WO2017104539A1 - 誘電体磁器組成物、誘電体磁器組成物の製造方法、及び積層型セラミック電子部品 - Google Patents

誘電体磁器組成物、誘電体磁器組成物の製造方法、及び積層型セラミック電子部品 Download PDF

Info

Publication number
WO2017104539A1
WO2017104539A1 PCT/JP2016/086574 JP2016086574W WO2017104539A1 WO 2017104539 A1 WO2017104539 A1 WO 2017104539A1 JP 2016086574 W JP2016086574 W JP 2016086574W WO 2017104539 A1 WO2017104539 A1 WO 2017104539A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
ceramic composition
dielectric ceramic
ceramic
curie point
Prior art date
Application number
PCT/JP2016/086574
Other languages
English (en)
French (fr)
Inventor
聡史 横溝
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017556011A priority Critical patent/JP6593781B2/ja
Publication of WO2017104539A1 publication Critical patent/WO2017104539A1/ja
Priority to US15/988,470 priority patent/US10519066B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6588Water vapor containing atmospheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a dielectric ceramic composition, a method for producing the dielectric ceramic composition, and a multilayer ceramic electronic component, and more specifically, a lead-free dielectric ceramic composition suitable for applications requiring a high Curie point, and The present invention relates to a manufacturing method thereof, and a multilayer ceramic electronic component using the dielectric ceramic composition.
  • multilayer ceramic electronic components are mounted on various electronic devices, and ceramic materials such as dielectric ceramic compositions used for the multilayer ceramic electronic components have been actively researched and developed.
  • Patent Document 1 discloses that lead titanate, calcium titanate and antimony titanate are basic components and the basic composition is a chemical formula, (1-xy) PbTiO 3 —xCaTiO 3 —ySb 2/3 TiO 3 ( Where x is represented by 1.0 to 35 mol%, y is represented by 1.0 to 30 mol%), and a ferroelectric ceramic composition in which Ti in the above chemical formula is substituted by 0.5 to 5 mol% with Mn is proposed. Has been.
  • Patent Document 1 a component system containing PbTiO 3 , CaTiO 3 , and Sb 2/3 TiO 3 as a basic component is contained in a form in which a predetermined amount of Mn is replaced with a part of Ti, thereby increasing the temperature to 200 ° C. or higher. An attempt is made to obtain a ferroelectric ceramic composition having a Curie point and good heat resistance.
  • Non-Patent Document 1 reports a local structure source having a sustained Curie temperature of a (Ba, Ca) TiO 3 ferroelectric.
  • the Curie point Tc of BaTiO 3 is about 400 K (about 127 ° C.), and the Curie point Tc tends to increase by replacing part of Ba with Ca. It is described that there is a peak Ca content and the Curie point Tc decreases when a part of Ba is replaced with a predetermined amount or more of Ca. Specifically, when the molar ratio x of Ca to the total amount of Ba and Ca is 0.2, the Curie point Tc is about 410 K (about 137 ° C.), which is higher than BaTiO 3. It is described that when x is increased to 0.3, the Curie point Tc becomes about 375 K (about 102 ° C.), which is lower than that of BaTiO 3 .
  • ceramic layers and internal electrode layers are alternately laminated, and the ceramic material and internal electrode material are usually fired at the same time.
  • a base metal material such as Ni or Cu that has good conductivity and is available at a low price as the internal electrode material, but it is easy to fire the base metal material in an air atmosphere. Since it oxidizes, it is necessary to bake in a reducing atmosphere.
  • Patent Document 1 since the ceramic material contains Pb, when the ceramic material is fired in a reducing atmosphere, Pb is reduced and the desired stable dielectric characteristics cannot be obtained. For this reason, co-firing with a base metal material is difficult.
  • Non-Patent Document 1 although a part of Ba is replaced with Ca, the Curie point Tc is about 137 ° C. at the maximum, and it is difficult to use for high temperature applications of 140 ° C. or higher.
  • the present invention was made in view of such circumstances, and is a lead-free dielectric ceramic composition suitable for high-temperature applications having a high Curie point without impairing dielectric properties even when fired in a reducing atmosphere, It is an object of the present invention to provide a method for producing a dielectric ceramic composition and a multilayer ceramic electronic component such as a multilayer ceramic capacitor using the dielectric ceramic composition.
  • the present inventor conducted intensive research on a ceramic raw material containing Sb in addition to Ba, Ca, and Ti. As a result, a perovskite type compound obtained by firing this ceramic raw material in a reducing atmosphere is mainly used. It was found that the dielectric ceramic composition as a component was lead-free, but the Curie point Tc was a high temperature of 140 ° C. or higher.
  • the dielectric ceramic composition according to the present invention is a lead-free perovskite compound containing at least Ba, Ca, Ti, and Sb as main components. It is formed and has a Curie point Tc of 140 ° C. or higher.
  • the contents of Ba, Ca, Ti, and Sb can be appropriately blended so that the Curie point Tc is 140 ° C. or higher, but the preferred ranges are as follows.
  • the Sb content is preferably 0.1 to 5 parts by mole with respect to 100 parts by mole of Ti.
  • the Ba content is preferably 80 parts by mole or more with respect to 100 parts by mole of Ti.
  • the Ca content is preferably 15 parts by mole or less with respect to 100 parts by mole of Ti.
  • the method for producing a dielectric ceramic composition according to the present invention mainly comprises weighing a ceramic raw material containing at least a Ba compound, a Ca compound, a Ti compound, and an Sb compound, and producing a main component powder from the ceramic raw material.
  • Component powder preparation step forming step of forming the main component powder to form a ceramic formed body, and firing the ceramic formed body in a reducing atmosphere, a ceramic having a Curie point Tc of 140 ° C or higher
  • a firing step for producing a sintered body mainly comprises weighing a ceramic raw material containing at least a Ba compound, a Ca compound, a Ti compound, and an Sb compound, and producing a main component powder from the ceramic raw material.
  • Component powder preparation step forming step of forming the main component powder to form a ceramic formed body, and firing the ceramic formed body in a reducing atmosphere, a ceramic having a Curie point Tc of 140 ° C or higher
  • a firing step for producing a sintered body mainly comprises weighing
  • the reducing atmosphere has an oxygen partial pressure of 10 ⁇ 7 to 10 ⁇ 11 MPa, and a firing temperature at the firing is 1100 to 1400 ° C. Is preferred.
  • the mixture of the ceramic raw materials is calcined in a reducing atmosphere to synthesize the main component powder.
  • the multilayer ceramic electronic component according to the present invention is a multilayer ceramic electronic component having a ceramic sintered body in which dielectric layers and internal electrode layers are alternately stacked.
  • the internal electrode layer is formed of a base metal material.
  • the dielectric layer is formed of any one of the above dielectric ceramic compositions.
  • the main component is formed of a lead-free perovskite type compound containing at least Ba, Ca, Ti, and Sb, and has a Curie point Tc of 140 ° C. or higher.
  • a dielectric ceramic composition suitable for high-temperature applications that can ensure the dielectric property in a high-temperature region can be obtained even if it is lead-based.
  • the high-Curie point Tc can be obtained by firing in a reducing atmosphere because the above-described main component powder production step, molded body production step, and firing step are included.
