WO2017107016A1 - 传输数据的方法、射频拉远单元rru和基带单元bbu - Google Patents

传输数据的方法、射频拉远单元rru和基带单元bbu Download PDF

Info

Publication number
WO2017107016A1
WO2017107016A1 PCT/CN2015/098110 CN2015098110W WO2017107016A1 WO 2017107016 A1 WO2017107016 A1 WO 2017107016A1 CN 2015098110 W CN2015098110 W CN 2015098110W WO 2017107016 A1 WO2017107016 A1 WO 2017107016A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
rru
bbu
antenna
processing
Prior art date
Application number
PCT/CN2015/098110
Other languages
English (en)
French (fr)
Inventor
王珏平
叶威
张思
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/098110 priority Critical patent/WO2017107016A1/zh
Priority to EP15911016.2A priority patent/EP3310123B1/en
Priority to CN201580080174.6A priority patent/CN107615877A/zh
Publication of WO2017107016A1 publication Critical patent/WO2017107016A1/zh
Priority to US15/870,154 priority patent/US20180138957A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks

Definitions

  • Embodiments of the present invention relate to the field of communications, and more particularly, to a method of transmitting data, a radio remote unit RRU, and a baseband unit BBU.
  • RRU Remote Radio Unit
  • BBU Baseband Unit
  • CPRI Common Public Radio Interface
  • the BBU assumes a baseband function including Layer 1 (Layer 1, abbreviated as “L1”), Layer 2 (Layer 2, abbreviated as “L2”), and Layer 3 (Layer 3, abbreviated as “L3”).
  • the RRU is mainly responsible for RF transceiver functions including Radio Frequency Transceiver (TRX) and Power Amplifier ("PA").
  • TRX Radio Frequency Transceiver
  • PA Power Amplifier
  • the baseband L1 of the downlink BBU performs the Fast Fourier Transformation (“FFT”) and the Cyclic Prefix (“CP”) function, and then transmits the IQ data of the L1 to the RRU through the CPRI interface.
  • the baseband L1 of the uplink BBU receives the data from the RRU first by going to the CP, then by Fast Fourier Transformation (“FFT”) to complete other processing of the data.
  • FFT Fast Fourier Transformation
  • the embodiment of the present invention provides a method for transmitting data, a radio remote unit RRU, and a baseband unit BBU, which can reduce data traffic between the BBU and the RRU, thereby reducing the forward data bandwidth between the BBU and the RRU.
  • a method for transmitting data is provided, which is applied to a base station, where the base station includes a baseband unit BBU and a radio remote unit RRU, and the method includes: receiving, by the RRU, the BBU The stream data is obtained by the BBU performing resource mapping processing on the downlink data to be transmitted; the RRU streams the stream data to the antenna mapping process; and the RRU sends the mapped data to the user equipment through the antenna. .
  • the RRU sends the mapping processed data to the user equipment by using an antenna, where the RRU performs the fast Fourier transform inverse IFFT processing and insertion on the mapped data.
  • the cyclic prefix CP processes to obtain downlink data; the RRU sends the downlink data to the user equipment through an antenna.
  • the method further includes: receiving, by the RRU, a downlink dynamic antenna weight sent by the BBU, where the RRU flows the stream data to
  • the antenna mapping process includes: the RRU streams the stream data to the antenna mapping process according to the downlink dynamic antenna weight.
  • the method further includes: the RRU performing antenna-to-beam mapping processing on the data of the user equipment; and sending, by the RRU, the mapping processing to the BBU The data.
  • the method further includes: receiving, by the RRU, an uplink signal sent by the user equipment by using an antenna, where the uplink signal includes the data and the sounding reference signal SRS; the RRU separates the SRS and the data from the uplink signal; the RRU sends the SRS to the BBU.
  • the RRU separates the SRS and the data from the uplink signal, including: the RRU performing fast Fourier transform FFT on the uplink signal Processing and removing cyclic prefix CP processing to obtain a frequency domain signal; wherein the RRU separates the SRS and the data from the uplink signal, including: the RRU separating the SRS and the data from the frequency domain signal.
  • the data includes non-space division multiplexed data and space division multiplexed data; wherein the RRU performs data of the user equipment
  • the antenna-to-beam mapping process includes: receiving an uplink dynamic antenna weight sent by the BBU; performing antenna-to-beam mapping processing on the space-division multiplexed data according to the uplink dynamic antenna weight; and using the uplink static antenna weight to the non- The spatially multiplexed data is subjected to antenna-to-beam mapping processing.
  • a second aspect provides a method for transmitting data, which is applied to a base station, where the base station includes a baseband unit BBU and a radio remote unit RRU, wherein the method includes: the BBU is to be The downlink data is transmitted for resource mapping processing to obtain the stream data.
  • the BBU sends the stream data to the RRU, so that the RRU streams the stream data to the antenna mapping process, and sends the mapped data to the user equipment through the antenna.
  • the method further includes: determining, by the BBU, a downlink dynamic antenna weight; the BBU transmitting the downlink dynamic antenna weight to the RRU, so that the RRU is configured according to the downlink
  • the dynamic antenna weights flow the stream data to the antenna mapping process.
  • the method includes: the BBU receives data sent by the RRU, where the data is used by the RRU to antenna the data of the user equipment to the beam. The mapping process is obtained; the BBU processes the data to obtain uplink data.
  • the method further includes: the BBU receiving the sounding reference signal SRS sent by the RRU.
  • the BBU processes the data to obtain uplink data, including: the BBU performs Fourier transform FFT processing on the data, and removes cyclic prefix CP processing. Then, the frequency domain data is obtained; the BBU processes the frequency domain data to obtain the uplink data.
  • the data includes data that is not spatially multiplexed and spatially multiplexed
  • the method further includes: determining, by the BBU, an uplink dynamic antenna The BBU sends the uplink dynamic antenna weight to the RRU, so that the RRU performs antenna-to-beam mapping processing on the space-division multiplexed data according to the uplink dynamic antenna weight.
  • a baseband unit BBU for performing the method of any of the above first aspect or any of the possible implementations of the first aspect, in particular, the BBU includes the first aspect or the first aspect A module of the method in any of the possible implementations.
  • a radio remote unit RRU for performing the method in any of the foregoing second aspect or any possible implementation manner of the second aspect, specifically, the RRU is configured to perform the foregoing second aspect or A module of a method in any of the possible implementations of the two aspects.
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program, the calculation The machine program includes instructions for performing the method of the second aspect or any of the possible implementations of the second aspect.
  • a computer program product comprising: computer program code, when the computer program code is run by an RRU, causing the RRU to perform any of the first aspect or any of the possible implementations of the first aspect The method in the way.
  • a computer program product comprising: computer program code, when the computer program code is executed by a BBU, causing the BBU to perform any of the possible implementations of the second aspect or the second aspect The method in the way.
  • FIG. 1 is an architectural diagram of a distributed base station in the prior art
  • FIG. 2 is a schematic diagram of functional division of BBUs and RRUs in the prior art
  • FIG. 3 is a schematic flowchart of a method for transmitting data according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a method of transmitting data in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a method of transmitting data according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a method of transmitting data according to still another embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of an RRU according to an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a BBU according to an embodiment of the present invention.
  • FIG. 9 is another schematic block diagram of a BBU according to an embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of an RRU according to another embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of a BBU according to another embodiment of the present invention.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the distributed base station includes a baseband unit (BBU) and a remote radio unit (RRU).
  • BBU baseband unit
  • RRU remote radio unit
  • the common radio interface is used between the BBU and the RRU.
  • CPRI Public Radio Interface
  • the BBUs are usually placed in the equipment room, the RRUs are placed at the remote end, and one BBU can be connected to multiple RRUs.
  • FIG. 2 shows specific functions in the BBU and the RRU in the prior art.
  • the BBU assumes that the layer 1 (Layer 1, simply referred to as "L1”) and the layer 2 (Layer 2, referred to as "L2") And the baseband function of Layer 3 (Layer 3, abbreviated as "L3"), wherein the downlink function of the baseband L1 mainly includes Encoder, Modulation, Layer Mapping, Pre-Precording, and Resource Mapping ( Resource Element Mapping), Inverse Fast Fourier Transformation (“IFFT”) and Cyclic Prefix (“CP”); the uplink function of baseband L1 includes Fast Fourier Transformation (Fast Fourier Transformation, Referred to as "FFT”) and CP removal, Resource Element Demapping, Multiple-Input Multiple-Output (MIMO) equalization (Equalizer), IFFT, Demodulation, and Decoder.
  • FFT Fast Fourier Transformation
  • MIMO Multiple-Input Multiple-Output
  • FIG. 3 shows a schematic flow chart of a method of transmitting data according to an embodiment of the present invention.
  • the method is applied to a base station, where the base station includes a baseband unit BBU and a radio remote unit RRU.
  • the method 100 includes the following content:
  • the RRU receives the stream data sent by the BBU, where the stream data is obtained after the BBU performs resource mapping processing on the downlink data to be transmitted.
  • the RRU streams the stream data to an antenna mapping process.
  • the RRU sends the mapped data to the user equipment by using an antenna.
  • the RRU performs mapping processing to the antenna in the downlink. Therefore, traffic flow data is transmitted between the BBU and the RRU, thereby reducing the relationship between the BBU and the RRU. Data traffic, thereby reducing the forward data bandwidth between the BBU and the RRU.
  • the method of the embodiment of the present invention can be applied to the following two scenarios: (1) a non-MIMO (or a transmission mode (TM) 2 or TM3) scenario, where the BBU is processed after the Precoding process. Antenna data, the RRU flows to the convection data to The stream to Antenna Mapping does not change the stream data in any way. That is to say, the Stream to Antenna Mapping transparently transmits data without mapping.
  • (II) MIMO (or TM4 to TM9) scenario In this scenario, the RRU performs Stream to Antenna Mapping processing and completes the Precording function.
  • the BBU may be a Physical Downlink Control Channel (“PDCCH”) data and a Physical Downlink Shared Channel (PDSCH) data.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the stream data is obtained, and then the stream data is sent to the RRU through the interface between the BBU and the RRU, and correspondingly, the RRU receives the stream data and then the stream data.
  • the Stream to Antenna Mapping process is performed, and the mapped data is sent to the user equipment through the antenna.
  • the RRU when the RRU sends the mapped data to the user equipment through the antenna, as shown in FIG. 4, the RRU performs fast Fourier transform IFFT processing and inserts a cyclic prefix on the mapped data.
