WO2017104402A1 - Holographic recording material, volume holographic medium, and method for producing volume holographic medium - Google Patents

Holographic recording material, volume holographic medium, and method for producing volume holographic medium Download PDF

Info

Publication number
WO2017104402A1
WO2017104402A1 PCT/JP2016/085372 JP2016085372W WO2017104402A1 WO 2017104402 A1 WO2017104402 A1 WO 2017104402A1 JP 2016085372 W JP2016085372 W JP 2016085372W WO 2017104402 A1 WO2017104402 A1 WO 2017104402A1
Authority
WO
WIPO (PCT)
Prior art keywords
hologram recording
volume hologram
recording material
layer
metallopolymer
Prior art date
Application number
PCT/JP2016/085372
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 尾中
希志臣 田村
平岡 三郎
大輔 渡邉
雄也 久保
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017555958A priority Critical patent/JPWO2017104402A1/en
Publication of WO2017104402A1 publication Critical patent/WO2017104402A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds

Definitions

  • the present invention relates to a hologram recording material, a volume hologram medium, and a method for manufacturing a volume hologram medium. More specifically, the present invention relates to a hologram recording material for a volume hologram medium having high diffraction efficiency, high light transmittance, and excellent durability, a volume hologram medium, and a method for producing the volume hologram medium.
  • Holographic optical elements having a volume hologram medium function as an optical combiner and are applied to optical lenses, display elements, and the like, and demand is increasing.
  • a holographic optical element as a display element such as a head-mounted display or a head-up display can be used as a see-through display element because the volume hologram medium has high transparency (for example, Patent Document 1).
  • volume hologram recording layer is required to have high diffraction efficiency in order to display information light in the presence of external light (background).
  • volume hologram media used for holographic optical elements are required to have higher heat resistance and light resistance than conventional ones, and even when used for a long time, hologram recording can be stably held. Desired.
  • durability such as heat resistance, light resistance, and weather resistance is required for volume hologram media used for optical element applications.
  • Patent Document 2 discloses a hologram recording material using an inorganic oxide network and a photopolymerizable monomer in combination.
  • an inorganic oxide material capable of forming a network is used as a binder, there are advantages that heat resistance, environmental resistance, and mechanical strength are excellent, and a difference in refractive index from a photopolymerizable organic monomer can be increased.
  • the volume hologram medium formed with such a hologram recording material is rather brittle, and has a problem that flexibility and workability are low and coating suitability is poor.
  • the compatibility between the inorganic oxide binder and the organic monomer is not good, there is a problem that it is difficult to prepare a uniform coating material.
  • the photopolymerizable polymer is produced on the inorganic oxide network, there is a problem that separation between the high refractive index layer and the low refractive index layer becomes insufficient, and it is difficult to increase the refractive index difference.
  • Patent Document 2 also discloses that an organic group is introduced into an inorganic substance network to impart flexibility to the inorganic oxide binder and improve brittleness of the hologram recording layer.
  • Patent Document 2 discloses that an organic group in an inorganic oxide network is obtained by hydrolysis and polycondensation of an organometallic compound having an organic moiety in the side chain or an organometallic compound having a functional group polymerizable with an organic monomer. It is only disclosed to introduce. That is, according to the disclosure of Patent Document 2, the network structure of the inorganic oxide network itself is constituted by a chain in which an inorganic compound and oxygen are connected to each other, and the organic group is pendant side chain on the network structure of the inorganic oxide network. Since it was only introduced as a, it did not essentially change the rigid structure of the inorganic oxide network.
  • Patent Document 3 describes a hologram recording material for a volume hologram medium containing an organic-silica hybrid polymer, specific organometallic fine particles, and a photopolymerization initiator.
  • the specific gravity of the metal fine particles is high, so that it is difficult to uniformly disperse the metal fine particles. It was also a factor that hindered monomer movement. There is also a problem that the fine particles are aggregated to increase light scattering loss.
  • JP 2014-215410 A Japanese Patent No. 2953200 Japanese Patent No. 4536276
  • the present invention has been made in view of the above problems and circumstances, and the problem to be solved is a hologram recording material for a volume hologram medium, a volume hologram medium having high diffraction efficiency, high light transmittance, and excellent durability. And a method of manufacturing a volume hologram medium.
  • a hologram material containing a metallopolymer precursor and a photopolymerizable compound has a high diffraction efficiency and light transmittance, and excellent durability.
  • a hologram recording material for a volume hologram medium comprising a metallopolymer precursor and a photopolymerizable compound.
  • R 1 represents H, CH 3 , C 2 H 5 , C 3 H 7 or C 4 H 9 .
  • R 2 represents CH 3 , C 2 H 5 , C 2 H 4 OH or C 3 H 6 OH.
  • R 3 represents CH or N.
  • R 4 represents CH 2 , C 2 H 4 or OC 2 H 4 O.
  • the hologram recording material according to one item.
  • a volume hologram medium having a volume hologram recording layer A volume hologram medium comprising a metallopolymer having a structure represented by the following general formula (2) in the volume hologram recording layer.
  • M represents a metal element selected from Ti, Zr, Si and Zn.
  • R represents a divalent linking group.
  • n represents an integer of 1 or more.
  • Sb—R—Sb ′ in the formula when n is 1 or more and Sb′—R—Sb ′ in the formula when n is 2 or more each represent a Schiff base ligand.
  • Sb ′ has a chemical structure having the same skeleton as Sb and represents a state in which Sb is changed to a chemical structure bonded to at least one of a coordinate bond and a covalent bond with the metal element M.
  • Sb ′ has a chemical structure having the same skeleton as Sb and
  • a method for producing a volume hologram medium having a volume hologram recording layer Forming a photosensitive layer using the hologram recording material solution according to any one of items 1 to 5,
  • a method for producing a volume hologram medium comprising the step of forming a hologram recording layer containing a metallopolymer having a coordination compound by subjecting the photosensitive layer to holographic exposure followed by heat treatment.
  • a hologram recording material for volume hologram medium for volume hologram medium, a volume hologram medium, and a method for producing the volume hologram medium, which have high diffraction efficiency, high light transmittance, and excellent durability.
  • the expression mechanism or action mechanism of the above effect is not clear, but is presumed as follows.
  • the hologram recording material of the present invention contains a metallopolymer precursor and a photopolymerizable compound.
  • a metallopolymer precursor When holographic exposure is performed on the photosensitive layer formed of the hologram recording material, polymerization of the photopolymerizable compound is promoted in the exposed portion of the photosensitive layer.
  • the photopolymerizable compound when consumed in the exposed portion and the concentration of the photopolymerizable compound decreases, the photopolymerizable compound diffuses and moves from the non-exposed portion to the exposed portion, so that further polymerization reaction proceeds.
  • the component of the metallopolymer precursor contained in the exposed part is pushed out from the exposed part to the non-exposed part, and the concentration of the metallopolymer precursor is increased in the non-exposed part.
  • the metallopolymer precursor present in the exposed part does not react with visible light, and the molecular weight remains small, so the diffusion movement of the metallopolymer precursor from the exposed part to the non-exposed part is not It is not hindered and does not inhibit the diffusion movement of the photopolymerizable compound from the non-exposed area to the exposed area. Therefore, it is considered that a high-refractive index region and a low-refractive index region can be clearly separated, and a volume hologram recording layer having high diffraction efficiency and high light transmittance can be formed. Furthermore, the metallopolymer can be formed in a region where the metallopolymer precursors are gathered by heat treatment after the holographic exposure. Therefore, it is considered that a hologram recording layer having excellent durability can be formed.
  • the hologram recording material of the present invention can produce a volume hologram medium with high diffraction efficiency, high light transmittance, and excellent durability.
  • the said mechanism is based on estimation and the volume hologram medium of this embodiment is not restrict
  • Cross-sectional schematic diagram of volume hologram medium Schematic showing an example of an exposure apparatus used for holographic exposure
  • Schematic cross-sectional view showing an example of a state in which a photosensitive layer sandwiched between adjacent layers is sandwiched between prism bases when performing holographic exposure
  • the hologram recording material of the present invention is a hologram recording material for a volume hologram medium, and contains a metallopolymer precursor and a photopolymerizable compound. This feature is a technical feature common to or corresponding to the claimed invention.
  • the metallopolymer precursor preferably contains a Schiff base and an organometallic compound.
  • the organometallic compound and the Schiff base ligand are subjected to ligand exchange, and a stable and robust metallopolymer can be easily produced. Therefore, a volume hologram medium having excellent durability can be manufactured.
  • the organometallic compound contains at least one metal element selected from Ti, Zr, Si, and Zn from the viewpoint of manifesting the effects of the present invention.
  • the Schiff base has a structure represented by the above general formula (1) from the viewpoint of manifesting the effects of the present invention.
  • the organometallic compound may contain a compound in which an alkoxide, acetonate, glycolate, acetoacetate or isocyanate is coordinated to a metal. preferable.
  • the volume hologram medium of the present invention is a volume hologram medium having a volume hologram recording layer, and the volume hologram recording layer contains a metallopolymer having a structure represented by the general formula (2).
  • the method for producing a volume hologram medium of the present invention is a method for producing a volume hologram medium having a volume hologram recording layer, wherein the solution of the hologram recording material according to any one of claims 1 to 5 is used. And a step of forming a hologram recording layer containing a metallopolymer having a coordination compound by subjecting the photosensitive layer to holographic exposure and then heat treatment.
  • X to Y indicating a range means “X or more and Y or less”.
  • volume hologram medium A schematic configuration of an example of a preferred embodiment of a volume hologram medium will be described with reference to FIG.
  • a layer containing a photopolymerizable compound or the like before holographic exposure (interference exposure) is referred to as a photosensitive layer
  • a layer in which a volume hologram is recorded by performing holographic exposure on the photosensitive layer is referred to as a volume hologram recording layer.
  • the volume hologram medium 10 of this embodiment has a configuration in which a volume hologram recording layer 11 is provided between two adjacent layers 12. The adjacent layer 12 may be provided only on one side of the volume hologram recording layer 11.
  • the adjacent layer is a layer containing a resin having transparency.
  • resins can be used as long as they have transparency.
  • polyolefins such as polyethylene and polypropylene
  • acrylic resins such as polymethyl methacrylate, cellulose acylate, acetal resin, Polycarbonate, polyurethane, polyvinyl alcohol and the like can be used.
  • These resins may be used alone or in combination of two or more.
  • cellulose acylate having excellent optical properties is preferable.
  • the volume hologram recording layer has a layer containing a metallopolymer and a layer containing a photopolymer alternately, and one of these layers is a high refractive index layer and the other is higher than the high refractive index layer. It is a low refractive index layer having a relatively low refractive index.
  • the volume hologram recording layer of this embodiment having such a configuration can have high diffraction efficiency with low light scattering loss. Moreover, since it has the layer containing a metallopolymer, it is excellent also in durability.
  • the layer thickness of the volume hologram recording layer is not particularly limited, but is preferably 5 to 100 ⁇ m and more preferably 5 to 40 ⁇ m from the viewpoint of ensuring sufficient transparency.
  • the layer containing the metallopolymer of the volume hologram recording layer preferably contains a metallopolymer having a structure represented by the following general formula (2).
  • Formula (2) Sb- (R-Sb'-M-Sb ') n -R-Sb
  • M represents a metal element selected from Ti, Zr, Si, and Zn.
  • R represents a divalent linking group.
  • n represents an integer of 1 or more.
  • Sb—R—Sb ′ in the formula when n is 1 or more and Sb′—R—Sb ′ in the formula when n is 2 or more each represent a Schiff base ligand.
  • Sb ′ has a chemical structure having the same skeleton as Sb and represents a state in which Sb is changed to a chemical structure bonded to at least one of a coordinate bond and a covalent bond with the metal element M.
  • the Schiff base (Sb—R—Sb) that becomes the Schiff base ligands (Sb—R—Sb ′ and Sb′—R—Sb ′) is represented by the following general formula (1). It is preferable to have a structure.
  • the divalent linking group R in the general formula (2) corresponds to R 4 in the following general formula (1).
  • R 1 represents H, CH 3 , C 2 H 5 , C 3 H 7 or C 4 H 9 .
  • R 2 represents CH 3 , C 2 H 5 , C 2 H 4 OH or C 3 H 6 OH.
  • R 3 represents CH or N.
  • R 4 represents CH 2 , C 2 H 4 or OC 2 H 4 O.
  • the Schiff base having the structure represented by the general formula (1) can be synthesized by a general synthesis method.
  • a synthesis example of the exemplified compound (S-1) is shown below.
  • Other exemplified compounds can also be produced by changing the starting materials and performing the synthesis according to the procedure according to the following synthesis example.
  • the metallopolymer having the structure represented by the general formula (2) is represented by the following general formula (3) or the following general formula (4) from the viewpoint of easily forming a stable high molecular weight metallopolymer.
  • a compound having a structure is preferable.
  • M 1 represents Zn.
  • R 1 represents H, CH 3 , C 2 H 5 , C 3 H 7 or C 4 H 9 .
  • R 2 represents CH 3 or C 2 H 5 .
  • R 3 represents CH or N.
  • R 4 represents CH 2 , C 2 H 4 or OC 2 H 4 O.
  • n represents an integer of 1 or more.
  • M 2 represents Ti, Zr or Si.
  • R 1 represents H, CH 3 , C 2 H 5 , C 3 H 7 or C 4 H 9 .
  • R 2 represents C 2 H 4 OH or C 3 H 6 OH.
  • R 2 ′ represents C 2 H 4 O or C 3 H 6 O.
  • R 3 represents CH or N.
  • R 4 represents CH 2 , C 2 H 4 or OC 2 H 4 O.
  • n represents an integer of 1 or more.
  • R 2 ′ represents a state in which protons are removed from OH at the terminal of R 2 .
  • the upper limit of n is preferably 100, more preferably 50, from the viewpoint of facilitating the formation of the metallopolymer by exposure.
  • the lower limit of n is preferably 2, and more preferably 3.
  • the metal species can be identified by conducting elemental analysis, and the chemical structure of the Schiff base ligands that make up the metallopolymers can be determined in the hologram while the metallopolymer itself or unreacted. The remaining Schiff base can be identified by NMR analysis or the like.
  • the hologram recording layer of this embodiment has a layer containing a photopolymer.
  • the “photopolymer” refers to a polymer obtained as a result of polymerization of a photopolymerizable compound contained in a hologram recording material described later.
  • the weight average molecular weight (Mw) of the photopolymer is not particularly limited, but is preferably in the range of 50,000 to 200,000, and in the range of 70,000 to 150,000 from the viewpoint of improving durability. Is more preferable.
  • the volume hologram medium manufacturing method of the present embodiment includes a step of forming a photosensitive layer using a solution of a hologram recording material containing a metallopolymer precursor and a photopolymerizable compound, and after holographic exposure on the photosensitive layer, It has the process of forming a hologram recording layer by heat-processing.
  • the hologram recording material of this embodiment contains a metallopolymer precursor and a photopolymerizable compound (photopolymerizable monomer).
  • the metallopolymer precursor preferably contains a Schiff base and an organometallic compound.
  • a Schiff base, an organometallic compound, a radical polymerizable monomer, a photopolymerization initiator, a sensitizer, a chain transfer agent, a solvent, an additive, and the like are included in a resin serving as a binder.
  • these components will be described.
  • the Schiff base is preferably a compound having the structure represented by the general formula (1) described above.
  • the content of the Schiff base in the hologram recording material is preferably in the range of 5 to 45% by mass, more preferably in the range of 5 to 30% by mass, from the viewpoint of the formation efficiency of the metallopolymer. More preferably, it is 10 to 30% by mass.
  • the organometallic compound contains at least one metal element selected from Ti, Zr, Si and Zn from the viewpoint of ligand exchange efficiency with a Schiff base, and these metals include an alkoxide skeleton, an acetonate skeleton, It is preferable to contain a compound in which an organic ligand having a glycolate skeleton, an acetoacetate skeleton, or an isocyanate skeleton is coordinated.
  • a compound containing a normal propyl group, a normal butyl group, an isopropoxy group, or a 2-ethyl hexoxide group is preferable.
  • organic ligand having an acetonate skeleton a compound containing an acetylacetonate group is preferable.
  • organic ligand having a glycolate skeleton a compound containing an octylene glycolate group is preferable.
  • organic ligand having an acetoacetate skeleton a compound containing an ethylacetoacetate group is preferable.
  • organic ligand containing an isocyanate skeleton a compound containing an isocyanate group is preferable.
  • organometallic compound examples include, for example, zirconium tributoxy monoacetylacetonate, titanium tetraacetylacetonate, bis (2,4-pentanedionato) zinc (II), tetraisocyanate silane, and the like.
  • the content of the organometallic compound in the hologram recording material is preferably in the range of 1 to 25% by mass, and more preferably in the range of 5 to 20% by mass.
  • the radically polymerizable monomer (photopolymerizable compound) is not particularly limited as long as it has one or more radically polymerizable unsaturated double bonds in the molecule.
  • (meth) acryloyl group, vinyl group A monofunctional or polyfunctional compound having can be used.
  • the (meth) acryloyl group is a generic term for a methacryloyl group and an acryloyl group.
  • compounds having a (meth) acryloyl group include phenoxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and benzyl (meth).
  • Monofunctional (meth) acrylate Monofunctional (meth) acrylate; trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol Hexa (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, bis (2-hydroxyethyl) isocyanurate di ( And polyfunctional (meth) acrylates such as 2,2-bis [4- (acryloxydiethoxy) phenyl] propane; but are not necessarily limited thereto.
  • Examples of the compound having a vinyl group include monofunctional vinyl compounds such as monovinylbenzene and ethylene glycol monovinyl ether; polyfunctional vinyl compounds such as divinylbenzene, ethylene glycol divinyl ether, diethylene glycol divinyl ether, and triethylene glycol divinyl ether. However, it is not necessarily limited to these.
  • the content of the radical polymerizable monomer in the hologram recording material is preferably 1 to 25% by mass, and more preferably 5 to 20% by mass.
  • the photoradical polymerization initiator is an initiator that initiates photopolymerization of a radical polymerizable monomer by irradiation with laser light having a specific wavelength or light having excellent coherence in holographic exposure.
  • Examples of the radical photopolymerization initiator include US Pat. Nos. 4,766,055, 4,868,092, 4,965,171, JP-A Nos. 54-151024, 58-15503, and 58.
  • radical photopolymerization initiator examples include diaryliodonium salts, 2,4,6-substituted-1,3,5-triazines (triazine compounds), azo compounds, azide compounds, organic peroxides, organic boronic acids Examples thereof include salts, onium salts, halogenated hydrocarbon derivatives, titanocene compounds, monoacylphosphine oxides, bisacylphosphine oxides, and combinations of bisacylphosphine oxides and ⁇ -hydroxyketones.
  • the radical photopolymerization initiator system by combined use of hydrogen donors, such as a thiol compound, and a bisimidazole derivative can also be utilized. These radical photopolymerization initiators may be used alone or in combination of two or more.
  • radical photopolymerization initiator examples include tetrabutylammonium triphenylbutyl borate and the like.
  • the content of the photo radical polymerization initiator in the hologram recording material is preferably 0.05 to 50 parts by mass, more preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the radical polymerizable monomer.
  • the hologram recording material may contain a sensitizer having a sensitizing function with respect to the radical photopolymerization initiator.
  • a sensitizer has an absorption maximum wavelength in the range of 400 to 800 nm, particularly 450 to 700 nm. These sensitizers absorb light in the above range, thereby causing a sensitizing action on the radical photopolymerization initiator.
  • Examples of such a sensitizer include polymethine compounds such as cyanine dyes and styryl dyes, xanthene compounds such as rhodamine B, rhodamine 6G, and pyronin GY, phenazine compounds such as safranin O, cresyl violet, Phenoxazine compounds such as brilliant cresyl blue, phenothiazine compounds such as methylene blue and new methylene blue, diarylmethane compounds such as auramine, triarylmethane compounds such as crystal violet, brilliant green and lissamine green, (thio) pyrylium Examples thereof include salt compounds, squarylium compounds, coumarin dyes, thioxanthene dyes, acene dyes, merocyanine dyes, thiazolium dyes, and the like.
  • sensitizers can be used alone or in combination of two or more.
  • the content of the sensitizer in the hologram recording material is preferably in the range of 1 to 2000 parts by mass, more preferably in the range of 20 to 1500 parts by mass with respect to 100 parts by mass of the radical photopolymerization initiator.
  • the hologram recording material may contain a chain transfer agent.
  • the chain transfer agent is not particularly limited, and a known radical chain transfer agent can be used.
  • Examples of the chain transfer agent include n-butyl mercaptan, t-butyl mercaptan, t-dodecyl mercaptan, n-octyl mercaptan, n-lauryl mercaptan, 5-chloro-2-mercaptobenzothiazole, 6-ethoxy-2-mercapto.
  • heterocyclic mercaptans such as 2,4,6-trimercapto-s-triazine and 2,4,6-trimercapto-1,3,5-triazine; tetramethylthiudium disulfide, tetraethylthiu And disulfides such as radium disulfide; halogen compounds such as carbon tetrachloride and carbon tetrabromide; olefins such as 2-methyl-1-butene and ⁇ -methylstyrene dimer; and the like.
