WO2017101778A1 - 一种获取虹膜信息的方法、装置、存储介质、电子设备及*** - Google Patents

一种获取虹膜信息的方法、装置、存储介质、电子设备及*** Download PDF

Info

Publication number
WO2017101778A1
WO2017101778A1 PCT/CN2016/109843 CN2016109843W WO2017101778A1 WO 2017101778 A1 WO2017101778 A1 WO 2017101778A1 CN 2016109843 W CN2016109843 W CN 2016109843W WO 2017101778 A1 WO2017101778 A1 WO 2017101778A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
user
infrared data
human eye
determining
Prior art date
Application number
PCT/CN2016/109843
Other languages
English (en)
French (fr)
Inventor
骆磊
Original Assignee
深圳前海达闼云端智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳前海达闼云端智能科技有限公司 filed Critical 深圳前海达闼云端智能科技有限公司
Publication of WO2017101778A1 publication Critical patent/WO2017101778A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris

Definitions

  • the present application relates to the field of iris recognition technology, and in particular, to a method, device, storage medium, electronic device and system for acquiring iris information.
  • the iris recognition technology of the existing scheme is an infrared lamp (may also be multiple to enhance illumination) and an infrared camera as a group. After being triggered, the infrared lamp emits infrared light, and a single user needs to adjust the position of his eye. In the infrared light irradiation area, after the iris is illuminated, the infrared camera captures the iris information and recognizes it, mostly one-to-one operation, a few are one-to-many (many need to be in a smaller angle range), but mostly Dedicated large equipment.
  • one infrared lamp may also be multiple to enhance illumination
  • one infrared camera as a group, and only one user or a very close user of the station can be identified, and the infrared lamp is fixed, the illumination range and The angle is limited, generally requires the user to point the eye at a certain location for recognition, and the experience is relatively poor.
  • the power consumption and heat generation of high-power and high-intensity infrared lamps are quite amazing.
  • battery-operated devices such as mobile phones and mobile robots, it is bound to reduce battery life, increase the number of times of charging, and reduce the life of equipment.
  • the embodiment of the present application provides a method, a device, a storage medium, an electronic device and a system for acquiring iris information, which are used for improving the flexibility of acquiring infrared light in the iris information.
  • an embodiment of the present application provides a method for acquiring iris information, including:
  • the iris information of the user is acquired by an infrared collection device.
  • an embodiment of the present application provides an apparatus for acquiring iris information, including:
  • a user human eye position determining module for determining a position of a user's human eye
  • a data processing module configured to determine a transmission direction of the infrared data lamp according to the location of the human eye
  • An indicating module configured to indicate that the infrared data light is transmitted according to the transmitting direction
  • An iris information acquiring module configured to acquire iris information of the user.
  • an embodiment of the present application provides a storage medium for storing a program to perform a method of acquiring iris information as described above.
  • an electronic device including:
  • Transceiver unit for data transmission and reception
  • a storage medium for storing a program
  • a processor for performing a method of acquiring iris information as described above in accordance with a program of the storage medium.
  • an embodiment of the present application provides a system for acquiring iris information, including:
  • An infrared data light for emitting infrared light according to an emission angle and an emission intensity indicated by the electronic device.
  • the user location is obtained, the transmission direction of the infrared data light is determined according to the location of the user, and the infrared data light is instructed to be transmitted according to the transmission direction, so that the user can obtain a good image when acquiring the iris information of the user.
  • the infrared light illumination enhances the flexibility of infrared light illumination, and does not require the user to point the eye at a certain position for recognition, thereby improving the user experience.
  • the user in the above solution is not limited to one user, and can be applied equally when multiple users are used, and when multiple users are used, the acquisition efficiency and the user experience can be significantly improved.
  • FIG. 1 is a schematic flowchart diagram of a method for acquiring iris information in an embodiment of the present application
  • FIG. 2 is a top view showing a positional relationship between a mobile robot, a user, and an infrared data lamp in Embodiment 1 of the present application;
  • 3 is a schematic diagram showing coordinates and angles of the mobile robot, the user, and the infrared data lamp in the first embodiment
  • FIG. 4 is a schematic flowchart diagram of a method for acquiring iris information in Embodiment 1 of the present application
  • FIG. 5 is a top view showing a positional relationship between a mobile robot, a user, and an infrared data lamp in Embodiment 2 of the present application;
  • FIG. 6 is a schematic structural diagram of an apparatus for acquiring iris information in an embodiment of the present application.
  • FIG. 7 shows a schematic diagram of an electronic device in an embodiment of the present application.
  • FIG. 1 shows a method for acquiring iris information in an embodiment of the present application, as shown in the figure, including:
  • Step 101 Determine a location of a user's human eye
  • Step 102 Determine a transmission direction of the infrared data light according to a position of the user's human eye
  • Step 103 Instruct the infrared data light to transmit according to the transmitting direction
  • Step 104 Acquire iris information of the user through the infrared collection device.
