power amplifier circuit is an envelope voltage corresponding to the current value of the envelope signal
  • the Doherty power amplifier circuit is the most Good phase value.
  • the main power amplifier link and/or the auxiliary power amplifier link can be phase compensated for different envelope voltages such that the phase difference between the main power amplifier link and the auxiliary power amplifier link is different at different envelope voltages.
  • the optimal value can be achieved, so that the performance of Doherty's fallback efficiency can be fully utilized, and the function of the ET can be combined to improve the saturation power of the power amplifier, and the performance of the power amplifier can be further improved by adjusting the phase under different voltages.
  • Existing high-efficiency power amplifier technology has problems such as poor performance and poor performance.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the second embodiment of the present invention provides a power amplifier control apparatus, which is applicable to a power amplifier system including an envelope control circuit and a Doherty power amplifier circuit, wherein the envelope control circuit An envelope modulator for generating an envelope voltage according to an envelope signal output from the baseband unit and outputting the power supply voltage to the Doherty power amplifier circuit;
  • the Doherty power amplifier circuit includes a main power amplifier and an auxiliary power amplifier, the main power amplifier,
  • the auxiliary power amplifiers are respectively used for amplifying the baseband signals output by the baseband unit according to the envelope voltage output by the envelope modulator.
  • the apparatus may include:
  • the signal generating unit 91 is configured to generate a phase modulation control signal according to the envelope signal output by the baseband unit;
  • the signal modulating unit 92 can be configured to modulate the signals of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit according to the phase modulation control signal generated by the signal generating unit 91, so that the main phase after phase modulation
  • the phase difference between the signal of the power amplifier link and the signal of the auxiliary power amplifier link is a set value corresponding to the current value of the envelope signal, and the set value is a supply voltage of the Doherty power amplifier circuit and an envelope signal.
  • the current value corresponds to the envelope voltage when the Doherty power amplifier circuit has the best phase value.
  • the phase modulation control signal can be generated by the signal generation unit 91, and the phase modulation control signal can be output to the signal phase modulation unit 92 to the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit.
  • the signal is phase-modulated such that the phase difference between the signal of the main power amplifier link of the Doherty power amplifier circuit and the signal of the auxiliary power amplifier link reaches the envelope voltage value of the Doherty power amplifier circuit corresponding to the current envelope signal.
  • the best phase That is, the main power amplifier link and/or the auxiliary power amplifier link can be phase compensated for different envelope voltages such that the phase difference between the main power amplifier link and the auxiliary power amplifier link is different at different envelope voltages.
  • the corresponding optimal value can be achieved, thereby improving the effect and performance of the power amplifier, and solving the problems of poor performance and poor performance of the existing high-efficiency power amplifier technology.
  • the signal generating unit 91 is configured to generate a first phase modulation control signal according to the envelope signal if the current value of the envelope signal is determined not to be greater than a set envelope turn-on threshold;
  • the first phase modulation control signal can make the phase difference between the signal of the phase-modulated main power amplifier link and the signal of the auxiliary power amplifier link be a first phase value, and the first phase value is a power supply of the Doherty power amplifier circuit.
  • the optimum phase value of the Doherty power amplifier circuit when the voltage is the minimum envelope voltage; or
  • the second phase modulation control signal enables the phased main power amplifier
  • the phase difference between the signal of the link and the signal of the auxiliary power amplifier link is a second phase value, and the second phase value is a maximum envelope voltage of the Doherty power amplifier circuit, and the Doherty power amplifier circuit An optimal phase value; wherein the set envelope signal maximum value is greater than the set envelope turn-on threshold; or
  • the third phase modulation control signal can be such that the phase difference between the phase-modulated main power amplifier link signal and the auxiliary power amplifier link signal is a third phase value; the third phase value is based on the current value of the envelope signal and the first phase value And the second phase value and the envelope opening threshold corresponding to the first phase value and the maximum envelope signal corresponding to the second phase value are linearly interpolated.
  • the signal generating unit 91 can generate a signal such that the signal of the main power amplifier link and the auxiliary power amplifier link The phase difference between the two follows a phase modulation control signal that linearly changes the envelope signal.
  • the reason why the first phase value is the minimum envelope voltage is the optimal phase value of the Doherty power amplifier circuit because the current value of the envelope signal is not greater than the set envelope turn-on threshold (The threshold can be flexibly adjusted according to the actual situation.
  • VDDL ie, the minimum envelope voltage
  • the second phase value is the optimum phase value of the Doherty power amplifier circuit when the maximum envelope voltage is because the power amplifier system operates at Doherty when the envelope signal is greater than the set envelope turn-on threshold.
  • the output voltage of the envelope modulator follows the envelope signal envelope change.
  • the envelope modulator outputs a The maximum output voltage VDDH (ie, the maximum envelope voltage) is supplied to the drain levels of the power amplifiers in the Doherty power amplifier circuit, and will not be described herein.
  • the signal phase modulating unit 92 is specifically configured to perform frequency conversion processing on the baseband signal corresponding to the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit, and then to the Doherty power amplifier circuit.
  • the signals of the main power amplifier link and/or the auxiliary power amplifier link are phase-modulated; or,
  • the signals of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit are adjusted. phase.
  • the phase-modulating operation can be performed after the frequency conversion or before the frequency conversion, which is not limited in the embodiment of the present invention.
  • the signal of the auxiliary power amplifier link in the Doherty power amplifier circuit needs to be phase-modulated, and the baseband signal generated by the baseband unit can be frequency-converted by the up-conversion device to obtain multiple channels and multiple signals.
  • the RF signals of the power amplifiers in the Heidi power amplifier circuit are one-to-one, the RF signals corresponding to the auxiliary power amplifier links are phase-modulated; at this time, in order to simplify the system structure and reduce the number of up-conversion devices, the baseband unit can output only one channel.
  • the baseband signal is sent to the power amplifier system.
  • the baseband signal corresponding to each power amplifier in the Doherty power amplifier circuit can also be output, which is not limited herein; or
  • the baseband signal generated by the baseband unit that needs to be input to the auxiliary power amplifier link of the Doherty power amplifier circuit is phase-modulated;
  • the baseband unit can output a baseband signal corresponding to each power amplifier in the Doherty power amplifier circuit, or can output only two baseband signals, wherein one baseband signal corresponds to the main power amplifier link, and the other baseband signal Corresponding to all auxiliary power amplifier links; in addition, it should be noted that the phase modulation of the baseband signal corresponding to the auxiliary power amplifier link can be completed in the process of generating the corresponding baseband signal by the baseband unit (that is, at this time, the power amplifier
  • the control device may be integrated in the baseband unit as a subunit of the baseband unit, or may be completed after the baseband unit generates the corresponding baseband signal and before the frequency conversion processing is performed on the baseband signal, and details are not described herein again.
  • the number of the auxiliary power amplifiers of the Doherty power amplifier circuit is one or more; the signal phase modulation unit 92 is specifically configured to: when the number of auxiliary power amplifiers of the Doherty power amplifier circuit is multiple When the signal of the auxiliary power amplifier link of the Doherty power amplifier circuit needs to be phase-modulated, the signals of the auxiliary power amplifier links of the Doherty power amplifier circuit are phase-modulated.
  • the Doherty power amplifier circuit includes a main power amplifier and N (N is a positive integer greater than 1) auxiliary power amplifiers, if the signal of the main power amplifier link of the Doherty power amplifier circuit and the auxiliary power amplifier chain are required.
  • the signals of the road are phase-modulated
  • the signals of the main power amplifier link are phase-modulated
  • the signals of each auxiliary power amplifier link are phase-modulated, so that the signal of the main power amplifier link after phase modulation and each auxiliary
  • the phase difference between the signals of the power amplifier link is a set value corresponding to the current value of the envelope signal, and details are not described herein again.
  • the power amplifier circuit ie, the multi-stage Doherty power amplifier circuit
  • the power amplifier circuit is used to achieve high power requirements, which will not be described in detail in the embodiments of the present invention.
  • the signal generating unit 91 may include one or more small signal modulators; the signal phase modulating unit 92 may include one or more phase modulation circuits.
  • the signal generating unit 91 may include a small signal modulator
  • the signal phase modulating unit 92 may include a phase modulation circuit corresponding to the small signal modulator, the small signal modulator for generating a packet according to the baseband unit.
  • the phase modulation circuit is configured to adjust a phase of the corresponding power amplifier link to a set phase according to the phase modulation control signal output by the small signal modulator;
  • the signal generating unit 91 may include a first sub-phase modulation control corresponding to the main power amplifier link. a first small signal modulator of the signal, and a second small signal modulator for generating a second sub-phase modulation control signal corresponding to the auxiliary power amplifier link;
  • the signal phase modulating unit 92 can include the first small signal a first phase modulation circuit corresponding to the modulator for adjusting a phase of a signal corresponding to the main power amplifier link to the first subphase, and a corresponding to the second small signal modulator for assisting The phase of the signal corresponding to the power amplifier link is adjusted to the second phase modulation circuit of the second sub-phase, wherein the phase difference between the first sub-phase and the second sub-phase is a set value.
  • the signal generating unit 91 The plurality of small signal modulators (such as the small signal modulator 1 to the small signal modulator N shown in FIG. 14) respectively corresponding to the plurality of auxiliary power amplifiers may be included, and the signal phase modulation unit 92 may include a plurality of respectively A phase modulation circuit (such as the phase modulation circuit 1 to the phase modulation circuit N shown in FIG. 14) corresponding to the plurality of auxiliary power amplifiers will not be described herein.
  • the number of small signal modulators in the signal generating unit 91 and the number of phase modulation circuits in the signal phase modulating unit 92 can be flexibly set according to actual conditions, as long as the main power amplifier in the Doherty power amplifier circuit can be ensured.
  • the phase difference between the signal of the link and the signal of the auxiliary power amplifier link may be set values, and details are not described herein.
  • the number of envelope modulators in the envelope control circuit is one or more; and when the envelope modulator in the envelope control circuit is one, the envelope modulator can be Each power amplifier in the Doherty power amplifier circuit is respectively connected to output an envelope voltage to each power amplifier in the Doherty power amplifier circuit, as shown in FIG. 7; or
  • the envelope control circuit has a plurality of envelope modulators
  • the envelope control circuit includes a plurality of envelope modulators connected in a one-to-one correspondence with each power amplifier in the Doherty power amplifier circuit.
  • Each of the plurality of envelope modulators can be used to output an envelope voltage to a corresponding power amplifier in the Doherty power amplifier circuit, as shown in FIG.
  • each of the plurality of envelope modulators may be configured to correspond to only one power amplifier. It can also correspond to multiple power amplifiers, which will not be described here.
  • phase modulation is digital phase modulation or analog phase modulation.
  • the digital phase modulation may include QPSK (Quadrature Phase Shift Keying), etc.
  • the analog phase modulation may include loop parameter phase shifting, RC network phase shifting, and variable delay method tuning, which is not Let me repeat.
  • the modulation method can be flexibly selected according to actual needs, and the flexibility of the power amplifier control is further improved.
  • the power amplifier control apparatus described in the embodiments of the present invention may generally exist independently of equipment such as a baseband unit; of course, it may be integrated in the baseband unit in addition to being independent of equipment such as a baseband unit. Internally, it exists as a subunit of the baseband unit, as shown in FIG. 11, and details are not described herein.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the third embodiment of the present invention further provides another power amplifier control device, which is applicable to a power amplifier system including an envelope control circuit and a Doherty power amplifier circuit, where