  • a dielectric ceramic composition that can be co-fired with a base metal material and has a high Curie point can be produced.
  • the internal electrode is formed of a base metal material, and the dielectric Since the layer is formed of any one of the above dielectric ceramic compositions, desired dielectric properties can be secured in a high temperature region of 140 ° C. or higher even when a base metal material is used for the internal electrode layer.
  • a multilayer ceramic electronic component such as a multilayer ceramic capacitor suitable for high-temperature applications can be obtained.
  • the dielectric ceramic composition according to one embodiment of the present invention is formed of a lead-free perovskite compound (general formula ABO 3 ) containing at least Ba, Ca, Ti, and Sb as a main component,
  • the point Tc is 140 ° C. or higher.
  • the dielectric ceramic composition is suitable for high-temperature applications that have a high Curie point and can secure desired dielectric properties even in a high-temperature region of 140 ° C. or higher. You can get things.
  • BaTiO 3 -based perovskite compounds are widely known as dielectric ceramic compositions that can provide a high relative dielectric constant.
  • BaTiO 3 has a low Curie point Tc of about 127 ° C. Even if Ca is contained, the Curie point Tc is about 137 ° C. at the maximum and exceeds the Curie point. And the ferroelectricity disappears. Therefore, it is difficult to stably obtain a dielectric ceramic composition that can be used for high-temperature applications of 140 ° C. or higher simply by replacing part of Ba with Ca.
  • the Sb compound form usually includes a trivalent Sb compound such as Sb 2 O 3 and a pentavalent Sb compound such as Sb 2 O 5 .
  • the trivalent Sb compound is oxidized to become pentavalent, and the pentavalent Sb compound maintains the valence.
  • pentavalent Sb since the ionic radius of pentavalent Sb is about 0.060 nm and the ionic radius of Ti is about 0.061 nm, pentavalent Sb has a form in which a part of Ti having a similar ionic radius is substituted. It dissolves in B site.
  • the trivalent Sb compound maintains the valence, and the pentavalent Sb compound is reduced to become trivalent.
  • trivalent Sb has an ionic radius of about 0.076 nm and is larger than that of Ti (0.061 nm), it is difficult to form a solid solution at the B site where Ti is coordinated.
  • Sb is changed from pentavalent having a small ionic radius to trivalent having a large ionic radius.
  • the crystal structure maintains a tetragonal crystal and exhibits ferroelectricity below the Curie point Tc, but when the Curie point Tc is exceeded, the crystal structure undergoes a phase transition from a tetragonal crystal to a cubic crystal, thereby increasing the strength. Dielectricity disappears.
  • Sb is reduced by a heat treatment in a reducing atmosphere and solid-dissolved at the A site, Sb is covalently bonded to the O atom, and as a result, Sb is displaced from the center position of the A site to improve tetragonality.
  • the Curie point Tc is considered to rise.
  • this dielectric ceramic composition is lead-free and does not contain lead, the environmental load is also reduced, and furthermore, it can be obtained by heat treatment in a reducing atmosphere, so it can be used together with base metal materials such as Ni and Cu. It becomes possible to sinter, and a dielectric ceramic composition suitable for high-temperature applications can be obtained.
  • the perovskite type compound contains at least each component of Ba, Ti, Ca, and Sb and has a Curie point Tc of 140 ° C. or higher
  • the content of each component is not particularly limited. Absent. In other words, the content of each component can be blended so that the Curie point Tc is 140 ° C. or higher.
  • Ba is a main element for realizing a dielectric ceramic composition having a high relative dielectric constant together with Ti. And in order to obtain a desired high dielectric constant at a high temperature where the Curie point Tc is 140 ° C. or higher, 80 mol parts or more is preferable with respect to 100 mol parts of Ti.
  • Ca is an essential component in the present invention because Ca contributes to the improvement of the Curie point Tc by being contained in the BaTiO 3 -based compound. However, if the content of Ca exceeds 15 parts by mole with respect to 100 parts by mole of Ti, the Curie point Tc tends to decrease, and the Curie point Tc may decrease to less than 140 ° C. preferable.
  • Sb contributes to the improvement of the Curie point Tc by being dissolved in the main component by heat treatment under a reducing atmosphere as described above, and the Curie point Tc can be 140 ° C. or higher.
  • the content of Sb is preferably 0.1 mol part or more per 100 mol parts of Ti.
  • the Sb content is preferably 5 mol parts or less with respect to 100 mol parts of Ti.
  • the ratio of the A site and B site in the perovskite compound is 1.000 in terms of stoichiometric ratio, but is not limited to the stoichiometric ratio.
  • the ratio of (Ba + Ca) / Ti is converted into a molar ratio.
  • it can be appropriately adjusted to be in the range of 0.95 to 1.00.
  • the perovskite type compound described above may form a main component (for example, 80 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more).
  • a main component for example, 80 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more.
  • Various additives may be contained as components.
  • a Ba compound, a Ti compound, a Ca compound, and an Sb compound are prepared as ceramic raw materials. Then, a predetermined amount of these ceramic raw materials are weighed. Note that Sb is a volatile element and volatilizes when heat-treated in a reducing atmosphere, so the Sb compound is weighed excessively.
  • the weighed product is put into a ball mill together with a grinding medium such as PSZ (Partially Stabilized Zirconia) balls and pure water, sufficiently mixed and pulverized by wet, dried, and then in a reducing atmosphere or
  • the main component powder is prepared by calcining and synthesizing in an air atmosphere.
  • N 2 —H 2 —H 2 O adjusted to an oxygen partial pressure such that the Sb compound is reduced, eg, 10 ⁇ 7 to 10 ⁇ 11 MPa.
  • Calcination is performed for about 1 hour at a temperature of 900 to 1100 ° C. in a reducing atmosphere.
  • the calcination is performed in an air atmosphere at a temperature of 900 to 1100 ° C. for about 1 hour.
  • the main component powder is put into a ball mill together with an organic binder, an organic solvent, and a grinding medium, wet-mixed, dried, and then pressed to produce a ceramic molded body.
  • Dielectric which is a ceramic sintered body having an oxygen partial pressure that is not oxidized, for example, 10 ⁇ 7 to 10 ⁇ 11 MPa, adjusted to an atmosphere, and fired at a predetermined temperature for about 2 hours, thereby having a Curie point Tc of 140 ° C. or higher.
  • a porcelain composition is produced.
  • the firing temperature at the time of firing is not particularly limited as long as it is a temperature at which the ceramic molded body can be sintered, but it is preferably set to a temperature range of 1100 to 1400 ° C. That is, if the firing temperature is less than 1100 ° C., the firing temperature is too low and it may be difficult to sinter the ceramic molded body. On the other hand, the firing temperature is preferably 1400 ° C. or less from the viewpoint of energy saving.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of a multilayer ceramic capacitor as a multilayer ceramic electronic component manufactured using the dielectric ceramic composition according to the present invention.
  • internal electrode layers 2a to 2f are embedded in a ceramic sintered body 1, and external electrodes 3a and 3b are formed at both ends of the ceramic sintered body 1, and the external electrodes 3a, First plating films 4a and 4b and second plating films 5a and 5b are formed on the surface of 3b.