  • chain transfer agents can be used alone or in combination of two or more.
  • the content of the chain transfer agent in the hologram recording material is preferably in the range of 0.05 to 50 parts by mass, more preferably in the range of 0.1 to 30 parts by mass with respect to 100 parts by mass of the radical polymerizable monomer. is there.
  • the hologram recording material may include a resin serving as a binder or a precursor thereof.
  • the resin functions to improve the uniformity of the film thickness of the volume hologram recording layer, heat resistance, mechanical properties, etc., and stabilize the hologram formed by holographic exposure. Further, when the volume hologram recording layer is formed, it can have a function of not inhibiting or efficiently expressing the diffusion transfer phenomenon of the photopolymerizable monomer or photopolymer.
  • the resin that becomes the binder for example, any of thermoplastic resins, thermosetting resins, active energy ray curable resins, and the like can be used without limitation. Also, those resins modified with a polysiloxane chain or a perfluoroalkylene chain can be used. These resins can be used alone or in combination of two or more.
  • thermoplastic resins include, for example, polyvinyl acetate, polyvinyl butyrate, polyvinyl formal, polyvinyl carbazole, polyacrylic acid, polymethacrylic acid, polymethyl acrylate, polymethyl methacrylate, polyethyl acrylate, polybutyl acrylate, polymethacrylo Nitrile, polyethyl methacrylate, polybutyl methacrylate, polyacrylonitrile, poly-1,2-dichloroethylene, ethylene-vinyl acetate copolymer, syndiotactic polymethyl methacrylate, poly- ⁇ -vinyl naphthalate, polycarbonate, cellulose acetate, Cellulose triacetate, cellulose acetate butyrate, polystyrene, poly- ⁇ -methylstyrene, poly-o-methylstyrene, poly-p- Methylstyrene, poly-p-phenylstyrene, poly-2,5-
  • thermosetting resin examples include unsaturated polyester, acrylic urethane resin, epoxy-modified acrylic resin, epoxy-modified unsaturated polyester, polyurethane, alkyd resin, phenol resin and the like.
  • Examples of the active energy ray-curable resin include epoxy acrylate, urethane acrylate, and acrylic-modified polyester. These active energy ray-curable resins can include other monofunctional or polyfunctional monomers, oligomers, and the like as described below for the purpose of adjusting the cross-linked structure and viscosity.
  • mono (meth) acrylates such as tetrahydrofurfuryl (meth) acrylate, hydroxyethyl (meth) acrylate, vinyl pyrrolidone, (meth) acryloyloxyethyl succinate, (meth) acryloyloxyethyl phthalate, etc.
  • polyol (meth) acrylate epoxy-modified polyol (meth) acrylate, lactone-modified polyol (meth) acrylate, etc.
  • polyester (meth) acrylate epoxy (meth) acrylate, urethane (meth) acrylate, and other polybutadienes
  • Poly (meth) acrylates with isocyanuric acid-based, hydantoin-based, melamine-based, phosphoric acid-based, imide-based, phosphazene-based skeletons, and are UV- and electron-beam curable Monomers, oligomers, polymers may be utilized such.
  • the content of the resin or precursor thereof in the hologram recording material is preferably 1 to 50% by mass, more preferably 1 to 30% by mass, and further preferably 1 to 28% by mass. Preferably, it is 5 to 27% by mass.
  • a highly viscous material such as rubber or clay-like substance may be used as the matrix constituent material for holding the metallopolymer.
  • a solvent may be used as necessary when coating on the adjacent layer.
  • a solvent may not be necessary.
  • the solvent include aliphatic solvents such as n-pentane, n-hexane, n-heptane, n-octane, cyclohexane, and methylcyclohexane; ketone solvents such as methyl ethyl ketone, acetone, and cyclohexanone; diethyl ether, isopropyl ether, Ether solvents such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, anisole and phenetol; ester solvents such as ethy
  • plasticizer for hologram recording materials, plasticizer, compatibilizer, polymerization inhibitor, surfactant, silane coupling agent, antifoaming agent, release agent, stabilizer, antioxidant, flame retardant, optical as required
  • additives such as a whitening agent and a ultraviolet absorber.
  • the hologram recording material can be obtained by mixing the above-described components all at once or sequentially.
  • the apparatus used for mixing include stirring or mixing apparatuses such as a magnetic stirrer, homodisper, quick homomixer, and planetary mixer.
  • the obtained hologram recording material solution may be used after filtration, if necessary.
  • the photosensitive layer is formed on the adjacent layer using a solution of the hologram recording material.
  • the method for forming the photosensitive layer is not particularly limited. For example, (1) a method of directly applying a solution of a hologram recording material on an adjacent layer and drying, (2) a method of forming a hologram recording material on a separately prepared substrate. Examples include a method of applying a solution and drying, then laminating with an adjacent layer using a laminator and the like, and then peeling the substrate.
  • the photosensitive layer is more easily adhered to the adjacent layer, and in combination with the adjacent layer, the hologram is formed on the adjacent layer from the viewpoint of promoting the formation of a diffraction grating to the interface with the adjacent layer inside the photosensitive layer.
  • a method in which the recording material solution is directly applied and dried is preferred.
  • the separately prepared base material in the above (2) for example, acrylic resin, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthoate, polyethylene, polypropylene, amorphous polyolefin, cellulose acetate, hydrated cellulose, cellulose nitrate
  • the resin base material include cycloolefin polymer, polystyrene, polyepoxide, polysulfone, cellulose acylate, polyamide, polyimide, polymethyl methacrylate, polyvinyl chloride, polyvinyl butyral, polydicyclopentanediene, and the like.
  • a conventionally known method can be used as a method for applying the hologram recording material solution on the adjacent layer or the base material. Specific examples include a spray method, a spin coating method, a wire bar method, and a dip coating method. , Air knife coating method, roll coating method, blade coating method, doctor roll coating method and the like.
  • a method for drying after application various conventionally known methods using a hot plate, an oven, a belt furnace or the like can be employed.
  • the drying temperature is not particularly limited, and is, for example, in the range of 10 to 50 ° C.
  • the drying time is not particularly limited, and is, for example, in the range of 1 to 60 minutes.
  • a photosensitive layer is sandwiched between two adjacent layers, a photosensitive layer is formed on one adjacent layer, and then another adjacent layer is formed on the photosensitive layer using a laminator or the like. It can be obtained by using and laminating.
  • the volume hologram recording layer of the present embodiment is formed by subjecting the photosensitive layer to holographic exposure (interference exposure) and then heat treatment.
  • the thickness of the volume hologram recording layer (photosensitive layer) is not particularly limited, but is preferably 5 to 100 ⁇ m and more preferably 5 to 40 ⁇ m from the viewpoint of ensuring sufficient transparency.
  • the mechanism by which the volume hologram recording layer described above is formed is presumed as follows.
  • holographic exposure is performed on the photosensitive layer, polymerization of the photopolymerizable compound is promoted at the exposed portion in the photosensitive layer.
  • the photopolymerizable compound is consumed in the exposed portion and the concentration of the photopolymerizable compound decreases, the photopolymerizable compound diffuses and moves from the non-exposed portion to the exposed portion, so that further polymerization reaction proceeds.
  • the component of the metallopolymer precursor contained in the exposed part is pushed out from the exposed part to the non-exposed part, and the concentration of the metallopolymer precursor is increased in the non-exposed part.
  • the metallopolymer precursor present in the exposed part does not react with visible light, and the molecular weight remains small, so the diffusion movement of the metallopolymer precursor from the exposed part to the non-exposed part is not It is not hindered and does not inhibit the diffusion movement of the photopolymerizable compound from the non-exposed area to the exposed area. Therefore, it is considered that a high-refractive index region and a low-refractive index region can be clearly separated, and a volume hologram recording layer having high diffraction efficiency and high light transmittance can be formed.
  • the hologram recording layer is heat-treated, in the region where the metallopolymer precursors are gathered, the ligand is exchanged by the coordination of the Schiff base to the metal to which the organic ligand has been coordinated.
  • a stable and robust metallopolymer can be easily produced. Thereby, it is considered that a volume hologram recording layer having high heat resistance and light resistance can be obtained.
  • a method of performing holographic exposure on the photosensitive layer and recording (writing) a volume hologram to form a volume hologram recording layer is not particularly limited, and examples thereof include the following methods.
  • recording light light capable of causing a chemical change of a polymerizable monomer, that is, polymerization and concentration change
  • recording light also referred to as object light
  • object light is irradiated onto the photosensitive layer together with reference light so that the object light and reference light interfere with each other in the photosensitive layer.
  • the interference light causes polymerization and concentration change of the polymerizable monomer in the photosensitive layer.
  • the interference fringes cause a refractive index difference in the photosensitive layer, and the interference fringes recorded in the photosensitive layer It is recorded as a volume hologram and becomes a volume hologram recording layer.
  • the recording light used for recording the volume hologram (the wavelength in the parentheses indicates a wavelength)
  • a visible light laser having excellent coherence.
  • an argon ion laser (458 nm, 488 nm, 514 nm), a krypton ion laser (647 0.1 nm), helium-neon laser (633 nm), YAG laser (532 nm), etc.
  • the irradiation energy amount (exposure amount) at the time of hologram recording is not particularly limited, but is preferably in the range of 10 to 250 mJ / cm 2 .
  • Hologram recording methods include a polarization collinear hologram recording method, a reference light incident angle multiplexing hologram recording method, and the like, and any recording method can provide good recording quality.
  • the exposure apparatus is not particularly limited.
  • an exposure apparatus as shown in FIG. 2 can be used.
  • the light beam (recording light) emitted from the laser light source 201 guides the light beam to a suitable position in the exposure system by the beam steerers 202a and 202b composed of two pairs of mirrors.
  • a shutter 203 controls ON / OFF of a light beam (recording light).
  • a beam expander 204 has a function of expanding the beam diameter and changing the aperture ratio (NA) according to the exposure area of the photosensitive layer.
  • the light beam (recording light) that has passed through the beam expander 204 is divided into two light beams by the beam splitter 205.
  • Spatial filters 211 and 212 are composed of a lens and a pinhole, and collect light rays (recording light) with the lenses, and guide the light rays (recording light) to the manufacturing optical system 213 through the pinholes.
  • the production optical system 213 installs and fixes a sample such as a glass or optical plastic prism provided with a photosensitive layer as a volume hologram recording layer at a suitable position so that the reflection angle of the light beam of the volume hologram medium can be controlled. can do.
  • FIG. 3 shows an example of a state in which the photosensitive layer 13 sandwiched between the adjacent layers 12 is sandwiched between a pair of prism bases 104a and 104b made of glass coated with silicone adhesives 103a and 103b. Indicates.
  • a photosensitive layer provided on a prism or the like fixed to the production optical system 213 is divided into two light beams, and is subjected to holographic exposure by light beams (recording light) guided through the spatial filters 211 and 212, respectively.
  • light beams recording light
  • FIG. 2 Although only one light source is shown in FIG. 2, when holographic exposure is performed using a plurality of laser light sources having different wavelengths, a glitch mirror is inserted in the optical path before the shutter 203 to The emitted laser beam may be synthesized stepwise.
  • the volume hologram recording layer can be further subjected to appropriate treatments such as full exposure with ultraviolet rays and heating in order to promote refractive index modulation and complete (fix) the polymerization reaction.
  • a light source used for the entire surface exposure for example, a light source emitting ultraviolet rays such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a carbon arc lamp, a xenon arc lamp, a metal halide lamp, or the like can be used.
  • the irradiation energy amount in the case of performing the entire surface exposure with ultraviolet rays is preferably 50 to 200 J / cm 2 .
  • the temperature during the heat treatment is preferably 50 to 150 ° C.
  • the treatment time is preferably 30 minutes to 3 hours.
  • the volume hologram recorded on the volume hologram recording layer is reproduced by irradiating the volume hologram recording layer with predetermined reproduction light (usually reference light).
  • the irradiated reproduction light is diffracted according to the interference fringes. Since this diffracted light contains the same information as the volume hologram recording layer, the information recorded on the volume hologram recording layer can be reproduced by reading the diffracted light with an appropriate detection means.
  • the wavelength regions of the object light, the reproduction light, and the reference light are arbitrary depending on the application, and may be in the visible light region or the ultraviolet light region.
  • Heat treatment After recording the volume hologram, heat treatment is performed to form a metallopolymer in a region where the concentration of the metallopolymer precursor that was a non-exposed portion is high.
  • the ligand exchange is performed by the coordination of the Schiff base to the metal to which the organic ligand of the organometallic compound is coordinated.
  • the Schiff base is coordinated to the metal.
  • a metallopolymer having a structure is formed.
  • the Schiff base of the present embodiment has the structure represented by the general formula (1), a metallopolymer in which the Schiff base and a metal are connected in series as shown by the general formula (2). Can be formed.
  • the heat treatment is not particularly limited as long as the ligand can be exchanged between the organometallic compound and the Schiff base, but it is preferably performed in the range of 80 to 120 ° C. for 2 to 80 hours.
  • the volume hologram medium of this embodiment may have other layers such as a protective layer, a reflective layer, an antireflection film, and an ultraviolet absorption layer.
  • the protective layer is a layer for preventing influences such as deterioration of storage stability of the recording layer.
  • limiting in the specific structure of a protective layer It is possible to apply a well-known thing arbitrarily.
  • a layer made of a water-soluble polymer, an organic / inorganic material, or the like can be formed as a protective layer.
  • the formation position of the protective layer is not particularly limited.
  • the protective layer may be formed on the surface of the volume hologram recording layer, between the adjacent layer and a support described later, or on the outer surface side of the support. Also good.
  • the reflection layer is formed when the volume hologram medium is configured to be a reflection type.
  • the reflective layer is usually formed on the outer surface of the adjacent layer.
  • the reflective layer conventionally known ones can be applied as appropriate, and for example, a metal thin film or the like can be used.
  • an antireflection film may be provided on the side on which the object light and the reproduction light enter and exit, or between the volume hologram recording layer and the adjacent layer.
  • the antireflection film functions to improve light utilization efficiency and suppress the generation of ghost images.
  • the antireflection film conventionally known ones can be referred to as appropriate.
  • the ultraviolet absorbing layer is formed on the outer surface of the adjacent layer, for example, and is used for cutting ultraviolet rays to the hologram recording layer.
  • the ultraviolet absorbing layer conventionally known materials can be used as long as they have necessary strength and durability.
  • the volume hologram medium of the present embodiment may be further sandwiched between transparent supports.
  • the support may be employed to protect and hold the volume hologram medium of the present embodiment, or may be employed to function as an optical element such as a prism in combination with the volume hologram medium.
  • the support is not particularly limited as long as it has necessary strength and durability, and any support can be used. Moreover, although there is no restriction
  • the surface of the support may be subjected to a surface treatment.
  • This surface treatment is usually performed to improve the adhesion between the support and the volume hologram medium.
  • Examples of the surface treatment include subjecting the support to corona discharge treatment or forming an undercoat layer on the support in advance.
  • examples of the composition of the undercoat layer include halogenated phenol, partially hydrolyzed vinyl chloride-vinyl acetate copolymer, polyurethane resin, and the like.
  • the surface treatment may be performed for purposes other than the improvement of adhesiveness.
  • Examples thereof include a reflective coating treatment for forming a reflective coating layer made of a metal such as gold, silver, and aluminum; a dielectric coating treatment for forming a dielectric layer such as magnesium fluoride and zirconium oxide, and the like. It is done.
  • these layers may be formed of a single layer or two or more layers. Further, these surface treatments may be provided for the purpose of controlling the gas and moisture permeability of the volume hologram medium. Thereby, the reliability of the volume hologram medium can be further improved.
  • the support may be provided only on either the upper side or the lower side of the volume hologram medium, or may be provided on both. However, when providing supports on both the upper and lower sides, at least one of the supports is configured to be transparent so as to transmit active energy rays (recording light, reference light, reproduction light, etc.).
  • highly transparent adhesives such as a silicone adhesive and an acrylic adhesive, can be used.
  • a transmission type or reflection type hologram can be recorded.
  • a reflection type hologram can be recorded.
  • the volume hologram medium of the present embodiment is used for a holographic optical element.
  • a head mounted display HMD
  • a head-up display HUD
  • an optical memory for example, a liquid crystal color filter, a reflective liquid crystal.
  • the Schiff bases (S-1) to (S-7) correspond to the exemplary compound examples (S-1) to (S-7) of the Schiff base described above.
  • ⁇ Preparation of volume hologram medium 1> (Preparation of Hologram Recording Material Solution 1) The following components were put into a container in a dark room and stirred at room temperature for 24 hours to obtain a hologram recording material solution 1.
  • a hologram recording material solution 1 is applied onto a polyethylene terephthalate (PET) film having a thickness of 100 ⁇ m using a blade coater and dried for 30 minutes in an environment of 20 ° C. and 50% RH, thereby forming a photosensitive layer having a thickness of 15 ⁇ m. Obtained. Thereafter, the photosensitive layer was covered with a TAC film subjected to an antireflection treatment and laminated. Next, the PET film was peeled off, and the peeled surface was attached to the glass surface of AR glass to obtain a photosensitive layer sandwiched between two adjacent layers.
  • PET polyethylene terephthalate
  • Holographic exposure is performed on the photosensitive layer sandwiched between two adjacent layers using an exposure apparatus (light source: argon laser, exposure wavelength 514 nm) as shown in FIG. 2 so that the irradiation energy amount on the photosensitive layer surface is 24 mJ / cm 2. Went.
  • the volume hologram recording layer is formed by placing the high pressure mercury lamp (illuminance of 100 W) at a position of 15 cm for 60 minutes and then performing heat treatment at 100 ° C. for 24 hours to form the volume hologram medium 1. Obtained.
  • volume hologram media 2 to 6 In the production of the volume hologram medium 1, the volume hologram mediums 2 to 2 are similarly produced except that the Schiff base (S-1) contained in the hologram recording material solution is changed to the Schiff bases (S-2) to (S-6). 6 was produced.
  • volume hologram medium 7 In the production of the volume hologram medium 1, the volume hologram was similarly obtained except that the zirconium tributoxy monoacetylacetonate (OM-1) contained in the hologram recording material solution was changed to titanium tetraacetylacetonate (OM-2). Medium 7 was produced.
  • OM-1 zirconium tributoxy monoacetylacetonate
  • OM-2 titanium tetraacetylacetonate
  • volume hologram medium 8 In the production of the volume hologram medium 1, zirconium tributoxy monoacetylacetonate (OM-1) contained in the hologram recording material solution was changed to bis (2,4-pentanedionato) zinc (II) (OM-3). A volume hologram medium 8 was prepared in the same manner except that the Schiff base (S-1) was changed to the Schiff base (S-7).
  • volume hologram medium 9 was produced in the same manner except that the composition of the hologram recording material solution 1 was changed to the composition of the hologram recording material solution 2 described below.
  • volume hologram medium 10 was obtained in the same manner as in the production of the volume hologram medium 1, except that the compound (S-1) was removed from the hologram recording material solution 1.
  • volume hologram medium 11 was obtained in the same manner except that the composition of the hologram recording material solution 1 was changed to the following composition of the hologram recording material solution 3 in the production of the volume hologram medium 1.
  • the light transmittance of the volume hologram medium was measured under the following conditions using a spectrophotometer U-3900 (manufactured by Hitachi, Ltd.). Scan range 400-800nm Scan speed 600nm / min
  • Light transmittance (430 nm) Using a spectrophotometer U-3900 (manufactured by Hitachi, Ltd.), the light transmittance was measured under the same conditions as described above, and the light transmittance T1 (%) at a wavelength of 430 nm, which is susceptible to the coloring and scattering of the compound itself. Asked. The light transmittance T1 at a wavelength of 430 nm was determined to be 80% or more.
  • the volume hologram media 1 to 9 of the examples had high diffraction efficiency and light transmittance and excellent durability.
  • the volume hologram media 10 and 11 of the comparative example were inferior in any item.
  • the volume hologram medium manufactured by the hologram recording material of the present embodiment is used for a holographic optical element.
  • a holographic optical element for example, a head mounted display (HMD), a head-up display (HUD), an optical memory, a pickup lens for an optical disk, a liquid crystal Color filters, reflective liquid crystal reflectors, lenses, diffraction gratings, interference filters, optical fiber couplers, facsimile light polarizers, architectural window glass, covers for books, magazines, displays such as POPs, gifts, forgery prevention
  • HMD head mounted display
  • HUD head-up display

