WO2017098615A1 - Communication system, control device, terminal, radio station, and control method - Google Patents

Communication system, control device, terminal, radio station, and control method Download PDF

Info

Publication number
WO2017098615A1
WO2017098615A1 PCT/JP2015/084579 JP2015084579W WO2017098615A1 WO 2017098615 A1 WO2017098615 A1 WO 2017098615A1 JP 2015084579 W JP2015084579 W JP 2015084579W WO 2017098615 A1 WO2017098615 A1 WO 2017098615A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
station
wireless
radio
state
Prior art date
Application number
PCT/JP2015/084579
Other languages
French (fr)
Japanese (ja)
Inventor
良太 篠島
武 功刀
大出 高義
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2015/084579 priority Critical patent/WO2017098615A1/en
Priority to JP2017554722A priority patent/JP6551540B2/en
Publication of WO2017098615A1 publication Critical patent/WO2017098615A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to a communication system, a control device, a terminal, a radio station, and a control method.
  • the radio channel control information for controlling the radio channel of the terminal and the user data are transmitted by different radio stations, the radio between the radio station transmitting the radio channel control information and the terminal is transmitted.
  • the terminal call may be disconnected.
  • the present invention provides a communication system, a control device, a terminal, a wireless communication, and a wireless communication system capable of maintaining a terminal call even when wireless communication between the wireless station transmitting the wireless channel control information and the terminal is interrupted.
  • the object is to provide a station and a control method.
  • a communication system, a control device, a terminal, a radio station, and a control method for switching between a second state in which the second radio station wirelessly transmits to the terminal is proposed.
  • FIG. 1 is a diagram illustrating an example of C / U separation in the communication system according to the embodiment.
  • FIG. 2 is a diagram illustrating an example of C-plane redundant transmission in the communication system according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of C-plane bypass transmission in the communication system according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of a protocol stack when redundant transmission is performed in the communication system according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of a protocol stack when performing bypass transmission in the communication system according to the embodiment.
  • FIG. 6 is a diagram illustrating an example of a terminal according to the embodiment.
  • FIG. 7 is a diagram illustrating an example of a hardware configuration of the terminal according to the embodiment.
  • FIG. 8 is a diagram of an example of the base station according to the embodiment.
  • FIG. 9 is a diagram illustrating an example of a hardware configuration of the base station according to the embodiment.
  • FIG. 10 is a sequence diagram illustrating an example of C / U separation processing by the communication system according to the embodiment.
  • FIG. 11 is a sequence diagram illustrating an example of redundant transmission processing after C / U separation by the communication system according to the embodiment.
  • FIG. 12 is a sequence diagram illustrating an example of detour transmission processing at the base station opportunity after C / U separation by the communication system according to the embodiment.
  • FIG. 13 is a sequence diagram illustrating an example of detour transmission processing at a terminal opportunity after C / U separation by the communication system according to the embodiment.
  • FIG. 14 is a flowchart illustrating an example of processing by the base station in the C / U separation state according to the embodiment.
  • FIG. 15 is a flowchart illustrating an example of processing by the base station in the C / U separation state according to
  • FIG. 1 is a diagram illustrating an example of C / U separation in the communication system according to the embodiment.
  • the communication system 100 includes a terminal 101, a first radio station 110, a second radio station 120, and a control device 140.
  • Each of the first radio station 110 and the second radio station 120 is a communication device that can transmit and receive radio signals to and from the terminal 101.
  • each of the first radio station 110 and the second radio station 120 includes a base station such as a macro base station, a pico base station, a femto base station, or a nano base station, or an antenna protruding from the base station (for example, RRH described later) And so on.
  • a base station such as a macro base station, a pico base station, a femto base station, or a nano base station, or an antenna protruding from the base station (for example, RRH described later) And so on.
  • a base station such as a macro base station, a pico base station, a femto base station, or a nano base station, or an antenna protruding from the base station (for example, RRH described later) And so on.
  • the first radio station 110 is a macro base station that forms the macro cell
  • the small cell 121 is a cell narrower than the macro cell 111 and is included in the macro cell 111.
  • the first radio station 110 and the second radio station 120 have an umbrella cell configuration in which the macro cell 111 and the small cell 121 are hierarchized.
  • the umbrella cell configuration is also called a hierarchical cell configuration.
  • a network in which cells having different sizes such as the macro cell 111 and the small cell 121 are mixed is also called a Het Net (heterogeneous network).
  • the terminal 101 is located in an overlapping portion of the macro cell 111 and the small cell 121, and is in a situation where wireless communication can be performed by either the first wireless station 110 or the second wireless station 120.
  • the first route 131 is a wireless route between the first wireless station 110 and the terminal 101.
  • the second route 132 is a wireless route between the second wireless station 120 and the terminal 101.
  • the third path 133 is a communication path that connects the first radio station 110 and the second radio station 120.
  • the third route 133 can be a wired route, a wireless route, or a combination of a wired route and a wireless route. Further, the third path 133 is not limited to a communication path that physically connects the first radio station 110 and the second radio station 120 directly, but is connected to the first radio station 110 and the second radio station via other communication devices. A logical communication path connecting the radio station 120 may be used.
  • first radio station 110 and the second radio station 120 are base stations as in the example shown in FIG. 1, a communication path via the LTE X2 interface or S1 interface is set on the third path 133. Can be used. Further, when the first radio station 110 and the second radio station 120 are a base station and an antenna, respectively, an interface for connecting the base station and the antenna can be used for the third path 133. As an interface for connecting a base station and an antenna, for example, CPRI (Common Public Radio Interface) or ORI (Open Radio Equipment Interface) can be used.
  • CPRI Common Public Radio Interface
  • ORI Open Radio Equipment Interface
  • the control device 140 controls the C-plane and U-plane transmission paths in the terminal 101.
  • the C-plane is a process of transmitting radio channel control information for setting and maintaining the radio channel of the terminal 101. If the transmission quality of the C-plane radio link control information deteriorates, it becomes difficult to set and maintain the radio link. Deterioration of transmission quality is a transmission error such as failure to receive correctly.
  • the U-plane is a process for transmitting user data to be transmitted through a wireless line set for the terminal 101.
  • the user data may include, for example, user individual data, MBMS (Multimedia Broadcast and Multicast Service) data, control information for wirelessly transmitting these data, and the like.
  • MBMS Multimedia Broadcast and Multicast Service
  • the control device 140 is a device realized in the first radio station 110. That is, in the example shown in FIG. 1, the control device 140 controls the C-plane and U-plane transmission paths in the terminal 101.
  • the configuration is not limited to such a configuration, and the control device 140 may be implemented in the second radio station 120 or the terminal 101, for example, or may be a communication different from the first radio station 110, the second radio station 120, and the terminal 101. It may be realized by a device.
  • the terminal 101 receives both the C-plane radio channel control information and the U-plane user data from the first radio station 110 (first route). 131).
  • the first wireless station 110 switches to the C / U separation state when the terminal 101 satisfies a predetermined C / U separation condition.
  • the C-plane radio channel control information of the terminal 101 is wirelessly transmitted to the terminal 101 by the first radio station 110 (first path 131).
  • the user data on the U-plane of the terminal 101 passes from the first wireless station 110 through the second wireless station 120, that is, through the third route 133 and the second route 132. 101 is wirelessly transmitted.
  • the predetermined C / U separation condition includes, for example, the wireless quality information of the second route 132, the congestion status of the first wireless station 110, the service type, the contract information with the user of the terminal 101, the location information of the terminal 101, the past Conditions regarding at least one of the terminal-specific information can be used.
  • the wireless quality information of the second path 132 is information indicating the communication quality of the second path 132 measured by the terminal 101.
  • RSRP is an abbreviation for Reference Signal Received Power.
  • RSCP is an abbreviation for Reference Signal Code Power.
  • BLER is an abbreviation for BLOCK Error Ratio.
  • the predetermined C / U separation condition can include, for example, a condition that the communication quality indicated by the wireless quality information is equal to or higher than the predetermined communication quality.
  • the congestion status of the first radio station 110 is, for example, the amount of hardware used in the first radio station 110, the number of users connected to the first radio station 110, the overall throughput in the first radio station 110, and the like.
  • the predetermined C / U separation condition can include, for example, a condition that the degree of congestion of the first radio station 110 is a predetermined degree or more.
  • the service type is a service type of communication performed by the terminal 101 via the first wireless station 110.
  • Examples of service types include mail, voice call, streaming, and emergency call.
  • the predetermined C / U separation condition can include, for example, a condition that the service type of the first radio station 110 is a predetermined service type (for example, streaming that requires a lot of throughput).
  • the contract information with the user of the terminal 101 is information indicating the content of the contract between the user of the terminal 101 and the operator of the communication system 100.
  • the contract information with the user of the terminal 101 includes, for example, information indicating whether the terminal 101 is a general terminal or a priority terminal capable of communication with priority over the general terminal.
  • the predetermined C / U separation condition can include, for example, a condition that the contract information with the user of the terminal 101 is the predetermined contract information.
  • the predetermined contract information can be information indicating that the terminal 101 is a general terminal.
  • the predetermined contract information may be information indicating that the terminal 101 is a priority terminal.
  • the user data of the priority terminal can be transmitted by the second radio station 120 with higher throughput.
  • the position information of the terminal 101 is information indicating the position of the terminal 101 measured by, for example, GPS (Global Positioning System: Global Positioning System).
  • GPS Global Positioning System: Global Positioning System
  • the position of the terminal 101 indicated by the position information of the first radio station 110 is within a range within a certain distance from the second radio station 120 (for example, the small cell 121). Can be included.
  • the past terminal specific information is past information related to the terminal 101, and can be, for example, the number of reconnection requests from the terminal 101 to the first wireless station 110.
  • the predetermined C / U separation condition can include, for example, that the number of reconnection requests from the terminal 101 to the first radio station 110 is not more than a predetermined number.
  • FIG. 2 is a diagram illustrating an example of C-plane redundant transmission in the communication system according to the embodiment.
  • the same parts as those shown in FIG. 1 When the predetermined condition is satisfied in the C / U separation state (first state) shown in FIG. 1, the communication system 100 transmits the C-plane radio line control information via the second path 132. Transition to a state (second state) in which control is performed.
  • the first radio station 110 transmits the C-plane radio line control information to the terminal 101 via the first path 131, and also performs the same radio line control to the terminal 101 via the second path 132. Redundant transmission in which information is transmitted is performed. In the redundant transmission, for example, the first radio station 110 transmits radio channel control information to the second radio station 120 via the third path 133, so that the second radio station 120 transmits to the terminal 101 via the second path 132. Radio transmission control information is transmitted wirelessly.
  • the predetermined condition for performing redundant transmission in the C / U separation state is, for example, that the quality of wireless communication (communication quality of the first path 131) between the first wireless station 110 and the terminal 101 does not satisfy the predetermined quality. It can be the case.
  • the quality of wireless communication between the first wireless station 110 and the terminal 101 can be determined based on, for example, a wireless signal received from the terminal 101 by the first wireless station 110.
  • the first radio station 110 performs redundant transmission when the first radio station 110 cannot receive the C-plane radio channel control information to be received from the terminal 101 in the C / U separation state shown in FIG. Do.
  • the first radio station 110 is not limited to the case where the first radio station 110 cannot receive the C-plane radio channel control information to be received from the terminal 101, and the terminal 101 does not satisfy the C / U separation condition described above. In such a case, redundant transmission may be performed. Further, the first radio station 110 may perform redundant transmission when, for example, the communication quality of the first path 131 indicated by the radio quality information transmitted from the terminal 101 does not satisfy a predetermined communication quality.
  • redundant transmission is performed as the second state.
  • the first radio station 110 transmits the radio channel control information to the second radio station 120, and transmits to the terminal 101 the same radio channel control information as the radio channel control information transmitted to the second radio station 120.
  • the second wireless station 120 wirelessly transmits the wireless channel control information transmitted from the first wireless station 110 to the terminal 101.
  • the terminal 101 receives radio channel control information transmitted from each of the first radio station 110 and the second radio station 120, and performs decoding based on the received radio channel control information. Thereby, the reception quality of the radio channel control information in the terminal 101 can be improved. For example, the terminal 101 decodes each received radio channel control information, and adopts radio channel control information in which no error is detected among the decoded radio channel control information as a reception result of the radio channel control information. As a result, for example, it is possible for terminal 101 to receive radio channel control information with no error compared to a case where only one of first radio station 110 and second radio station 120 transmits radio channel control information to terminal 101. Sexuality can be increased.
  • FIG. 3 is a diagram illustrating an example of C-plane bypass transmission in the communication system according to the embodiment. 3, the same parts as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • the first wireless station 110 may perform detour transmission illustrated in FIG. 3 when a predetermined condition is satisfied.
  • the predetermined condition for performing detour transmission in the C / U separation state is the same as the predetermined condition for performing redundant transmission in the above-described C / U separation state, for example.
  • the first radio station 110 stops transmitting the C-plane radio link control information to the terminal 101 via the first path 131 and uses the third path 133 and the second path 132 to stop the terminal.
  • the detour transmission for transmitting the C-plane radio line control information to 101 is performed.
  • the first radio station 110 transmits radio channel control information to the second radio station 120 via the third path 133, so that the second radio station 120 transmits the radio channel control information to the terminal 101 via the second path 132.
  • Radio transmission control information is transmitted wirelessly.
  • the first wireless station 110 performs wireless communication between the first wireless station 110 and the terminal 101 in the C / U separation state shown in FIG. Redundant transmission or detour transmission is performed when the quality of the data does not satisfy the predetermined quality.
  • the first radio station 110 may select whether to perform redundant transmission or bypass transmission when performing redundant transmission or bypass transmission. The selection of whether to perform redundant transmission or bypass transmission can be performed based on various types of information such as the congestion status of the first wireless station 110 and the communication service of the terminal 101, for example. For example, when the communication service of the terminal 101 is emergency communication (emergency call), or when the terminal 101 is the priority terminal described above, redundant transmission is performed in order to further stabilize the communication.
  • the first wireless station 110 Control for handing over the terminal 101 to the second radio station 120 may be performed.
  • the control unit that controls the C-plane of the terminal 101 moves from the first radio station 110 to the second radio station 120.
  • the first radio station 110 stops redundant transmission or bypass transmission, For example, control for returning to the C / U separation state shown in FIG. 2 may be performed.
  • bypass transmission is performed as the second state.
  • the first radio station 110 transmits the radio channel control information to the second radio station 120 and does not transmit the radio channel control information to the terminal 101 by radio.
  • the second wireless station 120 wirelessly transmits the wireless channel control information transmitted from the first wireless station 110 to the terminal 101.
  • the terminal 101 receives and decodes the wireless channel control information wirelessly transmitted from the second wireless station 120.
  • the radio resources used are reduced and the utilization efficiency of radio resources is improved. Can be made.
  • control device 140 first radio station 110 controls the downlink C-plane and U-plane transmission paths.
  • the U-plane transmission path may be controlled.
  • control device 140 controls the upstream C-plane transmission path and the U-plane transmission path to be the downstream C-plane transmission path and the U-plane transmission path (in the opposite direction), respectively. To do.
  • the control device 140 sets the uplink C-plane transmission path as a path including the second path 132 and the third path 133.
  • the control device 140 sets the uplink U-plane transmission path as the second path 132 in the redundant transmission shown in FIG.
  • the upstream C-plane transmission path and the U-plane transmission path are not limited to such paths, and are controlled independently from the downstream C-plane transmission path and the U-plane transmission path, for example. Also good.
  • CA Carrier Aggregation
  • PCell Primary Cell
  • SCell Secondary Cell
  • each carrier is comprised by one system band, a system band (or frequency) and a cell may be used synonymously.
  • both PCell and SCell are to transmit terminal-specific data (individual data Dedicated data) to each terminal.
  • Each of the PCell and the SCell constitutes one wireless communication system, and system information that is common to the terminals of the cell and control information for each terminal are transmitted and received between the terminals. is doing.
  • the terminal-specific control information is, for example, control information required for terminal line connection.
  • a terminal that can communicate with a small cell can simultaneously communicate with a macro cell. Therefore, a terminal capable of communicating with a small cell transmits / receives control information such as individual data, common control information, and individual control information between the macro cell and the small cell (that is, the macro cell base station and the small cell base station). Will do.
  • the macro cell transmits / receives a radio signal to / from a terminal that communicates only with the macro cell or a terminal that communicates with the small cell.
  • the macro cell area is larger than the small cell area, the macro cell communicates with a large number of terminals. As a result, the radio resource allocated to a certain terminal is small.
  • control information required for transmission of individual data is, for example, control information (for example, L1 / L2 signaling in LTE) for setting radio resources used for transmission, modulation schemes to be used, and the like.
  • layer 3 radio channel control information (for example, RRC information in LTE) used for system information, channel setting, etc. is transmitted in, for example, a macro cell.
  • the macro cell is generally PCell and the small cell is SCell.
  • the small cell can be a PCell and the macrocell can be an SCell.
  • PCell and SCell wireless line control is performed between a PCell base station and a terminal. That is, the radio network control information is transmitted between the PCell base station and the terminal, and is not transmitted between the SCell base station and the terminal. Also, user data is transmitted between the PCell and SCell base stations and terminals.
  • a function for handling individual data is called a U-plane (User plane)
  • a function for handling control information higher than RRC is called a C-plane (Control plane).
  • the information to be transmitted is divided according to the type (for example, C-plane or U-plane) and transmitted in different cells, which is called C / U separation.
  • C / U separation One of the purposes of C / U separation is to set up an umbrella cell configuration using macro cells and small cells, for example, as shown in FIG. 1, and to install a large number of small cells and transmit user data in the small cells. To increase the capacity of the entire system. Also, the number of layer 3 level handovers can be reduced by transmitting / receiving radio channel control information in a macro cell by C / U separation. Also, due to C / U separation, even if communication between the terminal and the small cell is interrupted due to an external factor, communication between the terminal and the macro cell is continued, so the call will not be disconnected. There are benefits.
  • the cell radius of the macro cell is larger than that of the small cell, a low frequency such as an 800 [MHz] band having a relatively small propagation loss is used.
  • a high frequency such as 3.5 [GHz] band or 6 [GHz] band is used.
  • a small cell since a small cell has a large propagation loss, it can suppress the interference given with respect to another cell, and it is easy to arrange
  • the 6 [GHz] band can have a wider frequency bandwidth than the 800 [MHz] band, high-speed transmission is possible compared to the 800 [MHz] band. For this reason, it is considered that the macro cell uses a relatively low frequency such as 800 [MHz], and the small cell uses a relatively high frequency such as 6 [GHz] band. If the required transmission quality can be satisfied, it is possible to use a high frequency such as the 6 [GHz] band in the macro cell and a low frequency such as the 800 [MHz] band in the small cell.
  • C-plane information is transmitted through a communication path between a terminal and a macro base station
  • U-plane information is transmitted through a communication path between the terminal and a small base station. Is transmitted.
  • the radio channel quality of the communication path between the terminal and the macro base station may be deteriorated due to radio interference from other apparatuses, fading due to movement of the terminal, fluctuation of propagation environment, and the like.
  • the wireless channel of the terminal cannot be maintained, and the wireless channel between the terminal and the macro base station is disconnected (for example, 3GPP radio link flier).
  • the wireless link between the terminal and the small base station cannot be maintained, and the wireless link between the terminal and the small base station is also disconnected.
  • the redundant transmission or bypass transmission shown in FIGS. 2 and 3 is started from the first state of C / U separation shown in FIG. Can be switched to the second state.
  • FIG. 4 is a diagram illustrating an example of a protocol stack when redundant transmission is performed in the communication system according to the embodiment. 4, parts that are the same as the parts shown in FIGS. 1 to 3 are given the same reference numerals, and descriptions thereof will be omitted.
  • FIG. 4 shows a protocol stack for processing radio channel control information (C-plane) and user data (U-plane) when the redundant transmission shown in FIG. 2 is performed in LTE.
  • C-plane radio channel control information
  • U-plane user data
  • the MME 401 shown in FIG. 4 is an MME (Mobility Management Entity) that processes the C-plane of the first radio station 110 in the C / U separation state shown in FIG.
  • An S-GW 402 shown in FIG. 4 is an S-GW (Serving-Gateway) that processes the U-plane of the second radio station 120 in the C / U separation state shown in FIG.
  • the first radio station 110 performs RRC, PDCP, RCP, PDCP, RLC and MAC processes are performed.
  • RRC is an abbreviation for Radio Resource Control.
  • PDCP is an abbreviation for Packet Data Convergence Protocol.
  • RLC is an abbreviation for Radio Link Control.
  • MAC is an abbreviation for Media Access Control.
  • the second radio station 120 performs, for example, each of PDCP, RLC, and MAC as processing of layer 2 or higher for U-plane user data transmitted / received between the S-GW 402 and the terminal 101 via the small cell 121. Processing is in progress.
  • the first radio station 110 transfers, for example, downlink radio channel control information to the PDCP layer of the second radio station 120 via the third path 133 (X2 interface) in the PDCP layer. To do. At this time, the first radio station 110 adds information indicating a C-plane information, a sequence number, and the like to the radio channel control information transferred to the second radio station 120.
  • the second radio station 120 transmits the radio channel control information transferred from the first radio station 110 to the terminal 101 as U-plane information. At this time, the second radio station 120 performs, for example, each process of PDCP, RLC, and MAC as layer 2 or higher processing for the radio channel control information transferred from the first radio station 110.
  • the terminal 101 can receive the C-plane radio channel control information from both the first radio station 110 and the second radio station 120.
  • the information that the terminal 101 receives from the second radio station 120 as U-plane information C-plane radio channel control information and U-plane user data are mixed.
  • the terminal 101 based on the information indicating the C-plane information assigned by the PDCP layer of the first radio station 110, the C-plane radio channel control information and the U-plane user Data can be received separately. Also, the terminal 101 can determine whether the received message is new or has been received based on the sequence number assigned by the PDCP layer of the first wireless station 110.
  • the layer which transfers radio channel control information is not restricted to a PDCP layer, For example, RLC layer or MAC It is good also as a layer.
  • the terminal 101 transmits C-plane uplink radio channel control information to both the first radio station 110 and the second radio station 120.
  • the radio channel control information transmitted from the terminal 101 to the second radio station 120 is determined as C-plane information in the PCPD layer of the second radio station 120, and the first radio is transmitted via the third path 133. It is transferred to the PDCP layer of the station 110 and transmitted to the MME 401.
  • FIG. 5 is a diagram illustrating an example of a protocol stack when performing bypass transmission in the communication system according to the embodiment.
  • FIG. 5 shows a protocol stack of processing of radio channel control information (C-plane) and user data (U-plane) when the detour transmission shown in FIG. 3 is performed in LTE.
  • C-plane radio channel control information
  • U-plane user data
  • the first radio station 110 transfers the C-plane radio channel control information to the PDCP layer of the second radio station 120 via the third path 133 in the PDCP layer, Wireless line control information is not directly transmitted to or received from the terminal 101. For this reason, the first radio station 110 performs RRC and PDCP processes as layer 2 and higher processes for radio channel control information, and does not perform RLC and MAC processes.
  • FIG. 6 is a diagram illustrating an example of a terminal according to the embodiment.
  • the terminal 101 according to the embodiment can be realized by, for example, the terminal 600 shown in FIG.
  • the terminal 600 includes an antenna 601, a wireless transmission / reception unit 610, an L2 / L3 control unit 620, and a terminal operation control unit 630.
  • the antenna 601 receives a signal wirelessly transmitted from another communication device (for example, the first wireless station 110 or the second wireless station 120), and outputs the received signal to the wireless transmission / reception unit 610. Further, the antenna 601 wirelessly transmits the signal output from the wireless transmission / reception unit 610 to another communication device (for example, the first wireless station 110 or the second wireless station 120).
  • the wireless transmission / reception unit 610 transmits / receives a wireless signal via the antenna 601.
  • the wireless transmission / reception unit 610 includes a reception signal IF / processing unit 611 and a transmission signal IF / processing unit 612.
  • the reception signal IF / processing unit 611 performs reception processing on the signal output from the antenna 601.
  • the reception processing includes, for example, amplification, frequency conversion from an RF (Radio Frequency) band to a baseband, conversion from an analog signal to a digital signal, demodulation, decoding, and the like.
  • the reception signal IF / processing unit 611 outputs the signal subjected to the reception process to the L2 / L3 control unit 620.
  • the transmission signal IF / processing unit 612 performs transmission processing on the signal output from the L2 / L3 control unit 620.
  • the transmission process includes, for example, encoding, modulation, conversion from a digital signal to an analog signal, frequency conversion from a baseband to an RF band, amplification, and the like.
  • Transmission signal IF / processing section 612 outputs the signal subjected to the transmission process to antenna 601.
  • the L2 / L3 control unit 620 performs layer 2 (for example, RLC, MAC, PDCP) and layer 3 (for example, RRC) processing on the signal output from the radio transmission / reception unit 610, thereby performing layer 2 and layer 3 in the terminal 600. Perform reception control. Also, the L2 / L3 control unit 620 outputs the signals obtained by the layer 2 and layer 3 processing on the information transmitted by the terminal 600 to the radio transmission / reception unit 610, thereby transmitting the layer 2 and layer 3 in the terminal 600. Take control.
  • layer 2 for example, RLC, MAC, PDCP
  • layer 3 for example, RRC
  • the L2 / L3 control unit 620 includes a C-plane control unit 621 and a U-plane control unit 622.
  • the C-plane control unit 621 transmits / receives C-plane radio line control information in the terminal 600 via the radio transmission / reception unit 610.
  • the U-plane control unit 622 transmits / receives U-plane user data in the terminal 600 via the wireless transmission / reception unit 610.
  • the terminal operation control unit 630 controls the communication operation of the terminal 600 by controlling the L2 / L3 control unit 620.
  • the terminal operation control unit 630 includes a radio channel quality measurement report unit 631, a bypass / redundant transmission determination unit 632, and a handover control unit 633.
  • Radio channel quality measurement report section 631 measures radio quality at terminal 600, and shows radio quality information indicating the measured radio quality at a timing instructed by a base station (for example, first radio station 110) to which terminal 600 is connected. To the connected base station.
  • a base station for example, first radio station 110
  • the radio quality measurement by the radio channel quality measurement report unit 631 can be performed, for example, by acquiring the reception result of the signal by the reception signal IF / processing unit 611 from the L2 / L3 control unit 620.
  • the radio quality measured by the radio channel quality measurement report unit 631 is, for example, RSRP, RSCP, BLER, or the like.
  • the transmission of the wireless quality information by the wireless channel quality measurement report unit 631 can be performed, for example, by instructing the L2 / L3 control unit 620 to transmit the wireless quality information.
  • the detour / redundant transmission determination unit 632 determines whether to perform redundant transmission or detour transmission based on the radio quality information obtained by the radio channel quality measurement report unit 631, for example. Then, the detour / redundant transmission determining unit 632 instructs the L2 / L3 control unit 620 to transmit the determination result to the base station to which the terminal 600 is connected, thereby performing either redundant transmission or detour transmission. Control what to do.
  • the terminal 600 does not have to be provided with the bypass / redundant transmission determination unit 632.
  • the handover control unit 633 switches the connection destination cell of the terminal 600 based on an instruction from a base station (for example, the first radio station 110) to which the terminal 600 is connected.
  • a communication unit capable of performing wireless communication with each of the first wireless station 110 and the second wireless station 120 can be realized by the antenna 601 and the wireless transmission / reception unit 610, for example.
  • the control unit that controls the communication unit can be realized by, for example, the L2 / L3 control unit 620 and the terminal operation control unit 630.
  • the determination unit that determines switching between the first state and the second state can be realized by the terminal operation control unit 630, for example.
  • the control unit that switches between the first state and the second state based on the determination result by the determination unit can be realized by the L2 / L3 control unit 620, for example.
  • FIG. 7 is a diagram illustrating an example of a hardware configuration of the terminal according to the embodiment.
  • the terminal 600 shown in FIG. 6 can be realized by, for example, the communication device 700 shown in FIG.
  • the communication device 700 includes a CPU 701, a memory 702, a user interface 703, and a wireless communication interface 704.
  • the CPU 701, the memory 702, the user interface 703, and the wireless communication interface 704 are connected by a bus 709.
  • the CPU 701 Central Processing Unit controls the entire communication device 700.
  • the memory 702 includes, for example, a main memory and an auxiliary memory.
  • the main memory is, for example, a RAM (Random Access Memory).
  • the main memory is used as a work area for the CPU 701.
  • the auxiliary memory is a non-volatile memory such as a magnetic disk or a flash memory.
  • Various programs for operating the communication device 700 are stored in the auxiliary memory. The program stored in the auxiliary memory is loaded into the main memory and executed by the CPU 701.
  • the user interface 703 includes, for example, an input device that receives an operation input from the user, an output device that outputs information to the user, and the like.
  • the input device can be realized by, for example, a key (for example, a keyboard) or a remote controller.
  • the output device can be realized by, for example, a display or a speaker. Further, an input device and an output device may be realized by a touch panel or the like.
  • the user interface 703 is controlled by the CPU 701.
  • the wireless communication interface 704 is a communication interface that communicates with the outside of the communication device 700 (for example, the first wireless station 110 and the second wireless station 120) wirelessly.
  • the wireless communication interface 704 is controlled by the CPU 701.
  • the antenna 601 and the wireless transmission / reception unit 610 illustrated in FIG. 6 can be realized by the wireless communication interface 704, for example.
  • the L2 / L3 control unit 620 and the terminal operation control unit 630 illustrated in FIG. 6 can be realized by the CPU 701, for example.
  • FIG. 8 is a diagram of an example of the base station according to the embodiment.
  • Each of first radio station 110 and second radio station 120 according to the embodiment can be realized by base station 800 shown in FIG. 8, for example.
  • the base station 800 includes an antenna 801, a radio transmission / reception unit 810, an L2 / L3 control unit 820, an L2 / L3 control unit 830, a transmission path interface unit 840, and a base station operation control unit 850.
  • the antenna 801 receives a signal wirelessly transmitted from another communication device (for example, the terminal 101 or another terminal), and outputs the received signal to the wireless transmission / reception unit 810. Further, the antenna 801 wirelessly transmits the signal output from the wireless transmission / reception unit 810 to another communication device (for example, the terminal 101 or another terminal).
  • the wireless transmission / reception unit 810 transmits / receives a wireless signal via the antenna 801.
  • the wireless transmission / reception unit 810 includes a reception signal IF / processing unit 811 and a transmission signal IF / processing unit 812.
  • the reception signal IF / processing unit 811 performs reception processing on the signal output from the antenna 801.
  • the reception process includes, for example, amplification, frequency conversion from the RF band to the baseband, conversion from an analog signal to a digital signal, demodulation, decoding, and the like.
  • the reception signal IF / processing unit 811 outputs the signal subjected to the reception process to the L2 / L3 control unit 820.
  • the transmission signal IF / processing unit 812 performs transmission processing on the signal output from the L2 / L3 control unit 820.
  • the transmission process includes, for example, encoding, modulation, conversion from a digital signal to an analog signal, frequency conversion from a baseband to an RF band, amplification, and the like.
  • Transmission signal IF / processing section 812 outputs the signal subjected to the transmission process to antenna 801.
  • the L2 / L3 control unit 820 performs layer 2 and layer 3 processing on the signal output from the radio transmission / reception unit 810, thereby performing layer 2 and layer 3 reception control in communication between the base station 800 and the terminal 101. I do.
  • the L2 / L3 control unit 820 outputs a signal obtained by layer 2 and layer 3 processing on information transmitted from the base station 800 to the radio transmission / reception unit 810, thereby allowing the base station 800 and the terminal 101 to communicate with each other. Transmission control of layer 2 and layer 3 in communication is performed.