  • the emission direction and the emission intensity of the infrared data lamp may also be determined according to the position of the user's human eye.
  • the infrared data lamp may also be instructed to transmit according to the emission direction and the emission intensity.
  • the user can obtain good infrared light illumination, thereby improving the flexibility of infrared light illumination, and does not require the user to align the eye to a certain position for recognition, thereby improving the user experience.
  • the user in the above solution is not limited to one user, and can be applied equally when multiple users are used, and when multiple users are used, the recognition efficiency and the user experience can be significantly improved.
  • the infrared data lamp may be combined with the device for implementing the method for acquiring iris information in the embodiment of the present application, or may be separately configured with the device for obtaining the iris information method in the embodiment of the present application.
  • the device for obtaining the iris information in the embodiment of the present application only needs to determine the relative direction and distance between the user and the user to determine the emission direction and the emission intensity of the infrared data lamp, which is more convenient in terms of calculation processing.
  • the device for acquiring the iris information in the embodiment of the present application needs to accurately calculate the precise emission direction of the infrared light according to the positional relationship between the eyes of the remaining users and the infrared data light (for example, for multiple users, Calculate the infrared light emission direction for each user and the illumination distance and inform the infrared data light.
  • the infrared data light emits infrared light (can be transmitted in multiple directions at the same time or separately in multiple directions at very short intervals, depending on the infrared data light The hardware itself), and then the infrared acquisition device (infrared camera) on the device can obtain the user iris information under high illumination, improve the verification success rate and shorten the verification time.
  • the device for obtaining the iris information in the embodiment of the present application and the infrared data lamp are separately arranged, and the infrared data lamp can be connected to the commercial power, so that the power of the device for acquiring the iris information method in the embodiment of the present application is not consumed. Enhance the battery life of devices such as mobile robots or mobile terminals.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the method for acquiring iris information in the embodiment of the present application can be implemented by any device that can implement the method.
  • the first embodiment is described by taking a mobile robot as an example, and the mobile robot has an advancing capability.
  • the infrared camera for collecting iris data in the first embodiment, the mobile robot and the infrared data light are separately arranged. Assuming that the mobile robot enters a room, there is a user and an infrared data light in the house. The top view of the positional relationship of the three is shown in Figure 2.
  • the geomagnetism is in the positive direction of the Y-axis and the geomagnetism is in the positive direction of the X-axis.
  • the mobile robot needs to establish a plane rectangular coordinate system with the infrared data lamp position as the origin.
  • the mobile robot knows the position coordinates of the fixed infrared data light (the infrared data light position is defined as (0, 0), the infrared data light position is the origin of the plane rectangular coordinate system), and the mobile robot knows that it is at the coordinate
  • the real-time position coordinates (x, y) in the system Therefore, the mobile robot can obtain its own linear distance from the infrared data light and the absolute angle of the straight line in the geomagnetic coordinates.
  • the mobile robot After detecting the user, the mobile robot can get its own angle to the user's direction and the north direction of the geomagnetism (take 0 ° ⁇ 180 °), after which the robot can get the robot according to the laser range finder and even the camera itself.
  • the straight line distance of the user According to the above data, the coordinate point of the user in the geomagnetic coordinates can be calculated by the robot through the mathematical model, and then the infrared data lamp can be informed of the direction and the irradiation distance of the infrared light to be emitted, and the infrared data light is emitted to the precise direction.
  • Intensity (considering the distance factor, too weak will not illuminate the iris effect, reduce the recognition rate; too strong will make the infrared lens overexposed, the same will reduce the recognition rate), and then illuminate the user's iris. Because the calculations can be adjusted in real time in real time, the infrared light can still be tracked while the user is walking.
  • FIG. 3 is a schematic diagram showing coordinates and angles of a mobile robot, a user, and an infrared data lamp in the first embodiment.
  • the specific method for acquiring the iris information is as shown in FIG. 4, and includes:
  • Step 201 the mobile robot defines the position of the infrared data lamp as (0, 0), and knows its own coordinates (x, y) in the coordinate system;
  • x is the horizontal coordinate of the mobile robot in the coordinate system
  • y is the vertical coordinate of the mobile robot in the coordinate system.
  • Step 202 the mobile robot obtains a linear distance L2 from the user's eyes, and an angle ⁇ between the straight line toward the user's eye direction and the geomagnetic north direction (Y-axis positive direction);
  • is the angle between the mobile robot and the user connection line and the vertical coordinate axis Y.
  • the mobile robot obtains a linear distance from the user's eyes. For example, according to the laser range finder or even the camera itself, the linear distance between the robot and the user's eyes can be obtained.