  • the envelope control circuit includes an envelope modulator for generating an envelope voltage according to an envelope signal output by the baseband unit and outputting the power supply voltage to the Doherty power amplifier circuit;
  • the Doherty power amplifier circuit includes a main power amplifier and an auxiliary power amplifier The main power amplifier and the auxiliary power amplifier are respectively used for amplifying the baseband signal outputted by the baseband unit according to the envelope voltage output by the envelope modulator.
  • the apparatus may include:
  • the signal generator 151 is configured to generate a phase modulation control signal according to the envelope signal output by the baseband unit;
  • the signal modulator 152 can be configured to modulate the signals of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit according to the phase modulation control signal generated by the signal generator 151, so that the main power amplifier after phase modulation
  • the phase difference between the signal of the link and the signal of the auxiliary power amplifier link is a set value corresponding to the current value of the envelope signal, and the set value is the supply voltage of the Doherty power amplifier circuit and the envelope signal.
  • the phase modulation control signal can be generated by the signal generator 151, and the phase modulation control signal can be output to the signal modulator 152 to the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit.
  • the signal is phase-modulated so that the phase difference between the signal of the main power amplifier link of the Doherty power amplifier circuit and the signal of the auxiliary power amplifier link reaches the maximum value of the envelope voltage corresponding to the current envelope signal of the Doherty power amplifier circuit.
  • Good phase That is, the main power amplifier link and/or the auxiliary power amplifier link can be phase compensated for different envelope voltages such that the phase difference between the main power amplifier link and the auxiliary power amplifier link is different at different envelope voltages.
  • the corresponding optimal value can be achieved, thereby improving the effect and performance of the power amplifier, and solving the problems of poor performance and poor performance of the existing high-efficiency power amplifier technology.
  • the signal generator 151 is configured to generate a first phase modulation control signal according to the envelope signal if the current value of the envelope signal is determined not to be greater than a set envelope turn-on threshold;
  • the first phase modulation control signal can make the phase difference between the signal of the phase-modulated main power amplifier link and the signal of the auxiliary power amplifier link be a first phase value, and the first phase value is a power supply of the Doherty power amplifier circuit.
  • the optimum phase value of the Doherty power amplifier circuit when the voltage is the minimum envelope voltage; or
  • the second phase modulation control signal enables the phased main power amplifier
  • the phase difference between the signal of the link and the signal of the auxiliary power amplifier link is a second phase value, and the second phase value is a maximum envelope voltage of the Doherty power amplifier circuit, and the Doherty power amplifier circuit An optimal phase value; wherein the set envelope signal maximum value is greater than the set envelope turn-on threshold; or
  • the third phase modulation control signal can be such that the phase difference between the phase-modulated main power amplifier link signal and the auxiliary power amplifier link signal is a third phase value; the third phase value is based on the current value of the envelope signal and the first phase value And the second phase value and the envelope opening threshold corresponding to the first phase value and the maximum envelope signal corresponding to the second phase value are linearly interpolated.
  • the signal generator 151 can generate a signal such that the signal of the main power amplifier link and the auxiliary power amplifier link The phase difference between the two follows a phase modulation control signal that linearly changes the envelope signal.
  • the reason why the first phase value is the minimum envelope voltage is the optimal phase value of the Doherty power amplifier circuit because the current value of the envelope signal is not greater than the set envelope turn-on threshold (The threshold can be flexibly adjusted according to the actual situation.
  • VDDL ie, the minimum envelope voltage
  • the reason why the second phase value is the maximum envelope voltage is the optimum phase value of the Doherty power amplifier circuit because the power amplifier system works when the envelope signal is greater than the set envelope turn-on threshold.
  • the output voltage of the envelope modulator follows the envelope signal envelope change.
  • the envelope modulator will A maximum output voltage VDDH (ie, the maximum envelope voltage) is output to the drain levels of the power amplifiers in the Doherty power amplifier circuit, and will not be described here.
  • the signal modulator 152 is specifically configured to: after performing frequency conversion processing on the baseband signal corresponding to the main power amplifier link of the Doherty power amplifier circuit and/or the auxiliary power amplifier link, the main body of the Doherty power amplifier circuit
  • the signals of the power amplifier link and/or the auxiliary power amplifier link are phase-modulated; or,
  • the signals of the main power amplifier link and/or the auxiliary power amplifier link of the Doherty power amplifier circuit are adjusted. phase.
  • the phase-modulating operation can be performed after the frequency conversion or before the frequency conversion, which is not limited in the embodiment of the present invention.
  • the baseband signal generated by the baseband unit in the up-conversion device can be frequency-converted to obtain a multi-channel and Doherty power amplifier circuit.
  • the RF signal corresponding to the auxiliary power amplifier link is phase-modulated; at this time, in order to simplify the system structure and reduce the number of up-conversion devices, the baseband unit can output only one baseband signal to the power amplifier system.
  • the baseband signal corresponding to each power amplifier in the Doherty power amplifier circuit may be outputted, and is not limited herein; or
  • the baseband signal generated by the baseband unit that needs to be input to the auxiliary power amplifier link of the Doherty power amplifier circuit is phase-modulated; at this time, the baseband unit can output more The baseband signal corresponding to each power amplifier in the Doherty power amplifier circuit, or only two baseband signals may be output, one of the baseband signals corresponding to the main power amplifier link, and the other baseband signal and all the auxiliary power amplifier chains
  • the phase modulation of the baseband signal corresponding to the auxiliary power amplifier link can be completed in the process of generating the corresponding baseband signal by the baseband unit (that is, at this time, the power amplifier control device can be equivalent to integration.
  • the baseband unit as a subunit of the baseband unit, it may be completed after the baseband unit generates the corresponding baseband signal and before the frequency conversion processing is performed on the baseband signal, and details are not described herein again.
  • the number of auxiliary power amplifiers of the Doherty power amplifier circuit is one or more; and the signal modulator 152 is specifically configured to: when the number of auxiliary power amplifiers of the Doherty power amplifier circuit is multiple, When the signal of the auxiliary power amplifier link of the Doherty power amplifier circuit needs to be phase-modulated, the signals of the auxiliary power amplifier links of the Doherty power amplifier circuit are phase-modulated.
  • the Doherty power amplifier circuit includes a main power amplifier and N (N is a positive integer greater than 1) auxiliary power amplifiers, if the signal of the main power amplifier link of the Doherty power amplifier circuit and the auxiliary power amplifier chain are required.
  • the signals of the road are phase-modulated
  • the signals of the main power amplifier link are phase-modulated
  • the signals of each auxiliary power amplifier link are phase-modulated, so that the signal of the main power amplifier link after phase modulation and each auxiliary
  • the phase difference between the signals of the power amplifier link is a set value corresponding to the current value of the envelope signal, and details are not described herein again.
  • the power amplifier circuit ie, the multi-stage Doherty power amplifier circuit
  • the power amplifier circuit is used to achieve high power requirements, which will not be described in detail in the embodiments of the present invention.
  • the signal generator 151 may include one or more small signal modulators; the signal modulator 152 may include one or more phase modulation circuits.
  • the signal generator 151 may include a small signal modulator, and the signal modulator 152 may include a phase modulation circuit corresponding to the small signal modulator, the small signal modulator is configured to generate a phase modulation control signal according to an envelope signal generated by the baseband unit, and output the signal to the phase modulation circuit; the phase modulation circuit is used to The phase modulation control signal output by the signal modulator adjusts the phase of the corresponding power amplifier link to a set phase; or
  • the signal generator 151 may include a first small signal for generating a first sub-phase modulation control signal corresponding to the main power amplifier link. a modulator, and a second small signal modulator for generating a second sub-phase modulation control signal corresponding to the auxiliary power amplifier link;
  • the signal modulator 152 may comprise a corresponding one of the first small signal modulators Adjusting the phase of the signal corresponding to the main power amplifier link to the first subphase a phase modulation circuit, and a second phase modulation circuit corresponding to the second small signal modulator for adjusting a phase of the signal corresponding to the auxiliary power amplifier link to the second subphase, wherein the first subphase The phase difference from the second sub-phase is a set value.
  • the signal generator 151 may include a plurality of small-signal modulators respectively corresponding to the plurality of auxiliary power amplifiers, and signal modulation.
  • the 152 may include a plurality of phase modulation circuits respectively corresponding to the plurality of auxiliary power amplifiers, and details are not described herein again.
  • the number of small signal modulators in the signal generator 151 and the number of phase modulation circuits in the signal modulator 152 can be flexibly set according to actual conditions, as long as the main power amplifier chain in the Doherty power amplifier circuit can be guaranteed.
  • the phase difference between the signal of the road and the signal of the auxiliary power amplifier link may be set values, and details are not described herein.
  • the number of envelope modulators in the envelope control circuit is one or more; and when the envelope modulator in the envelope control circuit is one, the envelope modulator can be Each power amplifier in the Doherty power amplifier circuit is respectively connected to output an envelope voltage to each power amplifier in the Doherty power amplifier circuit, as shown in FIG. 7; or
  • the envelope control circuit has a plurality of envelope modulators
  • the envelope control circuit includes a plurality of envelope modulators connected in a one-to-one correspondence with each power amplifier in the Doherty power amplifier circuit.
  • Each of the plurality of envelope modulators can be used to output an envelope voltage to a corresponding power amplifier in the Doherty power amplifier circuit, as shown in FIG.
  • each of the plurality of envelope modulators may be configured to correspond to only one power amplifier. It can also correspond to multiple power amplifiers, which will not be described here.
  • phase modulation is digital phase modulation or analog phase modulation.
  • the digital phase modulation may include QPSK (Quadrature Phase Shift Keying), etc.
  • the analog phase modulation may include loop parameter phase shifting, RC network phase shifting, and variable delay method tuning, which is not Let me repeat.
  • the modulation method can be flexibly selected according to actual needs, and the work can be further improved.
  • the power amplifier control apparatus described in the embodiments of the present invention may generally exist independently of equipment such as a baseband unit; of course, it may be integrated in the baseband unit in addition to being independent of equipment such as a baseband unit. It exists internally and as a subunit of the baseband unit, and will not be described in detail.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • Embodiment 4 of the present invention provides a power amplifier control system, including a power amplifier system including an envelope control circuit and a Doherty power amplifier circuit, wherein the envelope control circuit includes a packet for generating an envelope signal according to a baseband unit output. The voltage is output as a supply voltage to an envelope modulator of the Doherty power amplifier circuit; the Doherty power amplifier circuit includes a main power amplifier and an auxiliary power amplifier, and the main power amplifier and the auxiliary power amplifier are respectively used for a packet output according to the envelope modulator
  • the power amplifier control system further includes a power amplifier control device according to the second embodiment of the present invention, or a power amplifier control device according to the third embodiment of the present invention. Do not repeat them.
  • the power amplifier control system described in the embodiment of the present invention includes, in addition to the power amplifier system including the envelope control circuit and the Doherty power amplifier circuit, the second embodiment of the present invention, or the present invention.
  • a baseband unit for generating a baseband signal and a corresponding envelope signal, and an upconverter for frequency-converting the baseband signal may be further included.
  • embodiments of the present invention can be provided as a method, apparatus (device), or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