  • the L2 / L3 control unit 820 includes a C-plane control unit 821 and a U-plane control unit 822.
  • the C-plane control unit 821 transmits / receives C-plane radio line control information between the base station 800 and the terminal 101 via the radio transmission / reception unit 810.
  • the U-plane control unit 822 transmits / receives U-plane user data between the base station 800 and the terminal 101 via the radio transmission / reception unit 810.
  • C-plane control unit 821 and U-plane control unit 822 are set in L2 / L3 control unit 820 for each terminal (for example, terminal 101) for which wireless communication is set with base station 800, for example.
  • the L2 / L3 control unit 830 performs layer 2 and layer 3 processing on the signal output from the radio transmission / reception unit 810, thereby performing layer 2 and layer 3 reception control in communication between the base station 800 and another device.
  • Other devices include, for example, other base stations and higher-level devices of the base station 800 such as the MME 401 and the S-GW 402.
  • the L2 / L3 control unit 830 outputs a signal to the wireless transmission / reception unit 810 in the layer 2 and layer 3 processing for the information transmitted by the base station 800, so that the layer in the communication between the base station 800 and another device is performed. 2 and layer 3 transmission control.
  • the L2 / L3 control unit 830 includes a C-plane control unit 831 and a U-plane control unit 832.
  • the C-plane control unit 831 transmits / receives C-plane radio line control information to / from other apparatuses in the base station 800 via the transmission path interface unit 840.
  • the U-plane control unit 832 transmits / receives U-plane user data to / from other devices in the base station 800 via the transmission path interface unit 840.
  • the transmission path interface unit 840 is an interface that communicates with other devices such as other base stations and higher-order devices of the base station 800.
  • the third path 133 (X2 interface) shown in FIGS. 1 to 3 is realized by the transmission path interface unit 840, for example.
  • the third path 133 is realized by the respective transmission path interface units 840 of the first radio station 110 and the second radio station 120. can do.
  • the base station operation control unit 850 controls the communication operation of the base station 800 with the terminal 101 by controlling the L2 / L3 control unit 820.
  • the base station operation control unit 850 controls the communication operation of the base station 800 with another device such as another base station or a higher-level device of the base station 800 by controlling the L2 / L3 control unit 830.
  • the base station operation control unit 850 includes a radio channel quality measurement control unit 851, a detour / redundant transmission determination unit 852, a handover control unit 853, and a C / U separation control unit 854.
  • the radio channel quality measurement control unit 851 instructs the terminal 101 to measure radio quality.
  • the measurement instruction by the wireless channel quality measurement control unit 851 can be performed by, for example, instructing the L2 / L3 control unit 820 to transmit a control signal to the terminal 101.
  • the detour / redundant transmission determination unit 852 determines whether to perform redundant transmission or detour transmission based on the radio quality information transmitted from the terminal 101 according to an instruction from the radio channel quality measurement control unit 851, for example. Then, the bypass / redundant transmission determination unit 852 performs control for performing redundant transmission or bypass transmission based on the determination result. Control for performing redundant transmission or detour transmission by the detour / redundant transmission determination unit 852 can be performed by instructing transmission of a control signal to another base station or the terminal 101, for example.
  • the handover control unit 853 instructs the terminal 101 to switch the connection destination cell.
  • the switching instruction by the handover control unit 853 can be performed by, for example, instructing the L2 / L3 control unit 820 to transmit a control signal to the terminal 101.
  • the C / U separation control unit 854 determines whether or not to perform the above-described C / U separation based on the wireless quality information transmitted from the terminal 101 according to an instruction from the wireless channel quality measurement control unit 851, for example. Then, the C / U separation control unit 854 performs control for performing C / U separation based on the determination result. Also, the C / U separation control unit 854 determines whether or not to return from the redundant transmission or bypass transmission state to the C / U separation state when redundant transmission or bypass transmission is performed by the bypass / redundant transmission determination unit 852. If it is determined to return, C / U separation control is performed. Such control by the C / U separation control unit 854 can be performed by instructing transmission of a control signal to another base station or the terminal 101, for example.
  • the base station operation control unit 850 includes other processing units such as a quality information history control unit that stores and manages locations where quality degradation or disconnection has occurred in the path of the wireless channel control information. Also good.
  • the first communication unit capable of wireless communication with the terminal 101 can be realized by the antenna 801 and the wireless transmission / reception unit 810, for example.
  • the second communication unit capable of communicating with second radio station 120 can be realized by, for example, transmission path interface unit 840.
  • a control unit that switches between the first state and the second state can be realized by, for example, the L2 / L3 control unit 820, the L2 / L3 control unit 830, and the base station operation control unit 850.
  • the determination unit that determines switching between the first state and the second state can be realized by the base station operation control unit 850, for example.
  • the control units that switch between the first state and the second state based on the determination result by the determination unit are, for example, the L2 / L3 control unit 820 and the L2 / L3 control unit 830 can be realized.
  • FIG. 9 is a diagram illustrating an example of a hardware configuration of the base station according to the embodiment.
  • the base station 800 shown in FIG. 8 can be realized by the communication apparatus 900 shown in FIG. 9, for example.
  • the communication device 900 includes a CPU 901, a memory 902, a wireless communication interface 903, and a wired communication interface 904.
  • the CPU 901, the memory 902, the wireless communication interface 903 and the wired communication interface 904 are connected by a bus 909.
  • the CPU 901 governs overall control of the communication device 900.
  • the memory 902 includes, for example, a main memory and an auxiliary memory.
  • the main memory is, for example, a RAM.
  • the main memory is used as a work area for the CPU 901.
  • the auxiliary memory is, for example, a nonvolatile memory such as a magnetic disk, an optical disk, or a flash memory.
  • Various programs for operating the communication device 900 are stored in the auxiliary memory. The program stored in the auxiliary memory is loaded into the main memory and executed by the CPU 901.
  • the wireless communication interface 903 is a communication interface that performs communication with the outside of the communication device 900 (for example, the terminal 101) wirelessly.
  • the wireless communication interface 903 is controlled by the CPU 901.
  • the wired communication interface 904 is a communication interface that performs communication with the outside of the communication device 900 (for example, the MME 401, the S-GW 402, the second wireless station 120) by wire.
  • the wired communication interface 904 is controlled by the CPU 901.
  • the third path 133 (X2 interface) shown in FIGS. 1 to 3 is included in the wired communication interface 904, for example.
  • the antenna 801 and the wireless transmission / reception unit 810 shown in FIG. 8 can be realized by the wireless communication interface 903, for example.
  • the L2 / L3 control units 820 and 830 and the base station operation control unit 850 illustrated in FIG. 8 can be realized by the CPU 901, for example.
  • the transmission path interface unit 840 shown in FIG. 8 can be realized by the wired communication interface 904, for example.
  • FIG. 10 is a sequence diagram illustrating an example of C / U separation processing by the communication system according to the embodiment.
  • the steps shown in FIG. 10 are executed as the C / U separation process.
  • the macro cell 111 of the first radio station 110 and the small cell 121 of the second radio station 120 have an umbrella cell configuration, and the terminal 101 can be connected to either the macro cell 111 or the small cell 121.
  • the terminal 101 can be connected to either the macro cell 111 or the small cell 121.
  • the C-plane control unit 1011 shown in FIG. 10 is a processing unit that controls the C-plane in the terminal 101, and is, for example, the C-plane control unit 621 shown in FIG.
  • the U-plane control unit 1021 is a processing unit that controls the U-plane in the terminal 101, and is, for example, the U-plane control unit 622 shown in FIG.
  • the C-plane control unit 1012 is a processing unit that controls the C-plane with the C-plane control unit 1011 of the terminal 101, and is set in, for example, the C-plane control unit 821 shown in FIG.
  • the U-plane control unit 1022 is a processing unit that controls the U-plane with the U-plane control unit 1021 of the terminal 101, and is set in the U-plane control unit 822 shown in FIG. 8, for example.
  • the C-plane control unit 1012 and the U-plane control unit 1022 are set to the first radio station 110 in the initial state. Then, C-plane transmission is performed between the C-plane control unit 1011 of the terminal 101 and the C-plane control unit 1012 of the first radio station 110 (step S1001). Also, U-plane transmission is performed between the U-plane control unit 1021 of the terminal 101 and the U-plane control unit 1022 of the first radio station 110 (step S1002). That is, in the initial state, both the C-plane and the U-plane of the terminal 101 are in a state before C / U separation transmitted by the first radio station 110.
  • the C-plane control unit 1011 of the terminal 101 transmits the quality information of the subordinate cell (small cell 121) of the second radio station 120 to the C-plane control unit 1012 of the first radio station 110 (step S1003).
  • the quality information For example, RSRP, RSCP, BLER, etc. can be used as the quality information.
  • the terminal 101 performs radio quality measurement of each cell around the terminal 101 in order to perform mobility control and CA.
  • the transmission of quality information in step S1003 is, for example, notification of radio quality information of subordinate cells of the first radio station 110 and the second radio station 120 from the terminal 101 to the first radio station 110.
  • the radio quality information is, for example, MEASUREMENT REPORT of the RRC protocol of the LTE system.
  • the transmission of the quality information in step S1003 is not limited to this.
  • the transmission of quality information accompanying a reconnection request from the terminal 101 to the first radio station 110 or a notification of the position information measurement result may be used.
  • the C-plane control unit 1012 of the first radio station 110 determines that C / U separation can be performed from the quality information of the subordinate cell of the second radio station 120 transmitted in step S1003 (step S1004). ).
  • the subordinate of the second radio station 120 is used to determine whether or not C / U separation is possible.
  • Various types of information can be used without being limited to cell quality information. For example, in order to determine whether or not C / U separation is possible, as described above, the congestion state of the first wireless station 110, the service type, the contract information with the user, the terminal position information, the past terminal specific information, and the like are used. Also good.
  • the C-plane control unit 1012 of the first radio station 110 transmits a U-plane connection destination switching instruction to the second radio station 120 via the third path 133 (step S1005). Also, the C-plane control unit 1012 of the first radio station 110 transmits a U-plane connection destination switching instruction to the C-plane control unit 1011 of the terminal 101 (step S1006).
  • the U-plane connection destination switching instruction is a control signal instructing to switch the U-plane connection destination of the terminal 101 from the first radio station 110 to the second radio station 120.
  • the U-plane connection destination switching instruction may include information indicating the timing of switching the U-plane connection destination of the terminal 101 from the first radio station 110 to the second radio station 120.
  • the second wireless station 120 sets up a wireless line with the terminal 101 based on the U-plane connection destination switching instruction transmitted in step S1005 (step S1007).
  • the U-plane control unit 1022 that controls the U-plane with the terminal 101 is transferred from the first radio station 110 to the second radio station 120.
  • the C-plane control unit 1011 of the terminal 101 switches the U-plane connection destination to the second radio station 120 based on the U-plane connection destination switching instruction transmitted in step S1006. Then, the C-plane control unit 1011 transmits a U-plane connection destination switching completion notification to the second radio station 120 (step S1008).
  • the U-plane connection destination switching completion notification is information indicating that the switching of the U-plane connection destination has been completed.
  • U-plane transmission is started between the U-plane control unit 1021 of the terminal 101 and the U-plane control unit 1022 of the second radio station 120 (step S1009).
  • C-plane transmission is performed between the C-plane control unit 1011 of the terminal 101 and the C-plane control unit 1012 of the first radio station 110.
  • the C / U separation state (first state) shown in FIG. 1 is obtained.
  • FIG. 11 is a sequence diagram illustrating an example of redundant transmission processing after C / U separation by the communication system according to the embodiment.
  • the steps shown in FIG. 11 are executed as the redundant transmission processing after C / U separation shown in FIG. 10, for example.
  • the terminal 101 performs radio communication with the first radio station 110 for the C-plane and the second radio station 120 for the U-plane, for example, by C / U separation shown in FIG. Assume that wireless communication is performed.
  • the C-plane control unit 1012 of the first radio station 110 transmits the radio channel control information # 1 to the C-plane control unit 1011 of the terminal 101 by C-plane transmission (step S1101).
  • the C-plane control unit 1012 of the first radio station 110 sets a timer that times the time for waiting for a response message from the terminal 101 for the radio channel control information # 1 transmitted in step S1101 (step S1102). .
  • U-plane transmission is performed between the U-plane control unit 1021 of the terminal 101 and the U-plane control unit 1022 of the second radio station 120. (Step S1103).
  • step S1102 the timer set in step S1102 has expired in a state where there is no response from the terminal 101 to the first radio station 110 for the radio channel control information # 1 transmitted in step S1101 (step S1104).
  • the C-plane control unit 1012 of the first radio station 110 determines that the response message for the radio channel control information # 1 or the radio channel control information # 1 is lost (lost), and starts redundant transmission. I do.
  • the C-plane control unit 1012 of the first radio station 110 transmits a redundant transmission switching instruction to the C-plane control unit 1011 of the terminal 101 (step S1105).
  • the redundant transmission switching instruction is, for example, a control signal instructing switching from the C / U separation state (first state) shown in FIG. 1 to the redundant transmission state (second state) shown in FIG. is there.
  • the C-plane control unit 1012 of the first radio station 110 transmits a redundant transmission switching instruction to the second radio station 120 via the third path 133 (step S1106).
  • C-plane radio line control information is transmitted by both the first route 131 and the route including the third route 133 and the second route 132 (see, for example, FIG. 2).
  • C-plane control section 1012 of first radio station 110 directly transmits C-plane radio link control information # 2 to terminal 101 to C-plane control section 1011 of terminal 101 by C-plane transmission.
  • the C-plane control unit 1012 of the first radio station 110 transmits the same radio channel control information # 2 as the radio channel control information # 2 transmitted in step S1107 to the second radio station 120 via the third path 133. Transmit (step S1108).
  • the U-plane control unit 1022 of the second radio station 120 transmits the radio channel control information # 2 transmitted in step S1108 to the U-plane control unit 1021 of the terminal 101 as U-plane information ( Step S1109).
  • the U-plane control unit 1021 of the terminal 101 transfers the wireless line control information # 2 transmitted in step S1109 to the C-plane control unit 1011 of the terminal 101 as C-plane information (step S1110). .
  • the C-plane control unit 1011 of the terminal 101 can receive the radio line control information # 2 by both steps S1107 and S1110.
  • the terminal 101 can decode (reproduce) the radio channel control information # 2 with high quality based on each reception result of the radio channel control information # 2. For example, the terminal 101 discards the decoding result in which the error is detected among the decoding results based on the reception results of the radio channel control information # 2, and adopts the decoding result in which no error is detected, thereby improving the reception quality. Can be improved.
  • step S1111 The state where the communication quality between the terminal 101 and the first radio station 110 is not improved is, for example, that a response message from the terminal 101 to the radio channel control information transmitted from the first radio station 110 to the terminal 101 in redundant transmission is defined The reception is not possible within the time.
  • the first radio station 110 performs control to transfer the C-plane control unit 1012 to the second radio station 120.
  • the first radio station 110 transmits a C-plane control unit transfer instruction that instructs to transfer the C-plane control unit 1012 from the first radio station 110 to the second radio station 120 via the third path 133. Transmit to the second radio station 120 (step S1112). As a result, the C-plane control unit 1012 is transferred from the first radio station 110 to the second radio station 120.
  • the U-plane control unit 1022 of the second radio station 120 uses the C-plane control unit switching instruction to instruct switching of the communication destination C-plane control unit as the U-plane information as the U-plane of the terminal 101.
  • the data is transmitted to the plane control unit 1021 (step S1113).
  • the U-plane control unit 1021 of the terminal 101 transfers the C-plane control unit switching instruction transmitted in step S1113 as C-plane information to the C-plane control unit 1011 of the terminal 101 (step S1114). ).
  • the C-plane control unit 1011 of the terminal 101 switches the communication destination of the C-plane to the second radio station 120 and transmits a C-plane control unit switching completion notification to the second radio station 120 (step S1115).
  • the second radio station 120 transmits a C-plane control unit switching completion notification to the first radio station 110 via the third path 133 (step S1116).
  • the first wireless station 110 releases the wireless line set up with the terminal 101 (step S1117).
  • terminal 101 enters a state (third state) in which both C-plane and U-plane are transmitted by second radio station 120.
  • Radio channel control information such as radio channel control information # 1 and # 2 is, for example, LTE system RRC CONNECTION SETUP, RRC CONNECTION RECONFIGURATION, or the like.
  • the response message to the radio network control information is, for example, RRC CONNECTION SETUP COMPLETE or RRC CONNECTION RECONFIGURATION COMPLETE of the LTE system.
  • the wireless channel control information and the response message to the wireless channel control information are not limited to these, and can be various types of wireless channel control information.
  • FIG. 12 is a sequence diagram illustrating an example of detour transmission processing at the base station opportunity after C / U separation by the communication system according to the embodiment.
  • each step shown in FIG. 12 may be executed as a bypass transmission process after C / U separation shown in FIG.
  • terminal 101 performs radio communication with first radio station 110 for the C-plane and with second radio station 120 for the U-plane. Assume that wireless communication is performed.
  • Steps S1201 to S1204 shown in FIG. 12 are the same as steps S1101 to S1104 shown in FIG. In the example shown in FIG. 12, when the C-plane control unit 1012 of the first radio station 110 determines that the radio channel control information # 1 or the response message is lost in step S1204, it performs control to start bypass transmission.
  • the C-plane control unit 1012 of the first radio station 110 transmits a bypass transmission switching instruction to the C-plane control unit 1011 of the terminal 101 (step S1205).
  • the bypass transmission switching instruction is, for example, a control signal instructing switching from the C / U separation state (first state) shown in FIG. 1 to the bypass transmission state (second state) shown in FIG. 3, for example. is there.
  • the C-plane control unit 1012 of the first wireless station 110 transmits a bypass transmission switching instruction to the second wireless station 120 via the third path 133 (step S1206).
  • Subsequent C-plane radio line control information is transmitted via a route including the third route 133 and the second route 132, and is not transmitted via the first route 131 (see, for example, FIG. 3).
  • the C-plane control unit 1012 of the first radio station 110 transmits the C-plane radio channel control information # 2 for the terminal 101 to the second radio station 120 via the third path 133 (step S1207).
  • the U-plane control unit 1022 of the second radio station 120 transmits the radio channel control information # 2 transmitted in step S1207 to the U-plane control unit 1021 of the terminal 101 as U-plane information ( Step S1208).
  • the U-plane control unit 1021 of the terminal 101 transfers the wireless line control information # 2 transmitted in step S1208 as C-plane information to the C-plane control unit 1011 of the terminal 101 (step S1209).
  • the U-plane control unit 1021 of the terminal 101 transfers the wireless line control information # 2 transmitted in step S1208 as C-plane information to the C-plane control unit 1011 of the terminal 101 (step S1209).
  • step S1210 the first radio station 110 performs control to transfer the C-plane control unit 1012 to the second radio station 120.
  • the first radio station 110 transmits a C-plane control unit transfer instruction that instructs to transfer the C-plane control unit 1012 from the first radio station 110 to the second radio station 120 via the third path 133. Transmit to the second radio station 120 (step S1211). As a result, the C-plane control unit 1012 is transferred from the first radio station 110 to the second radio station 120.
  • the U-plane control unit 1022 of the second radio station 120 uses the C-plane control unit switching instruction to instruct switching of the communication destination C-plane control unit as the U-plane information as the U-plane of the terminal 101.
  • the data is transmitted to the plane control unit 1021 (step S1212).
  • the U-plane control unit 1021 of the terminal 101 transfers the C-plane control unit switching instruction transmitted in step S1212 to the C-plane control unit 1011 of the terminal 101 as C-plane information (step S1213). ).
  • the C-plane control unit 1011 of the terminal 101 switches the communication destination of the C-plane to the second radio station 120 and transmits a C-plane control unit switching completion notification to the second radio station 120 (step S1214).
  • the second radio station 120 transmits a C-plane control unit switching completion notification to the first radio station 110 via the third path 133 (step S1215).
  • the first radio station 110 releases the radio line set up with the terminal 101 (step S1216).
  • terminal 101 enters a state (third state) in which both C-plane and U-plane are transmitted by second radio station 120.
  • FIG. 13 is a sequence diagram illustrating an example of detour transmission processing at a terminal opportunity after C / U separation by the communication system according to the embodiment.
  • each step shown in FIG. 12 may be executed as a bypass transmission process after C / U separation shown in FIG.
  • the terminal 101 performs radio communication with the first radio station 110 for the C-plane and with the second radio station 120 for the U-plane. Assume that wireless communication is performed.
  • the C-plane control unit 1011 of the terminal 101 transmits the radio channel control information # 1 to the C-plane control unit 1012 of the first radio station 110 by C-plane transmission (step S1301).
  • the radio channel control information # 1 transmitted in step S1301 is radio channel control information such as LTE RRC CONNECTION REESTABISHMENT REQUEST.
  • the C-plane control unit 1011 of the terminal 101 sets a timer that times the time for waiting for a response message from the first radio station 110 for the radio channel control information # 1 transmitted in step S1301 (step S1302).
  • the response message from the first radio station 110 to the radio channel control information # 1 is radio channel control information such as LTE RRC CONNECTION REESTABISHMENT.
  • U-plane transmission is performed between the U-plane control unit 1021 of the terminal 101 and the U-plane control unit 1022 of the second radio station 120. (Step S1303).
  • step S1302 determines that the timer set in step S1302 has expired in the absence of a response to the wireless channel control information # 1 transmitted in step S1301 (step S1304).
  • the C-plane control unit 1011 of the terminal 101 determines that the response message for the radio channel control information # 1 or the radio channel control information # 1 has been lost (lost), and performs control to start bypass transmission.
  • the C-plane control unit 1011 of the terminal 101 transmits a bypass transmission switching instruction to the second radio station 120 (step S1305).
  • the U-plane control unit 1022 of the second radio station 120 transmits a bypass transmission switching instruction to the first radio station 110 via the third path 133 (step S1306).
  • Subsequent C-plane radio line control information is transmitted via a route including the third route 133 and the second route 132, and is not transmitted via the first route 131 (see, for example, FIG. 3). That is, the subsequent processing is the same as, for example, steps S1207 to S1216 shown in FIG.
  • the terminal 101 transmits the control signal (the bypass transmission switching instruction) to the first wireless station 110.
  • the terminal 101 may perform a bypass transmission by transmitting a control signal (a bypass transmission switching instruction) to the first radio station 110 and the second radio station 120.
  • FIG. 14 is a flowchart illustrating an example of processing by the base station in the C / U separation state according to the embodiment.
  • first radio station 110 (control device 140) executes, for example, each step shown in FIG. 14.
  • the first radio station 110 determines whether or not radio channel control information to be received from the terminal 101 has been received from the terminal 101 within a certain time (step S1401).
  • the radio channel control information to be received from the terminal 101 is, for example, a response message from the terminal 101 to the radio channel control information transmitted from the first radio station 110 to the terminal 101.
  • the term “within a certain period of time” refers to, for example, a certain period of time after the first radio station 110 transmits radio channel control information to the terminal 101. If the wireless channel control information has not been received from the terminal 101 within a certain time (step S1401: No), the first wireless station 110 switches to redundant transmission or bypass transmission (that is, the second state) (step 2). S1402), a series of processing ends.
  • step S1401 when the wireless channel control information is received from the terminal 101 within a predetermined time (step S1401: Yes), the first wireless station 110 determines whether or not the communication quality of the first wireless station 110 is equal to or higher than a specified value. Is determined (step S1403).
  • the communication quality of the first radio station 110 is, for example, the quality in the radio communication between the first radio station 110 and the terminal 101 indicated by the radio quality information measured by the terminal 101 and transmitted to the first radio station 110. is there.
  • step S1403 when the communication quality is less than the specified value (step S1403: No), the first radio station 110 proceeds to step S1402.
  • step S1403 when the communication quality is equal to or higher than the specified value (step S1403: Yes), the first radio station 110 determines whether or not the first radio station 110 is congested (step S1404). Whether the first radio station 110 is congested is, for example, the amount of hardware used in the first radio station 110, the number of users connected to the first radio station 110, the overall throughput in the first radio station 110, etc. Can be determined based on When the first radio station 110 is congested (step S1404: Yes), the first radio station 110 proceeds to step S1402.
  • step S1404 if the first wireless station 110 is not congested (step S1404: No), the first wireless station 110 determines whether the service of the terminal 101 is a prescribed service (step S1405).
  • the service of the terminal 101 is a service provided by wireless communication between the terminal 101 and the first wireless station 110. If the service of the terminal 101 is not a prescribed service (step S1405: No), the first radio station 110 proceeds to step S1402.
  • step S1405 when the service is a prescribed service (step S1405: Yes), the first wireless station 110 determines whether or not the terminal 101 is the above-described general terminal (step S1406). When the terminal 101 is not a general terminal (step S1406: No), the first radio station 110 proceeds to step S1402.
  • step S1406 when the terminal 101 is a general terminal (step S1406: Yes), the first wireless station 110 determines whether or not the position of the terminal 101 is outside the redundant transmission or bypass transmission area (step S1406: Yes).
  • step S1406: Yes the first wireless station 110 determines whether or not the position of the terminal 101 is outside the redundant transmission or bypass transmission area.
  • step S1407: No The area of redundant transmission or detour transmission is an area where redundant transmission or detour transmission can be performed stably, for example, in an area close to the second radio station 120 in the small cell 121 of the second radio station 120. is there.
  • step S1407: No the first radio station 110 proceeds to step S1402.
  • step S1407 when it is outside the area (step S1407: Yes), the first wireless station 110 determines whether or not the number of reconnection requests from the terminal 101 to the first wireless station 110 is equal to or less than the specified number. (Step S1408). If the number of reconnection requests is not less than the specified number (step S1408: No), the first radio station 110 proceeds to step S1402.
  • step S1408 when the number of reconnection requests is equal to or less than the specified number (step S1408: Yes), the first radio station 110 maintains the C / U separation state (step S1409) and ends the series of processes. To do.
  • the first radio station 110 performs, for example, steps S1401 and S1403 based on the quality of radio communication (communication availability or radio quality information) between the first radio station 110 and the terminal 101. Switch between state 1 and state 2. Also, the first radio station 110 switches between the first state and the second state based on the congestion status of the first radio station 110, for example, as in step S1404.
  • the first radio station 110 switches between the first state and the second state based on the service type of the user data of the terminal 101, for example, as in step S1405. Moreover, the 1st radio station 110 switches a 1st state and a 2nd state based on the contract information (for example, which is a general terminal or a priority terminal) of the user of the terminal 101 like step S1406, for example.
  • the contract information for example, which is a general terminal or a priority terminal
  • the first radio station 110 switches between the first state and the second state based on the position of the terminal 101, for example, as in step S1407.
  • the first wireless station 110 is in the first state based on information related to past communication of the terminal 101 (for example, the number of reconnection requests from the terminal 101 to the first wireless station 110), for example, as in step S1408.
  • Switch the second state the first radio station 110 may switch between the first state and the second state based on some of these conditions.
  • the first wireless station 110 determines whether to switch to redundant transmission or bypass transmission has been described. However, this determination is not limited to the first wireless station 110, for example, the terminal 101 or the first wireless station 110. It may be performed by an external control device.
  • FIG. 15 is a flowchart illustrating an example of processing by the base station in the C / U separation state according to the embodiment.
  • the first wireless station 110 executes the steps shown in FIG. 15, for example.
  • the first wireless station 110 has not received the wireless channel control information to be received from the terminal 101 from the terminal 101 within a certain period of time, so that switching to the redundant transmission or bypass transmission state is performed. Suppose it was done.
  • the first radio station 110 determines whether or not a certain time has elapsed since switching to the redundant transmission or bypass transmission state (second state) (step S1501), and waits until the certain time has elapsed (step S1501). S1501: No loop).
  • the predetermined time has elapsed (step S1501: Yes)
  • the first wireless station 110 determines whether or not the wireless channel control information to be received from the terminal 101 has been received from the terminal 101 within the predetermined time (step S1502). Thereby, it is possible to determine whether or not the communication quality between the first wireless station 110 and the terminal 101 remains in a poor state.
  • step S1502 if the radio channel control information has not been received within a predetermined time (step S1502: No), the first radio station 110 issues a C-plane control unit transfer instruction to the second radio station 120 and the terminal 101. Transmit (step S1503).
  • the C-plane control unit 1012 that controls the C-plane of the terminal 101 is transferred (handover) from the first radio station 110 to the second radio station 120. For this reason, the C-plane and the U-plane are transmitted from the second wireless station 120 to the terminal 101 without passing through the first wireless station 110 (third state).
  • step S1502 when the radio network control information is received within a certain time (step S1502: Yes), the first radio station 110 transmits an instruction to stop redundant transmission or bypass transmission to the second radio station 120 and the terminal 101. (Step S1504). As a result, redundant transmission or detour transmission is stopped and, for example, the state returns to the C / U separation state (first state) shown in FIG.
  • step S1503 or step S1504 is executed, the first radio station 110 ends a series of processes.
  • the state of the transmission path of the terminal 101 can be switched between the first state and the second state.
  • the first state for example, as shown in FIG. 1
  • the first wireless station 110 wirelessly transmits the wireless channel control information of the terminal 101 to the terminal 101
  • the second wireless station 120 transmits the user data of the terminal 101 to the terminal 101.
  • the first wireless station 110 transmits the wireless channel control information of the terminal 101 to the terminal 101 via the second wireless station 120
  • the user data of the terminal 101 is transmitted. Is transmitted to the terminal 101 by the second wireless station 120.
  • the first wireless station 110 having a wide area capable of wireless communication transmits the wireless channel control information to stabilize the call of the terminal 101, and the second User data can be transmitted by the wireless station 120 to improve communication efficiency.
  • the transmission path between the terminal 101 and the first wireless station 110 is switched by switching the transmission path of the terminal 101 to the second state. Even if the wireless communication is interrupted, the call of the terminal 101 can be maintained.
  • the condition for switching the transmission path of the terminal 101 to the second state is not limited to the deterioration of the quality of wireless communication between the terminal 101 and the first wireless station 110.
  • the quality of wireless communication between the terminal 101 and the first wireless station 110 can be improved by switching the transmission path of the terminal 101 to the second state. Even if it deteriorates suddenly, the call of the terminal 101 can be maintained.
  • each of the first radio station 110 and the second radio station 120 can be a macro base station, a pico base station, a femto base station, a nano base station, an antenna protruding from the base station, or the like.
  • a control device 140 for controlling the transmission path of the C-plane and U-plane of the terminal 101 is provided in the first radio station 110, and each state (for example, the first state to the third state) is set by the first radio station 110.
  • each state for example, the first state to the third state
  • the configuration for switching has been described, it is not limited to such a configuration.
  • the control device 140 may be provided in the terminal 101 or the second radio station 120, or may be provided in a device different from the first radio station 110, the second radio station 120, and the terminal 101.
  • the control device the terminal, the radio station, and the control method, even if the radio communication between the radio station transmitting the radio channel control information and the terminal is interrupted, the terminal call can be made. Can be maintained.
  • the macro cell 111 receives radio line control information
  • the small cell 121 receives user data. You can send and receive.
  • capacitance of the whole system can be increased by combining and using the small cell 121 with easy installation.
  • the capacity of the entire system can be further increased by providing a large number of small cells 121.
  • communication between the terminal 101 and the small cell 121 is interrupted due to an external factor by transmitting / receiving radio channel control information in the macro cell 111, communication between the terminal 101 and the macro cell 111 continues, so It will not be.
  • the wireless channel control information transmitted / received between the terminal 101 and the macro cell 111 is blocked by switching to the second state and transmitting the wireless channel control information through the same route as the user data. Even if it becomes, the call disconnection is avoided and the call can be continued.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A control device (140) can perform switching between a first state and a second state. In the first state, a first radio station (110) transmits, in a wireless manner, radio line control information of a terminal (101) to the terminal (101), and a second radio station (120) transmits, in a wireless manner, user data of the terminal (101) to the terminal (101). In the second state, the first radio station (110) transmits the radio line control information of the terminal (101) to the terminal (101) via the second radio station (120), and the second radio station (120) transmits, in a wireless manner, the user data of the terminal (101) to the terminal (101).