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Holo Graphy (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

The present invention addresses the problem of providing: a holographic recording material for volume holographic media, which has excellent diffraction efficiency, light transmittance and durability; a volume holographic medium; and the like. The above-described problem is solved by a holographic recording material which contains a metallopolymer precursor and a photopolymerizable compound. The above-described problem is also solved by a volume holographic medium 10 which contains a metallopolymer having a structure represented by general formula (2) in a volume holographic recording layer 11. Sb-(R-Sb'-M-Sb')n-R-Sb General formula (2) (In general formula (2), M represents a predetermined metal element; R represents a divalent linking group; n represents an integer of 1 or more; each of Sb-R-Sb' and Sb'-R-Sb' represents a Schiff base ligand; and Sb' represents a chemical structure that has the same skeleton as Sb and has been converted into a state where Sb is coordinately and/or covalently bonded to the metal element M.)

Description

ホログラム記録材料、体積ホログラム媒体及び体積ホログラム媒体の製造方法Hologram recording material, volume hologram medium, and method of manufacturing volume hologram medium
 本発明は、ホログラム記録材料、体積ホログラム媒体及び体積ホログラム媒体の製造方法に関する。より詳細には、本発明は、回折効率が高く、光透過率が高く、かつ耐久性に優れた体積ホログラム媒体用のホログラム記録材料、体積ホログラム媒体及び体積ホログラム媒体の製造方法に関する。 The present invention relates to a hologram recording material, a volume hologram medium, and a method for manufacturing a volume hologram medium. More specifically, the present invention relates to a hologram recording material for a volume hologram medium having high diffraction efficiency, high light transmittance, and excellent durability, a volume hologram medium, and a method for producing the volume hologram medium.
 体積ホログラム媒体を有するホログラフィック光学素子は、光コンバイナとして機能し、光学レンズ、表示素子等に応用され、需要が高まりつつある。とりわけ、ヘッドマウントディスプレイやヘッドアップディスプレイ等の表示素子としてのホログラフィック光学素子は、体積ホログラム媒体の透明性が高いが故、シースルータイプの表示素子として利用が可能である(例えば特許文献1)。 Holographic optical elements having a volume hologram medium function as an optical combiner and are applied to optical lenses, display elements, and the like, and demand is increasing. In particular, a holographic optical element as a display element such as a head-mounted display or a head-up display can be used as a see-through display element because the volume hologram medium has high transparency (for example, Patent Document 1).
 近年、需要の高まりや用途の多様化に伴い、ホログラフィック光学素子への要求性能は高まり、品質項目は多様化してきている。シースルータイプの表示素子では、外部光(背景)の存在下で情報光を表示するため、体積ホログラム記録層が高回折効率であることが要求される。
 また、ホログラフィック光学素子の用途に用いられる体積ホログラム媒体は、従来よりも高い耐熱性や耐光性が要求され、長時間使用した場合であってもホログラム記録が安定して保持されていることが求められる。このように、光学素子の用途に用いられる体積ホログラム媒体には、これらの耐熱性、耐光性、及び耐候性等の耐久性が求められる。
In recent years, with the increase in demand and diversification of applications, the required performance for holographic optical elements has increased and the quality items have diversified. In the see-through type display element, the volume hologram recording layer is required to have high diffraction efficiency in order to display information light in the presence of external light (background).
In addition, volume hologram media used for holographic optical elements are required to have higher heat resistance and light resistance than conventional ones, and even when used for a long time, hologram recording can be stably held. Desired. Thus, durability such as heat resistance, light resistance, and weather resistance is required for volume hologram media used for optical element applications.
 特許文献2には、無機酸化物ネットワークと光重合性モノマーを併用したホログラム記録材料が開示されている。ネットワークを形成し得る無機酸化物材料をバインダーとして用いる場合には、耐熱性、対環境性、機械強度に優れると共に、光重合性の有機モノマーとの屈折率差を大きくできるという利点がある。
 しかし、このようなホログラム記録材料で形成した体積ホログラム媒体は、どちらかといえば脆くて、柔軟性や加工適性が低く、コーティング適性に劣るという問題がある。また、無機酸化物バインダーと有機モノマーの相溶性が良くないので、均一な塗工材料を調製するのが困難であるという問題もある。さらに、無機酸化物ネットワーク上に、光重合性ポリマーを作製するので、高屈折率層と低屈折率層の分離が不十分となり、屈折率差を大きくしにくい等の問題があった。
Patent Document 2 discloses a hologram recording material using an inorganic oxide network and a photopolymerizable monomer in combination. In the case where an inorganic oxide material capable of forming a network is used as a binder, there are advantages that heat resistance, environmental resistance, and mechanical strength are excellent, and a difference in refractive index from a photopolymerizable organic monomer can be increased.
However, the volume hologram medium formed with such a hologram recording material is rather brittle, and has a problem that flexibility and workability are low and coating suitability is poor. Further, since the compatibility between the inorganic oxide binder and the organic monomer is not good, there is a problem that it is difficult to prepare a uniform coating material. Furthermore, since the photopolymerizable polymer is produced on the inorganic oxide network, there is a problem that separation between the high refractive index layer and the low refractive index layer becomes insufficient, and it is difficult to increase the refractive index difference.
 また、特許文献2には、無機物質ネットワーク中に有機基を導入することによって無機酸化物バインダーに柔軟性を付与し、ホログラム記録層の脆さを改善することも開示されている。
 しかし、特許文献2には、側鎖に有機部を有する有機金属化合物又は有機モノマーと重合可能な官能基を有する有機金属化合物を加水分解、重縮合することによって、無機酸化物ネットワーク中に有機基を導入することが開示されているだけである。すなわち、特許文献2の開示によれば、無機酸化物ネットワークのネットワーク構造自体は無機化合物と酸素が相互に連結した鎖により構成され、有機基は無機酸化物ネットワークのネットワーク構造にペンダント状の側鎖として導入されるだけなので、無機酸化物ネットワークの剛直な構造を本質的に変化させるものではなかった。
Patent Document 2 also discloses that an organic group is introduced into an inorganic substance network to impart flexibility to the inorganic oxide binder and improve brittleness of the hologram recording layer.
However, Patent Document 2 discloses that an organic group in an inorganic oxide network is obtained by hydrolysis and polycondensation of an organometallic compound having an organic moiety in the side chain or an organometallic compound having a functional group polymerizable with an organic monomer. It is only disclosed to introduce. That is, according to the disclosure of Patent Document 2, the network structure of the inorganic oxide network itself is constituted by a chain in which an inorganic compound and oxygen are connected to each other, and the organic group is pendant side chain on the network structure of the inorganic oxide network. Since it was only introduced as a, it did not essentially change the rigid structure of the inorganic oxide network.
 特許文献3には、有機-シリカハイブリッドポリマーと、特定の有機金属微粒子と、光重合開始剤とを含有する、体積ホログラム媒体用のホログラム記録材料が記載されている。特許文献3のように金属元素を含む微粒子を用いた場合には、金属微粒子の比重が高いため、当該金属微粒子が沈降する等、均一に分散させることが困難であるとともに、ホログラム撮影の際、モノマーの動きを阻害する要因ともなっていた。また、微粒子同士が凝集してしまい、光散乱損失が大きくなるという問題もあった。 Patent Document 3 describes a hologram recording material for a volume hologram medium containing an organic-silica hybrid polymer, specific organometallic fine particles, and a photopolymerization initiator. When fine particles containing a metal element are used as in Patent Document 3, the specific gravity of the metal fine particles is high, so that it is difficult to uniformly disperse the metal fine particles. It was also a factor that hindered monomer movement. There is also a problem that the fine particles are aggregated to increase light scattering loss.
特開2014-215410号公報JP 2014-215410 A 特許第2953200号公報Japanese Patent No. 2953200 特許第4536276号公報Japanese Patent No. 4536276
 本発明は上記問題及び状況に鑑みてなされたものであり、その解決課題は、回折効率が高く、光透過率が高く、かつ耐久性に優れた体積ホログラム媒体用のホログラム記録材料、体積ホログラム媒体及び体積ホログラム媒体の製造方法を提供することである。 The present invention has been made in view of the above problems and circumstances, and the problem to be solved is a hologram recording material for a volume hologram medium, a volume hologram medium having high diffraction efficiency, high light transmittance, and excellent durability. And a method of manufacturing a volume hologram medium.
 本発明者らは、上記課題を解決すべく、鋭意検討した結果、メタロポリマー前駆体と光重合性化合物を含有するホログラム材料によって、回折効率と光透過率が高く、かつ耐久性に優れた体積ホログラム媒体が得られることを見いだし、本発明を完成した。
 すなわち、本発明に係る課題は、以下の手段によって解決される。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a hologram material containing a metallopolymer precursor and a photopolymerizable compound has a high diffraction efficiency and light transmittance, and excellent durability. The inventors found that a hologram medium can be obtained and completed the present invention.
That is, the subject concerning this invention is solved by the following means.
 1.体積ホログラム媒体用のホログラム記録材料であって、
 メタロポリマー前駆体と光重合性化合物を含有することを特徴とするホログラム記録材料。
1. A hologram recording material for a volume hologram medium,
A hologram recording material comprising a metallopolymer precursor and a photopolymerizable compound.
 2.前記メタロポリマー前駆体が、シッフ塩基と有機金属化合物を含有することを特徴とする第1項に記載のホログラム記録材料。 2. 2. The hologram recording material according to item 1, wherein the metallopolymer precursor contains a Schiff base and an organometallic compound.
 3.前記有機金属化合物が、Ti、Zr、Si及びZnから選ばれる金属元素を少なくとも一種含有することを特徴とする第2項に記載のホログラム記録材料。 3. 3. The hologram recording material according to item 2, wherein the organometallic compound contains at least one metal element selected from Ti, Zr, Si and Zn.
 4.前記シッフ塩基が、下記一般式(1)で表される構造を有することを特徴とする第2項又は第3項に記載のホログラム記録材料。 4. The hologram recording material according to item 2 or 3, wherein the Schiff base has a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
〔上記一般式(1)において、Rは、H、CH、C、C又はCを表す。Rは、CH、C、COH又はCOHを表す。Rは、CH又はNを表す。Rは、CH、C又はOCOを表す。〕 [In the general formula (1), R 1 represents H, CH 3 , C 2 H 5 , C 3 H 7 or C 4 H 9 . R 2 represents CH 3 , C 2 H 5 , C 2 H 4 OH or C 3 H 6 OH. R 3 represents CH or N. R 4 represents CH 2 , C 2 H 4 or OC 2 H 4 O. ]
 5.前記有機金属化合物が、金属に、アルコキシド、アセトネート、グリコレート、アセトアセテート又はイソシアネートの有機配位子が配位結合した化合物を含有することを特徴とする第2項から第4項までのいずれか一項に記載のホログラム記録材料。 5. Any one of Items 2 to 4, wherein the organometallic compound contains a compound in which an organic ligand of alkoxide, acetonate, glycolate, acetoacetate or isocyanate is coordinated to a metal. The hologram recording material according to one item.
 6.体積ホログラム記録層を有する体積ホログラム媒体であって、
 前記体積ホログラム記録層に、下記一般式(2)で表される構造を有するメタロポリマーを含有することを特徴とする体積ホログラム媒体。
一般式(2):Sb-(R-Sb′-M-Sb′)-R-Sb
〔上記一般式(2)において、Mは、Ti、Zr、Si及びZnから選ばれる金属元素を表す。Rは、2価の連結基を表す。nは、1以上の整数を表す。nが1以上ときの式中のSb-R-Sb′及びnが2以上ときの式中のSb′-R-Sb′は、それぞれシッフ塩基配位子を表す。Sb′は、Sbと同一骨格の化学構造を有し、Sbが金属元素Mとの配位結合及び共有結合の少なくともいずれかにより結合した化学構造に変化した状態を表す。〕
6). A volume hologram medium having a volume hologram recording layer,
A volume hologram medium comprising a metallopolymer having a structure represented by the following general formula (2) in the volume hologram recording layer.
Formula (2): Sb- (R-Sb'-M-Sb ') n -R-Sb
[In the general formula (2), M represents a metal element selected from Ti, Zr, Si and Zn. R represents a divalent linking group. n represents an integer of 1 or more. Sb—R—Sb ′ in the formula when n is 1 or more and Sb′—R—Sb ′ in the formula when n is 2 or more each represent a Schiff base ligand. Sb ′ has a chemical structure having the same skeleton as Sb and represents a state in which Sb is changed to a chemical structure bonded to at least one of a coordinate bond and a covalent bond with the metal element M. ]
 7.体積ホログラム記録層を有する体積ホログラム媒体の製造方法であって、
 第1項から第5項までのいずれか一項に記載のホログラム記録材料の溶液を用いて感光層を形成する工程と、
 前記感光層にホログラフィ露光した後、熱処理することによって、配位化合物を有するメタロポリマーを含有するホログラム記録層を形成する工程を有することを特徴とする体積ホログラム媒体の製造方法。
7). A method for producing a volume hologram medium having a volume hologram recording layer,
Forming a photosensitive layer using the hologram recording material solution according to any one of items 1 to 5,
A method for producing a volume hologram medium, comprising the step of forming a hologram recording layer containing a metallopolymer having a coordination compound by subjecting the photosensitive layer to holographic exposure followed by heat treatment.
 本発明の上記手段により、回折効率が高く、光透過率が高く、かつ耐久性に優れた体積ホログラム媒体用のホログラム記録材料、体積ホログラム媒体及び体積ホログラム媒体の製造方法を提供することができる。
 上記効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
By the above means of the present invention, it is possible to provide a hologram recording material for volume hologram medium, a volume hologram medium, and a method for producing the volume hologram medium, which have high diffraction efficiency, high light transmittance, and excellent durability.
The expression mechanism or action mechanism of the above effect is not clear, but is presumed as follows.
 本発明のホログラム記録材料には、メタロポリマー前駆体と光重合性化合物が含有されている。当該ホログラム記録材料によって形成された感光層にホログラフィ露光を行うと、感光層中の露光部において、光重合性化合物の重合が促進される。ここで、露光部で、光重合性化合物が消費されて光重合性化合物の濃度が薄くなると、非露光部から露光部に光重合性化合物の拡散移動が起こるため、さらなる重合反応が進む。一方で、露光部に含有されていたメタロポリマー前駆体の成分は、露光部から非露光部に押し出され、非露光部において、メタロポリマー前駆体の濃度が濃くなる。 The hologram recording material of the present invention contains a metallopolymer precursor and a photopolymerizable compound. When holographic exposure is performed on the photosensitive layer formed of the hologram recording material, polymerization of the photopolymerizable compound is promoted in the exposed portion of the photosensitive layer. Here, when the photopolymerizable compound is consumed in the exposed portion and the concentration of the photopolymerizable compound decreases, the photopolymerizable compound diffuses and moves from the non-exposed portion to the exposed portion, so that further polymerization reaction proceeds. On the other hand, the component of the metallopolymer precursor contained in the exposed part is pushed out from the exposed part to the non-exposed part, and the concentration of the metallopolymer precursor is increased in the non-exposed part.
 ここで、ホログラフィ露光時において、露光部に存在していたメタロポリマー前駆体は、可視光では反応せず、分子量が小さいままなので、メタロポリマー前駆体の露光部から非露光部への拡散移動は阻害されず、かつ光重合性化合物の非露光部から露光部への拡散移動も阻害しない。したがって、高屈折率領域と低屈折率領域をはっきりと分離でき、回折効率と光透過率が高い体積ホログラム記録層を形成できると考えられる。
 さらに、ホログラフィ露光後に、熱処理することによって、メタロポリマー前駆体が集まっている領域に、メタロポリマーを形成することができる。よって、耐久性に優れたホログラム記録層を形成することができると考えられる。
Here, at the time of holographic exposure, the metallopolymer precursor present in the exposed part does not react with visible light, and the molecular weight remains small, so the diffusion movement of the metallopolymer precursor from the exposed part to the non-exposed part is not It is not hindered and does not inhibit the diffusion movement of the photopolymerizable compound from the non-exposed area to the exposed area. Therefore, it is considered that a high-refractive index region and a low-refractive index region can be clearly separated, and a volume hologram recording layer having high diffraction efficiency and high light transmittance can be formed.
Furthermore, the metallopolymer can be formed in a region where the metallopolymer precursors are gathered by heat treatment after the holographic exposure. Therefore, it is considered that a hologram recording layer having excellent durability can be formed.
 したがって、本発明のホログラム記録材料によって回折効率が高く、光透過率が高く、かつ耐久性に優れた体積ホログラム媒体を製造することができると考えられる。
 なお、上記メカニズムは推測によるものであり、本実施形態の体積ホログラム媒体が上記メカニズムによって何ら制限されるものではない。
Therefore, it is considered that the hologram recording material of the present invention can produce a volume hologram medium with high diffraction efficiency, high light transmittance, and excellent durability.
In addition, the said mechanism is based on estimation and the volume hologram medium of this embodiment is not restrict | limited at all by the said mechanism.
体積ホログラム媒体の断面模式図Cross-sectional schematic diagram of volume hologram medium ホログラフィ露光に用いる露光装置の一例を示す概略図Schematic showing an example of an exposure apparatus used for holographic exposure ホログラフィ露光を行う際の、隣接層に挟まれた感光層が、プリズム基体に挟持された状態の一例を示す断面模式図Schematic cross-sectional view showing an example of a state in which a photosensitive layer sandwiched between adjacent layers is sandwiched between prism bases when performing holographic exposure
 本発明のホログラム記録材料は、体積ホログラム媒体用のホログラム記録材料であって、メタロポリマー前駆体と光重合性化合物を含有することを特徴とする。この特徴は、各請求項に係る発明に共通又は対応する技術的特徴である。 The hologram recording material of the present invention is a hologram recording material for a volume hologram medium, and contains a metallopolymer precursor and a photopolymerizable compound. This feature is a technical feature common to or corresponding to the claimed invention.
 本発明の実施態様としては、前記メタロポリマー前駆体が、シッフ塩基と有機金属化合物を含有することが好ましい。メタロポリマー前駆体を含有する領域を熱処理することにより、有機金属化合物とシッフ塩基配位子が配位子交換され、容易に安定で堅牢なメタロポリマーを作製する事ができる。したがって、耐久性に優れた体積ホログラム媒体を製造できる。 As an embodiment of the present invention, the metallopolymer precursor preferably contains a Schiff base and an organometallic compound. By heat-treating the region containing the metallopolymer precursor, the organometallic compound and the Schiff base ligand are subjected to ligand exchange, and a stable and robust metallopolymer can be easily produced. Therefore, a volume hologram medium having excellent durability can be manufactured.
 また、本発明の実施態様としては、本発明の効果発現の観点から、前記有機金属化合物が、Ti、Zr、Si及びZnから選ばれる金属元素を少なくとも一種含有することが好ましい。 As an embodiment of the present invention, it is preferable that the organometallic compound contains at least one metal element selected from Ti, Zr, Si, and Zn from the viewpoint of manifesting the effects of the present invention.
 また、本発明の実施態様としては、本発明の効果発現の観点から、前記シッフ塩基が、上記一般式(1)で表される構造を有することが好ましい。 As an embodiment of the present invention, it is preferable that the Schiff base has a structure represented by the above general formula (1) from the viewpoint of manifesting the effects of the present invention.
 また、本発明の実施態様としては、メタロポリマーの形成効率の観点から、前記有機金属化合物が、金属に、アルコキシド、アセトネート、グリコレート、アセトアセテート又はイソシアネートが配位結合した化合物を含有することが好ましい。 Moreover, as an embodiment of the present invention, from the viewpoint of metallopolymer formation efficiency, the organometallic compound may contain a compound in which an alkoxide, acetonate, glycolate, acetoacetate or isocyanate is coordinated to a metal. preferable.
 また、本発明の体積ホログラム媒体は、体積ホログラム記録層を有する体積ホログラム媒体であって、前記体積ホログラム記録層に、上記一般式(2)で表される構造を有するメタロポリマーを含有する。 The volume hologram medium of the present invention is a volume hologram medium having a volume hologram recording layer, and the volume hologram recording layer contains a metallopolymer having a structure represented by the general formula (2).
 また、本発明の体積ホログラム媒体の製造方法は、体積ホログラム記録層を有する体積ホログラム媒体の製造方法であって、請求項1から請求項5までのいずれか一項に記載のホログラム記録材料の溶液を用いて感光層を形成する工程と、前記感光層にホログラフィ露光した後、熱処理することによって、配位化合物を有するメタロポリマーを含有するホログラム記録層を形成する工程を有する。 The method for producing a volume hologram medium of the present invention is a method for producing a volume hologram medium having a volume hologram recording layer, wherein the solution of the hologram recording material according to any one of claims 1 to 5 is used. And a step of forming a hologram recording layer containing a metallopolymer having a coordination compound by subjecting the photosensitive layer to holographic exposure and then heat treatment.
 以下、好ましい実施形態をより詳細に説明するが、下記の実施形態のみには限定されない。なお、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。 Hereinafter, preferred embodiments will be described in more detail, but the present invention is not limited to the following embodiments. In this specification, “X to Y” indicating a range means “X or more and Y or less”.
