WO2017101451A1 - 成像方法、成像装置及电子装置 - Google Patents

成像方法、成像装置及电子装置 Download PDF

Info

Publication number
WO2017101451A1
WO2017101451A1 PCT/CN2016/091944 CN2016091944W WO2017101451A1 WO 2017101451 A1 WO2017101451 A1 WO 2017101451A1 CN 2016091944 W CN2016091944 W CN 2016091944W WO 2017101451 A1 WO2017101451 A1 WO 2017101451A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive
pixel
image
pixels
merged
Prior art date
Application number
PCT/CN2016/091944
Other languages
English (en)
French (fr)
Inventor
周奇群
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to AU2016370324A priority Critical patent/AU2016370324B2/en
Priority to SG11201706110SA priority patent/SG11201706110SA/en
Priority to US15/514,798 priority patent/US10257447B2/en
Priority to KR1020177026302A priority patent/KR20170118197A/ko
Priority to EP16874512.3A priority patent/EP3229467A4/en
Priority to JP2017528779A priority patent/JP6377855B2/ja
Publication of WO2017101451A1 publication Critical patent/WO2017101451A1/zh
Priority to ZA2017/06395A priority patent/ZA201706395B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/265Mixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo

Definitions

  • the present invention relates to imaging technology, and in particular to an imaging method, an imaging device, and an electronic device.
  • the image generated by the image sensor of the existing imaging device in a low light environment may have insufficient noise, unclearness, and the like.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention is required to provide an image forming method, an image forming apparatus, and an electronic apparatus.
  • the image sensor comprising a photosensitive pixel array and a filter disposed on the photosensitive pixel array, the filter comprising an array of filter units, each of the filter units covering a plurality of the photosensitive Pixels and form a merged pixel;
  • An output of the photosensitive pixel array is read, and an output of the photosensitive pixel of the same merged pixel is added to obtain a pixel value of the merged pixel to generate a merged image.
  • this imaging method can obtain images with high signal-to-noise ratio, high brightness and sharpness, and less noise in low light.
  • the imaging device includes a register, each of the filter units covering 2*2 of the photosensitive pixels;
  • the reading step further includes:
  • the reading step further comprises:
  • the analog signal output generated by the photosensitive pixel is converted into a digital signal output.
  • the invention also provides an imaging device comprising:
  • An image sensor comprising:
  • the filter includes an array of filter units, each of the filter units covering a plurality of the photosensitive pixels and constituting a combined pixel;
  • An image processing module connected to the image sensor, the image processing module is configured to read an output of the photosensitive pixel array, and add an output of the photosensitive pixel of the same merged pixel to obtain the merged pixel The pixel value thus produces a merged image.
  • the imaging device can obtain images with high signal to noise ratio, brightness and sharpness, and less noise in low light.
  • the image sensor comprises a CMOS image sensor.
  • the array of filter elements comprises a Bayer array.
  • each of the filter units covers 2*2 of the photosensitive pixels.
  • the imaging device includes a control module for controlling the photosensitive pixel array to be progressively exposed.
  • the image forming apparatus further includes a register, and the control module is configured to sequentially collect and store the output of the photosensitive pixels of the kth row and the k+1th row of the current exposure and store the register.
  • k 2n-1
  • n is a natural number
  • k+1 is less than or equal to the total number of rows of the photosensitive pixel array.
  • the image sensor includes an analog to digital converter; each of the photosensitive pixels is coupled to one of the analog to digital converters, and the analog to digital converter is configured to output an analog signal of the photosensitive pixel Convert to digital signal output;
  • the digital signal output is used to store the register
  • the image processing module is configured to add the digital signal outputs of the photosensitive pixels of the same merged pixel to obtain pixel values of the merged pixels.
  • the image sensor includes an array of micromirrors disposed on the filter, each of the micromirrors corresponding to one of the photosensitive pixels.
  • the present invention also provides an electronic device including the imaging device.
  • the advantageous effects of the imaging method and the imaging device of the embodiment of the present invention can be achieved.
  • the electronic device comprises a cell phone.
  • the imaging device includes a front camera of the handset.
  • the electronic device includes a central processor coupled to the imaging device and an external memory, the central processor for controlling the external memory to store the merged image.
  • the electronic device further includes a central processing unit and a display device coupled to the imaging device, the central processor configured to control the display device to display the merged image.
  • FIG. 1 is a schematic flow chart of an image forming method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a reading step of an image forming method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a reading step of an imaging method according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of an image forming apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a filter unit array of an image forming apparatus according to an embodiment of the present invention.
  • Figure 6 is a schematic diagram of a Bayer array.
  • FIG. 7 is a schematic perspective structural view of an image sensor of an image forming apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of functional modules of an image forming apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of functional blocks of an image forming apparatus according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of functional blocks of an image forming apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a photosensitive pixel and related circuits of an image forming apparatus according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a synthesized pixel and related circuit of an image forming apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic perspective structural view of an image sensor of an image forming apparatus according to an embodiment of the present invention.
  • Fig. 14 is a view showing the configuration of an image sensor of an image forming apparatus according to an embodiment of the present invention.
  • 15 is a schematic diagram of functional blocks of an electronic device according to an embodiment of the present invention.
  • 16 is a schematic diagram of functional blocks of an electronic device according to an embodiment of the present invention.
  • an imaging method includes the following steps:
  • S101 providing an image sensor, the image sensor comprises a photosensitive pixel array and a filter disposed on the photosensitive pixel array, the filter comprises an array of filter units, each filter unit covers a plurality of photosensitive pixels and constitutes a combined pixel;
  • the output of each photosensitive pixel is S
  • the noise is N
  • the combined pixel includes n*m photosensitive pixels
  • the pixel value of the combined pixel is n*m*S
  • each filter unit of the image sensor covers 2*2 photosensitive pixels, and step S102 further includes:
  • step S102 further includes:
  • the image processing module which is generally a digital signal processing chip, can directly process the output of the image sensor, and secondly, with respect to some schemes that directly process the output of the analog signal format of the image sensor through the circuit,
  • the image processing module of the digital signal processing chip of the back end processes the output of the image sensor, and preferably retains the information collected by each photosensitive pixel in the front end image sensor, so that the information collected by each photosensitive pixel can be used to generate high resolution separately.
  • the image may also generate an image with low resolution but low noise, high signal to noise ratio and high definition by combining a part of the photosensitive pixels.
  • the imaging method of the embodiment of the present invention is A merged image of 4M pixels (combining 2*2 pixels) can be created, and an original image of 16M pixels (ie, not merged) can also be generated.
  • the image forming method of the embodiment of the present invention can be realized by the image forming apparatus 100 of the embodiment of the present invention.
  • an imaging apparatus 100 includes an image sensor 10 and an image transmission.
  • the image processing module 30 is connected to the sensor 10.
  • the image sensor 10 includes a photosensitive pixel array 11 and a filter 13 disposed on the photosensitive pixel array 11.
  • the filter 13 includes a filter unit array 131, and each of the filter units 1315 covers a plurality of photosensitive pixels 111 and constitutes a merged pixel.
  • the image processing module 30 is configured to read the output of the photosensitive pixel array 11 and add the outputs of the photosensitive pixels 111 of the same merged pixel to obtain pixel values of the merged pixels to generate a merged image.
  • the imaging apparatus 100 in the embodiment of the present invention combines the outputs of the plurality of photosensitive pixels 111 as the pixel values of the merged pixels, and the image pickup apparatus 100 of the embodiment of the present invention obtains lower image noise in low light than the conventional imaging apparatus.
  • the signal-to-noise ratio is high and the definition is high.
  • the image sensor 10 of the embodiment of the present invention may be a CMOS sensor.
  • CMOS sensors have low power consumption, small camera system size, and low cost.
  • the filter unit array 131 includes a Bayer pattern.
  • the Bayer array is a common filter cell array structure.
  • the filter unit 1315 includes green (G), red (R), and blue (B) filter units, wherein the two green filter units, one red filter unit, and one blue filter unit constitute A filter structure 1313.
  • the Bayer structure can use the traditional algorithm for Bayer structure to process image signals, so that no major adjustments in hardware structure are required.
  • each filter structure 1313 includes four filter units 1315.
  • Each of the filter units 1315 corresponds to one photosensitive pixel and an image pixel.
  • the filter unit array 131 may adopt a Bayer structure, and the difference is that each filter unit 1315 corresponds to a plurality of photosensitive pixels 111 .
  • each filter unit 1315 corresponds to 2*2 photosensitive pixels 111 to form a merged pixel.
  • the four photosensitive pixels 111 corresponding to each of the filter units 1315 may have different outputs depending on the slight difference in illumination. Therefore, the output of the combined pixels integrates the output of the 2*2 photosensitive pixels 111.
  • the combined pixel structure of the present embodiment can significantly reduce imaging noise and improve signal-to-noise ratio and sharpness under low light.
  • the number of photosensitive pixels 111 that can be arranged on the photosensitive pixel array 11 is limited, and if the number of photosensitive pixels 111 included in each combined pixel is too large, the resolution of the image may be limited, for example, if the photosensitive pixel array 11 is The pixel value is 16M.
  • a 2*2 merged pixel structure will result in a combined image with a resolution of 4M, while a 4*4 structure will only result in a combined image with a resolution of 1M. Therefore, the 2*2 combined pixel structure is a better arrangement to enhance image brightness and sharpness while minimizing the resolution.
  • the imaging device 100 further includes a control module 40 for controlling the photosensitive pixel array 11 to be exposed row by row.
  • the control module 40 is connected with a row selection logic unit 41 and a column selection logic unit. 43.
  • the output of the photosensitive pixel 111 is processed line by line. The method of progressive exposure and output makes the circuit easier to implement.
  • the imaging apparatus 100 includes a control module 40 connected to the row selection logic unit 41 and the column selection logic unit 43 .
  • the row selection logic unit 41 and the column selection logic unit 43 are connected to the switch tube 1115 corresponding to each of the photosensitive pixels, and the control module 40 is configured to control the row selection logic unit 41 and the column selection logic unit 43 to strobe the switch of the photosensitive pixel at a specific position.
  • the tube 1115 for example, the switch tube 1115 that controls the first row of photosensitive pixels is closed and controls the switch tube 1115 of the other row of photosensitive pixels to be turned off to output the first photosensitive pixel.
  • the imaging device 100 further includes a register 50.
  • the control module 40 is configured to sequentially collect the output of the photosensitive pixel 111 of the kth row and the k+1th row of the current exposure and store it in the register 50.
  • k 2n-1
  • n is a natural number
  • k+1 is less than or equal to the total number of rows of the photosensitive pixel array 11.
  • control module 40 first collects the outputs of the photosensitive pixels of the first row and the second row and stores them in the register 50.
  • the image processing module 30 adds the outputs of the four photosensitive pixels whose position coordinates are 1-1, 1-2, 2-1, 2-2, and obtains the pixel values of the combined pixels, wherein the left digit of the position coordinates represents the row. The number on the right represents the column.
  • the pixel values of the merged pixels that is, the outputs of the merged pixels corresponding to the four photosensitive pixels whose coordinates are 1-1, 1-2, 2-1, 2-2.