  • the ceramic sintered body 1 is formed by alternately laminating and firing the dielectric layers 6a to 6g and the internal electrode layers 2a to 2f formed of the dielectric ceramic composition of the present invention.
  • 2c and 2e are electrically connected to the external electrode 3a
  • the internal electrodes 2b, 2d and 2f are electrically connected to the external electrode 3b.
  • a capacitance is formed between the opposing surfaces of the internal electrode layers 2a, 2c, and 2e and the internal electrode layers 2b, 2d, and 2f.
  • the internal electrode layers 2a to 2f are formed of a base metal material, and the dielectric layers 6a to 6g are formed of the above-described dielectric ceramic composition. Even when a base metal material is used for 2f, it is possible to obtain a multilayer ceramic capacitor suitable for high-temperature applications that can ensure desired dielectric properties in a high-temperature region of 140 ° C. or higher.
  • the multilayer ceramic capacitor can be easily manufactured by the following method.
  • a main component powder is prepared by the same method and procedure as described in the above method for producing a dielectric ceramic composition.
  • the main component powder is put into a ball mill together with an organic binder, an organic solvent, and a grinding medium and wet mixed to produce a ceramic slurry.
  • the ceramic slurry is subjected to a molding process by a lip method, a doctor blade method, or the like.
  • a ceramic green sheet is prepared so that the thickness is about 2 ⁇ m or less.
  • a conductive paste for internal electrodes whose main component is a base metal material such as Ni or Cu is prepared. Then, screen printing is performed on the ceramic green sheet using the conductive paste for internal electrodes, and a conductive film having a predetermined pattern is formed on the surface of the ceramic green sheet.
  • a plurality of ceramic green sheets with a conductive film formed thereon are laminated in a predetermined direction, a ceramic green sheet without a conductive film is disposed on the top layer, pressure-bonded, and cut into predetermined dimensions to obtain a laminated molded body. Make it.
  • a conductive paste for external electrodes is applied to both end faces of the ceramic sintered body 1, and a baking treatment is performed at a temperature of 600 to 800 ° C. to form the external electrodes 3a and 3b.
  • the conductive material contained in the conductive paste for external electrodes is not particularly limited, but from the viewpoint of cost reduction, a material mainly composed of Ag, Cu, or an alloy thereof is used. It is preferable to do this.
  • the conductive paste for external electrodes may be applied to both end faces of the laminated molded body, and then fired at the same time as the laminated molded body.
  • first plating films 4a and 4b made of Ni, Cu, Ni—Cu alloy or the like on the surfaces of the external electrodes 3a and 3b, and further, the first plating film 4a, Second plating films 5a and 5b made of solder, tin or the like are formed on the surface of 4b, whereby a multilayer ceramic capacitor is manufactured.
  • the present invention is not limited to the above embodiment.
  • the multilayer ceramic capacitor is exemplified as the multilayer ceramic electronic component.
  • it can be applied to various multilayer ceramic electronic components for high temperature use mainly composed of a BaTiO 3 perovskite compound.
  • a BaTiO 3 perovskite compound mainly composed of a BaTiO 3 perovskite compound.
  • the ceramic raw materials such as Ba compounds and Ti compounds can be appropriately selected according to the form of the synthetic reaction, such as carbonates, oxides, nitrates, hydroxides, organic acid salts, alkoxides and chelate compounds. .
  • the method for synthesizing the main component powder is not limited to the above-described solid phase method, and synthesis methods such as a coprecipitation method, a hydrothermal method, and an oxalic acid method may be used.
  • BaCO 3 , CaCO 3 , TiO 2 , and Sb 2 O 3 are prepared as ceramic raw materials, and these ceramic raw materials are prepared so that the molar parts of Ba, Ca, and Sb become Table 1 after firing with respect to 100 mol parts of Ti.
  • polyvinyl alcohol was added to the calcined powder so that the weight ratio of polyvinyl alcohol was 2 wt% to obtain a mixture.
  • a pressure of 1000 MPa was applied to the mixture by a uniaxial press, thereby obtaining a ceramic molded body having a diameter of 10 mm and a thickness of 0.5 mm.
  • a conductive paste containing Ag as a main component is applied to both end faces of the ceramic sintered body, and a baking process is performed at a temperature of 600 ° C. to form external electrodes, and samples Nos. 1 to 38 are produced. did.
  • each ceramic sintered body before forming the external electrode was subjected to structural analysis by the XRD method (X-ray diffraction method). As a result, it was confirmed that each ceramic sintered body had a perovskite crystal structure.
  • the relative dielectric constant ⁇ r was measured using an LCR meter (manufactured by Agilent Technologies, E4980A) at a measurement frequency of 1 kHz, a measurement voltage of 0.5 Vrms, and a temperature of 25 ⁇ 3 ° C.
  • the relative dielectric constant was measured in the temperature range of ⁇ 55 to + 160 ° C. using the above-mentioned LCR meter and thermostatic bath, and the temperature at which the relative dielectric constant was maximum was taken as the Curie point Tc.
  • Table 1 shows the component composition, firing temperature, firing atmosphere, relative dielectric constant ⁇ r, and Curie point Tc of sample numbers 1 to 38.
  • Sample No. 8 contained no Sb in the ceramic sintered body and was fired in the air atmosphere, so the Curie point Tc was 136 ° C., which was also less than 140 ° C. in this case.
  • Sample Nos. 9 to 11 had a Curie point Tc of 101 to 132 ° C. and lower than 140 ° C. This is because Sb is contained in the ceramic sintered body, but is fired in the air atmosphere, so Sb does not dissolve at the A site but forms a solid solution at the B site, thereby improving the tetragonal crystallinity. It seems that the Curie point Tc could not be raised.
  • Sample Nos. 12 to 15 had an excessively low firing temperature of 1000 ° C., and the ceramic molded body could not be sintered.
  • Sample Nos. 24, 29, and 34 contained no Ca in the ceramic sintered body, and therefore the Curie point Tc was lowered to 128 to 132 ° C.
  • Sample numbers 28, 33, and 38 had a Curie point Tc of 134 to 135 ° C., which was lower than 140 ° C. This seems to be because the Ba content was less than 80 mol parts relative to 100 mol parts of Ti, while the Ca content exceeded 15 mol parts relative to 100 mol parts of Ti.
  • sample numbers 5 to 7, 17 to 19, 21 to 23, 25 to 27, 30 to 32, and 35 to 37 have a Curie point Tc of 140 ° C. or higher, which indicates that a good Curie point can be obtained. It was. That is, by appropriately controlling the content of Ba, Ca, Ti, and Sb, and firing conditions, a dielectric ceramic composition suitable for high-temperature applications having a Curie point Tc of 140 ° C. or higher, even if it is non-leaded. It turns out that it is obtained.
  • the contents of Ba, Ca, and Sb are in the range of 80 mol parts or more, 15 mol parts or less, and 0.1 to 5 mol parts with respect to 100 mol parts of Ti, respectively, and the oxygen partial pressure is 10 ⁇ 7 to 10 mol.
  • a dielectric ceramic composition having a Curie point Tc of 140 ° C. could be obtained by firing at a temperature of 1100 to 1400 ° C. in a reducing atmosphere of ⁇ 11 MPa.
  • multilayer ceramic electronic components such as non-lead-based dielectric ceramic compositions and multilayer ceramic capacitors suitable for high-temperature applications having a high Curie point without losing dielectric properties even when fired in a reducing atmosphere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