[体積ホログラム媒体]
 体積ホログラム媒体の好ましい実施形態の一例の概略構成について、図1を用いて説明する。
 なお、以下においては、ホログラフィ露光(干渉露光)前の光重合性化合物等を含む層を感光層と称し、感光層にホログラフィ露光を行って体積ホログラムが記録された層を体積ホログラム記録層と称する。
 本実施形態の体積ホログラム媒体10は、二つの隣接層12の間に体積ホログラム記録層11を設けた構成である。体積ホログラム記録層11の片面にのみ隣接層12を設けた構成としてもよい。
[Volume hologram medium]
A schematic configuration of an example of a preferred embodiment of a volume hologram medium will be described with reference to FIG.
In the following, a layer containing a photopolymerizable compound or the like before holographic exposure (interference exposure) is referred to as a photosensitive layer, and a layer in which a volume hologram is recorded by performing holographic exposure on the photosensitive layer is referred to as a volume hologram recording layer. .
The volume hologram medium 10 of this embodiment has a configuration in which a volume hologram recording layer 11 is provided between two adjacent layers 12. The adjacent layer 12 may be provided only on one side of the volume hologram recording layer 11.
<隣接層>
 隣接層は、透明性を有する樹脂を含有する層である。隣接層を構成する樹脂としては、透明性を有していれば公知の樹脂を使用可能であり、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリメチルメタクリレート等のアクリル樹脂、セルロースアシレート、アセタール樹脂、ポリカーボネート、ポリウレタン、ポリビニルアルコール等を用いることができる。また、これら樹脂は、単独でも又は2種以上混合して用いてもよい。また、これらの樹脂の中でも、光学特性に優れているセルロースアシレートが好ましい。
<Adjacent layer>
The adjacent layer is a layer containing a resin having transparency. As the resin constituting the adjacent layer, known resins can be used as long as they have transparency. For example, polyolefins such as polyethylene and polypropylene, acrylic resins such as polymethyl methacrylate, cellulose acylate, acetal resin, Polycarbonate, polyurethane, polyvinyl alcohol and the like can be used. These resins may be used alone or in combination of two or more. Of these resins, cellulose acylate having excellent optical properties is preferable.
<体積ホログラム記録層>
 体積ホログラム記録層は、メタロポリマーを含有する層とフォトポリマーを含有する層を交互に有しており、これらの層のうち一方が高屈折率層であり、他方が当該高屈折率層よりも相対的に屈折率の低い低屈折率層である。このような構成を有する本実施形態の体積ホログラム記録層は、低い光散乱損失で高い回折効率を有することができる。また、メタロポリマーを含有する層を有するため、耐久性にも優れている。
<Volume hologram recording layer>
The volume hologram recording layer has a layer containing a metallopolymer and a layer containing a photopolymer alternately, and one of these layers is a high refractive index layer and the other is higher than the high refractive index layer. It is a low refractive index layer having a relatively low refractive index. The volume hologram recording layer of this embodiment having such a configuration can have high diffraction efficiency with low light scattering loss. Moreover, since it has the layer containing a metallopolymer, it is excellent also in durability.
 体積ホログラム記録層の層厚は、特に限定されないが、十分な透明性を確保する観点から、5~100μmであることが好ましく、5~40μmであることがより好ましい。 The layer thickness of the volume hologram recording layer is not particularly limited, but is preferably 5 to 100 μm and more preferably 5 to 40 μm from the viewpoint of ensuring sufficient transparency.
(メタロポリマーを含有する層)
 体積ホログラム記録層のメタロポリマーを含有する層には、下記一般式(2)で表される構造を有するメタロポリマーを含有していることが好ましい。
 一般式(2):Sb-(R-Sb′-M-Sb′)-R-Sb
(Layer containing metallopolymer)
The layer containing the metallopolymer of the volume hologram recording layer preferably contains a metallopolymer having a structure represented by the following general formula (2).
Formula (2): Sb- (R-Sb'-M-Sb ') n -R-Sb
 上記一般式(2)において、Mは、Ti、Zr、Si及びZnから選ばれる金属元素を表す。Rは、2価の連結基を表す。nは、1以上の整数を表す。nが1以上ときの式中のSb-R-Sb′及びnが2以上ときの式中のSb′-R-Sb′は、それぞれシッフ塩基配位子を表す。Sb′は、Sbと同一骨格の化学構造を有し、Sbが金属元素Mとの配位結合及び共有結合の少なくともいずれかにより結合した化学構造に変化した状態を表す。 In the general formula (2), M represents a metal element selected from Ti, Zr, Si, and Zn. R represents a divalent linking group. n represents an integer of 1 or more. Sb—R—Sb ′ in the formula when n is 1 or more and Sb′—R—Sb ′ in the formula when n is 2 or more each represent a Schiff base ligand. Sb ′ has a chemical structure having the same skeleton as Sb and represents a state in which Sb is changed to a chemical structure bonded to at least one of a coordinate bond and a covalent bond with the metal element M.
 一般式(2)において、シッフ塩基配位子(Sb-R-Sb′及びSb′-R-Sb′)となるシッフ塩基(Sb-R-Sb)としては、下記一般式(1)で表される構造を有することが好ましい。なお、上記一般式(2)の2価の連結基Rが、下記一般式(1)のRに対応している。 In the general formula (2), the Schiff base (Sb—R—Sb) that becomes the Schiff base ligands (Sb—R—Sb ′ and Sb′—R—Sb ′) is represented by the following general formula (1). It is preferable to have a structure. The divalent linking group R in the general formula (2) corresponds to R 4 in the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(1)において、Rは、H、CH、C、C又はCを表す。Rは、CH、C、COH又はCOHを表す。Rは、CH又はNを表す。Rは、CH、C又はOCOを表す。 In the general formula (1), R 1 represents H, CH 3 , C 2 H 5 , C 3 H 7 or C 4 H 9 . R 2 represents CH 3 , C 2 H 5 , C 2 H 4 OH or C 3 H 6 OH. R 3 represents CH or N. R 4 represents CH 2 , C 2 H 4 or OC 2 H 4 O.
 以下に、一般式(1)で表される化合物の例示化合物を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000004
Although the exemplary compound of a compound represented by General formula (1) below is shown, this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(1)で表される構造を有するシッフ塩基は、一般的な合成法によって合成できる。以下に、一例として、上記例示化合物(S-1)の合成例を示す。他の例示化合物も出発物質を変えて下記の合成例に準じた手順で合成を行うことで生成することができる。 The Schiff base having the structure represented by the general formula (1) can be synthesized by a general synthesis method. As an example, a synthesis example of the exemplified compound (S-1) is shown below. Other exemplified compounds can also be produced by changing the starting materials and performing the synthesis according to the procedure according to the following synthesis example.
(例示化合物(S-1)の合成)
 室温でサリチルアルデヒド(12.2g、100mmol)とホルムアルデヒド(1.5g、50mmol)の氷酢酸(30mL)の懸濁液に、濃硫酸を徐々に加え、90℃で4時間加熱した。その後、氷水(50mL)を加えた後、得られた固体を濾過し、水(50mL)とn-ヘキサン(50mL)で洗浄後、下記化合物Aを回収した。
(Synthesis of Exemplary Compound (S-1))
Concentrated sulfuric acid was gradually added to a suspension of salicylaldehyde (12.2 g, 100 mmol) and formaldehyde (1.5 g, 50 mmol) in glacial acetic acid (30 mL) at room temperature, and the mixture was heated at 90 ° C. for 4 hours. Thereafter, ice water (50 mL) was added, the obtained solid was filtered, washed with water (50 mL) and n-hexane (50 mL), and the following compound A was recovered.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 次に、化合物A(256mg)を20mLのメタノールに懸濁させて、その懸濁液に3-アミノ-1-プロパノール(150mg)を加えた。24時間撹拌した後、懸濁液を濾過し、メタノールで洗浄後、シッフ塩基である例示化合物(S-1)を回収した。
 例示化合物(S-1)は、核磁気共鳴スペクトル及びマススペクトルで構造を確認した。
Next, Compound A (256 mg) was suspended in 20 mL of methanol, and 3-amino-1-propanol (150 mg) was added to the suspension. After stirring for 24 hours, the suspension was filtered and washed with methanol, and then the exemplified compound (S-1) as a Schiff base was recovered.
The structure of the exemplified compound (S-1) was confirmed by nuclear magnetic resonance spectrum and mass spectrum.
(メタロポリマー)
 上記一般式(2)で表される構造を有するメタロポリマーとしては、容易に安定な高分子量のメタロポリマーを形成できる観点から、下記一般式(3)又は下記一般式(4)で表される構造を有する化合物であることが好ましい。
(Metallopolymer)
The metallopolymer having the structure represented by the general formula (2) is represented by the following general formula (3) or the following general formula (4) from the viewpoint of easily forming a stable high molecular weight metallopolymer. A compound having a structure is preferable.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(3)において、Mは、Znを表す。Rは、H、CH、C、C又はCを表す。Rは、CH又はCを表す。Rは、CH又はNを表す。Rは、CH、C又はOCOを表す。nは、1以上の整数を表す。 In the general formula (3), M 1 represents Zn. R 1 represents H, CH 3 , C 2 H 5 , C 3 H 7 or C 4 H 9 . R 2 represents CH 3 or C 2 H 5 . R 3 represents CH or N. R 4 represents CH 2 , C 2 H 4 or OC 2 H 4 O. n represents an integer of 1 or more.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(4)において、Mは、Ti、Zr又はSiを表す。Rは、H、CH、C、C又はCを表す。Rは、COH又はCOHを表す。R′は、CO又はCOを表す。Rは、CH又はNを表す。Rは、CH、C又はOCOを表す。nは、1以上の整数を表す。なお、R′は、Rの末端のOHから、プロトンが外れた状態を表している。 In the general formula (4), M 2 represents Ti, Zr or Si. R 1 represents H, CH 3 , C 2 H 5 , C 3 H 7 or C 4 H 9 . R 2 represents C 2 H 4 OH or C 3 H 6 OH. R 2 ′ represents C 2 H 4 O or C 3 H 6 O. R 3 represents CH or N. R 4 represents CH 2 , C 2 H 4 or OC 2 H 4 O. n represents an integer of 1 or more. R 2 ′ represents a state in which protons are removed from OH at the terminal of R 2 .
 上記一般式(3)及び上記一般式(4)において、露光によるメタロポリマーの形成を容易にする観点からは、nの上限は100、より好ましくは50とするのがよい。また、十分な耐熱性を確保する観点からは、nの下限は2、より好ましくは3とするのがよい。
 なお、ホログラムに用いられているメタロポリマーに関して、金属種は元素分析を行うことで特定でき、メタロポリマーを構成するシッフ塩基配位子の化学構造は、メタロポリマー自身あるいは未反応のままホログラム中に残留するシッフ塩基をNMR分析するなどして同定することができる。
In the general formula (3) and the general formula (4), the upper limit of n is preferably 100, more preferably 50, from the viewpoint of facilitating the formation of the metallopolymer by exposure. From the viewpoint of ensuring sufficient heat resistance, the lower limit of n is preferably 2, and more preferably 3.
Regarding metallopolymers used in holograms, the metal species can be identified by conducting elemental analysis, and the chemical structure of the Schiff base ligands that make up the metallopolymers can be determined in the hologram while the metallopolymer itself or unreacted. The remaining Schiff base can be identified by NMR analysis or the like.
(フォトポリマーを含有する層)
 本実施形態のホログラム記録層には、フォトポリマーを含有する層を有する。
 なお、本明細書中、「フォトポリマー」とは、後述するホログラム記録材料に含まれる光重合性化合物が重合した結果得られる高分子のことをいう。
 フォトポリマーの重量平均分子量(Mw)は、特に制限はないが、耐久性の向上の観点から、5万~20万の範囲内であることが好ましく、7万~15万の範囲内であることがより好ましい。
(Layer containing photopolymer)
The hologram recording layer of this embodiment has a layer containing a photopolymer.
In the present specification, the “photopolymer” refers to a polymer obtained as a result of polymerization of a photopolymerizable compound contained in a hologram recording material described later.
The weight average molecular weight (Mw) of the photopolymer is not particularly limited, but is preferably in the range of 50,000 to 200,000, and in the range of 70,000 to 150,000 from the viewpoint of improving durability. Is more preferable.
[体積ホログラム媒体の製造方法]
 本実施形態の体積ホログラム媒体の製造方法は、メタロポリマー前駆体と光重合性化合物等を含有するホログラム記録材料の溶液を用いて感光層を形成する工程と、当該感光層にホログラフィ露光した後、熱処理することによって、ホログラム記録層を形成する工程を有する。
[Method for producing volume hologram medium]
The volume hologram medium manufacturing method of the present embodiment includes a step of forming a photosensitive layer using a solution of a hologram recording material containing a metallopolymer precursor and a photopolymerizable compound, and after holographic exposure on the photosensitive layer, It has the process of forming a hologram recording layer by heat-processing.
<ホログラム記録材料>
 本実施形態のホログラム記録材料は、メタロポリマー前駆体と光重合性化合物(光重合性モノマー)を含有する。また、メタロポリマー前駆体は、シッフ塩基と有機金属化合物を含有することが好ましい。
 ホログラム記録材料の好ましい成分としては、バインダーとなる樹脂中に、シッフ塩基、有機金属化合物、ラジカル重合性モノマー、光重合開始剤、増感剤、連鎖移動剤、溶媒、添加剤等を含む。以下、これらの成分について説明する。
<Hologram recording material>
The hologram recording material of this embodiment contains a metallopolymer precursor and a photopolymerizable compound (photopolymerizable monomer). The metallopolymer precursor preferably contains a Schiff base and an organometallic compound.
As a preferable component of the hologram recording material, a Schiff base, an organometallic compound, a radical polymerizable monomer, a photopolymerization initiator, a sensitizer, a chain transfer agent, a solvent, an additive, and the like are included in a resin serving as a binder. Hereinafter, these components will be described.
(シッフ塩基)
 シッフ塩基としては、前述した一般式(1)で表される構造を有する化合物であることが好ましい。
 ホログラム記録材料中のシッフ塩基の含有量は、メタロポリマーの形成効率の観点から、5~45質量%の範囲内であることが好ましく、5~30質量%の範囲内であることがより好ましく、10~30質量%であることがさらに好ましい。
(Schiff base)
The Schiff base is preferably a compound having the structure represented by the general formula (1) described above.
The content of the Schiff base in the hologram recording material is preferably in the range of 5 to 45% by mass, more preferably in the range of 5 to 30% by mass, from the viewpoint of the formation efficiency of the metallopolymer. More preferably, it is 10 to 30% by mass.
(有機金属化合物)
 有機金属化合物としては、シッフ塩基との配位子交換効率の観点から、Ti、Zr、Si及びZnから選ばれる金属元素を少なくとも一種含有しており、これらの金属に、アルコキシド骨格、アセトネート骨格、グリコレート骨格、アセトアセテート骨格又はイソシアネート骨格を有する有機配位子が配位結合した化合物を含有することが好ましい。アルコキシド骨格を有する有機配位子としては、ノルマルプロピル基、ノルマルブチル基、イソプロポキシ基、2-エチルヘソキシド基を含む化合物が好ましい。アセトネート骨格を有する有機配位子としては、アセチルアセトネート基を含む化合物が好ましい。グリコレート骨格を有する有機配位子としては、オクチレングリコレート基を含む化合物が好ましい。アセトアセテート骨格を有する有機配位子としては、エチルアセトアセテート基を含む化合物が好ましい。イソシアネート骨格を含む有機配位子としては、イソシアネート基を含む化合物が好ましい。
(Organic metal compound)
The organometallic compound contains at least one metal element selected from Ti, Zr, Si and Zn from the viewpoint of ligand exchange efficiency with a Schiff base, and these metals include an alkoxide skeleton, an acetonate skeleton, It is preferable to contain a compound in which an organic ligand having a glycolate skeleton, an acetoacetate skeleton, or an isocyanate skeleton is coordinated. As the organic ligand having an alkoxide skeleton, a compound containing a normal propyl group, a normal butyl group, an isopropoxy group, or a 2-ethyl hexoxide group is preferable. As the organic ligand having an acetonate skeleton, a compound containing an acetylacetonate group is preferable. As the organic ligand having a glycolate skeleton, a compound containing an octylene glycolate group is preferable. As the organic ligand having an acetoacetate skeleton, a compound containing an ethylacetoacetate group is preferable. As the organic ligand containing an isocyanate skeleton, a compound containing an isocyanate group is preferable.
 有機金属化合物の具体例としては、例えば、ジルコニウムトリブトキシモノアセチルアセトネート、チタンテトラアセチルアセトネート、ビス(2,4-ペンタンジオナト)亜鉛(II)、テトライソシアネートシラン等が挙げられる。
 ホログラム記録材料中の有機金属化合物の含有量は、1~25質量%の範囲内であることが好ましく、5~20質量%の範囲内であることがより好ましい。
Specific examples of the organometallic compound include, for example, zirconium tributoxy monoacetylacetonate, titanium tetraacetylacetonate, bis (2,4-pentanedionato) zinc (II), tetraisocyanate silane, and the like.
The content of the organometallic compound in the hologram recording material is preferably in the range of 1 to 25% by mass, and more preferably in the range of 5 to 20% by mass.
(ラジカル重合性モノマー)
 ラジカル重合性モノマー(光重合性化合物)としては、分子内に一つ以上のラジカル重合性不飽和二重結合を有するものであれば特に制限はないが、例えば、(メタ)アクリロイル基、ビニル基を有する単官能又は多官能化合物を用いることができる。なお、(メタ)アクリロイル基とは、メタクリロイル基、及びアクリロイル基を総称する表記である。
(Radically polymerizable monomer)
The radically polymerizable monomer (photopolymerizable compound) is not particularly limited as long as it has one or more radically polymerizable unsaturated double bonds in the molecule. For example, (meth) acryloyl group, vinyl group A monofunctional or polyfunctional compound having can be used. The (meth) acryloyl group is a generic term for a methacryloyl group and an acryloyl group.
 このようなラジカル重合性化合物のうち、(メタ)アクリロイル基を有する化合物としては、フェノキシエチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メチル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ステアリル(メタ)アクリレート等の単官能(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ビス(2-ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、2,2-ビス〔4-(アクリロキシ・ジエトキシ)フェニル〕プロパン等の多官能(メタ)アクリレート;が挙げられるが、必ずしもこれらに限定されるものではない。 Among such radically polymerizable compounds, compounds having a (meth) acryloyl group include phenoxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and benzyl (meth). Acrylate, cyclohexyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methyl (meth) acrylate, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, stearyl (meth) acrylate, etc. Monofunctional (meth) acrylate; trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol Hexa (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, bis (2-hydroxyethyl) isocyanurate di ( And polyfunctional (meth) acrylates such as 2,2-bis [4- (acryloxydiethoxy) phenyl] propane; but are not necessarily limited thereto.
 また、ビニル基を有する化合物としては、モノビニルベンゼン、エチレングリコールモノビニルエーテル等の単官能ビニル化合物; ジビニルベンゼン、エチレングリコールジ
ビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル等の多官能ビニル化合物が挙げられるが、必ずしもこれらに限定されるものではない。
 ホログラム記録材料中のラジカル重合性モノマーの含有量は、1~25質量%であることが好ましく、5~20質量%であることがより好ましい。
Examples of the compound having a vinyl group include monofunctional vinyl compounds such as monovinylbenzene and ethylene glycol monovinyl ether; polyfunctional vinyl compounds such as divinylbenzene, ethylene glycol divinyl ether, diethylene glycol divinyl ether, and triethylene glycol divinyl ether. However, it is not necessarily limited to these.
The content of the radical polymerizable monomer in the hologram recording material is preferably 1 to 25% by mass, and more preferably 5 to 20% by mass.
(光ラジカル重合開始剤)
 光ラジカル重合開始剤は、ホログラフィ露光における、特定波長のレーザー光又はコヒーレンス性の優れた光の照射によって、ラジカル重合性モノマーの光重合を開始させる開始剤である。
 光ラジカル重合開始剤としては、例えば、米国特許第4766055号明細書、同第4868092号明細書、同第4965171号明細書、特開昭54-151024号公報、同58-15503号公報、同58-29803号公報、同59-189340号公報、同60-76735号公報、特開平1-28715号公報、特開平4-239505号公報及び「プロシーディングス・オブ・コンフェレンス・オン・ラジエーション・キュアリング・エイジア(PROCEEDINGS OF CONFERENCE ON RADIATION CURING ASIA)」(pp.461~477、1988年)等に記載されている公知の重合開始剤が使用できるが、これらに制限されない。
(Photo radical polymerization initiator)
The photoradical polymerization initiator is an initiator that initiates photopolymerization of a radical polymerizable monomer by irradiation with laser light having a specific wavelength or light having excellent coherence in holographic exposure.
Examples of the radical photopolymerization initiator include US Pat. Nos. 4,766,055, 4,868,092, 4,965,171, JP-A Nos. 54-151024, 58-15503, and 58. -29803, 59-189340, 60-76735, JP-A-1-28715, JP-A-4-239505 and “Proceedings of Conference on Radiation Curing” Known polymerization initiators described in, for example, “PROCEEDINGS OF CONFERENCE ON RADIATION CURING ASIA” (pp. 461-477, 1988) can be used, but are not limited thereto.
 光ラジカル重合開始剤としては、例えば、ジアリールヨードニウム塩類、2,4,6-置換-1,3,5-トリアジン類(トリアジン系化合物)、アゾ化合物、アジド化合物、有機過酸化物、有機ホウ素酸塩、オニウム塩類、ハロゲン化炭化水素誘導体、チタノセン化合物、モノアシルホスフィンオキサイド、ビスアシルホスフィンオキサイド、ビスアシルホスフィンオキサイドとα-ヒドロキシケトンとの組み合わせなどが挙げられる。また、チオール化合物などの水素供与体とビスイミダゾール誘導体との併用による光ラジカル重合開始剤システムも利用できる。これら光ラジカル重合開始剤は、単独でも又は2種以上を組み合わせて用いてもよい。 Examples of the radical photopolymerization initiator include diaryliodonium salts, 2,4,6-substituted-1,3,5-triazines (triazine compounds), azo compounds, azide compounds, organic peroxides, organic boronic acids Examples thereof include salts, onium salts, halogenated hydrocarbon derivatives, titanocene compounds, monoacylphosphine oxides, bisacylphosphine oxides, and combinations of bisacylphosphine oxides and α-hydroxyketones. Moreover, the radical photopolymerization initiator system by combined use of hydrogen donors, such as a thiol compound, and a bisimidazole derivative can also be utilized. These radical photopolymerization initiators may be used alone or in combination of two or more.
 光ラジカル重合開始剤の具体例としては、テトラブチルアンモニウムトリフェニルブチルボレート等が挙げられる。
 ホログラム記録材料中の光ラジカル重合開始剤の含有量は、ラジカル重合性モノマー100質量部に対して好ましくは0.05~50質量部、より好ましくは0.1~30質量部である。