一种功放控制方法、装置及功放控制***,适用于包括包络控制电路以及多赫蒂功放电路的功放***,可根据基带单元输出的包络信号,生成调相控制信号(401),并根据调相控制信号对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为与包络信号的当前值相对应的设定值,该设定值为多赫蒂功放电路的供电电压为与包络信号的当前值相对应的包络电压时,多赫蒂功放电路的最佳相位值(402),从而解决了现有的高效率功放技术存在的效果较差、性能不佳等的问题。

Description

一种功放控制方法、装置及功放控制*** 技术领域
本发明涉及无线通信领域,尤其涉及一种功放控制方法、装置及功放控制***。
背景技术
为了提高频谱利用效率,无线通信采用了多种不同制式的调制信号,如OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)、CDMA(Code Division Multiple Access,码分多址)、TDMA(Time Division Multiple Access,时分多址)等。但是,以OFDM为例,由于其信号具备较高的峰均比,因而,其对基站功放的要求也较高。基站功放为了不失真的将这些高峰均比的信号放大,可采用两种方式,一种是功率回退,即,将功放的工作状态设定在A类或AB类,但是,由于功放管的特性有限,这种方式会引起功放效率的大幅度下降,在同样输出功率的情况下,会使得基站消耗更多的能源;另一种即为高效率功放技术,这种方法不仅可以得到较高的功放效率,而且功放的线性也能够满足相关协议的要求。
目前,业内常采用的高效率功放技术可包括Doherty(多赫蒂)技术以及ET(Envelope Tracking,包络跟踪)技术,具体地,可分为以下三种:
第一种,基于传统ET功放的高效率功放技术。如图1所示,所述ET功放通常可包含一个包络调制器和一个AB类功放,其中,包络调制器产生包络电压代替固定电压给功放供电,以对功放进行包络跟踪,从而使得功放始终处于接近饱和的工作状态,提升了回退的工作效率。
但是,由于ET功放的整体工作效率等于包络调制器的工作效率和功放工作效率的乘积,且包络调制器的工作效率不可能达到100%,因此,会有一定的效率损失,特别是在高峰均比的调制信号下,由于功放本身的限制,导致回退效率很难达到很高;另外,一旦包络电压过低,还会导致功率管的增益 大幅下降,PAE(Power Add Efficiency,功率附加效率)也会进一步恶化,因而使得该种方式的功放效果或功放性能并不佳。
第二种,基于单独馈电的Doherty ET功放的高效率功放技术,如图2所示,所述Doherty ET功放可包括包络调制器、Doherty主功放以及Doherty辅助功放(即峰值功放),其中,包络调制器与主功放相连,以对主功放进行包络跟踪,且辅助功放采用一个固定电压供电,从而可以利用Doherty的回退效率优势,提升高峰均比信号在回退下的效率。
但是,由于Doherty的主功放和辅助功放的电压比越大,Doherty的非对称性就越大,功放效率的凹坑也越大,因此,这种方式对效率的提升有限,且由于受到功率管的击穿电压的影响,Doherty的辅助功放无法配置很高的电压,因此,会存在无法进一步提升功放的饱和功率的问题,从而使得这种方式的功放效果或功放性能也并不佳。
第三种,基于分别馈电的Doherty ET功放的高效率功放技术,如图3所示,此时,所述Doherty ET功放可包括包络调制器、Doherty主功放以及Doherty辅助功放,且包络调制器与主功放、辅助功放均相连,以分别对Doherty的主功放和辅助功放进行包络跟踪,从而可利用Doherty的回退效率优势,提升高峰均比信号在回退下的效率。
但是,由于不同电压下,Doherty主功放链路的信号和辅助功放链路的信号具有不同的相位,因此会导致Doherty功放的相位无法达到不同包络电压下的最优,进而使得这种方式的功放效果较差,功放性能并不佳。
综上所述,现有的高效率功放技术存在效果较差、性能不佳等的问题,因此,亟需一种新的功放技术以解决上述各问题。
发明内容
本发明实施例提供了一种功放控制方法、装置及功放控制***,以解决现有的高效率功放技术存在的效果较差、性能不佳等的问题。
第一方面,提供了一种功放控制方法,适用于包括包络控制电路以及多 赫蒂功放电路的功放***,其中,所述包络控制电路包括用于根据基带单元输出的包络信号生成包络电压并作为供电电压输出至多赫蒂功放电路的包络调制器;所述多赫蒂功放电路包括主功放以及辅助功放,所述主功放、辅助功放分别用于根据包络调制器输出的包络电压,对基带单元输出的基带信号进行放大处理,所述方法包括:
根据基带单元输出的包络信号,生成调相控制信号;
根据生成的调相控制信号,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为与包络信号的当前值相对应的设定值,该设定值为多赫蒂功放电路的供电电压为与包络信号的当前值相对应的包络电压时,多赫蒂功放电路的最佳相位值。
结合第一方面,在第一方面的第一种可能的实现方式中,根据基带单元输出的包络信号,生成调相控制信号,包括:
若确定包络信号的当前值不大于设定的包络开启阈值,则根据所述包络信号,生成第一调相控制信号;所述第一调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第一相位值,所述第一相位值为多赫蒂功放电路的供电电压为最小包络电压时,多赫蒂功放电路的最佳相位值;或者,
若确定包络信号的当前值为设定的包络信号最大值,则根据所述包络信号,生成第二调相控制信号;所述第二调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第二相位值,所述第二相位值为多赫蒂功放电路的供电电压为最大包络电压时,多赫蒂功放电路的最佳相位值;其中,所述设定的包络信号最大值大于所述设定的包络开启阈值;或者,
若确定包络信号的当前值大于设定的包络开启阈值且小于设定的包络信号最大值,则根据所述包络信号,生成第三调相控制信号;所述第三调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相 位差为第三相位值;所述第三相位值是根据包络信号的当前值、第一相位值、第二相位值以及第一相位值对应的包络开启阈值、第二相位值对应的包络信号最大值进行线性插值运算得到的。
结合第一方面,在第一方面的第二种可能的实现方式中,根据生成的调相控制信号,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,包括:
在对多赫蒂功放电路的主功放链路和/或辅助功放链路对应的基带信号进行变频处理之后,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相;或者,
在对多赫蒂功放电路的主功放链路和/或辅助功放链路对应的基带信号进行变频处理之前,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相。
结合第一方面,在第一方面的第三种可能的实现方式中,所述多赫蒂功放电路的辅助功放的个数为一个或多个;且,若所述多赫蒂功放电路的辅助功放的个数为多个,则对所述多赫蒂功放电路的辅助功放链路的信号进行调相,包括:
对所述多赫蒂功放电路的各辅助功放链路的信号均进行调相。
结合第一方面,在第一方面的第四种可能的实现方式中,所述包络控制电路包括与所述多赫蒂功放电路中的各功放分别相连的一个包络调制器,所述一个包络调制器用于向多赫蒂功放电路中的各功放输出包络电压;或者,
包括与多赫蒂功放电路中的各功放一一对应相连的多个包络调制器,所述多个包络调制器中的每一包络调制器用于向多赫蒂功放电路中的对应的功放输出包络电压。
结合第一方面,在第一方面的第五种可能的实现方式中,所述调相为数字调相或模拟调相。
第二方面,提供了一种功放控制装置,适用于包括包络控制电路以及多赫蒂功放电路的功放***,其中,所述包络控制电路包括用于根据基带单元 输出的包络信号生成包络电压并作为供电电压输出至多赫蒂功放电路的包络调制器;所述多赫蒂功放电路包括主功放以及辅助功放,所述主功放、辅助功放分别用于根据包络调制器输出的包络电压,对基带单元输出的基带信号进行放大处理,所述装置包括:
信号生成单元,用于根据基带单元输出的包络信号,生成调相控制信号;
信号调相单元,用于根据生成的调相控制信号,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为与包络信号的当前值相对应的设定值,该设定值为多赫蒂功放电路的供电电压为与包络信号的当前值相对应的包络电压时,多赫蒂功放电路的最佳相位值。
结合第二方面,在第二方面的第一种可能的实现方式中,所述信号生成单元,具体用于若确定包络信号的当前值不大于设定的包络开启阈值,则根据所述包络信号,生成第一调相控制信号;所述第一调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第一相位值,所述第一相位值为多赫蒂功放电路的供电电压为最小包络电压时,多赫蒂功放电路的最佳相位值;或者,
若确定包络信号的当前值为设定的包络信号最大值,则根据所述包络信号,生成第二调相控制信号;所述第二调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第二相位值,所述第二相位值为多赫蒂功放电路的供电电压为最大包络电压时,多赫蒂功放电路的最佳相位值;其中,所述设定的包络信号最大值大于所述设定的包络开启阈值;或者,
若确定包络信号的当前值大于设定的包络开启阈值且小于设定的包络信号最大值,则根据所述包络信号,生成第三调相控制信号;所述第三调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第三相位值;所述第三相位值是根据包络信号的当前值、第一相位值、第二相位值以及第一相位值对应的包络开启阈值、第二相位值对应的包络信 号最大值进行线性插值运算得到的。
结合第二方面,在第二方面的第二种可能的实现方式中,所述信号调相单元,具体用于在对多赫蒂功放电路的主功放链路和/或辅助功放链路对应的基带信号进行变频处理之后,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相;或者,
在对多赫蒂功放电路的主功放链路和/或辅助功放链路对应的基带信号进行变频处理之前,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相。
结合第二方面,在第二方面的第三种可能的实现方式中,所述多赫蒂功放电路的辅助功放的个数为一个或多个;
所述信号调相单元,具体用于当所述多赫蒂功放电路的辅助功放的个数为多个,且需对所述多赫蒂功放电路的辅助功放链路的信号进行调相时,对所述多赫蒂功放电路的各辅助功放链路的信号均进行调相。
结合第二方面,在第二方面的第四种可能的实现方式中,所述包络控制电路包括与所述多赫蒂功放电路中的各功放分别相连的一个包络调制器,所述一个包络调制器用于向多赫蒂功放电路中的各功放输出包络电压;或者,
包括与多赫蒂功放电路中的各功放一一对应相连的多个包络调制器,所述多个包络调制器中的每一包络调制器用于向多赫蒂功放电路中的对应的功放输出包络电压。
结合第二方面,在第二方面的第五种可能的实现方式中,所述调相为数字调相或模拟调相。
第三方面,提供了一种功放控制装置,适用于包括包络控制电路以及多赫蒂功放电路的功放***,其中,所述包络控制电路包括用于根据基带单元输出的包络信号生成包络电压并作为供电电压输出至多赫蒂功放电路的包络调制器;所述多赫蒂功放电路包括主功放以及辅助功放,所述主功放、辅助功放分别用于根据包络调制器输出的包络电压,对基带单元输出的基带信号进行放大处理,所述装置包括:
信号生成器,用于根据基带单元输出的包络信号,生成调相控制信号;
信号调制器,用于根据生成的调相控制信号,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为与包络信号的当前值相对应的设定值,该设定值为多赫蒂功放电路的供电电压为与包络信号的当前值相对应的包络电压时,多赫蒂功放电路的最佳相位值。