Description

通信システム、制御装置、端末、無線局および制御方法Communication system, control device, terminal, radio station, and control method
 本発明は、通信システム、制御装置、端末、無線局および制御方法に関する。 The present invention relates to a communication system, a control device, a terminal, a radio station, and a control method.
 従来、W-CDMA(Wideband-Code Division Multiple Access)、LTE(Long Term Evolution)、LTE-Advanced、5Gなどの移動体通信システムが知られている。また、移動体通信システムにおいて、マクロセルとスモールセル等を組み合わせて制御情報やユーザデータを伝送する技術が知られている(たとえば、下記特許文献1~4参照。)。 Conventionally, mobile communication systems such as W-CDMA (Wideband-Code Division Multiple Access), LTE (Long Term Evolution), LTE-Advanced, and 5G are known. In mobile communication systems, techniques for transmitting control information and user data by combining macro cells and small cells are known (see, for example, Patent Documents 1 to 4 below).
特開2014-138286号公報JP 2014-138286 A 特開2014-030131号公報JP 2014-030131 A 特開2003-198432号公報JP 2003-198432 A 特開2004-194072号公報JP 2004-140772 A
 しかしながら、上述の従来技術では、端末の無線回線を制御するための無線回線制御情報とユーザデータをそれぞれ異なる無線局により伝送する場合に、無線回線制御情報を伝送する無線局と端末の間の無線通信が不通になると、端末の呼が切断される場合がある。 However, in the above-described conventional technology, when the radio channel control information for controlling the radio channel of the terminal and the user data are transmitted by different radio stations, the radio between the radio station transmitting the radio channel control information and the terminal is transmitted. When communication is interrupted, the terminal call may be disconnected.
 1つの側面では、本発明は、無線回線制御情報を伝送する無線局と端末との間の無線通信が不通になっても端末の呼を維持することができる通信システム、制御装置、端末、無線局および制御方法を提供することを目的とする。 In one aspect, the present invention provides a communication system, a control device, a terminal, a wireless communication, and a wireless communication system capable of maintaining a terminal call even when wireless communication between the wireless station transmitting the wireless channel control information and the terminal is interrupted. The object is to provide a station and a control method.
 上述した課題を解決し、目的を達成するため、本発明の一側面によれば、第1無線局と、前記第1無線局と通信可能な第2無線局と、前記第1無線局および前記第2無線局との間で無線通信が可能な端末と、を含む通信システムについて、前記端末の無線回線を制御するための制御情報を前記第1無線局が前記端末へ無線送信し、前記端末のユーザデータを前記第2無線局が前記端末へ無線送信する第1状態と、前記制御情報を前記第1無線局が前記第2無線局を介して前記端末へ送信し、前記ユーザデータを前記第2無線局が前記端末へ無線送信する第2状態と、を切り替える通信システム、制御装置、端末、無線局および制御方法が提案される。 In order to solve the above-described problems and achieve the object, according to one aspect of the present invention, a first radio station, a second radio station capable of communicating with the first radio station, the first radio station, and the A communication system including a terminal capable of wireless communication with a second wireless station, wherein the first wireless station wirelessly transmits control information for controlling a wireless channel of the terminal to the terminal; A first state in which the second wireless station wirelessly transmits the user data to the terminal, the first wireless station transmits the control information to the terminal via the second wireless station, and the user data is transmitted to the terminal. A communication system, a control device, a terminal, a radio station, and a control method for switching between a second state in which the second radio station wirelessly transmits to the terminal is proposed.
 本発明の一側面によれば、無線回線制御情報を伝送する無線局と端末との間の無線通信が不通になっても端末の呼を維持することができるという効果を奏する。 According to one aspect of the present invention, there is an effect that a call of a terminal can be maintained even if wireless communication between the wireless station transmitting the wireless channel control information and the terminal is interrupted.
図1は、実施の形態にかかる通信システムにおけるC/U分離の一例を示す図である。FIG. 1 is a diagram illustrating an example of C / U separation in the communication system according to the embodiment. 図2は、実施の形態にかかる通信システムにおけるC-プレーンの冗長送信の一例を示す図である。FIG. 2 is a diagram illustrating an example of C-plane redundant transmission in the communication system according to the embodiment. 図3は、実施の形態にかかる通信システムにおけるC-プレーンの迂回送信の一例を示す図である。FIG. 3 is a diagram illustrating an example of C-plane bypass transmission in the communication system according to the embodiment. 図4は、実施の形態にかかる通信システムにおける冗長送信を行う場合のプロトコルスタックの一例を示す図である。FIG. 4 is a diagram illustrating an example of a protocol stack when redundant transmission is performed in the communication system according to the embodiment. 図5は、実施の形態にかかる通信システムにおける迂回送信を行う場合のプロトコルスタックの一例を示す図である。FIG. 5 is a diagram illustrating an example of a protocol stack when performing bypass transmission in the communication system according to the embodiment. 図6は、実施の形態にかかる端末の一例を示す図である。FIG. 6 is a diagram illustrating an example of a terminal according to the embodiment. 図7は、実施の形態にかかる端末のハードウェア構成の一例を示す図である。FIG. 7 is a diagram illustrating an example of a hardware configuration of the terminal according to the embodiment. 図8は、実施の形態にかかる基地局の一例を示す図である。FIG. 8 is a diagram of an example of the base station according to the embodiment. 図9は、実施の形態にかかる基地局のハードウェア構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of a hardware configuration of the base station according to the embodiment. 図10は、実施の形態にかかる通信システムによるC/U分離の処理の一例を示すシーケンス図である。FIG. 10 is a sequence diagram illustrating an example of C / U separation processing by the communication system according to the embodiment. 図11は、実施の形態にかかる通信システムによるC/U分離後の冗長送信処理の一例を示すシーケンス図である。FIG. 11 is a sequence diagram illustrating an example of redundant transmission processing after C / U separation by the communication system according to the embodiment. 図12は、実施の形態にかかる通信システムによるC/U分離後の基地局契機での迂回送信処理の一例を示すシーケンス図である。FIG. 12 is a sequence diagram illustrating an example of detour transmission processing at the base station opportunity after C / U separation by the communication system according to the embodiment. 図13は、実施の形態にかかる通信システムによるC/U分離後の端末契機での迂回送信処理の一例を示すシーケンス図である。FIG. 13 is a sequence diagram illustrating an example of detour transmission processing at a terminal opportunity after C / U separation by the communication system according to the embodiment. 図14は、実施の形態にかかるC/U分離の状態における基地局による処理の一例を示すフローチャートである。FIG. 14 is a flowchart illustrating an example of processing by the base station in the C / U separation state according to the embodiment. 図15は、実施の形態にかかるC/U分離の状態における基地局による処理の一例を示すフローチャートである。FIG. 15 is a flowchart illustrating an example of processing by the base station in the C / U separation state according to the embodiment.
 以下に図面を参照して、本発明にかかる通信システム、制御装置、端末、無線局および制御方法の実施の形態を詳細に説明する。 Hereinafter, embodiments of a communication system, a control device, a terminal, a radio station, and a control method according to the present invention will be described in detail with reference to the drawings.
(実施の形態)
(実施の形態にかかる通信システムにおけるC/U分離)
 図1は、実施の形態にかかる通信システムにおけるC/U分離の一例を示す図である。図1に示すように、実施の形態にかかる通信システム100は、端末101と、第1無線局110と、第2無線局120と、制御装置140と、を含む。
(Embodiment)
(C / U separation in the communication system according to the embodiment)
FIG. 1 is a diagram illustrating an example of C / U separation in the communication system according to the embodiment. As illustrated in FIG. 1, the communication system 100 according to the embodiment includes a terminal 101, a first radio station 110, a second radio station 120, and a control device 140.
 第1無線局110および第2無線局120のそれぞれは、端末101との間で無線信号を送受信可能な通信装置である。たとえば、第1無線局110および第2無線局120のそれぞれは、マクロ基地局、ピコ基地局、フェムト基地局、ナノ基地局等の基地局や、基地局から張り出したアンテナ(たとえば後述のRRH)などの無線局である。図1に示す例では、第1無線局110はマクロセル111を形成するマクロ基地局であり、第2無線局120はスモールセル121を形成するスモール基地局である場合について説明する。 Each of the first radio station 110 and the second radio station 120 is a communication device that can transmit and receive radio signals to and from the terminal 101. For example, each of the first radio station 110 and the second radio station 120 includes a base station such as a macro base station, a pico base station, a femto base station, or a nano base station, or an antenna protruding from the base station (for example, RRH described later) And so on. In the example illustrated in FIG. 1, a case will be described in which the first radio station 110 is a macro base station that forms the macro cell 111, and the second radio station 120 is a small base station that forms the small cell 121.
 図1に示す例では、スモールセル121は、マクロセル111よりも狭いセルであり、マクロセル111に包含されている。たとえば、第1無線局110および第2無線局120は、マクロセル111およびスモールセル121が階層化されたアンブレラセル構成である。アンブレラセル構成は、階層化セル構成とも呼ばれる。また、マクロセル111およびスモールセル121のように大きさが異なるセルが混在するネットワークはHet Net(ヘテロジニアスネットワーク)とも呼ばれる。 In the example shown in FIG. 1, the small cell 121 is a cell narrower than the macro cell 111 and is included in the macro cell 111. For example, the first radio station 110 and the second radio station 120 have an umbrella cell configuration in which the macro cell 111 and the small cell 121 are hierarchized. The umbrella cell configuration is also called a hierarchical cell configuration. A network in which cells having different sizes such as the macro cell 111 and the small cell 121 are mixed is also called a Het Net (heterogeneous network).
 端末101は、マクロセル111およびスモールセル121の重複部分に位置しており、第1無線局110および第2無線局120のいずれによっても無線通信を行うことが可能な状況である。第1経路131は、第1無線局110と端末101との間の無線経路である。第2経路132は、第2無線局120と端末101との間の無線経路である。 The terminal 101 is located in an overlapping portion of the macro cell 111 and the small cell 121, and is in a situation where wireless communication can be performed by either the first wireless station 110 or the second wireless station 120. The first route 131 is a wireless route between the first wireless station 110 and the terminal 101. The second route 132 is a wireless route between the second wireless station 120 and the terminal 101.
 第3経路133は、第1無線局110と第2無線局120とを接続する通信経路である。第3経路133は、有線経路、無線経路、または有線経路および無線経路の組み合わせとすることができる。また、第3経路133は、第1無線局110と第2無線局120との間を物理的に直接接続する通信経路に限らず、他の通信装置を介して第1無線局110と第2無線局120との間を接続する論理的な通信経路であってもよい。 The third path 133 is a communication path that connects the first radio station 110 and the second radio station 120. The third route 133 can be a wired route, a wireless route, or a combination of a wired route and a wireless route. Further, the third path 133 is not limited to a communication path that physically connects the first radio station 110 and the second radio station 120 directly, but is connected to the first radio station 110 and the second radio station via other communication devices. A logical communication path connecting the radio station 120 may be used.
 たとえば、図1に示す例のように、第1無線局110および第2無線局120が基地局である場合は、第3経路133には、LTEのX2インタフェースやS1インタフェースを経由する通信経路を用いることができる。また、第1無線局110および第2無線局120がそれぞれ基地局およびアンテナである場合は、第3経路133には、基地局とアンテナを接続するインタフェースなどを用いることができる。基地局とアンテナを接続するインタフェースには、たとえば、CPRI(Common Public Radio Interface)やORI(Open Radio Equipment Interface)を用いることができる。 For example, when the first radio station 110 and the second radio station 120 are base stations as in the example shown in FIG. 1, a communication path via the LTE X2 interface or S1 interface is set on the third path 133. Can be used. Further, when the first radio station 110 and the second radio station 120 are a base station and an antenna, respectively, an interface for connecting the base station and the antenna can be used for the third path 133. As an interface for connecting a base station and an antenna, for example, CPRI (Common Public Radio Interface) or ORI (Open Radio Equipment Interface) can be used.
 制御装置140は、端末101におけるC-プレーンおよびU-プレーンの伝送経路を制御する。C-プレーンは、端末101の無線回線の設定や維持のための無線回線制御情報を伝送する処理である。C-プレーンの無線回線制御情報の伝送品質が劣化すると、無線回線の設定や維持が困難になる。伝送品質が劣化するとは、たとえば正しく受信できないなどの伝送誤りである。 The control device 140 controls the C-plane and U-plane transmission paths in the terminal 101. The C-plane is a process of transmitting radio channel control information for setting and maintaining the radio channel of the terminal 101. If the transmission quality of the C-plane radio link control information deteriorates, it becomes difficult to set and maintain the radio link. Deterioration of transmission quality is a transmission error such as failure to receive correctly.
 U-プレーンは、端末101について設定された無線回線によって伝送すべきユーザデータを伝送する処理である。ユーザデータは、たとえば、ユーザ個別データや、MBMS(Multimedia Broadcast and Multicast Service)データや、これらのデータを無線伝送するための制御情報などを含んでもよい。 The U-plane is a process for transmitting user data to be transmitted through a wireless line set for the terminal 101. The user data may include, for example, user individual data, MBMS (Multimedia Broadcast and Multicast Service) data, control information for wirelessly transmitting these data, and the like.
 図1に示す例では、制御装置140は、第1無線局110において実現される装置である。すなわち、図1に示す例では、端末101におけるC-プレーンおよびU-プレーンの伝送経路を制御装置140が制御する構成である。ただし、このような構成に限らず、制御装置140は、たとえば、第2無線局120や端末101において実現されてもよいし、第1無線局110、第2無線局120および端末101と異なる通信装置によって実現されてもよい。 In the example shown in FIG. 1, the control device 140 is a device realized in the first radio station 110. That is, in the example shown in FIG. 1, the control device 140 controls the C-plane and U-plane transmission paths in the terminal 101. However, the configuration is not limited to such a configuration, and the control device 140 may be implemented in the second radio station 120 or the terminal 101, for example, or may be a communication different from the first radio station 110, the second radio station 120, and the terminal 101. It may be realized by a device.
 端末101は、たとえば、第1無線局110への最初のアクセス時(初期状態)において、C-プレーンの無線回線制御情報およびU-プレーンのユーザデータのどちらも第1無線局110(第1経路131)により送信しているとする。この状態において、第1無線局110は、端末101が所定のC/U分離条件を満たした場合に、C/U分離の状態へ切り替える。C/U分離の状態においては、端末101のC-プレーンの無線回線制御情報は第1無線局110(第1経路131)により端末101へ無線送信される。また、C/U分離の状態においては、端末101のU-プレーンのユーザデータは第1無線局110から第2無線局120を経由、すなわち第3経路133および第2経路132を経由して端末101へ無線送信される。 For example, at the time of the first access to the first radio station 110 (initial state), the terminal 101 receives both the C-plane radio channel control information and the U-plane user data from the first radio station 110 (first route). 131). In this state, the first wireless station 110 switches to the C / U separation state when the terminal 101 satisfies a predetermined C / U separation condition. In the C / U separation state, the C-plane radio channel control information of the terminal 101 is wirelessly transmitted to the terminal 101 by the first radio station 110 (first path 131). In the C / U separation state, the user data on the U-plane of the terminal 101 passes from the first wireless station 110 through the second wireless station 120, that is, through the third route 133 and the second route 132. 101 is wirelessly transmitted.
 所定のC/U分離条件には、たとえば、第2経路132の無線品質情報、第1無線局110の輻輳状況、サービス種別、端末101のユーザとの契約情報、端末101の位置情報、過去の端末固有情報の少なくともいずれかに関する条件を用いることができる。 The predetermined C / U separation condition includes, for example, the wireless quality information of the second route 132, the congestion status of the first wireless station 110, the service type, the contract information with the user of the terminal 101, the location information of the terminal 101, the past Conditions regarding at least one of the terminal-specific information can be used.
 第2経路132の無線品質情報は、端末101によって測定された第2経路132による通信品質を示す情報である。無線通信の品質を示す情報には、たとえば、RSRP、RSCP、BLERなどを用いることができる。RSRPは、Reference Signal Received Powerの略である。RSCPは、Reference Signal Code Powerの略である。BLERは、BLock Error Ratioの略である。所定のC/U分離条件には、たとえば、無線品質情報が示す通信品質が所定の通信品質以上であるという条件を含めることができる。 The wireless quality information of the second path 132 is information indicating the communication quality of the second path 132 measured by the terminal 101. For example, RSRP, RSCP, BLER, or the like can be used as information indicating the quality of wireless communication. RSRP is an abbreviation for Reference Signal Received Power. RSCP is an abbreviation for Reference Signal Code Power. BLER is an abbreviation for BLOCK Error Ratio. The predetermined C / U separation condition can include, for example, a condition that the communication quality indicated by the wireless quality information is equal to or higher than the predetermined communication quality.
 第1無線局110の輻輳状況は、たとえば、第1無線局110におけるハードウェア使用量、第1無線局110に接続中のユーザの数、第1無線局110における全体のスループットなどである。所定のC/U分離条件には、たとえば、第1無線局110の輻輳の度合いが所定の度合い以上であるという条件を含めることができる。 The congestion status of the first radio station 110 is, for example, the amount of hardware used in the first radio station 110, the number of users connected to the first radio station 110, the overall throughput in the first radio station 110, and the like. The predetermined C / U separation condition can include, for example, a condition that the degree of congestion of the first radio station 110 is a predetermined degree or more.
 サービス種別は、端末101が第1無線局110を介して行っている通信のサービス種別である。サービス種別には、たとえば、メール、音声通話、ストリーミング、緊急呼などがある。所定のC/U分離条件には、たとえば、第1無線局110のサービス種別が所定のサービス種別(たとえば多くのスループットを要するストリーミングなど)であるという条件を含めることができる。 The service type is a service type of communication performed by the terminal 101 via the first wireless station 110. Examples of service types include mail, voice call, streaming, and emergency call. The predetermined C / U separation condition can include, for example, a condition that the service type of the first radio station 110 is a predetermined service type (for example, streaming that requires a lot of throughput).
 端末101のユーザとの契約情報は、端末101のユーザと通信システム100のオペレータ等との間の契約内容を示す情報である。端末101のユーザとの契約情報には、たとえば、端末101が、一般端末であるか、一般端末より優先して通信が可能な優先端末であるかを示す情報などがある。所定のC/U分離条件には、たとえば、端末101のユーザとの契約情報が所定の契約情報であるという条件を含めることができる。所定の契約情報は、一例としては、端末101が一般端末であることを示す情報とすることができる。これにより、優先端末のユーザデータを、セル範囲が広いことにより通信が安定する第1無線局110によって伝送することができる。または、所定の契約情報は、端末101が優先端末であることを示す情報としてもよい。これにより、優先端末のユーザデータを、よりスループットが高くなる第2無線局120によって伝送することができる。 The contract information with the user of the terminal 101 is information indicating the content of the contract between the user of the terminal 101 and the operator of the communication system 100. The contract information with the user of the terminal 101 includes, for example, information indicating whether the terminal 101 is a general terminal or a priority terminal capable of communication with priority over the general terminal. The predetermined C / U separation condition can include, for example, a condition that the contract information with the user of the terminal 101 is the predetermined contract information. As an example, the predetermined contract information can be information indicating that the terminal 101 is a general terminal. Thereby, the user data of the priority terminal can be transmitted by the first radio station 110 whose communication is stable due to the wide cell range. Alternatively, the predetermined contract information may be information indicating that the terminal 101 is a priority terminal. As a result, the user data of the priority terminal can be transmitted by the second radio station 120 with higher throughput.
 端末101の位置情報は、たとえばGPS(Global Positioning System:全地球測位システム)などによって計測された、端末101の位置を示す情報である。所定のC/U分離条件には、たとえば、第1無線局110の位置情報が示す端末101の位置が、第2無線局120から一定距離内の範囲(たとえばスモールセル121)内であることを含めることができる。 The position information of the terminal 101 is information indicating the position of the terminal 101 measured by, for example, GPS (Global Positioning System: Global Positioning System). In the predetermined C / U separation condition, for example, the position of the terminal 101 indicated by the position information of the first radio station 110 is within a range within a certain distance from the second radio station 120 (for example, the small cell 121). Can be included.
 過去の端末固有情報は、端末101に関する過去の情報であり、一例としては端末101から第1無線局110への再接続要求の回数とすることができる。所定のC/U分離条件には、たとえば、端末101から第1無線局110への再接続要求の回数が所定回数以下であることを含めることができる。 The past terminal specific information is past information related to the terminal 101, and can be, for example, the number of reconnection requests from the terminal 101 to the first wireless station 110. The predetermined C / U separation condition can include, for example, that the number of reconnection requests from the terminal 101 to the first radio station 110 is not more than a predetermined number.
(実施の形態にかかる通信システムにおけるC-プレーンの冗長送信)
 図2は、実施の形態にかかる通信システムにおけるC-プレーンの冗長送信の一例を示す図である。図2において、図1に示した部分と同様の部分については同一の符号を付して説明を省略する。図1に示したC/U分離の状態(第1状態)において、所定条件を満たした場合に、通信システム100は、第2経路132を経由してC-プレーンの無線回線制御情報を送信する制御を行う状態(第2状態)へ移行する。
(Redundant C-plane transmission in the communication system according to the embodiment)
FIG. 2 is a diagram illustrating an example of C-plane redundant transmission in the communication system according to the embodiment. In FIG. 2, the same parts as those shown in FIG. When the predetermined condition is satisfied in the C / U separation state (first state) shown in FIG. 1, the communication system 100 transmits the C-plane radio line control information via the second path 132. Transition to a state (second state) in which control is performed.
 たとえば、第1無線局110は、図2に示すように、第1経路131によって端末101へC-プレーンの無線回線制御情報を送信しつつ、第2経路132によっても端末101へ同じ無線回線制御情報が送信される冗長送信を行う。冗長送信において、たとえば、第1無線局110は、第3経路133を介して無線回線制御情報を第2無線局120へ送信することで、第2経路132によって第2無線局120から端末101へ無線回線制御情報を無線送信させる。 For example, as shown in FIG. 2, the first radio station 110 transmits the C-plane radio line control information to the terminal 101 via the first path 131, and also performs the same radio line control to the terminal 101 via the second path 132. Redundant transmission in which information is transmitted is performed. In the redundant transmission, for example, the first radio station 110 transmits radio channel control information to the second radio station 120 via the third path 133, so that the second radio station 120 transmits to the terminal 101 via the second path 132. Radio transmission control information is transmitted wirelessly.
 C/U分離の状態において冗長送信を行うための所定条件は、たとえば、第1無線局110と端末101との間の無線通信の品質(第1経路131の通信品質)が所定品質を満たさなくなった場合とすることができる。第1無線局110と端末101との間の無線通信の品質は、たとえば第1無線局110が端末101から受信する無線信号に基づいて判断することができる。 The predetermined condition for performing redundant transmission in the C / U separation state is, for example, that the quality of wireless communication (communication quality of the first path 131) between the first wireless station 110 and the terminal 101 does not satisfy the predetermined quality. It can be the case. The quality of wireless communication between the first wireless station 110 and the terminal 101 can be determined based on, for example, a wireless signal received from the terminal 101 by the first wireless station 110.
 たとえば、第1無線局110は、図1に示したC/U分離の状態において、端末101から受信すべきC-プレーンの無線回線制御情報を第1無線局110が受信できない場合に冗長送信を行う。また、第1無線局110は、端末101から受信すべきC-プレーンの無線回線制御情報を第1無線局110が受信できない場合に限らず、端末101が上述したC/U分離条件を満たさなくなった場合に冗長送信を行ってもよい。また、第1無線局110は、たとえば、端末101から送信される無線品質情報が示す第1経路131の通信品質が所定の通信品質を満たさなくなった場合に冗長送信を行ってもよい。 For example, the first radio station 110 performs redundant transmission when the first radio station 110 cannot receive the C-plane radio channel control information to be received from the terminal 101 in the C / U separation state shown in FIG. Do. The first radio station 110 is not limited to the case where the first radio station 110 cannot receive the C-plane radio channel control information to be received from the terminal 101, and the terminal 101 does not satisfy the C / U separation condition described above. In such a case, redundant transmission may be performed. Further, the first radio station 110 may perform redundant transmission when, for example, the communication quality of the first path 131 indicated by the radio quality information transmitted from the terminal 101 does not satisfy a predetermined communication quality.
 これにより、C/U分離の状態において、第1経路131の通信の継続が困難な場合に冗長送信を行うことができる。このため、第1経路131が不通となっても、第2無線局120を介して無線回線制御情報を端末101へ伝送し、端末101の呼の切断を回避することができる。 Thereby, in the state of C / U separation, it is possible to perform redundant transmission when it is difficult to continue communication of the first path 131. For this reason, even if the first path 131 is disconnected, the wireless channel control information is transmitted to the terminal 101 via the second wireless station 120, and the call disconnection of the terminal 101 can be avoided.
 このように、通信システム100においては、第2状態としてたとえば冗長送信が行われる。冗長送信において、第1無線局110は、第2無線局120へ無線回線制御情報を送信するとともに、第2無線局120へ送信する無線回線制御情報と同じ無線回線制御情報を端末101へ無線送信する。第2無線局120は、第1無線局110から送信された無線回線制御情報を端末101へ無線送信する。 Thus, in the communication system 100, for example, redundant transmission is performed as the second state. In the redundant transmission, the first radio station 110 transmits the radio channel control information to the second radio station 120, and transmits to the terminal 101 the same radio channel control information as the radio channel control information transmitted to the second radio station 120. To do. The second wireless station 120 wirelessly transmits the wireless channel control information transmitted from the first wireless station 110 to the terminal 101.
 端末101は、第1無線局110および第2無線局120のそれぞれから無線送信される無線回線制御情報を受信し、受信した各無線回線制御情報に基づく復号を行う。これにより、端末101における無線回線制御情報の受信品質を向上させることができる。たとえば、端末101は、受信した各無線回線制御情報を復号し、復号した各無線回線制御情報のうちの誤りが検出されなかった無線回線制御情報を無線回線制御情報の受信結果として採用する。これにより、たとえば第1無線局110および第2無線局120のいずれかのみから端末101へ無線回線制御情報を無線送信する場合に比べて、端末101が誤りのない無線回線制御情報を受信できる可能性を高くすることができる。 The terminal 101 receives radio channel control information transmitted from each of the first radio station 110 and the second radio station 120, and performs decoding based on the received radio channel control information. Thereby, the reception quality of the radio channel control information in the terminal 101 can be improved. For example, the terminal 101 decodes each received radio channel control information, and adopts radio channel control information in which no error is detected among the decoded radio channel control information as a reception result of the radio channel control information. As a result, for example, it is possible for terminal 101 to receive radio channel control information with no error compared to a case where only one of first radio station 110 and second radio station 120 transmits radio channel control information to terminal 101. Sexuality can be increased.
(実施の形態にかかる通信システムにおけるC-プレーンの迂回送信)
 図3は、実施の形態にかかる通信システムにおけるC-プレーンの迂回送信の一例を示す図である。図3において、図1,図2に示した部分と同様の部分については同一の符号を付して説明を省略する。図1に示したC/U分離の状態(第1状態)において、所定条件を満たした場合に、第1無線局110は、図3に示す迂回送信を行うようにしてもよい。C/U分離の状態において迂回送信を行うための所定条件は、たとえば、上述したC/U分離の状態において冗長送信を行うための所定条件と同様である。
(C-plane bypass transmission in the communication system according to the embodiment)
FIG. 3 is a diagram illustrating an example of C-plane bypass transmission in the communication system according to the embodiment. 3, the same parts as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted. In the C / U separation state (first state) illustrated in FIG. 1, the first wireless station 110 may perform detour transmission illustrated in FIG. 3 when a predetermined condition is satisfied. The predetermined condition for performing detour transmission in the C / U separation state is the same as the predetermined condition for performing redundant transmission in the above-described C / U separation state, for example.
 たとえば、第1無線局110は、図3に示すように、第1経路131による端末101へのC-プレーンの無線回線制御情報の送信は停止し、第3経路133および第2経路132によって端末101へC-プレーンの無線回線制御情報を送信する迂回送信を行う。迂回送信において、たとえば、第1無線局110は、第3経路133を介して無線回線制御情報を第2無線局120へ送信することで、第2経路132によって第2無線局120から端末101へ無線回線制御情報を無線送信させる。 For example, as shown in FIG. 3, the first radio station 110 stops transmitting the C-plane radio link control information to the terminal 101 via the first path 131 and uses the third path 133 and the second path 132 to stop the terminal. The detour transmission for transmitting the C-plane radio line control information to 101 is performed. In the detour transmission, for example, the first radio station 110 transmits radio channel control information to the second radio station 120 via the third path 133, so that the second radio station 120 transmits the radio channel control information to the terminal 101 via the second path 132. Radio transmission control information is transmitted wirelessly.
 図1~図3に示したように、第1無線局110(制御装置140)は、図1に示したC/U分離の状態において、第1無線局110と端末101との間の無線通信の品質が所定品質を満たさなくなった場合に、冗長送信または迂回送信を行う。また、第1無線局110(制御装置140)は、冗長送信または迂回送信を行う場合に、冗長送信および迂回送信のいずれを行うかを選択するようにしてもよい。冗長送信および迂回送信のいずれを行うかの選択は、たとえば、第1無線局110の輻輳状況、端末101の通信サービスなど、各種の情報に基づいて行うことができる。たとえば、端末101の通信サービスが緊急通信(緊急呼)である場合や、端末101が上述した優先端末である場合等は、より通信を安定させるために冗長送信を行うようにする。 As shown in FIGS. 1 to 3, the first wireless station 110 (control device 140) performs wireless communication between the first wireless station 110 and the terminal 101 in the C / U separation state shown in FIG. Redundant transmission or detour transmission is performed when the quality of the data does not satisfy the predetermined quality. The first radio station 110 (control device 140) may select whether to perform redundant transmission or bypass transmission when performing redundant transmission or bypass transmission. The selection of whether to perform redundant transmission or bypass transmission can be performed based on various types of information such as the congestion status of the first wireless station 110 and the communication service of the terminal 101, for example. For example, when the communication service of the terminal 101 is emergency communication (emergency call), or when the terminal 101 is the priority terminal described above, redundant transmission is performed in order to further stabilize the communication.
 冗長送信または迂回送信を行っている場合に、第1無線局110と端末101との間の無線通信の品質が所定品質を満たさない状態が一定時間以上継続した場合は、第1無線局110は、端末101を第2無線局120へハンドオーバさせる制御を行ってもよい。端末101を第2無線局120へハンドオーバさせることにより、端末101のC-プレーンを制御する制御部が第1無線局110から第2無線局120へ移動する。 When redundant transmission or detour transmission is being performed, if the quality of wireless communication between the first wireless station 110 and the terminal 101 does not satisfy the predetermined quality, the first wireless station 110 Control for handing over the terminal 101 to the second radio station 120 may be performed. When the terminal 101 is handed over to the second radio station 120, the control unit that controls the C-plane of the terminal 101 moves from the first radio station 110 to the second radio station 120.
 冗長送信または迂回送信を行っている場合に、第1経路131の通信の継続が困難な状態が一定時間内に解消した場合は、第1無線局110は、冗長送信または迂回送信を停止し、たとえば図2に示したC/U分離の状態へ戻す制御を行ってもよい。 When redundant transmission or bypass transmission is being performed and the state where it is difficult to continue communication on the first path 131 is resolved within a certain time, the first radio station 110 stops redundant transmission or bypass transmission, For example, control for returning to the C / U separation state shown in FIG. 2 may be performed.
 このように、通信システム100においては、第2状態としてたとえば迂回送信が行われる。迂回送信において、第1無線局110は、第2無線局120へ無線回線制御情報を送信し、端末101へ無線回線制御情報を無線送信しない。第2無線局120は、第1無線局110から送信された無線回線制御情報を端末101へ無線送信する。 Thus, in the communication system 100, for example, bypass transmission is performed as the second state. In the bypass transmission, the first radio station 110 transmits the radio channel control information to the second radio station 120 and does not transmit the radio channel control information to the terminal 101 by radio. The second wireless station 120 wirelessly transmits the wireless channel control information transmitted from the first wireless station 110 to the terminal 101.
 端末101は、第2無線局120から無線送信される無線回線制御情報を受信して復号する。これにより、たとえば第1無線局110および第2無線局120の両方から端末101へ無線回線制御情報を無線送信する場合に比べて、使用される無線リソースを少なくし、無線リソースの利用効率を向上させることができる。 The terminal 101 receives and decodes the wireless channel control information wirelessly transmitted from the second wireless station 120. As a result, for example, compared to the case where radio channel control information is transmitted from both the first radio station 110 and the second radio station 120 to the terminal 101 by radio, the radio resources used are reduced and the utilization efficiency of radio resources is improved. Can be made.
 図1~図3において、制御装置140(第1無線局110)が下りのC-プレーンおよびU-プレーンの伝送経路を制御する場合について説明したが、制御装置140は、上りのC-プレーンおよびU-プレーンの伝送経路を制御してもよい。 1 to 3, the case where the control device 140 (first radio station 110) controls the downlink C-plane and U-plane transmission paths has been described. The U-plane transmission path may be controlled.
 たとえば、制御装置140は、上りのC-プレーンの伝送経路およびU-プレーンの伝送経路を、それぞれ下りのC-プレーンの伝送経路およびU-プレーンの伝送経路(ただし逆方向)となるように制御する。たとえば、制御装置140は、図3に示した冗長送信において、上りのC-プレーンの伝送経路を、第2経路132および第3経路133を含む経路とする。また、制御装置140は、図3に示した冗長送信において、上りのU-プレーンの伝送経路を第2経路132とする。 For example, the control device 140 controls the upstream C-plane transmission path and the U-plane transmission path to be the downstream C-plane transmission path and the U-plane transmission path (in the opposite direction), respectively. To do. For example, in the redundant transmission shown in FIG. 3, the control device 140 sets the uplink C-plane transmission path as a path including the second path 132 and the third path 133. Also, the control device 140 sets the uplink U-plane transmission path as the second path 132 in the redundant transmission shown in FIG.
 ただし、上りのC-プレーンの伝送経路およびU-プレーンの伝送経路は、このような経路に限らず、たとえば下りのC-プレーンの伝送経路およびU-プレーンの伝送経路から独立して制御されてもよい。 However, the upstream C-plane transmission path and the U-plane transmission path are not limited to such paths, and are controlled independently from the downstream C-plane transmission path and the U-plane transmission path, for example. Also good.
(アンブレラセル構成について)
 つぎに、第1無線局110および第2無線局120によって実現されるアンブレラセル構成について説明する。たとえばW-CDMAやLTEにおいては、半径が数[km]などの比較的大きなセル(マクロセル)内に、たとえば半径100[m]以下などの小セル/スモールセル(たとえばピコセル、フェムトセル、ナノセル)を重畳した配置とすることが検討されている。これはアンブレラセル構成または階層化セル構成と呼ばれている。小セルを配置することで、システム全体のシステム容量(キャパシティ)を増加させることが可能となり、たとえばスマートフォンの普及に伴ったトラフィック量(通信量)の増大に対応することができる。