  • the CP processes the downlink data, and then sends the downlink data to the user equipment through the antenna.
  • power amplification processing can be performed before transmitting downlink data.
  • the RRU may receive the downlink dynamic antenna weights sent by the BBU, and process the downlink dynamic antenna weights according to the received downlink dynamic antenna weights when flowing to the antenna mapping process, and the downlink dynamic antenna weights may also be called For the "L1 antenna weight” or "L1 weight”, the scope of protection of the present invention is not limited to this name.
  • the process by which the RRU performs Stream to Antenna Mapping processing can be expressed as:
  • Y is the data flowing to the antenna mapping process, which may be referred to as "physical antenna data”
  • X is the stream data before the mapping process
  • W is the downlink dynamic antenna weight flowing to the antenna mapping
  • n is the number of streams
  • the PDCCH occupies 2 streams, and the PDSCH accounts for 16 streams, so the data flow between the BBU and the RRU totals 18 streams.
  • the data traffic calculation between the BBU and the RRU can be calculated as follows:
  • Data traffic N (number of data streams or virtual antennas) ⁇ 1200 (number of subcarriers) ⁇ bit width (I and Q sampling bandwidth) / 72us (symbol duration);
  • Antenna weight data traffic 100 (Resource Block (abbreviated as "RB") number) ⁇ M (physical antenna number) ⁇ 32 bits (sample bit width of L1 antenna weight) ⁇ N / 1 ms;
  • control or scheduling information may be used: indicating that the uplink/downlink RB allocation information overhead of the user is 1 byte/RB/msec; indicating that the uplink/downlink channel antenna configuration information overhead is 2 bytes/RB/ Milliseconds; the overhead introduced by the scheduling and configuration information packet is 1 byte/RB/millisecond; the required bandwidth is approximately (RB allocation information byte (1 byte) + antenna configuration information byte (1 byte) + scheduling And configuration information byte (0.5 bytes)) ⁇ RB number (100) ⁇ byte width (8 bits) / 1ms.
  • the RRU performs antenna-to-flow mapping processing on the data of the user equipment; and then sends the mapped data to the BBU.
  • the RRU completes the mapping process of the antenna to the flow. Therefore, the service flow data is transmitted between the BBU and the RRU, thereby reducing the data traffic between the BBU and the RRU, thereby reducing The forward data bandwidth between the BBU and the RRU.
  • the RRU receives an uplink signal sent by the user equipment by using an antenna, where the uplink signal includes the data and a Sounding Reference Signal (SRS), and separates the SRS and the data from the uplink signal, and
  • the BBU sends the SRS.
  • SRS Sounding Reference Signal
  • FIG. 5 illustrates a method of transmitting data according to another embodiment of the present invention.
  • the RRU receives uplink data of the user equipment, and separates the SRS from the data received by each physical antenna in the time domain. Then, the SRS is separately transmitted to the BBU.
  • the common channel and the user data total 18 streams, and the data traffic between the RRU and the BBU can be calculated according to the following manner:
  • Time domain data traffic number of beams (number of channels of spatially multiplexed data) ⁇ sampling rate ⁇ (I bit width + Q bit width) / 1000;
  • SRS traffic 96 (RB number) ⁇ 12 (number of RB subcarriers) ⁇ 30 bits (I + Q bit width) ⁇ number of physical antennas / 67 us.
  • the BBU after receiving the antenna-to-beam mapping (Antenna to Beam Mapping) processed data sent by the RRU, the BBU performs Fourier transform FFT processing on the data and removes the cyclic prefix CP process to obtain frequency domain data, and the BBU obtains the frequency domain data.
  • the frequency domain data is processed to obtain uplink data.
  • the BBU sequentially performs the frequency domain data in the Resource Element. Demapping, Multiple-Input Multiple-Output Equalizer, Inverse Discrete Fourier Transform (IDFT), Demodulation, and Decoder get uplink data.
  • IDFT Inverse Discrete Fourier Transform
  • the RRU performs fast Fourier transform FFT processing on the uplink signal and removes cyclic prefix CP processing to obtain a frequency domain signal, and then divides the frequency domain signal from the frequency domain signal.
  • the SRS and the data are calculated.
  • the RRU when receiving the uplink signal of the user equipment, may separate the SRS in the time domain, and then perform FFT processing and CP removal processing on the remaining data to obtain frequency domain data, and then perform the frequency domain data to the Antenna. To Beam Mapping processing, and transfer the data after mapping processing to the BBU.
  • the BBU receives the data processed by the Antenna to Beam Mapping, and then the BBU receives the data after the Antenna to Beam Mapping processing, and then performs the Resource Element Demapping, the Multiple-Input Multiple-Output Equalizer, and the IDFT. , Demodulation and Decoder get the upstream data.
  • the data that the RRU performs the Antenna to Beam Mapping process includes the non-space division multiplexed data and the space division multiplexed data
  • the RRU may receive the uplink dynamic antenna weight sent by the BBU, according to the The uplink dynamic antenna weight performs antenna-to-beam mapping processing on the space-division multiplexed data, and performs antenna-to-beam mapping processing on the non-space-division multiplexed data according to the uplink static antenna weight.
  • the non-space-division multiplexed data includes common control channel data and user data, and the data may further include a physical random access channel (Physical Random Access Channel, referred to as “PRACH”) data, for example, in FIG. 6 .
  • PRACH Physical Random Access Channel
  • the common control channel data and the non-space division multiplexing user are single streams
  • the space division multiplexed user data is 16 streams
  • the number of physical antennas is 64.
  • 64 antenna data are used. It is converted into 16-channel beam data, and then the RRU sends the 16-channel beam data to the BBU.
  • the 64-channel antenna data includes three types of data: non-space-multiplexed common channel data and user data, PRACH data, and space-division multiplexed user data. Since the antenna-to-beam mapping matrix architecture of these three kinds of data is the same 64*16 matrix, only the uplink dynamic antenna weights (or “beam weights”) inside the matrix are different. From the frequency domain, these three kinds of data can be identified, that is, different data switches different beam weights to complete the mapping from the antenna to the beam.
  • users of space division multiplexing use dynamic beam weights from antenna to beam mapping, non-space division multiplexed common channels and
  • the user data uses static (fixed) beam weights from antenna to beam mapping
  • PRACH data uses PRACH beam weights from antenna to beam mapping
  • beam data is transmitted to the BBU side.
  • dynamic beam weights are generated within the BBU and then transmitted from the BBU to the RRU.
  • Fixed beam weights and PRACH beam weights are generated internally within the RRU, for example, fixed beam weights and PARACH beam weights may be pre-configured in the RRU.
  • the non-space-multiplexed common channel data and user data, the PRACH data, and the space-division multiplexed user data are separated and transmitted to respective receivers for corresponding processing. .
  • the data traffic between the RRU and the BBU can be calculated as follows:
  • Data traffic J (number of ports) ⁇ 1200 ⁇ 30 bits (I + Q bit width) / 67us (symbol time);
  • SRS data traffic 96 (RB number) * 12 (per RB subcarrier data) * 30 bit (I + Q bit width) * M (physical antenna number) / 67 us;
  • Shape factor J ⁇ 25 (resource block group (RBG)) ⁇ M ⁇ 30bit (formation coefficient bit width);
  • PRACH data traffic 6 (RB number) ⁇ 12 (number of subcarriers) ⁇ 30 bits (I + Q bit width) ⁇ number of streams of uplink PRACH / 67 us.
  • the RRU performs antenna-to-stream mapping processing in the downlink.
  • the RRU performs antenna-to-beam mapping processing. Therefore, traffic flow data is transmitted between the BBU and the RRU. Thereby, the data traffic between the BBU and the RRU can be reduced, thereby reducing the forward data bandwidth between the BBU and the RRU.
  • FIG. 7 illustrates an RRU 10 including an embodiment of the present invention, the RRU 10 including:
  • the receiving module 11 is configured to receive the stream data sent by the BBU, where the stream data is obtained by the BBU performing resource mapping processing on the downlink data to be transmitted;
  • the data processing module 12 is configured to stream the stream data to an antenna mapping process
  • the sending module 13 is configured to send the mapped data to the user equipment by using an antenna.
  • the RRU of the embodiment of the present invention completes the mapping process of the flow to the antenna in the downlink. Therefore, the traffic flow data is transmitted between the BBU and the RRU, thereby reducing the data traffic between the BBU and the RRU. Reduce the forward data bandwidth between the BBU and the RRU.
  • the data processing module 12 is further configured to:
  • the sending module 13 is specifically configured to: send the downlink data to the user equipment by using an antenna.
  • the receiving module 11 is further configured to: receive a downlink dynamic antenna weight sent by the BBU;
  • the data processing module 12 is specifically configured to: stream the stream data to the antenna mapping process according to the downlink dynamic antenna weight.
  • the data processing module 12 is further configured to: perform antenna-to-beam mapping processing on data of the user equipment;
  • the sending module 13 is configured to: send the mapped data to the BBU.
  • the receiving module 11 is specifically configured to: receive, by using an antenna, an uplink signal sent by the user equipment, where the uplink signal includes the data and the sounding reference signal SRS;
  • the data processing module 12 is further configured to: separate the SRS and the data from the uplink signal;
  • the sending module 13 is further configured to: send the SRS to the BBU.
  • the data processing module 12 is specifically configured to: perform fast Fourier transform FFT processing on the uplink signal and remove cyclic prefix CP processing to obtain a frequency domain signal; and separate from the frequency domain signal.
  • the SRS and the data are specifically configured to: perform fast Fourier transform FFT processing on the uplink signal and remove cyclic prefix CP processing to obtain a frequency domain signal; and separate from the frequency domain signal.
  • the SRS and the data are specifically configured to: perform fast Fourier transform FFT processing on the uplink signal and remove cyclic prefix CP processing to obtain a frequency domain signal; and separate from the frequency domain signal.
  • the SRS and the data are specifically configured to: perform fast Fourier transform FFT processing on the uplink signal and remove cyclic prefix CP processing to obtain a frequency domain signal.
  • the data includes non-space division multiplexed data and space division multiplexed data
  • the receiving module 11 is further configured to: receive an uplink dynamic antenna weight sent by the BBU;
  • the data processing module 12 is configured to perform antenna-to-flow mapping processing on the space-division multiplexed data according to the uplink dynamic antenna weight;
  • the data processing module 12 is further configured to perform antenna-to-flow mapping processing on the non-space-multiplexed data according to the uplink static antenna weight.
  • the RRU 10 herein is embodied in the form of a functional module.
  • module as used herein may refer to an application specific integrated circuit ("ASIC"), an electronic circuit, a processor for executing one or more software or firmware programs (eg, a shared processor, a proprietary A processor or group processor, etc.) and memory, merge logic, and/or other suitable components that support the functions described.