结合第三方面,在第三方面的第一种可能的实现方式中,所述信号生成器,具体用于若确定包络信号的当前值不大于设定的包络开启阈值,则根据所述包络信号,生成第一调相控制信号;所述第一调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第一相位值,所述第一相位值为多赫蒂功放电路的供电电压为最小包络电压时,多赫蒂功放电路的最佳相位值;或者,
若确定包络信号的当前值为设定的包络信号最大值,则根据所述包络信号,生成第二调相控制信号;所述第二调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第二相位值,所述第二相位值为多赫蒂功放电路的供电电压为最大包络电压时,多赫蒂功放电路的最佳相位值;其中,所述设定的包络信号最大值大于所述设定的包络开启阈值;或者,
若确定包络信号的当前值大于设定的包络开启阈值且小于设定的包络信号最大值,则根据所述包络信号,生成第三调相控制信号;所述第三调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第三相位值;所述第三相位值是根据包络信号的当前值、第一相位值、第二相位值以及第一相位值对应的包络开启阈值、第二相位值对应的包络信号最大值进行线性插值运算得到的。
结合第三方面,在第三方面的第二种可能的实现方式中,所述信号调制器,具体用于在对多赫蒂功放电路的主功放链路和/或辅助功放链路对应的基带信号进行变频处理之后,对多赫蒂功放电路的主功放链路和/或辅助功放链 路的信号进行调相;或者,
在对多赫蒂功放电路的主功放链路和/或辅助功放链路对应的基带信号进行变频处理之前,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相。
结合第三方面,在第三方面的第三种可能的实现方式中,所述多赫蒂功放电路的辅助功放的个数为一个或多个;
所述信号调制器,具体用于当所述多赫蒂功放电路的辅助功放的个数为多个,且需对所述多赫蒂功放电路的辅助功放链路的信号进行调相时,对所述多赫蒂功放电路的各辅助功放链路的信号均进行调相。
结合第三方面,在第三方面的第四种可能的实现方式中,所述包络控制电路包括与所述多赫蒂功放电路中的各功放分别相连的一个包络调制器,所述一个包络调制器用于向多赫蒂功放电路中的各功放输出包络电压;或者,
包括与多赫蒂功放电路中的各功放一一对应相连的多个包络调制器,所述多个包络调制器中的每一包络调制器用于向多赫蒂功放电路中的对应的功放输出包络电压。
结合第三方面,在第三方面的第五种可能的实现方式中,所述调相为数字调相或模拟调相。
第四方面,提供了一种功放控制***,包括包含包络控制电路以及多赫蒂功放电路的功放***,其中,所述包络控制电路包括用于根据基带单元输出的包络信号生成包络电压并作为供电电压输出至多赫蒂功放电路的包络调制器;所述多赫蒂功放电路包括主功放以及辅助功放,所述主功放、辅助功放分别用于根据包络调制器输出的包络电压,对基带单元输出的基带信号进行放大处理,所述功放控制***还包括第二方面、或第二方面的第一种至第五种可能的实现方式中的任一实现方式中所述的功放控制装置。
根据第一方面~第四方面提供的功放控制方法、装置以及功放控制***,可根据基带单元输出的包络信号,生成调相控制信号,并根据调相控制信号对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,使得调 相后的主功放链路的信号和辅助功放链路的信号之间的相位差为与包络信号的当前值相对应的设定值,该设定值为多赫蒂功放电路的供电电压为与包络信号的当前值相对应的包络电压时,多赫蒂功放电路的最佳相位值。即,可以针对不同的包络电压对主功放链路和/或辅助功放链路进行相位补偿,使得在不同包络电压下,多赫蒂功放电路的主功放链路和辅助功放链路之间的相位差均能够达到最优,从而提高了功放的效果以及性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1所示为现有技术中所述的传统的ET功放的结构示意图;
图2所示为现有技术中所述的单独馈电的Doherty ET功放的结构示意图;
图3所示为现有技术中所述的分别馈电的Doherty ET功放的结构示意图;
图4所示为本发明实施例一中所述的功放控制方法的流程示意图;
图5所示为本发明实施例一中所述的主功放链路的信号与辅助功放链路的信号之间的相位差与包络信号的关系曲线示意图;
图6所示为本发明实施例一中所述的功放***的结构示意图一;
图7所示为本发明实施例一中所述的功放***的结构示意图二;
图8所示为本发明实施例一中所述的功放***的结构示意图三;
图9所示为本发明实施例二中所述的功放控制装置的结构示意图;
图10所示为本发明实施例二中所述的功放控制结构示意图一;
图11所示为本发明实施例二中所述的功放控制结构示意图二;
图12所示为本发明实施例二中所述的功放控制结构示意图三;
图13所示为本发明实施例二中所述的功放控制结构示意图四;
图14所示为本发明实施例二中所述的功放控制结构示意图五;
图15所示为本发明实施例三中所述的功放控制装置的结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例一:
为了解决现有的高效率功放技术存在的效果较差、性能不佳等的问题,本发明实施例一提供了一种功放控制方法,如图4所示,其为本发明实施例一中所述的功放控制方法的流程示意图,所述功放控制方法可适用于包括包络控制电路以及多赫蒂功放电路的功放***,其中,所述包络控制电路包括用于根据基带单元输出的包络信号生成包络电压并作为供电电压输出至多赫蒂功放电路的包络调制器;所述多赫蒂功放电路包括主功放以及辅助功放,所述主功放、辅助功放分别用于根据包络调制器输出的包络电压,对基带单元输出的基带信号进行放大处理,具体地,所述控制方法可包括以下步骤:
步骤401:根据基带单元输出的包络信号,生成调相控制信号;
步骤402:根据生成的调相控制信号,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为与包络信号的当前值相对应的设定值,该设定值为多赫蒂功放电路的供电电压为与包络信号的当前值相对应的包络电压时,多赫蒂功放电路的最佳相位值。
也就是说,在根据生成的调相控制信号,对多赫蒂功放电路进行调相时,可仅对主功放链路的信号进行调相,保持辅助功放链路的信号的相位不变;或者仅对辅助功放链路的信号进行调相,保持主功放链路的信号的相位不变;或者同时对主功放链路的信号以及辅助功放链路的信号进行调相;即,可根 据实际需求选择需要调相的功放链路,只要保证多赫蒂主功放链路的信号与辅助功放链路的信号之间的相位差达到需要的取值即可,对此不作赘述。
由本发明实施例所述内容可知,可通过生成的调相控制信号对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,使得多赫蒂功放电路的主功放链路的信号和辅助功放链路的信号之间的相位差达到多赫蒂功放电路在当前包络信号对应的包络电压值下的最佳相位,即,可以针对不同的包络电压对主功放链路和/或辅助功放链路进行相位补偿,以使得在不同的包络电压下,主功放链路和辅助功放链路之间的相位差均能够达到相应的最优值,从而提高了功放的效果以及性能,解决了现有的高效率功放技术所存在的效果较差、性能不佳等的问题。
可选地,步骤401所述的根据基带单元输出的包络信号,生成调相控制信号,可包括:
若确定包络信号的当前值不大于设定的包络开启阈值,则根据所述包络信号,生成第一调相控制信号;所述第一调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第一相位值,所述第一相位值为多赫蒂功放电路的供电电压为最小包络电压时,多赫蒂功放电路的最佳相位值;或者,
若确定包络信号的当前值为设定的包络信号最大值,则根据所述包络信号,生成第二调相控制信号;所述第二调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第二相位值,所述第二相位值为多赫蒂功放电路的供电电压为最大包络电压时,多赫蒂功放电路的最佳相位值;其中,所述设定的包络信号最大值大于所述设定的包络开启阈值;或者,
若确定包络信号的当前值大于设定的包络开启阈值且小于设定的包络信号最大值,则根据所述包络信号,生成第三调相控制信号;所述第三调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第三相位值;所述第三相位值是根据包络信号的当前值、第一相位值、 第二相位值以及第一相位值对应的包络开启阈值、第二相位值对应的包络信号最大值进行线性插值运算得到的。也就是说,当包络信号在设定的包络开启阈值和设定的包络信号最大值之间变化时,可生成使得主功放链路的信号和辅助功放链路的信号之间的相位差跟随包络信号线性变化的一个调相控制信号。
需要说明的是,所述第一相位值之所以为最小包络电压时多赫蒂功放电路的最佳相位值,是因为,当包络信号的当前值不大于设定的包络开启阈值(该阈值可根据实际情况灵活调整)时,功放***工作于纯Doherty状态下,包络调制器会输出一个固定的电压VDDL(即,最小包络电压)供给多赫蒂功放电路中各功放的漏级;
类似地,所述第二相位值之所以为最大包络电压时多赫蒂功放电路的最佳相位值,是因为,当包络信号大于设定的包络开启阈值时,功放***工作于Doherty和ET的共同状态下,包络调制器的输出电压会跟随包络信号包络变化,当包络信号达到最大值,即达到设定的包络信号最大值时,包络调制器会输出一个最大输出电压VDDH(即,最大包络电压)供给多赫蒂功放电路中各功放的漏级,此处不再赘述。
可选地,在本发明所述实施例中,生成的调相控制信号具体可为电压信号;例如,假设多赫蒂功放电路包括一个主功放、一个辅助功放,且,需要对多赫蒂功放电路中的辅助功放链路的信号进行调相,则:
当包络信号不大于设定的包络开启阈值时,包络调制器会输出一固定电压VDDL(即,最小包络电压)提供给多赫蒂功放电路中各功放的漏级,同时,功放控制装置(即本发明实施例各步骤的执行主体)会根据基带单元输出的包络信号,生成一个固定电压V0,该固定电压V0能够使得辅助功放链路的相位处于相位a状态,即,使得多赫蒂功放电路的主功放链路和辅助功放链路之间的相位差为a,该相位a为多赫蒂功放电路在电压VDDL下的最佳相位;
当包络信号大于设定的包络开启阈值时,包络调制器输出的电压会跟随 包络信号包络变化,最大包络对应最大输出电压VDDH(即,最大包络电压),同时,功放控制装置根据基带单元输出的包络信号生成的电压信号,也会跟随包络的变化而变化,当包络信号达到最大时,功放控制装置输出的电压V1会使得辅助功放链路的相位处于相位b状态,即,使得多赫蒂功放电路的主功放链路和辅助功放链路之间的相位差为b,该相位b为多赫蒂功放电路在电压VDDH下的最佳相位;而当包络信号在设定的包络开启阈值和设定的包络信号最大值之间变化时,功放控制装置根据基带单元输出的包络信号生成的电压会使得辅助功放链路的相位跟随包络信号线性变化,具体的变化曲线可如图5所示。
可选地,步骤402所述的根据生成的调相控制信号,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,包括:
在对多赫蒂功放电路的主功放链路和/或辅助功放链路对应的基带信号进行变频处理之后,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相;或者,
在对多赫蒂功放电路的主功放链路和/或辅助功放链路对应的基带信号进行变频处理之前,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相。
也就是说,对需要调相的一路或多路信号来说,调相操作可在变频之后、也可在变频之前进行,本发明实施例对此不作任何限定。
例如,假设需要对多赫蒂功放电路中的辅助功放链路的信号进行调相,则可在上变频设备对基带单元生成的基带信号进行变频处理,得到多路与多赫蒂功放电路中的各功放一一对应的射频信号之后,对辅助功放链路对应的射频信号进行调相;此时,为了简化***结构,降低上变频设备的数量,基带单元可仅输出一路基带信号至功放***,当然,也可输出多路与多赫蒂功放电路中的各功放一一对应的基带信号,此处不作限定;或者,