誘電体磁器組成物は、主成分が少なくともBa、Ca、Ti、及びSbを含有した非鉛系のペロブスカイト型化合物で形成され、キュリー点Tcが140℃以上である。Sb、Ba、Caの各含有量が、Ti100モル部に対しそれぞれ0.1~5モル部、80モル部以上、15モル部以下が好ましい。この誘電体磁器組成物は、セラミック素原料を秤量して仮焼合成した後、成形加工を施し、その後還元性雰囲気下、焼成処理を行って作製される。誘電体層6a~6gはこの誘電体磁器組成物で形成される。これにより還元雰囲気下で焼成しても誘電特性を損なうことなく高キュリー点を有する高温用途に適した非鉛系の誘電体磁器組成物とその製造方法、及びこの誘電体磁器組成物を使用した積層セラミックコンデンサ等の積層型セラミック電子部品を実現する。

Description

誘電体磁器組成物、誘電体磁器組成物の製造方法、及び積層型セラミック電子部品
 本発明は誘電体磁器組成物、誘電体磁器組成物の製造方法、及び積層型セラミック電子部品に関し、より詳しくは高キュリー点が要求される用途に適した非鉛系の誘電体磁器組成物とその製造方法、及びこの誘電体磁器組成物を使用した積層型セラミック電子部品に関する。
 近年、積層型セラミック電子部品は種々の電子機器に搭載され、該積層型セラミック電子部品に使用される誘電体磁器組成物等のセラミック材料も盛んに研究・開発されている。
 この種の誘電体磁器組成物では、キュリー点Tcを超えると強誘電性が消滅することから、より高温で強誘電性を維持するためには高キュリー点を有することが望まれる。
 そして、例えば特許文献1には、チタン酸鉛,チタン酸カルシウム及びチタン酸アンチモンを基本成分とし、基本組成が化学式、(1-x-y)PbTiO-xCaTiO-ySb2/3TiO(但し、xは1.0~35mol%,yは1.0~30mol%)で表わされ、上記化学式のTiは、Mnで0.5~5mol%置換された強誘電体磁器組成物が提案されている。
 特許文献1では、PbTiO、CaTiO、及びSb2/3TiOを基本成分とする成分系に所定量のMnをTiの一部と置換する形態で含有させることにより、200℃以上の高キュリー点を有する耐熱性の良好な強誘電体磁器組成物を得ようとしている。
 また、非特許文献1には、(Ba,Ca)TiO強誘電体の持続的なキュリー温度の局所構造源について報告されている。
 この非特許文献1では、BaTiOのキュリー点Tcは、約400K(約127℃)であり、Baの一部をCaで置換することによりキュリー点Tcは上昇傾向となるが、キュリー点TcがピークとなるCaの含有量が存在し、キュリー点TcはBaの一部が所定量以上のCaで置換されると低下することが記載されている。具体的にはBa及びCaの総計に対するCaのモル比xが0.2の場合は、キュリー点Tcが約410K(約137℃)となり、BaTiOに比べて高くなるが、前記Caのモル比xが0.3に増量されるとキュリー点Tcは約375K(約102℃)となり、BaTiOに比べ低下することが記載されている。
特開平9-183652号公報(請求項1、表1)
I. Levin, et al.,"Local-structure origins of the sustained Curie temperature in (Ba,Ca)TiO3 ferroelectrics",Applied Physics Letters, 102, 162906 (2013)
 積層型セラミック電子部品では、セラミック層と内部電極層とが交互に積層されており、通常、セラミック材料と内部電極材料とが同時焼成されて作製される。
 この場合、内部電極材料としては、良導電性を有しかつ低価格での入手が可能なNiやCu等の卑金属材料を使用するのが望ましいが、卑金属材料を大気雰囲気中で焼成すると容易に酸化することから、還元性雰囲気で焼成する必要がある。
 しかしながら、特許文献1は、セラミック材料がPbを含んでいることから、該セラミック材料を還元性雰囲気で焼成しようとすると、Pbが還元されてしまって所望の安定した誘電特性を得ることができず、このため卑金属材料との共焼成が困難である。
 また、近年、世界的に環境問題に対する意識が高まっており、特に欧州連合(EU)では、電気・電子機器における特定有害物質の使用制限を規定したROHS(Restriction of Hazardous Substances)指令や、廃棄自動車の環境規制を規定したELV(End of Life Vehicles Directive)指令等で環境汚染を招くPbの使用規制が整備されてきている。したがって、特許文献1のようにPbを含有した誘電体磁器組成物は、環境負荷の軽減の観点からも好ましくない。
 また、非特許文献1では、Baの一部をCaで置換しているものの、キュリー点Tcは最大でも137℃程度であり、140℃以上の高温用途に使用するのは困難である。
 本発明はこのような事情に鑑みなされたものであって、還元雰囲気下で焼成しても誘電特性を損なうことなく高キュリー点を有する高温用途に適した非鉛系の誘電体磁器組成物、誘電体磁器組成物の製造方法、及びこの誘電体磁器組成物を使用した積層セラミックコンデンサ等の積層型セラミック電子部品を提供することを目的とする。
 本発明者は、上記目的を達成するためにBa、Ca、Tiに加え、Sbを含有したセラミック原料について鋭意研究を行ったところ、このセラミック原料を還元性雰囲気下で焼成したペロブスカイト型化合物を主成分とする誘電体磁器組成物は、非鉛系でありながらキュリー点Tcが140℃以上の高温になるという知見を得た。
 本発明はこのような知見に基づきなされたものであって、本発明に係る誘電体磁器組成物は、主成分が少なくともBa、Ca、Ti、及びSbを含有した非鉛系のペロブスカイト型化合物で形成され、キュリー点Tcが140℃以上であることを特徴としている。
 Ba、Ca、Ti、及びSbの各含有量は、キュリー点Tcが140℃以上となるように適宜配合することができるが、好ましい範囲は以下の通りである。
 すなわち、本発明の誘電体磁器組成物は、前記Sbの含有量が、Ti100モル部に対し0.1~5モル部であるのが好ましい。
 また、本発明の誘電体磁器組成物は、前記Baの含有量が、Ti100モル部に対し80モル部以上であるのが好ましい。
 また、本発明の誘電体磁器組成物は、前記Caの含有量が、Ti100モル部に対し15モル部以下であるのが好ましい。