  • ASIC application specific integrated circuit
  • the RRU 10 can be used to perform the various processes and/or steps of the RRU execution of the method 100 in the foregoing method embodiment. To avoid repetition, details are not described herein.
  • FIG. 8 shows a BBU 20 according to an embodiment of the present invention.
  • the BBU 20 includes:
  • the data processing module 21 is configured to perform resource mapping processing on the downlink data to be transmitted to obtain the stream data.
  • the sending module 22 is configured to send the stream data to the RRU, so that the RRU streams the stream data to the antenna mapping process, and sends the mapped data to the user equipment through the antenna.
  • the BBU of the embodiment of the present invention sends the stream data to the RRU in the downlink, and then the RRU completes the mapping process to the antenna, thereby reducing the data traffic between the BBU and the RRU, thereby reducing the relationship between the BBU and the RRU.
  • the forward data bandwidth is the forward data bandwidth.
  • the data processing module 21 is further configured to: determine a downlink dynamic antenna weight
  • the sending module 22 is further configured to: send the downlink dynamic antenna weight to the RRU, so that the RRU streams the stream data to the antenna mapping process according to the downlink dynamic antenna weight.
  • the BBU 20 further includes:
  • the receiving module 23 is configured to receive data sent by the RRU, where the data is obtained by performing antenna-to-beam mapping processing on data of the user equipment by the RRU;
  • the data processing module 21 is configured to: process the data to obtain uplink data.
  • the receiving module 23 is further configured to:
  • the data processing module 21 is specifically configured to:
  • the frequency domain data is processed to obtain the uplink data.
  • the data includes non-space division multiplexed data and space division multiplexed data
  • the data processing module 21 is further configured to: determine an uplink dynamic antenna weight
  • the sending module 22 is further configured to send the uplink dynamic antenna weight to the RRU, so that the RRU performs antenna-to-beam mapping processing on the space-division multiplexed data according to the uplink dynamic antenna weight.
  • the BBU 20 herein is embodied in the form of a functional module.
  • module may refer to an application specific integrated circuit ("ASIC"), an electronic circuit, a processor for executing one or more software or firmware programs (eg, a shared processor, a proprietary A processor or group processor, etc.) and memory, merge logic, and/or other suitable components that support the functions described.
  • ASIC application specific integrated circuit
  • the BBU 20 may be used to perform various processes and/or steps of the BBU execution of the method 100 in the foregoing method embodiment. To avoid repetition, details are not described herein again.
  • FIG. 10 illustrates an RRU 100 including a processor 101, a memory 102, a transmitter 103, a receiver 104, and a bus system 105, the processor 101, the memory 102, the transmission, in accordance with yet another embodiment of the present invention.
  • the processor 103 and the receiver 104 are coupled by a bus system 105 for storing instructions for executing instructions stored by the memory 102 such that the RRU 100 performs the steps performed by the RRUs of the method 100 above.
  • the receiver 104 is configured to receive the stream data sent by the BBU, where the stream data is obtained by the BBU performing resource mapping processing on the downlink data to be transmitted;
  • the processor 101 is configured to stream the stream data to an antenna mapping process.
  • the transmitter 103 is configured to send the mapped data to the user equipment by using an antenna.
  • the RRU of the embodiment of the present invention completes the mapping process of the flow to the antenna in the downlink. Therefore, the traffic flow data is transmitted between the BBU and the RRU, thereby reducing the data traffic between the BBU and the RRU. Reduce the forward data bandwidth between the BBU and the RRU.
  • the processor 101 may be a central processing unit (CPU), and the processor 101 may also be other general-purpose processors and digital signal processors (Digital). Signal Processing (DSP), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete Hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 101 may also be a dedicated processor, and the dedicated processor may include at least one of a baseband processing chip, a radio frequency processing chip, and the like. Further, the dedicated processor may also include a chip having other dedicated processing functions of the base station.
  • the memory 102 can include read only memory and random access memory and provides instructions and data to the processor 101.
  • a portion of the memory 102 may also include a non-volatile random access memory.
  • the memory 102 can also store information of the device type.
  • the bus system 105 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 105 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 101 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory, or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 102, and the processor 101 reads the information in the memory 102 and performs the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor 101 is further configured to:
  • the transmitter 103 is specifically configured to: send the downlink data to the user equipment by using an antenna.
  • the receiver 104 is further configured to: receive a downlink dynamic antenna weight sent by the BBU;
  • the processor 101 is specifically configured to: stream the stream data to an antenna mapping process according to the downlink dynamic antenna weight.
  • the processor 101 is further configured to: perform antenna-to-beam mapping processing on data of the user equipment;
  • the transmitter 103 is configured to: send the mapped data to the BBU.
  • the receiver 104 is configured to: receive, by using an antenna, an uplink signal sent by the user equipment, where the uplink signal includes the data and the sounding reference signal SRS;
  • the processor 101 is further configured to: separate the SRS and the data from the uplink signal;
  • the transmitter 103 is further configured to: send the SRS to the BBU.
  • the processor 101 is specifically configured to: perform fast Fourier transform FFT processing and remove cyclic prefix CP processing on the uplink signal to obtain a frequency domain signal; and separate the SRS and the frequency domain signal from the frequency domain signal.
  • FFT processing and remove cyclic prefix CP processing on the uplink signal to obtain a frequency domain signal
  • SRS and the frequency domain signal from the frequency domain signal.
  • the data includes non-space division multiplexed data and space division multiplexed data
  • the receiver 104 is further configured to: receive an uplink dynamic antenna weight sent by the BBU;
  • the processor 101 is configured to perform antenna-to-beam mapping processing on the space-division multiplexed data according to the uplink dynamic antenna weight;
  • the processor 101 is further configured to perform antenna-to-beam mapping processing on the non-space-multiplexed data according to the uplink static antenna weight.
  • the RRU of the embodiment of the present invention performs antenna-to-stream mapping processing in the downlink.
  • antenna-to-beam mapping processing is performed, and therefore, traffic flow data is transmitted between the BBU and the RRU.
  • traffic flow data is transmitted between the BBU and the RRU.
  • FIG. 11 shows a BBU 200 including a processor 201, a memory 202, a transmitter 203, a receiver 204, and a bus system 205, the processor 201, the memory 202, the transmission, in accordance with yet another embodiment of the present invention.
  • the 203 and the receiver 204 are connected by a bus system 205 for storing instructions for executing instructions stored by the memory 202 such that the BBU 200 performs the steps performed by the BBU in the above method 100.
  • the processor 201 is configured to perform resource mapping processing on the downlink data to be transmitted to obtain the stream data.
  • the transmitter 203 is configured to send the stream data to the RRU, so that the RRU streams the stream data to the antenna mapping process, and sends the mapped data to the user equipment through the antenna.
  • the BBU of the embodiment of the present invention sends the stream data to the RRU in the downlink, and then the RRU completes the mapping process to the antenna, thereby reducing the data traffic between the BBU and the RRU, thereby reducing the relationship between the BBU and the RRU.
  • the forward data bandwidth is the forward data bandwidth.
  • the processor 201 may be a central processing unit (CPU), and the processor 201 may also be other general-purpose processors and digital signal processors (Digital). Signal Processing (DSP), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete Hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 201 may also be a dedicated processor, and the dedicated processor may include at least one of a baseband processing chip, a radio frequency processing chip, and the like. Further, the dedicated processor may also include a chip having other dedicated processing functions of the base station.
  • the memory 202 can include a read only memory and a random access memory, and is directed to the processor 201 Provide instructions and data. A portion of the memory 202 can also include a non-volatile random access memory. For example, the memory 202 can also store information of the device type.
  • the bus system 205 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 205 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 201 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory, or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 202, and the processor 201 reads the information in the memory 202 and performs the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor 201 is further configured to: determine a downlink dynamic antenna weight
  • the transmitter 203 is further configured to: send the downlink dynamic antenna weight to the RRU, so that the RRU flows the stream data to the antenna mapping process according to the downlink dynamic antenna weight.
  • the receiver 204 is configured to receive data sent by the RRU, where the data is obtained by performing antenna-to-beam mapping processing on data of the user equipment by the RRU.
  • the processor 201 is configured to: process the data to obtain uplink data.
  • the receiver 204 is further configured to: receive the sounding reference signal SRS sent by the RRU.
  • the processor 201 is specifically configured to: perform Fourier transform FFT processing on the data and remove the cyclic prefix CP process to obtain frequency domain data; and process the frequency domain data to obtain the uplink data.
  • the data includes non-space division multiplexed data and space division multiplexed data
  • the processor 201 is further configured to: determine an uplink dynamic antenna weight
  • the transmitter 203 is further configured to send the uplink dynamic antenna weight to the RRU, so that the RRU performs antenna-to-beam mapping processing on the space-division multiplexed data according to the uplink dynamic antenna weight.
  • the BBU in the embodiment of the present invention sends the stream data to the RRU in the downlink, and then the RRU completes the mapping process to the antenna; in the uplink, the received RRU passes the antenna to the beam mapping. Processed beam data. Thereby, the data traffic between the BBU and the RRU can be reduced, thereby reducing the forward data bandwidth between the BBU and the RRU.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), A variety of media that can store program code, such as random access memory (RAM), disk, or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种传输数据的方法、射频拉远单元RRU和基带单元BBU,该方法包括:该RRU接收该BBU发送的流数据,其中,该流数据是该BBU将待传输下行数据进行资源映射处理后得到的;该RRU将该流数据进行流到天线映射处理;该RRU通过天线向用户设备发送映射处理后的数据。本发明实施例的传输数据的方法,在BBU与RRU之间传输的是业务流数据,由此,能够降低BBU与RRU之间的数据流量,从而降低BBU与RRU之间的前传数据带宽。