也可在上变频设备对基带单元生成的基带信号进行变频处理之前,对基带单元生成的需要输入至多赫蒂功放电路的辅助功放链路的基带信号进行调 相;此时,基带单元可输出多路与多赫蒂功放电路中的各功放一一对应的基带信号,或者,也可仅输出两路基带信号,其中一路基带信号与主功放链路对应,另一路基带信号与所有的辅助功放链路对应;另外,需要说明的是,对辅助功放链路对应的基带信号的调相可在基带单元生成对应的基带信号的过程中完成(也就是说,此时,功放控制装置可相当于集成在基带单元内部,作为基带单元的子单元存在),也可在基带单元生成对应的基带信号之后、且对该基带信号进行变频处理之前完成,此处不再赘述。
进一步地,所述多赫蒂功放电路的辅助功放的个数为一个(如图6所示)或多个(如图7所示);且,若所述多赫蒂功放电路的辅助功放的个数为多个,则对所述多赫蒂功放电路的辅助功放链路的信号进行调相,包括:
对所述多赫蒂功放电路的各辅助功放链路的信号均进行调相。
例如,假设多赫蒂功放电路中包括一个主功放以及N(N的取值为大于1的正整数)个辅助功放,若需要对多赫蒂功放电路的主功放链路的信号以及辅助功放链路的信号均进行调相,则对主功放链路的信号进行调相,并对每一路辅助功放链路的信号进行调相,使得,调相后的主功放链路的信号和每一路辅助功放链路的信号之间的相位差均为与包络信号的当前值相对应的设定值,此处不再赘述。
需要说明的是,多赫蒂功放电路中的辅助功放越多,多赫蒂功放电路的输出功率越大,因而,在实际应用中,可根据实际需求,采用具备多个辅助功放的多赫蒂功放电路(即多级多赫蒂功放电路)来实现对功率的高要求,本发明实施例对此不作赘述。
进一步地,所述包络控制电路中的包络调制器的个数为一个或多个;且,当所述包络控制电路中的包络调制器为一个时,该包络调制器可与所述多赫蒂功放电路中的各功放分别相连,以用于向多赫蒂功放电路中的各功放输出包络电压,具体可如图6、图7所示;或者,
当所述包络控制电路中的包络调制器为多个,如,所述包络控制电路包括多个与多赫蒂功放电路中的各功放一一对应相连的多个包络调制器时,所 述多个包络调制器中的每一包络调制器可用于向多赫蒂功放电路中的对应的功放输出包络电压,具体可如图8所示。
需要说明的是,当所述包络控制电路中的包络调制器为多个时,所述多个包络调制器中的每个包络调制器除了可对应唯一一个功放之外,还可对应多个功放,此处不再赘述。
另外,需要说明的是,如图6或图7所示,本发明实施例中所述的多赫蒂功放电路除了可包括主功放以及辅助功放之外,还可包括用于向各个功放提供驱动信号的驱动功放、以及四分之一波长传输线等相关设备,此处不再赘述。
进一步地,所述调相为数字调相或模拟调相。
具体地,数字调相可包括QPSK(Quadrature Phase Shift Keying,正交相移键控)等,模拟调相可包括回路参数移相、RC网络移相、可变延时法调相等,对此不再赘述。
也就是说,可根据实际需求来灵活选择调相的方式,进一步提高功放控制的灵活性。
本发明实施例一提供了一种功放控制方法,适用于包括包络控制电路以及多赫蒂功放电路的功放***,可根据基带单元输出的包络信号,生成调相控制信号,并根据调相控制信号对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为与包络信号的当前值相对应的设定值,该设定值为多赫蒂功放电路的供电电压为与包络信号的当前值相对应的包络电压时,多赫蒂功放电路的最佳相位值。即,可以针对不同的包络电压对主功放链路和/或辅助功放链路进行相位补偿,以使得在不同的包络电压下,主功放链路和辅助功放链路之间的相位差均能够达到最优值,从而可以在充分利用Doherty的回退效率优势,以及结合ET的功能提升功放的饱和功率的基础上,通过调整不同电压下的相位使得功放性能得到进一步的提升,从而解决了现有的高效率功放技术中存在的效果较差、性能不佳等的问题。
实施例二:
基于与本发明实施例一相同的发明构思,本发明实施例二提供了一种功放控制装置,适用于包括包络控制电路以及多赫蒂功放电路的功放***,其中,所述包络控制电路包括用于根据基带单元输出的包络信号生成包络电压并作为供电电压输出至多赫蒂功放电路的包络调制器;所述多赫蒂功放电路包括主功放以及辅助功放,所述主功放、辅助功放分别用于根据包络调制器输出的包络电压,对基带单元输出的基带信号进行放大处理,具体地,可如图9所示,所述装置可包括:
信号生成单元91,可用于根据基带单元输出的包络信号,生成调相控制信号;
信号调相单元92,可用于根据信号生成单元91生成的调相控制信号,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为与包络信号的当前值相对应的设定值,该设定值为多赫蒂功放电路的供电电压为与包络信号的当前值相对应的包络电压时,多赫蒂功放电路的最佳相位值。
也就是说,可通过信号生成单元91生成调相控制信号,并将该调相控制信号输出至信号调相单元92,以对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,使得多赫蒂功放电路的主功放链路的信号和辅助功放链路的信号之间的相位差达到多赫蒂功放电路在当前包络信号对应的包络电压值下的最佳相位。即,可以针对不同的包络电压对主功放链路和/或辅助功放链路进行相位补偿,以使得在不同的包络电压下,主功放链路和辅助功放链路之间的相位差均能够达到相应的最优值,从而提高了功放的效果以及性能,解决了现有的高效率功放技术所存在的效果较差、性能不佳等的问题。
可选地,所述信号生成单元91,具体用于若确定包络信号的当前值不大于设定的包络开启阈值,则根据所述包络信号,生成第一调相控制信号;所述第一调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第一相位值,所述第一相位值为多赫蒂功放电路的供电 电压为最小包络电压时,多赫蒂功放电路的最佳相位值;或者,
若确定包络信号的当前值为设定的包络信号最大值,则根据所述包络信号,生成第二调相控制信号;所述第二调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第二相位值,所述第二相位值为多赫蒂功放电路的供电电压为最大包络电压时,多赫蒂功放电路的最佳相位值;其中,所述设定的包络信号最大值大于所述设定的包络开启阈值;或者,
若确定包络信号的当前值大于设定的包络开启阈值且小于设定的包络信号最大值,则根据所述包络信号,生成第三调相控制信号;所述第三调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第三相位值;所述第三相位值是根据包络信号的当前值、第一相位值、第二相位值以及第一相位值对应的包络开启阈值、第二相位值对应的包络信号最大值进行线性插值运算得到的。也就是说,当包络信号在设定的包络开启阈值和设定的包络信号最大值之间变化时,信号生成单元91可生成使得主功放链路的信号和辅助功放链路的信号之间的相位差跟随包络信号线性变化的一个调相控制信号。
需要说明的是,所述第一相位值之所以为最小包络电压时多赫蒂功放电路的最佳相位值,是因为,当包络信号的当前值不大于设定的包络开启阈值(该阈值可根据实际情况灵活调整)时,功放***工作于纯Doherty状态下,包络调制器会输出一个固定的电压VDDL(即,最小包络电压)供给多赫蒂功放电路中各功放的漏级;
类似地,所述第二相位值之所以为最大包络电压时多赫蒂功放电路的最佳相位值,是因为,当包络信号大于设定的包络开启阈值时,功放***工作于Doherty和ET的共同状态下,包络调制器的输出电压会跟随包络信号包络变化,当包络信号达到最大值,即达到设定的包络信号最大值时,包络调制器会输出一个最大输出电压VDDH(即,最大包络电压)供给多赫蒂功放电路中各功放的漏级,此处不再赘述。
可选地,所述信号调相单元92,具体用于在对多赫蒂功放电路的主功放链路和/或辅助功放链路对应的基带信号进行变频处理之后,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相;或者,
在对多赫蒂功放电路的主功放链路和/或辅助功放链路对应的基带信号进行变频处理之前,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相。
也就是说,对需要调相的一路或多路信号来说,调相操作可在变频之后、也可在变频之前进行,本发明实施例对此不作任何限定。
例如,如图10所示,假设需要对多赫蒂功放电路中的辅助功放链路的信号进行调相,则可在上变频设备对基带单元生成的基带信号进行变频处理,得到多路与多赫蒂功放电路中的各功放一一对应的射频信号之后,对辅助功放链路对应的射频信号进行调相;此时,为了简化***结构,降低上变频设备的数量,基带单元可仅输出一路基带信号至功放***,当然,也可输出多路与多赫蒂功放电路中的各功放一一对应的基带信号,此处不作限定;或者,
如图11所示,也可在上变频设备对基带单元生成的基带信号进行变频处理之前,对基带单元生成的需要输入至多赫蒂功放电路的辅助功放链路的基带信号进行调相;此时,基带单元可输出多路与多赫蒂功放电路中的各功放一一对应的基带信号,或者,也可仅输出两路基带信号,其中一路基带信号与主功放链路对应,另一路基带信号与所有的辅助功放链路对应;另外,需要说明的是,对辅助功放链路对应的基带信号的调相可在基带单元生成对应的基带信号的过程中完成(也就是说,此时,功放控制装置可相当于集成在基带单元内部,作为基带单元的子单元存在),也可在基带单元生成对应的基带信号之后、且对该基带信号进行变频处理之前完成,此处不再赘述。
进一步地,所述多赫蒂功放电路的辅助功放的个数为一个或多个;所述信号调相单元92,具体用于当所述多赫蒂功放电路的辅助功放的个数为多个,且需对所述多赫蒂功放电路的辅助功放链路的信号进行调相时,对所述多赫蒂功放电路的各辅助功放链路的信号均进行调相。
例如,假设多赫蒂功放电路中包括一个主功放以及N(N的取值为大于1的正整数)个辅助功放,若需要对多赫蒂功放电路的主功放链路的信号以及辅助功放链路的信号均进行调相,则对主功放链路的信号进行调相,并对每一路辅助功放链路的信号进行调相,使得,调相后的主功放链路的信号和每一路辅助功放链路的信号之间的相位差均为与包络信号的当前值相对应的设定值,此处不再赘述。
需要说明的是,多赫蒂功放电路中的辅助功放越多,多赫蒂功放电路的输出功率越大,因而,在实际应用中,可根据实际需求,采用具备多个辅助功放的多赫蒂功放电路(即多级多赫蒂功放电路)来实现对功率的高要求,本发明实施例对此不作赘述。
进一步地,需要说明的是,信号生成单元91可包括一个或多个小信号调制器;信号调相单元92可包括一个或多个调相电路。
例如,当仅需要对主功放链路的信号进行调相,或者,仅需要对辅助功放链路的信号进行调相时,如图12所示(以需要调相的功放链路为辅助功放链路为例),信号生成单元91可包括一个小信号调制器,信号调相单元92可包括一个与该小信号调制器相对应的调相电路,该小信号调制器用于根据基带单元生成的包络信号,生成调相控制信号,并输出给调相电路;该调相电路用于根据小信号调制器输出的调相控制信号,将对应功放链路的相位调整至设定相位;或者,
当需要同时对主功放链路以及辅助功放链路的信号进行调相时,如图13所示,信号生成单元91可包括一个用于生成与主功放链路相对应的第一子调相控制信号的第一小信号调制器,以及,一个用于生成与辅助功放链路相对应的第二子调相控制信号的第二小信号调制器;信号调相单元92可包括与第一小信号调制器相对应的、用于将与主功放链路相对应的信号的相位调至第一子相位的第一调相电路,以及与第二小信号调制器相对应的、用于将与辅助功放链路相对应的信号的相位调至第二子相位的第二调相电路,其中,第一子相位与第二子相位之间的相位差为设定值。
需要说明的是,当辅助功放为多个,且需对辅助功放链路进行调相时,如图14(以仅对辅助功放链路的信号进行调相为例)所示,信号生成单元91可包括多个分别与该多个辅助功放一一对应的小信号调制器(如图14中所示的小信号调制器1~小信号调制器N),信号调相单元92可包括多个分别与该多个辅助功放一一对应的调相电路(如图14中所示的调相电路1~调相电路N),此处不再赘述。