 また、本発明に係る誘電体磁器組成物の製造方法は、少なくともBa化合物、Ca化合物、Ti化合物、及びSb化合物を含むセラミック素原料を秤量し、前記セラミック素原料から主成分粉末を作製する主成分粉末作製工程と、前記主成分粉末に成形加工を施し、セラミック成形体を作製する成形体作製工程と、前記セラミック成形体を還元性雰囲気下、焼成し、キュリー点Tcが140℃以上のセラミック焼結体を作製する焼成工程とを含むことを特徴としている。
 また、本発明の誘電体磁器組成物の製造方法は、前記還元性雰囲気は、酸素分圧が10-7~10-11MPaであり、前記焼成時の焼成温度は1100~1400℃であるのが好ましい。 
 また、本発明の誘電体磁器組成物の製造方法は、前記主成分粉末作製工程は、前記セラミック素原料の混合物を還元性雰囲気下、仮焼し、前記主成分粉末を合成するのが好ましい。
 また、本発明に係る積層型セラミック電子部品は、誘電体層と内部電極層とが交互に積層されたセラミック焼結体を有する積層型セラミック電子部品において、前記内部電極層が、卑金属材料で形成されると共に、前記誘電体層が、上記いずれかに記載の誘電体磁器組成物で形成されていることを特徴としている。
 本発明の誘電体磁器組成物によれば、主成分が少なくともBa、Ca、Ti、及びSbを含有した非鉛系のペロブスカイト型化合物で形成され、キュリー点Tcが140℃以上であるので、非鉛系であっても高温領域での誘電性を確保できる高温用途に適した誘電体磁器組成物を得ることができる。
 本発明の誘電体磁器組成物の製造方法によれば、上述した主成分粉末作製工程、成形体作製工程、及び焼成工程を含むので、還元雰囲気下での焼成で高キュリー点Tcが得られることから、卑金属材料との共焼成が可能で高キュリー点を有する誘電体磁器組成物を製造することができる。
 また、本発明の積層型セラミック電子部品によれば、誘電体層と内部電極とが交互に積層された積層型セラミック電子部品において、前記内部電極が、卑金属材料で形成されると共に、前記誘電体層が、上記いずれかに記載の誘電体磁器組成物で形成されているので、内部電極層に卑金属材料を使用した場合であっても、140℃以上の高温領域で所望の誘電特性を確保できる高温用途に適した積層セラミックコンデンサ等の積層型セラミック電子部品を得ることができる。
本発明の誘電体磁器組成物を使用して製造された積層セラミックコンデンサの一実施の形態を示す断面図である。
 次に、本発明の実施の形態を詳説する。
 本発明の一実施の形態としての誘電体磁器組成物は、主成分が、少なくともBa、Ca、Ti、及びSbを含有した非鉛系のペロブスカイト型化合物(一般式ABO)で形成され、キュリー点Tcが140℃以上である。そして、これにより主成分が非鉛系のBaTiO系化合物であっても、高キュリー点を有し、140℃以上の高温領域でも所望の誘電特性を確保できる高温用途に適した誘電体磁器組成物を得ることができる。
 すなわち、高比誘電率が得られる誘電体磁器組成物としては、BaTiO系のペロブスカイト型化合物が広く知られている。
 しかしながら、[背景技術]の項でも記載したように、BaTiOはキュリー点Tcが約127℃と低く、Caを含有したとしても、キュリー点Tcは最大で137℃程度であり、キュリー点を超えると強誘電性が消滅する。したがって単にBaの一部をCaで置換したのみでは140℃以上の高温用途に使用可能な誘電体磁器組成物を安定して得るのは困難である。
 しかるに、本発明者の鋭意研究の結果、(Ba,Ca)TiOにSbを添加させ、還元性雰囲気下で熱処理すると、キュリー点Tcが140℃以上になることが分かった。その理由は以下のように推察される。
 (Ba,Ca)TiOにSbを添加して大気雰囲気で熱処理した場合、SbはBサイトに固溶する。すなわち、Sbの化合物形態には、通常、Sb等の3価のSb化合物と、Sb等の5価のSb化合物が存在する。この場合、主成分粉末の合成、又は合成後の焼成処理を大気雰囲気で行うと、3価のSb化合物は酸化されて5価となり、5価のSb化合物は価数を維持する。そして、5価のSbのイオン半径は約0.060nmでありTiのイオン半径は約0.061nmであることから、5価のSbは、イオン半径が類似するTiの一部を置換する形態でBサイトに固溶する。
 これに対し主成分粉末の合成、又は合成後の焼成処理を還元性雰囲気で行うと、3価のSb化合物は価数を維持し、5価のSb化合物は還元されて3価となる。そして、3価のSbは、イオン半径が約0.076nmであり、Tiのイオン半径(0.061nm)より大きいことから、Tiが配位するBサイトには固溶し難い。また、主成分粉末を大気雰囲気で仮焼合成し、焼成処理を還元性雰囲気で行った場合は、Sbはイオン半径の小さい5価からイオン半径の大きい3価になることから、仮焼合成後にはBサイトに固溶していても、還元雰囲気下の焼成処理によりBサイトから離脱し、イオン半径が0.135nmと大きいBaの配位するAサイトにBaの一部を置換する形態で固溶すると考えられる。
 そして、このようにSbがAサイトに固溶する結果、SbはO原子と共有結合してAサイトの中心位置から変位し、これにより結晶軸のc軸とa軸との比c/aが大きくなって正方晶性が向上し、強誘電性が維持される温度、すなわちキュリー点Tcが向上すると考えられる。すなわち、ペロブスカイト型化合物では、キュリー点Tc以下では結晶構造は正方晶を維持して強誘電性を示すが、キュリー点Tcを超えると結晶構造が正方晶から立方晶に相転移し、これにより強誘電性が消滅する。しかるに、還元性雰囲気下での熱処理によってSbが還元されてAサイトに固溶すると、SbはO原子と共有結合し、その結果、SbはAサイトの中心位置から変位して正方晶性が向上し、キュリー点Tcが上昇すると考えられる。
 しかも、本誘電体磁器組成物は、鉛を含まない非鉛系であることから、環境負荷も軽減され、さらに還元性雰囲気での熱処理で得られることから、NiやCu等の卑金属材料と共焼成することが可能となり、高温用途に適した誘電体磁器組成物を得ることができる。
 ここで、ペロブスカイト型化合物は、少なくともBa、Ti、Ca、及びSbの各成分を含有し、かつ140℃以上のキュリー点Tcを有するのであれば、各成分の含有量は特に限定されるものではない。換言すればキュリー点Tcが140℃以上となるように各成分の含有量を配合することができる。
 各成分の好ましい範囲の一例を述べると以下のようになる。