Description

传输数据的方法、射频拉远单元RRU和基带单元BBU 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及传输数据的方法、射频拉远单元RRU和基带单元BBU。
背景技术
在现有的无线蜂窝通信***中,分布式基站目前是最主要的部署形式之一。分布式基站中,射频拉远单元(Remote Radio Unit,简称为“RRU”)与基带单元(Baseband Unit,简称为“BBU”)一般通过线缆互连实现通用公共无线接口(Common Public Radio Interface,简称为“CPRI”)信号连接。
目前BBU承担包括层1(Layer1,简称为“L1”),层2(Layer2,简称为“L2”)和层3(Layer3,简称为“L3”)的基带功能。RRU主要承担包括射频收发(TRX)和功率放大(Power Amplifier,简称为“PA”)的射频收发信机功能。
下行方向BBU的基带L1完成快速傅立叶变换(Fast Fourier Transformation,简称为“FFT”)和***循环前缀(Cyclic Prefix,简称为“CP”)功能后将L1的IQ数据通过CPRI接口传输到RRU处理。上行方向BBU的基带L1接收来自RRU的数据首先是去CP,然后是快速傅立叶变换(Fast Fourier Transformation,简称为“FFT”)再完成数据的其它处理。
随着大规模天线阵列的普遍应用,BBU与RRU之间前传数据的流量越来越大,进而带来部署难度和成本的上升。进一步地,在RRU和BBU之间拉远连接的场景下,部署的难度和成本会更大。因此需要降低BBU与RRU之间的数据流量。
发明内容
本发明实施例提供一种传输数据的方法、射频拉远单元RRU和基带单元BBU,能够降低BBU与RRU之间的数据流量,从而降低BBU与RRU之间的前传数据带宽。
第一方面,提供了一种传输数据的方法,应用于基站,该基站包括基带单元BBU和射频拉远单元RRU,该方法包括:该RRU接收该BBU发送的 流数据,其中,该流数据是该BBU将待传输下行数据进行资源映射处理后得到的;该RRU将该流数据进行流到天线映射处理;该RRU通过天线向用户设备发送映射处理后的数据。
结合第一方面,在第一方面的一种实现方式中,该RRU通过天线向用户设备发送映射处理后的数据,包括:该RRU将该映射处理后的数据进行快速傅立叶反变换IFFT处理和***循环前缀CP处理,得到下行数据;该RRU通过天线向用户设备发送该下行数据。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,该方法还包括:该RRU接收该BBU发送的下行动态天线权值;其中,该RRU将该流数据进行流到天线映射处理,包括:该RRU根据该下行动态天线权值对该流数据进行流到天线映射处理。
结合第一方面及其上述实现方式中,在第一方面的另一实现方式中,该方法还包括:该RRU将用户设备的数据进行天线到波束映射处理;该RRU向该BBU发送映射处理后的数据。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该方法还包括:该RRU通过天线接收该用户设备发送的上行信号,该上行信号包括该数据和探测参考信号SRS;该RRU从该上行信号中分离出该SRS和该数据;该RRU向该BBU发送该SRS。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该RRU从该上行信号中分离出该SRS和该数据,包括:该RRU将该上行信号进行快速傅立叶变换FFT处理和去除循环前缀CP处理,得到频域信号;其中,该RRU从该上行信号中分离出该SRS和该数据,包括:该RRU从该频域信号中分离出该SRS和该数据。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该数据包括非空分复用的数据和空分复用的数据;其中,该RRU将用户设备的数据进行天线到波束映射处理,包括:接收该BBU发送的上行动态天线权值;根据该上行动态天线权值对该空分复用的数据进行天线到波束映射处理;根据上行静态天线权值对该非空分复用的数据进行天线到波束映射处理。
第二方面,提供了一种传输数据的方法,应用于基站,该基站包括基带单元BBU和射频拉远单元RRU,其特征在于,该方法包括:该BBU将待 传输下行数据进行资源映射处理得到流数据;该BBU向该RRU发送该流数据,以便于该RRU将该流数据进行流到天线映射处理,并通过天线向用户设备发送映射处理后的数据。
结合第二方面,在第二方面的一种实现方式中,该方法还包括:该BBU确定下行动态天线权值;该BBU向该RRU发送该下行动态天线权值,以便于该RRU根据该下行动态天线权值对该流数据进行流到天线映射处理。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该方法包括:该BBU接收该RRU发送的数据,该数据是由该RRU将用户设备的数据进行天线到波束映射处理得到的;该BBU将该数据处理得到上行数据。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该方法还包括:该BBU接收该RRU发送的探测参考信号SRS。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该BBU将该数据处理得到上行数据,包括:该BBU将该数据进行傅立叶变换FFT处理和去除循环前缀CP处理之后得到频域数据;该BBU将该频域数据进行处理得到该上行数据。
结合第二方面及其上述实现方式,在第二方面的另一实现方式中,该数据包括非空分复用的数据和空分复用的数据,该方法还包括:该BBU确定上行动态天线权值;该BBU向该RRU发送该上行动态天线权值,以便于该RRU根据该上行动态天线权值对该空分复用的数据进行天线到波束映射处理。
第三方面,提供了一种基带单元BBU,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法,具体地,该BBU包括用于执行上述第一方面或第一方面的任一可能的实现方式中的方法的模块。
第四方面,提供了一种射频拉远单元RRU,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法,具体地,该RRU包括用于执行上述第二方面或第二方面的任一可能的实现方式中的方法的模块。
第五方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第六方面,提供了一种计算机可读介质,用于存储计算机程序,该计算 机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被RRU运行时,使得该RRU执行上述第一方面或第一方面的任一可能的实现方式中的方法。
第八方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被BBU运行时,使得该BBU执行上述第二方面或第二方面的任一可能的实现方式中的方法。
附图说明
图1是现有技术中的分布式基站的架构图;
图2是现有技术中BBU与RRU功能划分的示意图;
图3是根据本发明实施例的传输数据的方法的示意性流程图;
图4是根据本发明一个具体实施例的传输数据的方法的示意图;
图5是根据本发明另一个具体实施例的传输数据的方法的示意图;
图6是根据本发明再一个具体实施例的传输数据的方法的示意图;
图7是根据本发明实施例的RRU的示意性框图;
图8是根据本发明实施例的BBU的示意性框图;
图9是根据本发明实施例的BBU的另一示意性框图;
图10是根据本发明另一实施例的RRU的示意性框图;
图11是根据本发明另一实施例的BBU的示意性框图。
具体实施方式
本发明实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile Communication,简称为“GSM”)***、码分多址(Code Division Multiple Access,简称为“CDMA”)***、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)***、长期演进(Long Term Evolution,简称为“LTE”)***、LTE频分双工(Frequency Division Duplex,简称为“FDD”)***、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信***(Universal Mobile Telecommunication System,简称为“UMTS”)、以及未来的5G通信***等。
图1是现有技术中的分布式基站的架构图。如图1所示,分布式基站包括基带单元(Baseband Unit,简称为“BBU”)、射频拉远单元(Remote Radio Unit,简称为“RRU”),BBU和RRU之间通过通用无线接口(Common Public Radio Interface,简称为“CPRI”)进行基带数据的传输,BBU通常集中布放在机房,RRU则布放在远端,一个BBU可以连接多个RRU。
图2示出了现有技术中的BBU与RRU中的具体功能,如图2所示,BBU承担包括层1(Layer1,简称为“L1”),层2(Layer2,简称为“L2”)和层3(Layer3,简称为“L3”)的基带功能,其中,基带L1下行功能主要包括编码(Encoder),调制(Modulation),层映射(Layer Mapping),预编码(Precording),资源映射(Resource Element Mapping)、快速傅立叶反变换(Inverse Fast Fourier Transformation,简称为“IFFT”)和***循环前缀(Cyclic Prefix,简称为“CP”);基带L1的上行功能包括快速傅立叶变换(Fast Fourier Transformation,简称为“FFT”)和去除CP、解资源映射(Resource Element Demapping)、多输入多输出(Multiple-Input Multiple-Output,简称为“MIMO”)均衡(Equalizer)、IFFT、解调(Demodulation)和解码(Decoder)。随着大规模天线阵列的普遍应用,BBU与RRU之间的前传数据流量越来越大,会带来部署难度和成本的上升。
图3示出了根据本发明实施例的传输数据的方法的示意性流程图。该方法应用于基站,该基站包括基带单元BBU和射频拉远单元RRU,如图3所示,方法100包括如下内容:
S110,该RRU接收该BBU发送的流数据,其中,该流数据是该BBU将待传输下行数据进行资源映射处理后得到的;
S120,该RRU将该流数据进行流到天线映射处理;