也就是说,信号生成单元91中的小信号调制器的个数以及信号调相单元92中的调相电路的数目均可根据实际情况灵活设置,只要能保证多赫蒂功放电路中的主功放链路的信号以及辅助功放链路的信号之间的相位差为设定值即可,对此不作赘述。
进一步地,所述包络控制电路中的包络调制器的个数为一个或多个;且,当所述包络控制电路中的包络调制器为一个时,该包络调制器可与所述多赫蒂功放电路中的各功放分别相连,以用于向多赫蒂功放电路中的各功放输出包络电压,具体可如图7所示;或者,
当所述包络控制电路中的包络调制器为多个,如,所述包络控制电路包括多个与多赫蒂功放电路中的各功放一一对应相连的多个包络调制器时,所述多个包络调制器中的每一包络调制器可用于向多赫蒂功放电路中的对应的功放输出包络电压,具体可如图8所示。
另外,需要说明的是,当所述包络控制电路中的包络调制器为多个时,所述多个包络调制器中的每个包络调制器除了可对应唯一一个功放之外,还可对应多个功放,此处不再赘述。
进一步地,所述调相为数字调相或模拟调相。
具体地,数字调相可包括QPSK(Quadrature Phase Shift Keying,正交相移键控)等,模拟调相可包括回路参数移相、RC网络移相、可变延时法调相等,对此不再赘述。
也就是说,可根据实际需求来灵活选择调制的方式,进一步地提高对功放控制的灵活性。
另外,需要说明的是,本发明实施例中所述的功放控制装置通常可独立于基带单元等设备而存在;当然,其除了可以独立于基带单元等设备存在之外,还可以集成在基带单元内部、作为基带单元的子单元而存在,如图11所示,对此不作赘述。
实施例三:
基于与本发明实施例一、实施例二相同的发明构思,本发明实施例三还提供了另一种功放控制装置,适用于包括包络控制电路以及多赫蒂功放电路的功放***,其中,所述包络控制电路包括用于根据基带单元输出的包络信号生成包络电压并作为供电电压输出至多赫蒂功放电路的包络调制器;所述多赫蒂功放电路包括主功放以及辅助功放,所述主功放、辅助功放分别用于根据包络调制器输出的包络电压,对基带单元输出的基带信号进行放大处理,具体地,可如图15所示,所述装置可包括:
信号生成器151,可用于根据基带单元输出的包络信号,生成调相控制信号;
信号调制器152,可用于根据信号生成器151生成的调相控制信号,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为与包络信号的当前值相对应的设定值,该设定值为多赫蒂功放电路的供电电压为与包络信号的当前值相对应的包络电压时,多赫蒂功放电路的最佳相位值。
也就是说,可通过信号生成器151生成调相控制信号,并将该调相控制信号输出至信号调制器152,以对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,使得多赫蒂功放电路的主功放链路的信号和辅助功放链路的信号之间的相位差达到多赫蒂功放电路在当前包络信号对应的包络电压值下的最佳相位。即,可以针对不同的包络电压对主功放链路和/或辅助功放链路进行相位补偿,以使得在不同的包络电压下,主功放链路和辅助功放链路之间的相位差均能够达到相应的最优值,从而提高了功放的效果以及性能,解决了现有的高效率功放技术所存在的效果较差、性能不佳等的问题。
可选地,所述信号生成器151,具体用于若确定包络信号的当前值不大于设定的包络开启阈值,则根据所述包络信号,生成第一调相控制信号;所述第一调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第一相位值,所述第一相位值为多赫蒂功放电路的供电电压为最小包络电压时,多赫蒂功放电路的最佳相位值;或者,
若确定包络信号的当前值为设定的包络信号最大值,则根据所述包络信号,生成第二调相控制信号;所述第二调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第二相位值,所述第二相位值为多赫蒂功放电路的供电电压为最大包络电压时,多赫蒂功放电路的最佳相位值;其中,所述设定的包络信号最大值大于所述设定的包络开启阈值;或者,
若确定包络信号的当前值大于设定的包络开启阈值且小于设定的包络信号最大值,则根据所述包络信号,生成第三调相控制信号;所述第三调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第三相位值;所述第三相位值是根据包络信号的当前值、第一相位值、第二相位值以及第一相位值对应的包络开启阈值、第二相位值对应的包络信号最大值进行线性插值运算得到的。也就是说,当包络信号在设定的包络开启阈值和设定的包络信号最大值之间变化时,信号生成器151可生成使得主功放链路的信号和辅助功放链路的信号之间的相位差跟随包络信号线性变化的一个调相控制信号。
需要说明的是,所述第一相位值之所以为最小包络电压时多赫蒂功放电路的最佳相位值,是因为,当包络信号的当前值不大于设定的包络开启阈值(该阈值可根据实际情况灵活调整)时,功放***工作于纯Doherty状态下,包络调制器会输出一个固定的电压VDDL(即,最小包络电压)供给多赫蒂功放电路中各功放的漏级;
类似地,所述第二相位值之所以为最大包络电压时多赫蒂功放电路的最佳相位值,是因为,当包络信号大于设定的包络开启阈值时,功放***工作 于Doherty和ET的共同状态下,包络调制器的输出电压会跟随包络信号包络变化,当包络信号达到最大值,即达到设定的包络信号最大值时,包络调制器会输出一个最大输出电压VDDH(即,最大包络电压)供给多赫蒂功放电路中各功放的漏级,此处不再赘述。
可选地,所述信号调制器152,具体用于在对多赫蒂功放电路的主功放链路和/或辅助功放链路对应的基带信号进行变频处理之后,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相;或者,
在对多赫蒂功放电路的主功放链路和/或辅助功放链路对应的基带信号进行变频处理之前,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相。
也就是说,对需要调相的一路或多路信号来说,调相操作可在变频之后、也可在变频之前进行,本发明实施例对此不作任何限定。
例如,假设需要对多赫蒂功放电路中的辅助功放链路的信号进行调相,则可在上变频设备对基带单元生成的基带信号进行变频处理,得到多路与多赫蒂功放电路中的各功放一一对应的射频信号之后,对辅助功放链路对应的射频信号进行调相;此时,为了简化***结构,降低上变频设备的数量,基带单元可仅输出一路基带信号至功放***,当然,也可输出多路与多赫蒂功放电路中的各功放一一对应的基带信号,此处不作限定;或者,
也可在上变频设备对基带单元生成的基带信号进行变频处理之前,对基带单元生成的需要输入至多赫蒂功放电路的辅助功放链路的基带信号进行调相;此时,基带单元可输出多路与多赫蒂功放电路中的各功放一一对应的基带信号,或者,也可仅输出两路基带信号,其中一路基带信号与主功放链路对应,另一路基带信号与所有的辅助功放链路对应;另外,需要说明的是,对辅助功放链路对应的基带信号的调相可在基带单元生成对应的基带信号的过程中完成(也就是说,此时,功放控制装置可相当于集成在基带单元内部,作为基带单元的子单元存在),也可在基带单元生成对应的基带信号之后、且对该基带信号进行变频处理之前完成,此处不再赘述。
进一步地,所述多赫蒂功放电路的辅助功放的个数为一个或多个;所述信号调制器152,具体用于当所述多赫蒂功放电路的辅助功放的个数为多个,且需对所述多赫蒂功放电路的辅助功放链路的信号进行调相时,对所述多赫蒂功放电路的各辅助功放链路的信号均进行调相。
例如,假设多赫蒂功放电路中包括一个主功放以及N(N的取值为大于1的正整数)个辅助功放,若需要对多赫蒂功放电路的主功放链路的信号以及辅助功放链路的信号均进行调相,则对主功放链路的信号进行调相,并对每一路辅助功放链路的信号进行调相,使得,调相后的主功放链路的信号和每一路辅助功放链路的信号之间的相位差均为与包络信号的当前值相对应的设定值,此处不再赘述。
需要说明的是,多赫蒂功放电路中的辅助功放越多,多赫蒂功放电路的输出功率越大,因而,在实际应用中,可根据实际需求,采用具备多个辅助功放的多赫蒂功放电路(即多级多赫蒂功放电路)来实现对功率的高要求,本发明实施例对此不作赘述。
进一步地,需要说明的是,信号生成器151可包括一个或多个小信号调制器;信号调制器152可包括一个或多个调相电路。
例如,当仅需要对主功放链路的信号进行调相,或者,仅需要对辅助功放链路的信号进行调相时,信号生成器151可包括一个小信号调制器,信号调制器152可包括一个与该小信号调制器相对应的调相电路,该小信号调制器用于根据基带单元生成的包络信号,生成调相控制信号,并输出给调相电路;该调相电路用于根据小信号调制器输出的调相控制信号,将对应功放链路的相位调整至设定相位;或者,
当需要同时对主功放链路以及辅助功放链路的信号进行调相时,信号生成器151可包括一个用于生成与主功放链路相对应的第一子调相控制信号的第一小信号调制器,以及,一个用于生成与辅助功放链路相对应的第二子调相控制信号的第二小信号调制器;信号调制器152可包括与第一小信号调制器相对应的、用于将与主功放链路相对应的信号的相位调至第一子相位的第 一调相电路,以及与第二小信号调制器相对应的、用于将与辅助功放链路相对应的信号的相位调至第二子相位的第二调相电路,其中,第一子相位与第二子相位之间的相位差为设定值。
需要说明的是,当辅助功放为多个,且需对辅助功放链路进行调相时,信号生成器151可包括多个分别与该多个辅助功放一一对应的小信号调制器,信号调制器152可包括多个分别与该多个辅助功放一一对应的调相电路,此处不再赘述。
也就是说,信号生成器151中的小信号调制器的个数以及信号调制器152中的调相电路的数目均可根据实际情况灵活设置,只要能保证多赫蒂功放电路中的主功放链路的信号以及辅助功放链路的信号之间的相位差为设定值即可,对此不作赘述。
进一步地,所述包络控制电路中的包络调制器的个数为一个或多个;且,当所述包络控制电路中的包络调制器为一个时,该包络调制器可与所述多赫蒂功放电路中的各功放分别相连,以用于向多赫蒂功放电路中的各功放输出包络电压,具体可如图7所示;或者,
当所述包络控制电路中的包络调制器为多个,如,所述包络控制电路包括多个与多赫蒂功放电路中的各功放一一对应相连的多个包络调制器时,所述多个包络调制器中的每一包络调制器可用于向多赫蒂功放电路中的对应的功放输出包络电压,具体可如图8所示。
另外,需要说明的是,当所述包络控制电路中的包络调制器为多个时,所述多个包络调制器中的每个包络调制器除了可对应唯一一个功放之外,还可对应多个功放,此处不再赘述。
进一步地,所述调相为数字调相或模拟调相。
具体地,数字调相可包括QPSK(Quadrature Phase Shift Keying,正交相移键控)等,模拟调相可包括回路参数移相、RC网络移相、可变延时法调相等,对此不再赘述。
也就是说,可根据实际需求来灵活选择调制的方式,进一步地提高对功 放控制的灵活性。
另外,需要说明的是,本发明实施例中所述的功放控制装置通常可独立于基带单元等设备而存在;当然,其除了可以独立于基带单元等设备存在之外,还可以集成在基带单元内部、作为基带单元的子单元而存在,对此不作赘述。
实施例四:
本发明实施例四提供了一种功放控制***,包括包含包络控制电路以及多赫蒂功放电路的功放***,其中,所述包络控制电路包括用于根据基带单元输出的包络信号生成包络电压并作为供电电压输出至多赫蒂功放电路的包络调制器;所述多赫蒂功放电路包括主功放以及辅助功放,所述主功放、辅助功放分别用于根据包络调制器输出的包络电压,对基带单元输出的基带信号进行放大处理,所述功放控制***还包括本发明实施例二中所述的功放控制装置、或本发明实施例三中所述的功放控制装置,对此不作赘述。
另外,需要说明的是,如图14所示,本发明实施例中所述的功放控制***,除了包括包含包络控制电路以及多赫蒂功放电路的功放***、本发明实施例二、或本发明实施例三中所述的功放控制装置之外,还可包括用于生成基带信号以及相应的包络信号的基带单元以及对基带信号进行变频处理的上变频器等设备。
本领域技术人员应明白,本发明的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处 理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (13)