 Baは、Tiと共に高比誘電率を有する誘電体磁器組成物を実現するための主要元素である。そして、キュリー点Tcが140℃以上の高温で所望の高比誘電率を得るためには、Ti100モル部に対し80モル部以上が好ましい。
 Caは、BaTiO系化合物中に含有させることにより、キュリー点Tcの向上に寄与することから、本発明では必須の構成成分である。しかしながら、Caの含有量が、Ti100モル部に対し15モル部を超えると、キュリー点Tcは却って低下傾向になり、キュリー点Tcが140℃未満に低下するおそれがあることから15モル部以下が好ましい。
 Sbは、上述したように還元雰囲気下の熱処理で主成分中に固溶させることにより、キュリー点Tcの向上に寄与し、キュリー点Tcを140℃以上とすることが可能である。そしてそのためにはSbの含有量は、Ti100モル部に対し0.1モル部以上が好ましい。一方、Sbを過度に含有させるとBaの含有量が相対的に低下して比誘電率の低下を招くおそれがあることから、Sbの含有量はTi100モル部に対し5モル部以下が好ましい。
 また、ペロブスカイト化合物のAサイトとBサイトの比は、化学量論比では1.000であるが、化学量論比に限定されるものではなく、例えば(Ba+Ca)/Tiの比がモル比換算で0.95~1.00の範囲となるように適宜調整することができる。
 また、本誘電体磁器組成物は、上述したペロブスカイト型化合物が主成分(例えば、80モル%以上、好ましくは90モル%以上、より好ましくは95モル%以上)を形成していればよく、副成分として各種添加物を含有していてもよい。
 次に、本誘電体磁器組成物の製造方法を詳述する。
 まず、セラミック素原料として、Ba化合物、Ti化合物、Ca化合物、及びSb化合物を準備する。そしてこれらセラミック素原料を所定量秤量する。尚、Sbは揮発性元素であり、還元性雰囲気下で熱処理を施すと揮発することから、Sb化合物は過剰に秤量する。
 次に、この秤量物をPSZ(Partially Stabilized Zirconia:部分安定化ジルコニア)ボール等の粉砕媒体及び純水と共にボールミルに投入し、十分に湿式で混合粉砕し、乾燥させた後、還元性雰囲気下又は大気雰囲気下、仮焼を行って合成し、主成分粉末を作製する。
 ここで、還元性雰囲気で仮焼を行う場合は、Sb化合物が還元されるような酸素分圧、例えば10-7~10-11MPaに雰囲気調整されたN-H-HOの還元性雰囲気下、900~1100℃の温度で、1時間程度仮焼を行う。
 一方、大気雰囲気で仮焼を行う場合は、大気雰囲気下、900~1100℃の温度で、1時間程度仮焼を行う。
 次に、上記主成分粉末を有機バインダや有機溶剤、粉砕媒体と共にボールミルに投入して湿式混合し、乾燥させた後、プレス加工を施してセラミック成形体を作製する。
 そしてこの後、大気雰囲気下、温度250~350℃で加熱し、バインダを燃焼させて除去し、さらに、H-N-HOガスからなる還元性雰囲気下、主成分中のSbが酸化されないような酸素分圧、例えば10-7~10-11MPaに雰囲気調整し、所定温度で、2時間程度焼成し、これによりキュリー点Tcが140℃以上のセラミック焼結体である誘電体磁器組成物が作製される。
 ここで、焼成時の焼成温度は、セラミック成形体を焼結できる温度であれば、特に限定されるものではないが、1100~1400℃の温度範囲に設定するのが好ましい。すなわち、焼成温度が1100℃未満になると、焼成温度が低すぎてセラミック成形体を焼結させるのが困難となるおそれがある。一方、省エネルギーの観点からは焼成温度は1400℃以下が好ましい。
 このように上記誘電体磁器組成物の製造方法では、還元雰囲気下での焼成で高キュリー点Tcが得られることから、卑金属材料との共焼成が可能で高キュリー点を有する誘電体磁器組成物を製造することができる。
 次に、本発明の積層型セラミック電子部品について詳述する。
 図1は本発明に係る誘電体磁器組成物を使用して製造された積層型セラミック電子部品としての積層セラミックコンデンサの一実施の形態を模式的に示した断面図である。
 該積層セラミックコンデンサは、セラミック焼結体1に内部電極層2a~2fが埋設されると共に、該セラミック焼結体1の両端部には外部電極3a、3bが形成され、さらに該外部電極3a、3bの表面には第1のめっき皮膜4a、4b及び第2のめっき皮膜5a、5bが形成されている。
 すなわち、セラミック焼結体1は、本発明の誘電体磁器組成物で形成された誘電体層6a~6gと内部電極層2a~2fとが交互に積層されて焼成されてなり、内部電極層2a、2c、2eは外部電極3aと電気的に接続され、内部電極2b、2d、2fは外部電極3bと電気的に接続されている。そして、内部電極層2a、2c、2eと内部電極層2b、2d、2fとの対向面間で静電容量を形成している。
 そして、本積層セラミックコンデンサでは、内部電極層2a~2fが卑金属材料で形成されると共に、誘電体層6a~6gが、上述した誘電体磁器組成物で形成されているので、内部電極層2a~2fに卑金属材料を使用した場合であっても、140℃以上の高温領域で所望の誘電特性を確保できる高温用途に適した積層セラミックコンデンサを得ることができる。
 上記積層セラミックコンデンサは以下の方法で容易に製造することができる。
 まず、上記誘電体磁器組成物の製造方法で述べたのと同様の方法・手順で主成分粉末を作製する。
 次いで、この主成分粉末を有機バインダや有機溶剤、粉砕媒体と共にボールミルに投入して湿式混合し、セラミックスラリーを作製し、リップ法やドクターブレード法等によりセラミックスラリーに成形加工を施し、焼成後の厚みが2μm程度又はそれ以下となるようにセラミックグリーンシートを作製する。
 次いで、Ni、Cu等の卑金属材料を主成分とした内部電極用導電性ペーストを用意する。そしてこの内部電極用導電性ペーストを使用してセラミックグリーンシート上にスクリーン印刷を施し、前記セラミックグリーンシートの表面に所定パターンの導電膜を形成する。
 次いで、導電膜が形成されたセラミックグリーンシートを所定方向に複数枚積層し、導電膜の形成されていないセラミックグリーンシートを最上層に配し、圧着し、所定寸法に切断して積層成形体を作製する。
 そしてこの後、上述と同様の条件でバインダを除去した後、焼成処理を行い、セラミック焼結体1を作製する。
 次に、セラミック焼結体1の両端面に外部電極用導電性ペーストを塗布し、600~800℃の温度で焼付処理を行い、外部電極3a、3bを形成する。