S130,该RRU通过天线向用户设备发送映射处理后的数据。
本发明实施例的传输数据的方法,RRU在下行链路中进行流到天线的映射处理,因此,在BBU与RRU之间传输的是业务流数据,由此,能够降低BBU与RRU之间的数据流量,从而降低BBU与RRU之间的前传数据带宽。
本发明实施例的方法可以应用于以下两个场景:(I)非MIMO(或者说传输模式(Transmission mode,简称为“TM”)2或TM3)场景,在此场景下BBU的Precoding处理后输出的是天线数据,RRU在对流数据进行流到 天线映射(Stream to Antenna Mapping)处理时不对流数据进行任何形式的改变,也就是说Stream to Antenna Mapping透传数据,不做映射。(II)MIMO(或者说TM4~TM9)场景,在此场景下RRU进行Stream to Antenna Mapping处理同时完成Precording功能。
在下行链路中,如图4所示,BBU可以将物理下行控制信道(Physical Downlink Control Channel,简称为“PDCCH”)数据和物理下行共享信道(Physical Downlink Shared Channel,简称为“PDSCH”)数据依次进行Encoder、Modulation、Layer Mapping和Resource Element Mapping处理之后得到流数据,之后将该流数据通过BBU与RRU之间的接口发送给RRU,相应地,RRU在接收到该流数据之后对该流数据进行Stream to Antenna Mapping处理,并通过天线向用户设备发送映射处理后的数据。
在本发明实施例中,可选地,在RRU通过天线向用户设备发送映射处理后的数据时,如图4所示,RRU对映射处理后的数据进行快速傅立叶反变换IFFT处理和***循环前缀CP处理,得到下行数据,之后通过天线向用户设备发送该下行数据。并且,在对下行数据进行发送前可以进行功率放大处理。
在RRU进行流到天线映射处理之前,RRU可以接收BBU发送的下行动态天线权值,在流到天线映射处理时,根据接收到的下行动态天线权值进行处理,下行动态天线权值还可以称为“L1天线权值”或“L1权值”,本发明的保护范围并不限于此名称。
作为一个例子,RRU执行Stream to Antenna Mapping处理的过程可以表示为:
Y=WX                          (1)
其中,Y表示流到天线映射处理后的数据,可以称为“物理天线数据”,X为映射处理前的流数据,W表示流到天线映射的下行动态天线权值,Y、X和W可分别表示为:
Figure PCTCN2015098110-appb-000001
m为物理天线数;
Figure PCTCN2015098110-appb-000002
n为流数;
Figure PCTCN2015098110-appb-000003
例如,在图4中,经过Precoding后,PDCCH占2流(Stream),PDSCH占 16流,因此BBU和RRU之间的数据流总计18流。并且BBU和RRU之间的数据流量计算可以根据下面的方式计算:
数据流量=N(数据流数或称为虚天线数)×1200(子载波数)×位宽(I和Q采样带宽)/72us(符号时长);
天线权值数据流量=100(资源块(Resource Block,简称为“RB”)数)×M(物理天线数)×32bit(L1天线权值的采样位宽)×N/1ms;
除此之外,还可以有以下控制或调度信息:用于指示用户上行/下行RB分配信息开销为1字节/RB/毫秒;指示上行/下行信道天线配置信息开销为2字节/RB/毫秒;调度和配置信息组包引入的额外开销为1字节/RB/毫秒;所需带宽约为(RB分配信息字节(1字节)+天线配置信息字节(1字节)+调度和配置信息字节(0.5字节))×RB数(100)×字节位宽(8bit)/1ms。
可选地,在上行链路中,该RRU将用户设备的数据进行天线到流映射处理;之后向该BBU发送映射处理后的数据。
本发明实施例的传输数据的方法,RRU完成天线到流的映射处理,因此,在BBU与RRU之间传输的是业务流数据,由此,能够降低BBU与RRU之间的数据流量,从而降低BBU与RRU之间的前传数据带宽。
具体地,RRU通过天线接收用户设备发送的上行信号,该上行信号包括该数据和探测参考信号(Sounding Reference Signal,简称为“SRS”),从上行信号中分离出该SRS和该数据,并向BBU发送该SRS。
图5示出了根据本发明另一具体实施例的传输数据的方法,在图5中RRU接收用户设备的上行数据,在时域将每路物理天线接收到的数据中分离出SRS。然后将SRS单独传输到BBU,与图4相对应的,公共信道和用户数据总计18流,RRU与BBU之间的数据流量可以根据下面的方式计算:
时域数据流量=波束数(空分复用的数据的路数)×采样率×(I位宽+Q位宽)/1000;
SRS流量=96(RB数)×12(每RB子载波数)×30bit(I+Q位宽)×物理天线数/67us。
相对应的,BBU在接收到RRU发送的经过天线到波束映射(Antenna to Beam Mapping)处理后的数据后,对数据进行傅立叶变换FFT处理和去除循环前缀CP处理之后得到频域数据,BBU将该频域数据进行处理得到上行数据。具体的,如图5所示,BBU将该频域数据依次进行Resource Element  Demapping、Multiple-Input Multiple-Output Equalizer、离散傅立叶逆变换(Inverse Discrete Fourier Transform,简称为“IDFT”)、Demodulation和Decoder得到上行数据。
可选地,作为一个例子,如图6所示,在上行链路中,RRU将上行信号进行快速傅立叶变换FFT处理和去除循环前缀CP处理,得到频域信号,之后从该频域信号中分理出该SRS和该数据。
可选地,RRU在接收到用户设备的上行信号时,可以在时域中将SRS分离出去,之后将剩余的数据进行FFT处理和去除CP处理得到频域数据,之后将该频域数据进行Antenna to Beam Mapping处理,并将映射处理之后的数据传输给BBU。
由此,BBU接收到的是经过Antenna to Beam Mapping处理之后的数据,之后,BBU将接收到的该经过Antenna to Beam Mapping处理之后的数据依次进行Resource Element Demapping、Multiple-Input Multiple-Output Equalizer、IDFT、Demodulation和Decoder得到上行数据。
在本发明实施例中,可选地,RRU进行Antenna to Beam Mapping处理的数据包括非空分复用的数据和空分复用的数据,RRU可以接收BBU发送的上行动态天线权值,根据该上行动态天线权值对空分复用的数据进行天线到波束映射处理,根据上行静态天线权值对非空分复用的数据进行天线到波束映射处理。
可选地,非空分复用的数据包括公共控制信道数据和用户数据,该数据中还可以包括物理随机接入信道(Physical Random Access Channel,简称为“PRACH”)数据,例如,在图6中,假设公共控制信道数据和非空分复用用户是单流,空分复用的用户数据为16流,物理天线数为64,在RRU进行Antenna to Beam Mapping处理后,将64路天线数据转换成16路波束数据,之后RRU将该16路波束数据发送给BBU。
具体来说,64路天线数据包含非空分复用的公共信道数据和用户数据,PRACH数据,空分复用的用户数据三种数据。由于这三种数据的天线到波束映射的矩阵架构相同都是64*16的矩阵,只是矩阵内部的上行动态天线权值(或称为“波束权值”)不同。从频域看,这三种数据是可以识别出来的,即不同的数据切换不同的波束权值完成从天线到波束的映射。例如,空分复用的用户使用动态波束权值从天线到波束映射,非空分复用的公共信道和用 户数据使用静态(固定)波束权值从天线到波束映射,PRACH数据使用PRACH波束权值从天线到波束的映射,最后将波束数据传输到BBU侧。
此外,动态波束权值在BBU内产生,然后从BBU传输到RRU。固定波束权值和PRACH波束权值在RRU内部生成,例如,固定波束权值和PARACH波束权值可以是预先配置在RRU中的。
在BBU侧,波束数据经过Resource Element Demapping处理后,非空分复用的公共信道数据和用户数据,PRACH数据,空分复用的用户数据就分离出来,传输到各自的接收机进行相应的处理。
在上行链路中,RRU与BBU之间数据流量可以按照下面的方法计算:
数据流量=J(端口(Port)数)×1200×30bits(I+Q位宽)/67us(符号时间);
SRS数据流量:96(RB数)*12(每RB子载波数据)*30bit(I+Q位宽)*M(物理天线数)/67us;
赋形系数:J×25(资源块组(RBG))×M×30bit(赋形系数位宽);
PRACH数据流量:6(RB数)×12(子载波数)×30bit(I+Q位宽)×上行PRACH的流数/67us。
本发明实施例的传输数据的方法,在下行链路中RRU进行天线到流的映射处理。在上行链路中,RRU进行天线到波束的映射处理,因此,在BBU与RRU之间传输的是业务流数据。由此,能够降低BBU与RRU之间的数据流量,从而降低BBU与RRU之间的前传数据带宽。
上文中结合图3至图6详细描述了根据本发明实施例的传输数据的方法,下面将结合图7至图10,详细描述根据本发明实施例的RRU 10。
图7示出了根据本发明实施例的RRU 10,该RRU 10包括:
接收模块11,用于接收该BBU发送的流数据,其中,该流数据是该BBU将待传输下行数据进行资源映射处理后得到的;
数据处理模块12,用于将该流数据进行流到天线映射处理;
发送模块13,用于通过天线向用户设备发送映射处理后的数据。
本发明实施例的RRU,在下行链路中完成流到天线的映射处理,因此,在BBU与RRU之间传输的是业务流数据,由此,能够降低BBU与RRU之间的数据流量,从而降低BBU与RRU之间的前传数据带宽。
在本发明实施例中,可选地,该数据处理模块12还用于:
将该映射处理后的数据进行快速傅立叶反变换IFFT处理和***循环前缀CP处理,得到下行数据;
其中,该发送模块13具体用于:通过天线向用户设备发送该下行数据。
在本发明实施例中,可选地,该接收模块11还用于:接收该BBU发送的下行动态天线权值;
其中,该数据处理模块12具体用于:根据该下行动态天线权值对该流数据进行流到天线映射处理。
在本发明实施例中,可选地,该数据处理模块12还用于:将用户设备的数据进行天线到波束映射处理;
其中,该发送模块13用于:向该BBU发送映射处理后的数据。
在本发明实施例中,可选地,该接收模块11具体用于:通过天线接收该用户设备发送的上行信号,该上行信号包括该数据和探测参考信号SRS;
