WO2017099194A1 - Epoxy resin composition, prepreg, epoxy resin composition molded body, and cured product thereof - Google Patents

Epoxy resin composition, prepreg, epoxy resin composition molded body, and cured product thereof Download PDF

Info

Publication number
WO2017099194A1
WO2017099194A1 PCT/JP2016/086628 JP2016086628W WO2017099194A1 WO 2017099194 A1 WO2017099194 A1 WO 2017099194A1 JP 2016086628 W JP2016086628 W JP 2016086628W WO 2017099194 A1 WO2017099194 A1 WO 2017099194A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
acid
curing
parts
Prior art date
Application number
PCT/JP2016/086628
Other languages
French (fr)
Japanese (ja)
Inventor
一貴 松浦
政隆 中西
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2017555142A priority Critical patent/JPWO2017099194A1/en
Priority to CN201680071262.4A priority patent/CN108291009A/en
Priority to KR1020187009714A priority patent/KR20180092934A/en
Publication of WO2017099194A1 publication Critical patent/WO2017099194A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to an epoxy resin composition, a prepreg, an epoxy resin composition molded article, and a cured product thereof suitable for use in electrical and electronic materials.
  • Epoxy resins are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. Yes.
  • it is widely used as a matrix resin for composite materials in the field of electric and electronic fields.
  • Patent Document 1 a composite material using an epoxy resin as a matrix resin is molded by heat curing.
  • the epoxy resin that forms the matrix shrinks due to the curing reaction during molding, and the heat during the cooling process from the molding temperature to room temperature.
  • the shrinkage force due to the shrinkage works and is hindered, residual stress is generated, which is a factor of reducing the mechanical strength of the molded product.
  • the metal such as copper foil has a much smaller coefficient of thermal expansion than organic materials
  • the copper foil and the thermosetting resin in the cooling process from the molding temperature to room temperature. Due to the difference in heat shrinkage, a normal residual stress is generated, which causes a decrease in strength of the molded product, generation of cracks, and peeling of the resin.
  • it is necessary to heat at a high temperature exceeding 100 ° C. for a long time. Since curing at 100 ° C. or higher cannot save energy in the process and the cost increases, energy saving by low temperature curing is required.
  • the low temperature curing system is also a technology that is expected to be able to use an inexpensive FRP resin mold.
  • due to equipment problems such as lack of a curing furnace that can heat large molded products at high temperatures for a long time, the workability problem will be solved if a heat-resistant curing system capable of low-temperature curing is completed. Therefore, there is a strong development demand for low-temperature curing (Patent Document 2).
  • Patent Document 2 As a means for solving these problems, development of a resin composition that can be cured by a low-temperature curing process at 100 ° C. or less and has heat resistance, low water absorption characteristics, mechanical strength, and electrical reliability is required.
  • thermosetting resin in order to reduce curing shrinkage at the time of molding a thermosetting resin, (1) a resin composition having a low curing temperature is used, and (2) a resin composition from which a cured molded product having a low glass transition temperature is obtained. Use (3) Increase the free volume of the cured product by using a resin composition containing a component that expands during curing, (4) Cure molding by using a resin with a rigid skeleton introduced There are methods such as increasing the free volume of the product, and (5) using a resin composition containing a large amount of a non-heat-shrinkable substance such as an inorganic filler.
  • the heat shrinkage stress at the time of curing of the thermosetting resin depends on the curing temperature of the resin and the glass transition temperature of the resulting cured molded product, so that the curing temperature is low and the glass transition temperature of the cured product is high, and the mechanical strength is high.
  • a resin composition capable of obtaining a cured molded article excellent in the above has been desired. Therefore, the present invention has various properties necessary for a matrix resin, and has a low curing temperature, a small heat shrinkage force upon curing, an epoxy resin composition having a high glass transition temperature, and mechanical strength.
  • Another object of the present invention is to provide an epoxy resin composition capable of obtaining a cured molded article excellent in the above.
  • the present invention [1] It contains a bifunctional or higher functional epoxy resin, an aniline resin having a biphenylene novolak structure, and a proton acid curing accelerator, and the content of the proton acid curing accelerator is 0 with respect to 100 parts by weight of the epoxy resin. 0.01 to 10.0 parts by weight of an epoxy resin composition, [2] The epoxy resin composition according to [1], wherein the aniline resin has a structure described in the following formula (1):
  • the epoxy resin composition of the present invention is excellent in curability at low temperatures, and since the cured product has heat resistance, water absorption characteristics, electrical reliability and mechanical strength, insulating materials for electrical and electronic parts and laminated boards (printed wiring boards, It is useful for various composite materials such as build-up substrates) and CFRP, adhesives, paints and the like.
  • the epoxy resin composition of the present invention contains a bifunctional or higher functional epoxy resin, an aniline resin having a biphenylene novolak structure, and a proton acid curing accelerator.
  • EMC epoxy Molding Compounds
  • addition of a proton acid adversely affects corrosion and is difficult to use. Corrosion of metal wires and the like can be prevented.
  • the inside of the system is basic and can be cured at a low temperature, the extraction of chlorine contained in the resin can be suppressed, so that an epoxy resin composition having more excellent electrical reliability can be provided. it can.
  • bifunctional or higher functional epoxy resin used in the epoxy resin composition of the present invention examples include bisphenol type epoxy resins (bisphenol A, bisphenol F, bisphenol C, bisphenol E, bisphenol TMC, bisphenol Z, etc.), biphenyl type epoxy resins (tetramethylbiphenyldi).
  • Glycidyl ether bisglycidyloxybiphenyl, etc.
  • phenols phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.
  • aldehydes formaldehyde, acetaldehyde, Alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthoal Polycondensates with hydride, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc., phenols and various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene,
  • Cycloaliphatic epoxy resins such as 4-ether-1-cyclohexene diepoxide and 3,4-epoxycyclohexylmethyl-3,4'-epoxycyclohexanecarboxylate, tetraglycidyldiaminodiphenylmethane (TGDDM)
  • glycidylamine-based epoxy resins such as triglycidyl-p-aminophenol, glycidyl ester-based epoxy resins, and the like, but are not limited thereto as long as they are usually used epoxy resins. These may be used alone or in combination of two or more.
  • biphenyl type epoxy resins such as tetramethylbiphenyl diglycidyl ether and bisglycidyloxybiphenyl, tetramethylbis F type epoxy, crystalline bisphenol A type epoxy resin, tetrahydroanthracene type epoxy resin, dihydroxynaphthalene type epoxy resin, Bifunctional and solid epoxy resin such as funolphthalein type epoxy resin, phenolphthalimide type epoxy resin, bisphenolfluorene type epoxy resin, epoxy resin of phenol dicyclopentadiene condensate, zylock type, phenol Phenol aralkyl such as biphenylene arral type, dihydroxybenzene (resorcin, hydroquinone, catechol) -phenol biphenylene aralkyl type Type epoxy resin, cresol novolak, novolak epoxy resin such as phenol novolac, etc.
  • biphenyl type epoxy resins such as tetramethylbiphenyl diglycidyl ether and bis
  • Softening point or melting point is 50 °C or more and less than 200 °C, especially softening suitable for curing process at low temperature such as 100 °C or less It is preferable to contain at least an epoxy resin having a point or melting point of 50 ° C to less than 100 ° C.
  • the total chlorine content / hydrolyzable chlorine is preferably 1000 ppm or less.
  • the total amount of total chlorine / hydrolyzable chlorine in the mixture is preferably less than 1000 ppm. Particularly preferably, it is 700 ppm or less.
  • amine-based compounds may extract chlorine during curing, and the total amount of chlorine in the epoxy resin used is preferably as low as possible.
  • the aniline resin having a biphenyllene novolak structure of the present invention is a resin in which anilines (aromatic amines) are connected by bisalkylene biphenyl to have a molecular weight distribution in a novolak form.
  • anilines examples include aniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, 2-ethylaniline, 3-ethylaniline, 4-ethylaniline, 2,3-dimethylaniline, 2, 4-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline, 3,4-dimethylaniline, 3,5-dimethylaniline, 2-propylaniline, 3-propylaniline, 4-propylaniline, 2- Isopropylaniline, 3-isopropylaniline, 4-isopropylaniline, 2-ethyl-6-methylaniline, 2-sec-butylaniline, 2-tert-butylaniline, 4-butylaniline, 4-sec-butylaniline, 4- tert-butylaniline, 2,3-diethylaniline, 2, - diethylaniline, 2,5-diethylaniline, 2,6-diethylaniline, 2-isopropyl
  • aniline, 2-methylaniline, and 2,6-dimethylaniline are preferable, and aniline is particularly preferable from the viewpoint that a cured product having more excellent heat resistance, impact resistance, and flame retardancy can be obtained as the epoxy resin composition. preferable.
  • Disubstituted methylbiphenyls that can be used include 4,4'-bis (chloromethyl) biphenyl, 4,4'-dimethoxymethylbiphenyl, 4,4'-dimethoxymethylbiphenyl, 4,4'-bis (phenylaminomethyl) biphenyl Is mentioned. These may be used alone or in combination of two or more.
  • the amount of disubstituted methylbiphenyls used is usually 0.05 to 0.8 mol, preferably 0.1 to 0.6 mol, relative to 1 mol of the anilines used.
  • an acidic catalyst can be used as necessary.
  • the acidic catalyst that can be used include hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, aluminum chloride, p-toluenesulfonic acid, methanesulfonic acid and the like. These may be used alone or in combination of two or more.
  • the amount of the catalyst used is 0.1 to 0.8 mol, preferably 0.5 to 0.7 mol, based on 1 mol of the aniline used. If the amount is too large, the viscosity of the reaction solution is too high and stirring is performed. If the amount is too small, the progress of the reaction may be slow.
  • aniline, disubstituted methylbiphenyl, and a catalyst / solvent aromatic or alicyclic hydrocarbons such as toluene, xylene, cyclohexane, etc. are preferable
  • a catalyst / solvent aromatic or alicyclic hydrocarbons such as toluene, xylene, cyclohexane, etc. are preferable
  • acidic catalyst for example, in the case of the aforementioned 4,4′-bischloromethylbiphenyl, the following procedure can be mentioned. After adding the acidic catalyst to the mixed solution of the aniline derivative and the solvent, when the catalyst contains water, the water is removed from the system by azeotropic distillation.
  • 4,4′-bischloromethylbiphenyl is added at 40 to 100 ° C., preferably 50 to 80 ° C. over 1 to 5 hours, preferably 2 to 4 hours, and then the temperature is raised while removing the solvent from the system.
  • the reaction is carried out at 180 to 240 ° C., preferably 190 to 220 ° C. for 5 to 30 hours, preferably 10 to 20 hours.
  • neutralize the acidic catalyst with an aqueous alkaline solution add a water-insoluble organic solvent to the oil layer and repeat washing with water until the wastewater becomes neutral, and then distill off excess aniline derivative and organic solvent under heating and reduced pressure.
  • an aniline resin is obtained.
  • a specific structural formula of the aniline resin obtained by the above method is an aniline resin as described in the following formula (1).
  • Such an aniline resin (aromatic amine resin) has an amine equivalent of 180 to 300 g / eq. Is preferred, 190 to 250 g / eq. Is particularly preferred.
  • the softening point of the aniline resin (aromatic amine resin) used in the present invention is preferably 50 ° C. or higher and lower than 180 ° C., more preferably 150 ° C. or lower from the problem of moldability.
  • the melt viscosity is preferably 0.005 to 1.5 Pa ⁇ s, particularly preferably 0.01 to 1.0 Pa ⁇ s.
  • a compound such as 4,4'-bischloromethylbiphenyl is used, residual chlorine may remain, and chlorine ions may greatly affect electrical reliability. It is 10 ppm by extraction, preferably 5 ppm or less.
  • Protic acids and their salts as protonic acid accelerators used in the present invention in particular aliphatic or aromatic mono- or polycarboxylic acids having 1 to 20, preferably 2 to 12 carbon atoms , Sulfonic acid, and phosphonic acid.
  • Aliphatic and aromatic residues attached to the carboxyl group may contain heteroatoms and groups such as O, S, —N ⁇ , —NH—, and —N (C1-C4 alkyl) —.
  • preferred proton acid curing accelerators include acetic acid, salicylic acid, propanoic acid, butanoic acid, octylic acid, dodecanoic acid, octanoic acid, maleic acid, succinic acid, nonyl- or dodecyl-succinic acid, glutaric acid, adipic acid , Pimelic acid, suberic acid, azelaic acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and naphthalenedicarboxylic acid, methylsulfonic acid, trifluoromethylsulfonic acid, phenylsulfonic acid, toluylsulfonic acid, methylphosphonic acid, and phenyl Phenols such as phosphonic acid, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol, and
  • Examples include phthales and salts thereof.
  • curing at 100 ° C. or lower is possible by using a protonic acid as a curing accelerator.
  • a protonic acid As the mechanism, it is presumed that hydrogen protons released from the accelerator acted on the epoxy oxide of the epoxy resin and promoted its cleavage, so that curing at a low temperature became possible.
  • EMC epoxy Molding Compounds
  • proton acid As a catalyst, it is difficult to use the addition of proton acid because it has an adverse effect on corrosion.
  • it is an amine system it is difficult to use because it is basic in the system. Can do.
  • the chlorine extraction contained in the resin can be suppressed at low temperatures, a material with more excellent electrical reliability can be provided.
  • the organic carboxylic acid can be epoxy-reacted, and a curing accelerator can be incorporated into the epoxy resin network according to the curing, and contamination by the curing accelerator can be prevented.
  • the epoxy resin composition of the present invention is used for a liquid crystal sealant or the like, it is considered that liquid crystal contamination by a curing accelerator can be improved.
  • the proton acid curing accelerator is used in an amount of 0.01 to 10.0 parts by weight based on 100 parts by weight of the epoxy resin, if necessary. More preferred is 0.1 to 5.0 parts by weight.
  • another curing accelerator may be used in combination.
  • cationic polymerization initiators specifically, anionic components such as SbF 6 ⁇ , BF 4 ⁇ , AsF 6 ⁇ , PF 6 ⁇ , CF 3 SO 3 ⁇ , B (C 6 F 5 ) 4 ⁇ and the like. It is a compound comprising an aromatic cation component containing atoms such as iodine, sulfur, nitrogen and phosphorus.
  • the basic polymerization catalyst examples include pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, imidazole, triazole, tetrazole 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1- Cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2 '-Undecylimidazole (1')) ethyl-s
  • phosphonium salts, ammonium salts, and metal compounds are particularly preferable in terms of coloring at the time of curing and changes thereof. Further, when a quaternary salt is used, a salt with a halogen leaves the cured product with a halogen, which is not preferable from the viewpoint of electrical reliability and environmental problems.
  • a phenol resin is preferable from the viewpoint of electrical reliability.
  • the phenol resin include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, Phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldeh
  • any one or more of a flame retardant, a filler, and an additive can be blended as necessary.
  • a filler selected from a metal complex salt, activated carbon, a layered clay mineral, a metal oxide, etc. are mentioned.
  • a hydrotalcite-like compound is preferable.
  • the hydrotalcite-like compound is a compound represented by the general formula [M 2+ 1 ⁇ X M 3+ X (OH) 2 ] [A n ⁇ X / n ⁇ mH 2 O], and M 2+ and M 3+ are Divalent and trivalent metal ions, and A n ⁇ X / n represents an interlayer anion.
  • a typical hydrotalcite is a compound represented as Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O.
  • the Kyoward series a product of Kyowa Chemical, is effective. Examples include Kyoword 500, Kyoword 1000, Kyoword 700, Kyoword 600, Kyoword 200, Kyoword 2000, and the like.
  • a structure in which magnesium oxide> aluminum oxide and magnesium oxide> silicon dioxide in the quantity ratio of magnesium oxide, aluminum oxide and silicon dioxide is preferable.
  • Kyoto word 500, Kyoto word 1000, etc. are preferable.
  • activated carbon which can be used, chemical activated carbon is preferable.
  • the chemical activated charcoal is not particularly limited as long as it has been treated with, for example, zinc chloride, phosphoric acid, etc., but the product activated with zinc chloride is particularly preferable because it may introduce chlorine into the product.
  • Phosphoric acid activated charcoal Phosphoric acid activated charcoal.
  • activated carbon obtained by a physical method that is made porous with water vapor, air, carbon dioxide, etc., can be used in combination with chemically activated carbon depending on the conditions to be treated. A proportion of more than 50% by weight is preferable.
  • the raw material include wood (sawdust, etc.), coal (lignite, peat, coal, etc.), coconut shell, phenol resin, etc. In the present invention, wood is particularly preferred.
  • EXTRA SORBNORIT, GF series, CNR, ROZ, RBAA, RBHG, RZN, RGM, SX, SA, D10, VETERINAIR, PN, ZN, SA-SW, W, GL, SAM, HB PLUS, EUR, USP, CA , CG, GB, CAP SUPER, CGP SUPER, S-51 series, HDB, HDC, HDR, HDW, GRO SAFE, FM-1, PAC series, etc., manufactured by Kuraray, RP-20, YP-17D, and the like.
  • the clay mineral is preferably a smectite-based layered clay mineral, and examples include bentonite, montmorillonite, beidellite, nontronite, saponite, hectorite, and synthetic smectite.
  • Commercially available products are Kunimine Industries; smecton (synthetic smectite), bentonite (sodium salt type, calcium salt type), Kunipia F (montmorillonite), made by Hojun; Manufactured by Co-op Chemical; the Lucentite series.
  • metal oxide examples include inorganic fillers such as silica, alumina, calcium carbonate, quartz powder, aluminum powder, graphite, talc, clay, iron oxide, titanium oxide, aluminum nitride, asbestos, mica, and glass powder.
  • inorganic fillers such as silica, alumina, calcium carbonate, quartz powder, aluminum powder, graphite, talc, clay, iron oxide, titanium oxide, aluminum nitride, asbestos, mica, and glass powder.
  • additives can be blended in the epoxy resin composition of the present invention as necessary.
  • additives that can be used include epoxy resin curing agents, polyamide resins, silicone resins, fluorine resins such as polytetrafluoroethylene, acrylic resins such as polymethyl methacrylate, cross-linked products of benzoguanamine, melamine, and formaldehyde, polybutadiene And this modified product, modified product of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, maleimide compound, cyanate ester compound, silicone gel, silicone oil, and inorganic such as silane coupling agent Coloring agents such as surface treatment agents for fillers, mold release agents, carbon black, phthalocyanine blue, and phthalocyanine green can be used.
  • the amount of these additives is preferably 1,000 parts by weight or less, more preferably 700 parts by weight or less, with respect to 100 parts by weight of the curable resin composition.
  • the method for preparing the epoxy resin composition of the present invention is not particularly limited, but each component may be mixed evenly or prepolymerized.
  • the polymaleimide resin and the epoxy resin are prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent.
  • a polymaleimide resin and an epoxy resin, and if necessary, a prepolymer may be added by adding a curing agent and other additives such as an amine compound, a maleimide compound, a cyanate ester compound, a phenol resin, and an acid anhydride compound.
  • a curing agent and other additives such as an amine compound, a maleimide compound, a cyanate ester compound, a phenol resin, and an acid anhydride compound.
  • an extruder, a kneader, or a roll is used in the absence of a solvent, and a reaction kettle with a stirring device is used in the presence of a solvent.
  • mixing is performed by kneading using a device such as a kneader, a roll, or a planetary mixer at a temperature in the range of room temperature to 100 ° C., preferably 50 to 100 ° C., and a uniform epoxy resin composition is obtained.
  • the obtained epoxy resin composition is pulverized and then molded into a cylindrical tablet by a molding machine such as a tablet machine, or a granular powder, or a powdery molded body, or these compositions are formed on a surface support. And then molded into a sheet having a thickness of 0.05 mm to 10 mm to obtain a molded product of the epoxy resin composition of the present invention.
  • the resulting molded product becomes a non-sticky molded product at 0 to 20 ° C., and even when stored at ⁇ 25 to 0 ° C. for 1 week or longer, the fluidity and curability are hardly deteriorated.
  • the molded epoxy resin composition of the present invention preferably has a pigment or carbon black added at the stage of the composition, and is preferably colored at the stage of molding.
  • the obtained molded body is molded into a cured product using a transfer molding machine or a compression molding machine.
  • the curing temperature is preferably 100 or less.
  • the cured product thus molded exhibits a heat resistance (Tg) of 100 ° C. or higher. Especially preferably, it is 150 degreeC or more.
  • the epoxy resin composition of the present invention or a molded product thereof can be used as a semiconductor element sealing material (a semiconductor package material that protects a semiconductor by curing around a semiconductor element such as silicon, silicon carbide, or gallium nitride).
  • a semiconductor element sealing material a semiconductor package material that protects a semiconductor by curing around a semiconductor element such as silicon, silicon carbide, or gallium nitride.
  • An organic solvent can be added to the epoxy resin composition of the present invention to obtain a varnish-like composition (hereinafter simply referred to as varnish).
  • varnish a varnish-like composition
  • the epoxy resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone to obtain an epoxy resin composition varnish, and glass fiber.
  • a prepreg obtained by impregnating a base material such as carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and drying by heating is subjected to hot press molding to obtain a cured product of the epoxy resin composition of the present invention. can do.
  • the solvent is used in an amount of 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the epoxy resin composition of the present invention and the solvent. Moreover, if it is a liquid composition, the epoxy resin hardened
  • the epoxy resin composition of the present invention can be used as a modifier for a film-type composition. Specifically, it can be used to improve the flexibility of the B-stage.
  • a film-type resin composition is formed by applying the epoxy resin composition of the present invention on the release film as the epoxy resin composition varnish, removing the solvent under heating, and then performing B-staging. Obtained as an adhesive.
  • This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.
  • a prepreg can be obtained by heating and melting the epoxy resin composition of the present invention to lower the viscosity and impregnating the fiber with a reinforcing fiber such as glass fiber, carbon fiber, polyester fiber, polyamide fiber or alumina fiber. Moreover, a prepreg can also be obtained by impregnating the varnish into a reinforcing fiber and drying by heating.
  • the above prepreg is cut into the desired shape, laminated with copper foil, etc. if necessary, and the epoxy resin composition for laminates is heat-cured while applying pressure to the laminate by the press molding method, autoclave molding method, sheet winding molding method, etc. By doing so, a laminated board can be obtained.
  • a circuit can be formed on a laminated board made by superimposing copper foil on the surface, and a multilayer circuit board can be obtained by superimposing a prepreg or copper foil thereon and repeating the above operation.
  • the cured product of the present invention can be used for various applications such as molding materials, adhesives, composite materials, and paints.
  • the cured epoxy resin of the present invention exhibits excellent flame retardancy, it is useful in the electrical and electronic fields such as IC sealing materials, laminated materials, and electrical insulating materials.
  • ⁇ GPC Analysis condition column (Shodex KF-603, KF-602x2, KF-601x2) The coupled eluent is tetrahydrofuran. The flow rate is 0.5 ml / min. Column temperature is 40 ° C Detection: RI (differential refraction detector) -Curing exotherm: Measurement start condition, curing exothermic peak top temperature and exothermic end temperature by MDSC measurement Analysis condition analysis mode: MDSC measuring instrument: Q2000 manufactured by TA-instruments, Temperature increase rate: 3 ° C / min Condition 1: transfer molding (press temperature 100 ° C.) + Oven (100 ° C.
  • Condition 2 transfer molding (press temperature 175 ° C.) + Oven (160 ° C. ⁇ 2 h + 180 ° C. ⁇ 6 h) -Formability in transfer molding: the appearance of a molded sample.
  • Tg The peak point of tan ⁇ (tan ⁇ MAX) in DMA measurement was defined as Tg.
  • Analysis conditions Dynamic viscoelasticity measuring instrument: TA-instruments Q-800 Measurement temperature range: 30 ° C-280 ° C Temperature rate: 2 ° C / min Test piece size: A material cut into 5 mm ⁇ 50 mm was used (thickness was about 800 ⁇ m). ⁇ Bending strength: Measured at 30 ° C. according to JIS-6481 (bending strength).
  • the resulting aromatic amine resin had a softening point of 56 ° C., a melt viscosity of 0.035 Pa ⁇ s, and diphenylamine of 0.1% or less.
  • the amine equivalent was 195 g / eq.
  • Example 1 73 parts by weight of epoxy resin 1 (Nippon Kayaku NC-3000, epoxy equivalent 277 g / eq. Softening point 57.5 ° C. or less, hereinafter referred to as “EP1”), aromatic amine resin obtained in Synthesis Example 1 (hereinafter referred to as “hardening agent”) “H1” amine equivalent, 195 g / eq), 26 parts by weight, and 1 part by weight of salicylic acid (C1 Pure Chemical Reagent) as a proton acid curing accelerator (catalyst) are mixed and kneaded uniformly using a mixing roll. The curing exotherm was measured. The results are shown in Table 1.
  • Example 2 73 parts by weight of epoxy resin 1 (Nippon Kayaku NC-3000, epoxy equivalent 277 g / eq. Softening point 57.5 ° C. or less, hereinafter referred to as “EP1”), aromatic amine resin obtained in Synthesis Example 1 (hereinafter referred to as “hardening agent”) “H1” amine equivalent, 195 g / eq.) 26 parts by weight, 1 part by weight of octylic acid as a proton acid curing accelerator (catalyst), and uniformly mixed (mixed by C2 Superco) using a mixing roll The curing exotherm was measured. The results are shown in Table 1.
  • Example 3 73 parts by weight of epoxy resin 1 (Nippon Kayaku NC-3000, epoxy equivalent 277 g / eq. Softening point 57.5 ° C. or less, hereinafter referred to as “EP1”), aromatic amine resin obtained in Synthesis Example 1 (hereinafter referred to as “hardening agent”) "H1" amine equivalent, 195 g / eq.) 26 parts by weight, 1 part by weight of aminophenol (C3, SIGMA-ALDRICH reagent) as a proton acid curing accelerator (catalyst), and mixed uniformly using a mixing roll -Kneading and curing heat generation were measured. The results are shown in Table 1.
  • the epoxy resin composition of the present invention exhibits excellent curability (low temperature curability), especially in the system using salicylic acid, compared with the system using a phenol curing agent which is a general aromatic curing agent. As a result, it was found that excellent curability (low temperature curability) was exhibited.
  • Example 4 72 parts of Epoxy Resin 1 (Nippon Kayaku NC-3000 Epoxy Equivalent 277 g / eq. Softening point 57.5 ° C. or less “EP1”), aromatic amine resin obtained in Synthesis Example 1 (hereinafter “EP1”) "H1" amine equivalent, 195 g / eq.) 25 parts by weight, 3 parts by weight of salicylic acid (C1 Junsei Chemical Reagent) as a proton acid curing accelerator (catalyst), uniformly at a roll temperature of 80 ° C, using a mixing roll The mixture was kneaded and kneaded, tableted, and cured under condition 1. The physical properties of the cured product thus obtained were measured for the following items. The results are shown in Table 2.
  • the epoxy resin composition of the present invention has a molded body of 100 ° C. or lower and a cured product of a molded body of 180 ° C. because the deterioration of heat resistance, thermal decomposition characteristics, mechanical strength, and low water absorption characteristics is extremely small. It was shown that molding was possible even at a molding temperature of °C or less, and it was found that excellent heat resistance, mechanical strength, and water resistance were exhibited as compared with the case of using a phenol novolak that is a general phenol curing agent. High water resistance can reduce the movement of ions, and low temperature curing can suppress the extraction of chlorine contained in the resin, so that a material with higher electrical reliability can be provided.
  • the epoxy resin composition of the present invention has excellent curability, high heat resistance, mechanical strength, low hygroscopicity and electrical reliability even when compared with those using a polyfunctional phenol resin having a similar skeleton as a curing agent.
  • substrate substrate itself or its peripheral material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Provided is an epoxy resin composition capable of forming a cured product having excellent heat resistance, water absorption, modulus of elasticity, mechanical strength, and electrical reliability while securing curability at a low temperature, a prepreg making use of the epoxy resin composition, a molded body, and a cured product thereof. The epoxy resin composition contains an epoxy resin that is at least bifunctional, an aniline resin having a biphenylene novolac structure, and a protonic acid curing accelerator, wherein the content of the protonic acid curing accelerator is 0.01 to 10.0 parts by weight with respect to 100 parts by weight of the epoxy resin.

Description

エポキシ樹脂組成物、プリプレグ、エポキシ樹脂組成物成型体及びその硬化物Epoxy resin composition, prepreg, molded epoxy resin composition and cured product thereof
 本発明は電気電子材料用途等に好適なエポキシ樹脂組成物、プリプレグ、エポキシ樹脂組成物成型体およびその硬化物に関する。 The present invention relates to an epoxy resin composition, a prepreg, an epoxy resin composition molded article, and a cured product thereof suitable for use in electrical and electronic materials.
 エポキシ樹脂は作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性(耐水性)等により電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く用いられている。特に電気・電子分野分野での複合材料のマトリックス樹脂として広く使用されている。 Epoxy resins are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. Yes. In particular, it is widely used as a matrix resin for composite materials in the field of electric and electronic fields.
 近年、電気・電子分野においてはその発展に伴い、半導体封止、基板(基板自体、もしくはその周辺材料)分野においては、その半導体の変遷に従い、薄層化、スタック化、システム化、高密度実装技術と複雑になっていき、非常に高いレベルの耐熱性(高Tgで低線膨張率)の樹脂で、かつ当然ながら半田リフローへの対応が必要となっており、同時に吸水率の低下、もしくは維持が求められている。なお、プラスチックパッケージの車載用途への拡大に伴い、耐熱性の向上要求がいっそう厳しくなっている。具体的には、半導体の駆動温度の上昇により、150℃以上の耐熱性が求められるようになってきている。更に、高密度実装技術の世界では、半導体コート剤や層間絶縁膜、導電性ペーストに使用される樹脂の硬化温度が非常に高いため、その硬化工程において、加熱時の膨張が大きいとシリコンウエハの反りやクラックの発生などが生じる等の問題が起きている(特許文献1)。
 また、エポキシ樹脂をマトリックス樹脂とする複合材料は、加熱硬化によって成形されており、マトリックスとなるエポキシ樹脂に対して成形時の硬化反応に伴う収縮と、成形温度から室温への冷却過程での熱収縮とによる収縮力が働き、それが妨げられた場合には残留応力が発生し、これが成形品の機械的強度を低下させている要因になっている。更に、銅箔等の金属は熱膨張係数が有機物と比較してはるかに小さいため、熱硬化性樹脂の基板の成形工程においては、成形温度から室温への冷却過程における銅箔と熱硬化性樹脂の熱収縮が差から通常残留応力が発生しており、これによる成形品の強度低下、クラックの発生、樹脂の剥離が引き起こされる。しかしながら、樹脂自体の機械的物性・耐熱性に優れる硬化物を得るためには、100℃を越える高温で長時間加熱する必要がある。100℃以上の硬化では工程の省エネルギー化ができず、コストが高くなるため、低温硬化によるエネルギーの省力化が求められている。また、低温硬化システムは、安価なFRP樹脂製の型を使用することが可能となると期待されている技術でもある。又、大型成形品は高温で長時間加熱することが可能な硬化炉が不足している等の設備的な問題により、低温硬化可能な耐熱硬化システムが完成すれば、該作業性の問題も解決が図れる点からも、低温硬化への開発要求は強い(特許文献2)。
 これらの問題を解決する手段として、100℃以下での低温硬化プロセスで硬化可能で、耐熱性、低吸水特性、機械強度、電気信頼性を併せもつ樹脂組成物の開発が求められている。
In recent years, with the development in the electrical / electronic field, in the field of semiconductor encapsulation and substrate (substrate itself or its peripheral materials), according to the transition of the semiconductor, thinning, stacking, systematization, high-density mounting It becomes more complicated with technology, and it must be a resin with a very high level of heat resistance (high Tg and low linear expansion coefficient) and, of course, must be compatible with solder reflow. Maintenance is required. With the expansion of plastic packages to in-vehicle applications, demands for improving heat resistance are becoming more severe. Specifically, heat resistance of 150 ° C. or higher has been required due to an increase in semiconductor driving temperature. Furthermore, in the world of high-density packaging technology, the curing temperature of resins used for semiconductor coating agents, interlayer insulating films, and conductive pastes is very high. Problems such as the occurrence of warping and cracks have occurred (Patent Document 1).
In addition, a composite material using an epoxy resin as a matrix resin is molded by heat curing. The epoxy resin that forms the matrix shrinks due to the curing reaction during molding, and the heat during the cooling process from the molding temperature to room temperature. When the shrinkage force due to the shrinkage works and is hindered, residual stress is generated, which is a factor of reducing the mechanical strength of the molded product. Furthermore, since the metal such as copper foil has a much smaller coefficient of thermal expansion than organic materials, in the process of molding a thermosetting resin substrate, the copper foil and the thermosetting resin in the cooling process from the molding temperature to room temperature. Due to the difference in heat shrinkage, a normal residual stress is generated, which causes a decrease in strength of the molded product, generation of cracks, and peeling of the resin. However, in order to obtain a cured product having excellent mechanical properties and heat resistance of the resin itself, it is necessary to heat at a high temperature exceeding 100 ° C. for a long time. Since curing at 100 ° C. or higher cannot save energy in the process and the cost increases, energy saving by low temperature curing is required. The low temperature curing system is also a technology that is expected to be able to use an inexpensive FRP resin mold. In addition, due to equipment problems such as lack of a curing furnace that can heat large molded products at high temperatures for a long time, the workability problem will be solved if a heat-resistant curing system capable of low-temperature curing is completed. Therefore, there is a strong development demand for low-temperature curing (Patent Document 2).
As a means for solving these problems, development of a resin composition that can be cured by a low-temperature curing process at 100 ° C. or less and has heat resistance, low water absorption characteristics, mechanical strength, and electrical reliability is required.
日本国特開2006-188622号公報Japanese Unexamined Patent Publication No. 2006-188622 日本国特開2007-031476号公報Japanese Unexamined Patent Publication No. 2007-031476
 耐熱性を付与するために多官能アミン系の硬化剤の使用が考えられる。しかしながら、その場合、その架橋密度が高いことから系内にグリシジル基が開環した際にできる水酸基を多く発生し、その影響で電気特性や吸水特性が悪化することが問題となる。また、固形の芳香族アミンを用いた場合は、多官能化しなくても剛直な骨格の導入により耐熱性、機械強度が向上し、更に予め大量に混合する事が可能である。しかしながら、塩基性が弱いこと、及び芳香環の立体障害のため低温では硬化が遅くなるため、高温での硬化が必要となる。 In order to impart heat resistance, it is possible to use a polyfunctional amine-based curing agent. However, in that case, since the crosslinking density is high, a large number of hydroxyl groups are generated when the glycidyl group is ring-opened in the system, and the electric characteristics and water absorption characteristics deteriorate due to the influence. In addition, when a solid aromatic amine is used, heat resistance and mechanical strength are improved by introducing a rigid skeleton without being polyfunctionalized, and a large amount can be mixed in advance. However, since curing is slow at low temperatures due to weak basicity and steric hindrance of the aromatic ring, curing at high temperatures is required.
 一方、熱硬化性樹脂の成形時における硬化収縮を低減させるには、(1)硬化温度の低い樹脂組成物を使用する、(2)ガラス転移温度の低い硬化成形品が得られる樹脂組成物を使用する、(3)硬化時に膨張する成分を配合した樹脂組成物を使用することにより、硬化物の自由体積を増大させる、(4)剛直な骨格を導入した樹脂を使用することにより、硬化成形品の自由体積を増大させる、(5)無機質充填材等の非熱収縮性物質を多量に配合した樹脂組成物を使用する等の方法がある。 On the other hand, in order to reduce curing shrinkage at the time of molding a thermosetting resin, (1) a resin composition having a low curing temperature is used, and (2) a resin composition from which a cured molded product having a low glass transition temperature is obtained. Use (3) Increase the free volume of the cured product by using a resin composition containing a component that expands during curing, (4) Cure molding by using a resin with a rigid skeleton introduced There are methods such as increasing the free volume of the product, and (5) using a resin composition containing a large amount of a non-heat-shrinkable substance such as an inorganic filler.
 しかしながら、上記の(1)及び(2)の方法によるものは、得られる硬化成形品の耐熱性が十分ではない。また、(3)及び(4)の方法によるものは、ある程度の効果は得られるものの、現在ではその効果が十分に果たされるものがなく、しかも硬化成形品の機械的特性や耐熱性に限界がある。更に(5)の方法によるものは、IC封止材等の用途において実用化されているが、当然のことながら、無機質充填材を多量に使用すると熱硬化性樹脂の接着特性が低下し、銅箔との剥離が問題になる。
 特に熱硬化性樹脂の硬化時の熱収縮応力は、樹脂の硬化温度及び得られる硬化成形品のガラス転移温度に依存するため、硬化温度が低く、しかも硬化物のガラス転移温度が高く、機械強度に優れた硬化成形品が得られる樹脂組成物が望まれている。
 したがって、本発明はマトリックス樹脂に必要な種々の特性を具備し、しかも硬化温度が低く、硬化時の熱収縮力が小さく、エポキシ樹脂組成物であって、ガラス転移温度が高く、かつ、機械強度に優れた硬化成形品が得られるエポキシ樹脂組成物を提供することにある。
However, those obtained by the above methods (1) and (2) do not have sufficient heat resistance of the resulting cured molded product. In addition, the methods (3) and (4) are effective to some extent, but there is no effect at present, and there is a limit to the mechanical properties and heat resistance of the cured molded product. is there. Further, the method (5) has been put to practical use in applications such as IC encapsulating materials, but it goes without saying that if a large amount of inorganic filler is used, the adhesive properties of the thermosetting resin will decrease, and copper Separation from the foil becomes a problem.
In particular, the heat shrinkage stress at the time of curing of the thermosetting resin depends on the curing temperature of the resin and the glass transition temperature of the resulting cured molded product, so that the curing temperature is low and the glass transition temperature of the cured product is high, and the mechanical strength is high. A resin composition capable of obtaining a cured molded article excellent in the above has been desired.
Therefore, the present invention has various properties necessary for a matrix resin, and has a low curing temperature, a small heat shrinkage force upon curing, an epoxy resin composition having a high glass transition temperature, and mechanical strength. Another object of the present invention is to provide an epoxy resin composition capable of obtaining a cured molded article excellent in the above.
 本発明者らは前記したような実状に鑑み、鋭意検討した結果、本発明を完成させるに至った。すなわち本発明は、
[1]二官能以上のエポキシ樹脂と、ビフェニレンノボラック構造を有するアニリン樹脂と、プロトン酸硬化促進剤とを含有し、前記プロトン酸硬化促進剤の含有量は前記エポキシ樹脂100重量部に対して0.01~10.0重量部であるエポキシ樹脂組成物、
[2]前記アニリン樹脂が下記式(1)に記載の構造である前項[1]に記載のエポキシ樹脂組成物、
As a result of intensive studies in view of the actual situation as described above, the present inventors have completed the present invention. That is, the present invention
[1] It contains a bifunctional or higher functional epoxy resin, an aniline resin having a biphenylene novolak structure, and a proton acid curing accelerator, and the content of the proton acid curing accelerator is 0 with respect to 100 parts by weight of the epoxy resin. 0.01 to 10.0 parts by weight of an epoxy resin composition,
[2] The epoxy resin composition according to [1], wherein the aniline resin has a structure described in the following formula (1):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、複数存在するRはそれぞれ独立して水素原子、炭素数1~15のアルキル基を表す。nは整数であり、nの平均値(A)が1≦A≦5を表す。)
[3]難燃剤、フィラー、添加剤から選択されるいずれか一種以上を含有する前項[1]~[2]に記載のエポキシ樹脂組成物、
[4]前項[1]~[3]のいずれかに記載のエポキシ樹脂組成物をシート状の繊維基材に含浸したプリプレグ、
[5]前項[1]~[3]のいずれかに記載のエポキシ樹脂組成物を室温以上100℃以下で成型したエポキシ樹脂組成物成型体、
[6]前項[1]~[3]のいずれかに記載のエポキシ樹脂組成物、前項[4]に記載のプリプレグまたは前項[5]に記載のエポキシ樹脂組成物成型体を硬化した硬化物、
に関する。
(In the formula, plural Rs each independently represent a hydrogen atom or an alkyl group having 1 to 15 carbon atoms. N is an integer, and an average value (A) of n represents 1 ≦ A ≦ 5.)
[3] The epoxy resin composition according to the above [1] to [2], which contains any one or more selected from a flame retardant, a filler, and an additive,
[4] A prepreg obtained by impregnating a sheet-like fiber base material with the epoxy resin composition according to any one of [1] to [3]
[5] An epoxy resin composition molded body obtained by molding the epoxy resin composition according to any one of [1] to [3] above at room temperature to 100 ° C.
[6] The epoxy resin composition according to any one of [1] to [3], the cured product obtained by curing the prepreg according to [4] or the epoxy resin composition molded article according to [5],
About.
 本発明のエポキシ樹脂組成物は、低温での硬化性に優れ、その硬化物が耐熱性、吸水特性、電気信頼性及び機械強度を有するため電気電子部品用絶縁材料及び積層板(プリント配線板、ビルドアップ基板など)やCFRPを始めとする各種複合材料、接着剤、塗料等に有用である。 The epoxy resin composition of the present invention is excellent in curability at low temperatures, and since the cured product has heat resistance, water absorption characteristics, electrical reliability and mechanical strength, insulating materials for electrical and electronic parts and laminated boards (printed wiring boards, It is useful for various composite materials such as build-up substrates) and CFRP, adhesives, paints and the like.
 本発明のエポキシ樹脂組成物は、二官能以上のエポキシ樹脂と、ビフェニレンノボラック構造を有するアニリン樹脂と、プロトン酸硬化促進剤とを含有する。
 プロトン酸を触媒とするEMC(Epoxy Molding Compounds)において、通常のEMCの場合、プロトン酸の添加は腐食に悪影響を及ぼすため使用困難であるが、アミン系であれば系内が塩基性であるため金属ワイヤ等の腐食を防ぐことができる。更に、系内が塩基性であることに加えて、低温で硬化可能なため、樹脂に含有している塩素の引き抜きが抑えられるため、より電気信頼性に優れるエポキシ樹脂組成物を提供することができる。
The epoxy resin composition of the present invention contains a bifunctional or higher functional epoxy resin, an aniline resin having a biphenylene novolak structure, and a proton acid curing accelerator.
In EMC (Epoxy Molding Compounds) using a proton acid as a catalyst, in the case of normal EMC, addition of a proton acid adversely affects corrosion and is difficult to use. Corrosion of metal wires and the like can be prevented. Furthermore, since the inside of the system is basic and can be cured at a low temperature, the extraction of chlorine contained in the resin can be suppressed, so that an epoxy resin composition having more excellent electrical reliability can be provided. it can.
 以下、本発明のエポキシ樹脂組成物で用いられる二官能以上のエポキシ樹脂について説明する。
 本発明で用いられる二官能以上のエポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂(ビスフェノールA、ビスフェノールF、ビスフェノールC、ビスフェノールE、ビスフェノールTMC、ビスフェノールZなど)、ビフェニル型エポキシ樹脂(テトラメチルビフェニルジグリシジルエーテル、ビスグリシジルオキシビフェニルなど)、フェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン、フルオレノン等)との重縮合物、フェノール類とビスハロゲノメチルベンゼン類、ビスハロゲノメチルビフェニル類との重縮合物、ビスフェノール類と各種アルデヒドの重縮合物、アルコール類、等をグリシジル化したグリシジルエーテル系エポキシ樹脂、4-ビニル-1-シクロヘキセンジエポキシドや3,4-エポキシシクロヘキシルメチル-3,4’-エポキシシクロヘキサンカルボキシラートなどを代表とする脂環式エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン(TGDDM)やトリグリシジル-p-アミノフェノールなどを代表とするグリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるが、通常用いられるエポキシ樹脂であればこれらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
Hereinafter, the bifunctional or higher functional epoxy resin used in the epoxy resin composition of the present invention will be described.
Examples of the bifunctional or higher functional epoxy resin used in the present invention include bisphenol type epoxy resins (bisphenol A, bisphenol F, bisphenol C, bisphenol E, bisphenol TMC, bisphenol Z, etc.), biphenyl type epoxy resins (tetramethylbiphenyldi). Glycidyl ether, bisglycidyloxybiphenyl, etc.), phenols (phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, Alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthoal Polycondensates with hydride, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc., phenols and various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinyl Biphenyl, diisopropenyl biphenyl, butadiene, isoprene, etc.), phenols and polycondensates of ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, fluorenone, etc.), phenols and bishalogenomethyl Glycidylated glycidylated polycondensates of benzenes, bishalogenomethylbiphenyls, polycondensates of bisphenols and various aldehydes, alcohols, etc. Cycloaliphatic epoxy resins such as 4-ether-1-cyclohexene diepoxide and 3,4-epoxycyclohexylmethyl-3,4'-epoxycyclohexanecarboxylate, tetraglycidyldiaminodiphenylmethane (TGDDM) And glycidylamine-based epoxy resins such as triglycidyl-p-aminophenol, glycidyl ester-based epoxy resins, and the like, but are not limited thereto as long as they are usually used epoxy resins. These may be used alone or in combination of two or more.
 本発明においては特にテトラメチルビフェニルジグリシジルエーテル、ビスグリシジルオキシビフェニルなどのビフェニル型エポキシ樹脂、テトラメチルビスF型エポキシ、結晶型ビスフェノールA型エポキシ樹脂、テトラヒドロアントラセン型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、フノールフタレイン型エポキシ樹脂、フェノールフタルイミド型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂などの2官能でかつ固形の形状を有するもののエポキシ樹脂、フェノールジシクロペンタジエン縮合物のエポキシ樹脂、また、ザイロック型、フェノールビフェニレンアラル型、ジヒドロキシベンゼン(レゾルシン、ハイドロキノン、カテコール)-フェノールビフェニレンアラルキル型などのフェノールアラルキル型エポキシ樹脂、クレゾールノボラック、フェノールノボラックなどのノボラックエポキシ樹脂で軟化点あるいは融点が50℃以上200℃未満、特に低温で硬化するために、100℃以下のような低温での硬化過程に適した軟化点や融点が50℃から100℃未満のエポキシ樹脂を少なくとも含むことが好ましい。 In the present invention, in particular, biphenyl type epoxy resins such as tetramethylbiphenyl diglycidyl ether and bisglycidyloxybiphenyl, tetramethylbis F type epoxy, crystalline bisphenol A type epoxy resin, tetrahydroanthracene type epoxy resin, dihydroxynaphthalene type epoxy resin, Bifunctional and solid epoxy resin such as funolphthalein type epoxy resin, phenolphthalimide type epoxy resin, bisphenolfluorene type epoxy resin, epoxy resin of phenol dicyclopentadiene condensate, zylock type, phenol Phenol aralkyl such as biphenylene arral type, dihydroxybenzene (resorcin, hydroquinone, catechol) -phenol biphenylene aralkyl type Type epoxy resin, cresol novolak, novolak epoxy resin such as phenol novolac, etc. Softening point or melting point is 50 ℃ or more and less than 200 ℃, especially softening suitable for curing process at low temperature such as 100 ℃ or less It is preferable to contain at least an epoxy resin having a point or melting point of 50 ° C to less than 100 ° C.
 一般に脂環式エポキシ樹脂などを導入することで耐熱性が高くなるが、本発明においてはアミン系の硬化剤を使用するため、脂環式エポキシ樹脂とは反応性が悪く、前述で好ましいとするような2官能もしくは多官能のグリシジルエーテルエポキシ樹脂の使用が好ましい。
 さらに本発明において使用するエポキシ樹脂においては全塩素量/加水分解性塩素が1000ppm以下であることが好ましい。エポキシ樹脂を複数種使用する場合はその混合物における全塩素/加水分解性塩素の総量が1000ppmを切ることが好ましい。特に好ましくは700ppm以下である。
 前述のようにアミン系の化合物は硬化時に塩素を引き抜いてしまう可能性があり、使用するエポキシ樹脂の全塩素はできるだけ低いほうが好ましく、多いと電気信頼性の悪化につながるため好ましくない。
In general, heat resistance is increased by introducing an alicyclic epoxy resin or the like, but since an amine-based curing agent is used in the present invention, the reactivity with the alicyclic epoxy resin is poor, and is preferable as described above. Use of such a bifunctional or polyfunctional glycidyl ether epoxy resin is preferred.
Furthermore, in the epoxy resin used in the present invention, the total chlorine content / hydrolyzable chlorine is preferably 1000 ppm or less. When a plurality of epoxy resins are used, the total amount of total chlorine / hydrolyzable chlorine in the mixture is preferably less than 1000 ppm. Particularly preferably, it is 700 ppm or less.
As described above, amine-based compounds may extract chlorine during curing, and the total amount of chlorine in the epoxy resin used is preferably as low as possible.
 次に、本発明で用いられるビフェニルレンノボラック構造を有するアニリン樹脂について説明する。
 本発明のビフェニレンノボラック構造を有するアニリン樹脂とはアニリン(芳香族アミン)類をビスアルキレンビフェニルでつなぎ、ノボラック状に分子量分布を持たせた樹脂である。
 使用することができるアニリン類としてはアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、2-エチルアニリン、3-エチルアニリン、4-エチルアニリン、2,3-ジメチルアニリン、2,4-ジメチルアニリン、2,5-ジメチルアニリン、2,6-ジメチルアニリン、3,4-ジメチルアニリン、3,5-ジメチルアニリン、2-プロピルアニリン、3-プロピルアニリン、4-プロピルアニリン、2-イソプロピルアニリン、3-イソプロピルアニリン、4-イソプロピルアニリン、2-エチル-6-メチルアニリン、2-sec-ブチルアニリン、2-tert-ブチルアニリン、4-ブチルアニリン、4-sec-ブチルアニリン、4-tert-ブチルアニリン、2,3-ジエチルアニリン、2,4-ジエチルアニリン、2,5-ジエチルアニリン、2,6-ジエチルアニリン、2-イソプロピル-6-メチルアニリン、4-アミノビフェニルなどが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。
 また、エポキシ樹脂組成物として、より耐熱性、耐衝撃性、難燃性に優れる硬化物を得ることができる点から、アニリン、2-メチルアニリン、2,6-ジメチルアニリンが好ましく、特にアニリンが好ましい。
Next, the aniline resin having a biphenyllene novolak structure used in the present invention will be described.
The aniline resin having a biphenylene novolak structure of the present invention is a resin in which anilines (aromatic amines) are connected by bisalkylene biphenyl to have a molecular weight distribution in a novolak form.
Examples of anilines that can be used include aniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, 2-ethylaniline, 3-ethylaniline, 4-ethylaniline, 2,3-dimethylaniline, 2, 4-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline, 3,4-dimethylaniline, 3,5-dimethylaniline, 2-propylaniline, 3-propylaniline, 4-propylaniline, 2- Isopropylaniline, 3-isopropylaniline, 4-isopropylaniline, 2-ethyl-6-methylaniline, 2-sec-butylaniline, 2-tert-butylaniline, 4-butylaniline, 4-sec-butylaniline, 4- tert-butylaniline, 2,3-diethylaniline, 2, - diethylaniline, 2,5-diethylaniline, 2,6-diethylaniline, 2-isopropyl-6-methylaniline, 4-aminobiphenyl, and the like. These may be used alone or in combination of two or more.
In addition, aniline, 2-methylaniline, and 2,6-dimethylaniline are preferable, and aniline is particularly preferable from the viewpoint that a cured product having more excellent heat resistance, impact resistance, and flame retardancy can be obtained as the epoxy resin composition. preferable.
 ビスアルキレンビフェニルでつなげる手法としては、ジ置換メチルビフェニル類と上記のアニリン類との反応が挙げられる。
 使用できるジ置換メチルビフェニルとしては4,4’-ビス(クロロメチル)ビフェニル、4,4’-ジメトキシメチルビフェニル、4,4’-ジメトキシメチルビフェニル、4,4’-ビス(フェニルアミノメチル)ビフェニルが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。
 ジ置換メチルビフェニル類の使用量は、使用されるアニリン類1モルに対して通常0.05~0.8モルであり、好ましくは0.1~0.6モルである。
As a method of connecting with bisalkylenebiphenyl, a reaction of disubstituted methylbiphenyls with the above anilines can be mentioned.
Disubstituted methylbiphenyls that can be used include 4,4'-bis (chloromethyl) biphenyl, 4,4'-dimethoxymethylbiphenyl, 4,4'-dimethoxymethylbiphenyl, 4,4'-bis (phenylaminomethyl) biphenyl Is mentioned. These may be used alone or in combination of two or more.
The amount of disubstituted methylbiphenyls used is usually 0.05 to 0.8 mol, preferably 0.1 to 0.6 mol, relative to 1 mol of the anilines used.
 前記反応の際には必要に応じて酸性触媒を使用することができる。使用することができる酸性触媒としては、例えば塩酸、燐酸、硫酸、蟻酸、塩化亜鉛、塩化第二鉄、塩化アルミニウム、p-トルエンスルホン酸、メタンスルホン酸等が挙げられる。これらは単独でも二種以上併用しても良い。
 触媒の使用量は、使用されるアニリン類1モルに対して0.1~0.8モル、好ましくは0.5~0.7モルであり、多すぎると反応溶液の粘度が高すぎて攪拌が困難になることがあり、少なすぎると反応の進行が遅くなることがある。
In the reaction, an acidic catalyst can be used as necessary. Examples of the acidic catalyst that can be used include hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, aluminum chloride, p-toluenesulfonic acid, methanesulfonic acid and the like. These may be used alone or in combination of two or more.
The amount of the catalyst used is 0.1 to 0.8 mol, preferably 0.5 to 0.7 mol, based on 1 mol of the aniline used. If the amount is too large, the viscosity of the reaction solution is too high and stirring is performed. If the amount is too small, the progress of the reaction may be slow.
 反応手法としては酸性条件下で、アニリン類、ジ置換メチルビフェニル、必要に応じて触媒・溶剤(トルエン、キシレン、シクロヘキサン等の芳香族、もしくは脂環式の炭化水素類が好ましい)を加熱攪拌することで得られるが、具体的な手法としてはたとえば、前述の4,4’-ビスクロロメチルビフェニルの場合、以下のような手順があげられる。
 アニリン誘導体と溶剤の混合溶液に酸性触媒を添加した後、触媒が水を含む場合は共沸により水を系内から除く。しかる後に40~100℃、好ましくは50~80℃で4,4’-ビスクロロメチルビフェニルを1~5時間、好ましくは2~4時間かけて添加し、その後溶剤を系内から除きながら昇温して180~240℃、好ましくは190~220℃で5~30時間、好ましくは10~20時間反応を行う。反応終了後、アルカリ水溶液で酸性触媒を中和後、油層に非水溶性有機溶剤を加えて廃水が中性になるまで水洗を繰り返し、加熱減圧下で過剰のアニリン誘導体や有機溶剤を留去することによりアニリン樹脂が得られる。
 上記手法により得られる具体的なアニリン樹脂の構造式としては下記式(1)に記載するようなアニリン樹脂である。
As the reaction method, aniline, disubstituted methylbiphenyl, and a catalyst / solvent (aromatic or alicyclic hydrocarbons such as toluene, xylene, cyclohexane, etc. are preferable) are heated and stirred as necessary under acidic conditions. As a specific method, for example, in the case of the aforementioned 4,4′-bischloromethylbiphenyl, the following procedure can be mentioned.
After adding the acidic catalyst to the mixed solution of the aniline derivative and the solvent, when the catalyst contains water, the water is removed from the system by azeotropic distillation. Thereafter, 4,4′-bischloromethylbiphenyl is added at 40 to 100 ° C., preferably 50 to 80 ° C. over 1 to 5 hours, preferably 2 to 4 hours, and then the temperature is raised while removing the solvent from the system. The reaction is carried out at 180 to 240 ° C., preferably 190 to 220 ° C. for 5 to 30 hours, preferably 10 to 20 hours. After the reaction is complete, neutralize the acidic catalyst with an aqueous alkaline solution, add a water-insoluble organic solvent to the oil layer and repeat washing with water until the wastewater becomes neutral, and then distill off excess aniline derivative and organic solvent under heating and reduced pressure. As a result, an aniline resin is obtained.
A specific structural formula of the aniline resin obtained by the above method is an aniline resin as described in the following formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、複数存在するRはそれぞれ独立して水素原子、炭素数1~15のアルキル基を表す。nは整数であり、nの平均値(A)が1≦A≦5を表す。)
式中Rの炭素数1~15のアルキル基のうち、炭素数1~10が好ましく、特に炭素数1~5が好ましい。
(In the formula, plural Rs each independently represent a hydrogen atom or an alkyl group having 1 to 15 carbon atoms. N is an integer, and an average value (A) of n represents 1 ≦ A ≦ 5.)
Of the alkyl groups having 1 to 15 carbon atoms represented by R, those having 1 to 10 carbon atoms are preferred, and those having 1 to 5 carbon atoms are particularly preferred.
 このようなアニリン樹脂(芳香族アミン樹脂)のアミン当量は180~300g/eq.が好ましく、190~250g/eq.が特に好ましい。
 本発明で用いられるアニリン樹脂(芳香族アミン樹脂)の軟化点はその成形性の問題から、50℃以上180℃未満が好ましく、150℃以下がより好ましい。また、溶融粘度は0.005~1.5Pa・sが好ましく、0.01~1.0Pa・sが特に好ましい。
 なお、特に4,4’-ビスクロロメチルビフェニルのような化合物を使用した場合、残留塩素が残る可能性があり、塩素イオンは電気信頼性に大きな影響を及ぼすおそれがあることから、塩素イオンは抽出で10ppm、好ましくは5ppm以下であることが好ましい。
Such an aniline resin (aromatic amine resin) has an amine equivalent of 180 to 300 g / eq. Is preferred, 190 to 250 g / eq. Is particularly preferred.
The softening point of the aniline resin (aromatic amine resin) used in the present invention is preferably 50 ° C. or higher and lower than 180 ° C., more preferably 150 ° C. or lower from the problem of moldability. The melt viscosity is preferably 0.005 to 1.5 Pa · s, particularly preferably 0.01 to 1.0 Pa · s.
In particular, when a compound such as 4,4'-bischloromethylbiphenyl is used, residual chlorine may remain, and chlorine ions may greatly affect electrical reliability. It is 10 ppm by extraction, preferably 5 ppm or less.
 次に、本発明で用いられるプロトン酸硬化促進剤について説明する。
 本発明において使用されるプロトン酸硬化促進剤としてプロトン酸及びその塩であり、特に、1~20個、好ましくは2~12個の炭素原子を有する、脂肪族又は芳香族のモノ又はポリカルボン酸、スルホン酸、及びホスホン酸が挙げられる。カルボキシル基と結合する脂肪族及び芳香族残基は、O、S、-N=、-NH-、及び-N(C1~C4アルキル)-のようなヘテロ原子及び基を含んでいてよい。プロトン酸硬化促進剤として好ましい具体例としては、酢酸、サリチル酸、プロパン酸、ブタン酸、オクチル酸、ドデカン酸、オクタン酸、マレイン酸、コハク酸、ノニル-又はドデシル-コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、安息香酸、フタル酸、イソフタル酸、テレフタル酸、及びナフタレンジカルボン酸、メチルスルホン酸、トリフルオロメチルスルホン酸、フェニルスルホン酸、トルイルスルホン酸、メチルホスホン酸、及びフェニルホスホン酸、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類及びその塩が挙げられる。
 本発明はプロトン酸を硬化促進剤として使用することにより、100℃以下での硬化が可能となる。その機構として、促進剤より放出される水素プロトンがエポキシ樹脂のエポキシオキシドに作用して、その開裂を促進したため低温での硬化が可能になったと推量される。
 プロトン酸を触媒とするEMC(Epoxy Molding Compounds)で通常のEMCだとプロトン酸の添加は腐食に悪影響を及ぼすので使用困難だが、アミン系であれば系内が塩基性であるため腐食を防ぐことができる。更に系が塩基性であることに加えて、低温では樹脂に含有している塩素引き抜きが抑えられるため、より電気信頼性に優れる材料を提供できる。また、有機カルボン酸はエポキシ反応可能であり、硬化に応じてエポキシ樹脂ネットワーク内に硬化促進剤を取り込むことができ、硬化促進剤による汚染を防ぐことができる。本発明のエポキシ樹脂組成物を液晶シール剤等に使用した場合、硬化促進剤による液晶汚染を改善できると考えられる。プロトン酸硬化促進剤は、エポキシ樹脂100重量部に対して0.01~10.0重量部が必要に応じ用いられる。更に好ましくは0.1~5.0重量部である。
Next, the proton acid curing accelerator used in the present invention will be described.
Protic acids and their salts as protonic acid accelerators used in the present invention, in particular aliphatic or aromatic mono- or polycarboxylic acids having 1 to 20, preferably 2 to 12 carbon atoms , Sulfonic acid, and phosphonic acid. Aliphatic and aromatic residues attached to the carboxyl group may contain heteroatoms and groups such as O, S, —N═, —NH—, and —N (C1-C4 alkyl) —. Specific examples of preferred proton acid curing accelerators include acetic acid, salicylic acid, propanoic acid, butanoic acid, octylic acid, dodecanoic acid, octanoic acid, maleic acid, succinic acid, nonyl- or dodecyl-succinic acid, glutaric acid, adipic acid , Pimelic acid, suberic acid, azelaic acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and naphthalenedicarboxylic acid, methylsulfonic acid, trifluoromethylsulfonic acid, phenylsulfonic acid, toluylsulfonic acid, methylphosphonic acid, and phenyl Phenols such as phosphonic acid, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol, and / or naphthalene such as α-naphthol, β-naphthol, dihydroxynaphthalene, etc. Examples include phthales and salts thereof.
In the present invention, curing at 100 ° C. or lower is possible by using a protonic acid as a curing accelerator. As the mechanism, it is presumed that hydrogen protons released from the accelerator acted on the epoxy oxide of the epoxy resin and promoted its cleavage, so that curing at a low temperature became possible.
With EMC (Epoxy Molding Compounds) using proton acid as a catalyst, it is difficult to use the addition of proton acid because it has an adverse effect on corrosion. However, if it is an amine system, it is difficult to use because it is basic in the system. Can do. Furthermore, in addition to the basicity of the system, since the chlorine extraction contained in the resin can be suppressed at low temperatures, a material with more excellent electrical reliability can be provided. In addition, the organic carboxylic acid can be epoxy-reacted, and a curing accelerator can be incorporated into the epoxy resin network according to the curing, and contamination by the curing accelerator can be prevented. When the epoxy resin composition of the present invention is used for a liquid crystal sealant or the like, it is considered that liquid crystal contamination by a curing accelerator can be improved. The proton acid curing accelerator is used in an amount of 0.01 to 10.0 parts by weight based on 100 parts by weight of the epoxy resin, if necessary. More preferred is 0.1 to 5.0 parts by weight.
 本発明のエポキシ樹脂組成物において、さらに他の硬化促進剤を併用してもかまわない。
 具体例としてはカチオン重合開始剤、具体的には、SbF 、BF 、AsF 、PF 、CFSO 、B(C) などのアニオン成分とヨウ素、硫黄、窒素、リンなどの原子を含む芳香族カチオン成分とからなる化合物である。塩基性重合触媒としては、具体的にはピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-ウンデシルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-エチル,4-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種等の複素環式化合物類、及び、それら複素環式化合物類とジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ(5.4.0)ウンデセン-7等のジアザ化合物及びそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等のアンモニウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、カルボン酸金属塩(2-エチルヘキサン酸、ステアリン酸、ベヘン酸、ミスチリン酸などの亜鉛塩、スズ塩、ジルコニウム塩)やリン酸エステル金属(オクチルリン酸、ステアリルリン酸等の亜鉛塩)、アルコキシ金属塩(トリブチルアルミニウム、テトラプロピルジルコニウム等)、アセチルアセトン塩(アセチルアセトンジルコニウムキレート、アセチルアセトンチタンキレート等)等の金属化合物等、が挙げられる。本発明においては特にホスホニウム塩やアンモニウム塩、金属化合物類が硬化時の着色やその変化の面において好ましい。また4級塩を使用する場合、ハロゲンとの塩はその硬化物にハロゲンを残すことになり、電気信頼性および環境問題の視点から好ましくない。
In the epoxy resin composition of the present invention, another curing accelerator may be used in combination.
Specific examples include cationic polymerization initiators, specifically, anionic components such as SbF 6 , BF 4 , AsF 6 , PF 6 , CF 3 SO 3 , B (C 6 F 5 ) 4 − and the like. It is a compound comprising an aromatic cation component containing atoms such as iodine, sulfur, nitrogen and phosphorus. Specific examples of the basic polymerization catalyst include pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, imidazole, triazole, tetrazole 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1- Cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2 '-Undecylimidazole (1')) ethyl-s- Triazine, 2,4-diamino-6 (2′-ethyl, 4-methylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-methylimidazole (1 ′)) ethyl- s-triazine / isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-3,5-dihydroxymethylimidazole, 2-phenyl-4-hydroxy Various heterocyclic compounds such as methyl-5-methylimidazole, 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole, and amides such as these heterocyclic compounds and dicyandiamide; Diaza compounds such as 8-diaza-bicyclo (5.4.0) undecene-7 and their tetraphen Salts such as borates, phenol novolacs, salts with the polyvalent carboxylic acids or phosphinic acids, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, Trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide, trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, trioctylmethylammonium Ammonium salts such as acetate, triphenyl Phosphines such as ruphosphine, tri (toluyl) phosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, phosphonium compounds, phenols such as 2,4,6-trisaminomethylphenol, amine adducts, metal carboxylates (Zinc salts, tin salts, zirconium salts such as 2-ethylhexanoic acid, stearic acid, behenic acid, mistylic acid), phosphoric acid ester metals (zinc salts such as octyl phosphoric acid, stearyl phosphoric acid), alkoxy metal salts (tributyl And metal compounds such as acetylacetone salts (acetylacetonezirconium chelate, acetylacetone titanium chelate, etc.). In the present invention, phosphonium salts, ammonium salts, and metal compounds are particularly preferable in terms of coloring at the time of curing and changes thereof. Further, when a quaternary salt is used, a salt with a halogen leaves the cured product with a halogen, which is not preferable from the viewpoint of electrical reliability and environmental problems.
 本発明のエポキシ樹脂組成物において、さらに他の硬化剤を併用してもかまわない。使用できる他の硬化剤としては電気信頼性の観点からフェノール樹脂が好ましい。具体的にフェノール樹脂としてはビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン又は1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物などのフェノール樹脂;イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体の化合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。 In the epoxy resin composition of the present invention, another curing agent may be used in combination. As another curing agent that can be used, a phenol resin is preferable from the viewpoint of electrical reliability. Specific examples of the phenol resin include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, Phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p Hydroxyacetophenone, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4′-bis (chloromethyl) -1,1′-biphenyl, 4,4′-bis (methoxymethyl) -1,1′-biphenyl, Polycondensates with 1,4′-bis (chloromethyl) benzene or 1,4′-bis (methoxymethyl) benzene and their modified products, halogenated bisphenols such as tetrabromobisphenol A, terpenes and phenols Phenol resins such as condensates thereof; imidazole, trifluoroborane-amine complexes, guanidine derivative compounds, and the like, but are not limited thereto. These may be used alone or in combination of two or more.
 更に本発明のエポキシ樹脂組成物には、必要に応じて難燃剤及びフィラー、添加剤のいずれか一種以上を配合することができる。
 フィラーとしては、特に限定されるものではないが、金属複合塩、活性炭、層状粘土鉱物、金属酸化物から選択される充填剤の充填剤等が挙げられる。 金属複合塩としてはハイドロタルサイト様化合物が好ましい。ハイドロタルサイト様化合物とは、一般式[M2+ 1-X3+ (OH)][An- X/n・mHO]で表される化合物であり、M2+とM3+は、2価および3価の金属イオンを、An- X/nは層間陰イオンを表す。具体的には代表的なハイドロタルサイトはMgAl(OH)16CO・4HOのように表される化合物である。市販品としては協和化学の製品であるキョーワードシリーズが有効である。キョーワード500、キョーワード1000、キョーワード700、キョーワード600、キョーワード200、キョーワード2000等が挙げられる。本発明においては特に含有される成分中、酸化マグネシウム、酸化アルミニウム、二酸化珪素の量比において酸化マグネシウム>酸化アルミニウム、また酸化マグネシウム>二酸化珪素である構造が好ましい。具体的にはキョーワード500や、キョーワード1000などが好ましい。
Furthermore, in the epoxy resin composition of the present invention, any one or more of a flame retardant, a filler, and an additive can be blended as necessary.
Although it does not specifically limit as a filler, The filler of the filler selected from a metal complex salt, activated carbon, a layered clay mineral, a metal oxide, etc. are mentioned. As the metal composite salt, a hydrotalcite-like compound is preferable. The hydrotalcite-like compound is a compound represented by the general formula [M 2+ 1−X M 3+ X (OH) 2 ] [A n− X / n · mH 2 O], and M 2+ and M 3+ are Divalent and trivalent metal ions, and A n− X / n represents an interlayer anion. Specifically, a typical hydrotalcite is a compound represented as Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O. As a commercial product, the Kyoward series, a product of Kyowa Chemical, is effective. Examples include Kyoword 500, Kyoword 1000, Kyoword 700, Kyoword 600, Kyoword 200, Kyoword 2000, and the like. In the present invention, among the components to be contained, a structure in which magnesium oxide> aluminum oxide and magnesium oxide> silicon dioxide in the quantity ratio of magnesium oxide, aluminum oxide and silicon dioxide is preferable. Specifically, Kyoto word 500, Kyoto word 1000, etc. are preferable.
 使用できる活性炭としては、薬品賦活炭が好ましい。薬品賦活炭としては例えば塩化亜鉛、燐酸などで処理を施したものであれば特に制限はないが、塩化亜鉛で賦活された物は塩素を製品に導入してしまう恐れがあるため、特に好ましくは燐酸賦活炭である。なお、水蒸気や空気、二酸化炭素などで多孔質化する物理法により得られた活性炭も、処理する条件によっては薬品賦活活性炭と併用することも可能であり、その比率は少なくとも薬品賦活炭が全活性炭の量に対し、50重量%を超える割合が好ましい。
 原料としては木質(おが屑等)、石炭(亜炭、ピート、コール等)、ヤシガラ、フェノール樹脂などが挙げられるが、本発明では特に木質系が好ましい。市販品としてはフタムラ化学製、太閤シリーズ(CG,CW,G,QW、S、ACFなどのシリーズ)、味の素ファインテクノ製 ホクエツシリーズ(SD、BA、F、ZN、Y-180C、H-10CL、H-8CL、G-10F、CL-Kなどのシリーズ)、日本エンバイロケミカルズ製 白鷹(C、LGK-400、Gシリーズ、DOシリーズ、Wc、Sx、WHAなど)、カルボラフィン、など、NORIT製 PKシリーズ、PKDAシリーズ、ELORIT、AZO、DARCOシリーズ、HYDRODARCOシリーズ、PETRODARCO、GAC、シリーズ、GCN、C GRAN、ROW、ROY、ROX、RO、RB、R、R.EXTRA、SORBNORIT、GFシリーズ、CNR、ROZ、RBAA、RBHG、RZN、RGM、SX、SA、D 10、VETERINAIR、PN、ZN、SA-SW、W、GL、SAM、HB PLUS、EUR、USP、CA、CG、GB、CAP SUPER、CGP SUPER、S-51シリーズ、HDB、HDC、HDR、HDW、GRO SAFE、FM-1、PACシリーズなど、クラレ製、RP-20、YP-17Dなどが挙げられる。
As activated carbon which can be used, chemical activated carbon is preferable. The chemical activated charcoal is not particularly limited as long as it has been treated with, for example, zinc chloride, phosphoric acid, etc., but the product activated with zinc chloride is particularly preferable because it may introduce chlorine into the product. Phosphoric acid activated charcoal. In addition, activated carbon obtained by a physical method that is made porous with water vapor, air, carbon dioxide, etc., can be used in combination with chemically activated carbon depending on the conditions to be treated. A proportion of more than 50% by weight is preferable.
Examples of the raw material include wood (sawdust, etc.), coal (lignite, peat, coal, etc.), coconut shell, phenol resin, etc. In the present invention, wood is particularly preferred. Commercially available products include Futamura Chemical, Dazai series (CG, CW, G, QW, S, ACF and other series), Ajinomoto Fine Techno Hokuetsu series (SD, BA, F, ZN, Y-180C, H-10CL, H-8CL, G-10F, CL-K, etc.), Nippon Enviro Chemicals Shirataka (C, LGK-400, G series, DO series, Wc, Sx, WHA, etc.), Calboraphin, etc. Series, PKDA series, ELORIT, AZO, DARCO series, HYDRODACO series, PETRODARCO, GAC, series, GCN, C GRAN, ROW, ROY, ROX, RO, RB, R, R.R. EXTRA, SORBNORIT, GF series, CNR, ROZ, RBAA, RBHG, RZN, RGM, SX, SA, D10, VETERINAIR, PN, ZN, SA-SW, W, GL, SAM, HB PLUS, EUR, USP, CA , CG, GB, CAP SUPER, CGP SUPER, S-51 series, HDB, HDC, HDR, HDW, GRO SAFE, FM-1, PAC series, etc., manufactured by Kuraray, RP-20, YP-17D, and the like.
 粘土鉱物としてはスメクタイト系の層状粘土鉱物が好ましく、ベントナイト、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、合成スメクタイトなどが挙げられる。市販品としてはクニミネ工業製;スメクトン(合成スメクタイト)、ベントナイト(ナトリウム塩タイプ、カルシウム塩タイプ)、クニピアF(モンモリロナイト)、ホージュン製;ベンゲルシリーズ、ベンゲルWシリーズ、ベンゲルブライトシリーズ、ベンゲルSH、ベンゲルA、コープケミカル製;ルーセンタイトシリーズが挙げられる。 The clay mineral is preferably a smectite-based layered clay mineral, and examples include bentonite, montmorillonite, beidellite, nontronite, saponite, hectorite, and synthetic smectite. Commercially available products are Kunimine Industries; smecton (synthetic smectite), bentonite (sodium salt type, calcium salt type), Kunipia F (montmorillonite), made by Hojun; Manufactured by Co-op Chemical; the Lucentite series.
 金属酸化物としては、シリカ、アルミナ、炭酸カルシウム、石英粉、アルミニウム粉末、グラファイト、タルク、クレー、酸化鉄、酸化チタン、窒化アルミニウム、アスベスト、マイカ、ガラス粉末等の無機充填材が挙げられる。 Examples of the metal oxide include inorganic fillers such as silica, alumina, calcium carbonate, quartz powder, aluminum powder, graphite, talc, clay, iron oxide, titanium oxide, aluminum nitride, asbestos, mica, and glass powder.
 更に本発明のエポキシ樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、エポキシ樹脂用硬化剤、ポリアミド樹脂、シリコーン樹脂、ポリテトラフロロエチレン等のフッ素樹脂、ポリメチルメタクリレート等のアクリル樹脂、ベンゾグアナミンやメラミンとホルムアルデヒドとの架橋物、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、マレイミド系化合物、シアネートエステル系化合物、シリコーンゲル、シリコーンオイル、並びに、シランカップリング剤のような無機充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤が挙げられる。これら添加剤の配合量は、硬化性樹脂組成物100重量部に対して好ましくは1,000重量部以下、より好ましくは700重量部以下の範囲である。 Furthermore, a known additive can be blended in the epoxy resin composition of the present invention as necessary. Specific examples of additives that can be used include epoxy resin curing agents, polyamide resins, silicone resins, fluorine resins such as polytetrafluoroethylene, acrylic resins such as polymethyl methacrylate, cross-linked products of benzoguanamine, melamine, and formaldehyde, polybutadiene And this modified product, modified product of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, maleimide compound, cyanate ester compound, silicone gel, silicone oil, and inorganic such as silane coupling agent Coloring agents such as surface treatment agents for fillers, mold release agents, carbon black, phthalocyanine blue, and phthalocyanine green can be used. The amount of these additives is preferably 1,000 parts by weight or less, more preferably 700 parts by weight or less, with respect to 100 parts by weight of the curable resin composition.
 本発明のエポキシ樹脂組成物の調製方法は特に限定されないが、各成分を均一に混合するだけでも、あるいはプレポリマー化してもよい。例えばポリマレイミド樹脂とエポキシ樹脂を触媒の存在下または不存在下、溶剤の存在下または不存在下において加熱することによりプレポリマー化する。同様に、ポリマレイミド樹脂と、エポキシ樹脂、必要により、アミン化合物、マレイミド系化合物、シアネートエステル化合物、フェノール樹脂、酸無水物化合物などの硬化剤及びその他添加剤を追加してプレポリマー化してもよい。各成分の混合またはプレポリマー化は溶剤の不存在下では例えば押出機、ニーダ、ロールなどを用い、溶剤の存在下では攪拌装置つきの反応釜などを使用する。 The method for preparing the epoxy resin composition of the present invention is not particularly limited, but each component may be mixed evenly or prepolymerized. For example, the polymaleimide resin and the epoxy resin are prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent. Similarly, a polymaleimide resin and an epoxy resin, and if necessary, a prepolymer may be added by adding a curing agent and other additives such as an amine compound, a maleimide compound, a cyanate ester compound, a phenol resin, and an acid anhydride compound. . For mixing or prepolymerization of each component, for example, an extruder, a kneader, or a roll is used in the absence of a solvent, and a reaction kettle with a stirring device is used in the presence of a solvent.
 均一に混合する手法としては室温~100℃、好ましくは50~100℃の範囲内の温度でニーダ、ロール、プラネタリーミキサー等の装置を用いて練りこむように混合し、均一なエポキシ樹脂組成物とする。
 得られたエポキシ樹脂組成物は粉砕後、タブレットマシーン等の成型機で円柱のタブレット状に成型、もしくは顆粒状の紛体、もしくは粉状の成型体とする、もしくはこれら組成物を表面支持体の上で溶融し0.05mm~10mmの厚みのシート状に成型し、本発明のエポキシ樹脂組成物成型体とすることができる。得られた成型体は0~20℃でべたつきのない成型体となり、-25~0℃で1週間以上保管しても流動性、硬化性をほとんど低下させない。本発明のエポキシ樹脂組成物成型体は顔料もしくはカーボンブラックを組成物の段階で添加されていることが好ましく、成型された段階で着色していることが好ましい。
As a uniform mixing method, mixing is performed by kneading using a device such as a kneader, a roll, or a planetary mixer at a temperature in the range of room temperature to 100 ° C., preferably 50 to 100 ° C., and a uniform epoxy resin composition is obtained. To do.
The obtained epoxy resin composition is pulverized and then molded into a cylindrical tablet by a molding machine such as a tablet machine, or a granular powder, or a powdery molded body, or these compositions are formed on a surface support. And then molded into a sheet having a thickness of 0.05 mm to 10 mm to obtain a molded product of the epoxy resin composition of the present invention. The resulting molded product becomes a non-sticky molded product at 0 to 20 ° C., and even when stored at −25 to 0 ° C. for 1 week or longer, the fluidity and curability are hardly deteriorated. The molded epoxy resin composition of the present invention preferably has a pigment or carbon black added at the stage of the composition, and is preferably colored at the stage of molding.
 得られた成型体についてトランスファー成型機、コンプレッション成型機にて硬化物に成型する。硬化温度は100以下が好ましい。
 このように成型された硬化物は耐熱性(Tg)で100℃以上を示す。特に好ましくは150℃以上である。
The obtained molded body is molded into a cured product using a transfer molding machine or a compression molding machine. The curing temperature is preferably 100 or less.
The cured product thus molded exhibits a heat resistance (Tg) of 100 ° C. or higher. Especially preferably, it is 150 degreeC or more.
 本発明のエポキシ樹脂組成物またはその成型体は半導体素子用封止材(シリコン、シリコンカーバイド、窒化ガリウム等の半導体素子周辺で硬化させ、半導体を守る半導体パッケージ材料)として使用することができる。金型上/内にダイ、パッケージ基板(サブストレート、子基板)、表面支持体(フィルム等)にセットされた半導体素子の上で100~300℃溶融・硬化させることで半導体素子を含有する半導体装置が得られる。 The epoxy resin composition of the present invention or a molded product thereof can be used as a semiconductor element sealing material (a semiconductor package material that protects a semiconductor by curing around a semiconductor element such as silicon, silicon carbide, or gallium nitride). A semiconductor containing a semiconductor element by melting and curing at 100 to 300 ° C. on a semiconductor element set on / inside a die, a package substrate (substrate, sub-substrate), and a surface support (film, etc.) A device is obtained.
 本発明のエポキシ樹脂組成物に有機溶剤を添加してワニス状の組成物(以下、単にワニスという)とすることができる。本発明のエポキシ樹脂組成物を必要に応じてトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させ、エポキシ樹脂組成物ワニスとし、ガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明のエポキシ樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明のエポキシ樹脂組成物と該溶剤の混合物中で通常10~70重量%、好ましくは15~70重量%を占める量を用いる。また液状組成物であれば、そのまま例えば、RTM方式でカーボン繊維を含有するエポキシ樹脂硬化物を得ることもできる。 An organic solvent can be added to the epoxy resin composition of the present invention to obtain a varnish-like composition (hereinafter simply referred to as varnish). If necessary, the epoxy resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone to obtain an epoxy resin composition varnish, and glass fiber. A prepreg obtained by impregnating a base material such as carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and drying by heating is subjected to hot press molding to obtain a cured product of the epoxy resin composition of the present invention. can do. In this case, the solvent is used in an amount of 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the epoxy resin composition of the present invention and the solvent. Moreover, if it is a liquid composition, the epoxy resin hardened | cured material which contains a carbon fiber by the RTM system as it is can also be obtained as it is.
 また、本発明のエポキシ樹脂組成物をフィルム型組成物の改質剤としても使用できる。具体的にはB-ステージにおけるフレキ性等を向上させる場合に用いることができる。このようなフィルム型の樹脂組成物は、本発明のエポキシ樹脂組成物を前記エポキシ樹脂組成物ワニスとして剥離フィルム上に塗布し、加熱下で溶剤を除去した後、Bステージ化を行うことによりシート状の接着剤として得られる。このシート状接着剤は多層基板などにおける層間絶縁層として使用することが出来る。 Also, the epoxy resin composition of the present invention can be used as a modifier for a film-type composition. Specifically, it can be used to improve the flexibility of the B-stage. Such a film-type resin composition is formed by applying the epoxy resin composition of the present invention on the release film as the epoxy resin composition varnish, removing the solvent under heating, and then performing B-staging. Obtained as an adhesive. This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.
 本発明のエポキシ樹脂組成物を加熱溶融し、低粘度化してガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などの強化繊維に含浸させることによりプリプレグを得ることができる。
 また、前記ワニスを、強化繊維に含浸させて加熱乾燥させることによりプリプレグを得ることもできる。
 上記のプリプレグを所望の形に裁断、必要により銅箔などと積層後、積層物にプレス成形法やオートクレーブ成形法、シートワインディング成形法などで圧力をかけながら積層板用エポキシ樹脂組成物を加熱硬化させることにより積層板を得ることができる。
 更に、表面に銅箔を重ねてできた積層板に回路を形成し、その上にプリプレグや銅箔等を重ねて上記の操作を繰り返して多層の回路基板を得ることができる。
A prepreg can be obtained by heating and melting the epoxy resin composition of the present invention to lower the viscosity and impregnating the fiber with a reinforcing fiber such as glass fiber, carbon fiber, polyester fiber, polyamide fiber or alumina fiber.
Moreover, a prepreg can also be obtained by impregnating the varnish into a reinforcing fiber and drying by heating.
The above prepreg is cut into the desired shape, laminated with copper foil, etc. if necessary, and the epoxy resin composition for laminates is heat-cured while applying pressure to the laminate by the press molding method, autoclave molding method, sheet winding molding method, etc. By doing so, a laminated board can be obtained.
Furthermore, a circuit can be formed on a laminated board made by superimposing copper foil on the surface, and a multilayer circuit board can be obtained by superimposing a prepreg or copper foil thereon and repeating the above operation.
 本発明の硬化物は成型材料、接着剤、複合材料、塗料など各種用途に使用できる。特に本発明のエポキシ樹脂硬化物は優れた難燃性を示すため、IC封止材料、積層材料、電気絶縁材料等などの電気・電子分野に有用である。 The cured product of the present invention can be used for various applications such as molding materials, adhesives, composite materials, and paints. In particular, since the cured epoxy resin of the present invention exhibits excellent flame retardancy, it is useful in the electrical and electronic fields such as IC sealing materials, laminated materials, and electrical insulating materials.
 次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。
尚、本発明はこれら実施例に限定されるものではない。
 以下に実施例で用いた各種分析方法について記載する。
エポキシ当量: JIS K 7236 (ISO 3001) に準拠
アミン当量:JIS K-7236 付属書Aに記載された方法に準拠
ジフェニルアミン含量:ガスクロマトグラフィーで測定
ICI溶融粘度: JIS K 7117-2 (ISO 3219) に準拠
軟化点: JIS K 7234 に準拠
全塩素: JIS K 7243-3 (ISO 21672-3) に準拠
鉄分: ICP発光分光分析
EXAMPLES Next, the present invention will be described more specifically with reference to examples. In the following, parts are parts by weight unless otherwise specified.
The present invention is not limited to these examples.
The various analysis methods used in the examples are described below.
Epoxy equivalent: JIS K 7236 (ISO 3001) compliant Amine equivalent: JIS K-7236 compliant with the method described in Annex A Diphenylamine content: measured by gas chromatography ICI melt viscosity: JIS K 7117-2 (ISO 3219) Compliant softening point: JIS K 7234 compliant Total chlorine: JIS K 7243-3 (ISO 21672-3) compliant Iron: ICP emission spectroscopic analysis
・GPC: 
 解析条件
カラム(Shodex KF-603、KF-602x2、KF-601x2)
 連結溶離液はテトラヒドロフラン
 流速は0.5ml/min.
 カラム温度は40℃
 検出:RI(示差屈折検出器)
・硬化発熱:MDSC測定による硬化開始温度、硬化発熱ピークトップ温度及び発熱終了温度の測定
解析条件
解析モード:MDSC測定
測定器:Q2000 TA-instruments社製、
昇温速度:3℃/min
・条件1:トランスファー成形(プレス温度100℃)+オーブン(100℃×2h)
・ 条件2:トランスファー成形(プレス温度175℃)+オーブン(160℃×2h+180℃×6h)
・トランスファー成形における成形性:成形サンプルの見た目。
・Tg:DMA測定に於けるTanδのピーク点(tanδMAX)をTgとした。
解析条件
 動的粘弾性測定器:TA-instruments製、Q-800
 測定温度範囲:30℃~280℃
 温速度:2℃/min
 試験片サイズ:5mm×50mmに切り出した物を使用した(厚みは約800μm)。
・曲げ強度:JIS-6481(曲げ強さ)に準拠し30℃で測定。
・吸水率:100℃×24h 浸漬させた硬化物の重量増加%
・Td10:粉砕した硬化物の10%熱重量減少温度
測定装置:TG/DTA―6200
サンプル粒径:100~200μ
測定温度:30~580℃
昇温速度:10℃/min
測定雰囲気:空気
・ GPC:
Analysis condition column (Shodex KF-603, KF-602x2, KF-601x2)
The coupled eluent is tetrahydrofuran. The flow rate is 0.5 ml / min.
Column temperature is 40 ° C
Detection: RI (differential refraction detector)
-Curing exotherm: Measurement start condition, curing exothermic peak top temperature and exothermic end temperature by MDSC measurement Analysis condition analysis mode: MDSC measuring instrument: Q2000 manufactured by TA-instruments,
Temperature increase rate: 3 ° C / min
Condition 1: transfer molding (press temperature 100 ° C.) + Oven (100 ° C. × 2 h)
Condition 2: transfer molding (press temperature 175 ° C.) + Oven (160 ° C. × 2 h + 180 ° C. × 6 h)
-Formability in transfer molding: the appearance of a molded sample.
Tg: The peak point of tan δ (tan δ MAX) in DMA measurement was defined as Tg.
Analysis conditions Dynamic viscoelasticity measuring instrument: TA-instruments Q-800
Measurement temperature range: 30 ° C-280 ° C
Temperature rate: 2 ° C / min
Test piece size: A material cut into 5 mm × 50 mm was used (thickness was about 800 μm).
・ Bending strength: Measured at 30 ° C. according to JIS-6481 (bending strength).
Water absorption: 100 ° C. × 24 h Weight increase% of the cured product immersed
Td10: 10% thermogravimetric decrease temperature measuring device for pulverized cured product: TG / DTA-6200
Sample particle size: 100-200μ
Measurement temperature: 30-580 ° C
Temperature increase rate: 10 ° C / min
Measurement atmosphere: Air
(合成例1)
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン372部とトルエン200部を仕込み、室温で35%塩酸146部を1時間で滴下した。滴下終了後加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次いで4,4’-ビス(クロロメチル)ビフェニル125部を60~70℃に保ちながら1時間かけて添加し、更に同温度で2時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を195~200℃とし、この温度で15時間反応をした。その後冷却しながら30%水酸化ナトリウム水溶液330部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下で昇温時に留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いでロータリーエバポレーターで油層から加熱減圧下(200℃、0.6KPa)において過剰のアニリンとトルエンを留去することにより芳香族アミン樹脂(A)173部を得た。得られた樹脂を、再びロータリーエバポレーターで加熱減圧下(200℃、4KPa)において水蒸気吹き込みの代わりに水を少量づつ滴下した。その結果、芳香族アミン樹脂166部を得た。得られた芳香族アミン樹脂の軟化点は56℃、溶融粘度は0.035Pa・s、ジフェニルアミンは0.1%以下であった。またアミン当量は195g/eq.であった。
(Synthesis Example 1)
A flask equipped with a thermometer, a condenser, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 372 parts of aniline and 200 parts of toluene, and 146 parts of 35% hydrochloric acid was added dropwise at room temperature over 1 hour. After completion of the dropwise addition, the mixture was heated to cool and separate azeotropic water and toluene, and then only the organic layer of toluene was returned to the system for dehydration. Subsequently, 125 parts of 4,4′-bis (chloromethyl) biphenyl was added over 1 hour while maintaining the temperature at 60 to 70 ° C., and the reaction was further carried out at the same temperature for 2 hours. After completion of the reaction, toluene was distilled off while raising the temperature to bring the inside of the system to 195 to 200 ° C., and the reaction was carried out at this temperature for 15 hours. Then, with cooling, 330 parts of 30% aqueous sodium hydroxide solution was slowly added dropwise so that the system did not circulate vigorously, and the toluene distilled off at a temperature of 80 ° C. or lower was returned to the system and allowed to stand at 70 ° C. to 80 ° C. I put it. The separated lower aqueous layer was removed, and the reaction solution was washed with water until the washing solution became neutral. Subsequently, 173 parts of aromatic amine resin (A) was obtained by distilling off excess aniline and toluene from the oil layer with a rotary evaporator under heating and reduced pressure (200 ° C., 0.6 KPa). The obtained resin was again dripped in small amounts in place of steam blowing in a rotary evaporator under heating and reduced pressure (200 ° C., 4 KPa). As a result, 166 parts of aromatic amine resin was obtained. The resulting aromatic amine resin had a softening point of 56 ° C., a melt viscosity of 0.035 Pa · s, and diphenylamine of 0.1% or less. The amine equivalent was 195 g / eq.
(実施例1)
 エポキシ樹脂1(日本化薬製 NC-3000 エポキシ当量277g/eq. 軟化点57.5℃ 以下「EP1」という。)を73部、硬化剤として合成例1で得られた芳香族アミン樹脂(以下 「H1」アミン等量、195g/eq)26重量部、プロトン酸硬化促進剤(触媒)としてサリチル酸(C1 純正化学 試薬)1重量部を配合し、ミキシングロールを用いて均一に混合・混練し、硬化発熱を測定した。結果を表1に示す。
Example 1
73 parts by weight of epoxy resin 1 (Nippon Kayaku NC-3000, epoxy equivalent 277 g / eq. Softening point 57.5 ° C. or less, hereinafter referred to as “EP1”), aromatic amine resin obtained in Synthesis Example 1 (hereinafter referred to as “hardening agent”) “H1” amine equivalent, 195 g / eq), 26 parts by weight, and 1 part by weight of salicylic acid (C1 Pure Chemical Reagent) as a proton acid curing accelerator (catalyst) are mixed and kneaded uniformly using a mixing roll. The curing exotherm was measured. The results are shown in Table 1.
(実施例2)
 エポキシ樹脂1(日本化薬製 NC-3000 エポキシ当量277g/eq. 軟化点57.5℃ 以下「EP1」という。)を73部、硬化剤として合成例1で得られた芳香族アミン樹脂(以下 「H1」アミン等量、195g/eq.)26重量部、プロトン酸硬化促進剤(触媒)としてオクチル酸1重量部を配合し、ミキシングロールを用いて均一に(C2 Supelco社製 )混合・混練し、硬化発熱を測定した。結果を表1に示す。
(Example 2)
73 parts by weight of epoxy resin 1 (Nippon Kayaku NC-3000, epoxy equivalent 277 g / eq. Softening point 57.5 ° C. or less, hereinafter referred to as “EP1”), aromatic amine resin obtained in Synthesis Example 1 (hereinafter referred to as “hardening agent”) “H1” amine equivalent, 195 g / eq.) 26 parts by weight, 1 part by weight of octylic acid as a proton acid curing accelerator (catalyst), and uniformly mixed (mixed by C2 Superco) using a mixing roll The curing exotherm was measured. The results are shown in Table 1.
(実施例3)
 エポキシ樹脂1(日本化薬製 NC-3000 エポキシ当量277g/eq. 軟化点57.5℃ 以下「EP1」という。)を73部、硬化剤として合成例1で得られた芳香族アミン樹脂(以下 「H1」アミン等量、195g/eq.)26重量部、プロトン酸硬化促進剤(触媒)としてアミノフェノール(C3、SIGMA-ALDRICH 試薬)1重量部を配合し、ミキシングロールを用いて均一に混合・混練し、硬化発熱を測定した。結果を表1に示す。
(Example 3)
73 parts by weight of epoxy resin 1 (Nippon Kayaku NC-3000, epoxy equivalent 277 g / eq. Softening point 57.5 ° C. or less, hereinafter referred to as “EP1”), aromatic amine resin obtained in Synthesis Example 1 (hereinafter referred to as “hardening agent”) "H1" amine equivalent, 195 g / eq.) 26 parts by weight, 1 part by weight of aminophenol (C3, SIGMA-ALDRICH reagent) as a proton acid curing accelerator (catalyst), and mixed uniformly using a mixing roll -Kneading and curing heat generation were measured. The results are shown in Table 1.
(比較例1)
 エポキシ樹脂1(日本化薬製 NC-3000 エポキシ当量277g/eq. 軟化点57.5℃ 以下「EP1」という。)を74部、硬化剤として合成例1で得られた芳香族アミン樹脂(以下 「H1」アミン等量、195g/eq.)26重量部を配合し、ミキシングロールを用いて均一に混合・混練し、硬化発熱を測定した。結果を表1に示す。
(Comparative Example 1)
74 parts by weight of epoxy resin 1 (Nippon Kayaku NC-3000 epoxy equivalent 277 g / eq. Softening point 57.5 ° C. or less “EP1”), the aromatic amine resin obtained in Synthesis Example 1 (hereinafter referred to as “hardening agent”) "H1" amine equivalent, 195 g / eq.) 26 parts by weight were blended, and uniformly mixed and kneaded using a mixing roll, and the curing exotherm was measured. The results are shown in Table 1.
(比較例2)
 エポキシ樹脂1(日本化薬製 NC-3000 エポキシ当量277g/eq. 軟化点57.5℃ 以下「EP1」という。)を72部、硬化剤として合成例1で得られた芳香族アミン樹脂(以下 「H1」アミン等量、195g/eq.)26重量部、硬化促進剤(触媒)としてトリフェニルホスフィン(C-4 北興化学工業製)2重量部を配合し、ミキシングロールを用いて均一に混合・混練し、硬化発熱を測定した。結果を表1に示す。
(Comparative Example 2)
72 parts of Epoxy Resin 1 (Nippon Kayaku NC-3000 Epoxy Equivalent 277 g / eq. Softening point 57.5 ° C. or less “EP1”), aromatic amine resin obtained in Synthesis Example 1 (hereinafter “EP1”) “H1” amine equivalent, 195 g / eq.) 26 parts by weight, and curing accelerator (catalyst) 2 parts by weight of triphenylphosphine (C-4 made by Hokuko Chemical Co., Ltd.) are blended and mixed uniformly using a mixing roll. -Kneading and curing heat generation were measured. The results are shown in Table 1.
(比較例3)
 エポキシ樹脂1(日本化薬製 NC-3000 エポキシ当量277g/eq. 軟化点57.5℃ 以下「EP1」という。)を57部、硬化剤として硬化剤2(日本化薬製KAYAHARD GPH-65 水酸基当量199g/eq. 軟化点65℃ 以下「H2」)41重量部、硬化促進剤(触媒)としてトリフェニルホスフィン(C-4 北興化学工業製)2重量部を配合し、ミキシングロールを用いて均一に混合・混練し、硬化発熱を測定した。結果を表1に示す。
(Comparative Example 3)
57 parts of epoxy resin 1 (Nippon Kayaku NC-3000 epoxy equivalent 277 g / eq. Softening point 57.5 ° C. or less “EP1”), curing agent 2 as a curing agent (KAYAHARD GPH-65 hydroxyl group manufactured by Nippon Kayaku) Equivalent 199 g / eq, 41 parts by weight of softening point 65 ° C. or lower “H2”) and 2 parts by weight of triphenylphosphine (C-4 Hokuko Chemical Co., Ltd.) as a curing accelerator (catalyst) are blended uniformly using a mixing roll The mixture was mixed and kneaded, and the heat of curing was measured. The results are shown in Table 1.
(比較例4)
 エポキシ樹脂1(日本化薬製 NC-3000 エポキシ当量277g/eq. 軟化点57.5℃ 以下「EP1」という。)を58部、硬化剤として硬化剤2(日本化薬製KAYAHARD GPH-65 水酸基当量199g/eq. 軟化点65℃ 以下「H2」)41重量部、プロトン酸硬化促進剤(触媒)としてサリチル酸(C1 純正化学 試薬)1重量部を配合し、ミキシングロールを用いて均一に混合・混練し、硬化発熱を測定した。結果を表1に示す。
(Comparative Example 4)
58 parts of epoxy resin 1 (Nippon Kayaku NC-3000 epoxy equivalent 277 g / eq. Softening point 57.5 ° C. or less “EP1”), hardener 2 as a curing agent (KAYAHARD GPH-65 hydroxyl group manufactured by Nippon Kayaku) Equivalent 199 g / eq, softening point 65 ° C. or less “H2”) 41 parts by weight, 1 part by weight of salicylic acid (C1 Pure Chemical Reagent) as a proton acid curing accelerator (catalyst), and mixed uniformly using a mixing roll Kneading and curing exotherm were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上の結果から本発明のエポキシ樹脂組成物は優れた硬化性(低温硬化性)を示し、特にサリチル酸を用いた系では、一般的な芳香族硬化剤であるフェノール硬化剤を用いた系と比較して優れた硬化性(低温硬化性)を示すことが分かった。 From the above results, the epoxy resin composition of the present invention exhibits excellent curability (low temperature curability), especially in the system using salicylic acid, compared with the system using a phenol curing agent which is a general aromatic curing agent. As a result, it was found that excellent curability (low temperature curability) was exhibited.
(実施例4)
 エポキシ樹脂1(日本化薬製 NC-3000 エポキシ当量277g/eq. 軟化点57.5℃ 以下「EP1」という。)を72部、硬化剤として合成例1で得られた芳香族アミン樹脂(以下 「H1」アミン等量、195g/eq.)25重量部、プロトン酸硬化促進剤(触媒)としてサリチル酸(C1 純正化学 試薬)3重量部を配合しロール温度80℃で、ミキシングロールを用いて均一に混合・混練し、タブレット化後、条件1で硬化させた。このようにして得られた硬化物の物性を以下の項目について測定した。結果を表2に示す。
Example 4
72 parts of Epoxy Resin 1 (Nippon Kayaku NC-3000 Epoxy Equivalent 277 g / eq. Softening point 57.5 ° C. or less “EP1”), aromatic amine resin obtained in Synthesis Example 1 (hereinafter “EP1”) "H1" amine equivalent, 195 g / eq.) 25 parts by weight, 3 parts by weight of salicylic acid (C1 Junsei Chemical Reagent) as a proton acid curing accelerator (catalyst), uniformly at a roll temperature of 80 ° C, using a mixing roll The mixture was kneaded and kneaded, tableted, and cured under condition 1. The physical properties of the cured product thus obtained were measured for the following items. The results are shown in Table 2.
(比較例5)
 エポキシ樹脂1(日本化薬製 NC-3000 エポキシ当量277g/eq. 軟化点57.5℃ 以下「EP1」という。)を72部、フェノールノボラック(明和化成製 H-3、水酸基当量106g/eq.)27重量部、硬化促進剤(触媒)としてトリフェニルホスフィン(C4 純正化学 試薬)1重量部を配合しミキシングロールを用いて均一に混合・混練し、タブレット化後、トランスファー成形で樹脂成形体を調製し、条件2で硬化させた。このようにして得られた硬化物の物性を以下の項目について測定した。結果を表2に示す。
(Comparative Example 5)
Epoxy resin 1 (Nippon Kayaku NC-3000 Epoxy equivalent 277 g / eq. Softening point 57.5 ° C. or less “EP1”) 72 parts, phenol novolac (Maywa Kasei H-3, hydroxyl group equivalent 106 g / eq. ) 27 parts by weight, 1 part by weight of triphenylphosphine (C4 Genuine Chemical Reagent) as a curing accelerator (catalyst), uniformly mixed and kneaded using a mixing roll, and after tableting, a resin molding is formed by transfer molding Prepared and cured under condition 2. The physical properties of the cured product thus obtained were measured for the following items. The results are shown in Table 2.
(参考例1)
 エポキシ樹脂1(日本化薬製 NC-3000 エポキシ当量277g/eq. 軟化点57.5℃ 以下「EP1」という。)を73部、硬化剤として合成例1で得られた芳香族アミン樹脂(以下 「H1」アミン等量、195g/eq.)26重量部、プロトン酸硬化促進剤(触媒)としてサリチル酸(C1 純正化学 試薬)1重量部を配合しロール温度80℃で、ミキシングロールを用いて均一に混合・混練し、タブレット化後、条件2で硬化させた。このようにして得られた硬化物の物性を以下の項目について測定した結果を表2に示す。
(Reference Example 1)
73 parts by weight of epoxy resin 1 (Nippon Kayaku NC-3000, epoxy equivalent 277 g / eq. Softening point 57.5 ° C. or less, hereinafter referred to as “EP1”), aromatic amine resin obtained in Synthesis Example 1 (hereinafter referred to as “hardening agent”) “H1” amine equivalent, 195 g / eq.) 26 parts by weight, 1 part by weight of salicylic acid (C1 Junsei Chemical Reagent) as a proton acid curing accelerator (catalyst), and at a roll temperature of 80 ° C., uniformly using a mixing roll The mixture was kneaded and kneaded into tablets, and then cured under condition 2. Table 2 shows the results of measuring the physical properties of the cured product thus obtained with respect to the following items.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上の結果から本発明のエポキシ樹脂組成物は、100℃以下成型体と180℃の成形体の硬化物は、耐熱性、熱分解特性、機械強度、低吸水特性の低下が極めて少ないことから100℃以下の成型温度でも成形可能であることを示し、一般的なフェノール硬化剤であるフェノールノボラックを用いた場合と比較して優れた耐熱性、機械強度、耐水性を示すことが分かった。耐水性が高いことはイオンの移動が少なくなること及び、低温硬化では樹脂に含有している塩素引き抜きが抑えられるため、より電気信頼性に優れた材料を提供できる。 From the above results, the epoxy resin composition of the present invention has a molded body of 100 ° C. or lower and a cured product of a molded body of 180 ° C. because the deterioration of heat resistance, thermal decomposition characteristics, mechanical strength, and low water absorption characteristics is extremely small. It was shown that molding was possible even at a molding temperature of ℃ or less, and it was found that excellent heat resistance, mechanical strength, and water resistance were exhibited as compared with the case of using a phenol novolak that is a general phenol curing agent. High water resistance can reduce the movement of ions, and low temperature curing can suppress the extraction of chlorine contained in the resin, so that a material with higher electrical reliability can be provided.
 本発明のエポキシ樹脂組成物は、硬化剤として類似骨格の多官能フェノール樹脂を用いたものと比較しても優れた硬化性、高い耐熱性、機械強度、低吸湿性及び電気信頼性を有することから半導体封止、基板(基板自体、もしくはその周辺材料)分野に好適である。 The epoxy resin composition of the present invention has excellent curability, high heat resistance, mechanical strength, low hygroscopicity and electrical reliability even when compared with those using a polyfunctional phenol resin having a similar skeleton as a curing agent. To semiconductor sealing and substrate (substrate itself or its peripheral material).
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2015年12月11日付で出願された日本国特許出願(特願2015-242469)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2015-242469) filed on Dec. 11, 2015, which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.

Claims (6)

  1.  二官能以上のエポキシ樹脂と、ビフェニレンノボラック構造を有するアニリン樹脂と、プロトン酸硬化促進剤とを含有し、前記プロトン酸硬化促進剤の含有量は、前記エポキシ樹脂100重量部に対して0.01~10.0重量部であるエポキシ樹脂組成物。 It contains a bifunctional or higher functional epoxy resin, an aniline resin having a biphenylene novolak structure, and a proton acid curing accelerator, and the content of the proton acid curing accelerator is 0.01 to 100 parts by weight of the epoxy resin. Epoxy resin composition that is ˜10.0 parts by weight.
  2.  前記アニリン樹脂が下記式(1)に記載の構造である請求項1に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、複数存在するRはそれぞれ独立して水素原子、炭素数1~15のアルキル基を表す。nは整数であり、nの平均値(A)が1≦A≦5を表す。)
    The epoxy resin composition according to claim 1, wherein the aniline resin has a structure represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, plural Rs each independently represent a hydrogen atom or an alkyl group having 1 to 15 carbon atoms. N is an integer, and an average value (A) of n represents 1 ≦ A ≦ 5.)
  3.  難燃剤、フィラー及び添加剤から選択されるいずれか一種以上を含有する請求項1又は請求項2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2, comprising at least one selected from a flame retardant, a filler, and an additive.
  4.  請求項1及至請求項3のいずれかに記載のエポキシ樹脂組成物をシート状の繊維基材に含浸したプリプレグ。 A prepreg obtained by impregnating a sheet-like fiber base material with the epoxy resin composition according to any one of claims 1 to 3.
  5.  請求項1及至請求項3のいずれかに記載のエポキシ樹脂組成物を室温以上100℃以下で成型したエポキシ樹脂組成物成型体。 An epoxy resin composition molded article obtained by molding the epoxy resin composition according to any one of claims 1 to 3 at room temperature to 100 ° C.
  6.  請求項1及至請求項3のいずれかに記載のエポキシ樹脂組成物、請求項4に記載のプリプレグまたは請求項5に記載のエポキシ樹脂組成物成型体を硬化した硬化物。 A cured product obtained by curing the epoxy resin composition according to any one of claims 1 to 3, the prepreg according to claim 4, or the epoxy resin composition molded body according to claim 5.
PCT/JP2016/086628 2015-12-11 2016-12-08 Epoxy resin composition, prepreg, epoxy resin composition molded body, and cured product thereof WO2017099194A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017555142A JPWO2017099194A1 (en) 2015-12-11 2016-12-08 Epoxy resin composition, prepreg, molded epoxy resin composition and cured product thereof
CN201680071262.4A CN108291009A (en) 2015-12-11 2016-12-08 Epoxy resin component, prepreg, epoxy resin component formed body and its hardening thing
KR1020187009714A KR20180092934A (en) 2015-12-11 2016-12-08 Epoxy resin composition, prepreg, epoxy resin composition molded article and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015242469 2015-12-11
JP2015-242469 2015-12-11