  • the image processing module 30 then adds the outputs of the four photosensitive pixels with coordinates 1-3, 1-4, 2-3, 2-4, and the resulting pixel values of the combined pixels.
  • the image processing module processes the outputs of the photosensitive pixels of the third row, the fourth row, the fifth row, and the sixth row until the output of all the photosensitive pixels is processed.
  • the image processing module generates a merged image based on the pixel values of all the merged pixels.
  • the imaging device 100 includes an analog to digital converter 17, each of the photosensitive pixels 111 being connected to an analog to digital converter 17, respectively, and an analog to digital converter 17 for sensing the pixels.
  • the analog signal output of 111 is converted to a digital signal output.
  • the photosensitive pixel in the present embodiment includes a photodiode 1113.
  • Photodiode 113 is used to convert light into electrical charge, and the resulting charge is proportional to the intensity of the light.
  • the switch tube 1115 is configured to control the turn-on and turn-off of the circuit according to the control signals of the row select logic unit 41 and the column select logic unit 43.
  • the source follower 1117 source follower
  • An analog-to-digital converter 17 is used to convert the voltage signal into a digital signal and transmit it to the image processing module 30 for processing.
  • the image processing module 30 includes an image signal processor.
  • the photosensitive pixels at positions 1-1, 1-2, 2-1, and 2-2 are combined pixels, and the photodiode 1113 corresponding to each photosensitive pixel is connected to the switch tube 1115.
  • the tube 1115 is configured to control the conduction and disconnection of the circuit according to the control signals of the row selection logic unit 41 and the column selection logic unit 43.
  • the follower 1117 is used to convert the charge signal generated by the photodiode 1113 by illumination into a voltage signal.
  • Analog to digital converter 17 is used to convert the voltage signal to a digital signal and to the register 50.
  • the output of the photosensitive pixels of the first row and the corresponding pixels of the second row are connected in parallel, so that the outputs of the photosensitive pixels of the first row and the second row cannot be simultaneously acquired, but by
  • the control signals of the row selection logic unit 41 and the column selection logic unit 43 control the switch 1115 of the first row of photosensitive pixels to be closed and the switch tubes 1115 of the other rows of photosensitive pixels are turned off to store the output of the first row of photosensitive pixels in the register. 50.
  • the switch 1115 of the second row of photosensitive pixels is closed and the switches 1115 of the other rows are turned off to deposit the output of the second row of photosensitive pixels.
  • the register 50 obtains the output of the two rows of photosensitive pixels and then performs calculation processing by the image processing module 30.
  • This output processing mode causes the output of the photosensitive pixels to enter the image processing module 30 and then merge them, for example, the output of the photosensitive pixels is combined by software in the image signal processing chip to obtain the pixel values of the combined pixels. Therefore, the output information of each photosensitive pixel is less likely to be lost, and the probability that the resulting image will have a bad point is low. In addition, this output processing method has less noise and higher signal-to-noise ratio.
  • image sensor 10 includes micromirror arrays 19 disposed on filter 13, each micromirror 191 corresponding to one photosensitive pixel 111.
  • each micro mirror 191 corresponds to one photosensitive pixel 111 , and includes size and position.
  • the micromirror 191 can collect light to the photosensitive portion 111 of the photosensitive pixel 111, and enhance the received light intensity of the photosensitive pixel 111, thereby improving the image quality.
  • each filter unit 1315 corresponds to 2*2 photosensitive pixels 111 and 2*2 micromirrors 191 to form merged pixels.
  • photosensitive pixels 111 on the photosensitive sheet are arranged more and more densely, and a single photosensitive pixel 111 is also smaller and smaller, and its light receiving is affected, and the photosensitive pixel 111 is affected.
  • the area of the photosensitive portion 1111 is limited, and the micromirror 191 can collect light to the photosensitive portion 1111, thereby increasing the received light intensity of the photosensitive pixel 111, thereby improving image quality.
  • the imaging device in the embodiment of the present invention covers each of the plurality of photosensitive pixels, and the image processing module adds the outputs of the plurality of photosensitive pixels to obtain an output of the combined pixels.
  • the imaging device of the present structure obtains lower image noise, lower signal-to-noise ratio, and higher definition in low light.
  • the present invention also provides an electronic device to which an image forming apparatus is applied.
  • an electronic device includes an imaging device. Therefore, the electronic device has a photographing function and can generate a combined image with high signal to noise ratio and high definition under low light.
  • the electronic device can be a mobile phone.
  • the imaging device can be a front camera of a cell phone. Since the front camera is mostly used for self-timer, and the self-timer generally requires the definition of the image and the image resolution is not high, the electronic device of the embodiment can meet this requirement.
  • the electronic device 200 includes a central processing unit 81 and an external memory 83 connected to the imaging device 100, and the central processing unit 81 is configured to control the external memory 83 to store the merged image.
  • the external memory 83 includes an SM (Smart Media) card, a CF (Compact Flash) card, and the like.
  • the electronic device 200 further includes a central processing unit 81 and a display device 85 connected to the imaging device 100, and the central processing unit 81 is configured to control the display device 85 to display the merged image.
  • the image captured by the electronic device 200 can be displayed on the display device for viewing by the user.
  • the display device includes an LED display or the like.
  • the electronic device has a photographing function and can generate a combined image with high signal to noise ratio and high definition under low light.
  • the electronic device is a front camera of the mobile phone, the brightness and sharpness of the self-timer under low light can be improved.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic And portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明公开了一种成像方法,其包括:提供图像传感器,图像传感器包括感光像素阵列及设置在感光像素阵列上的滤光片,滤光片包括滤光单元阵列,每个滤光单元覆盖多个感光像素并构成合并像素;及读取感光像素阵列的输出,并将同一合并像素的感光像素的输出相加以得到合并像素的像素值从而生成合并图像。采用此成像方法能在低光下得到亮度和清晰度较高,噪点较少的图像。本发明还公开了一种可实现此成像方法的成像装置及应用成像装置的电子装置。

Description

成像方法、成像装置及电子装置
优先权信息
本申请请求2015年12月18日向中国国家知识产权局提交的、专利申请号为201510964215.X的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本发明涉及成像技术,特别涉及一种成像方法、成像装置及电子装置。
背景技术
现有成像装置的图像传感器在低光环境生成的图像可能会存在噪点多、不清晰等不足。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明需要提供一种成像方法、成像装置及电子装置。
本发明实施方式的成像方法包括以下步骤:
提供图像传感器,所述图像传感器包括感光像素阵列及设置在所述感光像素阵列上的滤光片,所述滤光片包括滤光单元阵列,每个所述滤光单元覆盖多个所述感光像素并构成合并像素;及
读取所述感光像素阵列的输出,并将同一所述合并像素的所述感光像素的输出相加以得到所述合并像素的像素值从而生成合并图像。
由于合并像素的噪声小于合并之前各像素噪声之和,采用此成像方法能在低光下得到信噪比、亮度和清晰度较高,噪点较少的图像。克服了现有某些成像方法的缺点。
在某些实施方式中,所述成像装置包括寄存器,每个所述滤光单元覆盖2*2个所述感光像素;
所述读出步骤进一步包括:
采集第k行及第k+1行的所述感光像素的输出并存入所述寄存器,其中k=2n-1,n为自然数,k+1小于等于所述感光像素阵列的总行数;及
从所述寄存器中提取所述第k行及第k+1行的所述感光像素的输出,将同一所述合并像素的所述感光像素的输出相加以得到所述合并像素的像素值。
在某些实施方式中,所述读出步骤进一步包括:
将所述感光像素产生的模拟信号输出转换为数字信号输出。
本发明还提供一种成像装置,其包括:
图像传感器,所述图像传感器包括:
感光像素阵列;
设置于所述感光像素阵列上的滤光片;所述滤光片包括滤光单元阵列,每个所述滤光单元覆盖多个所述感光像素并构成合并像素;及
与所述图像传感器连接的图像处理模块,所述图像处理模块用于读取所述感光像素阵列的输出,并将同一所述合并像素的所述感光像素的输出相加以得到所述合并像素的像素值从而生成合并图像。
由于合并像素的噪声小于合并之前各像素噪声之和,采用此成像装置能在低光下得到信噪比、亮度和清晰度较高,噪点较少的图像。克服了现有某些成像方法的缺点。
在某些实施方式中,所述图像传感器包括CMOS图像传感器。
在某些实施方式中,所述滤光单元阵列包括拜耳阵列。
在某些实施方式中,每个所述滤光单元覆盖2*2个所述感光像素。
在某些实施方式中,所述成像装置包括控制模块,所述控制模块用于控制所述感光像素阵列逐行曝光。
在某些实施方式中,所述成像装置还包括寄存器,所述控制模块用于依次采集当前曝光完成的第k行及第k+1行的所述感光像素的输出并存入所述寄存器,其中k=2n-1,n为自然数,k+1小于等于所述感光像素阵列的总行数。
在某些实施方式中,所述图像传感器包括模数转换器;每个所述感光像素分别与一个所述模数转换器连接,所述模数转换器用于将所述感光像素的模拟信号输出转换为数字信号输出;
所述数字信号输出用于存入所述寄存器;
所述图像处理模块用于将同一所述合并像素的所述感光像素的所述数字信号输出相加以得到所述合并像素的像素值。
在某些实施方式中,所述图像传感器包括设置在所述滤光片上的微镜阵列,每个所述微镜与一个所述感光像素对应。
本发明还提供一种电子装置,所述电子装置包括所述成像装置。
采用本发明实施方式的电子装置,能实现本发明实施方式的成像方法及成像装置的有益效果。
在某些实施方式中,所述电子装置包括手机。
在某些实施方式中,所述成像装置包括所述手机的前置相机。
在某些实施方式中,所述电子装置包括与所述成像装置连接的中央处理器及外存储器,所述中央处理器用于控制所述外存储器存储所述合并图像。
在某些实施方式中,所述电子装置还包括与所述成像装置连接的中央处理器及显示装置,所述中央处理器用于控制所述显示装置显示所述合并图像。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的成像方法的流程示意图。
图2是本发明实施方式成像方法的读取步骤流程示意图。
图3是本发明实施方式成像方法的读取步骤流程示意图。
图4是本发明实施方式的成像装置的结构示意图。
图5是本发明实施方式的成像装置的滤光单元阵列示意图。
图6是拜耳阵列示意图。
图7是本发明实施方式的成像装置的图像传感器的立体结构示意图。
图8是本发明实施方式成像装置的功能模块示意图。
图9是本发明实施方式成像装置的功能模块示意图。
图10是本发明实施方式成像装置的功能模块示意图。
图11是本发明实施方式的成像装置的感光像素及相关电路示意图。
图12是本发明实施方式的成像装置的合成像素及相关电路示意图。
图13是本发明实施方式的成像装置的图像传感器的立体结构示意图。
图14是本发明实施方式的成像装置的图像传感器的结构示意图。
图15是本发明实施方式的电子装置的功能模块示意图。
图16是本发明实施方式的电子装置的功能模块示意图。
具体实施方式
下面详细描述本发明的实施方式的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明的实施方式,而不能理解为对本发明的实施方式的限制。
以下结合附图对本发明的实施方式的成像方法、图像传感器及电子装置作进一步说明。
请参阅图1,本发明实施方式的成像方法包括如下步骤:
S101:提供图像传感器,图像传感器包括感光像素阵列及设置在感光像素阵列上的滤光片,滤光片包括滤光单元阵列,每个滤光单元覆盖多个感光像素并构成合并像素;
S102,读取感光像素阵列的输出,并将同一合并像素的感光像素的输出相加以得到合并像素的像素值从而生成合并图像。
本发明实施方式的成像方法,假定原有每个感光像素的输出为S,噪声为N,合并像素包括n*m个感光像素,则合并像素的像素值为n*m*S,而合并像素的噪声为
Figure PCTCN2016091944-appb-000001
在n=2,m=2的情况下,合成像素的噪声即为N/2左右。因此合并图像的亮度在低亮度环境下得到提升,而且信噪比提高。
请参阅图2,在某些实施方式中,图像传感器的每个滤光单元覆盖2*2个感光像素,步骤S102进一步包括:
S201,采集第k行及第k+1行的感光像素的输出并存入寄存器,其中k=2n-1,n为正整数,k+1小于等于感光像素阵列的总行数;
S202,从寄存器中提取第k行及第k+1行的感光像素的输出,将同一合并像素的感光像素的输出相加以得到合并像素的像素值。
如此,可以充分利用寄存器来实现感光单元的输出读出、缓存及合并的过程。
请参阅图3,在某些实施方式中,步骤S102进一步包括:
S301,将感光像素产生的模拟信号输出转换为数字信号输出;及
S302,将同一合并像素的感光像素的数字信号输出相加以得到合并像素的像素值。
如此,一来,一般为数字信号处理芯片的图像处理模块可以直接处理图像传感器的输出,二来,相对于某些通过电路直接对图像传感器的模拟信号格式的输出进行处理的方案来说,通过后端的数字信号处理芯片的图像处理模块来处理图像传感器的输出,较好地保留了前端图像传感器中各个感光像素所采集的信息,这样既能够单独利用各个感光像素所采集的信息生成高分辨率的图像,也可以通过合并部分感光像素的方式生成低分辨率但噪声低、信噪比高和清晰度高的图像,例如,对于16M像素的图像传感器来说,本发明实施方式的成像方法既可以成生4M像素(将2*2的像素合并)的合并图像,也可以生成16M像素(即不合并)的原图像。
本发明实施方式的成像方法可以由本发明实施方式的成像装置100实现。
请参阅图4及图5,本发明实施方式的成像装置100包括图像传感器10及与图像传 感器10连接的图像处理模块30。图像传感器10包括感光像素阵列11及设置于感光像素阵列11上的滤光片13。滤光片13包括滤光单元阵列131,每个滤光单元1315覆盖多个感光像素111并构成合并像素。图像处理模块30用于读取感光像素阵列11的输出,并将同一合并像素的感光像素111的输出相加以得到合并像素的像素值从而生成合并图像。
本发明实施方式中的成像装置100将多个感光像素111的输出合并作为合并像素的像素值,比起传统的成像装置,本发明实施方式的成像装置100在低光下得到的图像噪声较低,信噪比较高,清晰度较高。
本发明实施方式的图像传感器10可以是CMOS传感器。CMOS传感器具有功耗低、摄像***尺寸小、成本较低。
请参阅图5,在某些实施方式中,滤光单元阵列131包括拜耳阵列(Bayer pattern)。拜耳阵列是一种常见的滤光单元阵列结构。在拜耳阵列中,滤光单元1315包括绿色(G)、红色(R)及蓝色(B)滤光单元,其中两个绿色滤色单元、一个红色滤光单元及一个蓝色滤光单元构成一个滤光结构1313。
采用拜耳结构能采用传统针对拜耳结构的算法来处理图像信号,从而不需要硬件结构上做大的调整。
请参阅图6,在传统滤光单元阵列131结构中,每个滤光结构1313包括四个滤光单元1315。每个滤光单元1315对应一个感光像素及图像像素。请参阅图5,在本实施方式中,滤光单元阵列131可采用拜耳结构,而不同的是,每个滤光单元1315对应多个感光像素111。
请参阅图5及图7,在某些实施方式中,每个滤光单元1315对应2*2个感光像素111以形成合并像素。
其中,每个滤光单元1315对应的四个感光像素111由于光照的微小差异,所对应的输出也可能不同,因此合并像素的输出综合了其2*2个感光像素111的输出。
采用本实施方式的合并像素结构,在低光下能显著降低成像噪音,提高信噪比和清晰度。
对于合并像素结构中多个感光像素111之间的排列方式,除了2*2结构外,还有3*3,4*4,甚至是任意n*m等结构(n,m为自然数),可以理解,感光像素阵列11上可排列的感光像素111的数目是有限的,每个合并像素所包含的感光像素111过多的话,图像的分辨率大小会受到限制,如,若感光像素阵列11的像素值为16M,采用2*2的合并像素结构会得到分辨率为4M的合并图像,而采用4*4结构就只能得到分辨率为1M的合并图像。因此2*2的合并像素结构是一个较佳排列方式,在尽量少牺牲分辨率的前提下提升图像亮度及清晰度。
请参阅图8,在某些实施方式中,成像装置100还包括控制模块40,控制模块40用于控制感光像素阵列11逐行曝光。控制模块40连接有行选择逻辑单元41及列选择逻辑单元 43,以对感光像素111的输出进行逐行处理。逐行曝光并输出的方式使电路更容易实现。
具体的,请参阅图8及图11,成像装置100包括与行选择逻辑单元41及列选择逻辑单元43连接的控制模块40。行选择逻辑单元41及列选择逻辑单元43与每一个感光像素对应的开关管1115连接,控制模块40用于控制行选择逻辑单元41及列选择逻辑单元43以选通特定位置的感光像素的开关管1115,例如,控制第一行感光像素的开关管1115闭合并控制其他行感光像素的开关管1115断开以使第一感光像素输出。
请参阅图9,在本实施方式中,成像装置100还包括寄存器50,控制模块40用于依次采集当前曝光完成的第k行及第k+1行的感光像素111的输出并存入寄存器50,其中k=2n-1,n为自然数,k+1小于等于感光像素阵列11的总行数。
具体地,控制模块40首先采集第一行及第二行的感光像素的输出并存入寄存器50。图像处理模块30将位置坐标为1-1、1-2、2-1、2-2的四个感光像素的输出相加,将得到的合并像素的像素值,其中位置坐标的左边数字代表行,右边数字代表列。
可以理解,合并像素的像素值即坐标为1-1、1-2、2-1、2-2的四个感光像素对应的合并像素的输出。
图像处理模块30再将坐标为1-3、1-4、2-3、2-4的四个感光像素的输出相加,将得到的合并像素的像素值。
以此类推,直至处理完第一行及第二行的最后一组四个感光像素111。
按以上处理方式,图像处理模块对第三行及第四行、第五行及第六行等的感光像素的输出进行处理,直至全部感光像素的输出均处理完成。
此时,图像处理模块根据所有合并像素的像素值生成合并图像。
请参阅图10和图11,在某些实施方式中,成像装置100包括模数转换器17,每个感光像素111分别与一个模数转换器17连接,模数转换器17用于将感光像素111的模拟信号输出转换为数字信号输出。
本实施方式中的感光像素包括光电二极管1113。光电二极管113用于将光照转化为电荷,且产生的电荷与光照强度成比例关系。开关管1115用于根据行选择逻辑单元41及列选择逻辑单元43的控制信号来控制电路的导通及断开,当电路导通时,源极跟随器1117(source follower)用于将光电二极管1113经光照产生的电荷信号转化为电压信号。模数转换器17(Analog-to-digital converter)用于将电压信号转换为数字信号,并传输至图像处理模块30进行处理。图像处理模块30包括图像信号处理芯片(image signal processor)。
具体的,请参阅图11和12,位置为1-1、1-2、2-1、2-2的感光像素作为合并像素,每个感光像素对应的光电二极管1113与开关管1115连接,开关管1115用于根据行选择逻辑单元41及列选择逻辑单元43的控制信号来控制电路的导通及断开,当电路导通时,源极跟 随器1117用于将光电二极管1113经光照产生的电荷信号转化为电压信号。模数转换器17用于将电压信号转换为数字信号,并传送至寄存器50。
在某些实施方式中,第一行的感光像素与相对应的第二行的感光像素的输出是并联的,因此第一行与第二行的感光像素的输出不能同时被采集,而是由行选择逻辑单元41及列选择逻辑单元43的控制信号控制第一行感光像素的开关管1115闭合并将其他行的感光像素的开关管1115断开以使第一行感光像素的输出存入寄存器50,再将第二行感光像素的开关管1115闭合并将其他行的开关管1115断开以使第二行感光像素的输出存入寄存。这样寄存器50得到两行感光像素的输出后再由图像处理模块30进行计算处理。
此输出处理方式使感光像素的输出进入图像处理模块30之后再合并,例如,在图像信号处理芯片中通过软件对感光像素的输出进行合并以得到合并像素的像素值。因此每个感光像素的输出信息不易产生损失,最终生成图像出现坏点的概率较低。此外,此输出处理方式的噪声较小,信噪比较高。
请参阅图13,在某些实施方式中,图像传感器10包括设置在滤光片13上的微镜阵列19,每个微镜191与一个感光像素111对应。
请参阅图13及图14,每个微镜191与一个感光像素111对应,包括大小、位置对应。微镜191能将光聚集到感光像素111的感光部分111,提升感光像素111的受光强度,从而改善成像画质。在某些实施方式中,每个滤光单元1315对应2*2个感光像素111及2*2个微镜191以形成合并像素。
随着技术发展,为了得到分辨率更高的图像,感光片上的感光像素111越来越多,排列越来越密集,单个感光像素111也越来越小,其受光受到影响,且感光像素111的感光部分1111面积是有限的,微镜191能将光聚集到感光部分1111,从而提升感光像素111的受光强度,从而改善图像画质。