其中,该数据处理模块12还用于:从该上行信号中分离出该SRS和该数据;
其中,该发送模块13还用于:向该BBU发送该SRS。
在本发明实施例中,可选地,该数据处理模块12具体用于:将该上行信号进行快速傅立叶变换FFT处理和去除循环前缀CP处理,得到频域信号;从该频域信号中分离出该SRS和该数据。
在本发明实施例中,可选地,该数据包括非空分复用的数据和空分复用的数据;
其中,该接收模块11还用于:接收该BBU发送的上行动态天线权值;
该数据处理模块12,用于根据该上行动态天线权值对该空分复用的数据进行天线到流映射处理;
该数据处理模块12,还用于根据上行静态天线权值对该非空分复用的数据进行天线到流映射处理。
应理解,这里的RRU 10以功能模块的形式体现。这里的术语“模块”可以指应用特有集成电路(Application Specific Integrated Circuit,简称为“ASIC”)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理 解,RRU10可以用于执行上述方法实施例中方法100的RRU执行的各个流程和/或步骤,为避免重复,在此不再赘述。
图8示出了根据本发明实施例的BBU 20,如图8所示,该BBU 20包括:
数据处理模块21,用于将待传输下行数据进行资源映射处理得到流数据;
发送模块22,用于向该RRU发送该流数据,以便于该RRU将该流数据进行流到天线映射处理,并通过天线向用户设备发送映射处理后的数据。
本发明实施例的BBU,在下行链路中向RRU发送流数据,之后由RRU完成流到天线的映射处理,由此,能够降低BBU与RRU之间的数据流量,从而降低BBU与RRU之间的前传数据带宽。
在本发明实施例中,可选地,该数据处理模块21还用于:确定下行动态天线权值;
其中,该发送模块22还用于:向该RRU发送该下行动态天线权值,以便于该RRU根据该下行动态天线权值对该流数据进行流到天线映射处理。
在本发明实施例中,可选地,如图9所示,该BBU 20还包括:
接收模块23,用于接收该RRU发送的数据,该数据是由该RRU将用户设备的数据进行天线到波束映射处理得到的;
其中,该数据处理模块21用于:将该数据处理得到上行数据。
在本发明实施例中,可选地,该接收模块23还用于:
接收该RRU发送的探测参考信号SRS。
在本发明实施例中,可选地,该数据处理模块21具体用于:
将该数据进行傅立叶变换FFT处理和去除循环前缀CP处理之后得到频域数据;
将该频域数据进行处理得到该上行数据。
在本发明实施例中,可选地,该数据包括非空分复用的数据和空分复用的数据;
其中,该数据处理模块21还用于:确定上行动态天线权值;
该发送模块22,还用于向该RRU发送该上行动态天线权值,以便于该RRU根据该上行动态天线权值对该空分复用的数据进行天线到波束映射处理。
应理解,这里的BBU 20以功能模块的形式体现。这里的术语“模块”可以指应用特有集成电路(Application Specific Integrated Circuit,简称为“ASIC”)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,BBU 20可以用于执行上述方法实施例中方法100的BBU执行的各个流程和/或步骤,为避免重复,在此不再赘述。
图10示出了根据本发明再一实施例的RRU 100,该RRU 100包括处理器101、存储器102、发送器103、接收器104和总线***105,该处理器101、该存储器102、该发送器103和该接收器104通过总线***105相连,该存储器102用于存储指令,该处理器101用于执行该存储器102存储的指令,使得该RRU 100执行以上方法100中RRU所执行的步骤。示例的,
接收器104,用于接收该BBU发送的流数据,其中,该流数据是该BBU将待传输下行数据进行资源映射处理后得到的;
处理器101,用于将该流数据进行流到天线映射处理;
发送器103,用于通过天线向用户设备发送映射处理后的数据。
本发明实施例的RRU,在下行链路中完成流到天线的映射处理,因此,在BBU与RRU之间传输的是业务流数据,由此,能够降低BBU与RRU之间的数据流量,从而降低BBU与RRU之间的前传数据带宽。
应理解,在本发明实施例中,可选的,该处理器101可以是中央处理单元(Central Processing Unit,简称CPU),该处理器101还可以是其他通用处理器、数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可选的,该处理器101也可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有基站其他专用处理功能的芯片。
该存储器102可以包括只读存储器和随机存取存储器,并向处理器101提供指令和数据。存储器102的一部分还可以包括非易失性随机存取存储器。 例如,存储器102还可以存储设备类型的信息。
该总线***105除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***105。
在实现过程中,上述方法的各步骤可以通过处理器101中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器102,处理器101读取存储器102中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,该处理器101还用于:
将该映射处理后的数据进行快速傅立叶反变换IFFT处理和***循环前缀CP处理,得到下行数据;
其中,该发送器103具体用于:通过天线向用户设备发送该下行数据。
可选地,作为一个实施例,该接收器104还用于:接收该BBU发送的下行动态天线权值;
其中,该处理器101具体用于:根据该下行动态天线权值对该流数据进行流到天线映射处理。
可选地,作为一个实施例,该处理器101还用于:将用户设备的数据进行天线到波束映射处理;
其中,该发送器103用于:向该BBU发送映射处理后的数据。
可选地,作为一个实施例,该接收器104具体用于:通过天线接收该用户设备发送的上行信号,该上行信号包括该数据和探测参考信号SRS;
其中,该处理器101还用于:从该上行信号中分离出该SRS和该数据;
其中,该发送器103还用于:向该BBU发送该SRS。
可选地,作为一个实施例,该处理器101具体用于:将该上行信号进行快速傅立叶变换FFT处理和去除循环前缀CP处理,得到频域信号;从该频域信号中分离出该SRS和该数据。
可选地,作为一个实施例,该数据包括非空分复用的数据和空分复用的数据;
其中,该接收器104还用于:接收该BBU发送的上行动态天线权值;
该处理器101,用于根据该上行动态天线权值对该空分复用的数据进行天线到波束映射处理;
该处理器101,还用于根据上行静态天线权值对该非空分复用的数据进行天线到波束映射处理。
本发明实施例的RRU,在下行链路中进行天线到流的映射处理。在上行链路中,进行天线到波束的映射处理,因此,在BBU与RRU之间传输的是业务流数据。由此,能够降低BBU与RRU之间的数据流量,从而降低BBU与RRU之间的前传数据带宽。
图11示出了根据本发明再一实施例的BBU 200,该BBU 200包括处理器201、存储器202、发送器203、接收器204和总线***205,该处理器201、该存储器202、该发送器203和该接收器204通过总线***205相连,该存储器202用于存储指令,该处理器201用于执行该存储器202存储的指令,使得该BBU 200执行以上方法100中BBU所执行的步骤。示例的,
处理器201,用于将待传输下行数据进行资源映射处理得到流数据;
发送器203,用于向该RRU发送该流数据,以便于该RRU将该流数据进行流到天线映射处理,并通过天线向用户设备发送映射处理后的数据。
本发明实施例的BBU,在下行链路中向RRU发送流数据,之后由RRU完成流到天线的映射处理,由此,能够降低BBU与RRU之间的数据流量,从而降低BBU与RRU之间的前传数据带宽。
应理解,在本发明实施例中,可选的,该处理器201可以是中央处理单元(Central Processing Unit,简称CPU),该处理器201还可以是其他通用处理器、数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可选的,该处理器201也可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有基站其他专用处理功能的芯片。
该存储器202可以包括只读存储器和随机存取存储器,并向处理器201 提供指令和数据。存储器202的一部分还可以包括非易失性随机存取存储器。例如,存储器202还可以存储设备类型的信息。
该总线***205除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***205。
在实现过程中,上述方法的各步骤可以通过处理器201中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器202,处理器201读取存储器202中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,该处理器201还用于:确定下行动态天线权值;
其中,该发送器203还用于:向该RRU发送该下行动态天线权值,以便于该RRU根据该下行动态天线权值对该流数据进行流到天线映射处理。
可选地,作为一个实施例,该接收器204,用于接收该RRU发送的数据,该数据是由该RRU将用户设备的数据进行天线到波束映射处理得到的;
其中,该处理器201用于:将该数据处理得到上行数据。
可选地,作为一个实施例,该接收器204还用于:接收该RRU发送的探测参考信号SRS。
可选地,作为一个实施例,该处理器201具体用于:将该数据进行傅立叶变换FFT处理和去除循环前缀CP处理之后得到频域数据;将该频域数据进行处理得到该上行数据。
可选地,作为一个实施例,该数据包括非空分复用的数据和空分复用的数据;
其中,该处理器201还用于:确定上行动态天线权值;
该发送器203,还用于向该RRU发送该上行动态天线权值,以便于该RRU根据该上行动态天线权值对该空分复用的数据进行天线到波束映射处理。
本发明实施例的BBU,在下行链路中向RRU发送流数据,之后由RRU完成流到天线的映射处理;在上行链路中,接收RRU经过天线到波束映射 处理后的波束数据。由此,能够降低BBU与RRU之间的数据流量,从而降低BBU与RRU之间的前传数据带宽。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、 随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (26)