(Umbrella cell configuration)
Next, an umbrella cell configuration realized by the first radio station 110 and the second radio station 120 will be described. For example, in W-CDMA and LTE, within a relatively large cell (macro cell) with a radius of several [km], for example, a small cell / small cell with a radius of 100 [m] or less (eg, pico cell, femto cell, nano cell) It is being considered that the arrangement is superimposed. This is called an umbrella cell configuration or a hierarchical cell configuration. By arranging the small cells, the system capacity (capacity) of the entire system can be increased, and for example, it is possible to cope with an increase in traffic volume (communication volume) with the spread of smartphones.
(アンブレラセル構成とキャリアアグリゲーションについて)
 また、ある1つの端末における通信量の増加の対策として、CA(Carrier Aggregation:キャリアアグリゲーション)の導入が進められている。1つのシステム帯域のみ使用して通信を行っていた従来の技術に対して、CAは、複数のシステム帯域を同時に用いて通信を行うことによって、端末当たりの伝送速度を改善することができる。なお、最初に接続したセルを第1のセル(PCell:Primary Cell)と呼び、追加されたセルを第2のセル(SCell:Secondary Cell)と呼んでいる。また、それぞれのキャリアが1つのシステム帯域で構成されることから、システム帯域(または周波数)とセルが同義として用いられる場合もある。
(Umbrella cell configuration and carrier aggregation)
Also, introduction of CA (Carrier Aggregation) is being promoted as a countermeasure against an increase in the amount of communication in a certain terminal. In contrast to the conventional technique in which communication is performed using only one system band, CA can improve the transmission rate per terminal by performing communication using a plurality of system bands simultaneously. In addition, the cell connected initially is called the 1st cell (PCell: Primary Cell), and the added cell is called the 2nd cell (SCell: Secondary Cell). Moreover, since each carrier is comprised by one system band, a system band (or frequency) and a cell may be used synonymously.
 CAは、高速伝送を実現するものであるため、PCellとSCell共に端末それぞれに対して端末個別のデータ(個別データ Dedicated data)を伝送することになっている。また、PCellとSCellは、それぞれ個別に1つの無線通信システムを構成するものであり、それぞれ、そのセルの端末に共通の制御情報であるシステム情報や端末個別の制御情報を端末との間で送受信している。端末個別の制御情報は、たとえば端末の回線接続に際して要する制御情報である。 Since CA realizes high-speed transmission, both PCell and SCell are to transmit terminal-specific data (individual data Dedicated data) to each terminal. Each of the PCell and the SCell constitutes one wireless communication system, and system information that is common to the terminals of the cell and control information for each terminal are transmitted and received between the terminals. is doing. The terminal-specific control information is, for example, control information required for terminal line connection.
(アンブレラセル構成とC/U分離について)
 つぎに、CAをアンブレラセル構成に適用する構成について説明する。このような構成においては、スモールセルと通信可能な端末は、同時にマクロセルにも通信可能である。このため、スモールセルと通信可能な端末は、マクロセルおよびスモールセル(すなわち、マクロセルの基地局とスモールセルの基地局)との間で個別データ、共通制御情報と個別制御情報などの制御情報を送受信することになる。
(Umbrella cell configuration and C / U separation)
Next, a configuration in which CA is applied to an umbrella cell configuration will be described. In such a configuration, a terminal that can communicate with a small cell can simultaneously communicate with a macro cell. Therefore, a terminal capable of communicating with a small cell transmits / receives control information such as individual data, common control information, and individual control information between the macro cell and the small cell (that is, the macro cell base station and the small cell base station). Will do.
 このとき、マクロセルは、マクロセルとのみ通信を行う端末や、スモールセルとも通信を行う端末と無線信号を送受信することになる。また、マクロセルのエリアはスモールセルのエリアと比較し広いことから、マクロセルは、多数の端末と通信を行うこととなる。その結果、ある1つの端末に対して割り当てられる無線リソースは小さいものとなる。 At this time, the macro cell transmits / receives a radio signal to / from a terminal that communicates only with the macro cell or a terminal that communicates with the small cell. In addition, since the macro cell area is larger than the small cell area, the macro cell communicates with a large number of terminals. As a result, the radio resource allocated to a certain terminal is small.
 そのため、個別データおよび個別データの伝送に要する制御情報は、たとえばスモールセルで伝送される。個別データの伝送に要する制御情報は、たとえば、伝送に用いる無線リソースや、使用する変調方式などを設定するための制御情報(たとえばLTEにおけるL1/L2シグナリング)である。 Therefore, individual data and control information required for transmission of the individual data are transmitted, for example, in a small cell. The control information required for transmission of individual data is, for example, control information (for example, L1 / L2 signaling in LTE) for setting radio resources used for transmission, modulation schemes to be used, and the like.
 また、システム情報や回線設定等に用いられるレイヤ3の無線回線制御情報(たとえばLTEにおけるRRC情報)については、たとえばマクロセルで伝送される。また、現状のシステムではマクロセルをPCellとし、スモールセルをSCellとすることが一般的である。なお、技術的には、スモールセルをPCellとし、マクロセルをSCellとすることも可能である。 Also, layer 3 radio channel control information (for example, RRC information in LTE) used for system information, channel setting, etc. is transmitted in, for example, a macro cell. In the current system, the macro cell is generally PCell and the small cell is SCell. Technically, the small cell can be a PCell and the macrocell can be an SCell.
 また、従来、PCellの基地局と端末との間で、PCellおよびSCellの無線回線制御が行われる。すなわち、無線回線制御情報は、PCellの基地局と端末との間で伝送され、SCellの基地局と端末との間では伝送されない。また、PCellとSCellの基地局と端末との間でユーザデータが伝送される。なお、3GPPにおいては、個別データ(ユーザデータ)を扱う機能をU-プレーン(User plane)と呼び、RRCより上位の制御情報を扱う機能をC-プレーン(Control plane)と呼んでいる。このことから、3GPPにおいては、伝送する情報を種類(たとえばC-プレーンまたはU-プレーン)によって分け、それぞれ異なるセルで伝送することをC/U分離と呼んでいる。 Conventionally, PCell and SCell wireless line control is performed between a PCell base station and a terminal. That is, the radio network control information is transmitted between the PCell base station and the terminal, and is not transmitted between the SCell base station and the terminal. Also, user data is transmitted between the PCell and SCell base stations and terminals. In 3GPP, a function for handling individual data (user data) is called a U-plane (User plane), and a function for handling control information higher than RRC is called a C-plane (Control plane). For this reason, in 3GPP, the information to be transmitted is divided according to the type (for example, C-plane or U-plane) and transmitted in different cells, which is called C / U separation.
 C/U分離の目的の一つは、たとえば図1に示した例のようにマクロセルとスモールセルを用いてアンブレラセル構成とし、多数のスモールセルを設置し、スモールセルでユーザデータを伝送することにより、システム全体の容量を増加することである。また、C/U分離により、マクロセルで無線回線制御情報を送受信することでレイヤ3レベルのハンドオーバの数が削減できる。また、C/U分離により、端末とスモールセルの通信が外的要因により不通となっても、端末とマクロセルでの通信は継続しているため呼切断とはならないなど、呼継続の観点からもメリットがある。 One of the purposes of C / U separation is to set up an umbrella cell configuration using macro cells and small cells, for example, as shown in FIG. 1, and to install a large number of small cells and transmit user data in the small cells. To increase the capacity of the entire system. Also, the number of layer 3 level handovers can be reduced by transmitting / receiving radio channel control information in a macro cell by C / U separation. Also, due to C / U separation, even if communication between the terminal and the small cell is interrupted due to an external factor, communication between the terminal and the macro cell is continued, so the call will not be disconnected. There are benefits.
 なお、マクロセルはセル半径がスモールセルと比較し大きいため、相対的に伝搬損の小さい800[MHz]帯などの低周波が使用される。一方、スモールセルは、マクロセルと比較しセル半径が小さいため伝搬損が大きくても所要伝送品質を満たせるため、3.5[GHz]帯や6[GHz]帯などの高周波が用いられる。また、スモールセルは、伝搬損が大きいことから他セルに対して与える干渉を抑えることができ、スモールセルを近接して配置することが容易である。 Since the cell radius of the macro cell is larger than that of the small cell, a low frequency such as an 800 [MHz] band having a relatively small propagation loss is used. On the other hand, since the small cell has a smaller cell radius than the macro cell and can satisfy the required transmission quality even if the propagation loss is large, a high frequency such as 3.5 [GHz] band or 6 [GHz] band is used. Moreover, since a small cell has a large propagation loss, it can suppress the interference given with respect to another cell, and it is easy to arrange | position a small cell close.
 また、6[GHz]帯は、800[MHz]帯と比較して周波数帯域幅を広くすることが可能であるため、800[MHz]帯と比較して高速伝送が可能である。このため、マクロセルは800[MHz]などの比較的低周波を用い、スモールセルは6[GHz]帯などの比較的高周波を用いることが検討されている。なお、所要伝送品質を満たすことができれば、マクロセルで6[GHz]帯などの高周波を使用し、スモールセルで800[MHz]帯などの低周波を使用することも可能である。 In addition, since the 6 [GHz] band can have a wider frequency bandwidth than the 800 [MHz] band, high-speed transmission is possible compared to the 800 [MHz] band. For this reason, it is considered that the macro cell uses a relatively low frequency such as 800 [MHz], and the small cell uses a relatively high frequency such as 6 [GHz] band. If the required transmission quality can be satisfied, it is possible to use a high frequency such as the 6 [GHz] band in the macro cell and a low frequency such as the 800 [MHz] band in the small cell.
 上述したように、C/U分離においては、無線回線制御情報とユーザデータについて通信する基地局が異なるため、無線回線制御情報とユーザデータとで伝搬経路が異なり無線状況も異なることが想定される。たとえば、図1に示した例のように、端末とマクロ基地局との間の通信経路によりC-プレーンの情報を伝送し、端末とスモール基地局との間の通信経路によりU-プレーンの情報を伝送するとする。 As described above, in C / U separation, the base station that communicates about radio channel control information and user data is different, so it is assumed that the radio channel control information and user data have different propagation paths and different radio conditions. . For example, as in the example shown in FIG. 1, C-plane information is transmitted through a communication path between a terminal and a macro base station, and U-plane information is transmitted through a communication path between the terminal and a small base station. Is transmitted.
 この場合に、端末とマクロ基地局との間の通信経路の無線回線品質が、他装置からの無線干渉や、端末の移動に伴ったフェージングや伝搬環境の変動などによって劣化することがある。このため、端末の無線回線の維持ができなくなり、端末とマクロ基地局との間の無線回線が断(たとえば3GPPのradio link frailer)となる。その結果、端末とスモール基地局との間の無線回線の維持もできなくなり、端末とスモール基地局との間の無線回線も断となる。 In this case, the radio channel quality of the communication path between the terminal and the macro base station may be deteriorated due to radio interference from other apparatuses, fading due to movement of the terminal, fluctuation of propagation environment, and the like. For this reason, the wireless channel of the terminal cannot be maintained, and the wireless channel between the terminal and the macro base station is disconnected (for example, 3GPP radio link flier). As a result, the wireless link between the terminal and the small base station cannot be maintained, and the wireless link between the terminal and the small base station is also disconnected.
 これに対して、通信システム100においては、図1~図3に示したように、図1に示したC/U分離の第1状態から、図2,図3に示した冗長送信または迂回送信を行う第2状態へ切り替えることができる。これにより、端末101と第1無線局110との間の通信品質が劣化しても、端末101の無線回線の断(呼切断)を回避することができる。 On the other hand, in the communication system 100, as shown in FIGS. 1 to 3, the redundant transmission or bypass transmission shown in FIGS. 2 and 3 is started from the first state of C / U separation shown in FIG. Can be switched to the second state. Thereby, even if the communication quality between the terminal 101 and the first wireless station 110 deteriorates, disconnection (call disconnection) of the wireless line of the terminal 101 can be avoided.
(基地局の機能を分割する構成について)
 また、多数の基地局を設置することは設備コストの増加を招き、事業者の負担を大きくする。そこで、従来の基地局の機能を、たとえばアナログ部のみで構成されたRRH(Remote Radio Header)と、ディジタル部のみで構成されたBBU(Base Band Unit)と、に分割した構成が検討されている。また、複数のRRHと1つのBBU(C-BBU)により基地局が構成される構成も検討されている。
(About the configuration that divides the functions of the base station)
Also, the installation of a large number of base stations increases the equipment cost and increases the burden on the operator. Therefore, a configuration in which the function of a conventional base station is divided into, for example, an RRH (Remote Radio Header) configured only by an analog portion and a BBU (Base Band Unit) configured only by a digital portion is being studied. . In addition, a configuration in which a base station is configured by a plurality of RRHs and one BBU (C-BBU) has been studied.
(実施の形態にかかる通信システムにおける冗長送信を行う場合のプロトコルスタック)
 図4は、実施の形態にかかる通信システムにおける冗長送信を行う場合のプロトコルスタックの一例を示す図である。図4において、図1~図3に示した部分と同様の部分については同一の符号を付して説明を省略する。LTEにおいて図2に示した冗長送信を行う場合における無線回線制御情報(C-プレーン)およびユーザデータ(U-プレーン)の処理のプロトコルスタックは、たとえば図4のようになる。
(Protocol stack for redundant transmission in the communication system according to the embodiment)
FIG. 4 is a diagram illustrating an example of a protocol stack when redundant transmission is performed in the communication system according to the embodiment. 4, parts that are the same as the parts shown in FIGS. 1 to 3 are given the same reference numerals, and descriptions thereof will be omitted. For example, FIG. 4 shows a protocol stack for processing radio channel control information (C-plane) and user data (U-plane) when the redundant transmission shown in FIG. 2 is performed in LTE.
 図4に示すMME401は、図1に示したC/U分離の状態において第1無線局110のC-プレーンを処理するMME(Mobility Management Entity:移動性管理エンティティ)である。図4に示すS-GW402は、図1に示したC/U分離の状態において第2無線局120のU-プレーンを処理するS-GW(Serving-Gateway)である。 The MME 401 shown in FIG. 4 is an MME (Mobility Management Entity) that processes the C-plane of the first radio station 110 in the C / U separation state shown in FIG. An S-GW 402 shown in FIG. 4 is an S-GW (Serving-Gateway) that processes the U-plane of the second radio station 120 in the C / U separation state shown in FIG.
 図4に示す例では、第1無線局110は、マクロセル111を介してMME401と端末101との間で送受信されるC-プレーンの無線回線制御情報に対するレイヤ2以上の処理として、RRC、PDCP、RLC、MACの各処理を行っている。RRCはRadio Resource Controlの略である。PDCPはPacket Data Convergence Protocolの略である。RLCはRadio Link Controlの略である。MACはMedia Access Controlの略である。 In the example shown in FIG. 4, the first radio station 110 performs RRC, PDCP, RCP, PDCP, RLC and MAC processes are performed. RRC is an abbreviation for Radio Resource Control. PDCP is an abbreviation for Packet Data Convergence Protocol. RLC is an abbreviation for Radio Link Control. MAC is an abbreviation for Media Access Control.
 また、第2無線局120は、スモールセル121を介してS-GW402と端末101との間で送受信されるU-プレーンのユーザデータに対するレイヤ2以上の処理として、たとえばPDCP、RLC、MACの各処理を行っている。 Further, the second radio station 120 performs, for example, each of PDCP, RLC, and MAC as processing of layer 2 or higher for U-plane user data transmitted / received between the S-GW 402 and the terminal 101 via the small cell 121. Processing is in progress.
 また、図2に示した冗長送信において、第1無線局110は、たとえば下りの無線回線制御情報をPDCPレイヤで第3経路133(X2インタフェース)を介して第2無線局120のPDCPレイヤへ転送する。このとき、第1無線局110は、第2無線局120へ転送する無線回線制御情報に、C-プレーンの情報であることを示す情報やシーケンス番号等を付与する。 In the redundant transmission shown in FIG. 2, the first radio station 110 transfers, for example, downlink radio channel control information to the PDCP layer of the second radio station 120 via the third path 133 (X2 interface) in the PDCP layer. To do. At this time, the first radio station 110 adds information indicating a C-plane information, a sequence number, and the like to the radio channel control information transferred to the second radio station 120.
 第2無線局120は、第1無線局110から転送された無線回線制御情報をU-プレーンの情報として端末101へ送信する。このとき、第2無線局120は、第1無線局110から転送された無線回線制御情報に対するレイヤ2以上の処理として、たとえばPDCP、RLC、MACの各処理を行う。 The second radio station 120 transmits the radio channel control information transferred from the first radio station 110 to the terminal 101 as U-plane information. At this time, the second radio station 120 performs, for example, each process of PDCP, RLC, and MAC as layer 2 or higher processing for the radio channel control information transferred from the first radio station 110.
 これにより、端末101は、C-プレーンの無線回線制御情報を、第1無線局110および第2無線局120の両方から受信することができる。このとき、端末101がU-プレーンの情報として第2無線局120から受信する情報においては、C-プレーンの無線回線制御情報およびU-プレーンのユーザデータが混在している。 Thereby, the terminal 101 can receive the C-plane radio channel control information from both the first radio station 110 and the second radio station 120. At this time, in the information that the terminal 101 receives from the second radio station 120 as U-plane information, C-plane radio channel control information and U-plane user data are mixed.
 これに対して、端末101は、第1無線局110のPDCPレイヤによって付与されたC-プレーンの情報であることを示す情報に基づいて、C-プレーンの無線回線制御情報およびU-プレーンのユーザデータを区別して受信することができる。また、端末101は、第1無線局110のPDCPレイヤによって付与されたシーケンス番号等に基づいて、受信したメッセージが新規か受信済みかを判別することができる。 On the other hand, the terminal 101, based on the information indicating the C-plane information assigned by the PDCP layer of the first radio station 110, the C-plane radio channel control information and the U-plane user Data can be received separately. Also, the terminal 101 can determine whether the received message is new or has been received based on the sequence number assigned by the PDCP layer of the first wireless station 110.
 なお、PDCPレイヤによって第1無線局110から第2無線局120へ無線回線制御情報を転送する構成について説明したが、無線回線制御情報を転送するレイヤはPDCPレイヤに限らず、たとえばRLCレイヤやMACレイヤとしてもよい。 In addition, although the structure which transfers radio channel control information from the 1st radio station 110 to the 2nd radio station 120 by the PDCP layer was demonstrated, the layer which transfers radio channel control information is not restricted to a PDCP layer, For example, RLC layer or MAC It is good also as a layer.
 また、下りの無線回線制御情報について説明したが、上りの無線回線制御情報についても同様に冗長送信を行うことができる。たとえば、端末101は、C-プレーンの上りの無線回線制御情報を第1無線局110および第2無線局120の両方へ送信する。端末101から第2無線局120へ送信された無線回線制御情報は、第2無線局120のPCPDレイヤにて、C-プレーンの情報であると判別され、第3経路133を介して第1無線局110のPDCPレイヤに転送され、MME401へ送信される。 In addition, although downlink radio channel control information has been described, redundant transmission can be similarly performed for uplink radio channel control information. For example, the terminal 101 transmits C-plane uplink radio channel control information to both the first radio station 110 and the second radio station 120. The radio channel control information transmitted from the terminal 101 to the second radio station 120 is determined as C-plane information in the PCPD layer of the second radio station 120, and the first radio is transmitted via the third path 133. It is transferred to the PDCP layer of the station 110 and transmitted to the MME 401.
(実施の形態にかかる通信システムにおける迂回送信を行う場合のプロトコルスタック)
 図5は、実施の形態にかかる通信システムにおける迂回送信を行う場合のプロトコルスタックの一例を示す図である。図5において、図4に示した部分と同様の部分については同一の符号を付して説明を省略する。LTEにおいて図3に示した迂回送信を行う場合における無線回線制御情報(C-プレーン)およびユーザデータ(U-プレーン)の処理のプロトコルスタックは、たとえば図5のようになる。
(Protocol stack when performing detour transmission in the communication system according to the embodiment)
FIG. 5 is a diagram illustrating an example of a protocol stack when performing bypass transmission in the communication system according to the embodiment. In FIG. 5, the same parts as those shown in FIG. For example, FIG. 5 shows a protocol stack of processing of radio channel control information (C-plane) and user data (U-plane) when the detour transmission shown in FIG. 3 is performed in LTE.
 図5に示すように、迂回送信においては、第1無線局110は、C-プレーンの無線回線制御情報をPDCPレイヤで第3経路133を介して第2無線局120のPDCPレイヤへ転送し、無線回線制御情報を端末101との間で直接送受信しない。このため、第1無線局110は、無線回線制御情報に対するレイヤ2以上の処理としてはRRCおよびPDCPの各処理を行い、RLCおよびMACの各処理は行わない。 As shown in FIG. 5, in the detour transmission, the first radio station 110 transfers the C-plane radio channel control information to the PDCP layer of the second radio station 120 via the third path 133 in the PDCP layer, Wireless line control information is not directly transmitted to or received from the terminal 101. For this reason, the first radio station 110 performs RRC and PDCP processes as layer 2 and higher processes for radio channel control information, and does not perform RLC and MAC processes.
(実施の形態にかかる端末)
 図6は、実施の形態にかかる端末の一例を示す図である。実施の形態にかかる端末101は、たとえば図6に示す端末600により実現することができる。端末600は、アンテナ601と、無線送受信部610と、L2・L3制御部620と、端末動作制御部630と、を備える。
(Terminal according to the embodiment)
FIG. 6 is a diagram illustrating an example of a terminal according to the embodiment. The terminal 101 according to the embodiment can be realized by, for example, the terminal 600 shown in FIG. The terminal 600 includes an antenna 601, a wireless transmission / reception unit 610, an L2 / L3 control unit 620, and a terminal operation control unit 630.
 アンテナ601は、他の通信装置(たとえば第1無線局110や第2無線局120)から無線送信された信号を受信し、受信した信号を無線送受信部610へ出力する。また、アンテナ601は、無線送受信部610から出力された信号を他の通信装置(たとえば第1無線局110や第2無線局120)へ無線送信する。 The antenna 601 receives a signal wirelessly transmitted from another communication device (for example, the first wireless station 110 or the second wireless station 120), and outputs the received signal to the wireless transmission / reception unit 610. Further, the antenna 601 wirelessly transmits the signal output from the wireless transmission / reception unit 610 to another communication device (for example, the first wireless station 110 or the second wireless station 120).
 無線送受信部610は、アンテナ601を介して無線信号の送受信を行う。たとえば、無線送受信部610は、受信信号IF/処理部611と、送信信号IF/処理部612と、を含む。受信信号IF/処理部611は、アンテナ601から出力された信号に対する受信処理を行う。受信処理には、たとえば、増幅、RF(Radio Frequency:高周波)帯からベースバンド帯への周波数変換、アナログ信号からディジタル信号への変換、復調、復号などが含まれる。受信信号IF/処理部611は、受信処理を行った信号をL2・L3制御部620へ出力する。 The wireless transmission / reception unit 610 transmits / receives a wireless signal via the antenna 601. For example, the wireless transmission / reception unit 610 includes a reception signal IF / processing unit 611 and a transmission signal IF / processing unit 612. The reception signal IF / processing unit 611 performs reception processing on the signal output from the antenna 601. The reception processing includes, for example, amplification, frequency conversion from an RF (Radio Frequency) band to a baseband, conversion from an analog signal to a digital signal, demodulation, decoding, and the like. The reception signal IF / processing unit 611 outputs the signal subjected to the reception process to the L2 / L3 control unit 620.
 送信信号IF/処理部612は、L2・L3制御部620から出力された信号に対する送信処理を行う。送信処理には、たとえば、符号化、変調、ディジタル信号からアナログ信号への変換、ベースバンド帯からRF帯への周波数変換、増幅などが含まれる。送信信号IF/処理部612は、送信処理を行った信号をアンテナ601へ出力する。 The transmission signal IF / processing unit 612 performs transmission processing on the signal output from the L2 / L3 control unit 620. The transmission process includes, for example, encoding, modulation, conversion from a digital signal to an analog signal, frequency conversion from a baseband to an RF band, amplification, and the like. Transmission signal IF / processing section 612 outputs the signal subjected to the transmission process to antenna 601.
 L2・L3制御部620は、無線送受信部610から出力された信号に対するレイヤ2(たとえばRLC、MAC、PDCP)およびレイヤ3(たとえばRRC)の処理を行うことにより、端末600におけるレイヤ2およびレイヤ3の受信制御を行う。また、L2・L3制御部620は、端末600が送信する情報に対するレイヤ2およびレイヤ3の処理で得られた信号を無線送受信部610へ出力することにより、端末600におけるレイヤ2およびレイヤ3の送信制御を行う。 The L2 / L3 control unit 620 performs layer 2 (for example, RLC, MAC, PDCP) and layer 3 (for example, RRC) processing on the signal output from the radio transmission / reception unit 610, thereby performing layer 2 and layer 3 in the terminal 600. Perform reception control. Also, the L2 / L3 control unit 620 outputs the signals obtained by the layer 2 and layer 3 processing on the information transmitted by the terminal 600 to the radio transmission / reception unit 610, thereby transmitting the layer 2 and layer 3 in the terminal 600. Take control.
 たとえば、L2・L3制御部620は、C-プレーン制御部621と、U-プレーン制御部622と、を含む。C-プレーン制御部621は、無線送受信部610を介して、端末600におけるC-プレーンの無線回線制御情報の送受信を行う。U-プレーン制御部622は、無線送受信部610を介して、端末600におけるU-プレーンのユーザデータの送受信を行う。 For example, the L2 / L3 control unit 620 includes a C-plane control unit 621 and a U-plane control unit 622. The C-plane control unit 621 transmits / receives C-plane radio line control information in the terminal 600 via the radio transmission / reception unit 610. The U-plane control unit 622 transmits / receives U-plane user data in the terminal 600 via the wireless transmission / reception unit 610.
 端末動作制御部630は、L2・L3制御部620を制御することによって端末600の通信動作を制御する。たとえば、端末動作制御部630は、無線回線品質測定報告部631と、迂回・冗長送信判断部632と、ハンドオーバ制御部633と、を含む。 The terminal operation control unit 630 controls the communication operation of the terminal 600 by controlling the L2 / L3 control unit 620. For example, the terminal operation control unit 630 includes a radio channel quality measurement report unit 631, a bypass / redundant transmission determination unit 632, and a handover control unit 633.
 無線回線品質測定報告部631は、端末600における無線品質を測定し、端末600が接続中の基地局(たとえば第1無線局110)から指示されたタイミングで、測定した無線品質を示す無線品質情報を接続中の基地局へ送信する。 Radio channel quality measurement report section 631 measures radio quality at terminal 600, and shows radio quality information indicating the measured radio quality at a timing instructed by a base station (for example, first radio station 110) to which terminal 600 is connected. To the connected base station.
 無線回線品質測定報告部631による無線品質の測定は、たとえば受信信号IF/処理部611による信号の受信結果をL2・L3制御部620から取得することによって行うことができる。無線回線品質測定報告部631によって測定される無線品質は、たとえば、RSRP、RSCP、BLERなどである。無線回線品質測定報告部631による無線品質情報の送信は、たとえばL2・L3制御部620に対して無線品質情報の送信を指示することによって行うことができる。 The radio quality measurement by the radio channel quality measurement report unit 631 can be performed, for example, by acquiring the reception result of the signal by the reception signal IF / processing unit 611 from the L2 / L3 control unit 620. The radio quality measured by the radio channel quality measurement report unit 631 is, for example, RSRP, RSCP, BLER, or the like. The transmission of the wireless quality information by the wireless channel quality measurement report unit 631 can be performed, for example, by instructing the L2 / L3 control unit 620 to transmit the wireless quality information.
 迂回・冗長送信判断部632は、たとえば無線回線品質測定報告部631によって得られた無線品質情報に基づいて、冗長送信および迂回送信のいずれを行うかを判断する。そして、迂回・冗長送信判断部632は、判断結果を、端末600が接続中の基地局に対して送信するようにL2・L3制御部620へ指示することにより、冗長送信および迂回送信のいずれを行うかを制御する。 The detour / redundant transmission determination unit 632 determines whether to perform redundant transmission or detour transmission based on the radio quality information obtained by the radio channel quality measurement report unit 631, for example. Then, the detour / redundant transmission determining unit 632 instructs the L2 / L3 control unit 620 to transmit the determination result to the base station to which the terminal 600 is connected, thereby performing either redundant transmission or detour transmission. Control what to do.
 ただし、冗長送信および迂回送信のいずれを行うかを基地局等において判断する場合等は、端末600には迂回・冗長送信判断部632を設けなくてもよい。ハンドオーバ制御部633は、端末600が接続中の基地局(たとえば第1無線局110)からの指示に基づいて、端末600の接続先のセルの切り替えを行う。 However, when the base station or the like determines whether to perform redundant transmission or bypass transmission, the terminal 600 does not have to be provided with the bypass / redundant transmission determination unit 632. The handover control unit 633 switches the connection destination cell of the terminal 600 based on an instruction from a base station (for example, the first radio station 110) to which the terminal 600 is connected.
 端末600において、第1無線局110および第2無線局120のそれぞれと無線通信が可能な通信部は、たとえばアンテナ601および無線送受信部610により実現することができる。また、端末600において、通信部を制御する制御部は、たとえばL2・L3制御部620および端末動作制御部630により実現することができる。 In the terminal 600, a communication unit capable of performing wireless communication with each of the first wireless station 110 and the second wireless station 120 can be realized by the antenna 601 and the wireless transmission / reception unit 610, for example. In the terminal 600, the control unit that controls the communication unit can be realized by, for example, the L2 / L3 control unit 620 and the terminal operation control unit 630.
 また、制御装置140を端末600において実現する場合において、第1状態と第2状態の切り替えを判断する判断部は、たとえば端末動作制御部630により実現することができる。また、制御装置140を端末600において実現する場合において、判断部による判断結果に基づいて第1状態と第2状態とを切り替える制御部は、たとえばL2・L3制御部620により実現することができる。 Further, when the control device 140 is realized in the terminal 600, the determination unit that determines switching between the first state and the second state can be realized by the terminal operation control unit 630, for example. Further, when the control device 140 is realized in the terminal 600, the control unit that switches between the first state and the second state based on the determination result by the determination unit can be realized by the L2 / L3 control unit 620, for example.
 図7は、実施の形態にかかる端末のハードウェア構成の一例を示す図である。図6に示した端末600は、たとえば図7に示す通信装置700により実現することができる。通信装置700は、CPU701と、メモリ702と、ユーザインタフェース703と、無線通信インタフェース704と、を備える。CPU701、メモリ702、ユーザインタフェース703および無線通信インタフェース704は、バス709により接続される。 FIG. 7 is a diagram illustrating an example of a hardware configuration of the terminal according to the embodiment. The terminal 600 shown in FIG. 6 can be realized by, for example, the communication device 700 shown in FIG. The communication device 700 includes a CPU 701, a memory 702, a user interface 703, and a wireless communication interface 704. The CPU 701, the memory 702, the user interface 703, and the wireless communication interface 704 are connected by a bus 709.
 CPU701(Central Processing Unit)は、通信装置700の全体の制御を司る。メモリ702には、たとえばメインメモリおよび補助メモリが含まれる。メインメモリは、たとえばRAM(Random Access Memory)である。メインメモリは、CPU701のワークエリアとして使用される。補助メモリは、たとえば磁気ディスクやフラッシュメモリなどの不揮発メモリである。補助メモリには、通信装置700を動作させる各種のプログラムが記憶されている。補助メモリに記憶されたプログラムは、メインメモリにロードされてCPU701によって実行される。 CPU 701 (Central Processing Unit) controls the entire communication device 700. The memory 702 includes, for example, a main memory and an auxiliary memory. The main memory is, for example, a RAM (Random Access Memory). The main memory is used as a work area for the CPU 701. The auxiliary memory is a non-volatile memory such as a magnetic disk or a flash memory. Various programs for operating the communication device 700 are stored in the auxiliary memory. The program stored in the auxiliary memory is loaded into the main memory and executed by the CPU 701.
 ユーザインタフェース703は、たとえば、ユーザからの操作入力を受け付ける入力デバイスや、ユーザへ情報を出力する出力デバイスなどを含む。入力デバイスは、たとえばキー(たとえばキーボード)やリモコンなどにより実現することができる。出力デバイスは、たとえばディスプレイやスピーカなどにより実現することができる。また、タッチパネルなどによって入力デバイスおよび出力デバイスを実現してもよい。ユーザインタフェース703は、CPU701によって制御される。 The user interface 703 includes, for example, an input device that receives an operation input from the user, an output device that outputs information to the user, and the like. The input device can be realized by, for example, a key (for example, a keyboard) or a remote controller. The output device can be realized by, for example, a display or a speaker. Further, an input device and an output device may be realized by a touch panel or the like. The user interface 703 is controlled by the CPU 701.
 無線通信インタフェース704は、無線によって通信装置700の外部(たとえば第1無線局110や第2無線局120)との間で通信を行う通信インタフェースである。無線通信インタフェース704は、CPU701によって制御される。 The wireless communication interface 704 is a communication interface that communicates with the outside of the communication device 700 (for example, the first wireless station 110 and the second wireless station 120) wirelessly. The wireless communication interface 704 is controlled by the CPU 701.
 図6に示したアンテナ601および無線送受信部610は、たとえば無線通信インタフェース704により実現することができる。図6に示したL2・L3制御部620および端末動作制御部630は、たとえばCPU701により実現することができる。 The antenna 601 and the wireless transmission / reception unit 610 illustrated in FIG. 6 can be realized by the wireless communication interface 704, for example. The L2 / L3 control unit 620 and the terminal operation control unit 630 illustrated in FIG. 6 can be realized by the CPU 701, for example.
(実施の形態にかかる基地局)
 図8は、実施の形態にかかる基地局の一例を示す図である。実施の形態にかかる第1無線局110および第2無線局120のそれぞれは、たとえば図8に示す基地局800により実現することができる。基地局800は、アンテナ801と、無線送受信部810と、L2・L3制御部820と、L2・L3制御部830と、伝送路インタフェース部840と、基地局動作制御部850と、を備える。
(Base station according to the embodiment)
FIG. 8 is a diagram of an example of the base station according to the embodiment. Each of first radio station 110 and second radio station 120 according to the embodiment can be realized by base station 800 shown in FIG. 8, for example. The base station 800 includes an antenna 801, a radio transmission / reception unit 810, an L2 / L3 control unit 820, an L2 / L3 control unit 830, a transmission path interface unit 840, and a base station operation control unit 850.
 アンテナ801は、他の通信装置(たとえば端末101や他の端末)から無線送信された信号を受信し、受信した信号を無線送受信部810へ出力する。また、アンテナ801は、無線送受信部810から出力された信号を他の通信装置(たとえば端末101や他の端末)へ無線送信する。 The antenna 801 receives a signal wirelessly transmitted from another communication device (for example, the terminal 101 or another terminal), and outputs the received signal to the wireless transmission / reception unit 810. Further, the antenna 801 wirelessly transmits the signal output from the wireless transmission / reception unit 810 to another communication device (for example, the terminal 101 or another terminal).
 無線送受信部810は、アンテナ801を介して無線信号の送受信を行う。たとえば、無線送受信部810は、受信信号IF/処理部811と、送信信号IF/処理部812と、を含む。受信信号IF/処理部811は、アンテナ801から出力された信号に対する受信処理を行う。受信処理には、たとえば、増幅、RF帯からベースバンド帯への周波数変換、アナログ信号からディジタル信号への変換、復調、復号などが含まれる。受信信号IF/処理部811は、受信処理を行った信号をL2・L3制御部820へ出力する。 The wireless transmission / reception unit 810 transmits / receives a wireless signal via the antenna 801. For example, the wireless transmission / reception unit 810 includes a reception signal IF / processing unit 811 and a transmission signal IF / processing unit 812. The reception signal IF / processing unit 811 performs reception processing on the signal output from the antenna 801. The reception process includes, for example, amplification, frequency conversion from the RF band to the baseband, conversion from an analog signal to a digital signal, demodulation, decoding, and the like. The reception signal IF / processing unit 811 outputs the signal subjected to the reception process to the L2 / L3 control unit 820.