Publications (1)

Publication Number Publication Date
WO2017099194A1 true WO2017099194A1 (en) 2017-06-15

Family

ID=59014235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086628 WO2017099194A1 (en) 2015-12-11 2016-12-08 Epoxy resin composition, prepreg, epoxy resin composition molded body, and cured product thereof

Country Status (5)

Country Link
JP (1) JPWO2017099194A1 (en)
KR (1) KR20180092934A (en)
CN (1) CN108291009A (en)
TW (1) TW201731949A (en)
WO (1) WO2017099194A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021054967A (en) * 2019-09-30 2021-04-08 積水化学工業株式会社 Resin film and multilayer printed board

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3719062A4 (en) * 2017-12-01 2020-12-23 Teijin Limited Prepreg, method for producing same, and method for producing fiber-reinforced composite material
US20220411679A1 (en) * 2019-11-21 2022-12-29 Swimc Llc Two-part epoxy compositions for adherent coatings of storage articles
CN117691199B (en) * 2024-01-31 2024-05-10 帕瓦(长沙)新能源科技有限公司 Glass fiber-based composite material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232429A (en) * 1986-04-03 1987-10-12 Nippon Kayaku Co Ltd Curing agent composition
JPH02222413A (en) * 1989-02-23 1990-09-05 Three Bond Co Ltd Curing agent composition for epoxy resin and curing of epoxy resin using the composition
JP2008208201A (en) * 2007-02-26 2008-09-11 Nippon Kayaku Co Ltd Epoxy resin composition, cured material of the same and fiber-reinforced composite material
WO2011068092A1 (en) * 2009-12-01 2011-06-09 ナガセケムテックス株式会社 Epoxy resin composition
WO2015152007A1 (en) * 2014-04-02 2015-10-08 日本化薬株式会社 Aromatic amine resin, maleimide resin, and curable resin composition and cured product thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736432B2 (en) 2005-01-07 2011-07-27 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
WO2006059542A1 (en) * 2004-11-30 2006-06-08 Sumitomo Bakelite Co., Ltd. Epoxy resin composition and semiconductor devices
JP2007031476A (en) 2005-07-22 2007-02-08 Dainippon Ink & Chem Inc Epoxy resin composition for molding material, molded and cured product thereof, and method for producing the molded and cured product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232429A (en) * 1986-04-03 1987-10-12 Nippon Kayaku Co Ltd Curing agent composition
JPH02222413A (en) * 1989-02-23 1990-09-05 Three Bond Co Ltd Curing agent composition for epoxy resin and curing of epoxy resin using the composition
JP2008208201A (en) * 2007-02-26 2008-09-11 Nippon Kayaku Co Ltd Epoxy resin composition, cured material of the same and fiber-reinforced composite material
WO2011068092A1 (en) * 2009-12-01 2011-06-09 ナガセケムテックス株式会社 Epoxy resin composition
WO2015152007A1 (en) * 2014-04-02 2015-10-08 日本化薬株式会社 Aromatic amine resin, maleimide resin, and curable resin composition and cured product thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021054967A (en) * 2019-09-30 2021-04-08 積水化学工業株式会社 Resin film and multilayer printed board
JP7027382B2 (en) 2019-09-30 2022-03-01 積水化学工業株式会社 Resin film and multi-layer printed wiring board
JP2022069462A (en) * 2019-09-30 2022-05-11 積水化学工業株式会社 Resin film and multilayer printed board

Also Published As

Publication number Publication date
CN108291009A (en) 2018-07-17
JPWO2017099194A1 (en) 2018-09-27
KR20180092934A (en) 2018-08-20
TW201731949A (en) 2017-09-16

Similar Documents

Publication Publication Date Title
TWI638850B (en) Epoxy resin mixture, epoxy resin composition, cured product and semiconductor device
JP2018009177A (en) Epoxy resin, epoxy resin composition and cured product
TWI598371B (en) Phosphorus-containing epoxy resin and the epoxy resin as an essential component of the composition, hardened material
WO2017099194A1 (en) Epoxy resin composition, prepreg, epoxy resin composition molded body, and cured product thereof
JP6515255B1 (en) Curable resin composition, varnish, prepreg, cured product, and laminate or copper-clad laminate
WO2017170844A1 (en) Thermosetting resin composition, prepreg and cured product thereof
TWI618744B (en) Epoxy resin mixture, epoxy resin composition, hardened material, and semiconductor device
JP2017071706A (en) Epoxy resin composition, curable resin composition and cured product thereof
JP5366263B2 (en) Phenol aralkyl resin, epoxy resin composition and cured product thereof
TWI522385B (en) An epoxy resin, an epoxy resin composition, and a cured product thereof
KR20190137106A (en) Maleimide resin composition, prepreg and cured product thereof
JP5752574B2 (en) Phenol novolac resin and epoxy resin composition using the same
JP6302280B2 (en) Epoxy resin, curable resin composition and cured product
KR20180062984A (en) Substituted allyl ether resins, methallyl ether resins, epoxy resins, epoxy resin compositions, and cured products thereof
TWI592408B (en) Phenol resin, epoxy resin composition containing the phenol resin, and hardened product thereof
WO2022107678A1 (en) Epoxy resin, curable resin composition, and cured object therefrom
WO2015060307A1 (en) Phenolic resin, epoxy resin, epoxy resin composition, prepreg, and cured product thereof
WO2017099193A1 (en) Epoxy resin composition, epoxy resin composition compact, cured article, and semiconductor device
JP2018109191A (en) Epoxy resin, curable resin composition, and cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555142

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187009714

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16873087

Country of ref document: EP

Kind code of ref document: A1