  • the method for specifically obtaining L2 is not limited in this embodiment, and can be obtained by using the prior art.
  • Step 203 the mobile robot obtains a distance L1 from the infrared data lamp
  • L1 can be calculated using formula (1):
  • L1 can also be obtained according to technical means such as laser range finder or camera ranging.
  • Step 204 the mobile robot respectively obtains an angle ⁇ with the direction of the user and the infrared data light;
  • the ⁇ can be calculated using equation (2):
  • the mobile robot can adjust the angle by aligning the direction of the infrared data lamp and then rotating to the direction of the user to obtain the angle ⁇ of rotation. Similarly, it can be rotated by aligning the direction of the user's eyes and then rotating to align the direction of the infrared data light. The angle ⁇ .
  • Step 205 the mobile robot calculates the distance L3 between the user's eyes and the infrared data light
  • the distance L3 between the user and the infrared data lamp can be calculated by using formula (3):
  • Step 206 the mobile robot calculates an angle ⁇ ' of the user's eyes in the coordinate system
  • the angle between the infrared data lamp and the user's eye and the mobile robot is ⁇ :
  • Step 207 the mobile robot obtains the emission direction and the emission intensity according to L3 and ⁇ ', indicating An infrared data light is emitted according to the emission direction and the emission intensity;
  • step 208 the mobile robot acquires the iris information of the user through the infrared camera.
  • the flow in this embodiment can be recalculated in real time according to changes in the position of the user, the mobile robot, and the infrared data lamp (usually the change of the user's position), thereby ensuring that the infrared data light can accurately illuminate the user and ensure the acquisition of the iris information.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the second embodiment is described by taking a mobile robot as an example.
  • the mobile robot has an infrared camera capable of collecting iris data.
  • the mobile robot and the infrared data light are separately provided. Assuming that the mobile robot enters a room, there are two users (User 1 and User 2) and an infrared data light in the house. The top view of the positional relationship of the three is shown in Figure 5.
  • the processing method for the single user in the first embodiment can be simultaneously processed, and can be processed in real time according to the change, so that the infrared data light can be dynamically sent to the precise direction of each user at the same time.
  • the intensity of the traceable infrared light, the infrared data light emits infrared light can be transmitted in multiple directions at the same time or in multiple directions at very short intervals, depending on the infrared data light hardware itself. Multiple infrared cameras on the robot that cover the full viewing angle provide clear iris information at precise angles at these precise angles.
  • an apparatus for acquiring iris information is also provided in the embodiment of the present application. Since the principle of solving the problem of these devices is similar to the method for acquiring iris information, the implementation of these devices can be referred to the implementation of the method. It will not be repeated here.
  • the apparatus for acquiring iris information in the embodiment of the present application includes:
  • a user human eye position determining module 601 configured to determine a location of a user's human eye
  • a data processing module 602 configured to determine a transmission direction of the infrared data light according to a location of the user's human eye;
  • the indicating module 603 is configured to indicate that the infrared data light is transmitted according to the transmitting direction;
  • the iris information acquiring module 604 is configured to acquire iris information of the user.
  • the data processing module 602 can also determine the transmitting side of the infrared data light according to the position of the user's human eye.
  • the direction and emission intensity, the corresponding indication module 603 is used to indicate that the infrared data light is transmitted according to the emission direction and the emission intensity.
  • the indication module 603 can notify the iris information acquiring module 604 to start acquiring the iris information of the user, so that the processing amount of the iris information acquiring module 604 can be saved.
  • the iris information acquisition module 604 can also be in the state of acquiring the user iris information, and does not need to be notified by the indication module 603.
  • the data processing module is specifically configured to:
  • the determining, according to the location of the user and the location of the infrared data light, the direction of the user relative to the infrared data light may be:
  • the iris information acquiring module obtains the iris information of the user through an infrared collecting device.
  • Also provided in the embodiment of the present application is a storage medium for storing a program for performing the method of acquiring iris information as described above.
  • an electronic device including: a transceiver unit 701 for data transceiving; a storage medium 702 for storing a program; an infrared collection device 703; and a processor 704 for A method of acquiring iris information as described above is performed in accordance with a program of the storage medium 702.
  • a system for acquiring iris information including: And an infrared data light for emitting infrared light according to an emission angle and an emission intensity indicated by the electronic device.
  • embodiments of the present application can be provided as a method, apparatus, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种获取虹膜信息方法、装置、存储介质、电子设备及***,可以应用于机器人领域,用于提升虹膜获取中红外灯的灵活性。该方法包括:确定用户人眼的位置(101);根据用户人眼的位置确定红外数据灯的发射方向(102);指示红外数据灯根据该发射方向进行发射(103);通过红外采集设备获取所述用户的虹膜信息(104)。采用上述方案,在获取用户的虹膜信息时,可以使得用户得到很好的红外光照射,提升了红外光照射的灵活性,不需要用户将眼睛对准某个位置进行获取,提升了用户体验。