 尚、外部電極用導電性ペーストに含有される導電性材料についても、特に限定されるものではないが、低コスト化の観点から、AgやCu、或いはこれらの合金を主成分とした材料を使用するのが好ましい。
 また、外部電極3a、3bの形成方法としては、積層成形体の両端面に外部電極用導電性ペーストを塗布した後、積層成形体と同時に焼成処理を施すようにしてもよい。
 そして、最後に、電解めっきを施して外部電極3a、3bの表面にNi、Cu、Ni-Cu合金等からなる第1のめっき皮膜4a、4bを形成し、さらに該第1のめっき皮膜4a、4bの表面にはんだやスズ等からなる第2のめっき皮膜5a、5bを形成し、これにより積層セラミックコンデンサが製造される。
 尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では、積層型セラミック電子部品として積層セラミックコンデンサを例示したが、BaTiO系のペロブスカイト型化合物を主成分とした高温用途の各種積層型セラミック電子部品に適用可能であるのはいうまでもない。
 また、Ba化合物、Ti化合物等のセラミック素原料についても、炭酸塩や酸化物、硝酸塩、水酸化物、有機酸塩、アルコキシド、キレート化合物等、合成反応の形態に応じて適宜選択することができる。
 また、主成分粉末の合成方法についても、上述した固相法に限定されるものではなく、共沈法、水熱法、シュウ酸法等の合成法を使用してもよい。
 次に、本発明の実施例を具体的に説明する。
〔試料の作製〕
 セラミック素原料として、BaCO、CaCO、TiO、及びSbを用意し、Ba、Ca、Sbのモル部がTi100モル部に対し焼成後に表1となるように、これらセラミック素原料を秤量した。尚、Sbは還元性雰囲気下での焼成で揮発すると想定されることから、50~100モル%過剰に秤量した。
 次いで、これら秤量物をPSZボール及び純水と共にボールミルに投入し、十分に湿式で混合粉砕し、乾燥させた後、酸素分圧10-8.5MPaに調整されたH-N-HOガスの還元性雰囲気下、1100℃の温度で約1時間、仮焼し、粉砕して仮焼粉末(主成分粉末)を得た。
 次に、ポリビニルアルコールの重量比率が2wt%となるように、仮焼粉末にポリビニルアルコールを添加し、混合物を得た。次いで、この混合物を一軸プレスで1000MPaの圧力を負荷し、これにより直径10mm、厚み0.5mmのセラミック成形体を得た。
 次いで、酸素分圧が10-7~10-11MPaに調整されたH-N-HOガスからなる還元性雰囲気下、又は酸素分圧が10-1.7MPaの大気雰囲気下、1000~1400℃で約1時間焼成処理を行ない、これによりセラミック焼結体を得た。
 次に、Agを主成分とした導電性ペーストをセラミック焼結体の両端面に塗布し、600℃の温度で焼付処理を行い、外部電極を形成し、試料番号1~38の各試料を作製した。
〔試料の評価〕
 試料番号1~38の各試料について、外部電極形成前のセラミック焼結体をXRD法(X線回析法)で構造解析した。その結果、セラミック焼結体は、いずれもペロブスカイト型結晶構造を有することが確認された。
 また、試料番号1~38の各セラミック焼結体を溶解し、ICP-AES(誘導結合プラズマ-発光分光分析法)で分析したところ、Ti100モル部に対するBa、Ca、及びSbの各モル部が表1のようになることが確認された。
 次に、試料番号1~38の各試料について、比誘電率εr、及びキュリー点Tcを測定した。
 ここで、比誘電率εrは、LCRメーター(アジレント・テクノロジー社製、 E4980A)を使用し、測定周波数1kHz、測定電圧0.5Vrms、温度25±3℃で測定した。
 キュリー点Tcは、上記LCRメーターと恒温槽を使用し、-55~+160℃の温度範囲で比誘電率を測定し、比誘電率が最大となる温度をキュリー点Tcとした。
 表1は試料番号1~38の成分組成、焼成温度、焼成雰囲気、比誘電率εr、及びキュリー点Tcを示している。
Figure JPOXMLDOC01-appb-T000001
 試料番号1~4、16、20は、焼成処理を還元性雰囲気で行っているものの、セラミック焼結体中にSbが含有されておらず、このためキュリー点Tcが121~136℃となり、140℃未満であった。
 試料番号8は、セラミック焼結体中にSbが含有されておらず、また、大気雰囲気で焼成しているため、キュリー点Tcが136℃となり、この場合も140℃未満であった。
 試料番号9~11は、キュリー点Tcが101~132℃となり、140℃未満であった。これはセラミック焼結体中にSbを含有しているものの、大気雰囲気で焼成しているため、SbはAサイトに固溶せずにBサイトに固溶し、このため正方晶性を向上させることができず、キュリー点Tcを上昇させることができなかったものと思われる。
 試料番号12~15は、焼成温度が1000℃と過度に低く、セラミック成形体を焼結させることができなかった。
 試料番号24、29、34は、セラミック焼結体中にCaが含有されておらず、このためキュリー点Tcは128~132℃と低くなった。
 試料番号28、33、38は、キュリー点Tcは134~135℃であり、140℃未満となった。これはBa含有量がTi100モル部に対し80モル部未満と少なく、一方でCa含有量がTi100モル部に対し15モル部を超えたためと思われる。
 これに対し試料番号5~7、17~19、21~23、25~27、30~32、及び35~37は、キュリー点Tcは140℃以上となり、良好なキュリー点が得られることが分かった。すなわち、Ba、Ca、Ti、Sbの含有量、及び焼成条件を適切に制御することにより、非鉛系であってもキュリー点Tcが140℃以上の高温用途に適した誘電体磁器組成物が得られることが分かった。因みに本実施例ではBa、Ca、Sbの含有量をTi100モル部に対しそれぞれ80モル部以上、15モル部以下、0.1~5モル部の範囲とし、酸素分圧が10-7~10-11MPaの還元性雰囲気下、1100~1400℃の温度で焼成することにより、キュリー点Tcが140℃の誘電体磁器組成物を得ることができた。
 還元雰囲気下で焼成しても誘電特性を損なうことなく高キュリー点を有する高温用途に適した非鉛系の誘電体磁器組成物及び積層セラミックコンデンサ等の積層型セラミック電子部品を実現する。
1 セラミック焼結体
2a~2f 内部電極層
6a~6g 誘電体層