 送信信号IF/処理部812は、L2・L3制御部820から出力された信号に対する送信処理を行う。送信処理には、たとえば、符号化、変調、ディジタル信号からアナログ信号への変換、ベースバンド帯からRF帯への周波数変換、増幅などが含まれる。送信信号IF/処理部812は、送信処理を行った信号をアンテナ801へ出力する。 The transmission signal IF / processing unit 812 performs transmission processing on the signal output from the L2 / L3 control unit 820. The transmission process includes, for example, encoding, modulation, conversion from a digital signal to an analog signal, frequency conversion from a baseband to an RF band, amplification, and the like. Transmission signal IF / processing section 812 outputs the signal subjected to the transmission process to antenna 801.
 L2・L3制御部820は、無線送受信部810から出力された信号に対するレイヤ2およびレイヤ3の処理を行うことにより、基地局800と端末101との間の通信におけるレイヤ2およびレイヤ3の受信制御を行う。また、L2・L3制御部820は、基地局800が送信する情報に対するレイヤ2およびレイヤ3の処理で得られた信号を無線送受信部810へ出力することにより、基地局800と端末101の間の通信におけるレイヤ2およびレイヤ3の送信制御を行う。 The L2 / L3 control unit 820 performs layer 2 and layer 3 processing on the signal output from the radio transmission / reception unit 810, thereby performing layer 2 and layer 3 reception control in communication between the base station 800 and the terminal 101. I do. In addition, the L2 / L3 control unit 820 outputs a signal obtained by layer 2 and layer 3 processing on information transmitted from the base station 800 to the radio transmission / reception unit 810, thereby allowing the base station 800 and the terminal 101 to communicate with each other. Transmission control of layer 2 and layer 3 in communication is performed.
 L2・L3制御部820は、C-プレーン制御部821と、U-プレーン制御部822と、を含む。C-プレーン制御部821は、無線送受信部810を介して、基地局800と端末101との間のC-プレーンの無線回線制御情報の送受信を行う。U-プレーン制御部822は、無線送受信部810を介して、基地局800と端末101との間のU-プレーンのユーザデータの送受信を行う。C-プレーン制御部821およびU-プレーン制御部822は、たとえば基地局800との間で無線通信が設定される端末(たとえば端末101)ごとにL2・L3制御部820に設定される。 The L2 / L3 control unit 820 includes a C-plane control unit 821 and a U-plane control unit 822. The C-plane control unit 821 transmits / receives C-plane radio line control information between the base station 800 and the terminal 101 via the radio transmission / reception unit 810. The U-plane control unit 822 transmits / receives U-plane user data between the base station 800 and the terminal 101 via the radio transmission / reception unit 810. C-plane control unit 821 and U-plane control unit 822 are set in L2 / L3 control unit 820 for each terminal (for example, terminal 101) for which wireless communication is set with base station 800, for example.
 L2・L3制御部830は、無線送受信部810から出力された信号に対するレイヤ2およびレイヤ3の処理を行うことにより、基地局800と他装置との間の通信におけるレイヤ2およびレイヤ3の受信制御を行う。他装置には、たとえば、他の基地局や、MME401およびS-GW402などの基地局800の上位装置などが含まれる。また、L2・L3制御部830は、基地局800が送信する情報に対するレイヤ2およびレイヤ3の処理で信号を無線送受信部810へ出力することにより、基地局800と他装置の間の通信におけるレイヤ2およびレイヤ3の送信制御を行う。 The L2 / L3 control unit 830 performs layer 2 and layer 3 processing on the signal output from the radio transmission / reception unit 810, thereby performing layer 2 and layer 3 reception control in communication between the base station 800 and another device. I do. Other devices include, for example, other base stations and higher-level devices of the base station 800 such as the MME 401 and the S-GW 402. Further, the L2 / L3 control unit 830 outputs a signal to the wireless transmission / reception unit 810 in the layer 2 and layer 3 processing for the information transmitted by the base station 800, so that the layer in the communication between the base station 800 and another device is performed. 2 and layer 3 transmission control.
 たとえば、L2・L3制御部830は、C-プレーン制御部831と、U-プレーン制御部832と、を含む。C-プレーン制御部831は、伝送路インタフェース部840を介して、基地局800における他装置との間のC-プレーンの無線回線制御情報の送受信を行う。U-プレーン制御部832は、伝送路インタフェース部840を介して、基地局800における他装置との間のU-プレーンのユーザデータの送受信を行う。 For example, the L2 / L3 control unit 830 includes a C-plane control unit 831 and a U-plane control unit 832. The C-plane control unit 831 transmits / receives C-plane radio line control information to / from other apparatuses in the base station 800 via the transmission path interface unit 840. The U-plane control unit 832 transmits / receives U-plane user data to / from other devices in the base station 800 via the transmission path interface unit 840.
 伝送路インタフェース部840は、他の基地局や基地局800の上位装置などの他装置との間で通信を行うインタフェースである。図1~図3に示した第3経路133(X2インタフェース)は、たとえば伝送路インタフェース部840により実現される。たとえば、第1無線局110および第2無線局120に基地局800を適用する場合に、第3経路133は、第1無線局110および第2無線局120のそれぞれの伝送路インタフェース部840により実現することができる。 The transmission path interface unit 840 is an interface that communicates with other devices such as other base stations and higher-order devices of the base station 800. The third path 133 (X2 interface) shown in FIGS. 1 to 3 is realized by the transmission path interface unit 840, for example. For example, when the base station 800 is applied to the first radio station 110 and the second radio station 120, the third path 133 is realized by the respective transmission path interface units 840 of the first radio station 110 and the second radio station 120. can do.
 基地局動作制御部850は、L2・L3制御部820を制御することによって端末101との間の基地局800の通信の動作を制御する。また、基地局動作制御部850は、L2・L3制御部830を制御することによって、他の基地局や基地局800の上位装置などの他装置との間の基地局800の通信の動作を制御する。たとえば、基地局動作制御部850は、無線回線品質測定制御部851と、迂回・冗長送信判断部852と、ハンドオーバ制御部853と、C/U分離制御部854と、を含む。 The base station operation control unit 850 controls the communication operation of the base station 800 with the terminal 101 by controlling the L2 / L3 control unit 820. In addition, the base station operation control unit 850 controls the communication operation of the base station 800 with another device such as another base station or a higher-level device of the base station 800 by controlling the L2 / L3 control unit 830. To do. For example, the base station operation control unit 850 includes a radio channel quality measurement control unit 851, a detour / redundant transmission determination unit 852, a handover control unit 853, and a C / U separation control unit 854.
 無線回線品質測定制御部851は、端末101に対して無線品質の測定を指示する。無線回線品質測定制御部851による測定の指示は、たとえばL2・L3制御部820に対して端末101への制御信号の送信を指示することによって行うことができる。 The radio channel quality measurement control unit 851 instructs the terminal 101 to measure radio quality. The measurement instruction by the wireless channel quality measurement control unit 851 can be performed by, for example, instructing the L2 / L3 control unit 820 to transmit a control signal to the terminal 101.
 迂回・冗長送信判断部852は、たとえば無線回線品質測定制御部851からの指示によって端末101から送信された無線品質情報に基づいて、冗長送信および迂回送信のいずれを行うかを判断する。そして、迂回・冗長送信判断部852は、判断結果に基づいて、冗長送信または迂回送信を行う制御を行う。迂回・冗長送信判断部852による冗長送信または迂回送信を行う制御は、たとえば、他の基地局や端末101への制御信号の送信を指示することによって行うことができる。 The detour / redundant transmission determination unit 852 determines whether to perform redundant transmission or detour transmission based on the radio quality information transmitted from the terminal 101 according to an instruction from the radio channel quality measurement control unit 851, for example. Then, the bypass / redundant transmission determination unit 852 performs control for performing redundant transmission or bypass transmission based on the determination result. Control for performing redundant transmission or detour transmission by the detour / redundant transmission determination unit 852 can be performed by instructing transmission of a control signal to another base station or the terminal 101, for example.
 ハンドオーバ制御部853は、端末101に対して、接続先のセルの切り替えの指示を行う。ハンドオーバ制御部853による切り替えの指示は、たとえばL2・L3制御部820に対して端末101への制御信号の送信を指示することによって行うことができる。 The handover control unit 853 instructs the terminal 101 to switch the connection destination cell. The switching instruction by the handover control unit 853 can be performed by, for example, instructing the L2 / L3 control unit 820 to transmit a control signal to the terminal 101.
 C/U分離制御部854は、たとえば無線回線品質測定制御部851からの指示によって端末101から送信された無線品質情報に基づいて、上述したC/U分離を行うか否かを判断する。そして、C/U分離制御部854は、判断結果に基づいて、C/U分離を行う制御を行う。また、C/U分離制御部854は、迂回・冗長送信判断部852によって冗長送信または迂回送信が実施されている場合に、冗長送信または迂回送信の状態からC/U分離の状態へ戻すか否かを判断し、戻すと判断した場合はC/U分離の状態へ戻す制御を行う。C/U分離制御部854によるこれらの制御は、たとえば、他の基地局や端末101への制御信号の送信を指示することによって行うことができる。 The C / U separation control unit 854 determines whether or not to perform the above-described C / U separation based on the wireless quality information transmitted from the terminal 101 according to an instruction from the wireless channel quality measurement control unit 851, for example. Then, the C / U separation control unit 854 performs control for performing C / U separation based on the determination result. Also, the C / U separation control unit 854 determines whether or not to return from the redundant transmission or bypass transmission state to the C / U separation state when redundant transmission or bypass transmission is performed by the bypass / redundant transmission determination unit 852. If it is determined to return, C / U separation control is performed. Such control by the C / U separation control unit 854 can be performed by instructing transmission of a control signal to another base station or the terminal 101, for example.
 また、基地局動作制御部850には、たとえば無線回線制御情報の経路で品質低下や切断が発生した場所を記憶して管理を行う品質情報履歴制御部など、他の処理部が含まれていてもよい。 In addition, the base station operation control unit 850 includes other processing units such as a quality information history control unit that stores and manages locations where quality degradation or disconnection has occurred in the path of the wireless channel control information. Also good.
 基地局800において、端末101と無線通信が可能な第1通信部は、たとえばアンテナ801および無線送受信部810により実現することができる。また、基地局800において、第2無線局120と通信が可能な第2通信部は、たとえば伝送路インタフェース部840により実現することができる。また、基地局800において、第1状態と第2状態を切り替える制御部は、たとえばL2・L3制御部820、L2・L3制御部830および基地局動作制御部850により実現することができる。 In the base station 800, the first communication unit capable of wireless communication with the terminal 101 can be realized by the antenna 801 and the wireless transmission / reception unit 810, for example. Further, in base station 800, the second communication unit capable of communicating with second radio station 120 can be realized by, for example, transmission path interface unit 840. Further, in the base station 800, a control unit that switches between the first state and the second state can be realized by, for example, the L2 / L3 control unit 820, the L2 / L3 control unit 830, and the base station operation control unit 850.
 また、制御装置140を基地局800において実現する場合において、第1状態と第2状態の切り替えを判断する判断部は、たとえば基地局動作制御部850により実現することができる。また、制御装置140を基地局800において実現する場合において、判断部による判断結果に基づいて第1状態と第2状態とを切り替える制御部は、たとえばL2・L3制御部820およびL2・L3制御部830により実現することができる。 Further, when the control device 140 is realized in the base station 800, the determination unit that determines switching between the first state and the second state can be realized by the base station operation control unit 850, for example. Further, when the control device 140 is realized in the base station 800, the control units that switch between the first state and the second state based on the determination result by the determination unit are, for example, the L2 / L3 control unit 820 and the L2 / L3 control unit 830 can be realized.
 図9は、実施の形態にかかる基地局のハードウェア構成の一例を示す図である。図8に示した基地局800は、たとえば図9に示す通信装置900により実現することができる。通信装置900は、CPU901と、メモリ902と、無線通信インタフェース903と、有線通信インタフェース904と、を備える。CPU901、メモリ902、無線通信インタフェース903および有線通信インタフェース904は、バス909により接続される。 FIG. 9 is a diagram illustrating an example of a hardware configuration of the base station according to the embodiment. The base station 800 shown in FIG. 8 can be realized by the communication apparatus 900 shown in FIG. 9, for example. The communication device 900 includes a CPU 901, a memory 902, a wireless communication interface 903, and a wired communication interface 904. The CPU 901, the memory 902, the wireless communication interface 903 and the wired communication interface 904 are connected by a bus 909.
 CPU901は、通信装置900の全体の制御を司る。メモリ902には、たとえばメインメモリおよび補助メモリが含まれる。メインメモリは、たとえばRAMである。メインメモリは、CPU901のワークエリアとして使用される。補助メモリは、たとえば磁気ディスク、光ディスク、フラッシュメモリなどの不揮発メモリである。補助メモリには、通信装置900を動作させる各種のプログラムが記憶されている。補助メモリに記憶されたプログラムは、メインメモリにロードされてCPU901によって実行される。 The CPU 901 governs overall control of the communication device 900. The memory 902 includes, for example, a main memory and an auxiliary memory. The main memory is, for example, a RAM. The main memory is used as a work area for the CPU 901. The auxiliary memory is, for example, a nonvolatile memory such as a magnetic disk, an optical disk, or a flash memory. Various programs for operating the communication device 900 are stored in the auxiliary memory. The program stored in the auxiliary memory is loaded into the main memory and executed by the CPU 901.
 無線通信インタフェース903は、無線によって通信装置900の外部(たとえば端末101)との間で通信を行う通信インタフェースである。無線通信インタフェース903は、CPU901によって制御される。 The wireless communication interface 903 is a communication interface that performs communication with the outside of the communication device 900 (for example, the terminal 101) wirelessly. The wireless communication interface 903 is controlled by the CPU 901.
 有線通信インタフェース904は、有線によって通信装置900の外部(たとえばMME401、S-GW402、第2無線局120)との間で通信を行う通信インタフェースである。有線通信インタフェース904は、CPU901によって制御される。図1~図3に示した第3経路133(X2インタフェース)は、たとえば有線通信インタフェース904に含まれる。 The wired communication interface 904 is a communication interface that performs communication with the outside of the communication device 900 (for example, the MME 401, the S-GW 402, the second wireless station 120) by wire. The wired communication interface 904 is controlled by the CPU 901. The third path 133 (X2 interface) shown in FIGS. 1 to 3 is included in the wired communication interface 904, for example.
 図8に示したアンテナ801および無線送受信部810は、たとえば無線通信インタフェース903により実現することができる。図8に示したL2・L3制御部820,830および基地局動作制御部850は、たとえばCPU901により実現することができる。図8に示した伝送路インタフェース部840は、たとえば有線通信インタフェース904により実現することができる。 The antenna 801 and the wireless transmission / reception unit 810 shown in FIG. 8 can be realized by the wireless communication interface 903, for example. The L2 / L3 control units 820 and 830 and the base station operation control unit 850 illustrated in FIG. 8 can be realized by the CPU 901, for example. The transmission path interface unit 840 shown in FIG. 8 can be realized by the wired communication interface 904, for example.
(実施の形態にかかる通信システムによるC/U分離の処理)
 図10は、実施の形態にかかる通信システムによるC/U分離の処理の一例を示すシーケンス図である。実施の形態にかかる通信システム100においては、C/U分離の処理として、たとえば図10に示す各ステップが実行される。上述したように、第1無線局110のマクロセル111と第2無線局120のスモールセル121とはアンブレラセル構成となっており、端末101はマクロセル111とスモールセル121のいずれにも接続可能であるとする。
(C / U separation processing by communication system according to embodiment)
FIG. 10 is a sequence diagram illustrating an example of C / U separation processing by the communication system according to the embodiment. In the communication system 100 according to the embodiment, for example, the steps shown in FIG. 10 are executed as the C / U separation process. As described above, the macro cell 111 of the first radio station 110 and the small cell 121 of the second radio station 120 have an umbrella cell configuration, and the terminal 101 can be connected to either the macro cell 111 or the small cell 121. And
 図10に示すC-プレーン制御部1011は、端末101においてC-プレーンの制御を行う処理部であり、たとえば図6に示したC-プレーン制御部621である。U-プレーン制御部1021は、端末101においてU-プレーンの制御を行う処理部であり、たとえば図6に示したU-プレーン制御部622である。 The C-plane control unit 1011 shown in FIG. 10 is a processing unit that controls the C-plane in the terminal 101, and is, for example, the C-plane control unit 621 shown in FIG. The U-plane control unit 1021 is a processing unit that controls the U-plane in the terminal 101, and is, for example, the U-plane control unit 622 shown in FIG.
 C-プレーン制御部1012は、端末101のC-プレーン制御部1011との間でC-プレーンの制御を行う処理部であり、たとえば図8に示したC-プレーン制御部821に設定される。U-プレーン制御部1022は、端末101のU-プレーン制御部1021との間でU-プレーンの制御を行う処理部であり、たとえば図8に示したU-プレーン制御部822に設定される。 The C-plane control unit 1012 is a processing unit that controls the C-plane with the C-plane control unit 1011 of the terminal 101, and is set in, for example, the C-plane control unit 821 shown in FIG. The U-plane control unit 1022 is a processing unit that controls the U-plane with the U-plane control unit 1021 of the terminal 101, and is set in the U-plane control unit 822 shown in FIG. 8, for example.
 図10に示す例では、初期状態において、C-プレーン制御部1012およびU-プレーン制御部1022は第1無線局110に設定されている。そして、端末101のC-プレーン制御部1011と第1無線局110のC-プレーン制御部1012との間でC-プレーンの伝送が行われている(ステップS1001)。また、端末101のU-プレーン制御部1021と第1無線局110のU-プレーン制御部1022との間でU-プレーンの伝送が行われている(ステップS1002)。すなわち、初期状態において、端末101のC-プレーンおよびU-プレーンのいずれも第1無線局110により伝送される、C/U分離の前の状態となっている。 In the example shown in FIG. 10, the C-plane control unit 1012 and the U-plane control unit 1022 are set to the first radio station 110 in the initial state. Then, C-plane transmission is performed between the C-plane control unit 1011 of the terminal 101 and the C-plane control unit 1012 of the first radio station 110 (step S1001). Also, U-plane transmission is performed between the U-plane control unit 1021 of the terminal 101 and the U-plane control unit 1022 of the first radio station 110 (step S1002). That is, in the initial state, both the C-plane and the U-plane of the terminal 101 are in a state before C / U separation transmitted by the first radio station 110.
 つぎに、端末101のC-プレーン制御部1011が、第2無線局120の配下セル(スモールセル121)の品質情報を第1無線局110のC-プレーン制御部1012へ送信する(ステップS1003)。品質情報には、たとえば、RSRP、RSCP、BLERなどを用いることができる。 Next, the C-plane control unit 1011 of the terminal 101 transmits the quality information of the subordinate cell (small cell 121) of the second radio station 120 to the C-plane control unit 1012 of the first radio station 110 (step S1003). . For example, RSRP, RSCP, BLER, etc. can be used as the quality information.
 たとえば、端末101は、移動制御やCAを実施するために、端末101の周辺の各セルの無線品質測定を行う。この場合に、ステップS1003による品質情報の送信は、たとえば、端末101から第1無線局110への、第1無線局110と第2無線局120の配下セルの無線品質情報の通知である。この無線品質情報は、一例としてはLTEシステムのRRCプロトコルのMEASUREMENT REPORTである。ただし、ステップS1003による品質情報の送信はこれに限らず、たとえば端末101から第1無線局110への再接続要求や位置情報測定結果の通知に伴う品質情報の送信であってもよい。 For example, the terminal 101 performs radio quality measurement of each cell around the terminal 101 in order to perform mobility control and CA. In this case, the transmission of quality information in step S1003 is, for example, notification of radio quality information of subordinate cells of the first radio station 110 and the second radio station 120 from the terminal 101 to the first radio station 110. The radio quality information is, for example, MEASUREMENT REPORT of the RRC protocol of the LTE system. However, the transmission of the quality information in step S1003 is not limited to this. For example, the transmission of quality information accompanying a reconnection request from the terminal 101 to the first radio station 110 or a notification of the position information measurement result may be used.
 つぎに、第1無線局110のC-プレーン制御部1012が、ステップS1003によって送信された第2無線局120の配下セルの品質情報からC/U分離を実施可と判断したとする(ステップS1004)。なお、ここでは第2無線局120の配下セルの品質情報からC/U分離を実施可と判断する場合について説明したが、C/U分離の可否の判断には、第2無線局120の配下セルの品質情報に限らず各種の情報を用いることができる。たとえば、C/U分離の可否の判断には、上述したように、第1無線局110の輻輳状況、サービス種別、ユーザとの契約情報、端末の位置情報、過去の端末固有情報などを用いてもよい。 Next, it is assumed that the C-plane control unit 1012 of the first radio station 110 determines that C / U separation can be performed from the quality information of the subordinate cell of the second radio station 120 transmitted in step S1003 (step S1004). ). Here, a case has been described in which it is determined that C / U separation is feasible from the quality information of the subordinate cells of the second radio station 120. However, the subordinate of the second radio station 120 is used to determine whether or not C / U separation is possible. Various types of information can be used without being limited to cell quality information. For example, in order to determine whether or not C / U separation is possible, as described above, the congestion state of the first wireless station 110, the service type, the contract information with the user, the terminal position information, the past terminal specific information, and the like are used. Also good.
 つぎに、第1無線局110のC-プレーン制御部1012が、第3経路133を介して、U-プレーンの接続先切替指示を第2無線局120へ送信する(ステップS1005)。また、第1無線局110のC-プレーン制御部1012が、U-プレーンの接続先切替指示を端末101のC-プレーン制御部1011へ送信する(ステップS1006)。U-プレーンの接続先切替指示は、端末101のU-プレーンの接続先を第1無線局110から第2無線局120へ切り替えることを指示する制御信号である。U-プレーンの接続先切替指示には、端末101のU-プレーンの接続先を第1無線局110から第2無線局120へ切り替えるタイミング等を示す情報が含まれていてもよい。 Next, the C-plane control unit 1012 of the first radio station 110 transmits a U-plane connection destination switching instruction to the second radio station 120 via the third path 133 (step S1005). Also, the C-plane control unit 1012 of the first radio station 110 transmits a U-plane connection destination switching instruction to the C-plane control unit 1011 of the terminal 101 (step S1006). The U-plane connection destination switching instruction is a control signal instructing to switch the U-plane connection destination of the terminal 101 from the first radio station 110 to the second radio station 120. The U-plane connection destination switching instruction may include information indicating the timing of switching the U-plane connection destination of the terminal 101 from the first radio station 110 to the second radio station 120.
 つぎに、第2無線局120が、ステップS1005によって送信されたU-プレーンの接続先切替指示に基づいて、端末101との間の無線回線を設定する(ステップS1007)。これにより、端末101との間のU-プレーンを制御するU-プレーン制御部1022が第1無線局110から第2無線局120へ移管される。 Next, the second wireless station 120 sets up a wireless line with the terminal 101 based on the U-plane connection destination switching instruction transmitted in step S1005 (step S1007). As a result, the U-plane control unit 1022 that controls the U-plane with the terminal 101 is transferred from the first radio station 110 to the second radio station 120.
 また、端末101のC-プレーン制御部1011が、ステップS1006によって送信されたU-プレーンの接続先切替指示に基づいて、U-プレーンの接続先を第2無線局120へ切り替える。そして、C-プレーン制御部1011は、U-プレーンの接続先切替完了通知を第2無線局120へ送信する(ステップS1008)。U-プレーンの接続先切替完了通知は、U-プレーンの接続先の切り替えが完了したことを示す情報である。 Also, the C-plane control unit 1011 of the terminal 101 switches the U-plane connection destination to the second radio station 120 based on the U-plane connection destination switching instruction transmitted in step S1006. Then, the C-plane control unit 1011 transmits a U-plane connection destination switching completion notification to the second radio station 120 (step S1008). The U-plane connection destination switching completion notification is information indicating that the switching of the U-plane connection destination has been completed.
 つぎに、端末101のU-プレーン制御部1021と第2無線局120のU-プレーン制御部1022との間でU-プレーンの伝送が開始される(ステップS1009)。このとき、C-プレーンの伝送については、端末101のC-プレーン制御部1011と第1無線局110のC-プレーン制御部1012との間で行われる。これにより、図1に示したC/U分離の状態(第1状態)となる。 Next, U-plane transmission is started between the U-plane control unit 1021 of the terminal 101 and the U-plane control unit 1022 of the second radio station 120 (step S1009). At this time, C-plane transmission is performed between the C-plane control unit 1011 of the terminal 101 and the C-plane control unit 1012 of the first radio station 110. As a result, the C / U separation state (first state) shown in FIG. 1 is obtained.
(実施の形態にかかる通信システムによるC/U分離後の冗長送信処理)
 図11は、実施の形態にかかる通信システムによるC/U分離後の冗長送信処理の一例を示すシーケンス図である。実施の形態にかかる通信システム100においては、たとえば図10に示したC/U分離後の冗長送信の処理として、たとえば図11に示す各ステップが実行される。図11に示す例では、たとえば図10に示したC/U分離により、端末101が、C-プレーンについては第1無線局110と無線通信を行い、U-プレーンについては第2無線局120と無線通信を行っているとする。
(Redundant transmission processing after C / U separation by the communication system according to the embodiment)
FIG. 11 is a sequence diagram illustrating an example of redundant transmission processing after C / U separation by the communication system according to the embodiment. In the communication system 100 according to the embodiment, for example, the steps shown in FIG. 11 are executed as the redundant transmission processing after C / U separation shown in FIG. 10, for example. In the example shown in FIG. 11, the terminal 101 performs radio communication with the first radio station 110 for the C-plane and the second radio station 120 for the U-plane, for example, by C / U separation shown in FIG. Assume that wireless communication is performed.
 まず、第1無線局110のC-プレーン制御部1012が、端末101のC-プレーン制御部1011へ、C-プレーンの伝送により無線回線制御情報#1を送信したとする(ステップS1101)。この場合に、第1無線局110のC-プレーン制御部1012は、ステップS1101により送信した無線回線制御情報#1に対する端末101からの応答メッセージを待ち合わせる時間を計時するタイマを設定する(ステップS1102)。 First, it is assumed that the C-plane control unit 1012 of the first radio station 110 transmits the radio channel control information # 1 to the C-plane control unit 1011 of the terminal 101 by C-plane transmission (step S1101). In this case, the C-plane control unit 1012 of the first radio station 110 sets a timer that times the time for waiting for a response message from the terminal 101 for the radio channel control information # 1 transmitted in step S1101 (step S1102). .
 また、このとき、図10に示した状態と同様に、端末101のU-プレーン制御部1021と第2無線局120のU-プレーン制御部1022との間でU-プレーンの伝送が行われている(ステップS1103)。 At this time, similarly to the state shown in FIG. 10, U-plane transmission is performed between the U-plane control unit 1021 of the terminal 101 and the U-plane control unit 1022 of the second radio station 120. (Step S1103).
 つぎに、ステップS1101によって送信された無線回線制御情報#1に対する端末101から第1無線局110への応答がない状態で、ステップS1102によって設定されたタイマが満了したとする(ステップS1104)。この場合は、第1無線局110のC-プレーン制御部1012は、無線回線制御情報#1または無線回線制御情報#1に対する応答メッセージが紛失(ロスト)したと判断し、冗長送信を開始する制御を行う。 Next, it is assumed that the timer set in step S1102 has expired in a state where there is no response from the terminal 101 to the first radio station 110 for the radio channel control information # 1 transmitted in step S1101 (step S1104). In this case, the C-plane control unit 1012 of the first radio station 110 determines that the response message for the radio channel control information # 1 or the radio channel control information # 1 is lost (lost), and starts redundant transmission. I do.
 すなわち、第1無線局110のC-プレーン制御部1012が、冗長送信の切替指示を端末101のC-プレーン制御部1011へ送信する(ステップS1105)。冗長送信の切替指示は、たとえば図1に示したC/U分離の状態(第1状態)から、たとえば図2に示した冗長送信の状態(第2状態)に切り替えることを指示する制御信号である。また、第1無線局110のC-プレーン制御部1012が、第3経路133を介して、冗長送信の切替指示を第2無線局120へ送信する(ステップS1106)。 That is, the C-plane control unit 1012 of the first radio station 110 transmits a redundant transmission switching instruction to the C-plane control unit 1011 of the terminal 101 (step S1105). The redundant transmission switching instruction is, for example, a control signal instructing switching from the C / U separation state (first state) shown in FIG. 1 to the redundant transmission state (second state) shown in FIG. is there. Further, the C-plane control unit 1012 of the first radio station 110 transmits a redundant transmission switching instruction to the second radio station 120 via the third path 133 (step S1106).
 以降のC-プレーンの無線回線制御情報は、第1経路131と、第3経路133および第2経路132を含む経路と、の両方によって送信される(たとえば図2参照)。たとえば、第1無線局110のC-プレーン制御部1012は、端末101へのC-プレーンの無線回線制御情報#2を、C-プレーンの伝送により端末101のC-プレーン制御部1011へ直接送信する(ステップS1107)。また、第1無線局110のC-プレーン制御部1012は、ステップS1107によって送信する無線回線制御情報#2と同じ無線回線制御情報#2を、第3経路133を介して第2無線局120へ送信する(ステップS1108)。つぎに、第2無線局120のU-プレーン制御部1022が、ステップS1108によって送信された無線回線制御情報#2を、U-プレーンの情報として端末101のU-プレーン制御部1021へ送信する(ステップS1109)。 Subsequent C-plane radio line control information is transmitted by both the first route 131 and the route including the third route 133 and the second route 132 (see, for example, FIG. 2). For example, C-plane control section 1012 of first radio station 110 directly transmits C-plane radio link control information # 2 to terminal 101 to C-plane control section 1011 of terminal 101 by C-plane transmission. (Step S1107). In addition, the C-plane control unit 1012 of the first radio station 110 transmits the same radio channel control information # 2 as the radio channel control information # 2 transmitted in step S1107 to the second radio station 120 via the third path 133. Transmit (step S1108). Next, the U-plane control unit 1022 of the second radio station 120 transmits the radio channel control information # 2 transmitted in step S1108 to the U-plane control unit 1021 of the terminal 101 as U-plane information ( Step S1109).
 つぎに、端末101のU-プレーン制御部1021が、端末101のC-プレーン制御部1011へ、ステップS1109によって送信された無線回線制御情報#2をC-プレーンの情報として転送する(ステップS1110)。 Next, the U-plane control unit 1021 of the terminal 101 transfers the wireless line control information # 2 transmitted in step S1109 to the C-plane control unit 1011 of the terminal 101 as C-plane information (step S1110). .
 これにより、端末101のC-プレーン制御部1011は、ステップS1107,S1110の両方によって無線回線制御情報#2を受信することができる。これに対して、端末101は、無線回線制御情報#2の各受信結果に基づいて、無線回線制御情報#2を高い品質で復号(再生)することができる。たとえば、端末101は、無線回線制御情報#2の各受信結果による復号結果のうちの誤りが検出された復号結果を破棄し、誤りが検出されなかった復号結果を採用することで、受信品質を向上させることができる。 Thereby, the C-plane control unit 1011 of the terminal 101 can receive the radio line control information # 2 by both steps S1107 and S1110. On the other hand, the terminal 101 can decode (reproduce) the radio channel control information # 2 with high quality based on each reception result of the radio channel control information # 2. For example, the terminal 101 discards the decoding result in which the error is detected among the decoding results based on the reception results of the radio channel control information # 2, and adopts the decoding result in which no error is detected, thereby improving the reception quality. Can be improved.
 つぎに、ステップS1105,S1106によって冗長送信が開始されてから、端末101と第1無線局110との間の通信品質が改善しない状態で一定時間が経過したとする(ステップS1111)。端末101と第1無線局110との間の通信品質が改善しない状態とは、たとえば、冗長送信において第1無線局110から端末101へ送信する無線回線制御情報に対する端末101からの応答メッセージが規定時間内に受信できない状態である。この場合は、第1無線局110は、C-プレーン制御部1012を第2無線局120へ移管させる制御を行う。 Next, it is assumed that a certain period of time has elapsed after the redundant transmission is started in steps S1105 and S1106 without improving the communication quality between the terminal 101 and the first radio station 110 (step S1111). The state where the communication quality between the terminal 101 and the first radio station 110 is not improved is, for example, that a response message from the terminal 101 to the radio channel control information transmitted from the first radio station 110 to the terminal 101 in redundant transmission is defined The reception is not possible within the time. In this case, the first radio station 110 performs control to transfer the C-plane control unit 1012 to the second radio station 120.
 すなわち、第1無線局110は、C-プレーン制御部1012を第1無線局110から第2無線局120へ移管することを指示するC-プレーン制御部移管指示を、第3経路133を介して第2無線局120へ送信する(ステップS1112)。これにより、C-プレーン制御部1012が第1無線局110から第2無線局120へ移管される。 That is, the first radio station 110 transmits a C-plane control unit transfer instruction that instructs to transfer the C-plane control unit 1012 from the first radio station 110 to the second radio station 120 via the third path 133. Transmit to the second radio station 120 (step S1112). As a result, the C-plane control unit 1012 is transferred from the first radio station 110 to the second radio station 120.
 つぎに、第2無線局120のU-プレーン制御部1022が、通信先のC-プレーン制御部の切り替えを指示するC-プレーン制御部切替指示を、U-プレーンの情報として端末101のU-プレーン制御部1021へ送信する(ステップS1113)。つぎに、端末101のU-プレーン制御部1021が、端末101のC-プレーン制御部1011へ、ステップS1113によって送信されたC-プレーン制御部切替指示をC-プレーンの情報として転送する(ステップS1114)。 Next, the U-plane control unit 1022 of the second radio station 120 uses the C-plane control unit switching instruction to instruct switching of the communication destination C-plane control unit as the U-plane information as the U-plane of the terminal 101. The data is transmitted to the plane control unit 1021 (step S1113). Next, the U-plane control unit 1021 of the terminal 101 transfers the C-plane control unit switching instruction transmitted in step S1113 as C-plane information to the C-plane control unit 1011 of the terminal 101 (step S1114). ).
 つぎに、端末101のC-プレーン制御部1011が、C-プレーンの通信先を第2無線局120へ切り替え、C-プレーン制御部切替完了通知を第2無線局120へ送信する(ステップS1115)。つぎに、第2無線局120が、C-プレーン制御部切替完了通知を、第3経路133を介して第1無線局110へ送信する(ステップS1116)。つぎに、第1無線局110が、端末101との間で設定していた無線回線を解放する(ステップS1117)。 Next, the C-plane control unit 1011 of the terminal 101 switches the communication destination of the C-plane to the second radio station 120 and transmits a C-plane control unit switching completion notification to the second radio station 120 (step S1115). . Next, the second radio station 120 transmits a C-plane control unit switching completion notification to the first radio station 110 via the third path 133 (step S1116). Next, the first wireless station 110 releases the wireless line set up with the terminal 101 (step S1117).
 これにより、C-プレーン制御部1012の移管が完了し、C-プレーン制御部1012およびU-プレーン制御部1022が第2無線局120に設定された状態となる。すなわち、端末101は、C-プレーンおよびU-プレーンのいずれも第2無線局120により伝送する状態(第3状態)となる。 Thereby, the transfer of the C-plane control unit 1012 is completed, and the C-plane control unit 1012 and the U-plane control unit 1022 are set in the second radio station 120. That is, terminal 101 enters a state (third state) in which both C-plane and U-plane are transmitted by second radio station 120.
 無線回線制御情報#1,#2などの無線回線制御情報は、たとえば、LTEシステムのRRC CONNECTION SETUPやRRC CONNECTION RECONFIGURATION等である。この場合に、無線回線制御情報に対する応答メッセージは、たとえば、LTEシステムのRRC CONNECTION SETUP COMPLETEやRRC CONNECTION RECONFIGURATION COMPLETEなどである。ただし、無線回線制御情報および無線回線制御情報に対する応答メッセージは、これらに限らず、各種の無線回線制御情報とすることができる。 Radio channel control information such as radio channel control information # 1 and # 2 is, for example, LTE system RRC CONNECTION SETUP, RRC CONNECTION RECONFIGURATION, or the like. In this case, the response message to the radio network control information is, for example, RRC CONNECTION SETUP COMPLETE or RRC CONNECTION RECONFIGURATION COMPLETE of the LTE system. However, the wireless channel control information and the response message to the wireless channel control information are not limited to these, and can be various types of wireless channel control information.
(実施の形態にかかる通信システムによるC/U分離後の迂回送信処理)
 図12は、実施の形態にかかる通信システムによるC/U分離後の基地局契機での迂回送信処理の一例を示すシーケンス図である。実施の形態にかかる通信システム100においては、たとえば図10に示したC/U分離後の迂回送信の処理として、たとえば図12に示す各ステップが実行されてもよい。図12に示す例では、たとえば図10に示したC/U分離により、端末101は、C-プレーンについては第1無線局110と無線通信を行い、U-プレーンについては第2無線局120と無線通信を行っているとする。
(Detour transmission processing after C / U separation by communication system according to embodiment)
FIG. 12 is a sequence diagram illustrating an example of detour transmission processing at the base station opportunity after C / U separation by the communication system according to the embodiment. In the communication system 100 according to the embodiment, for example, each step shown in FIG. 12 may be executed as a bypass transmission process after C / U separation shown in FIG. In the example shown in FIG. 12, for example, by C / U separation shown in FIG. 10, terminal 101 performs radio communication with first radio station 110 for the C-plane and with second radio station 120 for the U-plane. Assume that wireless communication is performed.
 図12に示すステップS1201~S1204は、図11に示したステップS1101~S1104と同様である。図12に示す例では、第1無線局110のC-プレーン制御部1012は、ステップS1204において無線回線制御情報#1または応答メッセージが紛失したと判断すると、迂回送信を開始する制御を行う。 Steps S1201 to S1204 shown in FIG. 12 are the same as steps S1101 to S1104 shown in FIG. In the example shown in FIG. 12, when the C-plane control unit 1012 of the first radio station 110 determines that the radio channel control information # 1 or the response message is lost in step S1204, it performs control to start bypass transmission.
 すなわち、第1無線局110のC-プレーン制御部1012が、迂回送信の切替指示を端末101のC-プレーン制御部1011へ送信する(ステップS1205)。迂回送信の切替指示は、たとえば図1に示したC/U分離の状態(第1状態)から、たとえば図3に示した迂回送信の状態(第2状態)に切り替えることを指示する制御信号である。また、第1無線局110のC-プレーン制御部1012が、第3経路133を介して、迂回送信の切替指示を第2無線局120へ送信する(ステップS1206)。 That is, the C-plane control unit 1012 of the first radio station 110 transmits a bypass transmission switching instruction to the C-plane control unit 1011 of the terminal 101 (step S1205). The bypass transmission switching instruction is, for example, a control signal instructing switching from the C / U separation state (first state) shown in FIG. 1 to the bypass transmission state (second state) shown in FIG. 3, for example. is there. Further, the C-plane control unit 1012 of the first wireless station 110 transmits a bypass transmission switching instruction to the second wireless station 120 via the third path 133 (step S1206).
 以降のC-プレーンの無線回線制御情報は、第3経路133および第2経路132を含む経路によって送信され、第1経路131によっては送信されない(たとえば図3参照)。たとえば、第1無線局110のC-プレーン制御部1012は、端末101へのC-プレーンの無線回線制御情報#2を、第3経路133を介して第2無線局120へ送信する(ステップS1207)。つぎに、第2無線局120のU-プレーン制御部1022が、ステップS1207によって送信された無線回線制御情報#2を、U-プレーンの情報として端末101のU-プレーン制御部1021へ送信する(ステップS1208)。 Subsequent C-plane radio line control information is transmitted via a route including the third route 133 and the second route 132, and is not transmitted via the first route 131 (see, for example, FIG. 3). For example, the C-plane control unit 1012 of the first radio station 110 transmits the C-plane radio channel control information # 2 for the terminal 101 to the second radio station 120 via the third path 133 (step S1207). ). Next, the U-plane control unit 1022 of the second radio station 120 transmits the radio channel control information # 2 transmitted in step S1207 to the U-plane control unit 1021 of the terminal 101 as U-plane information ( Step S1208).
 つぎに、端末101のU-プレーン制御部1021が、端末101のC-プレーン制御部1011へ、ステップS1208によって送信された無線回線制御情報#2をC-プレーンの情報として転送する(ステップS1209)。これにより、第1経路131を用いずに端末101のC-プレーンの無線回線制御情報を伝送し、無線リソースの利用効率の向上を図ることができる。 Next, the U-plane control unit 1021 of the terminal 101 transfers the wireless line control information # 2 transmitted in step S1208 as C-plane information to the C-plane control unit 1011 of the terminal 101 (step S1209). . As a result, it is possible to transmit the radio channel control information of the C-plane of the terminal 101 without using the first path 131, and to improve the utilization efficiency of radio resources.
 つぎに、ステップS1205,S1206によって迂回送信が開始されてから、端末101と第1無線局110との間の通信品質が改善しない状態で一定時間が経過したとする(ステップS1210)。この場合は、第1無線局110は、C-プレーン制御部1012を第2無線局120へ移管させる制御を行う。 Next, it is assumed that a certain period of time has elapsed since the communication quality between the terminal 101 and the first wireless station 110 has not improved since the detour transmission is started in steps S1205 and S1206 (step S1210). In this case, the first radio station 110 performs control to transfer the C-plane control unit 1012 to the second radio station 120.
 すなわち、第1無線局110は、C-プレーン制御部1012を第1無線局110から第2無線局120へ移管することを指示するC-プレーン制御部移管指示を、第3経路133を介して第2無線局120へ送信する(ステップS1211)。これにより、C-プレーン制御部1012が第1無線局110から第2無線局120へ移管される。 That is, the first radio station 110 transmits a C-plane control unit transfer instruction that instructs to transfer the C-plane control unit 1012 from the first radio station 110 to the second radio station 120 via the third path 133. Transmit to the second radio station 120 (step S1211). As a result, the C-plane control unit 1012 is transferred from the first radio station 110 to the second radio station 120.
 つぎに、第2無線局120のU-プレーン制御部1022が、通信先のC-プレーン制御部の切り替えを指示するC-プレーン制御部切替指示を、U-プレーンの情報として端末101のU-プレーン制御部1021へ送信する(ステップS1212)。つぎに、端末101のU-プレーン制御部1021が、端末101のC-プレーン制御部1011へ、ステップS1212によって送信されたC-プレーン制御部切替指示をC-プレーンの情報として転送する(ステップS1213)。 Next, the U-plane control unit 1022 of the second radio station 120 uses the C-plane control unit switching instruction to instruct switching of the communication destination C-plane control unit as the U-plane information as the U-plane of the terminal 101. The data is transmitted to the plane control unit 1021 (step S1212). Next, the U-plane control unit 1021 of the terminal 101 transfers the C-plane control unit switching instruction transmitted in step S1212 to the C-plane control unit 1011 of the terminal 101 as C-plane information (step S1213). ).
 つぎに、端末101のC-プレーン制御部1011が、C-プレーンの通信先を第2無線局120へ切り替え、C-プレーン制御部切替完了通知を第2無線局120へ送信する(ステップS1214)。つぎに、第2無線局120が、C-プレーン制御部切替完了通知を、第3経路133を介して第1無線局110へ送信する(ステップS1215)。つぎに、第1無線局110が、端末101との間で設定していた無線回線を解放する(ステップS1216)。 Next, the C-plane control unit 1011 of the terminal 101 switches the communication destination of the C-plane to the second radio station 120 and transmits a C-plane control unit switching completion notification to the second radio station 120 (step S1214). . Next, the second radio station 120 transmits a C-plane control unit switching completion notification to the first radio station 110 via the third path 133 (step S1215). Next, the first radio station 110 releases the radio line set up with the terminal 101 (step S1216).
 これにより、C-プレーン制御部1012の移管が完了し、C-プレーン制御部1012およびU-プレーン制御部1022が第2無線局120に設定された状態となる。すなわち、端末101は、C-プレーンおよびU-プレーンのいずれも第2無線局120により伝送する状態(第3状態)となる。 Thereby, the transfer of the C-plane control unit 1012 is completed, and the C-plane control unit 1012 and the U-plane control unit 1022 are set in the second radio station 120. That is, terminal 101 enters a state (third state) in which both C-plane and U-plane are transmitted by second radio station 120.
(実施の形態にかかる通信システムによるC/U分離後の端末契機での迂回送信処理)
 図13は、実施の形態にかかる通信システムによるC/U分離後の端末契機での迂回送信処理の一例を示すシーケンス図である。実施の形態にかかる通信システム100においては、たとえば図10に示したC/U分離後の迂回送信の処理として、たとえば図12に示す各ステップが実行されてもよい。図13に示す例では、たとえば図10に示したC/U分離により、端末101は、C-プレーンについては第1無線局110と無線通信を行い、U-プレーンについては第2無線局120と無線通信を行っているとする。
(Detour transmission processing at the terminal opportunity after C / U separation by the communication system according to the embodiment)
FIG. 13 is a sequence diagram illustrating an example of detour transmission processing at a terminal opportunity after C / U separation by the communication system according to the embodiment. In the communication system 100 according to the embodiment, for example, each step shown in FIG. 12 may be executed as a bypass transmission process after C / U separation shown in FIG. In the example shown in FIG. 13, for example, by the C / U separation shown in FIG. 10, the terminal 101 performs radio communication with the first radio station 110 for the C-plane and with the second radio station 120 for the U-plane. Assume that wireless communication is performed.
 まず、端末101のC-プレーン制御部1011が、第1無線局110のC-プレーン制御部1012へ、C-プレーンの伝送により無線回線制御情報#1を送信したとする(ステップS1301)。ステップS1301によって送信される無線回線制御情報#1は、たとえば、LTEのRRC CONNECTION REESTABLISHMENT REQUEST等の無線回線制御情報である。 First, it is assumed that the C-plane control unit 1011 of the terminal 101 transmits the radio channel control information # 1 to the C-plane control unit 1012 of the first radio station 110 by C-plane transmission (step S1301). The radio channel control information # 1 transmitted in step S1301 is radio channel control information such as LTE RRC CONNECTION REESTABISHMENT REQUEST.
 また、端末101のC-プレーン制御部1011が、ステップS1301によって送信した無線回線制御情報#1に対する第1無線局110からの応答メッセージを待ち合わせる時間を計時するタイマを設定する(ステップS1302)。無線回線制御情報#1に対する第1無線局110からの応答メッセージは、たとえば、LTEのRRC CONNECTION REESTABLISHMENT等の無線回線制御情報である。 Also, the C-plane control unit 1011 of the terminal 101 sets a timer that times the time for waiting for a response message from the first radio station 110 for the radio channel control information # 1 transmitted in step S1301 (step S1302). The response message from the first radio station 110 to the radio channel control information # 1 is radio channel control information such as LTE RRC CONNECTION REESTABISHMENT.
 また、このとき、図10に示した状態と同様に、端末101のU-プレーン制御部1021と第2無線局120のU-プレーン制御部1022との間でU-プレーンの伝送が行われている(ステップS1303)。 At this time, similarly to the state shown in FIG. 10, U-plane transmission is performed between the U-plane control unit 1021 of the terminal 101 and the U-plane control unit 1022 of the second radio station 120. (Step S1303).
 つぎに、ステップS1301によって送信された無線回線制御情報#1に対する応答がない状態で、ステップS1302によって設定されたタイマが満了したとする(ステップS1304)。この場合は、端末101のC-プレーン制御部1011は、無線回線制御情報#1または無線回線制御情報#1に対する応答メッセージが紛失(ロスト)したと判断し、迂回送信を開始する制御を行う。 Next, it is assumed that the timer set in step S1302 has expired in the absence of a response to the wireless channel control information # 1 transmitted in step S1301 (step S1304). In this case, the C-plane control unit 1011 of the terminal 101 determines that the response message for the radio channel control information # 1 or the radio channel control information # 1 has been lost (lost), and performs control to start bypass transmission.
 すなわち、端末101のC-プレーン制御部1011が、迂回送信の切替指示を第2無線局120へ送信する(ステップS1305)。つぎに、第2無線局120のU-プレーン制御部1022が、第3経路133を介して、迂回送信の切替指示を第1無線局110へ送信する(ステップS1306)。 That is, the C-plane control unit 1011 of the terminal 101 transmits a bypass transmission switching instruction to the second radio station 120 (step S1305). Next, the U-plane control unit 1022 of the second radio station 120 transmits a bypass transmission switching instruction to the first radio station 110 via the third path 133 (step S1306).
 以降のC-プレーンの無線回線制御情報は、第3経路133および第2経路132を含む経路によって送信され、第1経路131によっては送信されない(たとえば図3参照)。すなわち、以降の処理は、たとえば図12に示したステップS1207~S1216と同様である。 Subsequent C-plane radio line control information is transmitted via a route including the third route 133 and the second route 132, and is not transmitted via the first route 131 (see, for example, FIG. 3). That is, the subsequent processing is the same as, for example, steps S1207 to S1216 shown in FIG.
 端末101が第2無線局120へ制御信号(迂回送信の切替指示)を送信することによって迂回送信を行う処理について説明したが、端末101が第1無線局110へ制御信号(迂回送信の切替指示)を送信することによって迂回送信を行う処理としてもよい。また、端末101が第1無線局110および第2無線局120へ制御信号(迂回送信の切替指示)を送信することによって迂回送信を行う処理としてもよい。 Although the process in which the terminal 101 performs the bypass transmission by transmitting the control signal (the bypass transmission switching instruction) to the second wireless station 120 has been described, the terminal 101 transmits the control signal (the bypass transmission switching instruction) to the first wireless station 110. ) May be used to perform detour transmission. Alternatively, the terminal 101 may perform a bypass transmission by transmitting a control signal (a bypass transmission switching instruction) to the first radio station 110 and the second radio station 120.
 また、端末101における応答メッセージの未受信の検出を契機として迂回送信処理を行う場合について説明したが、端末101における応答メッセージの未受信の検出を契機として図11に示した冗長送信処理を行うようにしてもよい。 Further, the case where the detour transmission process is performed in response to the detection of the non-reception of the response message in the terminal 101 has been described. However, the redundant transmission process illustrated in FIG. It may be.
(実施の形態にかかるC/U分離の状態における基地局による処理)
 図14は、実施の形態にかかるC/U分離の状態における基地局による処理の一例を示すフローチャートである。たとえば図1に示したC/U分離の状態(第1状態)において、第1無線局110(制御装置140)は、たとえば図14に示す各ステップを実行する。まず、第1無線局110は、端末101から受信すべき無線回線制御情報を端末101から一定時間内に受信したか否かを判断する(ステップS1401)。
(Processing by base station in C / U separation state according to embodiment)
FIG. 14 is a flowchart illustrating an example of processing by the base station in the C / U separation state according to the embodiment. For example, in the C / U separation state (first state) shown in FIG. 1, first radio station 110 (control device 140) executes, for example, each step shown in FIG. 14. First, the first radio station 110 determines whether or not radio channel control information to be received from the terminal 101 has been received from the terminal 101 within a certain time (step S1401).
 端末101から受信すべき無線回線制御情報は、たとえば、第1無線局110から端末101へ送信した無線回線制御情報に対する端末101からの応答メッセージである。この場合に、一定時間内とは、たとえば第1無線局110が端末101へ無線回線制御情報を送信してからの一定時間内である。無線回線制御情報を端末101から一定時間内に受信していない場合(ステップS1401:No)は、第1無線局110は、冗長送信または迂回送信(すなわち第2状態)への切り替えを行い(ステップS1402)、一連の処理を終了する。 The radio channel control information to be received from the terminal 101 is, for example, a response message from the terminal 101 to the radio channel control information transmitted from the first radio station 110 to the terminal 101. In this case, the term “within a certain period of time” refers to, for example, a certain period of time after the first radio station 110 transmits radio channel control information to the terminal 101. If the wireless channel control information has not been received from the terminal 101 within a certain time (step S1401: No), the first wireless station 110 switches to redundant transmission or bypass transmission (that is, the second state) (step 2). S1402), a series of processing ends.
 ステップS1401において、無線回線制御情報を端末101から一定時間内に受信した場合(ステップS1401:Yes)は、第1無線局110は、第1無線局110の通信品質が規定値以上であるか否かを判断する(ステップS1403)。第1無線局110の通信品質とは、たとえば端末101によって測定されて第1無線局110へ送信された無線品質情報が示す、第1無線局110と端末101との間の無線通信における品質である。ステップS1403において、通信品質が規定値未満である場合(ステップS1403:No)は、第1無線局110は、ステップS1402へ移行する。 In step S1401, when the wireless channel control information is received from the terminal 101 within a predetermined time (step S1401: Yes), the first wireless station 110 determines whether or not the communication quality of the first wireless station 110 is equal to or higher than a specified value. Is determined (step S1403). The communication quality of the first radio station 110 is, for example, the quality in the radio communication between the first radio station 110 and the terminal 101 indicated by the radio quality information measured by the terminal 101 and transmitted to the first radio station 110. is there. In step S1403, when the communication quality is less than the specified value (step S1403: No), the first radio station 110 proceeds to step S1402.
 ステップS1403において、通信品質が規定値以上である場合(ステップS1403:Yes)は、第1無線局110は、第1無線局110が輻輳しているか否かを判断する(ステップS1404)。第1無線局110が輻輳しているか否かは、たとえば、第1無線局110におけるハードウェア使用量、第1無線局110に接続中のユーザの数、第1無線局110における全体のスループットなどに基づいて判断することができる。第1無線局110が輻輳している場合(ステップS1404:Yes)は、第1無線局110は、ステップS1402へ移行する。 In step S1403, when the communication quality is equal to or higher than the specified value (step S1403: Yes), the first radio station 110 determines whether or not the first radio station 110 is congested (step S1404). Whether the first radio station 110 is congested is, for example, the amount of hardware used in the first radio station 110, the number of users connected to the first radio station 110, the overall throughput in the first radio station 110, etc. Can be determined based on When the first radio station 110 is congested (step S1404: Yes), the first radio station 110 proceeds to step S1402.
 ステップS1404において、第1無線局110が輻輳していない場合(ステップS1404:No)は、第1無線局110は、端末101のサービスが規定のサービスか否かを判断する(ステップS1405)。端末101のサービスは、端末101と第1無線局110との間の無線通信によって提供されているサービスである。端末101のサービスが規定のサービスでない場合(ステップS1405:No)は、第1無線局110は、ステップS1402へ移行する。 In step S1404, if the first wireless station 110 is not congested (step S1404: No), the first wireless station 110 determines whether the service of the terminal 101 is a prescribed service (step S1405). The service of the terminal 101 is a service provided by wireless communication between the terminal 101 and the first wireless station 110. If the service of the terminal 101 is not a prescribed service (step S1405: No), the first radio station 110 proceeds to step S1402.
 ステップS1405において、規定のサービスである場合(ステップS1405:Yes)は、第1無線局110は、端末101が上述した一般端末であるか否かを判断する(ステップS1406)。端末101が一般端末でない場合(ステップS1406:No)は、第1無線局110は、ステップS1402へ移行する。 In step S1405, when the service is a prescribed service (step S1405: Yes), the first wireless station 110 determines whether or not the terminal 101 is the above-described general terminal (step S1406). When the terminal 101 is not a general terminal (step S1406: No), the first radio station 110 proceeds to step S1402.
 ステップS1406において、端末101が一般端末である場合(ステップS1406:Yes)は、第1無線局110は、端末101の位置が冗長送信または迂回送信の領域外であるか否かを判断する(ステップS1407)。冗長送信または迂回送信の領域は、冗長送信または迂回送信を安定して実施することができる領域であって、たとえば第2無線局120のスモールセル121のうちの第2無線局120に近い領域である。領域外でない場合(ステップS1407:No)は、第1無線局110は、ステップS1402へ移行する。 In step S1406, when the terminal 101 is a general terminal (step S1406: Yes), the first wireless station 110 determines whether or not the position of the terminal 101 is outside the redundant transmission or bypass transmission area (step S1406: Yes). S1407). The area of redundant transmission or detour transmission is an area where redundant transmission or detour transmission can be performed stably, for example, in an area close to the second radio station 120 in the small cell 121 of the second radio station 120. is there. When it is not out of the area (step S1407: No), the first radio station 110 proceeds to step S1402.
 ステップS1407において、領域外である場合(ステップS1407:Yes)は、第1無線局110は、端末101から第1無線局110への再接続要求の回数が規定回数以下であるか否かを判断する(ステップS1408)。再接続要求の回数が規定回数以下でない場合(ステップS1408:No)は、第1無線局110は、ステップS1402へ移行する。 In step S1407, when it is outside the area (step S1407: Yes), the first wireless station 110 determines whether or not the number of reconnection requests from the terminal 101 to the first wireless station 110 is equal to or less than the specified number. (Step S1408). If the number of reconnection requests is not less than the specified number (step S1408: No), the first radio station 110 proceeds to step S1402.
 ステップS1408において、再接続要求の回数が規定回数以下である場合(ステップS1408:Yes)は、第1無線局110は、C/U分離の状態を維持し(ステップS1409)、一連の処理を終了する。 In step S1408, when the number of reconnection requests is equal to or less than the specified number (step S1408: Yes), the first radio station 110 maintains the C / U separation state (step S1409) and ends the series of processes. To do.
 このように、第1無線局110は、たとえば、ステップS1401,S1403のように、第1無線局110と端末101との間の無線通信の品質(通信の可否または無線品質情報)に基づいて第1状態と第2状態を切り替える。また、第1無線局110は、たとえば、ステップS1404のように、第1無線局110の輻輳状況に基づいて第1状態と第2状態を切り替える。 As described above, the first radio station 110 performs, for example, steps S1401 and S1403 based on the quality of radio communication (communication availability or radio quality information) between the first radio station 110 and the terminal 101. Switch between state 1 and state 2. Also, the first radio station 110 switches between the first state and the second state based on the congestion status of the first radio station 110, for example, as in step S1404.
 また、第1無線局110は、たとえば、ステップS1405のように、端末101のユーザデータのサービス種別に基づいて第1状態と第2状態を切り替える。また、第1無線局110は、たとえば、ステップS1406のように、端末101のユーザの契約情報(たとえば一般端末または優先端末のいずれであるか)に基づいて第1状態と第2状態を切り替える。 Also, the first radio station 110 switches between the first state and the second state based on the service type of the user data of the terminal 101, for example, as in step S1405. Moreover, the 1st radio station 110 switches a 1st state and a 2nd state based on the contract information (for example, which is a general terminal or a priority terminal) of the user of the terminal 101 like step S1406, for example.
 また、第1無線局110は、たとえば、ステップS1407のように、端末101の位置に基づいて第1状態と第2状態を切り替える。また、第1無線局110は、たとえば、ステップS1408のように、端末101の過去の通信に関する情報(たとえば端末101から第1無線局110への再接続要求の回数)に基づいて第1状態と第2状態を切り替える。また、第1無線局110は、これらの条件の一部に基づいて第1状態と第2状態を切り替えてもよい。 Also, the first radio station 110 switches between the first state and the second state based on the position of the terminal 101, for example, as in step S1407. In addition, the first wireless station 110 is in the first state based on information related to past communication of the terminal 101 (for example, the number of reconnection requests from the terminal 101 to the first wireless station 110), for example, as in step S1408. Switch the second state. In addition, the first radio station 110 may switch between the first state and the second state based on some of these conditions.
 図14においては第1無線局110において冗長送信または迂回送信への切り替えの判断を行う場合について説明したが、この判断は第1無線局110に限らず、たとえば端末101や、第1無線局110の外部の制御装置によって行ってもよい。 In FIG. 14, the case where the first wireless station 110 determines whether to switch to redundant transmission or bypass transmission has been described. However, this determination is not limited to the first wireless station 110, for example, the terminal 101 or the first wireless station 110. It may be performed by an external control device.
(実施の形態にかかるC/U分離の状態における基地局による処理)
 図15は、実施の形態にかかるC/U分離の状態における基地局による処理の一例を示すフローチャートである。たとえば図2,図3に示した冗長送信または迂回送信の状態(第2状態)において、第1無線局110は、たとえば図15に示す各ステップを実行する。また、図15に示す例では、端末101から受信すべき無線回線制御情報を第1無線局110が端末101から一定時間内に受信しなかったことにより冗長送信または迂回送信の状態への切り替えが行われたとする。
(Processing by base station in C / U separation state according to embodiment)
FIG. 15 is a flowchart illustrating an example of processing by the base station in the C / U separation state according to the embodiment. For example, in the redundant transmission or bypass transmission state (second state) shown in FIGS. 2 and 3, the first wireless station 110 executes the steps shown in FIG. 15, for example. In the example illustrated in FIG. 15, the first wireless station 110 has not received the wireless channel control information to be received from the terminal 101 from the terminal 101 within a certain period of time, so that switching to the redundant transmission or bypass transmission state is performed. Suppose it was done.
 まず、第1無線局110は、冗長送信または迂回送信の状態(第2状態)へ切り替えてから一定時間が経過したか否かを判断し(ステップS1501)、一定時間が経過するまで待つ(ステップS1501:Noのループ)。一定時間が経過すると(ステップS1501:Yes)、第1無線局110は、端末101から受信すべき無線回線制御情報を端末101から一定時間内に受信したか否かを判断する(ステップS1502)。これにより、第1無線局110と端末101との間の通信品質が悪い状態のままか否かを判断することができる。 First, the first radio station 110 determines whether or not a certain time has elapsed since switching to the redundant transmission or bypass transmission state (second state) (step S1501), and waits until the certain time has elapsed (step S1501). S1501: No loop). When the predetermined time has elapsed (step S1501: Yes), the first wireless station 110 determines whether or not the wireless channel control information to be received from the terminal 101 has been received from the terminal 101 within the predetermined time (step S1502). Thereby, it is possible to determine whether or not the communication quality between the first wireless station 110 and the terminal 101 remains in a poor state.
 ステップS1502において、無線回線制御情報を一定時間内に受信していない場合(ステップS1502:No)は、第1無線局110は、第2無線局120および端末101へC-プレーン制御部移管指示を送信する(ステップS1503)。これにより、端末101のC-プレーンを制御するC-プレーン制御部1012が、第1無線局110から第2無線局120へ移管(ハンドオーバ)される。このため、C-プレーンおよびU-プレーンが、第1無線局110を経由せずに第2無線局120から端末101へ送信される状態(第3状態)となる。 In step S1502, if the radio channel control information has not been received within a predetermined time (step S1502: No), the first radio station 110 issues a C-plane control unit transfer instruction to the second radio station 120 and the terminal 101. Transmit (step S1503). As a result, the C-plane control unit 1012 that controls the C-plane of the terminal 101 is transferred (handover) from the first radio station 110 to the second radio station 120. For this reason, the C-plane and the U-plane are transmitted from the second wireless station 120 to the terminal 101 without passing through the first wireless station 110 (third state).
 ステップS1502において、無線回線制御情報を一定時間内に受信した場合(ステップS1502:Yes)は、第1無線局110は、冗長送信または迂回送信の停止指示を第2無線局120および端末101へ送信する(ステップS1504)。これにより、冗長送信または迂回送信が停止され、たとえば図1に示したC/U分離の状態(第1状態)へ戻る。ステップS1503またはステップS1504を実行すると、第1無線局110は、一連の処理を終了する。 In step S1502, when the radio network control information is received within a certain time (step S1502: Yes), the first radio station 110 transmits an instruction to stop redundant transmission or bypass transmission to the second radio station 120 and the terminal 101. (Step S1504). As a result, redundant transmission or detour transmission is stopped and, for example, the state returns to the C / U separation state (first state) shown in FIG. When step S1503 or step S1504 is executed, the first radio station 110 ends a series of processes.
 このように、実施の形態にかかる通信システム100によれば、端末101の伝送経路の状態を第1状態と第2状態で切り替えることができる。第1状態は、たとえば図1に示したように、端末101の無線回線制御情報を第1無線局110が端末101へ無線送信し、端末101のユーザデータを第2無線局120が端末101へ無線送信する状態である。第2状態は、たとえば図2,図3に示したように、端末101の無線回線制御情報を第1無線局110が第2無線局120を介して端末101へ送信し、端末101のユーザデータを第2無線局120が端末101へ無線送信する状態である。 Thus, according to the communication system 100 according to the embodiment, the state of the transmission path of the terminal 101 can be switched between the first state and the second state. In the first state, for example, as shown in FIG. 1, the first wireless station 110 wirelessly transmits the wireless channel control information of the terminal 101 to the terminal 101, and the second wireless station 120 transmits the user data of the terminal 101 to the terminal 101. This is a state of wireless transmission. In the second state, as shown in FIGS. 2 and 3, for example, the first wireless station 110 transmits the wireless channel control information of the terminal 101 to the terminal 101 via the second wireless station 120, and the user data of the terminal 101 is transmitted. Is transmitted to the terminal 101 by the second wireless station 120.
 これにより、端末101の伝送経路を第1状態とすることで、無線通信が可能なエリアが広い第1無線局110により無線回線制御情報を伝送して端末101の呼を安定させつつ、第2無線局120によりユーザデータを伝送して通信を効率化することができる。 Accordingly, by setting the transmission path of the terminal 101 to the first state, the first wireless station 110 having a wide area capable of wireless communication transmits the wireless channel control information to stabilize the call of the terminal 101, and the second User data can be transmitted by the wireless station 120 to improve communication efficiency.
 また、たとえば端末101と第1無線局110との間の無線通信の品質が劣化した場合に、端末101の伝送経路を第2状態へ切り替えることで、端末101と第1無線局110との間の無線通信が不通になっても端末101の呼を維持することができる。 Further, for example, when the quality of wireless communication between the terminal 101 and the first wireless station 110 deteriorates, the transmission path between the terminal 101 and the first wireless station 110 is switched by switching the transmission path of the terminal 101 to the second state. Even if the wireless communication is interrupted, the call of the terminal 101 can be maintained.
 ただし、端末101の伝送経路を第2状態へ切り替える条件は、端末101と第1無線局110との間の無線通信の品質の劣化に限らない。たとえば、端末101の通信サービスに安定性が求められる場合等に、端末101の伝送経路を第2状態へ切り替えておくことで、端末101と第1無線局110との間の無線通信の品質が急に劣化しても端末101の呼を維持することができる。 However, the condition for switching the transmission path of the terminal 101 to the second state is not limited to the deterioration of the quality of wireless communication between the terminal 101 and the first wireless station 110. For example, when the communication service of the terminal 101 is required to be stable, the quality of wireless communication between the terminal 101 and the first wireless station 110 can be improved by switching the transmission path of the terminal 101 to the second state. Even if it deteriorates suddenly, the call of the terminal 101 can be maintained.
 なお、第1無線局110が形成するセルがマクロセル111であり、第2無線局120が形成するセルがスモールセル121である場合について説明したが、第1無線局110および第2無線局120の形態はこれに限らない。たとえば、第1無線局110および第2無線局120のそれぞれは、マクロ基地局、ピコ基地局、フェムト基地局、ナノ基地局、基地局から張り出したアンテナなどとすることができる。 In addition, although the case where the cell formed by the first radio station 110 is the macro cell 111 and the cell formed by the second radio station 120 is the small cell 121 has been described, the first radio station 110 and the second radio station 120 The form is not limited to this. For example, each of the first radio station 110 and the second radio station 120 can be a macro base station, a pico base station, a femto base station, a nano base station, an antenna protruding from the base station, or the like.
 また、端末101の、C-プレーンおよびU-プレーンの伝送経路を制御する制御装置140を第1無線局110に設け、第1無線局110によって各状態(たとえば第1状態~第3状態)を切り替える構成について説明したが、このような構成に限らない。たとえば、制御装置140を、端末101や第2無線局120に設けてもよいし、第1無線局110、第2無線局120および端末101と異なる装置に設けてもよい。 Further, a control device 140 for controlling the transmission path of the C-plane and U-plane of the terminal 101 is provided in the first radio station 110, and each state (for example, the first state to the third state) is set by the first radio station 110. Although the configuration for switching has been described, it is not limited to such a configuration. For example, the control device 140 may be provided in the terminal 101 or the second radio station 120, or may be provided in a device different from the first radio station 110, the second radio station 120, and the terminal 101.
 以上説明したように、通信システム、制御装置、端末、無線局および制御方法によれば、無線回線制御情報を伝送する無線局と端末との間の無線通信が不通になっても端末の呼を維持することができる。 As described above, according to the communication system, the control device, the terminal, the radio station, and the control method, even if the radio communication between the radio station transmitting the radio channel control information and the terminal is interrupted, the terminal call can be made. Can be maintained.
 たとえば、図1に示したC/U分離の状態とすることにより、マクロセル111とスモールセル121がアンブレラセル構成されている環境で、マクロセル111で無線回線制御情報を、スモールセル121でユーザデータを送受信することができる。これにより、カバーエリアが広いマクロセル111の負荷を軽減するとともに、設置が容易なスモールセル121を組み合わせて用いることで、システム全体の容量を増大させることができる。また、スモールセル121を多数設けることによってシステム全体の容量をさらに増大させることができる。また、マクロセル111で無線回線制御情報を送受信することで端末101とスモールセル121の通信が外的要因により不通となっても、端末101とマクロセル111での通信は継続しているため、呼切断とはならない。 For example, by setting the C / U separation state shown in FIG. 1, in an environment where the macro cell 111 and the small cell 121 are configured as an umbrella cell, the macro cell 111 receives radio line control information, and the small cell 121 receives user data. You can send and receive. Thereby, while reducing the load of the macro cell 111 with a large cover area, the capacity | capacitance of the whole system can be increased by combining and using the small cell 121 with easy installation. Moreover, the capacity of the entire system can be further increased by providing a large number of small cells 121. In addition, even if communication between the terminal 101 and the small cell 121 is interrupted due to an external factor by transmitting / receiving radio channel control information in the macro cell 111, communication between the terminal 101 and the macro cell 111 continues, so It will not be.
 また、C/U分離している際に、第2状態へ切り替えて無線回線制御情報をユーザデータと同じ経路で送信することにより、端末101とマクロセル111で送受信している無線回線制御情報が不通になっても呼切断を回避し、呼継続が可能となる。 In addition, when the C / U is separated, the wireless channel control information transmitted / received between the terminal 101 and the macro cell 111 is blocked by switching to the second state and transmitting the wireless channel control information through the same route as the user data. Even if it becomes, the call disconnection is avoided and the call can be continued.
 100 通信システム
 101,600 端末
 110 第1無線局
 111 マクロセル
 120 第2無線局
 121 スモールセル
 131 第1経路
 132 第2経路
 133 第3経路
 140 制御装置
 401 MME
 402 S-GW
 601,801 アンテナ
 610,810 無線送受信部
 611,811 受信信号IF/処理部
 612,812 送信信号IF/処理部
 620,820,830 L2・L3制御部
 621,821,831,1011,1012 C-プレーン制御部
 622,822,832,1021,1022 U-プレーン制御部
 630 端末動作制御部
 631 無線回線品質測定報告部
 632,852 迂回・冗長送信判断部
 633,853 ハンドオーバ制御部
 700,900 通信装置
 701,901 CPU
 702,902 メモリ
 703 ユーザインタフェース
 704,903 無線通信インタフェース
 709,909 バス
 800 基地局
 840 伝送路インタフェース部
 850 基地局動作制御部
 851 無線回線品質測定制御部
 854 C/U分離制御部
 904 有線通信インタフェース
DESCRIPTION OF SYMBOLS 100 Communication system 101,600 Terminal 110 1st radio station 111 Macro cell 120 2nd radio station 121 Small cell 131 1st path | route 132 2nd path | route 133 3rd path | route 140 Control apparatus 401 MME
402 S-GW
601 and 801 Antennas 610 and 810 Wireless transmission / reception unit 611 and 811 Reception signal IF / processing unit 612 and 812 Transmission signal IF / processing unit 620, 820 and 830 L2 / L3 control unit 621, 821, 831, 1011 and 1012 C- plane Control unit 622, 822, 832, 1021, 1022 U-plane control unit 630 Terminal operation control unit 631 Radio channel quality measurement report unit 632, 852 Detour / redundant transmission determination unit 633, 853 Handover control unit 700, 900 Communication device 701 901 CPU
702, 902 Memory 703 User interface 704, 903 Wireless communication interface 709, 909 Bus 800 Base station 840 Transmission path interface unit 850 Base station operation control unit 851 Radio channel quality measurement control unit 854 C / U separation control unit 904 Wired communication interface