  1. 一种功放控制方法,适用于包括包络控制电路以及多赫蒂功放电路的功放***,其中,所述包络控制电路包括用于根据基带单元输出的包络信号生成包络电压并作为供电电压输出至多赫蒂功放电路的包络调制器;所述多赫蒂功放电路包括主功放以及辅助功放,所述主功放、辅助功放分别用于根据包络调制器输出的包络电压,对基带单元输出的基带信号进行放大处理,其特征在于,所述方法包括:
    根据基带单元输出的包络信号,生成调相控制信号;
    根据生成的调相控制信号,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为与包络信号的当前值相对应的设定值,该设定值为多赫蒂功放电路的供电电压为与包络信号的当前值相对应的包络电压时,多赫蒂功放电路的最佳相位值。
  2. 如权利要求1所述的控制方法,其特征在于,根据基带单元输出的包络信号,生成调相控制信号,包括:
    若确定包络信号的当前值不大于设定的包络开启阈值,则根据所述包络信号,生成第一调相控制信号;所述第一调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第一相位值,所述第一相位值为多赫蒂功放电路的供电电压为最小包络电压时,多赫蒂功放电路的最佳相位值;或者,
    若确定包络信号的当前值为设定的包络信号最大值,则根据所述包络信号,生成第二调相控制信号;所述第二调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第二相位值,所述第二相位值为多赫蒂功放电路的供电电压为最大包络电压时,多赫蒂功放电路的最佳相位值;其中,所述设定的包络信号最大值大于所述设定的包络开启阈值;或者,
    若确定包络信号的当前值大于设定的包络开启阈值且小于设定的包络信号最大值,则根据所述包络信号,生成第三调相控制信号;所述第三调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第三相位值;所述第三相位值是根据包络信号的当前值、第一相位值、第二相位值以及第一相位值对应的包络开启阈值、第二相位值对应的包络信号最大值进行线性插值运算得到的。
  3. 如权利要求1所述的控制方法,其特征在于,根据生成的调相控制信号,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,包括:
    在对多赫蒂功放电路的主功放链路和/或辅助功放链路对应的基带信号进行变频处理之后,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相;或者,
    在对多赫蒂功放电路的主功放链路和/或辅助功放链路对应的基带信号进行变频处理之前,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相。
  4. 如权利要求1所述的控制方法,其特征在于,所述多赫蒂功放电路的辅助功放的个数为一个或多个;且,若所述多赫蒂功放电路的辅助功放的个数为多个,则对所述多赫蒂功放电路的辅助功放链路的信号进行调相,包括:
    对所述多赫蒂功放电路的各辅助功放链路的信号均进行调相。
  5. 如权利要求1所述的控制方法,其特征在于,所述包络控制电路包括与所述多赫蒂功放电路中的各功放分别相连的一个包络调制器,所述一个包络调制器用于向多赫蒂功放电路中的各功放输出包络电压;或者,
    包括与多赫蒂功放电路中的各功放一一对应相连的多个包络调制器,所述多个包络调制器中的每一包络调制器用于向多赫蒂功放电路中的对应的功放输出包络电压。
  6. 如权利要求1所述的控制方法,其特征在于,所述调相为数字调相或模拟调相。
  7. 一种功放控制装置,适用于包括包络控制电路以及多赫蒂功放电路的功放***,其中,所述包络控制电路包括用于根据基带单元输出的包络信号生成包络电压并作为供电电压输出至多赫蒂功放电路的包络调制器;所述多赫蒂功放电路包括主功放以及辅助功放,所述主功放、辅助功放分别用于根据包络调制器输出的包络电压,对基带单元输出的基带信号进行放大处理,其特征在于,所述装置包括:
    信号生成单元,用于根据基带单元输出的包络信号,生成调相控制信号;
    信号调相单元,用于根据生成的调相控制信号,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相,使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为与包络信号的当前值相对应的设定值,该设定值为多赫蒂功放电路的供电电压为与包络信号的当前值相对应的包络电压时,多赫蒂功放电路的最佳相位值。
  8. 如权利要求7所述的控制装置,其特征在于,
    所述信号生成单元,具体用于若确定包络信号的当前值不大于设定的包络开启阈值,则根据所述包络信号,生成第一调相控制信号;所述第一调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第一相位值,所述第一相位值为多赫蒂功放电路的供电电压为最小包络电压时,多赫蒂功放电路的最佳相位值;或者,
    若确定包络信号的当前值为设定的包络信号最大值,则根据所述包络信号,生成第二调相控制信号;所述第二调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相位差为第二相位值,所述第二相位值为多赫蒂功放电路的供电电压为最大包络电压时,多赫蒂功放电路的最佳相位值;其中,所述设定的包络信号最大值大于所述设定的包络开启阈值;或者,
    若确定包络信号的当前值大于设定的包络开启阈值且小于设定的包络信号最大值,则根据所述包络信号,生成第三调相控制信号;所述第三调相控制信号能够使得调相后的主功放链路的信号和辅助功放链路的信号之间的相 位差为第三相位值;所述第三相位值是根据包络信号的当前值、第一相位值、第二相位值以及第一相位值对应的包络开启阈值、第二相位值对应的包络信号最大值进行线性插值运算得到的。
  9. 如权利要求7所述的控制装置,其特征在于,
    所述信号调相单元,具体用于在对多赫蒂功放电路的主功放链路和/或辅助功放链路对应的基带信号进行变频处理之后,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相;或者,
    在对多赫蒂功放电路的主功放链路和/或辅助功放链路对应的基带信号进行变频处理之前,对多赫蒂功放电路的主功放链路和/或辅助功放链路的信号进行调相。
  10. 如权利要求7所述的控制装置,其特征在于,所述多赫蒂功放电路的辅助功放的个数为一个或多个;
    所述信号调相单元,具体用于当所述多赫蒂功放电路的辅助功放的个数为多个,且需对所述多赫蒂功放电路的辅助功放链路的信号进行调相时,对所述多赫蒂功放电路的各辅助功放链路的信号均进行调相。
  11. 如权利要求7所述的控制装置,其特征在于,所述包络控制电路包括与所述多赫蒂功放电路中的各功放分别相连的一个包络调制器,所述一个包络调制器用于向多赫蒂功放电路中的各功放输出包络电压;或者,
    包括与多赫蒂功放电路中的各功放一一对应相连的多个包络调制器,所述多个包络调制器中的每一包络调制器用于向多赫蒂功放电路中的对应的功放输出包络电压。
  12. 如权利要求7所述的控制装置,其特征在于,所述调相为数字调相或模拟调相。
  13. 一种功放控制***,包括包含包络控制电路以及多赫蒂功放电路的功放***,其中,所述包络控制电路包括用于根据基带单元输出的包络信号生成包络电压并作为供电电压输出至多赫蒂功放电路的包络调制器;所述多赫蒂功放电路包括主功放以及辅助功放,所述主功放、辅助功放分别用于根 据包络调制器输出的包络电压,对基带单元输出的基带信号进行放大处理,其特征在于,所述功放控制***还包括权利要求7~12任一所述的功放控制装置。
PCT/CN2015/098723 2015-12-24 2015-12-24 一种功放控制方法、装置及功放控制*** WO2017107140A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018533252A JP6751147B2 (ja) 2015-12-24 2015-12-24 電力増幅器制御方法及び装置、並びに電力増幅器制御システム
EP15911139.2A EP3386102B1 (en) 2015-12-24 2015-12-24 Method and device for controlling power amplifier, and power amplifier control system
BR112018012904-6A BR112018012904B1 (pt) 2015-12-24 2015-12-24 Método e aparelho de controle de amplificador de potência, sistema de controle de amplificador de potência e mídia de armazenamento legível por computador
PCT/CN2015/098723 WO2017107140A1 (zh) 2015-12-24 2015-12-24 一种功放控制方法、装置及功放控制***
CN201580085531.8A CN108432129B (zh) 2015-12-24 2015-12-24 一种功放控制方法、装置及功放控制***
US16/016,394 US10511266B2 (en) 2015-12-24 2018-06-22 Power amplifier control method and apparatus, and power amplifier control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/098723 WO2017107140A1 (zh) 2015-12-24 2015-12-24 一种功放控制方法、装置及功放控制***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/016,394 Continuation US10511266B2 (en) 2015-12-24 2018-06-22 Power amplifier control method and apparatus, and power amplifier control system