Description

一种获取虹膜信息的方法、装置、存储介质、电子设备及*** 技术领域
本申请涉及虹膜识别技术领域,尤其涉及一种获取虹膜信息的方法、装置、存储介质、电子设备及***。
背景技术
现有方案的虹膜识别技术,都是一个红外灯(也可多个,以加强照度)和一个红外摄像头作为一组,在被触发后,红外灯发射红外光,单个用户需要调整自己眼睛的位置到红外光照射区域,虹膜被照亮后,红外摄像头拍摄虹膜信息并进行识别,多为一对一操作,少数为一对多(多人需要在一个较小的角度范围内),但多为专用大型设备。
现有技术中,一个红外灯(也可多个,以加强照度)和一个红外摄像头为一组,同时只能识别一个用户或者站的很近的几个用户,且红外灯固定,照射范围和角度都有限,一般都需要用户将眼睛对准某个位置进行识别,体验比较差。另外,大功率高照度的红外灯功耗和发热都相当惊人,对使用电池的设备,如手机,移动式机器人来说,势必会减少续航时间,增加充电次数,减少设备寿命。
发明内容
本申请实施例提出了一种获取虹膜信息的方法、装置、存储介质、电子设备及***,用于提升获取虹膜信息中红外灯的灵活性。
在一个方面,本申请实施例提供了一种获取虹膜信息的方法,包括:
确定用户人眼的位置;
根据所述人眼位置确定红外数据灯的发射方向;
指示所述红外数据灯根据所述发射方向进行发射;
通过红外采集设备获取所述用户的虹膜信息。
在另一个方面,本申请实施例提供了一种获取虹膜信息装置,包括:
用户人眼位置确定模块,用于确定用户人眼的位置;
数据处理模块,用于根据所述人眼位置确定红外数据灯的发射方向;
指示模块,用于指示所述红外数据灯根据所述发射方向进行发射;
虹膜信息获取模块,用于获取所述用户的虹膜信息。
在另一个方面,本申请实施例提供了一种存储介质,用于存储程序执行如上文所述的获取虹膜信息的方法。
在另一个方面,本申请实施例提供了一种电子设备,包括:
收发单元,用于数据收发;
存储介质,用于存储程序;
红外采集设备;
处理器,用于依照所述存储介质的程序执行如上文所述的获取虹膜信息的方法。
在另一个方面,本申请实施例提供了一种获取虹膜信息的***,包括:
如上文所述的电子设备;
红外数据灯,用于根据所述电子设备指示的发射角度和发射强度发射红外光。
有益效果如下:
在本发明实施例中,获取用户位置,根据用户的位置确定红外数据灯的发射方向,并指示红外数据灯根据该发射方向进行发射,从而在获取用户的虹膜信息时,可以使得用户得到很好的红外光照射,提升了红外光照射的灵活性,不需要用户将眼睛对准某个位置进行识别,提升了用户体验。上述方案中的用户不限于一个用户,在多个用户时同样可以应用,且在多个用户时,能够明显提升获取效率和用户体验。
附图说明
下面将参照附图描述本申请的具体实施例,其中:
图1示出了本申请实施例中获取虹膜信息的方法的流程示意图;
图2示出了本申请实施例一中移动式机器人、用户和红外数据灯的位置关系俯视图;
图3示出了实施例一中移动式机器人、用户和红外数据灯的各坐标与角度示意图;
图4示出了本申请实施例一中获取虹膜信息的方法的流程示意图;
图5示出了本申请实施例二中移动式机器人、用户和红外数据灯的位置关系俯视图;
图6示出了本申请实施例中获取虹膜信息的装置的结构示意图;
图7示出了本申请实施例中电子设备的示意图。
具体实施方式
为了使本申请的技术方案及优点更加清楚明白,以下结合附图对本申请的示例性实施例进行进一步详细的说明,显然,所描述的实施例仅是本申请的一部分实施例,而不是所有实施例的穷举。并且在不冲突的情况下,本说明书中的实施例及实施例中的特征可以互相结合。
发明人在发明过程中注意到:现有技术中,红外灯固定,照射范围和角度都有限,一般都需要用户将眼睛对准某个位置进行识别,体验比较差。发明人希望提升红外光照射的灵活性,提升虹膜识别效率和用户体验。
图1示出了本申请实施例中获取虹膜信息的方法,如图所示,包括:
步骤101,确定用户人眼的位置;
步骤102,根据用户人眼的位置确定红外数据灯的发射方向;
步骤103,指示红外数据灯根据该发射方向进行发射;
步骤104,通过红外采集设备获取用户的虹膜信息。
在步骤102还可以根据用户人眼的位置确定红外数据灯的发射方向和发射强度,步骤103中,还可以指示红外数据灯根据该发射方向和发射强度进行发射。
采用本申请实施例中的获取虹膜信息的方法,可以使得用户得到很好的红外光照射,提升了红外光照射的灵活性,不需要用户将眼睛对准某个位置进行识别,提升了用户体验。上述方案中的用户不限于一个用户,在多个用户时同样可以应用,且在多个用户时,能够明显提升识别效率和用户体验。
在具体实现时,红外数据灯可以与实现本申请实施例中的获取虹膜信息方法的装置合设,也可以与实现本申请实施例中的获取虹膜信息方法的装置分设。在合设时,实现本申请实施例中的获取虹膜信息方法的装置仅需要确定自身与用户的相对方向和距离即可确定红外数据灯的发射方向和发射强度,从计算处理上来说更加方便。在分设时,实现本申请实施例中的获取虹膜信息方法的装置需根据其余用户眼睛、红外数据灯的三者位置关系,智能计算出红外光的精确发射方向(如为多个用户,则依次计算对每个用户的红外光发射方向)和照射距离并告知红外数据灯,红外数据灯发射红外光(可同时多方向发射或者以极短的时间间隔分别向多方向发射,取决于红外数据灯硬件本身),进而设备上的红外采集设备(红外摄像头)可得到高照度下的用户虹膜信息,提高验证成功率,缩短验证时间。同时,由于实现本申请实施例中的获取虹膜信息方法的装置与红外数据灯分设,红外数据灯可以接市电,从而不会耗费实现本申请实施例中的获取虹膜信息方法的装置的电力,增强了使用电池的设备,例如移动式机器人或移动终端的续航能力,可谓一举多得。
为了便于本申请的实施,下面以实施例进行说明。
实施例一:
本申请实施例中的获取虹膜信息方法,可以由任何可实现该方法的设备来完成,实施例一以移动式机器人为例进行说明,移动式机器人上具有可进 行虹膜数据采集的红外摄像头,在实施例一中,移动式机器人与红外数据灯分设。假设移动式机器人进入一个房间后,屋内有一个用户和一个红外数据灯,三者的位置关系俯视图如图2所示。
假设地磁正北向为Y轴正方向,地磁正东向为X轴正方向。移动式机器人需建立起以红外数据灯位置为原点的平面直角坐标系。移动式机器人知道固定的红外数据灯的位置坐标(将红外数据灯位置定义为(0,0),以红外数据灯位置为本平面直角坐标系的原点),且移动式机器人可知自身在该坐标系中的实时位置坐标(x,y)。因此,移动式机器人可得到自己与红外数据灯的直线距离和此直线在地磁坐标中的绝对角度。
在侦测到用户后,移动式机器人可得到自己到用户方向的直线与地磁正北方向的夹角(取0°~180°),之后机器人根据激光测距仪甚至摄像头本身就可得到机器人与用户的直线距离。根据如上这些数据即可通过数学模型由机器人计算出用户在地磁坐标中的坐标点,进而就可将红外光需要发射的方向和照射距离告知红外数据灯,由红外数据灯向此精确方向发射一定强度(考虑距离因素,太弱会起不到照亮虹膜的效果,降低识别率;太强则会使红外镜头过曝,一样会降低识别率),进而照亮用户的虹膜。因为计算是可以实时发生实时调整的,因此在用户走动时,红外光依然可以跟踪照亮。
图3是实施例一中移动式机器人、用户和红外数据灯的各坐标与角度示意图。实施例一中的移动式机器人在发现用户后,具体的获取虹膜信息方法如图4所示,包括:
步骤201,移动式机器人将红外数据灯位置定义为(0,0),并获知自身在该坐标系中的坐标(x,y);
x为移动式机器人在该坐标系中的水平坐标,y为移动式机器人在该坐标系中的垂直坐标。
步骤202,移动式机器人获得与用户眼睛的直线距离L2,以及向用户眼睛方向的直线与地磁正北方向(Y轴正方向)夹角β;
β即移动式机器人与用户连线和垂直坐标轴Y的夹角。
移动式机器人获得与用户眼睛的直线距离,例如根据激光测距仪甚至摄像头本身就可得到机器人与用户眼睛的直线距离。本实施例中不限制具体获得L2的方法,可采用已有技术获取。
步骤203,移动式机器人获得与红外数据灯的距离L1;
在具体实现时,可利用公式(1)计算L1:
L1=√(x2+y2)        公式(1)
也可以根据激光测距仪或摄像头测距等技术手段获得L1。
步骤204,移动式机器人分别获得与用户和红外数据灯方向的夹角γ;
可利用公式(2)计算γ:
γ=180°-β-arctan(x/y)     公式(2)
另外,移动式机器人可调整角度,通过对准红外数据灯方向然后转动到对准用户方向得到转动的角度γ,同样,也可以通过对准用户眼睛方向然后转动到对准红外数据灯方向得到转动的角度γ。
步骤205,移动式机器人计算用户眼睛与红外数据灯的距离L3;
在本步骤中,根据余弦定理,可采用公式(3)计算用户与红外数据灯的距离L3:
L3=√[L12+L22-(2*L1*L2)*cosγ]   公式(3)