Specific examples of the radical photopolymerization initiator include tetrabutylammonium triphenylbutyl borate and the like.
The content of the photo radical polymerization initiator in the hologram recording material is preferably 0.05 to 50 parts by mass, more preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the radical polymerizable monomer.
(増感剤)
 ホログラム記録材料には、光ラジカル重合開始剤に対する増感機能を有する増感剤を含んでもよい。このような増感剤は、400~800nm、特に450~700nmの範囲に吸収極大波長を有する。これらの増感剤が上記範囲の光を吸収し、これにより光ラジカル重合開始剤に対して増感作用が生じる。
 このような増感剤としては、例えば、シアニン系色素、スチリル系色素等のポリメチン系化合物、ローダミンB、ローダミン6G、ピロニンGY等のキサンテン系化合物、サフラニンO等のフェナジン系化合物、クレシルバイオレット、ブリリアントクレシルブルー等のフェノキサジン系化合物、メチレンブルー、ニューメチレンブルー等のフェノチアジン系化合物、オーラミン等のジアリールメタン系化合物、クリスタルバイオレット、ブリリアントグリーン、リサミングリーン等のトリアリールメタン系化合物、(チオ)ピリリウム塩系化合物、スクアリリウム系化合物、クマリン系色素、チオキサンテン系色素、アセン系色素、メロシアニン系色素、チアゾリウム系色素等が挙げられる。これら増感剤は、単独でも又は2種以上組み合わせても用いることができる。
 ホログラム記録材料中の増感剤の含有量は、光ラジカル重合開始剤100質量部に対して1~2000質量部の範囲内が好ましく、20~1500質量部の範囲内がより好ましい。
(Sensitizer)
The hologram recording material may contain a sensitizer having a sensitizing function with respect to the radical photopolymerization initiator. Such a sensitizer has an absorption maximum wavelength in the range of 400 to 800 nm, particularly 450 to 700 nm. These sensitizers absorb light in the above range, thereby causing a sensitizing action on the radical photopolymerization initiator.
Examples of such a sensitizer include polymethine compounds such as cyanine dyes and styryl dyes, xanthene compounds such as rhodamine B, rhodamine 6G, and pyronin GY, phenazine compounds such as safranin O, cresyl violet, Phenoxazine compounds such as brilliant cresyl blue, phenothiazine compounds such as methylene blue and new methylene blue, diarylmethane compounds such as auramine, triarylmethane compounds such as crystal violet, brilliant green and lissamine green, (thio) pyrylium Examples thereof include salt compounds, squarylium compounds, coumarin dyes, thioxanthene dyes, acene dyes, merocyanine dyes, thiazolium dyes, and the like. These sensitizers can be used alone or in combination of two or more.
The content of the sensitizer in the hologram recording material is preferably in the range of 1 to 2000 parts by mass, more preferably in the range of 20 to 1500 parts by mass with respect to 100 parts by mass of the radical photopolymerization initiator.
(連鎖移動剤)
 ホログラム記録材料には、連鎖移動剤を含んでもよい。連鎖移動剤としては、特に限定されず、公知のラジカル連鎖移動剤を使用することができる。
 連鎖移動剤としては、例えば、n-ブチルメルカプタン、t-ブチルメルカプタン、t-ドデシルメルカプタン、n-オクチルメルカプタン、n-ラウリルメルカプタン、5-クロロ-2-メルカプトベンゾチアゾール、6-エトキシ-2-メルカプトベンゾチアゾール等に加え、2,4,6-トリメルカプト-s-トリアジン、2,4,6-トリメルカプト-1,3,5-トリアジン等の複素環メルカプタン類;テトラメチルチウラジウムジスルフィド、テトラエチルチウラジウムジスルフィドなどのジスルフィド類;四塩化炭素、四臭化炭素などのハロゲン化合物;2-メチル-1-ブテン、α-メチルスチレンダイマー等のオレフィン類;等が挙げられる。これら連鎖移動剤は、単独でも又は2種以上組み合わせても用いることができる。
 ホログラム記録材料中の連鎖移動剤の含有量は、ラジカル重合性モノマー100質量部に対して好ましくは0.05~50質量部の範囲内、より好ましくは0.1~30質量部の範囲内である。
(Chain transfer agent)
The hologram recording material may contain a chain transfer agent. The chain transfer agent is not particularly limited, and a known radical chain transfer agent can be used.
Examples of the chain transfer agent include n-butyl mercaptan, t-butyl mercaptan, t-dodecyl mercaptan, n-octyl mercaptan, n-lauryl mercaptan, 5-chloro-2-mercaptobenzothiazole, 6-ethoxy-2-mercapto. In addition to benzothiazole and the like, heterocyclic mercaptans such as 2,4,6-trimercapto-s-triazine and 2,4,6-trimercapto-1,3,5-triazine; tetramethylthiudium disulfide, tetraethylthiu And disulfides such as radium disulfide; halogen compounds such as carbon tetrachloride and carbon tetrabromide; olefins such as 2-methyl-1-butene and α-methylstyrene dimer; and the like. These chain transfer agents can be used alone or in combination of two or more.
The content of the chain transfer agent in the hologram recording material is preferably in the range of 0.05 to 50 parts by mass, more preferably in the range of 0.1 to 30 parts by mass with respect to 100 parts by mass of the radical polymerizable monomer. is there.
(樹脂)
 ホログラム記録材料には、バインダーとなる樹脂又はその前駆体を含んでも良い。樹脂は、体積ホログラム記録層の膜厚の均一性、耐熱性、機械的物性等を向上させ、ホログラフィ露光により形成されるホログラムを安定化させる働きを有する。また、体積ホログラム記録層形成時には、光重合性モノマーやフォトポリマーの拡散移動現象を阻害しない、又は効率よく発現させる機能を有し得る。
 バインダーとなる樹脂としては、例えば、熱可塑性樹脂、熱硬化性樹脂、活性エネルギー線硬化性樹脂等、いずれも制限なく使用することができる。また、これらの樹脂にポリシロキサン鎖やパーフルオロアルキレン鎖で修飾したものなども使用することができる。これらの樹脂は、単独でも又は2種以上組み合わせても用いることができる。
(resin)
The hologram recording material may include a resin serving as a binder or a precursor thereof. The resin functions to improve the uniformity of the film thickness of the volume hologram recording layer, heat resistance, mechanical properties, etc., and stabilize the hologram formed by holographic exposure. Further, when the volume hologram recording layer is formed, it can have a function of not inhibiting or efficiently expressing the diffusion transfer phenomenon of the photopolymerizable monomer or photopolymer.
As the resin that becomes the binder, for example, any of thermoplastic resins, thermosetting resins, active energy ray curable resins, and the like can be used without limitation. Also, those resins modified with a polysiloxane chain or a perfluoroalkylene chain can be used. These resins can be used alone or in combination of two or more.
 熱可塑性樹脂の例としては、例えば、ポリビニルアセテート、ポリビニルブチラート、ポリビニルホルマール、ポリビニルカルバゾール、ポリアクリル酸、ポリメタクリル酸、ポリメチルアクリレート、ポリメチルメタクリレート、ポリエチルアクリレート、ポリブチルアクリレート、ポリメタクリロニトリル、ポリエチルメタクリレート、ポリブチルメタクリレート、ポリアクリロニトリル、ポリ-1,2-ジクロロエチレン、エチレン-酢酸ビニル共重合体、シンジオタクチック型ポリメチルメタクリレート、ポリ-α-ビニルナフタレート、ポリカーボネート、セルロースアセテート、セルローストリアセテート、セルロースアセテートブチラート、ポリスチレン、ポリ-α-メチルスチレン、ポリ-o-メチルスチレン、ポリ-p-メチルスチレン、ポリ-p-フェニルスチレン、ポリ-2,5-ジクロロスチレン、ポリ-p-クロロスチレン、ポリ-2,5-ジクロロスチレン、ポリアリーレート、ポリスルホン、ポリエーテルスルホン、スチレン-アクリロニトリル共重合体、スチレン-ジビニルベンゼン共重合体、スチレン-ブタジエン共重合体、スチレン-無水マレイン酸共重合体、ABS樹脂、ポリエチレン、ポリ塩化ビニル、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリビニルピロリドン、ポリ塩化ビニリデン、水素化スチレン-ブタジエン-スチレン共重合体、ポリウレタン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレンやヘキサフルオロエチレンとビニルアルコール、ビニルエステル、ビニルエーテル、ビニルアセタールビニルブチラールなどとの共重合体、(メタ)アクリル酸環状脂肪族エステルとメチル(メタ)アクリレートとの共重合体、ポリ酢酸ビニル、メチルメタクリレート-エチルアクリレート-アクリル酸共重合体等が挙げられる。 Examples of thermoplastic resins include, for example, polyvinyl acetate, polyvinyl butyrate, polyvinyl formal, polyvinyl carbazole, polyacrylic acid, polymethacrylic acid, polymethyl acrylate, polymethyl methacrylate, polyethyl acrylate, polybutyl acrylate, polymethacrylo Nitrile, polyethyl methacrylate, polybutyl methacrylate, polyacrylonitrile, poly-1,2-dichloroethylene, ethylene-vinyl acetate copolymer, syndiotactic polymethyl methacrylate, poly-α-vinyl naphthalate, polycarbonate, cellulose acetate, Cellulose triacetate, cellulose acetate butyrate, polystyrene, poly-α-methylstyrene, poly-o-methylstyrene, poly-p- Methylstyrene, poly-p-phenylstyrene, poly-2,5-dichlorostyrene, poly-p-chlorostyrene, poly-2,5-dichlorostyrene, polyarylate, polysulfone, polyethersulfone, styrene-acrylonitrile copolymer Polymer, styrene-divinylbenzene copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer, ABS resin, polyethylene, polyvinyl chloride, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyvinylpyrrolidone , Polyvinylidene chloride, hydrogenated styrene-butadiene-styrene copolymer, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene, hexafluoroethylene and vinyl Copolymer with alcohol, vinyl ester, vinyl ether, vinyl acetal vinyl butyral, copolymer of (meth) acrylic acid cycloaliphatic ester and methyl (meth) acrylate, polyvinyl acetate, methyl methacrylate-ethyl acrylate- An acrylic acid copolymer etc. are mentioned.
 熱硬化性樹脂としては、不飽和ポリエステル、アクリルウレタン樹脂、エポキシ変性アクリル樹脂、エポキシ変性不飽和ポリエステル、ポリウレタン、アルキド樹脂、フェノール樹脂等が挙げられる。 Examples of the thermosetting resin include unsaturated polyester, acrylic urethane resin, epoxy-modified acrylic resin, epoxy-modified unsaturated polyester, polyurethane, alkyd resin, phenol resin and the like.
 活性エネルギー線硬化性樹脂としては、エポキシアクリレート、ウレタンアクリレート、アクリル変性ポリエステル等が挙げられる。これらの活性エネルギー線硬化性樹脂に、架橋構造、粘度の調整等を目的として、下記のようなその他の単官能又は多官能モノマー、オリゴマー等を包含させることができる。例えば、単官能ではテトラヒドロフルフリル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ビニルピロリドン、(メタ)アクリロイルオキシエチルサクシネート、(メタ)アクリロイルオキシエチルフタレート等のモノ(メタ)アクリレート、多官能では骨格構造で分類するとポリオール(メタ)アクリレート(エポキシ変性ポリオール(メタ)アクリレート、ラクトン変性ポリオール(メタ)アクリレート等)、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、その他ポリブタジエン系、イソシアヌール酸系、ヒダントイン系、メラミン系、リン酸系、イミド系、ホスファゼン系等の骨格を有するポリ(メタ)アクリレートであり、紫外線、電子線硬化性である様々なモノマー、オリゴマー、ポリマーが利用できる。 Examples of the active energy ray-curable resin include epoxy acrylate, urethane acrylate, and acrylic-modified polyester. These active energy ray-curable resins can include other monofunctional or polyfunctional monomers, oligomers, and the like as described below for the purpose of adjusting the cross-linked structure and viscosity. For example, mono (meth) acrylates such as tetrahydrofurfuryl (meth) acrylate, hydroxyethyl (meth) acrylate, vinyl pyrrolidone, (meth) acryloyloxyethyl succinate, (meth) acryloyloxyethyl phthalate, etc. When classified by skeleton structure, polyol (meth) acrylate (epoxy-modified polyol (meth) acrylate, lactone-modified polyol (meth) acrylate, etc.), polyester (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, and other polybutadienes Poly (meth) acrylates with isocyanuric acid-based, hydantoin-based, melamine-based, phosphoric acid-based, imide-based, phosphazene-based skeletons, and are UV- and electron-beam curable Monomers, oligomers, polymers may be utilized such.
 また、ホログラム記録材料中の樹脂又はその前駆体の含有量は、1~50質量%であることが好ましく、1~30質量%であることがより好ましく、1~28質量%であることがさらに好ましく、5~27質量%であることがさらに好ましい。なお、樹脂に代えて、例えば、ゴムや粘土状物質などの粘性の高い材料を、メタロポリマーを保持するマトリクス構成材として用いてもよい。 The content of the resin or precursor thereof in the hologram recording material is preferably 1 to 50% by mass, more preferably 1 to 30% by mass, and further preferably 1 to 28% by mass. Preferably, it is 5 to 27% by mass. In place of the resin, for example, a highly viscous material such as rubber or clay-like substance may be used as the matrix constituent material for holding the metallopolymer.
(溶媒)
 ホログラム記録材料には、隣接層に塗工する際に必要に応じて溶媒を用いてもよい。ただし、ホログラム記録材料に、常温で液状である成分が含有されている場合は、溶媒が必要ない場合もある。
 溶媒としては、例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロヘキサン、メチルシクロヘキサンなどの脂肪族系溶媒;メチルエチルケトン、アセトン、シクロヘキサノンなどのケトン系溶媒;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、アニソール、フェネトールなどのエーテル系溶媒;酢酸エチル、酢酸ブチル、エチレングリコールジアセテートなどのエステル系溶媒;トルエン、キシレンなどの芳香族系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブなどのセロソルブ系溶媒;メタノール、エタノール、プロパノール、イソプロピルアルコールなどのアルコール系溶媒;テトラヒドロフラン、ジオキサンなどのエーテル系溶媒;ジクロロメタン、クロロホルムなどのハロゲン系溶媒;アセトニトリル、プロピオニトリルなどのニトリル系溶媒;N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の極性溶媒などが挙げられる。これら溶媒は、単独でも又は2種以上を組み合わせても用いることができる。
(solvent)
In the hologram recording material, a solvent may be used as necessary when coating on the adjacent layer. However, when the hologram recording material contains a component that is liquid at room temperature, a solvent may not be necessary.
Examples of the solvent include aliphatic solvents such as n-pentane, n-hexane, n-heptane, n-octane, cyclohexane, and methylcyclohexane; ketone solvents such as methyl ethyl ketone, acetone, and cyclohexanone; diethyl ether, isopropyl ether, Ether solvents such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, anisole and phenetol; ester solvents such as ethyl acetate, butyl acetate and ethylene glycol diacetate; Aromatic solvents such as toluene and xylene; methyl cellosolve, ethyl cellosolve, butyl cello Cellosolve solvents such as Rub; alcohol solvents such as methanol, ethanol, propanol and isopropyl alcohol; ether solvents such as tetrahydrofuran and dioxane; halogen solvents such as dichloromethane and chloroform; nitrile solvents such as acetonitrile and propionitrile; Examples include polar solvents such as N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylformamide, and N, N-dimethylacetamide. These solvents can be used alone or in combination of two or more.
(添加剤)
 ホログラム記録材料には、必要に応じて、可塑剤、相溶化剤、重合抑制剤、界面活性剤、シランカップリング剤、消泡剤、剥離剤、安定化剤、酸化防止剤、難燃剤、光学増白剤、紫外線吸収剤等の添加剤をさらに含んでもよい。
(Additive)
For hologram recording materials, plasticizer, compatibilizer, polymerization inhibitor, surfactant, silane coupling agent, antifoaming agent, release agent, stabilizer, antioxidant, flame retardant, optical as required You may further contain additives, such as a whitening agent and a ultraviolet absorber.
(ホログラム記録材料の調製方法)
 ホログラム記録材料は、上記した各成分を一括又は順次混合することにより得ることができる。混合の際用いる装置としては、例えば、マグネチックスターラー、ホモディスパー、クイックホモミキサー、プラネタリーミキサーなどの撹拌又は混合装置が挙げられる。得られたホログラム記録材料の溶液は、必要に応じて、濾過してから用いてもよい。
(Method for preparing hologram recording material)
The hologram recording material can be obtained by mixing the above-described components all at once or sequentially. Examples of the apparatus used for mixing include stirring or mixing apparatuses such as a magnetic stirrer, homodisper, quick homomixer, and planetary mixer. The obtained hologram recording material solution may be used after filtration, if necessary.
<感光層の形成>
 感光層は、隣接層上にホログラム記録材料の溶液を用いて形成する。感光層を形成する方法としては、特に制限されず、例えば、(1)隣接層上にホログラム記録材料の溶液を直接塗布し乾燥する方法、(2)別途用意した基材上にホログラム記録材料の溶液を塗布し乾燥した後、ラミネーター等を用いて隣接層と貼り合わせ、その後基材を剥離する方法等が挙げられる。これらのうち、隣接層に対して感光層がより密着しやすく、隣接層との組み合わせにより、感光層内部で隣接層との界面まで回折格子の形成を促進させるという観点から、隣接層上にホログラム記録材料の溶液を直接塗布し乾燥する方法が好ましい。
<Formation of photosensitive layer>
The photosensitive layer is formed on the adjacent layer using a solution of the hologram recording material. The method for forming the photosensitive layer is not particularly limited. For example, (1) a method of directly applying a solution of a hologram recording material on an adjacent layer and drying, (2) a method of forming a hologram recording material on a separately prepared substrate. Examples include a method of applying a solution and drying, then laminating with an adjacent layer using a laminator and the like, and then peeling the substrate. Among these, the photosensitive layer is more easily adhered to the adjacent layer, and in combination with the adjacent layer, the hologram is formed on the adjacent layer from the viewpoint of promoting the formation of a diffraction grating to the interface with the adjacent layer inside the photosensitive layer. A method in which the recording material solution is directly applied and dried is preferred.
 また、上記(2)における別途用意した基材としては、例えば、アクリル樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフトエート、ポリエチレン、ポリプロピレン、アモルファスポリオレフィン、酢酸セルロース、水和セルロース、硝酸セルロース、シクロオレフィンポリマー、ポリスチレン、ポリエポキシド、ポリスルホン、セルロースアシレート、ポリアミド、ポリイミド、ポリメチルメタクリレート、ポリ塩化ビニル、ポリビニルブチラール、ポリジシクロペンタンジエン等を含む樹脂基材が挙げられる。 In addition, as the separately prepared base material in the above (2), for example, acrylic resin, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthoate, polyethylene, polypropylene, amorphous polyolefin, cellulose acetate, hydrated cellulose, cellulose nitrate, Examples of the resin base material include cycloolefin polymer, polystyrene, polyepoxide, polysulfone, cellulose acylate, polyamide, polyimide, polymethyl methacrylate, polyvinyl chloride, polyvinyl butyral, polydicyclopentanediene, and the like.
 隣接層上や基材上にホログラム記録材料の溶液を塗布する方法としては、従来公知の方法を使用することができ、具体例としては、スプレー法、スピンコート法、ワイヤーバー法、ディップコート法、エアーナイフコート法、ロールコート法、ブレードコート法、ドクターロールコート法などが挙げられる。
 塗布後に乾燥する方法としては、ホットプレート、オーブン、ベルト炉等を用いた従来公知の種々の方法を採用することができる。乾燥温度は特に制限されず、例えば10~50℃の範囲であり、乾燥時間も特に制限されず、例えば1~60分の範囲である。
 感光層の厚さは、体積ホログラム記録層の好ましい厚さの範囲となるよう、適宜設定すればよい。
 また、体積ホログラム記録層を二つの隣接層に挟持されている構成とする場合は、一つの隣接層上に感光層を形成した後、当該感光層上にもう一つの隣接層を、ラミネーター等を用いてラミネートすることにより得ることができる。
As a method for applying the hologram recording material solution on the adjacent layer or the base material, a conventionally known method can be used. Specific examples include a spray method, a spin coating method, a wire bar method, and a dip coating method. , Air knife coating method, roll coating method, blade coating method, doctor roll coating method and the like.
As a method for drying after application, various conventionally known methods using a hot plate, an oven, a belt furnace or the like can be employed. The drying temperature is not particularly limited, and is, for example, in the range of 10 to 50 ° C., and the drying time is not particularly limited, and is, for example, in the range of 1 to 60 minutes.
What is necessary is just to set the thickness of a photosensitive layer suitably so that it may become the range of the preferable thickness of a volume hologram recording layer.
When the volume hologram recording layer is sandwiched between two adjacent layers, a photosensitive layer is formed on one adjacent layer, and then another adjacent layer is formed on the photosensitive layer using a laminator or the like. It can be obtained by using and laminating.
<体積ホログラム記録層の形成>
 本実施形態の体積ホログラム記録層は、感光層にホログラフィ露光(干渉露光)した後、熱処理することによって形成する。
 また、体積ホログラム記録層(感光層)の厚さは、特に限定されないが、十分な透明性を確保する観点から、5~100μmであることが好ましく、5~40μmであることがより好ましい。
<Formation of volume hologram recording layer>
The volume hologram recording layer of the present embodiment is formed by subjecting the photosensitive layer to holographic exposure (interference exposure) and then heat treatment.
The thickness of the volume hologram recording layer (photosensitive layer) is not particularly limited, but is preferably 5 to 100 μm and more preferably 5 to 40 μm from the viewpoint of ensuring sufficient transparency.
 上述した体積ホログラム記録層が形成される機構は以下のように推察している。
 感光層にホログラフィ露光を行うと、感光層中の露光部において、光重合性化合物の重合が促進される。ここで、露光部で、光重合性化合物が消費されて光重合性化合物の濃度が薄くなると、非露光部から露光部に光重合性化合物の拡散移動が起こるため、さらなる重合反応が進む。一方で、露光部に含有されていたメタロポリマー前駆体の成分は、露光部から非露光部に押し出され、非露光部において、メタロポリマー前駆体の濃度が濃くなる。
The mechanism by which the volume hologram recording layer described above is formed is presumed as follows.
When holographic exposure is performed on the photosensitive layer, polymerization of the photopolymerizable compound is promoted at the exposed portion in the photosensitive layer. Here, when the photopolymerizable compound is consumed in the exposed portion and the concentration of the photopolymerizable compound decreases, the photopolymerizable compound diffuses and moves from the non-exposed portion to the exposed portion, so that further polymerization reaction proceeds. On the other hand, the component of the metallopolymer precursor contained in the exposed part is pushed out from the exposed part to the non-exposed part, and the concentration of the metallopolymer precursor is increased in the non-exposed part.
 ここで、ホログラフィ露光時において、露光部に存在していたメタロポリマー前駆体は、可視光では反応せず、分子量が小さいままなので、メタロポリマー前駆体の露光部から非露光部への拡散移動は阻害されず、かつ光重合性化合物の非露光部から露光部への拡散移動も阻害しない。したがって、高屈折率領域と低屈折率領域をはっきりと分離でき、回折効率と光透過率が高い体積ホログラム記録層を形成できると考えられる。
 また、ホログラム記録層に熱処理することにより、メタロポリマー前駆体が集まっている領域において、有機配位子が配位していた金属にシッフ塩基が配位結合することによって配位子交換されるため、容易に安定で堅牢なメタロポリマーを作製することができる。これにより、高い耐熱性や耐光性がある体積ホログラム記録層が得られると考えられる。