  1. 一种传输数据的方法,应用于基站,所述基站包括基带单元BBU和射频拉远单元RRU,其特征在于,所述方法包括:
    所述RRU接收所述BBU发送的流数据,其中,所述流数据是所述BBU将待传输下行数据进行资源映射处理后得到的;
    所述RRU将所述流数据进行流到天线映射处理;
    所述RRU通过天线向用户设备发送映射处理后的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述RRU通过天线向用户设备发送映射处理后的数据,包括:
    所述RRU将所述映射处理后的数据进行快速傅立叶反变换IFFT处理和***循环前缀CP处理,得到下行数据;
    所述RRU通过天线向用户设备发送所述下行数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述RRU接收所述BBU发送的下行动态天线权值;
    其中,所述RRU将所述流数据进行流到天线映射处理,包括:
    所述RRU根据所述下行动态天线权值对所述流数据进行流到天线映射处理。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述RRU将用户设备的数据进行天线到波束映射处理;
    所述RRU向所述BBU发送映射处理后的数据。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述RRU通过天线接收所述用户设备发送的上行信号,所述上行信号包括所述数据和探测参考信号SRS;
    所述RRU从所述上行信号中分离出所述SRS和所述数据;
    所述RRU向所述BBU发送所述SRS。
  6. 根据权利要求4或5所述的方法,其特征在于,所述RRU从所述上行信号中分离出所述SRS和所述数据,包括:
    所述RRU将所述上行信号进行快速傅立叶变换FFT处理和去除循环前缀CP处理,得到频域信号;
    其中,所述RRU从所述上行信号中分离出所述SRS和所述数据,包括:
    所述RRU从所述频域信号中分离出所述SRS和所述数据。
  7. 根据权利要求6所述的方法,其特征在于,所述数据包括非空分复用的数据和空分复用的数据;
    其中,所述RRU将用户设备的数据进行天线到波束映射处理,包括:
    接收所述BBU发送的上行动态天线权值;
    根据所述上行动态天线权值对所述空分复用的数据进行天线到波束映射处理;
    根据上行静态天线权值对所述非空分复用的数据进行天线到波束映射处理。
  8. 一种传输数据的方法,应用于基站,所述基站包括基带单元BBU和射频拉远单元RRU,其特征在于,所述方法包括:
    所述BBU将待传输下行数据进行资源映射处理得到流数据;
    所述BBU向所述RRU发送所述流数据,以便于所述RRU将所述流数据进行流到天线映射处理,并通过天线向用户设备发送映射处理后的数据。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述BBU确定下行动态天线权值;
    所述BBU向所述RRU发送所述下行动态天线权值,以便于所述RRU根据所述下行动态天线权值对所述流数据进行流到天线映射处理。
  10. 根据权利要求8和9所述的方法,其特征在于,所述方法包括:
    所述BBU接收所述RRU发送的数据,所述数据是由所述RRU将用户设备的数据进行天线到波束映射处理得到的;
    所述BBU将所述数据处理得到上行数据。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述BBU接收所述RRU发送的探测参考信号SRS。
  12. 根据权利要求10或11所述的方法,其特征在于,所述BBU将所述数据处理得到上行数据,包括:
    所述BBU将所述数据进行傅立叶变换FFT处理和去除循环前缀CP处理之后得到频域数据;
    所述BBU将所述频域数据进行处理得到所述上行数据。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述数据包括非空分复用的数据和空分复用的数据,所述方法还包括:
    所述BBU确定上行动态天线权值;
    所述BBU向所述RRU发送所述上行动态天线权值,以便于所述RRU根据所述上行动态天线权值对所述空分复用的数据进行天线到波束映射处理。
  14. 一种射频拉远单元RRU,应用于基站,所述基站包括基带单元BBU和所述RRU,其特征在于,所述RRU包括:
    接收模块,用于接收所述BBU发送的流数据,其中,所述流数据是所述BBU将待传输下行数据进行资源映射处理后得到的;
    数据处理模块,用于将所述流数据进行流到天线映射处理;
    发送模块,用于通过天线向用户设备发送映射处理后的数据。
  15. 根据权利要求14所述的RRU,其特征在于,所述数据处理模块还用于:
    将所述映射处理后的数据进行快速傅立叶反变换IFFT处理和***循环前缀CP处理,得到下行数据;
    其中,所述发送模块具体用于:
    通过天线向用户设备发送所述下行数据。
  16. 根据权利要求14或15所述的RRU,其特征在于,所述接收模块还用于:
    接收所述BBU发送的下行动态天线权值;
    其中,所述数据处理模块具体用于:
    根据所述下行动态天线权值对所述流数据进行流到天线映射处理。
  17. 根据权利要求14至16中任一项所述的RRU,其特征在于,所述数据处理模块还用于:
    将用户设备的数据进行天线到波束映射处理;
    其中,所述发送模块用于:
    向所述BBU发送映射处理后的数据。
  18. 根据权利要求17所述的RRU,其特征在于,所述接收模块具体用于:
    通过天线接收所述用户设备发送的上行信号,所述上行信号包括所述数据和探测参考信号SRS;
    其中,所述数据处理模块还用于:
    从所述上行信号中分离出所述SRS和所述数据;
    其中,所述发送模块还用于:
    向所述BBU发送所述SRS。
  19. 根据权利要求17或18所述的RRU,其特征在于,所述数据处理模块具体用于:
    将所述上行信号进行快速傅立叶变换FFT处理和去除循环前缀CP处理,得到频域信号;
    从所述频域信号中分离出所述SRS和所述数据。
  20. 根据权利要求19所述的RRU,其特征在于,所述数据包括非空分复用的数据和空分复用的数据;
    其中,所述接收模块还用于:接收所述BBU发送的上行动态天线权值;
    所述数据处理模块,用于根据所述上行动态天线权值对所述空分复用的数据进行天线到波束映射处理;
    所述数据处理模块,还用于根据上行静态天线权值对所述非空分复用的数据进行天线到波束映射处理。
  21. 一种基带单元BBU,应用于基站,所述基站包括所述BBU和射频拉远单元RRU,其特征在于,所述BBU包括:
    数据处理模块,用于将待传输下行数据进行资源映射处理得到流数据;
    发送模块,用于向所述RRU发送所述流数据,以便于所述RRU将所述流数据进行流到天线映射处理,并通过天线向用户设备发送映射处理后的数据。
  22. 根据权利要求21所述的BBU,其特征在于,所述数据处理模块还用于:
    确定下行动态天线权值;
    其中,所述发送模块还用于:
    向所述RRU发送所述下行动态天线权值,以便于所述RRU根据所述下行动态天线权值对所述流数据进行流到天线映射处理。
  23. 根据权利要求21或22所述的BBU,其特征在于,所述BBU还包括:
    接收模块,用于接收所述RRU发送的数据,所述数据是由所述RRU将用户设备的数据进行天线到波束映射处理得到的;
    其中,所述数据处理模块用于:
    将所述数据处理得到上行数据。
  24. 根据权利要求23所述的BBU,其特征在于,所述接收模块还用于:
    接收所述RRU发送的探测参考信号SRS。
  25. 根据权利要求23或24所述的BBU,其特征在于,所述数据处理模块具体用于:
    将所述数据进行傅立叶变换FFT处理和去除循环前缀CP处理之后得到频域数据;
    将所述频域数据进行处理得到所述上行数据。
  26. 根据权利要求23至25中任一项所述的BBU,其特征在于,所述数据包括非空分复用的数据和空分复用的数据;
    其中,所述数据处理模块还用于:确定上行动态天线权值;
    所述发送模块,还用于向所述RRU发送所述上行动态天线权值,以便于所述RRU根据所述上行动态天线权值对所述空分复用的数据进行天线到波束映射处理。
PCT/CN2015/098110 2015-12-21 2015-12-21 传输数据的方法、射频拉远单元rru和基带单元bbu WO2017107016A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/098110 WO2017107016A1 (zh) 2015-12-21 2015-12-21 传输数据的方法、射频拉远单元rru和基带单元bbu
EP15911016.2A EP3310123B1 (en) 2015-12-21 2015-12-21 Data transmission method, remote radio unit (rru) and baseband unit (bbu)
CN201580080174.6A CN107615877A (zh) 2015-12-21 2015-12-21 传输数据的方法、射频拉远单元rru和基带单元bbu
US15/870,154 US20180138957A1 (en) 2015-12-21 2018-01-12 Data transmission method, remote radio unit rru, and baseband unit bbu