步骤206,移动式机器人计算用户眼睛在该坐标系中的角度α’;
根据正弦定理,可根据公式(4)红外数据灯分别与用户眼睛和移动式机器人连线的夹角α:
α=arcsin(L2*sinγ/L3)    公式(4)
从而可以通过公式(5)计算用户在该坐标系中的角度α’:
α’=α+arctan(y/x)=arcsin(L2*sinγ/L3)+arctan(y/x)
                                                    公式(5)
步骤207,移动式机器人根据L3和α’得到发射方向和发射强度,指示 红外数据灯根据该发射方向与所述发射强度进行发射;
步骤208,移动式机器人通过红外摄像头获取用户的虹膜信息。
本实施例中的流程可根据用户、移动式机器人、红外数据灯位置的变化(通常是用户位置的变化)实时重新计算,从而保证红外数据灯能够准确照射用户,保障虹膜信息的获取。
实施例二:
在实施例二中,实施例二以移动式机器人为例进行说明,移动式机器人上具有可进行虹膜数据采集的红外摄像头,在实施例二中,移动式机器人与红外数据灯分设。假设移动式机器人进入一个房间后,屋内有两个用户(用户1和用户2)和一个红外数据灯,三者的位置关系俯视图如图5所示。
在有两个或多个用户的情况下,可参考实施例一中针对单个用户的处理方法同时处理,并且可根据变化实时处理,因此红外数据灯可同时动态向各个用户的精确方向分别发出适合强度的可追踪红外光,红外数据灯发射红外光,可同时多方向发射或者以极短的时间间隔分别向多方向发射,取决于红外数据灯硬件本身。机器人上的多个可覆盖全视角的红外摄像头即可在这几个精确角度上通过精确的对焦得到清晰的虹膜信息。
基于同一发明构思,本申请实施例中还提供了一种获取虹膜信息的装置,由于这些设备解决问题的原理与一种获取虹膜信息的方法相似,因此这些设备的实施可以参见方法的实施,重复之处不再赘述。
如图6所示,本申请实施例中的获取虹膜信息装置包括:
用户人眼位置确定模块601,用于确定用户人眼的位置;
数据处理模块602,用于根据用户人眼的位置确定红外数据灯的发射方向;
指示模块603,用于指示红外数据灯根据所述发射方向进行发射;
虹膜信息获取模块604,用于获取用户的虹膜信息。
数据处理模块602还可以根据用户人眼的位置确定红外数据灯的发射方 向和发射强度,相应的指示模块603用于指示红外数据灯根据所述发射方向和发射强度进行发射。
指示模块603在指示红外数据灯后,可通知虹膜信息获取模块604开始获取用户的虹膜信息,如此可以节省虹膜信息获取模块604的处理量。虹膜信息获取模块604也可以一直处于获取用户虹膜信息的状态,不需要指示模块603通知。
进一步地,所述数据处理模块具体用于:
根据所述用户的位置和所述红外数据灯的位置确定所述用户相对于所述红外数据灯的方向,从而确定所述红外数据灯的发射方向;和/或
根据所述用户的位置和所述红外数据灯的位置确定所述用户与所述红外数据灯的距离,根据所述距离确定所述红外数据灯的发射强度。
其中,根据所述用户的位置和所述红外数据灯的位置确定所述用户相对于所述红外数据灯的方向具体可以是:
调整所述装置对准所述红外数据灯;
调整所述装置对准所述用户;
记录所述装置从所述红外数据灯转向所述用户得到的转动角度,或记录所述装置从所述用户转向所述红外数据灯得到的转动角度,从而得到所述用户人眼相对于所述红外数据灯的方向。
其中,虹膜信息获取模块通过红外采集设备获得所述用户的虹膜信息。
本申请实施例中还提供了一种存储介质,用于存储程序执行如上文所述的获取虹膜信息的方法。
如图7所示,本申请实施例中还提供了一种电子设备,包括:收发单元701,用于数据收发;存储介质702,用于存储程序;红外采集设备703;处理器704,用于依照所述存储介质702的程序执行如上文所述的获取虹膜信息的方法。
本申请实施例中还提供了一种获取虹膜信息的***,包括:如上文所述 的电子设备;以及红外数据灯,用于根据电子设备指示的发射角度和发射强度发射红外光。
本领域内的技术人员应明白,本申请的实施例可提供为方法、装置、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权 利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。