Claims (13)

  1.  第1無線局と、
     前記第1無線局と通信可能な第2無線局と、
     前記第1無線局および前記第2無線局との間で無線通信が可能な端末と、
     前記端末の無線回線を制御するための制御情報を前記第1無線局が前記端末へ無線送信し、前記端末のユーザデータを前記第2無線局が前記端末へ無線送信する第1状態と、前記制御情報を前記第1無線局が前記第2無線局を介して前記端末へ送信し、前記ユーザデータを前記第2無線局が前記端末へ無線送信する第2状態と、を切り替える制御装置と、
     を含むことを特徴とする通信システム。
    A first radio station;
    A second radio station capable of communicating with the first radio station;
    A terminal capable of wireless communication between the first wireless station and the second wireless station;
    A first state in which the first wireless station wirelessly transmits control information for controlling a wireless channel of the terminal to the terminal, and the second wireless station wirelessly transmits user data of the terminal to the terminal; A control device for switching between a second state in which the first wireless station transmits control information to the terminal via the second wireless station, and the second wireless station wirelessly transmits the user data to the terminal;
    A communication system comprising:
  2.  前記制御装置は、前記第1無線局と前記端末との間の無線通信の品質に基づいて前記第1状態と前記第2状態とを切り替えることを特徴とする請求項1に記載の通信システム。 The communication system according to claim 1, wherein the control device switches between the first state and the second state based on a quality of wireless communication between the first wireless station and the terminal.
  3.  前記第2状態において、
     前記第1無線局は、前記第2無線局を介して前記制御情報を前記端末へ送信するとともに、前記制御情報を前記端末へ無線送信し、
     前記端末は、前記第1無線局および前記第2無線局のそれぞれから送信される前記制御情報を受信し、受信した各制御情報に基づく復号を行う、
     ことを特徴とする請求項1または2に記載の通信システム。
    In the second state,
    The first wireless station transmits the control information to the terminal via the second wireless station, and wirelessly transmits the control information to the terminal.
    The terminal receives the control information transmitted from each of the first radio station and the second radio station, and performs decoding based on the received control information;
    The communication system according to claim 1 or 2.
  4.  前記第2状態において、
     前記第1無線局は、前記第2無線局を介して前記制御情報を前記端末へ送信し、前記制御情報を前記端末へ無線送信せず、
     前記端末は、前記第2無線局から送信される前記制御情報を受信する、
     ことを特徴とする請求項1または2に記載の通信システム。
    In the second state,
    The first wireless station transmits the control information to the terminal via the second wireless station, does not wirelessly transmit the control information to the terminal,
    The terminal receives the control information transmitted from the second radio station;
    The communication system according to claim 1 or 2.
  5.  前記制御装置は、
     前記第1状態において前記第1無線局と前記端末との間の無線通信の品質が所定品質を満たさなくなった場合に前記第2状態へ切り替え、
     前記第2状態において前記第1無線局と前記端末との間の無線通信の品質が一定時間以上所定品質を満たさなかった場合に、前記第2無線局が前記第1無線局を介さずに前記制御情報および前記ユーザデータを前記端末へ無線送信する第3状態へ切り替える、
     ことを特徴とする請求項1~4のいずれか一つに記載の通信システム。
    The control device includes:
    When the quality of wireless communication between the first wireless station and the terminal does not satisfy a predetermined quality in the first state, the state is switched to the second state,
    When the quality of wireless communication between the first wireless station and the terminal does not satisfy a predetermined quality for a certain time or more in the second state, the second wireless station does not go through the first wireless station Switching to a third state in which control information and the user data are wirelessly transmitted to the terminal;
    The communication system according to any one of claims 1 to 4, wherein:
  6.  前記制御装置は、前記第1無線局に設けられ、前記第2無線局および前記端末へ制御信号を送信することにより前記第1状態と前記第2状態とを切り替えることを特徴とする請求項1~5のいずれか一つに記載の通信システム。 The control device is provided in the first wireless station and switches between the first state and the second state by transmitting a control signal to the second wireless station and the terminal. The communication system according to any one of 1 to 5.
  7.  前記制御装置は、前記端末に設けられ、前記第1無線局および前記第2無線局の少なくともいずれかへ制御信号を送信することにより前記第1状態と前記第2状態とを切り替えることを特徴とする請求項1~5のいずれか一つに記載の通信システム。 The control device is provided in the terminal, and switches between the first state and the second state by transmitting a control signal to at least one of the first radio station and the second radio station. The communication system according to any one of claims 1 to 5.
  8.  前記制御装置は、前記第1無線局と前記端末との間の無線通信の品質、前記第1無線局の輻輳状況、前記ユーザデータのサービス種別、前記端末のユーザの契約情報、前記端末の位置および前記端末の過去の通信に関する情報の少なくともいずれかに基づいて前記第1状態と前記第2状態とを切り替えることを特徴とする請求項1~6のいずれか一つに記載の通信システム。 The control device includes: quality of radio communication between the first radio station and the terminal; congestion status of the first radio station; service type of the user data; user contract information of the terminal; location of the terminal The communication system according to any one of claims 1 to 6, wherein the first state and the second state are switched based on at least one of information related to past communication of the terminal.
  9.  前記第1無線局は、無線通信が可能なエリアが前記第2無線局より広い無線局であることを特徴とする請求項1~8のいずれか一つに記載の通信システム。 The communication system according to any one of claims 1 to 8, wherein the first wireless station is a wireless station having a wider area capable of wireless communication than the second wireless station.
  10.  第1無線局と、前記第1無線局と通信可能な第2無線局と、前記第1無線局および前記第2無線局との間で無線通信が可能な端末と、を含む通信システムの制御装置であって、
     前記端末の無線回線を制御するための制御情報を前記第1無線局が前記端末へ無線送信し、前記端末のユーザデータを前記第2無線局が前記端末へ無線送信する第1状態と、前記制御情報を前記第1無線局が前記第2無線局を介して前記端末へ送信し、前記ユーザデータを前記第2無線局が前記端末へ無線送信する第2状態と、の切り替えを判断する判断部と、
     前記判断部による判断結果に基づいて前記第1状態と前記第2状態とを切り替える制御部と、
     を備えることを特徴とする制御装置。
    Control of a communication system comprising: a first wireless station; a second wireless station capable of communicating with the first wireless station; and a terminal capable of wireless communication between the first wireless station and the second wireless station. A device,
    A first state in which the first wireless station wirelessly transmits control information for controlling a wireless channel of the terminal to the terminal, and the second wireless station wirelessly transmits user data of the terminal to the terminal; Judgment of switching between a second state in which the first wireless station transmits control information to the terminal via the second wireless station and the second wireless station wirelessly transmits the user data to the terminal. And
    A control unit that switches between the first state and the second state based on a determination result by the determination unit;
    A control device comprising:
  11.  第1無線局と、前記第1無線局と通信可能な第2無線局と、のそれぞれと無線通信が可能な通信部と、
     第1状態において、自端末の無線回線を制御するための制御情報を前記第1無線局から無線受信し、自端末のユーザデータを前記第2無線局から無線受信し、第2状態において、前記制御情報を前記第1無線局から前記第2無線局を介して受信し、前記ユーザデータを前記第2無線局から無線受信するように前記通信部を制御する制御部と、
     を備えることを特徴とする端末。
    A communication unit capable of wireless communication with each of a first wireless station and a second wireless station capable of communicating with the first wireless station;
    In the first state, control information for controlling the radio line of the terminal is wirelessly received from the first wireless station, and user data of the terminal is wirelessly received from the second wireless station. A control unit that receives the control information from the first radio station via the second radio station and controls the communication unit to receive the user data from the second radio station;
    A terminal comprising:
  12.  端末と無線通信が可能な第1通信部と、
     自局と通信可能な他局であって前記端末のユーザデータを前記端末へ無線送信する他局と通信が可能な第2通信部と、
     前記端末の無線回線を制御するための制御情報を前記第1通信部により前記端末へ無線送信する第1状態と、前記制御情報を前記第2通信部により前記他局を介して前記端末へ送信する第2状態と、を切り替える制御部と、
     を備えることを特徴とする無線局。
    A first communication unit capable of wireless communication with a terminal;
    A second communication unit capable of communicating with another station that can communicate with the own station and wirelessly transmits user data of the terminal to the terminal;
    A first state in which control information for controlling a radio channel of the terminal is wirelessly transmitted to the terminal by the first communication unit, and the control information is transmitted to the terminal by the second communication unit via the other station. A controller that switches between the second state and
    A radio station comprising:
  13.  第1無線局と、前記第1無線局と通信可能な第2無線局と、前記第1無線局および前記第2無線局との間で無線通信が可能な端末と、を含む通信システムの制御装置による制御方法であって、
     前記端末の無線回線を制御するための制御情報を前記第1無線局が前記端末へ無線送信し、前記端末のユーザデータを前記第2無線局が前記端末へ無線送信する第1状態と、前記制御情報を前記第1無線局が前記第2無線局を介して前記端末へ送信し、前記ユーザデータを前記第2無線局が前記端末へ無線送信する第2状態と、の切り替えの判断を行い、
     前記判断の結果に基づいて前記第1状態と前記第2状態とを切り替える、
     ことを特徴とする制御方法。
    Control of a communication system comprising: a first wireless station; a second wireless station capable of communicating with the first wireless station; and a terminal capable of wireless communication between the first wireless station and the second wireless station. A control method by an apparatus,
    A first state in which the first wireless station wirelessly transmits control information for controlling a wireless channel of the terminal to the terminal, and the second wireless station wirelessly transmits user data of the terminal to the terminal; Judgment of switching between a second state in which the first wireless station transmits control information to the terminal via the second wireless station and the second wireless station wirelessly transmits the user data to the terminal is performed. ,
    Switching between the first state and the second state based on the result of the determination;
    A control method characterized by that.
PCT/JP2015/084579 2015-12-09 2015-12-09 Communication system, control device, terminal, radio station, and control method WO2017098615A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/084579 WO2017098615A1 (en) 2015-12-09 2015-12-09 Communication system, control device, terminal, radio station, and control method
JP2017554722A JP6551540B2 (en) 2015-12-09 2015-12-09 Communication system, terminal, radio station, and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084579 WO2017098615A1 (en) 2015-12-09 2015-12-09 Communication system, control device, terminal, radio station, and control method