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/098110 WO2017107016A1 (zh) 2015-12-21 2015-12-21 传输数据的方法、射频拉远单元rru和基带单元bbu

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/870,154 Continuation US20180138957A1 (en) 2015-12-21 2018-01-12 Data transmission method, remote radio unit rru, and baseband unit bbu

Publications (1)

Publication Number Publication Date
WO2017107016A1 true WO2017107016A1 (zh) 2017-06-29

Family

ID=59088737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098110 WO2017107016A1 (zh) 2015-12-21 2015-12-21 传输数据的方法、射频拉远单元rru和基带单元bbu

Country Status (4)

Country Link
US (1) US20180138957A1 (zh)
EP (1) EP3310123B1 (zh)
CN (1) CN107615877A (zh)
WO (1) WO2017107016A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3641487A4 (en) * 2017-07-28 2020-04-29 Huawei Technologies Co., Ltd. METHOD, DEVICE AND SYSTEM FOR REDUCING DATA SIZE, COMPUTER DEVICE AND STORAGE MEDIUM
EP3723348A4 (en) * 2018-01-08 2020-12-09 Samsung Electronics Co., Ltd. METHOD FOR SEPARATING PHYSICAL LAYER FUNCTIONS IN A WIRELESS COMMUNICATION SYSTEM
EP3732795A4 (en) * 2017-12-28 2021-08-04 Nokia Solutions and Networks Oy SIGNAL DETECTION METHOD AND APPARATUS IN A MIMO COMMUNICATION SYSTEM
CN114466086A (zh) * 2021-12-31 2022-05-10 华为技术有限公司 一种数据传输方法、通信装置及通信***
CN114885343A (zh) * 2022-06-17 2022-08-09 中国联合网络通信集团有限公司 一种通信方法及装置、存储介质
WO2024145864A1 (zh) * 2023-01-05 2024-07-11 华为技术有限公司 数据处理的方法与通信装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352897B (zh) * 2015-12-17 2020-02-21 华为技术有限公司 一种侦听参考符号传输方法及射频拉远单元
JPWO2017130800A1 (ja) * 2016-01-26 2018-11-15 株式会社Nttドコモ 基地局及び送信方法
EP3732794B1 (en) * 2017-12-27 2024-07-31 Telefonaktiebolaget LM Ericsson (publ) Methods, systems and units of a distributed base staton system for handling downlink communication
CN108494490B (zh) * 2018-04-09 2019-10-25 湖北邮电规划设计有限公司 一种无线5g前传及其它业务综合承载的组网方法
WO2019217391A1 (en) * 2018-05-07 2019-11-14 Mavenir Networks, Inc. Method and apparatus for fronthaul compression in cloud ran
CN110876209B (zh) 2018-08-31 2022-11-18 财团法人工业技术研究院 连接重定向方法以及用户设备
CN111356177A (zh) * 2018-12-20 2020-06-30 中兴通讯股份有限公司 数据处理方法、bbu及rru
US11736152B2 (en) 2019-05-24 2023-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Methods, distributed base station system, remote radio unit and base band unit system for handling uplink signals
US20220255596A1 (en) * 2019-06-20 2022-08-11 Telefonaktiebolaget Lm Ericsson (Publ) Methods, Distributed Base Station System, Remote Radio Unit and Base Band Unit System for Handling Downlink Signals
CN112511233A (zh) * 2019-09-16 2021-03-16 中兴通讯股份有限公司 射频拉远装置、有源天线和基站***
CN111200519B (zh) * 2019-12-26 2022-09-27 京信网络***股份有限公司 数据处理方法、装置、bbu、接入网设备和存储介质
CN113498078A (zh) * 2020-03-20 2021-10-12 富华科精密工业(深圳)有限公司 数据交互方法及射频拉远集线器
CN113965939B (zh) * 2020-07-16 2024-04-02 大唐移动通信设备有限公司 基站通路维护测试装置及方法
JP2023037446A (ja) * 2021-09-03 2023-03-15 日本電気株式会社 無線受信装置及びその方法
CN114126019B (zh) * 2021-11-30 2024-04-23 北京邮电大学 一种基于能效优化的前传光网络动态资源映射方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118191A (zh) * 2010-01-06 2011-07-06 华为技术有限公司 一种通用公共无线接口数据的传递方法、设备及***
CN102404033A (zh) * 2011-11-24 2012-04-04 北京交通大学 一种ofdm***中的天线阵列校准方法和装置
CN103312480A (zh) * 2012-03-08 2013-09-18 鼎桥通信技术有限公司 一种提高Ir光口传输效率的方法和RRU、BBU
WO2013166819A1 (zh) * 2012-05-07 2013-11-14 华为技术有限公司 一种虚拟天线映射方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301774B (zh) * 2009-01-30 2014-04-23 株式会社日立制作所 无线通信***及通信控制方法
CN103891394A (zh) * 2011-10-01 2014-06-25 英特尔公司 远程无线电单元(rru)和基带单元(bbu)
EP2818002A4 (en) * 2012-02-24 2015-10-28 Intel Corp COOPERATIVE RADIO ACCESS NETWORK WITH CENTRALIZED BASE STATION BASE BAND UNIT (BBU)
US9313692B2 (en) * 2012-05-07 2016-04-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods and nodes for radio communication with a user equipment
WO2015172277A1 (zh) * 2014-05-12 2015-11-19 华为技术有限公司 一种基带单元bbu与远端射频单元rru之间的数据传输方法和装置
JP6423005B2 (ja) * 2014-05-12 2018-11-14 インテル コーポレイション C−ranフロントエンドプロセッシング及びシグナリングユニット
WO2016145371A2 (en) * 2015-03-11 2016-09-15 Phluido, Inc. Distributed radio access network with adaptive fronthaul

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118191A (zh) * 2010-01-06 2011-07-06 华为技术有限公司 一种通用公共无线接口数据的传递方法、设备及***
CN102404033A (zh) * 2011-11-24 2012-04-04 北京交通大学 一种ofdm***中的天线阵列校准方法和装置
CN103312480A (zh) * 2012-03-08 2013-09-18 鼎桥通信技术有限公司 一种提高Ir光口传输效率的方法和RRU、BBU
WO2013166819A1 (zh) * 2012-05-07 2013-11-14 华为技术有限公司 一种虚拟天线映射方法及装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3641487A4 (en) * 2017-07-28 2020-04-29 Huawei Technologies Co., Ltd. METHOD, DEVICE AND SYSTEM FOR REDUCING DATA SIZE, COMPUTER DEVICE AND STORAGE MEDIUM
US11234294B2 (en) 2017-07-28 2022-01-25 Huawei Technologies Co., Ltd. Data dimension reduction method, apparatus, and system, computer device, and storage medium
EP3732795A4 (en) * 2017-12-28 2021-08-04 Nokia Solutions and Networks Oy SIGNAL DETECTION METHOD AND APPARATUS IN A MIMO COMMUNICATION SYSTEM
US11290171B2 (en) 2017-12-28 2022-03-29 Nokia Solutions And Networks Oy Method and apparatus for signal detection in a MIMO communication system
EP3723348A4 (en) * 2018-01-08 2020-12-09 Samsung Electronics Co., Ltd. METHOD FOR SEPARATING PHYSICAL LAYER FUNCTIONS IN A WIRELESS COMMUNICATION SYSTEM
US11456833B2 (en) 2018-01-08 2022-09-27 Samsung Electronics Co., Ltd. Method for separating physical layer functions in wireless communication system
EP4167538A1 (en) * 2018-01-08 2023-04-19 Samsung Electronics Co., Ltd. Method for separating physical layer functions in wireless communication system
US11824626B2 (en) 2018-01-08 2023-11-21 Samsung Electronics Co., Ltd. Method for separating physical layer functions in wireless communication system
CN114466086A (zh) * 2021-12-31 2022-05-10 华为技术有限公司 一种数据传输方法、通信装置及通信***
CN114885343A (zh) * 2022-06-17 2022-08-09 中国联合网络通信集团有限公司 一种通信方法及装置、存储介质
CN114885343B (zh) * 2022-06-17 2023-04-28 中国联合网络通信集团有限公司 一种通信方法及装置、存储介质
WO2024145864A1 (zh) * 2023-01-05 2024-07-11 华为技术有限公司 数据处理的方法与通信装置

Also Published As

Publication number Publication date
CN107615877A (zh) 2018-01-19
EP3310123A4 (en) 2018-06-13
EP3310123A1 (en) 2018-04-18
EP3310123B1 (en) 2019-11-06
US20180138957A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
WO2017107016A1 (zh) 传输数据的方法、射频拉远单元rru和基带单元bbu
EP3776900B1 (en) Efficient spatial relation indication for physical uplink control channel (pucch) resources
CN111567018B (zh) 无线通信***中用于分离物理层功能的方法
US9602182B2 (en) Baseband processing apparatus in radio communication system and radio communication
US20210385043A1 (en) Method for transmitting reference signal, and communication device
CN113965231A (zh) 信息的传输方法和设备
WO2020199799A1 (zh) 传输指示方法、装置、终端、基站及存储介质
JP2021513757A (ja) アップリンクデータの伝送のための方法および端末機器
CN110913490A (zh) 上行数据传输方法及相关设备
US20170195026A1 (en) Single user beamforming in wireless networks
WO2016202280A1 (zh) 波束赋形方法及装置
EP3520303B1 (en) Wireless communication method for transmitting reference signal resource indication
US20200374883A1 (en) Method for transmitting uplink signal, terminal and network device
CN110401516B (zh) 一种被用于无线通信的第一节点、基站中的方法和装置
EP3930245B1 (en) Method for signal transmission and terminal device
US10892785B2 (en) Method for determining MIMO detection matrix of scheduled UE
US20230094010A1 (en) Control signaling for uplink frequency selective precoding
CN117200837A (zh) 一种通信方法及装置
EP3711379B1 (en) User equipment that transmits demodulation reference signals (dm-rss)
CN116057876A (zh) 在不同使用的srs资源集合之间共享srs资源的方法及对应ue
KR102009466B1 (ko) 프론트홀 경계 설정 방법과 이를 수행하기 위한 장치 및 시스템
WO2017190272A1 (zh) 一种干扰消除方法及基站
WO2024065653A1 (en) Methods and systems for enhanced beam management for multiple transmission and reception points
WO2024016295A1 (en) Methods for enabling simultaneous multi panel physical uplink shared channel transmissions
WO2023206209A1 (en) Srs enhancement to support more than 4 layer non-codebook based uplink transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE