WO2017100871A1 - Processo de deteccao de vazamento interno de combustivel em um motor de combustao e unidade de controle de motor - Google Patents

Processo de deteccao de vazamento interno de combustivel em um motor de combustao e unidade de controle de motor Download PDF

Info

Publication number
WO2017100871A1
WO2017100871A1 PCT/BR2015/050254 BR2015050254W WO2017100871A1 WO 2017100871 A1 WO2017100871 A1 WO 2017100871A1 BR 2015050254 W BR2015050254 W BR 2015050254W WO 2017100871 A1 WO2017100871 A1 WO 2017100871A1
Authority
WO
WIPO (PCT)
Prior art keywords
lambda sensor
engine
theoretical value
fuel
expected theoretical
Prior art date
Application number
PCT/BR2015/050254
Other languages
English (en)
French (fr)
Inventor
Rafael Augusto AMEND DA CRUZ
Frederico Paulo TISCHER
Satish Patel
Original Assignee
Robert Bosch Limitada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Limitada filed Critical Robert Bosch Limitada
Priority to PCT/BR2015/050254 priority Critical patent/WO2017100871A1/pt
Publication of WO2017100871A1 publication Critical patent/WO2017100871A1/pt

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating, or supervising devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/10Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to the control of combustion engines and more specifically to strategies for increasing safe use and reducing emissions of polluting gases.
  • the invention proposes a process of detecting internal fuel leakage in a combustion engine.
  • a leak detection process can be used to take steps to remedy these untimely emissions of gasified engine fuel, which can be hazardous and environmental damage. If leaking fuel is ignited, this leads to an unexpected rise in engine speed or torque, causing safety problems.
  • the main challenge in using compressed natural gas engines is to maintain a low level of methane emissions. Methane being one of the main greenhouse gases is crucial to prevent its emission into the atmosphere as a consequence of an internal leakage of natural gas in an engine.
  • EP1873378 describes a process of detecting fuel leakage in a combustion engine.
  • a pressure sensor is used to detect a pressure drop in the engine's fuel supply ducts.
  • a lamba sensor is also used to identify the type of fuel that is feeding the engine.
  • the purpose of the present invention is to improve known methods and devices.
  • the invention relates to a process of detecting internal fuel leakage in a combustion engine fitted with a lambda sensor.
  • the process includes the following steps:
  • the invention thus enables reliable detection of any fuel leakage in a combustion engine.
  • the process according to the invention uses only usual elements in a motor of modern combustion ok! like the lambda probe. No additional elements such as pressure sensors are required.
  • the process may further include one of the following optional features, or a set of these combined features.
  • the torque-free operating phase is an overdrive phase.
  • overrun defines an operating phase of a vehicle engine in which:
  • the vehicle is launched inertia or is going down a slope
  • the torque-free operating phase is a idle phase.
  • Activation of a fuel leak flag results in the closing of a safety valve to stop the fuel leak.
  • the step of determining the expected theoretical value of the lambda sensor is performed by mathematical calculation.
  • the step of determining the expected theoretical value of the lambda sensor is performed by computer modeling.
  • the process is applied to a multi-fuel engine and activation of a fuel leak flag leads to the switch to a single fuel mode.
  • the invention thus allows a quick and safe reaction to a fuel leak and ensures the prevention of emissions of polluting gases.
  • the motor control unit may include a prediction module adapted to determine the expected theoretical value of the lambda sensor in an operation phase without torque demand.
  • Figure 1 is a schematic representation of a combustion engine adapted for the implementation of the invention
  • Figure 2 is a graph illustrating the behavior of a normal idling engine
  • Figure 3 is a graph illustrating the behavior of an idling engine during a gas leak incident
  • Figure 4 is a graph illustrating the behavior of a normal-inertia engine driven by the vehicle's inertia
  • Figure 5 is a graph illustrating the behavior of an inertial driven engine driven by the vehicle during a gas leak incident.
  • the present preferred embodiment relates to a dual-fuel diesel engine - compressed natural gas.
  • the natural gas! mixed with air flows into the cylinder through the intake valves.
  • the compression cycle the resulting mixture is compressed and a pilot diesel injection is performed.
  • the increase in temperature and pressure allows self-ignition of diesel.
  • combustion of diesel ignites natural gas.
  • the bi-fuel diesel engine - natural gas! Compressed air includes a piston 1 mounted on a cylinder 2, and a combustion chamber 3.
  • An inlet conduit 4 and an exhaust conduit 5 are connected to the combustion chamber 3 by means of valves 6.
  • An engine cylinder is shown.
  • This engine is powered by a diesel circuit 7 which includes a tank 8, a fuel pump 9, a common ramp 10 and diesel injectors 11.
  • a motor control unit 15 is connected to the different motor sensors and actuators and performs motor control according to integrated motor control programs.
  • the engine control unit controls
  • Engine control unit 15 includes an electronic gas control module 16 controlling gas injector 14 and an electronic diesel control module 17 controlling diesel injectors 1 1.
  • the electronic gas control module 16 and the electronic diesel control module 17 can communicate with each other so that the engine can run in coordination with a mixture of diesel and gas.
  • the gas injector 14 may, for example, be locked in an open position and therefore constantly leaking gas in the intake duct 4.
  • leak detection is performed during two engine operating phases: the idling phase and the overdrive phase. These phases are chosen because they are the most favorable for such detection.
  • Leak detection takes advantage of the value measured by the lambda sensor. This value is representative of the level of oxygen concentration in the exhaust pipes.
  • the Lamba sensor measures the difference between the amount of oxygen in the exhaust gas and the amount of oxygen in the open air for a given air-fuel ratio. the ratio of air mass to fuel mass in the air-fuel mixture at a given time.
  • the lambda sensor is a solid electrolyte made of ceramic material that becomes conductive at high temperatures and generates a characteristic galvanic voltage that is an index of the oxygen content of a gas.
  • engine control unit 15 will determine the value measured by the lambda sensor and compare this value with the expected theoretical value of the lambda sensor.
  • the value measured by the lambda sensor is significantly lower than the expected theoretical value, it means that there is some hydrocarbon being oxidized in the exhaust duct 5. This is because the exhaust gases passing through the lambda sensor are subjected to high temperatures in this exhaust duct environment 5. With the presence of oxygen, the hydrocarbons present in these gases are oxidized, reducing the oxygen concentration. This surprising phenomenon leads to a reduction in oxygen concentration as a consequence of the presence of hydrocarbons in the exhaust gases.
  • Leak detection takes advantage of this phenomenon by comparing the value measured by the lambda sensor, which is modified by any leakage, and the expected theoretical value, which represents a normal situation without leakage.
  • the expected theoretical value can be stored or calculated for a given motor operating phase. This theoretical value is the characteristic value of normal operation that would be provided by the lambda sensor without the presence of natural gas.
  • the expected theoretical value can be calculated by modeling the engine characteristics, taking into account the minimum diesel injection required to keep the engine idling.
  • Any kind of known method can be used to determine the expected theoretical value of the lambda sensor for a given motor operating phase, such as computer modeling, motor control map, mathematical calculation.
  • FIG. 1 Figures 2 to 5 illustrate different stages of engine operation. For each figure, the four curves represented are relative to the following engine quantities:
  • figure 2 illustrates the typical behavior of the engine in this phase. Rotation 20 and torque 21 are kept at a minimum value. The engine is in a state where there is no torque demand and where torque is controlled by the engine control unit idle program 15.
  • Figure 2 shows that the value measured by the lambda sensor 22 and the expected theoretical value of the lambda sensor 23 are stable in the idle phase. Moreover, these values 22, 23 are similar, ie the measurement of oxygen concentration agrees with the expected oxygen concentration. Engine runs normally, no fuel leakage.
  • Figure 3 illustrates the behavior of the engine when a natural gas leak occurs, for example if the gas injector 14 fails and is constantly open. In this case, all air entering the engine arrives mixed with natural gas and engine control unit 15 is not aware of this.
  • engine control unit 15 detects an increase in engine speed 20 (as shown in the figure) and reacts by attempting to idle by reducing the amount of diesel injected. Consequently, the expected theoretical value of the lambda sensor 23 shows a significant rise (until it leaves the graph) because the motor control unit 15 thinks it is modifying the mixture to make it poorer. Injecting less diesel, engine control unit 15 expects a higher lambda value 23.
  • the motor control unit 15 program analyzes this important difference between the value measured by the lambda sensor 22 and the expected theoretical value of the lambda sensor 23 as a gas leak symptom and reacts by activating a gas leak indicator. gas.
  • the activated gas leak flag results in the shutoff of safety valve 13 to stop the gas leak.
  • the graph in figure 3 shows that the four curves 20, 21, 22, 23 return to normal after this period of leakage.
  • leak detection can be completed by a control of the speed of rotation.
  • the leakage period is also characterized by an irregularity of rotation 20 and motor torque 21.
  • Complementary detection of uneven rotation that is, abnormal engine speed variation 20, can serve to confirm leak detection during idle phase.
  • Figure 4 illustrates typical engine behavior at this phase.
  • the chart is completed by an overdrive curve 24 which, in a high position, indicates that the motor vehicle is in the overdrive phase, thus marking the beginning and end of this phase.
  • the overdrive phase begins, for example, when the driver of the self-propelled vehicle removes the accelerator foot.
  • the vehicle continues to advance at its inertia and fuel injection is stopped,
  • Figure 4 shows that in the normal course of the overdrive phase, rotation 20 shows a slight decrease caused by the motor vehicle's speed loss, and torque 21 drops to zero because there is no external torque demand.
  • the value measured by the lambda sensor 22 rises to its maximum limit as only air passes through the engine.
  • the expected theoretical value of the lambda 23 sensor rises to infinity as it is a calculated theoretical value.
  • gas injector 14 can fail and be constantly open so that all air entering the engine arrives mixed with natural gas without engine control unit 15 be aware of it.
  • the leak appears shortly after the value measured by the lambda sensor 22 reaches its maximum.
  • the value measured by the lambda sensor 22 drops to a minimum value, similar to what it had before the overdrive phase.
  • an alert interval 25 in which the expected theoretical value of the lambda sensor 23 is at its maximum while the value measured by the lambda sensor 22 has already fallen.
  • the engine control unit 15 analyzes this important difference between the measured value by the lambda sensor 22 and the expected theoretical value of the lambda sensor 23 as a gas leak symptom and reacts by activating a leak flag. of gas.
  • the activated gas leak flag results in a reaction measurement which may be, in this example of a dual-fuel engine, a change to a diesel-only mode, and closing the safety valve 13.
  • the activated gas leakage indicator may also activate a light on the dashboard of the motor vehicle.
  • diesel injector 11 is a direct injector and gas injector 14 is an indirect injector, since the invention can be applied to any type of injector.
  • detection can be performed during other engine operating phases, other than idling and overdrive phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

A presente invenção refere-se a um processo de detecção de vazamento 5 interno de combustível em um motor de combustão munido de um sensor lambda (18), que inclui as seguintes etapas: - detectar uma fase de operação sem demanda de torque; - determinar o valor medido pelo sensor lambda (22); - determinar o valor teórico esperado do sensor lambda (23); 10 - comparar o valor medido pelo sensor lambda (22) com o valor teórico espe- rado do sensor lambda (23); - ativar um sinalizador de vazamento de combustível se a comparação do valor medido pelo sensor lambda (22) com o valor teórico esperado do sen- sor lambda (23) indicar uma concentração de oxigênio reduzida. 15 A invenção também se refere a uma unidade de controle de motor que inclui um programa para a execução desse processo de detecção de vazamento interno de combustível em um motor de combustão.

Description

Relatório Descritivo da Patente de Invenção para "PROCESSO DE DETECÇÃO DE VAZAMENTO INTERNO DE COMBUSTÍVEL EM UM MOTOR DE COMBUSTÃO E UNIDADE DE CONTROLE DE MOTOR",
[001 ] A presente invenção refere-se ao controle dos motores de com- bustão e mais especificamente às estratégias para aumentar a segurança de uso e reduzir as emissões de gases poluentes. A invenção propõe um processo de detecção de vazamento interno de combustível em um motor de combustão.
[002] Para qualquer combustível usado em um motor, bá um risco de vazamento interno, ou seja, um risco de vazamento do combustível dentro dos cilindros do motor, devido, por exemplo, a uma falha de algum injetor ou de alguma válvula.
[003] Um processo de detecção de vazamento pode ser usado para tomar medidas a fim de solucionar essas emissões intempestivas de com- bustível gaseificado no motor, que podem ser perigosas e constituir um dano ambiental. Se o combustível em vazamento for inflamado, isso conduz a uma imprevista subida da velocidade de rotação ou do torque do motor, causando problemas de segurança.
[004] Se o combustível em vazamento não for inflamado, isso conduz à saída desse combustível não queimado pelo circuito de escape, constituindo uma emissão que pode ser um poluente ambientai. Ademais, se o veículo for equipado com um catalisador, esse combustível não queimado pode destruir o catalisador.
[005] É o caso, por exemplo, se o combustível, ou um dos combustí- veis, usado no motor for gás natural comprimido. Com a crescente preocupação com as emissões de gases causadores de efeito estufa, o uso de gás natural como combustível tem sido visto como uma alternativa muito interessante. O gás natural, cujo componente principal é o metano, devido à sua maior proporção de hidrogénio / carbono e seu elevado teor de energia, gera cerca de 22% menos de dióxido de carbono em comparação com o diesel, considerando a mesma eficiência de combustão. Ademais, a redução da emissão de partículas é muito importante e permite uma calibração focada na redução dos óxidos de nitrogénio. Porém, as emissões de hidrocarbonetos são mais elevadas do que as de um motor diesel típico e consistem, principalmente, em metano.
[006] O principal desafio no uso de motores a gás natural comprimido é de manter um baixo nível de emissões de metano. O metano sendo um dos principais gases causadores do efeito estufa é determinante impedir a sua emissão na atmosfera como consequência de um vazamento interno do gás natural em um motor.
Descrição do estado da técnica
[007] O documento EP1873378 descreve um processo de detecção de vazamento de combustível em um motor de combustão. Um sensor de pressão é usado para detectar uma queda de pressão nos condutos de alimentação em combustível do motor. Um sensor lamba é ademais usado para identificar o tipo de combustível que está alimentando o motor.
Breve descrição da invenção
[008] O propósito da presente invenção é de melhorar os processos e os dispositivos conhecidos.
[009] Com esse efeito, a invenção está relacionada com um processo de detecção de vazamento interno de combustível em um motor de combustão munido de um sensor lambda. O processo inclui as seguintes etapas:
- detectar uma fase de operação sem demanda de torque;
- determinar o valor medido pelo sensor lambda;
- determinar o valor teórico esperado do sensor lambda;
- comparar o valor medido pelo sensor lambda com o valor teórico esperado do sensor lambda;
- ativar um sinalizador de vazamento de combustível se a comparação do valor medido peio sensor lambda com o valor teórico esperado do sensor lambda indicar uma concentração de oxigénio reduzida.
[0010] A invenção permite assim uma detecção confiável de qualquer vazamento de combustível em um motor de combustão. Para isso, o processo de acordo com a invenção usa só elementos usuais em um motor de combustão moderno ta! como a sonda lambda. Não precisa-se de elementos suplementares como sensores de pressão.
[001 1 ] Ao nível da segurança, a detecção e a reação em relação ao vazamento previnem o aumento inesperado da velocidade do veículo.
[0012] O processo pode ademais incluir uma das características opcionais seguintes, ou um conjunto dessas características combinadas.
[0013] A fase de operação sem demanda de torque é uma fase de so- bremarcha.
[0014] A expressão sobremarcha (em inglês: "overrun") define uma fase de funcionamento de um motor de um veículo na qual:
- o veículo está lançado com inércia ou está descendo uma ladeira;
- o condutor do veículo tirou o pé do acelerador.
[0015] A fase de operação sem demanda de torque é uma fase de marcha lenta.
[0016] O processo incluí uma etapa suplementar de controle da regularidade da rotação na qual é detectada uma eventual variação anormal da rotação do motor, durante a fase de marcha lenta.
[0017] A ativação de um sinalizador de vazamento de combustível conduz à ativação de um indicador luminoso no painel de instrumentos do veículo automotor.
[0018] A ativação de um sinalizador de vazamento de combustível conduz ao fechamento de uma válvula de segurança para parar o vazamento de combustível.
[0019] A etapa de determinar o valor teórico esperado do sensor lambda é realizada por cálculo matemático.
[0020] A etapa de determinar o valor teórico esperado do sensor lambda é realizada com um mapa de controle do motor.
[0021 ] A etapa de determinar o valor teórico esperado do sensor lambda é realizada por modelagem computacional.
[0022] O processo é aplicado a um motor multicombustível e a ativação de um sinalizador de vazamento de combustível conduz à passagem para um modo monocombustívei. [0023] A invenção permite assim uma reação rápida e segura a um vazamento de combustível e garante o impedimento de emissões de gases poluentes.
[0024] Com a rápida detecção e reação ao vazamento de combustível, também é impedida uma degradação do catalisador que conduzirá a novos impactos ambientais devido a maiores emissões.
[0025] A invenção está também relacionada a uma unidade de controle de motor que inclui um programa para a execução do processo descrito acima e que inclui um módulo de previsão adaptado para determinar o valor teórico esperado do sensor lambda em uma fase de operação sem demanda de torque.
[0026] O fato de aproveitar as capacidades de cálculo matemático da unidade de controle de motor permite adicionar esta função de detecção de vazamento de maneira económica.
[0027] A unidade de controle de motor pode incluir um módulo de previsão adaptado para determinar o valor teórico esperado do sensor lambda em uma fase de operação sem demanda de torque.
Descrição resumida dos desenhos
[0028] A invenção é explicada abaixo peia descrição de um modo preferido de realização, dado como exemplo, em referência às figuras, nas quais:
- a figura 1 é uma representação esquemática de um motor de combustão adaptado para a implementação da invenção;
- a figura 2 é um gráfico ilustrando o comportamento de um motor em fase normal de marcha lenta;
- a figura 3 é um gráfico ilustrando o comportamento de um motor em fase de marcha lenta durante um incidente de vazamento de gás;
- a figura 4 é um gráfico ilustrando o comportamento de um motor em fase normal de sobremarcha, acionado peia inércia do veículo;
- a figura 5 é um gráfico ilustrando o comportamento de um motor em fase de sobremarcha, acionado peia inércia do veículo, durante um incidente de vazamento de gás. Descrição detalhada das figuras
[0029] O presente exemplo de realização preferido é relacionado a um motor bicombustível diesel - gás natural comprimido.
[0030] O funcionamento desse tipo de motor é baseado no uso de uma injeção piloto de combustível diesel como um substituto para a centelha dos motores de ciclo Otto. O gás natural é introduzido no motor em conjunto com o ar através do conduto de admissão.
[0031 ] No ciclo de admissão, o gás natura! misturado com o ar flui para dentro do cilindro através das válvulas de admissão. No ciclo de compres- são, a mistura resultante é comprimida e uma injeção piloto de diesel é realizada. O aumento de temperatura e pressão permite a autoignição do diesel. No cicio de combustão, a combustão do diesel inflama o gás natural.
[0032] Este tipo de motor bicombustível diesel - gás natural comprimido é conhecido e, portanto, o seu funcionamento não necessita ser descrito aqui de modo detalhado.
[0033] Em relação à figura 1 , o motor bicombustível diesel - gás natura! comprimido inclui um pistão 1 montado em um cilindro 2, e uma câmara de combustão 3. Um conduto de admissão 4 e um conduto de escape 5 estão ligados à câmara de combustão 3 por meio de válvulas 6. Nesta vista es- quemática, só foi representado um cilindro do motor.
[0034] Este motor é alimentado por um circuito de diesel 7 que inclui um tanque 8, uma bomba de combustível 9, uma rampa comum 10 e injeto- res de diesel 1 1 .
[0035] O motor é também alimentado por um circuito de gás natural comprimido que inclui uma série de tanques 12, um regulador de pressão e válvula de segurança 13, e um injetor de gás 14 adaptado para introduzir uma quantidade definida de gás no conduto de admissão 4.
[0036] Uma unidade de controle de motor 15 está ligada aos diferentes sensores e atuadores do motor e efetua o comando do motor em função de programas de controle de motor integrados. A unidade de controle de motor
15 está ligada a diversos sensores clássicos, incluindo um sensor lambda
18. [0037] A unidade de controle de motor 15 inclui um módulo eletrônico de controle de gás 16, controlando o injetor de gás 14, e um módulo eletrônico de controle de diesel 17, controlando os injetores de diesel 1 1 . 0 módulo eletrônico de controle de gás 16 e o módulo eletrônico de controle de diesel 17 podem comunicar um com o outro de modo que o motor possa funcionar de maneira coordenada com uma mistura de diesel e de gás.
[0038] O processo de detecção de vazamento de combustível vai agora ser descrito.
[0039] Em caso de avaria, o injetor de gás 14 pode ficar, por exemplo, bloqueado em posição aberta e ficar, portanto, vazando gás constantemente no conduto de admissão 4.
[0040] Nesta realização, a defecção de vazamento é realizada durante duas fases de funcionamento do motor: a fase de marcha lenta e a fase de sobremarcha. Essas fases são escolhidas por serem as mais favoráveis para tal detecção.
[0041 ] A detecção de vazamento aproveita o valor medido pelo sensor lambda. Este valor é representativo do nível de concentração de oxigénio nos tubos de escape, O sensor lamba permite medir a diferença entre a quantidade de oxigénio no gás de escape e a quantidade de oxigénio no ar livre para uma determinada proporção ar-combustívei, ou seja, a proporção entre a massa de ar e a massa de combustível na mistura ar-combustível em um dado momento.
[0042] O sensor lambda é um eletróíito sólido feito de material cerâmico que se torna, em altas temperaturas, condutor e gera uma tensão galvânica característica que é um índice do teor de oxigénio de um gás.
[0043] Cada vez que o motor está na fase de marcha lenta ou na fase de sobremarcha, a unidade de controle de motor 15 vai determinar o valor medido pelo sensor lambda e vai comparar esse valor com o valor teórico esperado do sensor lambda.
[0044] Se o valor medido peio sensor lambda é inferior em uma proporção significativa ao valor teórico esperado, isso significa que há algum hidrocarboneto que está sendo oxidado no conduto de escape 5. [0045] Isso porque os gases de escape que passam pelo sensor lambda são submetidos a altas temperaturas nesse ambiente do conduto de escape 5. Com a presença de oxigénio, os hidrocarbonetos presentes nesses gases são oxidados, reduzindo a concentração de oxigénio. Este surpreendente fenómeno conduz a uma redução da concentração de oxigénio como consequência da presença de hidrocarbonetos nos gases de escape.
[0046] A detecção do vazamento aproveita esse fenómeno, sendo realizada por comparação entre o valor medido pelo sensor lambda, que é modificado por um eventual vazamento, e o valor teórico esperado, que representa uma situação normal, sem vazamento.
[0047] O valor teórico esperado pode ser armazenado ou calculado para uma dada fase de funcionamento do motor. Esse valor teórico é o valor característico da operação normal, que seria fornecido peio sensor lambda sem a presença de gás natural.
[0048] No caso da fase de sobremarcha, o valor teórico esperado sobe para o infinito porque é só ar que passa através do conduto de escape.
[0049] No caso da fase de marcha lenta, o valor teórico esperado pode ser calculado através de modelação com as características do motor, tendo em conta a quantidade de injeção de diesel mínima exigida para manter o motor em funcionamento na marcha lenta.
[0050] Qualquer tipo de método conhecido pode ser utilizado para determinar o valor teórico esperado do sensor lambda para uma dada fase de funcionamento do motor, tais como modelagem computacional, mapa de controle motor, cálculo matemático.
[0051 ] As figuras 2 a 5 ilustram diferentes fases de funcionamento do motor. Para cada figura, as quatro curvas representadas são relativas às grandezas seguintes do motor:
- Rotação do motor (curva 20);
- Torque do motor (curva 21 );
- Valor medido peio sensor lambda (curva 22);
- Valor teórico esperado do sensor lambda (curva 23). [0052] Com relação à fase de marcha lenta, a figura 2 ilustra o comportamento típico do motor nessa fase, A rotação 20 e o torque 21 são mantidos estabilizados em um valor mínimo. O motor está em um estado onde não há demanda de torque e onde o torque é controlado pelo programa de marcha lenta da unidade de controle de motor 15.
[0053] A figura 2 mostra que o valor medido pelo sensor lambda 22 e o valor teórico esperado do sensor lambda 23 estão estáveis na fase de marcha lenta. Ademais, esses valores 22, 23 são semelhantes, ou seja, a medida da concentração de oxigénio concorda com a concentração esperada de oxigénio. O motor funciona normalmente, não há vazamento de combustível.
[0054] A figura 3 ilustra o comportamento do motor quando ocorre um vazamento de gás natural, por exemplo, se o injetor de gás 14 falha e fica constantemente aberto. Nesse caso, todo o ar que entra no motor chega misturado com gás natural e a unidade de controle de motor 15 não está informada disso.
[0055] Além disso, a unidade de controle de motor 15 detecta um aumento da rotação 20 (como se vê na figura) e reage, tentando manter a marcha lenta, reduzindo a quantidade de diesel injetada. Consequentemente, o valor teórico esperado do sensor lambda 23 apresenta uma subida importante (até sair do gráfico) porque a unidade de controle de motor 15 julga que está modificando a mistura para torná-la mais pobre. Injetando menos diesel, a unidade de controle de motor 15 espera um valor lambda 23 mais elevado.
[0056] Porém, com o vazamento de gás, aparece gás não queimado saindo pelo conduto de escape 5 e passando pelo sensor lambda, o que causa a aparição do fenómeno de redução da concentração de oxigénio como consequência da presença de hidrocarbonetos nos gases de escape. Por essa razão ocorre uma queda do valor real medido pelo sensor lambda 22, como ilustrado na figura 3.
[0057] O programa da unidade de controle de motor 15 analisa essa diferença importante, entre o valor medido pelo sensor lambda 22 e o valor teórico esperado do sensor lambda 23, como um sintoma de vazamento de gás e reage ativando um sinalizador de vazamento de gás. [0058] Neste exemplo, o sinalizador de vazamento de gás ativado resulta no fechamento da válvula de segurança 13 para parar o vazamento de gás. Por essa razão, o gráfico da figura 3 mostra que as quatro curvas 20, 21 , 22, 23 voltam ao normal depois desse período de vazamento.
[0059] Na fase de marcha lenta do motor, a detecção do vazamento pode ser completada por um controle da regularidade da rotação. Como ilustrado na figura 3, o período de vazamento é também caracterizado por uma irregularidade da rotação 20 e do torque do motor 21 . Uma detecção complementar de rotação irregular, ou seja, de uma variação anormal da rotação do motor 20, pode servir para confirmar a detecção do vazamento durante a fase de marcha lenta.
[0060] Com relação à fase de sobremarcha, a figura 4 ilustra o comportamento típico do motor nessa fase. O gráfico está completado por uma curva de sobremarcha 24 que, em posição alta, indica que o veículo automotor está na fase de sobremarcha, marcando assim o início e o fim dessa fase.
[0061 ] A fase de sobremarcha é iniciada, por exemplo, quando o condutor do veículo automotor retira o pé do acelerador, O veículo continua a avançar por sua inércia e a injeção de combustível é interrompida,
[0062] A figura 4 mostra que, no decorrer normal da fase de sobremarcha, a rotação 20 apresenta uma pequena diminuição causada pela perda de velocidade do veículo automotor, e o torque 21 cai para zero porque não há demanda externa de torque. Como a unidade de controle do motor 15 parou de injetar qualquer combustível, o valor medido peio sensor lambda 22 sobe até o seu limite máximo, já que só ar passa pelo motor. Pelas mesmas razões, o valor teórico esperado do sensor lambda 23 sobe até o infinito já que é um valor teórico calculado.
[0063] Nessa fase de sobremarcha normal, sem vazamento de combustível, a medida da concentração de oxigénio é idêntica à concentração esperada de oxigénio. O valor medido peio sensor lambda 22 é idêntico ao valor teórico esperado do sensor lambda 23, já que cada uma dessas curvas atinge o seu respectivo limite. [0064] A figura 5 ilustra o comportamento do motor quando ocorre um vazamento de gás natural nessa fase de sobremarcha,
[0065] Do mesmo modo que foi descrito acima para a fase de marcha lenta, o injetor gás 14 pode falhar e ficar constantemente aberto de modo que todo o ar que entra no motor chega misturado com gás natural sem a unidade de controle de motor 15 estar informada disso.
[0066] O vazamento aparece pouco depois do valor medido pelo sensor lambda 22 chegar ao seu máximo.
[0067] Logo depois do vazamento ocorrer, aparece o fenómeno de redução da concentração de oxigénio como consequência da presença de hidrocarbonetos nos gases de escape. Portanto, logo depois do vazamento ocorrer, o valor medido pelo sensor lambda 22 cai para um valor mínimo, similar ao que tinha antes da fase de sobremarcha.
[0068] Existe então um intervalo de alerta 25 no qual o valor teórico esperado do sensor lambda 23 está no seu máximo enquanto o valor medido pelo sensor lambda 22 já caiu. Nesse intervalo de alerta 25, a unidade de controle de motor 15 analisa essa diferença importante, entre o valor medido peio sensor lambda 22 e o valor teórico esperado do sensor lambda 23, como um sintoma de vazamento de gás e reage ativando um sinalizador de vazamento de gás.
[0069] Do mesmo modo que para a fase de marcha lenta, o sinalizador de vazamento de gás ativado resulta em uma medida de reação que pode ser, neste exemplo de motor bicombustível, a mudança para um modo mo- nocombustível, usando só diesel, e o fechamento da válvula de segurança 13, O sinalizador de vazamento de gás ativado pode também ativar um indicador luminoso no painel de instrumentos do veículo automotor.
[0070] O método apresentado neste artigo é aplicável a todos os veículos equipados com um sensor lambda no tubo de escape, que sejam mono- combustívei ou muiticombustívei, de ciclo Otto ou Diesel.
[0071 ] Tendo sido descrito um exemplo de concretização preferido, deve ser entendido que o escopo da presente invenção abrange outras possí- veis variações, sendo limitado tão somente pelo teor das reivindicações apensas, aí incluídos os possíveis equivalentes,
[0072] Por exemplo, nesta realização, o injetor de diesel 1 1 é um injetor direto e o injetor de gás 14 é um injetor indireto, tendo em vista que a invenção pode ser aplicada a qualquer tipo de injetor. Da mesma maneira, a detecção pode ser realizada durante outras fases de funcionamento do motor, diferentes da fase de marcha lenta e da fase de sobremarcha.

Claims

1 . Processo de detecção de vazamento interno de combustível em um motor de combustão munido de um sensor lambda (18), caracterizado peio fato de que inclui as seguintes etapas:
- detectar uma fase de operação sem demanda de torque;
- determinar o valor medido pelo sensor lambda (22);
- determinar o valor teórico esperado do sensor lambda (23);
- comparar o valor medido pelo sensor lambda (22) com o valor teórico esperado do sensor lambda (23);
- ativar um sinalizador de vazamento de combustível se a comparação do valor medido pelo sensor lambda (22) com o valor teórico esperado do sensor lambda (23) indicar urna concentração de oxigénio reduzida.
2. Processo de detecção de vazamento de acordo com a reivindicação 1 , caracterizado pelo fato de que a fase de operação sem demanda de torque é uma fase de sobremarcha,
3. Processo de detecção de vazamento de acordo com a reivindicação 1 , caracterizado pelo fato de que a fase de operação sem demanda de torque é uma fase de marcha lenta.
4. Processo de defecção de vazamento de acordo com a reivindicação 3, caracterizado pelo fato de que inclui uma etapa suplementar de controle da regularidade da rotação na qual é detectada uma eventual variação anormal da rotação do motor (20), durante a fase de marcha lenta.
5. Processo de detecção de vazamento de acordo com qualquer uma das reivindicações 1 a 4, caracterizado peio fato de que a ativação de um sinalizador de vazamento de combustível conduz à ativação de um indicador luminoso no painel de instrumentos do veículo automotor.
6. Processo de detecção de vazamento de acordo com qualquer uma das reivindicações 1 a 5, caracterizado peio fato de que a ativação de um sinalizador de vazamento de combustível conduz ao fechamento de uma válvula de segurança (13) para parar o vazamento de combustível.
7. Processo de detecção de vazamento de acordo com qualquer uma das reivindicações 1 a 6, caracterizado pelo fato de que a etapa de determinar o valor teórico esperado do sensor lambda (23) é realizada por cálculo matemático.
8. Processo de detecção de vazamento de acordo com qualquer uma das reivindicações 1 a 6, caracterizado pelo fato de que a etapa de determinar o valor teórico esperado do sensor lambda (23) é realizada com um mapa de controle do motor.
9. Processo de detecção de vazamento de acordo com qualquer uma das reivindicações 1 a 6, caracterizado pelo fato de que a etapa de determinar o valor teórico esperado do sensor lambda (23) é realizada por modelagem computacional.
10. Processo de detecção de vazamento de acordo com qualquer uma das reivindicações 1 a 9, caracterizado pelo fato de que o processo é aplicado a um motor multicombustível e que a ativação de um sinalizador de vazamento de combustível conduz à passagem para um modo monocombustível.
1 1 . Unidade de controle de motor caracterizada pelo fato de que inclui um programa para a execução do processo como definido em qualquer uma das reivindicações 1 a 10, e que inclui um módulo de previsão adaptado para determinar o valor teórico esperado do sensor lambda (23) em uma fase de operação sem demanda de torque.
12. Unidade de controle de motor de acordo com a reivindicação 1 1 , caracterizada pelo fato de que inclui um módulo eletrônico de controle de gás (16), controlando injetores de gás natural comprimido (14), e um módulo eletrônico de controle de diesel (17), controlando injetores de diesel (1 1 ), que podem comunicar um com o outro.
PCT/BR2015/050254 2015-12-14 2015-12-14 Processo de deteccao de vazamento interno de combustivel em um motor de combustao e unidade de controle de motor WO2017100871A1 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/BR2015/050254 WO2017100871A1 (pt) 2015-12-14 2015-12-14 Processo de deteccao de vazamento interno de combustivel em um motor de combustao e unidade de controle de motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/BR2015/050254 WO2017100871A1 (pt) 2015-12-14 2015-12-14 Processo de deteccao de vazamento interno de combustivel em um motor de combustao e unidade de controle de motor

Publications (1)

Publication Number Publication Date
WO2017100871A1 true WO2017100871A1 (pt) 2017-06-22

Family

ID=59055444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2015/050254 WO2017100871A1 (pt) 2015-12-14 2015-12-14 Processo de deteccao de vazamento interno de combustivel em um motor de combustao e unidade de controle de motor

Country Status (1)

Country Link
WO (1) WO2017100871A1 (pt)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242776A (ja) * 2001-02-21 2002-08-28 Denso Corp 内燃機関の燃料供給系異常検出装置
DE102006052985A1 (de) * 2006-11-10 2008-05-15 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine mit bivalenter Brennstoffzufuhr
WO2009081441A1 (en) * 2007-12-20 2009-07-02 Icomet Spa System for supply of lpg, methane, ammonia, and gas in general for petrol or diesel engines with electronic pressure regulator for continuous variation of the pressure of the fuel supplied to the injectors
US20100236218A1 (en) * 2009-03-18 2010-09-23 Stephane De Tricaud Detection of leakage in an air system of a motor vehicle
DE102010045593A1 (de) * 2010-09-16 2012-03-22 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) System und Verfahren zum Erfassen der Art eines gasförmigen Kraftstoffs, System und Verfahren zum Regeln eines Verbrennungsmotors sowie Verbrennungsmotor und Kraftfahrzeug
KR20120068238A (ko) * 2010-12-17 2012-06-27 콘티넨탈 오토모티브 시스템 주식회사 자동차의 연료 시스템 진단 장치 및 방법
WO2016041742A1 (de) * 2014-09-15 2016-03-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur erkennung von defekten einspritzdüsen eines verbrennungsmotors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242776A (ja) * 2001-02-21 2002-08-28 Denso Corp 内燃機関の燃料供給系異常検出装置
DE102006052985A1 (de) * 2006-11-10 2008-05-15 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine mit bivalenter Brennstoffzufuhr
WO2009081441A1 (en) * 2007-12-20 2009-07-02 Icomet Spa System for supply of lpg, methane, ammonia, and gas in general for petrol or diesel engines with electronic pressure regulator for continuous variation of the pressure of the fuel supplied to the injectors
US20100236218A1 (en) * 2009-03-18 2010-09-23 Stephane De Tricaud Detection of leakage in an air system of a motor vehicle
DE102010045593A1 (de) * 2010-09-16 2012-03-22 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) System und Verfahren zum Erfassen der Art eines gasförmigen Kraftstoffs, System und Verfahren zum Regeln eines Verbrennungsmotors sowie Verbrennungsmotor und Kraftfahrzeug
KR20120068238A (ko) * 2010-12-17 2012-06-27 콘티넨탈 오토모티브 시스템 주식회사 자동차의 연료 시스템 진단 장치 및 방법
WO2016041742A1 (de) * 2014-09-15 2016-03-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur erkennung von defekten einspritzdüsen eines verbrennungsmotors

Similar Documents

Publication Publication Date Title
AU2017269880B2 (en) Apparatus for operating an engine
US9453472B2 (en) System and method for diagnosing a fault in an oxygen sensor based on ambient temperature
US7934418B2 (en) Abnormality diagnosis device of intake air quantity sensor
BRPI0701642B1 (pt) método para reconhecer o tipo de combustível em um motor a diesel
KR101683988B1 (ko) 압축천연가스 엔진 공연비 제어방법
US20120174900A1 (en) Apparatus and method for detecting variation abnormality in air-fuel ratio between cylinders
KR20090025157A (ko) 내연 기관의 배기 가스 프로브、 특히 람다 프로브를 위한 테스트 방법
US20070227122A1 (en) Engine control apparatus
US20120109497A1 (en) Abnormal inter-cylinder air-fuel ratio imbalance detection apparatus for multi-cylinder internal combustion engine
JP2018003837A (ja) 二元燃料大型ディーゼルエンジンの動作方法および二元燃料大型ディーゼルエンジン
WO2006018976A1 (ja) 内燃機関のくすぶり判定方法
CN103573447B (zh) 用于基于发动机速度诊断氧传感器中的故障的***和方法
JP2019183801A (ja) 内燃機関及び内燃機関の制御方法
WO2017100871A1 (pt) Processo de deteccao de vazamento interno de combustivel em um motor de combustao e unidade de controle de motor
BR102014030504A2 (pt) processo de detecção de vazamento interno de combustível em um motor de combustão e unidade de controle de motor
KR102250296B1 (ko) 다기통 내연기관의 기통 편차 모니터링장치 및 그 방법
JP2011001856A (ja) 内燃機関の制御装置
JP2009250089A (ja) 車載内燃機関の吸気系故障診断装置
JP2010001846A (ja) 内燃機関の異常診断装置
JP6052060B2 (ja) 副室式エンジンの異常検出装置
JP2014181650A (ja) 多気筒型内燃機関の異常検出装置
JP2011089457A (ja) アルコール濃度センサの異常診断装置
JP2013050096A (ja) エンジンの燃焼状態診断装置
US20220003182A1 (en) Method and system for diagnosing misfire of engine
JP2019035352A (ja) バイフューエルエンジン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910430

Country of ref document: EP

Kind code of ref document: A1