Here, at the time of holographic exposure, the metallopolymer precursor present in the exposed part does not react with visible light, and the molecular weight remains small, so the diffusion movement of the metallopolymer precursor from the exposed part to the non-exposed part is not It is not hindered and does not inhibit the diffusion movement of the photopolymerizable compound from the non-exposed area to the exposed area. Therefore, it is considered that a high-refractive index region and a low-refractive index region can be clearly separated, and a volume hologram recording layer having high diffraction efficiency and high light transmittance can be formed.
In addition, when the hologram recording layer is heat-treated, in the region where the metallopolymer precursors are gathered, the ligand is exchanged by the coordination of the Schiff base to the metal to which the organic ligand has been coordinated. A stable and robust metallopolymer can be easily produced. Thereby, it is considered that a volume hologram recording layer having high heat resistance and light resistance can be obtained.
(体積ホログラムの記録方法)
 感光層にホログラフィ露光を行い、体積ホログラムを記録(書き込み)し体積ホログラム記録層とする方法は、特に制限されないが、例えば、下記の方法が挙げられる。
(Volume hologram recording method)
A method of performing holographic exposure on the photosensitive layer and recording (writing) a volume hologram to form a volume hologram recording layer is not particularly limited, and examples thereof include the following methods.
 まず、情報の記録時には、重合性モノマーの化学変化、すなわち、その重合及び濃度変化を生じさせることが可能な光を、記録光(物体光とも呼ばれる)として用いる。
 例えば、情報を体積ホログラムとして記録する場合には、物体光を参照光と共に感光層に対して照射し、感光層において物体光と参照光とを干渉させるようにする。これによってその干渉光が、感光層内の重合性モノマーの重合及び濃度変化を生じさせ、その結果、干渉縞が感光層内に屈折率差を生じさせ、感光層内に記録された干渉縞により体積ホログラムとして記録され、体積ホログラム記録層となる。
First, when recording information, light capable of causing a chemical change of a polymerizable monomer, that is, polymerization and concentration change, is used as recording light (also referred to as object light).
For example, when recording information as a volume hologram, object light is irradiated onto the photosensitive layer together with reference light so that the object light and reference light interfere with each other in the photosensitive layer. As a result, the interference light causes polymerization and concentration change of the polymerizable monomer in the photosensitive layer. As a result, the interference fringes cause a refractive index difference in the photosensitive layer, and the interference fringes recorded in the photosensitive layer It is recorded as a volume hologram and becomes a volume hologram recording layer.
 体積ホログラムの記録に用いられる記録光(カッコ内は波長を示す)としては、コヒーレンス性に優れる可視光レーザーを用いることが好ましく、例えばアルゴンイオンレーザー(458nm、488nm、514nm)、クリプトンイオンレーザー(647.1nm)、ヘリウム-ネオンレーザー(633nm)、YAGレーザー(532nm)等を使用することができる。
 ホログラム記録時の照射エネルギー量(露光量)としては、特に制限されないが、10~250mJ/cmの範囲であることが好ましい。
 また、ホログラム記録方式としては、偏光コリニアホログラム記録方式、参照光入射角多重型ホログラム記録方式等があるが、いずれの記録方式でも良好な記録品質を提供することが可能である。
As the recording light used for recording the volume hologram (the wavelength in the parentheses indicates a wavelength), it is preferable to use a visible light laser having excellent coherence. For example, an argon ion laser (458 nm, 488 nm, 514 nm), a krypton ion laser (647 0.1 nm), helium-neon laser (633 nm), YAG laser (532 nm), etc. can be used.
The irradiation energy amount (exposure amount) at the time of hologram recording is not particularly limited, but is preferably in the range of 10 to 250 mJ / cm 2 .
Hologram recording methods include a polarization collinear hologram recording method, a reference light incident angle multiplexing hologram recording method, and the like, and any recording method can provide good recording quality.
 露光装置としては、特に制限されないが、例えば、図2に示すような露光装置を用いることができる。図2に示す露光装置においては、レーザー光源201から出射された光線(記録光)は、2対のミラーよりなるビームステアラー202a、202bによって露光系の適した位置に光線を誘導する。203はシャッターであり、光線(記録光)のON/OFFを制御する。204はビームエキスパンダーであり、感光層の露光面積に応じて、光束径を広げ、開口率(NA)を変化させる機能を有する。
 ビームエキスパンダー204を通った光線(記録光)は、ビームスプリッター205で二光束に分けられる。分けられた光線(記録光)は、それぞれミラー206、207、及びミラー209、208によってスペイシャルフィルター211、212に誘導される。スペイシャルフィルター211、212はレンズとピンホールとから構成され、該レンズで光線(記録光)を集光し、ピンホールを介して製造光学系213に光線(記録光)を誘導する。
The exposure apparatus is not particularly limited. For example, an exposure apparatus as shown in FIG. 2 can be used. In the exposure apparatus shown in FIG. 2, the light beam (recording light) emitted from the laser light source 201 guides the light beam to a suitable position in the exposure system by the beam steerers 202a and 202b composed of two pairs of mirrors. A shutter 203 controls ON / OFF of a light beam (recording light). A beam expander 204 has a function of expanding the beam diameter and changing the aperture ratio (NA) according to the exposure area of the photosensitive layer.
The light beam (recording light) that has passed through the beam expander 204 is divided into two light beams by the beam splitter 205. The divided light beams (recording light) are guided to the spatial filters 211 and 212 by the mirrors 206 and 207 and the mirrors 209 and 208, respectively. Spatial filters 211 and 212 are composed of a lens and a pinhole, and collect light rays (recording light) with the lenses, and guide the light rays (recording light) to the manufacturing optical system 213 through the pinholes.
 製造光学系213は、体積ホログラム媒体の光線の反射角を制御できるように、体積ホログラム記録層となる感光層を具備したガラスや光学用プラスチックからなるプリズム等のサンプルを好適な位置に設置及び固定することができる。また、図3には、隣接層12の間に挟まれた感光層13が、シリコーン粘着剤103a、103bが塗設された1対のガラス製のプリズム基体104a、104bで挟持された状態の一例を示す。 The production optical system 213 installs and fixes a sample such as a glass or optical plastic prism provided with a photosensitive layer as a volume hologram recording layer at a suitable position so that the reflection angle of the light beam of the volume hologram medium can be controlled. can do. FIG. 3 shows an example of a state in which the photosensitive layer 13 sandwiched between the adjacent layers 12 is sandwiched between a pair of prism bases 104a and 104b made of glass coated with silicone adhesives 103a and 103b. Indicates.
 製造光学系213に固定されたプリズムなどに具備された感光層は、二光束に分けられ、各々スペイシャルフィルター211、212を介して誘導された光線(記録光)によってホログラフィ露光される。
 なお、図2に示す光源は一つのみであるが、異なる波長を有する複数のレーザー光源を用いてホログラフィ露光する場合には、シャッター203手前の光路にグロイックミラーを挿入し、複数の光源から発せられるレーザー光線を段階的に合成させてもよい。
A photosensitive layer provided on a prism or the like fixed to the production optical system 213 is divided into two light beams, and is subjected to holographic exposure by light beams (recording light) guided through the spatial filters 211 and 212, respectively.
Although only one light source is shown in FIG. 2, when holographic exposure is performed using a plurality of laser light sources having different wavelengths, a glitch mirror is inserted in the optical path before the shutter 203 to The emitted laser beam may be synthesized stepwise.
 体積ホログラムを記録した後、屈折率変調の促進や重合反応完結(定着)のために、体積ホログラム記録層に対して、さらに紫外線による全面露光や加熱等の処理を適宜行うことができる。全面露光で用いられる光源としては、例えば、超高圧水銀ランプ、高圧水銀ランプ、カーボンアークランプ、キセノンアークランプ、メタルハライドランプ等の紫外線を発する光源を用いることができる。紫外線による全面露光を行う場合の照射エネルギー量としては、50~200J/cmが好ましい。また、加熱処理を行う時の温度は50~150℃が好ましく、処理時間は30分間~3時間が好ましい。
 全面露光と加熱処理とを共に行う場合、その順序は特に制限されず、全面露光を先に行ってもよいし、加熱処理を先に行ってもよい。
After the volume hologram is recorded, the volume hologram recording layer can be further subjected to appropriate treatments such as full exposure with ultraviolet rays and heating in order to promote refractive index modulation and complete (fix) the polymerization reaction. As a light source used for the entire surface exposure, for example, a light source emitting ultraviolet rays such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a carbon arc lamp, a xenon arc lamp, a metal halide lamp, or the like can be used. The irradiation energy amount in the case of performing the entire surface exposure with ultraviolet rays is preferably 50 to 200 J / cm 2 . Further, the temperature during the heat treatment is preferably 50 to 150 ° C., and the treatment time is preferably 30 minutes to 3 hours.
When performing both the whole surface exposure and the heat treatment, the order is not particularly limited, and the whole surface exposure may be performed first, or the heat treatment may be performed first.
(体積ホログラムの再生方法)
 体積ホログラム記録層に記録された体積ホログラムの再生は、所定の再生光(通常は参照光)を体積ホログラム記録層に照射することによって行われる。照射された再生光は干渉縞に応じて回折を生じる。この回折光は、体積ホログラム記録層と同様の情報を含むものであるので、回折光を適当な検出手段によって読み取ることにより、体積ホログラム記録層に記録された情報の再生を行うことができる。なお、物体光、再生光及び参照光の波長領域はそれぞれの用途に応じて任意であり、可視光領域でも紫外光領域でも構わない。
(Reproduction method of volume hologram)
The volume hologram recorded on the volume hologram recording layer is reproduced by irradiating the volume hologram recording layer with predetermined reproduction light (usually reference light). The irradiated reproduction light is diffracted according to the interference fringes. Since this diffracted light contains the same information as the volume hologram recording layer, the information recorded on the volume hologram recording layer can be reproduced by reading the diffracted light with an appropriate detection means. Note that the wavelength regions of the object light, the reproduction light, and the reference light are arbitrary depending on the application, and may be in the visible light region or the ultraviolet light region.
 (熱処理)
 体積ホログラムを記録した後、熱処理することによって、非露光部であったメタロポリマー前駆体の濃度が濃い領域においてメタロポリマーを形成する。メタロポリマーは、有機金属化合物の有機配位子が配位していた金属に、シッフ塩基が配位結合することによって配位子交換が行われ、結果として、シッフ塩基が金属に配位結合した構造を有するメタロポリマーが形成する。
 また、本実施形態のシッフ塩基は、前述した一般式(1)で表される構造を有するため、前述した一般式(2)で示すような、シッフ塩基と金属が直列状に繋がったメタロポリマーを形成することができる。
(Heat treatment)
After recording the volume hologram, heat treatment is performed to form a metallopolymer in a region where the concentration of the metallopolymer precursor that was a non-exposed portion is high. In the metallopolymer, the ligand exchange is performed by the coordination of the Schiff base to the metal to which the organic ligand of the organometallic compound is coordinated. As a result, the Schiff base is coordinated to the metal. A metallopolymer having a structure is formed.
In addition, since the Schiff base of the present embodiment has the structure represented by the general formula (1), a metallopolymer in which the Schiff base and a metal are connected in series as shown by the general formula (2). Can be formed.
 熱処理は、有機金属化合物とシッフ塩基が配位子交換できる条件であれば特に制限はないが、80~120℃の範囲内で、2~80時間行うことが好ましい。 The heat treatment is not particularly limited as long as the ligand can be exchanged between the organometallic compound and the Schiff base, but it is preferably performed in the range of 80 to 120 ° C. for 2 to 80 hours.
[その他]
(その他の層)
 本実施形態の体積ホログラム媒体は、保護層、反射層、反射防止膜、紫外線吸収層等、他の層を有していてもよい。
 保護層は、記録層の保存安定性の劣化等の影響を防止するための層である。保護層の具体的構成に制限は無く、公知のものを任意に適用することが可能である。例えば、水溶性ポリマー、有機/無機材料等からなる層を保護層として形成することができる。保護層の形成位置は、特に制限はなく、例えば体積ホログラム記録層の表面や、隣接層と後述する支持体との間に形成してもよく、また当該支持体の外表面側に形成してもよい。
[Others]
(Other layers)
The volume hologram medium of this embodiment may have other layers such as a protective layer, a reflective layer, an antireflection film, and an ultraviolet absorption layer.
The protective layer is a layer for preventing influences such as deterioration of storage stability of the recording layer. There is no restriction | limiting in the specific structure of a protective layer, It is possible to apply a well-known thing arbitrarily. For example, a layer made of a water-soluble polymer, an organic / inorganic material, or the like can be formed as a protective layer. The formation position of the protective layer is not particularly limited. For example, the protective layer may be formed on the surface of the volume hologram recording layer, between the adjacent layer and a support described later, or on the outer surface side of the support. Also good.
 反射層は、体積ホログラム媒体を反射型に構成する際に形成される。反射型の体積ホログラム媒体の場合、反射層は通常、隣接層の外側面に形成される。反射層としては、従来公知のものを適宜参照して適用することができ、例えば金属の薄膜等を用いることができる。 The reflection layer is formed when the volume hologram medium is configured to be a reflection type. In the case of a reflective volume hologram medium, the reflective layer is usually formed on the outer surface of the adjacent layer. As the reflective layer, conventionally known ones can be applied as appropriate, and for example, a metal thin film or the like can be used.
 さらに、透過型及び反射型のいずれの体積ホログラム媒体においても、物体光及び再生光が入射及び出射する側や、又は体積ホログラム記録層と隣接層との間に、反射防止膜を設けてもよい。反射防止膜は、光の利用効率を向上させ、かつゴースト像の発生を抑制する働きをする。反射防止膜としては、従来公知のものを適宜参照して適用することができる。 Further, in any of the transmission type and reflection type volume hologram media, an antireflection film may be provided on the side on which the object light and the reproduction light enter and exit, or between the volume hologram recording layer and the adjacent layer. . The antireflection film functions to improve light utilization efficiency and suppress the generation of ghost images. As the antireflection film, conventionally known ones can be referred to as appropriate.
 紫外線吸収層は、例えば、隣接層の外側面に形成され、ホログラム記録層への紫外線をカットするために用いられる。紫外線吸収層としては、必要な強度及び耐久性を有するものであれば、従来公知の材料を使用することができる。 The ultraviolet absorbing layer is formed on the outer surface of the adjacent layer, for example, and is used for cutting ultraviolet rays to the hologram recording layer. As the ultraviolet absorbing layer, conventionally known materials can be used as long as they have necessary strength and durability.
(支持体)
 本実施形態の体積ホログラム媒体は、さらに、透明な支持体にさらに挟持されていてもよい。支持体は本実施形態の体積ホログラム媒体の保護、保持のために採用されてもよいし、体積ホログラム媒体と複合してプリズムなどの光学素子として機能するために採用されてもよい。
(Support)
The volume hologram medium of the present embodiment may be further sandwiched between transparent supports. The support may be employed to protect and hold the volume hologram medium of the present embodiment, or may be employed to function as an optical element such as a prism in combination with the volume hologram medium.
 支持体は、必要な強度及び耐久性を有しているものであれば、特に制限はなく、任意の支持体を使用することができる。また、支持体の形状にも制限は無いが、通常は平板状又はフィルム状に形成される。また、支持体の材料にも制限は無く、透明であっても不透明であってもよい。
 支持体の材料として透明なものを挙げると、ガラス、シリコーン、石英等の無機材料が挙げられる。これらの中でも、ガラスが好ましい。支持体の材料として不透明なものを挙げると、アルミニウム等の金属;前記の透明支持体上に金、銀、アルミニウム等の金属、又は、フッ化マグネシウム、酸化ジルコニウム等の誘電体をコーティングしたものなどが挙げられる。
The support is not particularly limited as long as it has necessary strength and durability, and any support can be used. Moreover, although there is no restriction | limiting also in the shape of a support body, Usually, it forms in flat form or a film form. Moreover, there is no restriction | limiting in the material of a support body, Transparent or opaque may be sufficient.
When a transparent material is used as the material for the support, inorganic materials such as glass, silicone, and quartz can be used. Among these, glass is preferable. Non-transparent materials for the support include metals such as aluminum; metals such as gold, silver and aluminum coated on the transparent support, or dielectrics such as magnesium fluoride and zirconium oxide, etc. Is mentioned.
 支持体の表面には、表面処理を施してもよい。この表面処理は、通常、支持体と体積ホログラム媒体との接着性を向上させるためになされる。表面処理の例としては、支持体にコロナ放電処理を施したり、支持体上に予め下塗り層を形成したりすることが挙げられる。ここで、下塗り層の組成物としては、ハロゲン化フェノール、又は部分的に加水分解された塩化ビニル-酢酸ビニル共重合体、ポリウレタン樹脂等が挙げられる。
 さらに、表面処理は、接着性の向上以外の目的で行ってもよい。その例としては、例えば、金、銀、アルミニウム等の金属を素材とする反射コート層を形成する反射コート処理;フッ化マグネシウムや酸化ジルコニウム等の誘電体層を形成する誘電体コート処理等が挙げられる。また、これらの層は、単層で形成してもよく2層以上で形成してもよい。
 また、これらの表面処理は、体積ホログラム媒体の気体や水分の透過性を制御する目的で設けてもよい。これにより、体積ホログラム媒体の信頼性をより向上させることができる。
The surface of the support may be subjected to a surface treatment. This surface treatment is usually performed to improve the adhesion between the support and the volume hologram medium. Examples of the surface treatment include subjecting the support to corona discharge treatment or forming an undercoat layer on the support in advance. Here, examples of the composition of the undercoat layer include halogenated phenol, partially hydrolyzed vinyl chloride-vinyl acetate copolymer, polyurethane resin, and the like.
Furthermore, the surface treatment may be performed for purposes other than the improvement of adhesiveness. Examples thereof include a reflective coating treatment for forming a reflective coating layer made of a metal such as gold, silver, and aluminum; a dielectric coating treatment for forming a dielectric layer such as magnesium fluoride and zirconium oxide, and the like. It is done. In addition, these layers may be formed of a single layer or two or more layers.
Further, these surface treatments may be provided for the purpose of controlling the gas and moisture permeability of the volume hologram medium. Thereby, the reliability of the volume hologram medium can be further improved.
 支持体は、体積ホログラム媒体の上側及び下側のいずれか一方にのみ設けてもよく、両方に設けてもよい。ただし、上下両側に支持体を設ける場合は、支持体の少なくとも一方は、活性エネルギー線(記録光、参照光、再生光など)を透過させるように、透明に構成する。支持体と体積ホログラム媒体とを貼り合わせる場合は、シリコーン粘着剤やアクリル粘着剤等、透明性の高い粘着剤を使用することができる。
 体積ホログラム媒体の片側又は両側に支持体を有する場合、透過型又は反射型のホログラムが記録可能である。また、体積ホログラム媒体の片側に反射特性を有する支持体を用いる場合は、反射型のホログラムが記録可能である。
The support may be provided only on either the upper side or the lower side of the volume hologram medium, or may be provided on both. However, when providing supports on both the upper and lower sides, at least one of the supports is configured to be transparent so as to transmit active energy rays (recording light, reference light, reproduction light, etc.). When bonding a support body and a volume hologram medium, highly transparent adhesives, such as a silicone adhesive and an acrylic adhesive, can be used.
When the support is provided on one side or both sides of the volume hologram medium, a transmission type or reflection type hologram can be recorded. When a support having reflection characteristics is used on one side of the volume hologram medium, a reflection type hologram can be recorded.
[体積ホログラム媒体の用途]
 本実施形態の体積ホログラム媒体は、ホログラフィック光学素子の用途で用いられ、例えば、ヘッドマウントディスプレイ(HMD)、ヘッドアップディスプレイ(HUD)、光メモリ、光ディスク用ピックアップレンズ、液晶用カラーフィルター、反射型液晶反射板、レンズ、回折格子、干渉フィルター、光ファイバー用結合器、ファクシミリ用光偏光器、建築用窓ガラス、書籍、雑誌等の表紙、POPなどのディスプレイ、ギフト、偽造防止用のセキュリティ目的としてクレジットカード、紙幣、包装等に好適に用いられる。
[Applications of volume hologram media]
The volume hologram medium of the present embodiment is used for a holographic optical element. For example, a head mounted display (HMD), a head-up display (HUD), an optical memory, an optical disk pickup lens, a liquid crystal color filter, a reflective liquid crystal. Reflectors, lenses, diffraction gratings, interference filters, optical fiber couplers, optical polarizers for facsimiles, architectural window glass, covers for books, magazines, displays such as POPs, gifts, and credit cards for security purposes to prevent counterfeiting , Banknotes, packaging, etc.
 以下、具体的な実施例及び比較例について説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、以下の説明において、シッフ塩基(S-1)~(S-7)は、上記で説明したシッフ塩基の例示化合物例(S-1)~(S-7)に対応する。 Hereinafter, specific examples and comparative examples will be described. However, the technical scope of the present invention is not limited only to the following examples. In the following description, the Schiff bases (S-1) to (S-7) correspond to the exemplary compound examples (S-1) to (S-7) of the Schiff base described above.
<体積ホログラム媒体1の作製>
(ホログラム記録材料溶液1の調製)
 
 暗室下で下記成分を容器に投入し、24時間室温で撹拌して、ホログラム記録材料溶液1とした。
<Preparation of volume hologram medium 1>
(Preparation of Hologram Recording Material Solution 1)

The following components were put into a container in a dark room and stirred at room temperature for 24 hours to obtain a hologram recording material solution 1.
 シッフ塩基(S-1)                 5.0質量部
 ジルコニウムトリブトキシモノアセチルアセトネート(OM-1)
                            5.0質量部
 メトキシ-ポリエチレングリコールアクリレート(PM-1,n≒4)
                            5.0質量部
 テトラブチルアンモニウムトリフェニルブチルボレート
 (有機ホウ素酸塩重合開始剤)            0.01質量部
 サフラニンO                     0.1質量部
 酢酸エチル                     25.0質量部
Schiff base (S-1) 5.0 parts by mass Zirconium tributoxy monoacetylacetonate (OM-1)
5.0 parts by mass Methoxy-polyethylene glycol acrylate (PM-1, n≈4)
5.0 parts by mass Tetrabutylammonium triphenylbutyl borate (organoborate polymerization initiator) 0.01 parts by mass Safranin O 0.1 parts by mass Ethyl acetate 25.0 parts by mass
(体積ホログラム記録層の形成)
 厚さ100μmのポリエチレンテレフタレート(PET)フィルム上に、ホログラム記録材料溶液1を、ブレードコーターを用いて塗布し、20℃、50%RHの環境下で30分間乾燥させ、厚さ15μmの感光層を得た。その後、反射防止処理を施したTACフィルムで感光層を覆ってラミネート処理した。次に、PETフィルムを剥がし、剥がした面をARガラスのガラス面に貼り付けることで、二つの隣接層に挟まれた感光層を得た。
 二つの隣接層に挟まれた感光層を、図2に示すような露光装置(光源:アルゴンレーザー、露光波長514nm)を用い、感光層面における照射エネルギー量が24mJ/cmとなるようにホログラフィ露光を行った。
 ホログラフィ露光を行った後、高圧水銀ランプ(照度100W)から15cmの位置に60分間配置し、次いで100℃で24時間の熱処理を行うことにより、体積ホログラム記録層を形成し、体積ホログラム媒体1を得た。
(Formation of volume hologram recording layer)
A hologram recording material solution 1 is applied onto a polyethylene terephthalate (PET) film having a thickness of 100 μm using a blade coater and dried for 30 minutes in an environment of 20 ° C. and 50% RH, thereby forming a photosensitive layer having a thickness of 15 μm. Obtained. Thereafter, the photosensitive layer was covered with a TAC film subjected to an antireflection treatment and laminated. Next, the PET film was peeled off, and the peeled surface was attached to the glass surface of AR glass to obtain a photosensitive layer sandwiched between two adjacent layers.
Holographic exposure is performed on the photosensitive layer sandwiched between two adjacent layers using an exposure apparatus (light source: argon laser, exposure wavelength 514 nm) as shown in FIG. 2 so that the irradiation energy amount on the photosensitive layer surface is 24 mJ / cm 2. Went.
After performing the holographic exposure, the volume hologram recording layer is formed by placing the high pressure mercury lamp (illuminance of 100 W) at a position of 15 cm for 60 minutes and then performing heat treatment at 100 ° C. for 24 hours to form the volume hologram medium 1. Obtained.
<体積ホログラム媒体2~6の作製>
 体積ホログラム媒体1の作製において、ホログラム記録材料溶液に含まれるシッフ塩基(S-1)をシッフ塩基(S-2)~(S-6)に変えた以外は同様にして、体積ホログラム媒体2~6を作製した。
<Production of volume hologram media 2 to 6>
In the production of the volume hologram medium 1, the volume hologram mediums 2 to 2 are similarly produced except that the Schiff base (S-1) contained in the hologram recording material solution is changed to the Schiff bases (S-2) to (S-6). 6 was produced.
<体積ホログラム媒体7の作製>
 体積ホログラム媒体1の作製において、ホログラム記録材料溶液に含まれるジルコニウムトリブトキシモノアセチルアセトネート(OM-1)を、チタンテトラアセチルアセトネート(OM-2)に変えた以外は同様にして、体積ホログラム媒体7を作製した。
<Preparation of volume hologram medium 7>
In the production of the volume hologram medium 1, the volume hologram was similarly obtained except that the zirconium tributoxy monoacetylacetonate (OM-1) contained in the hologram recording material solution was changed to titanium tetraacetylacetonate (OM-2). Medium 7 was produced.
<体積ホログラム媒体8の作製>
 体積ホログラム媒体1の作製において、ホログラム記録材料溶液に含まれるジルコニウムトリブトキシモノアセチルアセトネート(OM-1)をビス(2,4-ペンタンジオナト)亜鉛(II)(OM-3)に変更し、シッフ塩基(S-1)をシッフ塩基(S-7)に変更した以外は同様にして、体積ホログラム媒体8を作製した。
<Preparation of volume hologram medium 8>
In the production of the volume hologram medium 1, zirconium tributoxy monoacetylacetonate (OM-1) contained in the hologram recording material solution was changed to bis (2,4-pentanedionato) zinc (II) (OM-3). A volume hologram medium 8 was prepared in the same manner except that the Schiff base (S-1) was changed to the Schiff base (S-7).
<体積ホログラム媒体9の作製>
 体積ホログラム媒体1の作製において、ホログラム記録材料溶液1の組成を下記のホログラム記録材料溶液2の組成に変更した以外は同様にして、体積ホログラム媒体9を作製した。
<Preparation of volume hologram medium 9>
In the production of the volume hologram medium 1, the volume hologram medium 9 was produced in the same manner except that the composition of the hologram recording material solution 1 was changed to the composition of the hologram recording material solution 2 described below.
(ホログラム記録材料溶液2)
 シッフ塩基(S-3)                 5.0質量部
 テトライソシアネートシラン(OM-4)        5.0質量部
 アクリル酸2-フェノキシエチル(PM-2)      3.0質量部
 ビスフェノールAエポキシジアクリレート(PM-3)  0.5質量部
 N-ビニルカルバゾール(PM-4)          1.5質量部
 テトラブチルアンモニウムトリフェニルブチルボレート
 (有機ホウ素酸塩重合開始剤)            0.01質量部
 サフラニンO                     0.1質量部
 酢酸エチル                     25.0質量部
(Hologram recording material solution 2)
Schiff base (S-3) 5.0 parts by mass Tetraisocyanate silane (OM-4) 5.0 parts by mass 2-phenoxyethyl acrylate (PM-2) 3.0 parts by mass Bisphenol A epoxy diacrylate (PM-3) ) 0.5 part by mass N-vinylcarbazole (PM-4) 1.5 part by mass tetrabutylammonium triphenylbutyl borate (organoborate polymerization initiator) 0.01 part by mass Safranin O 0.1 part by mass ethyl acetate 25.0 parts by mass
<体積ホログラム媒体10の作製>
 体積ホログラム媒体1の作製において、ホログラム記録材料溶液1から化合物(S-1)を抜いた以外は同様にして、体積ホログラム媒体10を得た。
<Production of Volume Hologram Medium 10>
A volume hologram medium 10 was obtained in the same manner as in the production of the volume hologram medium 1, except that the compound (S-1) was removed from the hologram recording material solution 1.
<体積ホログラム媒体11の作製>
 体積ホログラム媒体1の作製において、ホログラム記録材料溶液1の組成を下記のホログラム記録材料溶液3の組成に変更した以外は同様にして、体積ホログラム媒体11を得た。
<Preparation of volume hologram medium 11>
A volume hologram medium 11 was obtained in the same manner except that the composition of the hologram recording material solution 1 was changed to the following composition of the hologram recording material solution 3 in the production of the volume hologram medium 1.
(ホログラム記録材料溶液3)
 ポリ酢酸ビニル(PVAc)              5.0質量部
 アクリル酸2-フェノキシエチル(PM-2)      6.0質量部
 ビスフェノールAエポキシジアクリレート(PM-3)  1.0質量部
 N-ビニルカルバゾール(PM-4)          3.0質量部
 テトラブチルアンモニウムトリフェニルブチルボレート
 (有機ホウ素酸塩重合開始剤)            0.01質量部
 サフラニンO                     0.1質量部
 酢酸エチル                     25.0質量部
(Hologram recording material solution 3)
Polyvinyl acetate (PVAc) 5.0 parts by mass 2-Phenoxyethyl acrylate (PM-2) 6.0 parts by mass Bisphenol A epoxy diacrylate (PM-3) 1.0 part by mass N-vinylcarbazole (PM-4) ) 3.0 parts by mass Tetrabutylammonium triphenylbutyl borate (organoborate polymerization initiator) 0.01 parts by mass Safranin O 0.1 parts by mass Ethyl acetate 25.0 parts by mass
<体積ホログラム媒体の評価>
 作製した体積ホログラム媒体のそれぞれに対して、以下のように、回折効率、光透過率(波長430nm)、耐久性の評価を行った。それぞれの評価結果は、表1に示す。
<Evaluation of volume hologram medium>
Evaluation of diffraction efficiency, light transmittance (wavelength 430 nm), and durability was performed for each of the produced volume hologram media as follows. Each evaluation result is shown in Table 1.
(回折効率)
 体積ホログラム媒体を、分光光度計U-3900(株式会社日立製作所製)を用いて、以下の条件で光透過率を測定した。
 スキャン範囲     400~800nm
 スキャンスピード   600nm/min
(Diffraction efficiency)
The light transmittance of the volume hologram medium was measured under the following conditions using a spectrophotometer U-3900 (manufactured by Hitachi, Ltd.).
Scan range 400-800nm
Scan speed 600nm / min
 得られた光透過率データの波長460~600nmの光透過率より、ベースラインを算出し、回折波長λmaxにおける光透過率Tとベースライン透過率Bとの値から、回折効率を以下の式により算出した。回折効率が75%以上を合格とした。
 回折効率=[(B-T)/B]×100(%)
A baseline is calculated from the light transmittance at a wavelength of 460 to 600 nm of the obtained light transmittance data, and the diffraction efficiency is calculated from the values of the light transmittance T and the baseline transmittance B at the diffraction wavelength λ max as follows: Calculated by A diffraction efficiency of 75% or higher was accepted.
Diffraction efficiency = [(BT) / B] × 100 (%)
(光透過率(430nm))
 分光光度計U-3900(株式会社日立製作所製)を用い、上記と同条件で光透過率を測定し、化合物自体の着色や散乱の影響を受けやすい波長430nmでの光透過率T1(%)を求めた。波長430nmでの光透過率T1が80%以上を合格とした。
(Light transmittance (430 nm))
Using a spectrophotometer U-3900 (manufactured by Hitachi, Ltd.), the light transmittance was measured under the same conditions as described above, and the light transmittance T1 (%) at a wavelength of 430 nm, which is susceptible to the coloring and scattering of the compound itself. Asked. The light transmittance T1 at a wavelength of 430 nm was determined to be 80% or more.
(耐久性の評価)
 キセノンランプからAMフィルター(AM-1.5)を通して強度100mW/cmの擬似太陽光を200時間照射した後、上記の光透過率(430nm)と同条件で、波長430nmでの光透過率T2(%)を求めた。
 そして、擬似太陽光照射前の430nmでの光透過率T1に対する擬似太陽光照射後の波長430nmでの光透過率T2の比率(T2/T1)を求めた。T2/T1が0.80以上を合格とした。
(Durability evaluation)
After irradiating pseudo-sunlight with an intensity of 100 mW / cm 2 from a xenon lamp through an AM filter (AM-1.5) for 200 hours, light transmittance T2 at a wavelength of 430 nm under the same conditions as the above light transmittance (430 nm). (%) Was calculated.
Then, the ratio (T2 / T1) of the light transmittance T2 at the wavelength 430 nm after the simulated sunlight irradiation to the light transmittance T1 at 430 nm before the simulated sunlight irradiation was obtained. T2 / T1 set 0.80 or more as the pass.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1に示した結果から明らかなように、実施例の体積ホログラム媒体1~9は、回折効率と光透過率が高く、かつ耐久性に優れていることが分かった。これに対し、比較例の体積ホログラム媒体10,11は、いずれかの項目について劣るものであった。 As is clear from the results shown in Table 1, it was found that the volume hologram media 1 to 9 of the examples had high diffraction efficiency and light transmittance and excellent durability. On the other hand, the volume hologram media 10 and 11 of the comparative example were inferior in any item.
 本実施形態のホログラム記録材料によって製造された体積ホログラム媒体は、ホログラフィック光学素子の用途で用いられ、例えば、ヘッドマウントディスプレイ(HMD)、ヘッドアップディスプレイ(HUD)、光メモリ、光ディスク用ピックアップレンズ、液晶用カラーフィルター、反射型液晶反射板、レンズ、回折格子、干渉フィルター、光ファイバー用結合器、ファクシミリ用光偏光器、建築用窓ガラス、書籍、雑誌等の表紙、POPなどのディスプレイ、ギフト、偽造防止用のセキュリティ目的としてクレジットカード、紙幣、包装等に好適に利用できる。 The volume hologram medium manufactured by the hologram recording material of the present embodiment is used for a holographic optical element. For example, a head mounted display (HMD), a head-up display (HUD), an optical memory, a pickup lens for an optical disk, a liquid crystal Color filters, reflective liquid crystal reflectors, lenses, diffraction gratings, interference filters, optical fiber couplers, facsimile light polarizers, architectural window glass, covers for books, magazines, displays such as POPs, gifts, forgery prevention For security purposes, it can be suitably used for credit cards, banknotes, packaging, and the like.
10  体積ホログラム媒体
11  体積ホログラム記録層
12  隣接層
13  感光層
103a、103b  シリコーン粘着剤
104a、104b  プリズム基体
201  レーザー光源
202a、202b  ビームステアラー
203  シャッター
204  ビームエキスパンダー
205  ビームスプリッター
206、207、208、209  ミラー
211、212  スペイシャルフィルター
213  製造光学系
DESCRIPTION OF SYMBOLS 10 Volume hologram medium 11 Volume hologram recording layer 12 Adjacent layer 13 Photosensitive layer 103a, 103b Silicone adhesive 104a, 104b Prism base | substrate 201 Laser light source 202a, 202b Beam steerer 203 Shutter 204 Beam expander 205 Beam splitter 206,207,208,209 Mirror 211, 212 Spatial filter 213 Manufacturing optical system