综上,本发明实施方式中的成像装置每个滤光单元覆盖多个感光像素,图像处理模块将多个感光像素的输出相加以得到合并像素的输出。这样,比起传统的成像装置结构,本结构的成像装置在低光下得到的图像噪声较低,信噪比较高,清晰度较高。
本发明还提供一种应用成像装置的电子装置。在某些实施方式中,电子装置包括成像装置。因此,电子装置具有拍照功能且能在低光下生成信噪比高,清晰度高的合并图像。
电子装置可以是手机。
在某些实施方式中,成像装置可以是手机的前置相机。由于前置相机多用于自拍,而自拍一般要求对图像的清晰度有要求而对图像分辨率要求不高,采用本实施方式的电子装置可满足此要求。
请参阅图15,在某些实施方式中,电子装置200包括与成像装置100连接的中央处理器81及外存储器83,中央处理器81用于控制外存储器83存储合并图像。
这样,生成的合并图像可以被存储,方便以后查看、使用或转移。外存储器83包括SM(Smart Media)卡及CF(Compact Flash)卡等。
请参阅图16,在某些实施方式中,电子装置200还包括与成像装置100连接的中央处理器81及显示装置85,中央处理器81用于控制显示装置85显示合并图像。这样,电子装置200拍摄的图像可以显示于显示装置以供用户查看。显示装置包括LED显示器等。
综上,采用本发明实施方式的电子装置,具有拍照功能且能在低光下生成信噪比高,清晰度高的合并图像。特别的,当此电子装置为手机的前置相机时,能提升低光下自拍的亮度及清晰度。
本发明实施方式中成像方法及电子装置中未展开的部分,可参考以上实施方式的成像装置的对应部分,在此不再详细展开。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装 置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种成像方法,其特征在于,包括以下步骤:
    提供图像传感器,所述图像传感器包括感光像素阵列及设置在所述感光像素阵列上的滤光片,所述滤光片包括滤光单元阵列,每个所述滤光单元覆盖多个所述感光像素并构成合并像素;及
    读取所述感光像素阵列的输出,并将同一所述合并像素的所述感光像素的输出相加以得到所述合并像素的像素值从而生成合并图像。
  2. 如权利要求1所述的成像方法,其特征在于,所述成像装置包括寄存器,每个所述滤光单元覆盖2*2个所述感光像素;
    所述读出步骤进一步包括:
    采集第k行及第k+1行的所述感光像素的输出并存入所述寄存器,其中k=2n-1,n为自然数,k+1小于等于所述感光像素阵列的总行数;及
    从所述寄存器中提取所述第k行及第k+1行的所述感光像素的输出,将同一所述合并像素的所述感光像素的输出相加以得到所述合并像素的像素值。
  3. 如权利要求1所述的成像方法,其特征在于,所述读出步骤进一步包括:
    将所述感光像素产生的模拟信号输出转换为数字信号输出。
  4. 一种成像装置,其特征在于,包括:
    图像传感器,所述图像传感器包括:
    感光像素阵列;
    设置于所述感光像素阵列上的滤光片;所述滤光片包括滤光单元阵列,每个所述滤光单元覆盖多个所述感光像素并构成合并像素;及
    与所述图像传感器连接的图像处理模块,所述图像处理模块用于读取所述感光像素阵列的输出,并将同一所述合并像素的所述感光像素的输出相加以得到所述合并像素的像素值从而生成合并图像。
  5. 如权利要求4所述的成像装置,其特征在于,所述图像传感器包括CMOS图像传感器。
  6. 如权利要求4所述的成像装置,其特征在于,所述滤光单元阵列包括拜耳阵列。
  7. 如权利要求4所述的成像装置,其特征在于,每个所述滤光单元覆盖2*2个所述感光像素。
  8. 如权利要求4所述的成像装置,其特征在于,所述成像装置包括控制模块,所述控制模块用于控制所述感光像素阵列逐行曝光。
  9. 如权利要求8所述的成像装置,其特征在于,所述成像装置还包括寄存器,所述控制模块用于依次采集当前曝光完成的第k行及第k+1行的所述感光像素的输出并存入所述寄存器,其中k=2n-1,n为自然数,k+1小于等于所述感光像素阵列的总行数。
  10. 如权利要求9所述的成像装置,其特征在于,所述图像传感器包括模数转换器;每个所述感光像素分别与一个所述模数转换器连接,所述模数转换器用于将所述感光像素的模拟信号输出转换为数字信号输出;
    所述数字信号输出用于存入所述寄存器;
    所述图像处理模块用于将同一所述合并像素的所述感光像素的所述数字信号输出相加以得到所述合并像素的像素值。
  11. 如权利要求4所述的成像装置,其特征在于,所述图像传感器包括设置在所述滤光片上的微镜阵列,每个所述微镜与一个所述感光像素对应。
  12. 一种电子装置,其特征在于,包括如权利要求4~11任意一项所述的成像装置。
  13. 如权利要求12所述的电子装置,其特征在于,所述电子装置包括手机。
  14. 如权利要求13所述的电子装置,其特征在于,所述成像装置包括所述手机的前置相机。
  15. 如权利要求12所述的电子装置,其特征在于,所述电子装置包括与所述成像装置连接的中央处理器及外存储器,所述中央处理器用于控制所述外存储器存储所述合并图像。
  16. 如权利要求12所述的电子装置,其特征在于,所述电子装置还包括与所述成像装置连接的中央处理器及显示装置,所述中央处理器用于控制所述显示装置显示所述合并图像。
PCT/CN2016/091944 2015-12-18 2016-07-27 成像方法、成像装置及电子装置 WO2017101451A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2016370324A AU2016370324B2 (en) 2015-12-18 2016-07-27 Imaging method, imaging device, and electronic device
SG11201706110SA SG11201706110SA (en) 2015-12-18 2016-07-27 Imaging method, imaging device, and electronic device
US15/514,798 US10257447B2 (en) 2015-12-18 2016-07-27 Imaging method, imaging device, and electronic device
KR1020177026302A KR20170118197A (ko) 2015-12-18 2016-07-27 이미징 방법, 이미징 장치 및 전자 장치
EP16874512.3A EP3229467A4 (en) 2015-12-18 2016-07-27 Imaging method, imaging device, and electronic device
JP2017528779A JP6377855B2 (ja) 2015-12-18 2016-07-27 結像方法、結像装置及び電子装置
ZA2017/06395A ZA201706395B (en) 2015-12-18 2017-09-21 Imaging method, imaging device, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510964215.X 2015-12-18
CN201510964215.XA CN105578072A (zh) 2015-12-18 2015-12-18 成像方法、成像装置及电子装置