Claims (16)

  1. 一种获取虹膜信息的方法,其特征在于,包括:
    确定用户人眼的位置;
    根据所述人眼位置确定红外数据灯的发射方向;
    指示所述红外数据灯根据所述发射方向进行发射;
    通过红外采集设备获取所述用户的虹膜信息。
  2. 如权利要求1所述的方法,其特征在于,根据所述人眼位置确定红外数据灯的发射方向的步骤还包括:根据所述人眼位置确定红外数据灯的发射方向和发射强度;所述指示所述红外数据灯根据所述发射方向进行发射的步骤还包括:指示所述红外数据灯根据所述发射方向和发射强度进行发射。
  3. 如权利要求1或2所述的方法,其特征在于,所述根据所述人眼位置确定红外数据灯的发射方向,包括:
    根据所述人眼位置和所述红外数据灯的位置确定所述用户人眼相对于所述红外数据灯的方向,从而确定所述红外数据灯的发射方向。
  4. 如权利要求3所述的方法,其特征在于,所述根据所述人眼位置确定红外数掘灯的发射强度,包括:
    根据所述人眼位置和所述红外数据灯的位置确定所述用户人眼与所述红外数据灯的距离,根据所述距离确定所述红外数掘灯的发射强度。
  5. 如权利要求4所述的方法,其特征在于,所述根据所述人眼位置和所述红外数据灯的位置确定所述用户人眼与所述红外数据灯的距离,包括:
    利用如下公式计算所述用户人眼与所述红外数据灯的距离L3:
    L3=√[L12+L22-(2*L1*L2)*cosγ]
    其中L1为所述红外采集设备位置与所述红外数据灯位置的距离,L2为所述红外采集设备位置与所述用户人眼的距离,γ为所述红外采集设备位置分别与所述用户人眼和所述红外数据灯方向的夹角。
  6. 如权利要求3所述的方法,其特征在于,所述根据所述人眼位置和所述红外数据灯的位置确定所述用户人眼相对于所述红外数掘灯的方向,包括:
    在以所述红外数据灯位置为原点的平面直角坐标系中,利用如下公式计算所述用户人眼在所述坐标系中的角度α’:
    α’=arcsin(L2*sinγ/L3)+arctan(y/x)
    其中x为所述红外采集设备在所述坐标系中的水平坐标,y为所述红外采集设备在所述坐标系中的垂直坐标;L2为所述红外采集设备位置与所述用户人眼的距离,L3为所述用户人眼与所述红外数据灯的距离,γ为所述红外采集设备位置分别与所述用户人眼和所述红外数据灯方向的夹角。
  7. 如权利要求5所述的方法,其特征在于,在以所述红外数据灯位置为原点的平面直角坐标系中:
    L1=√(x2+y2),其中x为所述红外采集设备在所述坐标系中的水平坐标,y为所述红外采集设备在所述坐标系中的垂直坐标。
  8. 如权利要求5或6所述的方法,其特征在于,在以所述红外数据灯位置为原点的平面直角坐标系中:
    γ=180°-β-arctan(x/y)
    其中x为所述红外采集设备在所述坐标系中的水平坐标,y为所述红外采集设备在所述坐标系中的垂直坐标,β为所述红外采集设备与所述用户连线和垂直坐标轴的夹角。
  9. 一种获取虹膜信息的装置,其特征在于,包括:
    用户人眼位置确定模块,用于确定用户人眼的位置;
    数据处理模块,用于根据所述人眼位置确定红外数据灯的发射方向;
    指示模块,用于指示所述红外数据灯根据所述发射方向进行发射;
    虹膜信息获取模块,用于获取所述用户的虹膜信息。
  10. 如权利要求9所述的装置,其特征在于,所述数据处理模块进一步用 于根据所述人眼位置确定红外数据灯的发射方向和发射强度;所述指示模块进一步用于指示所述红外数据灯根据所述发射方向和发射强度进行发射。
  11. 如权利要求10所述的装置,其特征在于,所述数据处理模块具体用于:
    根据所述人眼位置和所述红外数据灯的位置确定所述用户人眼相对于所述红外数据灯的方向,从而确定所述红外数掘灯的发射方向;和/或
    根据所述人眼位置和所述红外数据灯的位置确定所述用户人眼与所述红外数据灯的距离,根据所述距离确定所述红外数据灯的发射强度。
  12. 如权利要求10所述的装置,其特征在于,所述根据所述人眼位置和所述红外数据灯的位置确定所述用户相对于所述红外数据灯的方向,包括:
    调整所述装置对准所述红外数据灯;
    调整所述装置对准所述用户人眼;
    记录所述装置从所述红外数据灯转向所述用户人眼得到的转动角度,或记录所述装置从所述用户人眼转向所述红外数据灯得到的转动角度,得到所述用户人眼相对于所述红外数据灯的方向。
  13. 如权利要求10所述的装置,其特征在于,所述虹膜信息获取模块通过红外采集设备获得所述用户的虹膜信息。
  14. 一种存储介质,其特征在于,存储程序执行如权力要求1至8任意一项所述的获取虹膜信息的方法。
  15. 一种电子设备,其特征在于,包括:
    收发单元,用于数据收发;
    存储介质,用于存储程序;
    红外采集设备;
    处理器,用于依照所述存储介质的程序执行如权利要求1至8任意一项所述的获取虹膜信息的方法。
  16. 一种获取虹膜信息的***,其特征在于,包括:
    如权利要求14所述的电子设备;
    红外数据灯,根据所述电子设备指示的发射角度和发射强度发射红外光。
PCT/CN2016/109843 2015-12-18 2016-12-14 一种获取虹膜信息的方法、装置、存储介质、电子设备及*** WO2017101778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510958188.5A CN105426874A (zh) 2015-12-18 2015-12-18 一种虹膜识别处理方法和装置
CN201510958188.5 2015-12-18

Publications (1)

Publication Number Publication Date
WO2017101778A1 true WO2017101778A1 (zh) 2017-06-22

Family

ID=55505073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109843 WO2017101778A1 (zh) 2015-12-18 2016-12-14 一种获取虹膜信息的方法、装置、存储介质、电子设备及***

Country Status (2)

Country Link
CN (1) CN105426874A (zh)
WO (1) WO2017101778A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105426874A (zh) * 2015-12-18 2016-03-23 深圳前海达闼云端智能科技有限公司 一种虹膜识别处理方法和装置
CN106022299B (zh) * 2016-06-01 2019-10-25 北京眼神智能科技有限公司 一种具有补光功能的虹膜识别装置、识别方法和补光方法
CN107205104A (zh) * 2017-04-24 2017-09-26 奇鋐科技股份有限公司 人脸辨识模组
CN107341469B (zh) * 2017-06-30 2022-06-14 Oppo广东移动通信有限公司 控制方法、电子装置和计算机可读存储介质
CN107463877A (zh) 2017-07-05 2017-12-12 广东欧珀移动通信有限公司 虹膜采集方法、电子装置和计算机可读存储介质
WO2019006707A1 (zh) * 2017-07-05 2019-01-10 广东欧珀移动通信有限公司 虹膜采集方法、电子装置和计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499129A (zh) * 2008-01-30 2009-08-05 中国科学院自动化研究所 远距离虹膜识别***及方法
CN101520838A (zh) * 2008-02-27 2009-09-02 中国科学院自动化研究所 自动跟踪和自动变焦的虹膜图像获取方法
CN204667426U (zh) * 2015-05-20 2015-09-23 刘志伟 虹膜图像获取平台
CN105426874A (zh) * 2015-12-18 2016-03-23 深圳前海达闼云端智能科技有限公司 一种虹膜识别处理方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2672768Y (zh) * 2003-12-07 2005-01-19 倪蔚民 虹膜光学成像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499129A (zh) * 2008-01-30 2009-08-05 中国科学院自动化研究所 远距离虹膜识别***及方法
CN101520838A (zh) * 2008-02-27 2009-09-02 中国科学院自动化研究所 自动跟踪和自动变焦的虹膜图像获取方法
CN204667426U (zh) * 2015-05-20 2015-09-23 刘志伟 虹膜图像获取平台
CN105426874A (zh) * 2015-12-18 2016-03-23 深圳前海达闼云端智能科技有限公司 一种虹膜识别处理方法和装置

Also Published As

Publication number Publication date
CN105426874A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2017101778A1 (zh) 一种获取虹膜信息的方法、装置、存储介质、电子设备及***
US11432879B2 (en) Method and apparatus for wide area multi-body 6D pose tracking system
EP3364643B1 (en) Method for obtaining combined depth image, and depth camera
CN103619090A (zh) 基于微型惯性传感器舞台灯光自动定位和追踪***和方法
KR20180110051A (ko) 증강 현실을 위한 시스템들 및 방법들
CN105242670A (zh) 具有自动返回充电功能的机器人、***及对应方法
US8330611B1 (en) Positional locating system and method
CN106767775B (zh) 一种基于图像传感器和惯导传感器的定位方法
CN109240496B (zh) 一种基于虚拟现实的声光交互***
CN106713880A (zh) 一种便携式智能投影***
CN104964656A (zh) 基于惯性导航的自定位流动式快速扫描测量装置及方法
CN105025217B (zh) 移动式闪灯定位***及其方法
WO2021068070A1 (en) Electronic tracking device for camera and related system for controlling image output of the camera
US20210064334A1 (en) Device operation apparatus, device operation system and device operation method
KR20240071359A (ko) 원격 협업 방법 및 그 시스템
CN113467731B (zh) 显示***、信息处理装置和显示***的显示控制方法
US20200033874A1 (en) Systems and methods for remote visual inspection of a closed space
TWI646449B (zh) 三維定位系統與方法
CN210346713U (zh) 一种室内无人机高精度三维定位导航装置
CN104535015A (zh) 一种基于飞行时间法的三维扫描设备
CN108965712B (zh) 一种空间定位***及其同步方法和装置
CN111220949A (zh) 一种基于led光源的无人***空间定位方法
CN108168553B (zh) 一种基于ros***的机器人室内可见光定位导航方法和装置
CN110166653A (zh) 摄像机位置和姿态的跟踪***及方法
Ren et al. A high precision indoor positioning system based on VLC and smart handheld

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874835

Country of ref document: EP

Kind code of ref document: A1