Publications (1)

Publication Number Publication Date
WO2017107140A1 true WO2017107140A1 (zh) 2017-06-29

Family

ID=59088885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098723 WO2017107140A1 (zh) 2015-12-24 2015-12-24 一种功放控制方法、装置及功放控制***

Country Status (6)

Country Link
US (1) US10511266B2 (zh)
EP (1) EP3386102B1 (zh)
JP (1) JP6751147B2 (zh)
CN (1) CN108432129B (zh)
BR (1) BR112018012904B1 (zh)
WO (1) WO2017107140A1 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10158330B1 (en) 2017-07-17 2018-12-18 Qorvo Us, Inc. Multi-mode envelope tracking amplifier circuit
US10530305B2 (en) 2017-10-06 2020-01-07 Qorvo Us, Inc. Nonlinear bandwidth compression circuitry
US10742170B2 (en) 2018-02-01 2020-08-11 Qorvo Us, Inc. Envelope tracking circuit and related power amplifier system
US10944365B2 (en) 2018-06-28 2021-03-09 Qorvo Us, Inc. Envelope tracking amplifier circuit
US11088618B2 (en) 2018-09-05 2021-08-10 Qorvo Us, Inc. PWM DC-DC converter with linear voltage regulator for DC assist
US10911001B2 (en) 2018-10-02 2021-02-02 Qorvo Us, Inc. Envelope tracking amplifier circuit
US10985702B2 (en) 2018-10-31 2021-04-20 Qorvo Us, Inc. Envelope tracking system
US11018638B2 (en) 2018-10-31 2021-05-25 Qorvo Us, Inc. Multimode envelope tracking circuit and related apparatus
US10938351B2 (en) * 2018-10-31 2021-03-02 Qorvo Us, Inc. Envelope tracking system
US10680556B2 (en) 2018-11-05 2020-06-09 Qorvo Us, Inc. Radio frequency front-end circuit
US11031909B2 (en) 2018-12-04 2021-06-08 Qorvo Us, Inc. Group delay optimization circuit and related apparatus
US11082007B2 (en) 2018-12-19 2021-08-03 Qorvo Us, Inc. Envelope tracking integrated circuit and related apparatus
US11146213B2 (en) 2019-01-15 2021-10-12 Qorvo Us, Inc. Multi-radio access technology envelope tracking amplifier apparatus
US11025458B2 (en) 2019-02-07 2021-06-01 Qorvo Us, Inc. Adaptive frequency equalizer for wide modulation bandwidth envelope tracking
US10998859B2 (en) 2019-02-07 2021-05-04 Qorvo Us, Inc. Dual-input envelope tracking integrated circuit and related apparatus
US11233481B2 (en) 2019-02-18 2022-01-25 Qorvo Us, Inc. Modulated power apparatus
US11374482B2 (en) 2019-04-02 2022-06-28 Qorvo Us, Inc. Dual-modulation power management circuit
US11082009B2 (en) 2019-04-12 2021-08-03 Qorvo Us, Inc. Envelope tracking power amplifier apparatus
US11018627B2 (en) 2019-04-17 2021-05-25 Qorvo Us, Inc. Multi-bandwidth envelope tracking integrated circuit and related apparatus
US11424719B2 (en) 2019-04-18 2022-08-23 Qorvo Us, Inc. Multi-bandwidth envelope tracking integrated circuit
US11031911B2 (en) 2019-05-02 2021-06-08 Qorvo Us, Inc. Envelope tracking integrated circuit and related apparatus
US11349436B2 (en) 2019-05-30 2022-05-31 Qorvo Us, Inc. Envelope tracking integrated circuit
US11539289B2 (en) 2019-08-02 2022-12-27 Qorvo Us, Inc. Multi-level charge pump circuit
US11309922B2 (en) 2019-12-13 2022-04-19 Qorvo Us, Inc. Multi-mode power management integrated circuit in a small formfactor wireless apparatus
US11349513B2 (en) 2019-12-20 2022-05-31 Qorvo Us, Inc. Envelope tracking system
US11539330B2 (en) 2020-01-17 2022-12-27 Qorvo Us, Inc. Envelope tracking integrated circuit supporting multiple types of power amplifiers
US11716057B2 (en) 2020-01-28 2023-08-01 Qorvo Us, Inc. Envelope tracking circuitry
WO2021168385A1 (en) * 2020-02-21 2021-08-26 Georgia Tech Research Corporation Power amplifiers and methods of controlling same
US11728774B2 (en) 2020-02-26 2023-08-15 Qorvo Us, Inc. Average power tracking power management integrated circuit
US11196392B2 (en) 2020-03-30 2021-12-07 Qorvo Us, Inc. Device and device protection system
US11588449B2 (en) 2020-09-25 2023-02-21 Qorvo Us, Inc. Envelope tracking power amplifier apparatus
US11728796B2 (en) 2020-10-14 2023-08-15 Qorvo Us, Inc. Inverted group delay circuit
US11909385B2 (en) 2020-10-19 2024-02-20 Qorvo Us, Inc. Fast-switching power management circuit and related apparatus
WO2023090202A1 (ja) * 2021-11-18 2023-05-25 株式会社村田製作所 電力増幅回路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1866733A (zh) * 2006-03-08 2006-11-22 华为技术有限公司 功放装置
CN101567665A (zh) * 2008-12-26 2009-10-28 芯通科技(成都)有限公司 一种数字Doherty功率放大器
US20120299659A1 (en) * 2011-05-24 2012-11-29 Samsung Electronics Co. Ltd. Efficiency improvement of doherty power amplifier using supply switching and digitally controlled gate bias modulation of peaking amplifier
CN103178786A (zh) * 2011-12-26 2013-06-26 瑞典爱立信有限公司 多路Doherty放大器
CN103430603A (zh) * 2013-02-04 2013-12-04 华为技术有限公司 功率放大器、收发信机及基站

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4467756B2 (ja) * 2000-10-13 2010-05-26 三菱電機株式会社 ドハティ型増幅器
JP2005117599A (ja) * 2003-10-08 2005-04-28 Hiroshi Suzuki 高周波増幅器
JP4435071B2 (ja) * 2005-11-10 2010-03-17 株式会社東芝 電力増幅器および増幅方法
US8022759B2 (en) 2006-11-01 2011-09-20 Telefonaktiebolaget L M Ericsson (Publ) Dynamic range improvements of load modulated amplifiers
US8274332B2 (en) 2007-04-23 2012-09-25 Dali Systems Co. Ltd. N-way Doherty distributed power amplifier with power tracking
JP5169274B2 (ja) * 2008-02-12 2013-03-27 住友電気工業株式会社 ドハティ増幅装置
JP2009260658A (ja) * 2008-04-16 2009-11-05 Mitsubishi Electric Corp 電力増幅器
KR101104143B1 (ko) * 2008-11-24 2012-01-13 한국전자통신연구원 무선 통신 시스템에서 신호의 송신 장치 및 방법
KR101310993B1 (ko) * 2009-01-26 2013-09-24 닛본 덴끼 가부시끼가이샤 고주파 증폭기, 무선 장치 및 제어 방법
CN101527545A (zh) 2009-04-17 2009-09-09 京信通信***(中国)有限公司 Doherty包络跟踪功率放大器及处理射频信号的方法
CN201426111Y (zh) 2009-04-17 2010-03-17 京信通信***(中国)有限公司 一种Doherty包络跟踪功率放大器
EP2357725A1 (en) 2010-02-17 2011-08-17 Alcatel Lucent Envelope tracking arrangement for improved backoff operation
CN102299689B (zh) * 2011-06-29 2014-07-23 清华大学 基于包络跟踪技术的高效率双频功率放大器的设计方法
WO2013134026A2 (en) * 2012-03-04 2013-09-12 Quantance, Inc. Envelope tracking power amplifier system with delay calibration
US9118279B2 (en) * 2013-10-03 2015-08-25 Freescale Semiconductor, Inc. Power amplifiers with signal conditioning
JP2015220680A (ja) * 2014-05-20 2015-12-07 三菱電機株式会社 高効率増幅器
JP6482668B2 (ja) * 2014-12-11 2019-03-13 華為技術有限公司Huawei Technologies Co.,Ltd. 無線周波数回路、送信器、基地局、及びユーザ端末

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1866733A (zh) * 2006-03-08 2006-11-22 华为技术有限公司 功放装置
CN101567665A (zh) * 2008-12-26 2009-10-28 芯通科技(成都)有限公司 一种数字Doherty功率放大器
US20120299659A1 (en) * 2011-05-24 2012-11-29 Samsung Electronics Co. Ltd. Efficiency improvement of doherty power amplifier using supply switching and digitally controlled gate bias modulation of peaking amplifier
CN103178786A (zh) * 2011-12-26 2013-06-26 瑞典爱立信有限公司 多路Doherty放大器
CN103430603A (zh) * 2013-02-04 2013-12-04 华为技术有限公司 功率放大器、收发信机及基站

Also Published As

Publication number Publication date
JP6751147B2 (ja) 2020-09-02
CN108432129A (zh) 2018-08-21
CN108432129B (zh) 2020-10-09
EP3386102A4 (en) 2018-12-19
BR112018012904B1 (pt) 2023-12-19
US10511266B2 (en) 2019-12-17
US20180302042A1 (en) 2018-10-18
EP3386102B1 (en) 2021-03-31
JP2019504555A (ja) 2019-02-14
EP3386102A1 (en) 2018-10-10
BR112018012904A2 (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2017107140A1 (zh) 一种功放控制方法、装置及功放控制***
US10608591B2 (en) Apparatus and a method for providing a supply control signal for a supply unit
JP3841416B2 (ja) 送信装置、送信出力制御方法、および無線通信装置
CN104539246B (zh) 基于包络跟踪的数字预畸变***、射频***和方法
US7560984B2 (en) Transmitter
JP4646987B2 (ja) 送信回路、及びそれを用いた通信機器
JP2005117599A (ja) 高周波増幅器
Lee et al. Design of highly efficient three-stage inverted Doherty power amplifier
WO2019087430A1 (en) Digital power- amplifier (dpa) system and digital doherty power- amplifier (ddpa) system
US11948071B2 (en) Deep learning-based online adaptation of digital pre-distortion and power amplifier systems
Gilabert et al. 3D digital predistortion for dual-band envelope tracking power amplifiers
US10938358B2 (en) Digital power amplifier
EP3994793A1 (en) Multi quantized digitally controlled power supply voltage for multi amplifier stages
KR102075813B1 (ko) 증폭기 어셈블리
JP2011120142A (ja) 高周波電力増幅装置
Kopta et al. A 2.4-GHz low power polar transmitter for wireless body area network applications
Golestaneh et al. Three-way Doherty power amplifier for efficient amplification of wideband signals with extended PAPR
JP2014175824A (ja) ドハティ増幅器
JP2005039725A (ja) データ変換装置および送信機
Hashemi Energy Efficient and Intrinsically Linear Digital Polar Transmitters
US20210119587A1 (en) Digital power amplifier
Darraji et al. Digital Doherty amplifier with complex gain compensation apparatus
Gilabert et al. Computationally efficient real-time digital predistortion architectures for envelope tracking power amplifiers
US10020783B2 (en) Class D amplifier using Fs/4 modulation and envelope tracking power supplies
WO2020087237A1 (zh) 功率放大电路、控制功率放大器的方法以及功率放大器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018012904

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2015911139

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015911139

Country of ref document: EP

Effective date: 20180705

ENP Entry into the national phase

Ref document number: 112018012904

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180622