Publications (1)

Publication Number Publication Date
WO2017101451A1 true WO2017101451A1 (zh) 2017-06-22

Family

ID=55887678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091944 WO2017101451A1 (zh) 2015-12-18 2016-07-27 成像方法、成像装置及电子装置

Country Status (11)

Country Link
US (1) US10257447B2 (zh)
EP (1) EP3229467A4 (zh)
JP (1) JP6377855B2 (zh)
KR (1) KR20170118197A (zh)
CN (1) CN105578072A (zh)
AU (1) AU2016370324B2 (zh)
MY (1) MY180913A (zh)
SG (1) SG11201706110SA (zh)
TW (1) TW201724015A (zh)
WO (1) WO2017101451A1 (zh)
ZA (1) ZA201706395B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105578072A (zh) 2015-12-18 2016-05-11 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN106454288B (zh) 2016-11-29 2018-01-19 广东欧珀移动通信有限公司 控制方法、控制装置、成像装置及电子装置
CN106504218B (zh) 2016-11-29 2019-03-12 Oppo广东移动通信有限公司 控制方法、控制装置及电子装置
CN106454054B (zh) 2016-11-29 2019-03-19 Oppo广东移动通信有限公司 控制方法、控制装置及电子装置
CN106713790B (zh) * 2016-11-29 2019-05-10 Oppo广东移动通信有限公司 控制方法、控制装置及电子装置
CN106341670B (zh) 2016-11-29 2017-09-22 广东欧珀移动通信有限公司 控制方法、控制装置及电子装置
CN106507068B (zh) 2016-11-29 2018-05-04 广东欧珀移动通信有限公司 图像处理方法及装置、控制方法及装置、成像及电子装置
US10848631B2 (en) 2018-09-26 2020-11-24 Ricoh Company, Ltd. Reading device and image forming apparatus
KR20200097841A (ko) 2019-02-08 2020-08-20 삼성전자주식회사 이미지 센서 장치
KR102661820B1 (ko) 2019-02-11 2024-05-02 삼성전자주식회사 이미지 센서 및 그것의 구동 방법
KR20200098802A (ko) 2019-02-12 2020-08-21 삼성전자주식회사 디지털 픽셀을 포함하는 이미지 센서
US10764507B1 (en) * 2019-04-18 2020-09-01 Kneron (Taiwan) Co., Ltd. Image processing system capable of generating a snapshot image with high image quality by using a zero-shutter-lag snapshot operation
CN110418044B (zh) * 2019-07-31 2021-04-23 Oppo广东移动通信有限公司 光学***和电子设备
KR102625261B1 (ko) 2019-10-21 2024-01-12 삼성전자주식회사 이미지 장치