Claims (7)

  1.  体積ホログラム媒体用のホログラム記録材料であって、
     メタロポリマー前駆体と光重合性化合物を含有することを特徴とするホログラム記録材料。
    A hologram recording material for a volume hologram medium,
    A hologram recording material comprising a metallopolymer precursor and a photopolymerizable compound.
  2.  前記メタロポリマー前駆体が、シッフ塩基と有機金属化合物を含有することを特徴とする請求項1に記載のホログラム記録材料。 The hologram recording material according to claim 1, wherein the metallopolymer precursor contains a Schiff base and an organometallic compound.
  3.  前記有機金属化合物が、Ti、Zr、Si及びZnから選ばれる金属元素を少なくとも一種含有することを特徴とする請求項2に記載のホログラム記録材料。 The hologram recording material according to claim 2, wherein the organometallic compound contains at least one metal element selected from Ti, Zr, Si and Zn.
  4.  前記シッフ塩基が、下記一般式(1)で表される構造を有することを特徴とする請求項2又は請求項3に記載のホログラム記録材料。
    Figure JPOXMLDOC01-appb-C000001
    〔上記一般式(1)において、Rは、H、CH、C、C又はCを表す。Rは、CH、C、COH又はCOHを表す。Rは、CH又はNを表す。Rは、CH、C又はOCOを表す。〕
    The hologram recording material according to claim 2, wherein the Schiff base has a structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In the general formula (1), R 1 represents H, CH 3 , C 2 H 5 , C 3 H 7 or C 4 H 9 . R 2 represents CH 3 , C 2 H 5 , C 2 H 4 OH or C 3 H 6 OH. R 3 represents CH or N. R 4 represents CH 2 , C 2 H 4 or OC 2 H 4 O. ]
  5.  前記有機金属化合物が、金属に、アルコキシド、アセトネート、グリコレート、アセトアセテート又はイソシアネートの有機配位子が配位結合した化合物を含有することを特徴とする請求項2から請求項4までのいずれか一項に記載のホログラム記録材料。 The organic metal compound contains a compound in which an organic ligand of alkoxide, acetonate, glycolate, acetoacetate or isocyanate is coordinate-bonded to a metal. The hologram recording material according to one item.
  6.  体積ホログラム記録層を有する体積ホログラム媒体であって、
     前記体積ホログラム記録層に、下記一般式(2)で表される構造を有するメタロポリマーを含有することを特徴とする体積ホログラム媒体。
    一般式(2):Sb-(R-Sb′-M-Sb′)-R-Sb
    〔上記一般式(2)において、Mは、Ti、Zr、Si及びZnから選ばれる金属元素を表す。Rは、2価の連結基を表す。nは、1以上の整数を表す。nが1以上ときの式中のSb-R-Sb′及びnが2以上ときの式中のSb′-R-Sb′は、それぞれシッフ塩基配位子を表す。Sb′は、Sbと同一骨格の化学構造を有し、Sbが金属元素Mとの配位結合及び共有結合の少なくともいずれかにより結合した化学構造に変化した状態を表す。〕
    A volume hologram medium having a volume hologram recording layer,
    A volume hologram medium comprising a metallopolymer having a structure represented by the following general formula (2) in the volume hologram recording layer.
    Formula (2): Sb- (R-Sb'-M-Sb ') n -R-Sb
    [In the general formula (2), M represents a metal element selected from Ti, Zr, Si and Zn. R represents a divalent linking group. n represents an integer of 1 or more. Sb—R—Sb ′ in the formula when n is 1 or more and Sb′—R—Sb ′ in the formula when n is 2 or more each represent a Schiff base ligand. Sb ′ has a chemical structure having the same skeleton as Sb and represents a state in which Sb is changed to a chemical structure bonded to at least one of a coordinate bond and a covalent bond with the metal element M. ]
  7.  体積ホログラム記録層を有する体積ホログラム媒体の製造方法であって、
     請求項1から請求項5までのいずれか一項に記載のホログラム記録材料の溶液を用いて感光層を形成する工程と、
     前記感光層にホログラフィ露光した後、熱処理することによって、配位化合物を有するメタロポリマーを含有するホログラム記録層を形成する工程を有することを特徴とする体積ホログラム媒体の製造方法。
    A method for producing a volume hologram medium having a volume hologram recording layer,
    Forming a photosensitive layer using the hologram recording material solution according to any one of claims 1 to 5;
    A method for producing a volume hologram medium, comprising the step of forming a hologram recording layer containing a metallopolymer having a coordination compound by subjecting the photosensitive layer to holographic exposure followed by heat treatment.
PCT/JP2016/085372 2015-12-16 2016-11-29 Holographic recording material, volume holographic medium, and method for producing volume holographic medium WO2017104402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017555958A JPWO2017104402A1 (en) 2015-12-16 2016-11-29 Hologram recording material, volume hologram medium, and method of manufacturing volume hologram medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-245239 2015-12-16
JP2015245239 2015-12-16

Publications (1)

Publication Number Publication Date
WO2017104402A1 true WO2017104402A1 (en) 2017-06-22

Family

ID=59056263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085372 WO2017104402A1 (en) 2015-12-16 2016-11-29 Holographic recording material, volume holographic medium, and method for producing volume holographic medium

Country Status (2)

Country Link
JP (1) JPWO2017104402A1 (en)
WO (1) WO2017104402A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167139A1 (en) * 2018-02-27 2019-09-06 株式会社島津製作所 Lightguide and method of manufacture therefor
WO2023179985A1 (en) * 2022-03-23 2023-09-28 Preh Gmbh Operating element having a holographic functional display for visualising the switching function associated with the operating element and/or the switching state thereof, associated assembly, and associated joining method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619040A (en) * 1992-06-30 1994-01-28 Nippon Sheet Glass Co Ltd Optical recording composition, film and method
JP2008524353A (en) * 2004-12-20 2008-07-10 イーピージー (エンジニアード ナノプロダクツ ジャーマニー) アーゲー Optical component including organic-inorganic hybrid material for manufacturing refractive index gradient layer having high azimuth resolution and manufacturing method thereof
JP2011074369A (en) * 2009-09-03 2011-04-14 Univ Of Tokyo Novel metallopolymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619040A (en) * 1992-06-30 1994-01-28 Nippon Sheet Glass Co Ltd Optical recording composition, film and method
JP2008524353A (en) * 2004-12-20 2008-07-10 イーピージー (エンジニアード ナノプロダクツ ジャーマニー) アーゲー Optical component including organic-inorganic hybrid material for manufacturing refractive index gradient layer having high azimuth resolution and manufacturing method thereof
JP2011074369A (en) * 2009-09-03 2011-04-14 Univ Of Tokyo Novel metallopolymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BADREDDINE BELGHOUL ET AL.: "Supramolecular Sequential Assembly of Polymer Thin Films Based on Dimeric, Dendrimeric, and Polymeric Schiff-Base Ligands and Metal Ions", LANGMUIR, vol. 23, no. 9, 31 March 2007 (2007-03-31), pages 5062 - 5069, XP055599339 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167139A1 (en) * 2018-02-27 2019-09-06 株式会社島津製作所 Lightguide and method of manufacture therefor
JPWO2019167139A1 (en) * 2018-02-27 2020-12-03 株式会社島津製作所 Light guide and its manufacturing method
WO2023179985A1 (en) * 2022-03-23 2023-09-28 Preh Gmbh Operating element having a holographic functional display for visualising the switching function associated with the operating element and/or the switching state thereof, associated assembly, and associated joining method

Also Published As

Publication number Publication date
JPWO2017104402A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP2849021B2 (en) Photosensitive composition for volume hologram recording
JP6652136B2 (en) Holographic optical element and method of manufacturing the same
JPH05107999A (en) Photosensitive composition for volumetric hologram recording
JP6610667B2 (en) Holographic optical element and manufacturing method thereof
JP2006235087A (en) Hologram recording material, hologram recording method, optical recording medium, and method of recording to optical recording medium
JP6064607B2 (en) Photosensitive composition for volume hologram recording, volume hologram recording body, and method for producing volume hologram recording body
JP4365494B2 (en) Photosensitive composition for volume hologram recording and hologram obtained therefrom
JP2005309359A (en) Hologram recording material, hologram recording method, optical recording medium, three-dimensional display hologram, and holographic optical element
WO2017104402A1 (en) Holographic recording material, volume holographic medium, and method for producing volume holographic medium
WO2017195541A1 (en) Composition for forming volume hologram recording layer, and holographic optical element
JP3532675B2 (en) Photosensitive composition for volume hologram recording, recording medium using the same, and method for forming volume hologram
WO2017195877A1 (en) Optical element and method for producing same
JPH08101501A (en) Photosensitive composition for three-dimensional hologram recording, recording medium using that and forming method of three-dimensional hologram
JP3532621B2 (en) Photosensitive composition for volume hologram recording, recording medium using the same, and method for forming volume hologram
JP4177867B2 (en) Photosensitive composition for recording volume hologram, recording medium using the same, and method for forming volume hologram
JP4500532B2 (en) Photosensitive composition for volume hologram recording and photosensitive medium for volume hologram recording
JPH08101502A (en) Photosensitive composition for three-dimensional hologram recording, recording medium using that and forming method of three-dimensional hologram
JP2005017730A (en) Hologram recording material composition, hologram recording material, and method for recording hologram
WO2017098891A1 (en) Holographic optical element and method for producing holographic optical element
WO2017110537A1 (en) Photosensitive composition for volume hologram production, method for producing volume hologram, volume hologram and holographic optical element
WO2017014106A1 (en) Holographic optical element and production method therefor
JP2005099751A (en) Composition for hologram recording material, hologram recording material and hologram recording method
JP2018116209A (en) Volume hologram laminate
JP3482256B2 (en) Photosensitive composition for volume hologram recording, recording medium using the same, and method for forming volume hologram
JP4512446B2 (en) Hologram recording method and hologram recording material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555958

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875386

Country of ref document: EP

Kind code of ref document: A1