Publications (1)

Publication Number Publication Date
WO2017098615A1 true WO2017098615A1 (en) 2017-06-15

Family

ID=59012827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084579 WO2017098615A1 (en) 2015-12-09 2015-12-09 Communication system, control device, terminal, radio station, and control method

Country Status (2)

Country Link
JP (1) JP6551540B2 (en)
WO (1) WO2017098615A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020048009A (en) * 2018-09-18 2020-03-26 Kddi株式会社 Wireless network system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107618A (en) * 2012-11-26 2014-06-09 Ntt Docomo Inc Radio communication system and communication control method
US20150043492A1 (en) * 2013-08-12 2015-02-12 Electronics And Telecommunications Research Institute Method for providing dual connectivity in wireless communication system
US20150124748A1 (en) * 2013-11-01 2015-05-07 Lg Electronics Inc. Method and apparatus for performing dual-connectivity operation in heterogeneous network
JP2015530019A (en) * 2012-08-02 2015-10-08 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Node and method for handing over a subset of bearers enabling multiple connectivity of terminals towards multiple base stations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015530019A (en) * 2012-08-02 2015-10-08 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Node and method for handing over a subset of bearers enabling multiple connectivity of terminals towards multiple base stations
JP2014107618A (en) * 2012-11-26 2014-06-09 Ntt Docomo Inc Radio communication system and communication control method
US20150043492A1 (en) * 2013-08-12 2015-02-12 Electronics And Telecommunications Research Institute Method for providing dual connectivity in wireless communication system
US20150124748A1 (en) * 2013-11-01 2015-05-07 Lg Electronics Inc. Method and apparatus for performing dual-connectivity operation in heterogeneous network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020048009A (en) * 2018-09-18 2020-03-26 Kddi株式会社 Wireless network system
JP7033037B2 (en) 2018-09-18 2022-03-09 Kddi株式会社 Wireless network system

Also Published As

Publication number Publication date
JP6551540B2 (en) 2019-07-31
JPWO2017098615A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
US11051155B2 (en) Communication system
TWI667940B (en) A macro-assisted multi-connectivity scheme in multi-rat cellular systems
USRE47613E1 (en) System and method for primary point handovers
EP2957141B1 (en) Long term evolution radio access network
US8521109B2 (en) Radio communication devices, information providers, methods for controlling a radio communication device and methods for controlling an information provider
KR102018057B1 (en) Coodinated multi-point transmission and reception method in overlaid cell environment
US20230247505A1 (en) Telecommunications system, terminal device, infrastructure equipment and methods
CN110463240B (en) Telecommunication apparatus and method
CN111866929B (en) Communication method, device and system
CN106664631A (en) Inter/intra radio access technology mobility and user-plane split measurement configuration
CN110476446B (en) Wireless telecommunication device and method
WO2017174550A1 (en) Implementing radio access network slicing in a mobile network
WO2014107917A1 (en) Buffer status reporting for dual connection
KR20160012736A (en) Apparatus and method for controlling an adaptive flow in wireless communication system
CN104113875A (en) Cell switching method, device and apparatus
JP2019503606A (en) Network node, wireless communication system, and method thereof
JP2017528048A (en) Terminal-based communication method and terminal
WO2021205923A1 (en) Communication system, communication terminal, and base station
CN107302773B (en) Connection establishing method, device and system
CN115707149A (en) Communication method and communication device
JP6864106B2 (en) Methods and Devices for Dual Connectivity between Dual Protocol Stack User Equipment and Two Baseband Units in a Wireless Access Telecommunications Network
KR20120114964A (en) Method for transceiving signal in mobile station in multiple antenna wirelss communication system and apparatus therefor
US20150098319A1 (en) Method for reducing overhead of control signal during connection of plural lte base stations
JP6551540B2 (en) Communication system, terminal, radio station, and control method
US20150099522A1 (en) Method for avoiding small cell interference during connection of plural lte base stations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910231

Country of ref document: EP

Kind code of ref document: A1