Claims (8)

  1.  主成分が少なくともBa、Ca、Ti、及びSbを含有した非鉛系のペロブスカイト型化合物で形成され、
     キュリー点Tcが140℃以上であることを特徴とする誘電体磁器組成物。
  2.  前記Sbの含有量は、Ti100モル部に対し0.1~5モル部であることを特徴とする請求項1記載の誘電体磁器組成物。
  3.  前記Baの含有量は、Ti100モル部に対し80モル部以上であることを特徴とする請求項1又は請求項2記載の誘電体磁器組成物。
  4.  前記Caの含有量は、Ti100モル部に対し15モル部以下であることを特徴とする請求項1乃至請求項3のいずれかに記載の誘電体磁器組成物。
  5.  少なくともBa化合物、Ca化合物、Ti化合物、及びSb化合物を含むセラミック素原料を秤量し、前記セラミック素原料から主成分粉末を作製する主成分粉末作製工程と、
     前記主成分粉末に成形加工を施し、セラミック成形体を作製する成形体作製工程と、
     前記セラミック成形体を還元性雰囲気下、焼成し、キュリー点Tcが140℃以上のセラミック焼結体を作製する焼成工程とを含むことを特徴とする誘電体磁器組成物の製造方法。
  6.  前記還元性雰囲気は、酸素分圧が10-7~10-11MPaであり、前記焼成時の焼成温度は1100~1400℃であることを特徴とする請求項5記載の誘電体磁器組成物の製造方法。
  7.  前記主成分粉末作製工程は、前記セラミック素原料の混合物を還元性雰囲気下で仮焼し、前記主成分粉末を合成することを特徴とする請求項5又は請求項6記載の誘電体磁器組成物の製造方法。
  8.  誘電体層と内部電極層とが交互に積層された積層型セラミック電子部品において、
     前記内部電極層が、卑金属材料で形成されると共に、
     前記誘電体層が、請求項1乃至請求項4のいずれかに記載の誘電体磁器組成物で形成されていることを特徴とする積層型セラミック電子部品。
PCT/JP2016/086574 2015-12-18 2016-12-08 誘電体磁器組成物、誘電体磁器組成物の製造方法、及び積層型セラミック電子部品 WO2017104539A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017556011A JP6593781B2 (ja) 2015-12-18 2016-12-08 誘電体磁器組成物、誘電体磁器組成物の製造方法、及び積層型セラミック電子部品
US15/988,470 US10519066B2 (en) 2015-12-18 2018-05-24 Dielectric porcelain composition, method for producing dielectric porcelain composition, and multilayer ceramic electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015246909 2015-12-18
JP2015-246909 2015-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/988,470 Continuation US10519066B2 (en) 2015-12-18 2018-05-24 Dielectric porcelain composition, method for producing dielectric porcelain composition, and multilayer ceramic electronic component

Publications (1)

Publication Number Publication Date
WO2017104539A1 true WO2017104539A1 (ja) 2017-06-22

Family

ID=59056436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086574 WO2017104539A1 (ja) 2015-12-18 2016-12-08 誘電体磁器組成物、誘電体磁器組成物の製造方法、及び積層型セラミック電子部品

Country Status (3)

Country Link
US (1) US10519066B2 (ja)
JP (1) JP6593781B2 (ja)
WO (1) WO2017104539A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333753B1 (ja) * 1965-03-19 1978-09-16
JP2005089224A (ja) * 2003-09-16 2005-04-07 Murata Mfg Co Ltd 誘電体セラミック組成物および積層セラミックコンデンサ
WO2006117990A1 (ja) * 2005-04-28 2006-11-09 Murata Manufacturing Co., Ltd. 圧電体磁器組成物、及び該圧電体磁器組成物の製造方法、並びに圧電セラミック電子部品

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2987762B2 (ja) 1996-11-05 1999-12-06 北陸電気工業株式会社 強誘電体磁器組成物
JP4870920B2 (ja) * 2004-09-30 2012-02-08 日本特殊陶業株式会社 誘電体磁器組成物及び電子部品
CN101389581B (zh) 2006-02-27 2012-10-24 日立金属株式会社 半导体陶瓷组分
JP5327556B2 (ja) * 2008-12-12 2013-10-30 株式会社村田製作所 半導体セラミック及び正特性サーミスタ
WO2011126040A1 (ja) * 2010-04-08 2011-10-13 日立金属株式会社 Ptc素子と発熱体モジュール
JP2012046372A (ja) * 2010-08-26 2012-03-08 Hitachi Metals Ltd Ptc素子および発熱モジュール
KR20130036594A (ko) 2011-10-04 2013-04-12 삼성전기주식회사 유전체 조성물 및 이를 포함하는 세라믹 전자 부품
KR101452048B1 (ko) * 2012-11-09 2014-10-22 삼성전기주식회사 적층 세라믹 커패시터, 적층 세라믹 커패시터의 회로 기판 실장 구조 및 적층 세라믹 커패시터의 포장체

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333753B1 (ja) * 1965-03-19 1978-09-16
JP2005089224A (ja) * 2003-09-16 2005-04-07 Murata Mfg Co Ltd 誘電体セラミック組成物および積層セラミックコンデンサ
WO2006117990A1 (ja) * 2005-04-28 2006-11-09 Murata Manufacturing Co., Ltd. 圧電体磁器組成物、及び該圧電体磁器組成物の製造方法、並びに圧電セラミック電子部品

Also Published As

Publication number Publication date
US20180265414A1 (en) 2018-09-20
US10519066B2 (en) 2019-12-31
JPWO2017104539A1 (ja) 2018-09-27
JP6593781B2 (ja) 2019-10-23

Similar Documents

Publication Publication Date Title
JP5131595B2 (ja) 誘電体セラミック、及びセラミック電子部品、並びに積層セラミックコンデンサ
JP2007031273A (ja) 低温焼成用の誘電体磁器組成物及びこれを用いた積層セラミックコンデンサ
JP5668632B2 (ja) 誘電体磁器組成物、および電子部品
KR102137395B1 (ko) 적층 세라믹 콘덴서
JPWO2008010412A1 (ja) 誘電体セラミック及びその製造方法、並びに積層セラミックコンデンサ
JP6631854B2 (ja) 誘電体磁器組成物、積層セラミックコンデンサ、及び積層セラミックコンデンサの製造方法
JP7357732B2 (ja) セラミックコンデンサ
KR101237256B1 (ko) 티탄산바륨계 유전체 원료 분말, 그 제조방법, 세라믹 그린시트의 제조방법, 및 적층 세라믹 콘덴서의 제조방법
JP6467648B2 (ja) 誘電体組成物、誘電体素子、電子部品および積層電子部品
KR101515522B1 (ko) 페로브스카이트형 복합 산화물의 제조방법
JP4862501B2 (ja) 誘電体セラミック、その製造方法及び積層セラミックコンデンサ
JP6636744B2 (ja) 誘電体磁器組成物及びこれを用いた電子素子
JP2010208905A (ja) 誘電体セラミックの製造方法と誘電体セラミック、及び積層セラミックコンデンサの製造方法と積層セラミックコンデンサ
JP4349007B2 (ja) 積層型電子部品
JP2013063876A (ja) 誘電体磁器組成物および電子部品
JP7262640B2 (ja) セラミックコンデンサ
KR101318855B1 (ko) 복합 산화물 분말의 제조방법
JP2011042529A (ja) 誘電体磁器組成物の製造方法
JP6593781B2 (ja) 誘電体磁器組成物、誘電体磁器組成物の製造方法、及び積層型セラミック電子部品
JP5354185B2 (ja) 誘電体セラミック及びその製造方法、並びに積層セラミックコンデンサ
JP5621774B2 (ja) 複合酸化物粉末の製造方法および複合酸化物粉末
JP2006169050A (ja) 誘電体磁器組成物及び磁器コンデンサ並びにこれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556011

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875519

Country of ref document: EP

Kind code of ref document: A1