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090167917A1 (en) * 2007-12-28 2009-07-02 Takanori Miki Imaging device
US20090200451A1 (en) * 2008-02-08 2009-08-13 Micron Technology, Inc. Color pixel arrays having common color filters for multiple adjacent pixels for use in cmos imagers
CN105430360A (zh) * 2015-12-18 2016-03-23 广东欧珀移动通信有限公司 成像方法、图像传感器、成像装置及电子装置
CN105430362A (zh) * 2015-12-18 2016-03-23 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105430363A (zh) * 2015-12-18 2016-03-23 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105430361A (zh) * 2015-12-18 2016-03-23 广东欧珀移动通信有限公司 成像方法、图像传感器、成像装置及电子装置
CN105430359A (zh) * 2015-12-18 2016-03-23 广东欧珀移动通信有限公司 成像方法、图像传感器、成像装置及电子装置
CN105516697A (zh) * 2015-12-18 2016-04-20 广东欧珀移动通信有限公司 图像传感器、成像装置、移动终端及成像方法
CN105554485A (zh) * 2015-12-18 2016-05-04 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105578076A (zh) * 2015-12-18 2016-05-11 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105578006A (zh) * 2015-12-18 2016-05-11 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105578077A (zh) * 2015-12-18 2016-05-11 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105578072A (zh) * 2015-12-18 2016-05-11 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105578081A (zh) * 2015-12-18 2016-05-11 广东欧珀移动通信有限公司 成像方法、图像传感器、成像装置及电子装置
CN105578080A (zh) * 2015-12-18 2016-05-11 广东欧珀移动通信有限公司 成像方法、图像传感器、成像装置及电子装置
CN105592303A (zh) * 2015-12-18 2016-05-18 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105611257A (zh) * 2015-12-18 2016-05-25 广东欧珀移动通信有限公司 成像方法、图像传感器、成像装置及电子装置
CN105611125A (zh) * 2015-12-18 2016-05-25 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105611185A (zh) * 2015-12-18 2016-05-25 广东欧珀移动通信有限公司 图像生成方法、装置及终端设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6999119B1 (en) * 1998-04-10 2006-02-14 Nikon Corporation Image-capturing element, image-capturing circuit for processing signal from image-capturing element, image-capturing device, driving method of image-capturing element
US20060125947A1 (en) * 2004-12-09 2006-06-15 Packer Jimmy L Imaging with clustered photosite arrays
US7924483B2 (en) * 2006-03-06 2011-04-12 Smith Scott T Fused multi-array color image sensor
JP2008109369A (ja) * 2006-10-25 2008-05-08 Olympus Imaging Corp 撮像装置及び画像処理方法
KR100976284B1 (ko) * 2007-06-07 2010-08-16 가부시끼가이샤 도시바 촬상 장치
TWI504256B (zh) * 2008-04-07 2015-10-11 Sony Corp 固態成像裝置,其訊號處理方法,及電子設備
US8218068B2 (en) 2009-04-01 2012-07-10 Omnivision Technologies, Inc. Exposing pixel groups in producing digital images
US8134115B2 (en) * 2009-06-23 2012-03-13 Nokia Corporation Color filters for sub-diffraction limit-sized light sensors
JP5471117B2 (ja) * 2009-07-24 2014-04-16 ソニー株式会社 固体撮像装置とその製造方法並びにカメラ
US8724928B2 (en) 2009-08-31 2014-05-13 Intellectual Ventures Fund 83 Llc Using captured high and low resolution images
JP5044673B2 (ja) * 2010-03-25 2012-10-10 株式会社東芝 固体撮像装置および画像記録装置
JP5644177B2 (ja) * 2010-05-07 2014-12-24 ソニー株式会社 固体撮像装置、および、その製造方法、電子機器
JP5664141B2 (ja) * 2010-11-08 2015-02-04 ソニー株式会社 固体撮像素子およびカメラシステム
US8742309B2 (en) * 2011-01-28 2014-06-03 Aptina Imaging Corporation Imagers with depth sensing capabilities
DE102011100350A1 (de) 2011-05-03 2012-11-08 Conti Temic Microelectronic Gmbh Bildsensor mit einstellbarer Auflösung
JP2015012303A (ja) * 2013-06-26 2015-01-19 ソニー株式会社 固体撮像装置および電子機器
US20150062422A1 (en) * 2013-08-27 2015-03-05 Semiconductor Components Industries, Llc Lens alignment in camera modules using phase detection pixels
KR102136852B1 (ko) * 2013-12-30 2020-07-22 삼성전자 주식회사 Tfa 기반의 시모스 이미지 센서 및 그 동작방법
US9438866B2 (en) * 2014-04-23 2016-09-06 Omnivision Technologies, Inc. Image sensor with scaled filter array and in-pixel binning
US9711553B2 (en) * 2014-04-28 2017-07-18 Samsung Electronics Co., Ltd. Image sensor including a pixel having photoelectric conversion elements and image processing device having the image sensor
US9888198B2 (en) * 2014-06-03 2018-02-06 Semiconductor Components Industries, Llc Imaging systems having image sensor pixel arrays with sub-pixel resolution capabilities
TWI552594B (zh) * 2014-10-27 2016-10-01 聯詠科技股份有限公司 用於影像感測裝置的色彩濾波陣列及其製造方法
CN104486602B (zh) 2014-12-29 2018-04-06 上海集成电路研发中心有限公司 一种实现像素物理合并的结构和方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090167917A1 (en) * 2007-12-28 2009-07-02 Takanori Miki Imaging device
US20090200451A1 (en) * 2008-02-08 2009-08-13 Micron Technology, Inc. Color pixel arrays having common color filters for multiple adjacent pixels for use in cmos imagers
CN105430360A (zh) * 2015-12-18 2016-03-23 广东欧珀移动通信有限公司 成像方法、图像传感器、成像装置及电子装置
CN105430362A (zh) * 2015-12-18 2016-03-23 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105430363A (zh) * 2015-12-18 2016-03-23 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105430361A (zh) * 2015-12-18 2016-03-23 广东欧珀移动通信有限公司 成像方法、图像传感器、成像装置及电子装置
CN105430359A (zh) * 2015-12-18 2016-03-23 广东欧珀移动通信有限公司 成像方法、图像传感器、成像装置及电子装置
CN105516697A (zh) * 2015-12-18 2016-04-20 广东欧珀移动通信有限公司 图像传感器、成像装置、移动终端及成像方法
CN105554485A (zh) * 2015-12-18 2016-05-04 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105578076A (zh) * 2015-12-18 2016-05-11 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105578006A (zh) * 2015-12-18 2016-05-11 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105578077A (zh) * 2015-12-18 2016-05-11 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105578072A (zh) * 2015-12-18 2016-05-11 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105578081A (zh) * 2015-12-18 2016-05-11 广东欧珀移动通信有限公司 成像方法、图像传感器、成像装置及电子装置
CN105578080A (zh) * 2015-12-18 2016-05-11 广东欧珀移动通信有限公司 成像方法、图像传感器、成像装置及电子装置
CN105592303A (zh) * 2015-12-18 2016-05-18 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105611257A (zh) * 2015-12-18 2016-05-25 广东欧珀移动通信有限公司 成像方法、图像传感器、成像装置及电子装置
CN105611125A (zh) * 2015-12-18 2016-05-25 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
CN105611185A (zh) * 2015-12-18 2016-05-25 广东欧珀移动通信有限公司 图像生成方法、装置及终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3229467A4 *

Also Published As

Publication number Publication date
AU2016370324A1 (en) 2017-07-27
TW201724015A (zh) 2017-07-01
EP3229467A1 (en) 2017-10-11
AU2016370324B2 (en) 2018-09-06
US20170332022A1 (en) 2017-11-16
JP2018502492A (ja) 2018-01-25
MY180913A (en) 2020-12-11
EP3229467A4 (en) 2018-04-18
US10257447B2 (en) 2019-04-09
CN105578072A (zh) 2016-05-11
ZA201706395B (en) 2019-01-30
JP6377855B2 (ja) 2018-08-22
SG11201706110SA (en) 2017-08-30
KR20170118197A (ko) 2017-10-24

Similar Documents

Publication Publication Date Title
WO2017101451A1 (zh) 成像方法、成像装置及电子装置
TWI662842B (zh) 圖像傳感器及輸出方法、相位對焦方法、成像裝置和行動裝置
TWI617196B (zh) 圖像感測器、成像裝置、行動終端及成像方法
TWI615027B (zh) 高動態範圍圖像的生成方法、拍照裝置和終端裝置、成像方法
WO2017101555A1 (zh) 图像传感器的成像方法、成像装置和电子装置
WO2018098978A1 (zh) 控制方法、控制装置、电子装置和计算机可读存储介质
WO2018098982A1 (zh) 图像处理方法、图像处理装置、成像装置及电子装置
WO2018099009A1 (zh) 控制方法、控制装置、电子装置和计算机可读存储介质
TWI615029B (zh) 圖像感測器及終端與成像方法
WO2018098981A1 (zh) 控制方法、控制装置、电子装置和计算机可读存储介质
WO2018098983A1 (zh) 图像处理方法及装置、控制方法及装置、成像及电子装置
TWI615028B (zh) 圖像感測器及成像終端與成像方法
CN105578076A (zh) 成像方法、成像装置及电子装置
CN105993164B (zh) 固态图像传感器、电子设备和自动聚焦方法
WO2017101864A1 (zh) 图像传感器、控制方法和电子装置
WO2017101558A1 (zh) 图像传感器和具有其的终端、成像方法
CN105578077A (zh) 成像方法、成像装置及电子装置
TWI615030B (zh) 圖像感測器、具有其的終端裝置、成像方法、行動終端裝置和電腦可讀儲存媒體
CN105430360A (zh) 成像方法、图像传感器、成像装置及电子装置
JP2007195114A (ja) 撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15514798

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017528779

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016874512

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016370324

Country of ref document: AU

Date of ref document: 20160727

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201706110S

Country of ref document: SG

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177026302

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE