WO2017097054A1 - 一种预定空间内的定位***和方法 - Google Patents

一种预定空间内的定位***和方法 Download PDF

Info

Publication number
WO2017097054A1
WO2017097054A1 PCT/CN2016/103654 CN2016103654W WO2017097054A1 WO 2017097054 A1 WO2017097054 A1 WO 2017097054A1 CN 2016103654 W CN2016103654 W CN 2016103654W WO 2017097054 A1 WO2017097054 A1 WO 2017097054A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal transmitting
predetermined space
acoustic signal
transmitting unit
positioning
Prior art date
Application number
PCT/CN2016/103654
Other languages
English (en)
French (fr)
Inventor
窦新玉
Original Assignee
苏州触达信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州触达信息技术有限公司 filed Critical 苏州触达信息技术有限公司
Publication of WO2017097054A1 publication Critical patent/WO2017097054A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/26Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • Embodiments of the present invention relate to the field of wireless communication technologies, and, more particularly, to a positioning system and method in a predetermined space.
  • A-GPS positioning technology sonic positioning technology
  • Bluetooth technology infrared technology
  • radio frequency identification technology ultra-wideband technology
  • wireless local area network wireless local area network
  • optical tracking and positioning technology and image analysis.
  • beacon positioning computer vision positioning technology, and so on.
  • GPS can not be accurate to a specific building
  • some buildings GPS can be located, but the specific information of the building, such as the entrance, exit, building of the building Internal information and building distribution are not available. GPS updates the building information very slowly and at a high cost. Shopping malls, buildings or factories cannot update this information in time.
  • embodiments of the present invention provide a positioning system and method within a predetermined space.
  • the invention provides a positioning system in a predetermined space, comprising:
  • At least four acoustic signal transmitting units are respectively arranged at different fixed positions in a predetermined space and not on the same circle for respectively transmitting sound wave signals; the at least four sound wave signal transmitting units are time-synchronized;
  • a positioning device located in the predetermined space and not time synchronized with the at least four acoustic signal transmitting units, for receiving acoustic signals emitted by the at least four acoustic signal transmitting units, respectively determining the at least four Measuring a distance of the acoustic signal transmitting unit, and calculating a relative position of the positioned device within the predetermined space based on a measured distance from the at least four acoustic signal transmitting units.
  • the predetermined space is an indoor space having a plurality of floors, and the positioning system is separately disposed on each floor; or
  • the predetermined space is an indoor space having one floor in which the positioning system is disposed; or
  • the predetermined space is an indoor space having a plurality of floors, and the positioning system is disposed in at least one floor; or
  • the predetermined space is a movable space
  • the movable space includes at least one of the following:
  • the acoustic signal transmitting unit is four;
  • the device being positioned has a clock difference V to ;
  • the positioning device the positioning device for calculating coordinates based on the following equation in a predetermined space (x, y, z); further, based on the formula for calculating the clock error V to:
  • (x, y, z) is the coordinate of the positioned device within the predetermined space;
  • (x 1 , y 1 , z 1 ) is the coordinate of the first acoustic signal transmitting unit within the predetermined space;
  • (x 2 , y 2 , z 2 ) is a coordinate of the second acoustic signal transmitting unit in a predetermined space;
  • (x 3 , y 3 , z 3 ) is a coordinate of the third acoustic signal transmitting unit in a predetermined space;
  • (x 4 , y 4 , z 4 ) is the coordinate of the fourth acoustic signal transmitting unit in a predetermined space;
  • d1 is the measured distance of the positioned device and the first acoustic signal transmitting unit;
  • d2 is the measurement of the positioned device and the second acoustic signal transmitting unit
  • the distance d3 is the measured distance between the positioned device and the third acou
  • the method further comprises:
  • a forwarding signal unit disposed at a fixed position within a predetermined space or at a fixed position outside the predetermined space, for receiving a GPS positioning signal to determine a GPS coordinate of the forwarding signal unit;
  • At least four acoustic signal transmitting units configured to receive the GPS positioning signals from the forwarding signal unit, and determine respective GPS coordinates based on a predetermined positional relationship with the forwarding signal unit, respectively;
  • the GPS coordinates of the wave signal transmitting unit determine the GPS coordinates of the positioned device.
  • the GPS coordinates include longitude, latitude, and earth height.
  • the located device is a mobile terminal having a microphone, the mobile terminal comprising at least one of the following:
  • the invention also proposes a positioning method in a predetermined space, comprising:
  • At least four acoustic signal transmitting units respectively emit acoustic signals
  • a positioning device located in the predetermined space and not time-synchronized with the at least four acoustic signal transmitting units, receiving acoustic signals transmitted by the at least four acoustic signal transmitting units, respectively determining the at least four acoustic signals Measuring a distance of the transmitting unit, and calculating a relative position of the positioned device within the predetermined space based on a measured distance from the at least four acoustic signal transmitting units.
  • the method further comprises:
  • a forwarding signal unit for receiving a GPS positioning signal at a fixed position within a predetermined space or at a fixed position outside the predetermined space, thereby determining GPS coordinates of the forwarding signal unit;
  • At least four acoustic signal transmitting units receive the GPS positioning signals from the forwarding signal unit, and determine respective GPS coordinates based on predetermined positional relationships with the forwarding signal units, respectively;
  • the positioned device determines the GPS coordinates of the positioned device based on the relative position within the predetermined space and the GPS coordinates of the at least four acoustic signal transmitting units.
  • the acoustic signal transmitting unit is four;
  • the device being positioned has a clock difference V to ;
  • the positioned device calculates coordinates (x, y, z) of the positioned device within the predetermined space based on the following formula; and calculates the clock difference V to based on the formula;
  • (x, y, z) is the coordinate of the positioned device within the predetermined space;
  • (x 1 , y 1 , z 1 ) is the coordinate of the first acoustic signal transmitting unit within the predetermined space;
  • (x 2 , y 2 , z 2 ) is a coordinate of the second acoustic signal transmitting unit in a predetermined space;
  • (x 3 , y 3 , z 3 ) is a coordinate of the third acoustic signal transmitting unit in a predetermined space;
  • (x 4 , y 4 , z 4 ) is the coordinate of the fourth acoustic signal transmitting unit in a predetermined space;
  • d1 is the measured distance of the positioned device and the first acoustic signal transmitting unit;
  • d2 is the measurement of the positioned device and the second acoustic signal transmitting unit
  • the distance d3 is the measured distance between the positioned device and the third acou
  • the predetermined space is a static space or a movable space
  • the static space includes at least one of the following: a building, an airport lobby, an exhibition hall, a warehouse, a supermarket, a library, an underground parking lot, a mine, and a classroom;
  • the movable space includes at least one of the following: a subway, a train, a car, an airplane, or a ship.
  • At least four acoustic signal transmitting units are respectively arranged at different fixed positions in a predetermined space and are not located on the same circle, respectively for transmitting acoustic signals;
  • Four sound wave signal transmitting units are time-synchronized;
  • the positioned device is located in a predetermined space and is not time-synchronized with at least four sound wave signal transmitting units, and is configured to receive sound waves signals emitted by at least four sound wave signal transmitting units, respectively, and determine at least four The distance of the acoustic signal transmitting unit, and calculating the relative position of the positioned device within the predetermined space based on the distance from the at least four acoustic signal transmitting units.
  • the positioning device and the signal transmitting unit can realize positioning without synchronizing the clock, so the invention is very convenient to use and can significantly reduce the cost.
  • the embodiment of the present invention is combined with GPS positioning to realize accurate GPS setting in the room. It is suitable for moving spaces such as subways, trains, cars, airplanes or ships.
  • the present invention can achieve accurate indoor positioning well for places where underground GPS, buildings, airport halls, and the like cannot be accurately located.
  • the embodiment of the present invention can not only give two-dimensional information such as latitude and longitude, but also give altitude information, and provide a three-dimensional positioning method, which can be accurate to different floors. Based on this, the embodiments of the present invention can be widely applied to LBS, providing a very broad market space.
  • the GPS positioning technology of the prior art can be combined with the positioning method of the present invention to achieve a seamless connection between indoor and outdoor positioning.
  • the embodiments of the present invention have the advantages of small size and low cost, and the signal transmitting unit can be combined with a fixed device or a fixed position in various ways, and is convenient and diverse in use.
  • FIG. 1 is a structural diagram of a positioning system in a predetermined space according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of indoor relative positioning in a predetermined space according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of accurate indoor positioning in a predetermined space according to an embodiment of the present invention.
  • FIG. 4 is a flow chart of a positioning method within a predetermined space according to an embodiment of the present invention.
  • the indoor sound wave is positioned with three known position signal transmitting units to locate the positioned device, but only when the distance between the positioned device and the three signal transmitting units is measured at the same time can be positioned, and synchronization is necessary. There is a unified time base.
  • the acoustic wave ranging in the three-dimensional coordinate system, only three distances can be measured at the same time to be positioned, that is, when the object A and each signal transmitting unit have a synchronous clock, the ground object A can be accurately measured at the coordinates. The specific location in the system. If the distance between the object A and the signal transmitting unit 1 is measured, the point A is located on a sphere centered on the signal transmitting unit 1 and having the measured distance as a radius.
  • the point A is at two points where the three spheres intersect. Since the acoustic signal emission has directivity, the point A can only be located in the direction of sound emission of the three transmitting units. It is known that the position of the transmitting unit has simultaneously measured the distance of the three signal transmitting units 1, 2, 3, and the positioning can be performed.
  • the present invention introduces a fourth transmitting unit to provide time data.
  • the positioning method of the present invention adopts at least four (preferably four) clock-synchronized signal transmitting units, and the positioning device and the signal transmitting unit do not need to synchronize clocks, wherein three signal transmitting units are used for coordinate positioning, and one signal transmitting unit is used as a clock. calibration. Due to the uniqueness of the position of the positioned device, the four signal transmitting units cannot be simultaneously on one circle, and the positions of the four signal transmitting units are known.
  • the predetermined in-spatial positioning of the present invention includes determining the three-dimensional coordinates of one point and realizing the four unknown parameters of synchronization, and the position of the device to be positioned must be determined by measuring the distance to at least four signal transmitting units.
  • the precise predetermined in-space positioning method proposed by the present invention has a positioning accuracy of up to 7 mm in a range of 50 meters.
  • the positioning in the predetermined space of the present invention requires that the acoustic signal is transmitted without obstacle blocking, and more or less multi-mirror reflection during the sound wave transmission process may affect the positioning accuracy.
  • the indoor positioning method has a positioning accuracy of 7 mm in a range of 50 meters, and does not increase in small range accuracy or in a large range.
  • FIG. 1 is a structural diagram of a positioning system in a predetermined space according to an embodiment of the present invention.
  • the system includes:
  • n is a natural number of at least four acoustic signal transmitting units (or ultrasonic signal transmitting units), respectively arranged at different fixed positions within a predetermined space and not located on the same circle, respectively for transmitting acoustic signals (or Ultrasonic signal); the at least four acoustic signal transmitting units are time synchronized;
  • a positioning device located in the predetermined space and not time synchronized with the at least four acoustic signal transmitting units, for receiving acoustic signals emitted by the at least four acoustic signal transmitting units, respectively determining the at least four Measuring a distance of the acoustic signal transmitting unit, and calculating a relative position of the positioned device within the predetermined space based on a measured distance from the at least four acoustic signal transmitting units.
  • the signal transmitting unit can be installed on a device capable of providing power such as a socket, an electric lamp, or the like, or can be installed as needed, so that the position information of the signal transmitting unit can be easily obtained, and the position information is stored in the corresponding signal transmitting unit.
  • the predetermined space is an indoor space having a plurality of floors, and the positioning system is separately disposed on each floor; or
  • the predetermined space is an indoor space having one floor in which the positioning system is disposed; or
  • the predetermined space is an indoor space having a plurality of floors, and the positioning system is disposed in at least one floor; or
  • the predetermined space is a movable space, and the movable space includes at least one of the following One:
  • the acoustic signal transmitting unit is four; the positioned device has a clock difference V to ;
  • the positioning device the positioning device for calculating coordinates based on the following equation in a predetermined space (x, y, z); further, based on the formula for calculating the clock error V to:
  • (x, y, z) is the coordinate of the positioned device within the predetermined space;
  • (x 1 , y 1 , z 1 ) is the coordinate of the first acoustic signal transmitting unit within the predetermined space;
  • (x 2 , y 2 , z 2 ) is a coordinate of the second acoustic signal transmitting unit in a predetermined space;
  • (x 3 , y 3 , z 3 ) is a coordinate of the third acoustic signal transmitting unit in a predetermined space;
  • (x 4 , y 4 , z 4 ) is the coordinate of the fourth acoustic signal transmitting unit in a predetermined space;
  • d1 is the measured distance of the positioned device and the first acoustic signal transmitting unit;
  • d2 is the measurement of the positioned device and the second acoustic signal transmitting unit
  • the distance d3 is the measured distance between the positioned device and the third acou
  • system further comprises:
  • a forwarding signal unit disposed at a fixed position within a predetermined space or at a fixed position outside the predetermined space, for receiving a GPS positioning signal to determine a GPS coordinate of the forwarding signal unit;
  • At least four acoustic signal transmitting units configured to receive the GPS positioning signals from the forwarding signal unit, and determine respective GPS coordinates based on a predetermined positional relationship with the forwarding signal unit, respectively;
  • the GPS coordinates of the wave signal transmitting unit determine the GPS coordinates of the positioned device.
  • the GPS coordinates include longitude, latitude, and earth's height.
  • the located device is a mobile terminal having a microphone, the mobile terminal comprising at least one of: a feature phone, a personal digital assistant, a tablet or a smartphone, and the like.
  • FIG. 2 is a schematic diagram of indoor relative positioning in a predetermined space according to an embodiment of the present invention.
  • four signal transmitting units a, b, c, d are installed at arbitrary positions within a predetermined space (e.g., indoors), and the four signal transmitting units a, b, c, d cannot be on the same circle.
  • a point in the predetermined space is taken as the coordinate origin O, and the coordinates of the four signal transmitting units a, b, c, d in this coordinate system are known as a(x1, y1, z1), b(x2, y2, Z2), c(x3, y3, z3), d(x4, y4, z4), the position information corresponding to the four signal transmitting units a, b, c, d is written into the respective signal transmitting units a, b, c, d.
  • the signal transmitting units a, b, c, d can continuously emit sound wave positioning signals, and the sound wave positioning signals can include position information, accurate transmission time of the signal transmitting unit, command signals and positioning signals, and other information.
  • the positioning device e enters the indoor positioning range, the sound waves emitted by the signal transmitting units a, b, c, d are received.
  • the transmission time point is T1.
  • the positional device e calculates respectively the measured distance ae with the signal transmitting unit a; the measured distance be with the signal transmitting unit b; the measured distance ce with the signal transmitting unit c; and the measured distance de with the signal transmitting unit d. among them:
  • Ae (T2a ⁇ T1a) ⁇ C;
  • C is the propagation speed of the sound wave in the air;
  • the sound wave signal transmitted by the signal transmitting unit a further includes the sound wave signal transmission time point T1a on the signal transmitting unit a side, and is solved by the positioning device e.
  • the acoustic signal can acquire T1a;
  • T2a is the reception time point of the acoustic signal emitted by the positioning device e for the signal transmitting unit a.
  • the transmitted acoustic wave signal further includes an acoustic wave signal transmitting time point T1b on the signal transmitting unit b side, and the positioning device e can acquire T1b by analyzing the acoustic wave signal; T2b is an acoustic wave signal recorded by the positioning device e and transmitted to the signal transmitting unit b.
  • the receiving time point is an acoustic wave signal recorded by the positioning device e and transmitted to the signal transmitting unit b.
  • Ce (T2c-T1c) ⁇ C;
  • C is the propagation speed of the sound wave in the air;
  • the sound wave signal transmitted by the signal transmitting unit c further includes the sound wave signal transmission time point T1c on the signal transmitting unit c side, and is solved by the positioning device e.
  • the acoustic signal can acquire T1c;
  • T2c is the reception time point of the acoustic signal emitted by the positioning device e for the signal transmitting unit c.
  • De (T2d-T1d) ⁇ C;
  • C is the propagation speed of the acoustic wave in the air;
  • the acoustic signal transmitted by the signal transmitting unit d further includes the acoustic signal transmission time point T1d on the side of the signal transmitting unit d, and is solved by the positioning device e.
  • the acoustic signal can acquire T1d;
  • T2da is the reception time point of the acoustic signal emitted by the positioning device e for the signal transmitting unit d.
  • the precondition for acoustic wave ranging is that the device that emits sound waves is synchronized with the device clock that receives the sound waves, so that the time that the sound waves travel in the air can be measured, and then the distance that the sound waves travel in the air is obtained, that is, the distance between the two devices.
  • the signal transmitting units a, b, c, d and the device to be positioned e do not require synchronization, and the four signal transmitting units a, b, c, d themselves are time synchronized, so a delay parameter V to is introduced.
  • Ae is the measured distance between the signal transmitting unit a and the positioned device e; be is the measured distance between the signal transmitting unit b and the positioned device e; ce is the measured distance between the signal transmitting unit c and the positioned device e; de is the signal transmitting unit d The measured distance from the device e to be positioned.
  • (x, y, z) is the coordinate of the point e to be measured in the coordinate system
  • Vt0 is the clock difference of the receiver of the device to be positioned e
  • (x, y, z) and V t0 are unknown parameters .
  • (x1, y1, z1) is the coordinate of the signal transmitting unit a in the coordinate system
  • (x2, y2, z2) is the coordinate of the signal transmitting unit b in the coordinate system
  • (x3, y3, z3) is the signal transmitting unit c.
  • the coordinates in the coordinate system are the coordinates of the signal transmitting unit d in the coordinate system; d1, d2, d3, d4 are the signal transmitting units a, b, c, d respectively to the device to be positioned Measured distance; V t1 is the clock difference of the first acoustic signal transmitting unit; V t2 is the clock difference of the second acoustic signal transmitting unit; V t3 is the clock difference of the third acoustic signal transmitting unit; V t4 is The clock difference of the fourth acoustic signal transmitting unit; C is the speed at which the sound propagates in the air.
  • V t1 , V t2 , V t3 , V t4 and C are known; d1 , d2, d3 and d4 can also be observed.
  • the present invention can achieve relative positioning for the positioned device in a predetermined space.
  • the predetermined space may be a static space or a movable space.
  • the static space includes at least one of the following: buildings, airport halls, exhibition halls, warehouses, supermarkets, libraries, underground parking lots, mines, classrooms, and the like.
  • the movable space includes at least one of the following: a subway, a train, a car, an airplane, or a ship, and the like.
  • the present invention can also achieve precise positioning of the positioned device in a predetermined space.
  • GPS is by far the most successful positioning system, but it must capture at least four satellite signals during positioning and navigation. Nearly four satellite signals are not captured indoors, so GPS is basically not used for indoor positioning and navigation.
  • the invention proposes a solution to the problem that the satellite signal is weak and cannot penetrate the building when it reaches the ground according to the positioning principle in the predetermined space shown in FIG. 1 and FIG. 2, and finally locates the current position of the object and solves the GPS positioning. The last mile" question.
  • the invention provides a predetermined spatial positioning method based on the combination of GPS and sound waves, which is mainly composed of four or more GPS satellites, a forwarding signal unit, four or more indoor positioning equipment units, and indoor positioning equipment. Methods as below:
  • GPS satellite The GPS satellite positioning system consists of 24 satellite networks with a height of about 20,000 kilometers. These 24 satellites are distributed in 6 uniformly arranged orbits. The distribution of satellites is mainly to receive more than four satellite signals simultaneously at any location on the Earth's surface.
  • the forwarding signal unit is disposed in a predetermined space or outside a predetermined space (such as a periphery of a building), and the forwarding signal unit corresponds to a location identification value of the geographical location information of the forwarding signal unit; the forwarding signal unit can receive the GPS signal.
  • the forwarding signal unit can forward GPS information.
  • the positioning system consists of four signal transmitting units (ie, indoor positioning units), and four signal transmitting units are installed at fixed positions on each floor.
  • the geographical location information is known, receiving the GPS information sent by the forwarding signal unit, and transmitting the acoustic wave positioning signal to the located device. After the signal transmitting unit is installed, the position identification value of the geographical location information of each signal transmitting unit is set.
  • Positioned device When the positioned device moves to a certain position, it receives the sound wave signal transmitted by the signal transmitting unit.
  • the positioned device may have a microphone for receiving an acoustic signal transmitted by the fixed signal transmitting unit.
  • the acoustic signal includes the geographic location latitude and longitude information and altitude information of the transmitting unit.
  • GPS can measure the latitude and longitude of the ground point and the earth's height.
  • the satellite positioning is carried out in the geocentric space rectangular coordinate system.
  • This coordinate system and the geocentric geodetic coordinate system can be converted into each other through geometric relations.
  • the indoor positioning system of the present invention obtains the relative position, and the four signal transmitting units in the room are fixedly installed at a certain position, and a point is selected as the coordinate origin, and four signal transmitting units can be obtained at the coordinates.
  • one or more positioning systems are installed on each floor.
  • the same point can be set as the coordinate origin O of the indoor positioning system.
  • the coordinate origin of the indoor positioning system can be selected as the installation position of the forwarding signal unit.
  • the coordinate system of GPS positioning has two kinds of geodetic coordinate system and geocentric earth coordinate system. These two coordinate systems can be converted into each other through geometric relations. Select points that are easier to measure latitude and longitude and earth height as indoor The origin of the bit system coordinate system, the coordinate system and the geodetic coordinate system or the geocentric coordinate system can be converted by geometric relationship. If the coordinate system of the indoor positioning system can be converted into the coordinate system of the satellite positioning, the geodesic latitude and longitude of the indoor measured point can be obtained, and thus the indoor positioning can be performed by GPS.
  • the first step measuring the latitude and longitude and the ground height of the forwarding signal unit: the forwarding signal unit is installed at a fixed position outside the building, and the latitude and longitude and the ground height of the forwarding signal unit can be measured by GPS.
  • the second step the installation position of each signal transmitting unit of the indoor positioning system is fixed, and the relative position of the signal transmitting unit is fixed, and the geographic location identification value corresponding to each signal transmitting unit in the room can be calculated.
  • the third step calculating the latitude and longitude and the height of the indoor positioning device: the relative positional relationship of the GPS satellite, the forwarding signal unit, and the signal transmitting unit for indoor positioning is known, and the indoor positioning device can be obtained by the above-mentioned indoor precise positioning method.
  • the latitude and longitude and the height of the earth are known, and the indoor positioning device can be obtained by the above-mentioned indoor precise positioning method.
  • FIG. 3 is a schematic diagram of accurate indoor positioning in a predetermined space according to an embodiment of the present invention.
  • the position of the GPS receiver on the earth's surface is relative to the Earth. Therefore, to describe the position of the GPS receiver, it is necessary to use a coordinate system that is fixed to the Earth and rotate with the Earth, that is, the Earth coordinate system as a reference system.
  • the Earth coordinate system has two geometric expressions, the Earth Cartesian coordinate system and the Earth's Earth coordinate system.
  • the Earth's Cartesian coordinate system is defined as: the origin O coincides with the Earth's centroid, the Z axis points to the Earth's North Pole, the X axis points to the intersection of the Earth's equatorial plane and the Greenwich meridian (ie 0 longitude direction), and the Y axis is in the equatorial plane with XOZ Forms the right-handed coordinate system (ie, pointing 90 degrees east longitude).
  • the Earth's geodetic coordinate system is defined as: the center of the Earth's ellipsoid coincides with the Earth's centroid, and the short axis of the ellipsoid coincides with the Earth's axis of rotation.
  • the two coordinate systems are often used interchangeably in the positioning system and can be converted to each other by geometric relationships.
  • the forwarding signal unit A (x5, y5, z5) can be measured by the GPS system.
  • the position of each signal transmitting unit of the indoor positioning unit is fixed, and the position of the signal transmitting unit is known by geometric algorithm. From the above, (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4), (x5, y5, z5) are known, Sound-based indoor precision determination
  • the bit method can obtain the geographical location (x, y, z) of the device to be located, and the geographic location information is latitude and longitude and earth height.
  • the "last mile" of GPS positioning that is, indoor positioning and navigation is solved.
  • Four-star positioning can also be applied to the positioning of indoor robots.
  • the sweeping robot forms an indoor map through precise indoor positioning, and then plans an effective sweeping path to improve the sweeping efficiency. It can also be applied to the relative positioning and absolute positioning in the various floors of the sea-going voyage, and can also be applied to the relative positioning and absolute positioning in the various cars of the high-speed rail in high-speed travel, and the like.
  • the positioning technology of the present invention can also be used for file transfer of multimedia smart devices.
  • the indoor positioning system can accurately measure the position of the two acoustic wave receivers, and obtain the pointing of the smart device.
  • the smart device turns to an angle, it can Angle-covered smart devices transfer files and other operations.
  • the positioning technology of the invention can be applied to indoor maps, and realizes positioning and navigation in public places such as shopping malls, hospitals, airports, railway stations and the like.
  • FIG. 4 is a flow chart of a positioning method within a predetermined space according to an embodiment of the present invention.
  • the method includes:
  • Step 401 Arranging at least four acoustic signal transmitting units respectively at different fixed positions in the predetermined space and not on the same circle, and the at least four acoustic signal transmitting units are time-synchronized;
  • Step 402 At least four acoustic signal transmitting units respectively emit acoustic signals
  • Step 403 The located device that is located in the predetermined space and is not time-synchronized with the at least four acoustic signal transmitting units receives the acoustic wave signals emitted by the at least four acoustic signal transmitting units, and respectively determines the at least four Measuring distances of the acoustic signal transmitting units, and calculating a relative position of the positioned device within the predetermined space based on a measured distance from the at least four acoustic signal transmitting units.
  • the method further includes:
  • a forwarding signal unit for receiving a GPS positioning signal at a fixed position within a predetermined space or at a fixed position outside the predetermined space, thereby determining GPS coordinates of the forwarding signal unit;
  • At least four acoustic signal transmitting units receive the GPS positioning signals from the forwarding signal unit, and determine respective GPS coordinates based on predetermined positional relationships with the forwarding signal units, respectively;
  • the positioned device determines the GPS coordinates of the positioned device based on the relative position within the predetermined space and the GPS coordinates of the at least four acoustic signal transmitting units.
  • the acoustic signal transmitting units are four;
  • the positioning apparatus having a clock difference V to;
  • the positioned device calculates coordinates (x, y, z) of the positioned device within the predetermined space based on the following formula; and calculates the clock difference V to based on the formula;
  • (x, y, z) is the coordinate of the positioned device within the predetermined space;
  • (x 1 , y 1 , z 1 ) is the coordinate of the first acoustic signal transmitting unit within the predetermined space;
  • (x 2 , y 2 , z 2 ) is a coordinate of the second acoustic signal transmitting unit in a predetermined space;
  • (x 3 , y 3 , z 3 ) is a coordinate of the third acoustic signal transmitting unit in a predetermined space;
  • (x 4 , y 4 , z 4 ) is the coordinate of the fourth acoustic signal transmitting unit in a predetermined space;
  • d1 is the measured distance of the positioned device and the first acoustic signal transmitting unit;
  • d2 is the measurement of the positioned device and the second acoustic signal transmitting unit
  • the distance d3 is the measured distance between the positioned device and the third acou
  • the predetermined space is a static space or a movable space
  • the static space includes at least one of the following: a building, an airport lobby, an exhibition hall, a warehouse, a supermarket, a library, an underground parking lot, a mine, and a classroom;
  • the movable space includes at least one of the following: a subway, a train, a car, an airplane, or a ship.
  • At least four acoustic signal transmitting units are respectively arranged at different fixed positions in a predetermined space and are not located on the same circle, respectively for transmitting acoustic signals; the at least four acoustic signals are respectively No. transmitting unit time synchronization; the positioned device is located in the predetermined space and is not time synchronized with the at least four acoustic signal transmitting units, and is configured to receive the acoustic signals emitted by the at least four acoustic signal transmitting units, respectively a distance from the at least four acoustic signal transmitting units, and calculating a relative position of the positioned device within the predetermined space based on a distance from the at least four acoustic signal transmitting units, the positioning device and the signal transmitting unit
  • the invention is very convenient to use and can significantly reduce the cost.
  • the embodiment of the present invention combined with GPS positioning, achieves accurate GPS positioning in the room, and is suitable for moving spaces such as subways, trains, automobiles, airplanes, or ships.
  • the present invention can achieve accurate indoor positioning well for places where underground GPS, buildings, airport halls, and the like cannot be accurately located.
  • the embodiment of the present invention can not only give two-dimensional information such as latitude and longitude, but also give altitude information, and provide a three-dimensional positioning method, which can be accurate to different floors.
  • the information such as the geographical location of the building group needs to be updated, it is only necessary to update the information on the network side.
  • the shopping mall or factory building can update itself, which is very fast and the cost is very low.
  • the embodiments of the present invention can be widely applied to LBS, providing a very broad market space.
  • the GPS positioning technology of the prior art can be combined with the positioning method of the present invention to achieve a seamless connection between indoor and outdoor positioning.
  • the embodiments of the present invention have the advantages of small size and low cost, and the signal transmitting unit can be combined with a fixed device or a fixed position in various ways, and is convenient and diverse in use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种预定空间内的定位***和方法,至少四个声波信号发射单元(a,b,c,d),分别布置在预定空间内的不同固定位置处且不位于同一个圆上,分别用于发射声波信号;该至少四个声波信号发射单元(a,b,c,d)时间同步;被定位设备(e),位于该预定空间内且不与该至少四个声波信号发射单元(a,b,c,d)时间同步,用于接收该至少四个声波信号发射单元(a,b,c,d)发射的声波信号,分别确定与该至少四个声波信号发射单元(a,b,c,d)的测量距离,并基于与该至少四个声波信号发射单元(a,b,c,d)的测量距离计算该被定位设备(e)在该预定空间内的相对位置。

Description

一种预定空间内的定位***和方法 技术领域
本发明实施方式涉及无线通信技术领域,更具体地,涉及一种预定空间内的定位***和方法。
背景技术
随着数据业务和多媒体业务的快速增加,人们对定位与导航的需求日益增大,尤其在复杂的室内环境,如楼宇、机场大厅、展厅、仓库、超市、图书馆、地下停车场、矿井等环境中,常常需要确定移动终端或其持有者、设施与物品在室内的位置信息。但是受定位时间、定位精度以及复杂室内环境等条件的限制,比较完善的定位技术目前还无法很好地利用。
还有,室外小范围如有多栋厂房的工厂、公司,社区,建筑群等,需要确定移动终端或其持有者、设施的位置信息,GPS等定位技术无法精确到某栋具体的建筑。
关于室内定位技术,专家学者提出了许多解决方案,如A-GPS定位技术、声波定位技术、蓝牙技术、红外线技术、射频识别技术、超宽带技术、无线局域网络、光跟踪定位技术,以及图像分析、信标定位、计算机视觉定位技术等等。
除了以上提及的定位技术,还有基于计算机视觉、光跟踪定位、基于图像分析、磁场以及信标定位等。此外,还有基于图像分析的定位技术、信标定位、三角定位等。目前很多技术还处于研究试验阶段,如基于磁场压力感应进行定位的技术。以上各种定位技术各有优缺点,但并不意味着这些技术就应该因其优点而全面使用或者因其缺点而被抛弃。
无论现有技术中的何种定位手段,都难以在室内楼层之间定位上保持精 确度,而且如何同时保持使用的方便性以及成本低廉性,都或多或少存在着缺陷。
关于室外小范围的位置信息目前基本都是应用GPS等方法,但GPS无法精确到某栋具体的建筑,有些建筑物GPS可以定位,但建筑物的具体信息,如建筑物的入口、出口、建筑物内部信息、建筑物分布都无法获取。GPS对建筑物信息更新速度非常慢,成本很高,商场、建筑群或者厂房等无法及时更新这些信息。
发明内容
有鉴于此,本发明实施方式提出一种预定空间内的定位***和方法。
本发明实施方式的技术方案如下:
本发明提出一种预定空间内的定位***,包括:
至少四个声波信号发射单元,分别布置在预定空间内的不同固定位置处且不位于同一个圆上,分别用于发射声波信号;所述至少四个声波信号发射单元时间同步;
被定位设备,位于所述预定空间内且不与所述至少四个声波信号发射单元时间同步,用于接收所述至少四个声波信号发射单元发射的声波信号,分别确定与所述至少四个声波信号发射单元的测量距离,并基于与所述至少四个声波信号发射单元的测量距离计算所述被定位设备在所述预定空间内的相对位置。
优选地,所述预定空间为具有多个楼层的室内空间,而且在每一个楼层都分别布置所述定位***;或
所述预定空间为具有一个楼层的室内空间,在该楼层中布置所述定位***;或
所述预定空间为具有多个楼层的室内空间,而且在至少一个楼层中布置所述定位***;或
所述预定空间为一可移动的空间,所述可移动的空间包括下列中的至少一个:
地铁、火车、汽车、飞机或轮船。
优选地,所述声波信号发射单元为四个;
被定位设备具有钟差Vto
被定位设备,用于基于下列公式计算被定位设备在预定空间内的坐标(x、y、z);还用于基于所述公式计算所述钟差Vto
[(x1-x)2+(y1-y)2+(z1-z)2]1/2+c(Vt1-Vt0)=d1;
[(x2-x)2+(y2-y)2+(z2-z)2]1/2+c(Vt2-Vt0)=d2;
[(x3-x)2+(y3-y)2+(z3-z)2]1/2+c(Vt3-Vt0)=d3;
[(x4-x)2+(y4-y)2+(z4-z)2]1/2+c(Vt4-Vt0)=d4;
其中:
(x、y、z)为被定位设备在预定空间内的坐标;(x1、y1、z1)为第一个声波信号发射单元在预定空间内的坐标;(x2、y2、z2)为第二个声波信号发射单元在预定空间内的坐标;(x3、y3、z3)为第三个声波信号发射单元在预定空间内的坐标;(x4、y4、z4)为第四个声波信号发射单元在预定空间内的坐标;d1为被定位设备与第一个声波信号发射单元的测量距离;d2为被定位设备与第二个声波信号发射单元的测量距离;d3为被定位设备与第三个声波信号发射单元的测量距离;d4为被定位设备与第四个声波信号发射单元的测量距离;Vt1为第一个声波信号发射单元的钟差;Vt2为第二个声波信号发射单元的钟差;Vt3为第三个声波信号发射单元的钟差;Vt4为第四个声波信号发射单元的钟差;C为声波在空气中的传播速度。
优选地,还包括:
转发信号单元,布置在预定空间内的固定位置处或预定空间外的固定位置处,用于接收GPS定位信号以确定所述转发信号单元的GPS坐标;
至少四个声波信号发射单元,用于从转发信号单元接收所述GPS定位信号,并分别基于与转发信号单元的预定位置关系确定各自的GPS坐标;
被定位设备,用于基于在所述预定空间内的相对位置以及所述至少四个声 波信号发射单元的GPS坐标,确定所述被定位设备的GPS坐标。
优选地,所述GPS坐标包括经度、纬度和大地高。
优选地,所述被定位设备为具有麦克风的移动终端,所述移动终端包括下列中的至少一个:
功能手机、个人数字助理、平板电脑或智能手机。
本发明还提出一种预定空间内的定位方法,包括:
在预定空间内的不同固定位置处且不位于同一个圆上分别布置至少四个声波信号发射单元,所述至少四个声波信号发射单元时间同步;
至少四个声波信号发射单元分别发射声波信号;
位于所述预定空间内且不与所述至少四个声波信号发射单元时间同步的被定位设备,接收所述至少四个声波信号发射单元发射的声波信号,分别确定与所述至少四个声波信号发射单元的测量距离,并基于与所述至少四个声波信号发射单元的测量距离计算所述被定位设备在所述预定空间内的相对位置。
优选地,该方法还包括:
在预定空间内的固定位置处或预定空间外的固定位置处布置用于接收GPS定位信号的转发信号单元,从而确定所述转发信号单元的GPS坐标;
至少四个声波信号发射单元从转发信号单元接收所述GPS定位信号,并分别基于与转发信号单元的预定位置关系确定各自的GPS坐标;
被定位设备基于在所述预定空间内的相对位置以及所述至少四个声波信号发射单元的GPS坐标,确定所述被定位设备的GPS坐标。
优选地,所述声波信号发射单元为四个;
被定位设备具有钟差Vto
被定位设备基于下列公式计算被定位设备在预定空间内的坐标(x、y、z);还基于所述公式计算所述钟差Vto;其中:
[(x1-x)2+(y1-y)2+(z1-z)2]1/2+c(Vt1-Vt0)=d1;
[(x2-x)2+(y2-y)2+(z2-z)2]1/2+c(Vt2-Vt0)=d2;
[(x3-x)2+(y3-y)2+(z3-z)2]1/2+c(Vt3-Vt0)=d3;
[(x4-x)2+(y4-y)2+(z4-z)2]1/2+c(Vt4-Vt0)=d4;
(x、y、z)为被定位设备在预定空间内的坐标;(x1、y1、z1)为第一个声波信号发射单元在预定空间内的坐标;(x2、y2、z2)为第二个声波信号发射单元在预定空间内的坐标;(x3、y3、z3)为第三个声波信号发射单元在预定空间内的坐标;(x4、y4、z4)为第四个声波信号发射单元在预定空间内的坐标;d1为被定位设备与第一个声波信号发射单元的测量距离;d2为被定位设备与第二个声波信号发射单元的测量距离;d3为被定位设备与第三个声波信号发射单元的测量距离;d4为被定位设备与第四个声波信号发射单元的测量距离;Vt1为第一个声波信号发射单元的钟差;Vt2为第二个声波信号发射单元的钟差;Vt3为第三个声波信号发射单元的钟差;Vt4为第四个声波信号发射单元的钟差;C为声波在空气中的传播速度。
优选地,所述预定空间为静态空间或可移动的空间;
所述静态空间包括下列中的至少一个:楼宇、机场大厅、展厅、仓库、超市、图书馆、地下停车场、矿井、教室;
所述可移动的空间包括下列中的至少一个:地铁、火车、汽车、飞机或轮船。
从上述技术方案可以看出,在本发明实施方式中,至少四个声波信号发射单元,分别布置在预定空间内的不同固定位置处且不位于同一个圆上,分别用于发射声波信号;至少四个声波信号发射单元时间同步;被定位设备,位于预定空间内且不与至少四个声波信号发射单元时间同步,用于接收至少四个声波信号发射单元发射的声波信号,分别确定与至少四个声波信号发射单元的距离,并基于与至少四个声波信号发射单元的距离计算被定位设备在所述预定空间内的相对位置。被定位设备与信号发射单元无需同步时钟即可实现定位,因此本发明使用起来非常方便,而且可以显著降低成本。
而且,本发明实施方式与GPS定位相结合,实现了室内的精确GPS定 位,适用于地铁、火车、汽车、飞机或轮船等移动的空间。
而且,本发明实施方式对于地下停车场、楼宇、机场大厅等GPS无法精确定位的地方,本发明可以很好的实现精确的室内定位。不仅与此,本发明实施方式不仅可以给出经纬度这样的二维信息,还可以给出海拔信息,提供一个三维的定位方法,可以精确到不同的楼层。基于此,本发明实施方式可以广泛的应用到LBS中,提供非常广阔的市场空间。而且,可以将现有技术中的GPS定位技术与本发明的定位方法相结合,实现室内室外定位的无缝衔接。
还有,本发明实施方式具有体积小、成本低廉的优点,并且信号发射单元可以通过多种方式与固定设备或固定位置相结合,使用起来方便多样。
附图说明
图1为根据本发明实施方式的预定空间内的定位***结构图;
图2为根据本发明实施方式的预定空间内的室内相对定位示意图;
图3为根据本发明实施方式的预定空间内的室内精确定位示意图;
图4为根据本发明实施方式的预定空间内的定位方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明作进一步的详细描述。
为了描述上的简洁和直观,下文通过描述若干代表性的实施方式来对本发明的方案进行阐述。实施方式中大量的细节仅用于帮助理解本发明的方案。但是很明显,本发明的技术方案实现时可以不局限于这些细节。为了避免不必要地模糊了本发明的方案,一些实施方式没有进行细致地描述,而是仅给出了框架。下文中,“包括”是指“包括但不限于”,“根据……”是指“至少根据……,但不限于仅根据……”。由于汉语的语言习惯,下文中没有特 别指出一个成分的数量时,意味着该成分可以是一个也可以是多个,或可理解为至少一个。
室内地图定位作为室外地图的“最后一公里”,受到国内外广泛的关注。随着数据业务和多媒体业务的快速增加,人们对室内定位与室内导航的需求日益增大,尤其在复杂的室内环境,如楼宇、大型商场、机场大厅、展厅、仓库、超市、图书馆、地下停车场、矿井等环境中,常常需要确定移动终端或其持有者、设施与物品在室内的位置信息。然而,受定位时间、定位精度、复杂室内环境、环境中各种干扰因素等条件的限制,比较完善的定位技术目前还无法很好地利用。
一般的,室内声波定位有三个已知位置的信号发射单元即可定位被定位设备,但是只有在同一时间测定被定位设备和三个信号发射单元之间的距离才可以定位,要实现同步必须要有统一的时间基准。在声波测距时,在三维空间坐标系中,只有在同一时间测定三个距离才可定位,即物体A与每个信号发射单元具有同步时钟时,才能准确测出地面被测物体A在坐标系中的具***置。如果测得物体A到信号发射单元1间的距离,那么A点位于以信号发射单元1为中心,以所测得距离为半径的圆球上。若同时测得点A到另两个信号发射单元2,3的距离,则该点A处在三圆球相交的两个点上。由于声波信号发射具有指向性,点A只能位于三个发射单元声波发射方向。已知发射单元的位置又已同时测定到三个信号发射单元1,2,3的距离,即可进行定位。
然而,因为声波在空气中传播会产生误差,可能导致传播时间不同步。为了使得传播数据同步,本发明引入第四个发射单元提供时间数据。
本发明的定位方式采用至少四个(优选为四个)时钟同步的信号发射单元,被定位设备与信号发射单元无需同步时钟,其中三个信号发射单元用于坐标定位,一个信号发射单元作为时钟校准。由于被定位设备位置的唯一性,四个信号发射单元不能同时在一个圆上,而且四个信号发射单元的位置为已知。
即,本发明的预定空间内定位包括确定一个点的三维坐标以及实现同步这四个未知参数,必须通过测定到至少4个信号发射单元的距离才能对被定位设备进行定位。
本发明提出的精确预定空间内定位方法。该方法50米范围内定位精度可达7毫米。本发明的预定空间内定位需要声波信号发射时没有障碍物阻挡,声波传输过程中的或多或少会有多镜反射,会影响定位精度。本室内定位方法在50米范围内定位精度均为7毫米,不会因为小范围精度增高或者范围大精度变小。
图1为根据本发明实施方式的预定空间内的定位***结构图。
如图1所示,该***包括:
n个(n为至少为四的自然数)声波信号发射单元(或超声波信号发射单元),分别布置在预定空间内的不同固定位置处且不位于同一个圆上,分别用于发射声波信号(或超声波信号);所述至少四个声波信号发射单元时间同步;
被定位设备,位于所述预定空间内且不与所述至少四个声波信号发射单元时间同步,用于接收所述至少四个声波信号发射单元发射的声波信号,分别确定与所述至少四个声波信号发射单元的测量距离,并基于与所述至少四个声波信号发射单元的测量距离计算所述被定位设备在所述预定空间内的相对位置。
信号发射单元可以安装在插座、电灯等可以提供电源的设备上,也可以根据需要安装,这样较容易获得信号发射单元的位置信息,该位置信息保存在对应的信号发射单元中。
在一个实施方式中,预定空间为具有多个楼层的室内空间,而且在每一个楼层都分别布置所述定位***;或
所述预定空间为具有一个楼层的室内空间,在该楼层中布置所述定位***;或
所述预定空间为具有多个楼层的室内空间,而且在至少一个楼层中布置所述定位***;或
所述预定空间为一可移动的空间,所述可移动的空间包括下列中的至少一 个:
地铁、火车、汽车、飞机或轮船。
在一个实施方式中,声波信号发射单元为四个;被定位设备具有钟差Vto
被定位设备,用于基于下列公式计算被定位设备在预定空间内的坐标(x、y、z);还用于基于所述公式计算所述钟差Vto
[(x1-x)2+(y1-y)2+(z1-z)2]1/2+c(Vt1-Vt0)=d1;
[(x2-x)2+(y2-y)2+(z2-z)2]1/2+c(Vt2-Vt0)=d2;
[(x3-x)2+(y3-y)2+(z3-z)2]1/2+c(Vt3-Vt0)=d3;
[(x4-x)2+(y4-y)2+(z4-z)2]1/2+c(Vt4-Vt0)=d4;
其中:
(x、y、z)为被定位设备在预定空间内的坐标;(x1、y1、z1)为第一个声波信号发射单元在预定空间内的坐标;(x2、y2、z2)为第二个声波信号发射单元在预定空间内的坐标;(x3、y3、z3)为第三个声波信号发射单元在预定空间内的坐标;(x4、y4、z4)为第四个声波信号发射单元在预定空间内的坐标;d1为被定位设备与第一个声波信号发射单元的测量距离;d2为被定位设备与第二个声波信号发射单元的测量距离;d3为被定位设备与第三个声波信号发射单元的测量距离;d4为被定位设备与第四个声波信号发射单元的测量距离;Vt1为第一个声波信号发射单元的钟差;Vt2为第二个声波信号发射单元的钟差;Vt3第三个声波信号发射单元的钟差;Vt4为第四个声波信号发射单元的钟差;C为声波在空气中的传播速度。
在一个实施方式中,该***还包括:
转发信号单元,布置在预定空间内的固定位置处或预定空间外的固定位置处,用于接收GPS定位信号以确定所述转发信号单元的GPS坐标;
至少四个声波信号发射单元,用于从转发信号单元接收所述GPS定位信号,并分别基于与转发信号单元的预定位置关系确定各自的GPS坐标;
被定位设备,用于基于在所述预定空间内的相对位置以及所述至少四个声 波信号发射单元的GPS坐标,确定所述被定位设备的GPS坐标。
优选地,GPS坐标包括经度、纬度和大地高。
在一个实施方式中,所述被定位设备为具有麦克风的移动终端,所述移动终端包括下列中的至少一个:功能手机、个人数字助理、平板电脑或智能手机,等等。
图2为根据本发明实施方式的预定空间内的室内相对定位示意图。
如图2所示,预定空间内(如室内)的任意位置安装四个信号发射单元a,b,c,d,这四个信号发射单元a,b,c,d不能在同一个圆上。预定空间内某一点作为坐标原点O,四个信号发射单元a,b,c,d在这个坐标系中的坐标,即为已知的a(x1,y1,z1),b(x2,y2,z2),c(x3,y3,z3),d(x4,y4,z4),将四个信号发射单元a,b,c,d对应的位置信息写入各自信号发射单元a,b,c,d中。
假定被定位设备e的当前坐标为e(x,y,z)。信号发射单元a,b,c,d可以持续不断的发出声波定位信号,声波定位信号中可以包含位置信息、信号发射单元的精确发送时间、指令信号和定位信号以及其他信息。被定位设备e进入室内定位范围时,接收到信号发射单元a,b,c,d发射的声波。
被定位设备e与信号发射单元的测量距离为d,其中d=(T2-T1)×C;C为声波在空气中的传播速度;声波信号的接收时间点为T2,从声波信号中解析出的发送时间点为T1。T1即为信号发射单元侧的声波信号发射时间;T2即为被定位设备e侧的声波信号接收时间。
被定位设备e分别计算:与信号发射单元a的测量距离ae;与信号发射单元b的测量距离be;与信号发射单元c的测量距离ce;与信号发射单元d的测量距离de。其中:
ae=(T2a-T1a)×C;C为声波在空气中的传播速度;信号发射单元a发送的声波信号进一步包含信号发射单元a侧的声波信号发送时间点T1a,被定位设备e通过解析该声波信号可以获取T1a;T2a为被定位设备e记录的、针对信号发射单元a发出的声波信号的接收时间点。
be=(T2b-T1b)×C;C为声波在空气中的传播速度;信号发射单元b 发送的声波信号进一步包含信号发射单元b侧的声波信号发送时间点T1b,被定位设备e通过解析该声波信号可以获取T1b;T2b为被定位设备e记录的、针对信号发射单元b发出的声波信号的接收时间点。
ce=(T2c-T1c)×C;C为声波在空气中的传播速度;信号发射单元c发送的声波信号进一步包含信号发射单元c侧的声波信号发送时间点T1c,被定位设备e通过解析该声波信号可以获取T1c;T2c为被定位设备e记录的、针对信号发射单元c发出的声波信号的接收时间点。
de=(T2d-T1d)×C;C为声波在空气中的传播速度;信号发射单元d发送的声波信号进一步包含信号发射单元d侧的声波信号发送时间点T1d,被定位设备e通过解析该声波信号可以获取T1d;T2da为被定位设备e记录的、针对信号发射单元d发出的声波信号的接收时间点。
声波测距的前提条件是发射声波的设备与接收声波的设备时钟要同步,才能测得声波在空气中行走的时间,进而得到声波在空气中行走的距离,即为两设备之间的距离。
不过,本发明中信号发射单元a,b,c,d与被定位设备e不要求同步,四个信号发射单元a,b,c,d本身保持时间同步,故引入一个时延参数Vto,用以计算被定位设备e的位置信息。ae为信号发射单元a与被定位设备e的测量距离;be为信号发射单元b与被定位设备e的测量距离;ce为信号发射单元c与被定位设备e的测量距离;de为信号发射单元d与被定位设备e的测量距离。
这样,计算被定位设备e的坐标即转化为数学计算。
已知:四点坐标a(x1,y1,z1),b(x2,y2,z2),c(x3,y3,z3),d(x4,y4,z4),ae=d1;be=d2;ce=d3;de=d4;
求e点坐标e(x,y,z):
方程式:
[(x1-x)2+(y1-y)2+(z1-z)2]1/2+c(Vt1-Vt0)=d1;
[(x2-x)2+(y2-y)2+(z2-z)2]1/2+c(Vt2-Vt0)=d2;
[(x3-x)2+(y3-y)2+(z3-z)2]1/2+c(Vt3-Vt0)=d3;
[(x4-x)2+(y4-y)2+(z4-z)2]1/2+c(Vt4-Vt0)=d4;
上述四个方程式中(x、y、z)为待测点e在坐标系中的坐标,Vt0为被定位设备e的接收机的钟差;(x、y、z)和Vt0为未知参数。(x1,y1,z1)为信号发射单元a在坐标系中的坐标,(x2,y2,z2)为信号发射单元b在坐标系中的坐标,(x3,y3,z3)为信号发射单元c在坐标系中的坐标,(x4,y4,z4)为信号发射单元d在坐标系中的坐标;d1,d2,d3,d4分别为信号发射单元a,b,c,d到被定位设备之间的测量距离;Vt1为第一个声波信号发射单元的钟差;Vt2为第二个声波信号发射单元的钟差;Vt3为第三个声波信号发射单元的钟差;Vt4为第四个声波信号发射单元的钟差;C为声音在空气中传播的速度。(x1,y1,z1),(x2,y2,z2)(x3,y3,z3),(x4,y4,z4),Vt1,Vt2,Vt3,Vt4和C均为已知;d1,d2,d3和d4也可以观测得到。
由以上四个方程即可解算出待测点的坐标(x、y、z)和接收机的钟差Vto
可见,即使被定位设备与信号发射单元不保持时间同步,本发明也可以实现针对被定位设备在预定空间的相对定位。该预定空间可以为静态空间或可移动的空间。静态空间包括下列中的至少一个:楼宇、机场大厅、展厅、仓库、超市、图书馆、地下停车场、矿井、教室,等。可移动的空间包括下列中的至少一个:地铁、火车、汽车、飞机或轮船,等。
通过引入GPS信号,本发明还可以实现被定位设备在预定空间的精确定位。
GPS是迄今为止最为成功的定位***,但是在定位和导航时必须捕捉到至少四颗卫星的信号才可以。在室内几乎捕捉不到四颗卫星的信号,所以GPS基本不能用于室内定位和导航。本发明根据图1和图2所示的预定空间内定位原理,提出一种解决卫星信号到达地面时较弱、不能穿透建筑物的问题,最终定位物体当前所处的位置,解决GPS定位“最后一公里”的问题。
本发明提出一种基于GPS和声波相结合的预定空间内定位方法,主要由四颗及以上GPS卫星、转发信号单元、四个及以上室内定位设备单元、室内被定位设备组成。方法如下:
GPS卫星:GPS卫星定位***由24颗高约2万千米的卫星网络组成,这24颗卫星分布在6个均匀配置的轨道上。卫星这样的分布,主要是为了在地球表面任一地点均可同时接收到4颗以上卫星信号。
转发信号单元:布置在预定空间内或预定空间外(如建筑物的***)某个固定位,转发信号单元对应于该转发信号单元所在地理位置信息的位置标识值;转发信号单元可以接收GPS信号,转发信号单元能转发GPS信息。
室内定位***:每个楼层均装有一套图1和图2所示的定位***,定位***由四个信号发射单元(即室内定位单元)组成,四个信号发射单元安装于各楼层的固定位置,其所在地理位置信息均为已知,接收由转发信号单元发出的GPS信息,发送声波定位信号给被定位设备。安装信号发射单元后,设置每个信号发射单元所在地理位置信息的位置标识值。
被定位设备:当被定位设备移动到某个位置,接收由信号发射单元发送的声波信号。被定位设备可以有麦克风,用于接收定信号发射单元发送的声波信号。声波信号包括发射单元所在地理位置经纬度信息和海拔信息。
GPS可以测定地面点大地经纬度和大地高,卫星定位是在地心空间大地直角坐标系中进行的,这一坐标系和地心大地坐标系可以通过几何关系互相转换。与GPS定位不同的是,本发明上述室内定位***是得到相对位置,室内四个信号发射单元固定安装在某个位置,选定一个点作为坐标原点,则可以得到四个信号发射单元在该坐标系中的坐标。
对于多个楼层的建筑物的室内定位,每个楼层都安装有一个或多个定位***,对这多套室内定位***,可以设定同一个点作为室内定位***的坐标原点O。一般的,室内定位***的坐标原点可以选为转发信号单元的安装位置。
GPS定位的坐标系有大地直角坐标系和地心大地坐标系两种,这两种坐标系可以通过几何关系相互转换。选定较容易测得经纬度和大地高的点作为室内定 位***坐标系的原点,该坐标系和大地直角坐标系或者和地心大地坐标系都可以通过几何关系相互转换。如果能把上述室内定位***的坐标系转换到卫星定位的坐标系中,也能得到室内被测点的大地经纬度和大地高,由此可以通过GPS来进行室内定位。
具体地,本发明的室内定位和导航方案描述如下:
第一步:测得转发信号单元的经纬度和大地高:转发信号单元安装在建筑物室外的固定位置,可以通过GPS测得转发信号单元的经纬度和大地高。
第二步:室内定位***的各个信号发射单元安装位置固定,与转发信号单元相对位置固定,可以计算出室内各信号发射单元对应的地理位置标识值。
第三步:计算室内被定位设备的经纬度和大地高:GPS卫星、转发信号单元、室内定位用的信号发射单元的相对位置关系已知,通过上述室内精确定位方法,计算可以得到室内被定位设备的经纬度和大地高。
图3为根据本发明实施方式的预定空间内的室内精确定位示意图。
地球表面的GPS接收机的位置是相对于地球而言的,因此,要描述GPS接收机的位置,需要采用固联于地球上随同地球转动的坐标系,即地球坐标系作为参照系。
地球坐标系有两种几何表达形式,即地球直角坐标系和地球大地坐标系。地球直角坐标系的定义是:原点O与地球质心重合,Z轴指向地球北极,X轴指向地球赤道面与格林威治子午圈的交点(即0经度方向),Y轴在赤道平面里与XOZ构成右手坐标系(即指向东经90度方向)。
地球大地坐标系的定义是:地球椭球的中心与地球质心重合,椭球的短轴与地球自转轴重合。两种坐标系在定位***中经常交叉使用,可以通过几何关系进行相互转换。
图3中,转发信号单元A(x5,y5,z5)可以通过GPS***测得。室内定位单元的各信号发射单元的位置固定,相对于转发信号单元的位置已知,通过几何算法,可以得到各信号发射单元的地理位置。由上可知,(x1,y1,z1),(x2,y2,z2),(x3,y3,z3),(x4,y4,z4),(x5,y5,z5)均为已知,通过上述基于声波的室内精确定 位方法,可以得到被定位设备的地理位置(x,y,z),该地理位置信息为经纬度和大地高。综上所述,GPS定位的“最后一公里”,即室内定位和导航得到解决。
四星定位还可以应用于室内机器人的定位,如扫地机器人通过精确的室内定位形成室内地图,然后规划有效的扫地路径,提高扫地效率。也可以应用到航行中的海轮的各个楼层内的相对定位和绝对定位,还可以应用到高速旅行中的高铁的各个车厢内的相对定位和绝对定位,等等。
本发明的定位技术还可以用于多媒体智能设备文件传输。多媒体智能设备上的两个声波接收器之间的距离大于7mm时,室内定位***能精确测得两个声波接收器的位置,得到智能设备的指向,当智能设备转向某个角度,可以向这个角度覆盖的智能设备传输文件及其他操作。
本发明的定位技术可以应用于室内地图,在商场、医院、机场、火车站等公共场所实现定位和导航。
图4为根据本发明实施方式的预定空间内的定位方法流程图。
如图4所示,该方法包括:
步骤401:在预定空间内的不同固定位置处且不位于同一个圆上分别布置至少四个声波信号发射单元,所述至少四个声波信号发射单元时间同步;
步骤402:至少四个声波信号发射单元分别发射声波信号;
步骤403:位于所述预定空间内且不与所述至少四个声波信号发射单元时间同步的被定位设备,接收所述至少四个声波信号发射单元发射的声波信号,分别确定与所述至少四个声波信号发射单元的测量距离,并基于与所述至少四个声波信号发射单元的测量距离计算所述被定位设备在所述预定空间内的相对位置。
在一个实施方式中,该方法还包括:
在预定空间内的固定位置处或预定空间外的固定位置处布置用于接收GPS定位信号的转发信号单元,从而确定所述转发信号单元的GPS坐标;
至少四个声波信号发射单元从转发信号单元接收所述GPS定位信号,并分别基于与转发信号单元的预定位置关系确定各自的GPS坐标;
被定位设备基于在所述预定空间内的相对位置以及所述至少四个声波信号发射单元的GPS坐标,确定所述被定位设备的GPS坐标。
在一个实施方式中,所述声波信号发射单元为四个;
被定位设备具有钟差Vto
被定位设备基于下列公式计算被定位设备在预定空间内的坐标(x、y、z);还基于所述公式计算所述钟差Vto;其中:
[(x1-x)2+(y1-y)2+(z1-z)2]1/2+c(Vt1-Vt0)=d1;
[(x2-x)2+(y2-y)2+(z2-z)2]1/2+c(Vt2-Vt0)=d2;
[(x3-x)2+(y3-y)2+(z3-z)2]1/2+c(Vt3-Vt0)=d3;
[(x4-x)2+(y4-y)2+(z4-z)2]1/2+c(Vt4-Vt0)=d4;
(x、y、z)为被定位设备在预定空间内的坐标;(x1、y1、z1)为第一个声波信号发射单元在预定空间内的坐标;(x2、y2、z2)为第二个声波信号发射单元在预定空间内的坐标;(x3、y3、z3)为第三个声波信号发射单元在预定空间内的坐标;(x4、y4、z4)为第四个声波信号发射单元在预定空间内的坐标;d1为被定位设备与第一个声波信号发射单元的测量距离;d2为被定位设备与第二个声波信号发射单元的测量距离;d3为被定位设备与第三个声波信号发射单元的测量距离;d4为被定位设备与第四个声波信号发射单元的测量距离;Vt1为第一个声波信号发射单元的钟差;Vt2为第二个声波信号发射单元的钟差;Vt3为第三个声波信号发射单元的钟差;Vt4为第四个声波信号发射单元的钟差;C为声波在空气中的传播速度。
在一个实施方式中,所述预定空间为静态空间或可移动的空间;
所述静态空间包括下列中的至少一个:楼宇、机场大厅、展厅、仓库、超市、图书馆、地下停车场、矿井、教室;
所述可移动的空间包括下列中的至少一个:地铁、火车、汽车、飞机或轮船。
综上所述,至少四个声波信号发射单元,分别布置在预定空间内的不同固定位置处且不位于同一个圆上,分别用于发射声波信号;所述至少四个声波信 号发射单元时间同步;被定位设备,位于所述预定空间内且不与所述至少四个声波信号发射单元时间同步,用于接收所述至少四个声波信号发射单元发射的声波信号,分别确定与所述至少四个声波信号发射单元的距离,并基于与所述至少四个声波信号发射单元的距离计算所述被定位设备在所述预定空间内的相对位置,被定位设备与信号发射单元无需同步时钟,因此本发明使用起来非常方便,而且可以显著降低成本。
而且,本发明实施方式与GPS定位相结合,实现了室内的精确GPS定位,适用于地铁、火车、汽车、飞机或轮船等移动的空间。
而且,本发明实施方式对于地下停车场、楼宇、机场大厅等GPS无法精确定位的地方,本发明可以很好的实现精确的室内定位。不仅与此,本发明实施方式不仅可以给出经纬度这样的二维信息,还可以给出海拔信息,提供一个三维的定位方法,可以精确到不同的楼层。对于小范围建筑群,当建筑群的地理位置等信息需要更新时,只需更新网络侧的信息即可,商场或者厂房等可以自行进行更新,非常快速,成本很低。
基于此,本发明实施方式可以广泛的应用到LBS中,提供非常广阔的市场空间。而且,可以将现有技术中的GPS定位技术与本发明的定位方法相结合,实现室内室外定位的无缝衔接。
还有,本发明实施方式具有体积小、成本低廉的优点,并且信号发射单元可以通过多种方式与固定设备或固定位置相结合,使用起来方便多样。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种预定空间内的定位***,其特征在于,包括:
    至少四个声波信号发射单元,分别布置在预定空间内的不同固定位置处且不位于同一个圆上,分别用于发射声波信号;所述至少四个声波信号发射单元时间同步;
    被定位设备,位于所述预定空间内且不与所述至少四个声波信号发射单元时间同步,用于接收所述至少四个声波信号发射单元发射的声波信号,分别确定与所述至少四个声波信号发射单元的测量距离,并基于与所述至少四个声波信号发射单元的测量距离计算所述被定位设备在所述预定空间内的相对位置。
  2. 根据权利要求1所述的预定空间内的定位***,其特征在于,所述预定空间为具有多个楼层的室内空间,而且在每一个楼层都分别布置所述定位***;或
    所述预定空间为具有一个楼层的室内空间,在该楼层中布置所述定位***;或
    所述预定空间为具有多个楼层的室内空间,而且在至少一个楼层中布置所述定位***;或
    所述预定空间为一可移动的空间,所述可移动的空间包括下列中的至少一个:
    地铁、火车、汽车、飞机或轮船。
  3. 根据权利要求1所述的预定空间内的定位***,其特征在于,
    所述声波信号发射单元为四个;
    被定位设备具有钟差Vto
    被定位设备,用于基于下列公式计算被定位设备在预定空间内的坐标(x、y、z);还用于基于所述公式计算所述钟差Vto
    [(x1-x)2+(y1-y)2+(z1-z)2]1/2+c(Vt1-Vt0)=d1;
    [(x2-x)2+(y2-y)2+(z2-z)2]1/2+c(Vt2-Vt0)=d2;
    [(x3-x)2+(y3-y)2+(z3-z)2]1/2+c(Vt3-Vt0)=d3;
    [(x4-x)2+(y4-y)2+(z4-z)2]1/2+c(Vt4-Vt0)=d4;
    其中:
    (x、y、z)为被定位设备在预定空间内的坐标;(x1、y1、z1)为第一个声波信号发射单元在预定空间内的坐标;(x2、y2、z2)为第二个声波信号发射单元在预定空间内的坐标;(x3、y3、z3)为第三个声波信号发射单元在预定空间内的坐标;(x4、y4、z4)为第四个声波信号发射单元在预定空间内的坐标;d1为被定位设备与第一个声波信号发射单元的测量距离;d2为被定位设备与第二个声波信号发射单元的测量距离;d3为被定位设备与第三个声波信号发射单元的测量距离;d4为被定位设备与第四个声波信号发射单元的测量距离;Vt1为第一个声波信号发射单元的钟差;Vt2为第二个声波信号发射单元的钟差;Vt3为第三个声波信号发射单元的钟差;Vt4为第四个声波信号发射单元的钟差;C为声波在空气中的传播速度。
  4. 根据权利要求1所述的预定空间内的定位***,其特征在于,还包括:
    转发信号单元,布置在预定空间内的固定位置处或预定空间外的固定位置处,用于接收GPS定位信号以确定所述转发信号单元的GPS坐标;
    至少四个声波信号发射单元,用于从转发信号单元接收所述GPS定位信号,并分别基于与转发信号单元的预定位置关系确定各自的GPS坐标;
    被定位设备,用于基于在所述预定空间内的相对位置以及所述至少四个声波信号发射单元的GPS坐标,确定所述被定位设备的GPS坐标。
  5. 根据权利要求4所述的预定空间内的定位***,其特征在于,所述GPS坐标包括经度、纬度和大地高。
  6. 根据权利要求1-5中任一项所述的预定空间内的定位***,其特征在于,
    所述被定位设备为具有麦克风的移动终端,所述移动终端包括下列中的至少一个:
    功能手机、个人数字助理、平板电脑或智能手机。
  7. 一种预定空间内的定位方法,其特征在于,包括:
    在预定空间内的不同固定位置处且不位于同一个圆上分别布置至少四个声波信号发射单元,所述至少四个声波信号发射单元时间同步;
    至少四个声波信号发射单元分别发射声波信号;
    位于所述预定空间内且不与所述至少四个声波信号发射单元时间同步的被定位设备,接收所述至少四个声波信号发射单元发射的声波信号,分别确定与所述至少四个声波信号发射单元的测量距离,并基于与所述至少四个声波信号发射单元的测量距离计算所述被定位设备在所述预定空间内的相对位置。
  8. 根据权利要求7所述的预定空间内的定位方法,其特征在于,还包括:
    在预定空间内的固定位置处或预定空间外的固定位置处布置用于接收GPS定位信号的转发信号单元,从而确定所述转发信号单元的GPS坐标;
    至少四个声波信号发射单元从转发信号单元接收所述GPS定位信号,并分别基于与转发信号单元的预定位置关系确定各自的GPS坐标;
    被定位设备基于在所述预定空间内的相对位置以及所述至少四个声波信号发射单元的GPS坐标,确定所述被定位设备的GPS坐标。
  9. 根据权利要求7所述的预定空间内的定位方法,其特征在于,
    所述声波信号发射单元为四个;
    被定位设备具有钟差Vto
    被定位设备基于下列公式计算被定位设备在预定空间内的坐标(x、y、z);还基于所述公式计算所述钟差Vto;其中:
    [(x1-x)2+(y1-y)2+(z1-z)2]1/2+c(Vt1-Vt0)=d1;
    [(x2-x)2+(y2-y)2+(z2-z)2]1/2+c(Vt2-Vt0)=d2;
    [(x3-x)2+(y3-y)2+(z3-z)2]1/2+c(Vt3-Vt0)=d3;
    [(x4-x)2+(y4-y)2+(z4-z)2]1/2+c(Vt4-Vt0)=d4;
    (x、y、z)为被定位设备在预定空间内的坐标;(x1、y1、z1)为第一个声波信号发射单元在预定空间内的坐标;(x2、y2、z2)为第二个声波信号发射单 元在预定空间内的坐标;(x3、y3、z3)为第三个声波信号发射单元在预定空间内的坐标;(x4、y4、z4)为第四个声波信号发射单元在预定空间内的坐标;d1为被定位设备与第一个声波信号发射单元的测量距离;d2为被定位设备与第二个声波信号发射单元的测量距离;d3为被定位设备与第三个声波信号发射单元的测量距离;d4为被定位设备与第四个声波信号发射单元的测量距离;Vt1为第一个声波信号发射单元的钟差;Vt2为第二个声波信号发射单元的钟差;Vt3为第三个声波信号发射单元的钟差;Vt4为第四个声波信号发射单元的钟差;C为声波在空气中的传播速度。
  10. 根据权利要求7所述的预定空间内的定位方法,其特征在于,
    所述预定空间为静态空间或可移动的空间;
    所述静态空间包括下列中的至少一个:楼宇、机场大厅、展厅、仓库、超市、图书馆、地下停车场、矿井、教室;
    所述可移动的空间包括下列中的至少一个:地铁、火车、汽车、飞机或轮船。
PCT/CN2016/103654 2015-12-07 2016-10-27 一种预定空间内的定位***和方法 WO2017097054A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510886477 2015-12-07
CN201510886477.9 2015-12-07
CN201610055089.0A CN105611500A (zh) 2015-12-07 2016-01-27 一种预定空间内的定位***和方法
CN201610055089.0 2016-01-27

Publications (1)

Publication Number Publication Date
WO2017097054A1 true WO2017097054A1 (zh) 2017-06-15

Family

ID=55990974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103654 WO2017097054A1 (zh) 2015-12-07 2016-10-27 一种预定空间内的定位***和方法

Country Status (2)

Country Link
CN (1) CN105611500A (zh)
WO (1) WO2017097054A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655056A (zh) * 2018-11-26 2019-04-19 江苏科技大学 一种深海采矿车复合定位***及其定位方法
WO2019136716A1 (zh) * 2018-01-12 2019-07-18 浙江国自机器人技术有限公司 一种自行规划路径的清洗方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105611500A (zh) * 2015-12-07 2016-05-25 苏州触达信息技术有限公司 一种预定空间内的定位***和方法
CN107957579B (zh) * 2016-10-14 2020-08-28 苏州触达信息技术有限公司 一种被测物体的状态参数确定方法和***
CN106525044B (zh) * 2016-10-18 2019-09-10 天津大学 基于船体结构图的大型舰艇的人员定位导航***及其方法
CN106767830A (zh) * 2017-01-05 2017-05-31 桂林电子科技大学 一种转发式室内定位设备及定位方法
US11010601B2 (en) 2017-02-14 2021-05-18 Microsoft Technology Licensing, Llc Intelligent assistant device communicating non-verbal cues
US10467510B2 (en) 2017-02-14 2019-11-05 Microsoft Technology Licensing, Llc Intelligent assistant
US11100384B2 (en) 2017-02-14 2021-08-24 Microsoft Technology Licensing, Llc Intelligent device user interactions
CN109547914B (zh) * 2017-08-04 2021-11-30 阿里巴巴集团控股有限公司 车厢内位置区域确定及提供位置服务的方法、装置及终端
CN108917762B (zh) * 2018-05-16 2020-06-30 珠海格力电器股份有限公司 电器定位的方法、***、存储介质和家居***
CN108562869B (zh) * 2018-05-22 2021-08-03 京东方科技集团股份有限公司 一种室内定位导航***及方法
CN110554418A (zh) * 2019-08-20 2019-12-10 北京建筑大学 卫星信号遮蔽区域rtk/uwb组合测图方法及***
CN111913172A (zh) * 2020-02-11 2020-11-10 北京联睿科科技有限公司 一种利用声波进行空间定位的方法及***
CN112198530A (zh) * 2020-10-12 2021-01-08 福建西牛智能科技工程有限公司 一种gps人员定位***及方法
CN113267193B (zh) * 2021-05-27 2024-05-14 苏州触达信息技术有限公司 基于超声信标的室内精确定位组网方法
CN113781825A (zh) * 2021-08-25 2021-12-10 武汉无线飞翔科技有限公司 一种声波定位的巡检方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253628A (zh) * 1996-04-05 2000-05-17 迪维安公司 定位***及方法
CN102116859A (zh) * 2009-12-31 2011-07-06 青岛海尔软件有限公司 室内定位感知***
US8463541B2 (en) * 2010-12-15 2013-06-11 Electronics And Telecommunications Research Institute Camera-based indoor position recognition apparatus and method
CN103901456A (zh) * 2014-04-14 2014-07-02 东南大学 一种gps终端室内定位***和方法
CN103941231A (zh) * 2014-05-13 2014-07-23 李建 超声射频信号联合处理的室内定位***及定位方法
CN105611500A (zh) * 2015-12-07 2016-05-25 苏州触达信息技术有限公司 一种预定空间内的定位***和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102831456B (zh) * 2012-08-21 2015-04-29 西北工业大学 一种基于射频识别信号级别的室内无线定位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253628A (zh) * 1996-04-05 2000-05-17 迪维安公司 定位***及方法
CN102116859A (zh) * 2009-12-31 2011-07-06 青岛海尔软件有限公司 室内定位感知***
US8463541B2 (en) * 2010-12-15 2013-06-11 Electronics And Telecommunications Research Institute Camera-based indoor position recognition apparatus and method
CN103901456A (zh) * 2014-04-14 2014-07-02 东南大学 一种gps终端室内定位***和方法
CN103941231A (zh) * 2014-05-13 2014-07-23 李建 超声射频信号联合处理的室内定位***及定位方法
CN105611500A (zh) * 2015-12-07 2016-05-25 苏州触达信息技术有限公司 一种预定空间内的定位***和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019136716A1 (zh) * 2018-01-12 2019-07-18 浙江国自机器人技术有限公司 一种自行规划路径的清洗方法
CN109655056A (zh) * 2018-11-26 2019-04-19 江苏科技大学 一种深海采矿车复合定位***及其定位方法

Also Published As

Publication number Publication date
CN105611500A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
WO2017097054A1 (zh) 一种预定空间内的定位***和方法
KR100982852B1 (ko) Rfid를 이용한 이동체 실시간 위치 결정 시스템 및 그방법과, 그를 위한 무선중계장치 설치 방법
Ijaz et al. Indoor positioning: A review of indoor ultrasonic positioning systems
CN104849740B (zh) 集成卫星导航与蓝牙技术的室内外无缝定位***及其方法
Mautz Indoor positioning technologies
Mautz The challenges of indoor environments and specification on some alternative positioning systems
EP2591379B1 (en) Indoor satellite navigation system
US20070001904A1 (en) System and method navigating indoors and outdoors without GPS. utilizing a network of sensors
Puértolas Montañés et al. Smart indoor positioning/location and navigation: A lightweight approach
CN103068043B (zh) 一种基于wifi和加速度传感器的室内精确定位方法
CN110926461B (zh) 一种基于超宽带室内定位方法和***、导航方法和***
CN105784188B (zh) 一种温度测量***和温度测量方法
WO2013108243A1 (en) Hybrid-based system and method for indoor localization
KR101537742B1 (ko) 실내 측위 시스템용 비콘 및 리스너
Wahab et al. Indoor positioning system: A review
CN105208526A (zh) 一种预定空间内的定位方法和***
Rose et al. 3D trilateration localization using RSSI in indoor environment
Brown et al. Classification schemes of positioning technologies for indoor navigation
Murakami et al. Five degrees-of-freedom pose-estimation method for smartphones using a single acoustic anchor
CN112799014A (zh) 基于椭球交汇的超宽带定位***、方法、无线终端及服务器
CN105580461B (zh) 用于对移动通信装置定位的方法和定位装置
Moschevikin et al. The impact of nlos components in time-of-flight networks for indoor positioning systems
CN103379620A (zh) 定位方法及定位***
Sakr et al. Evaluation of dynamic ad-hoc UWB indoor positioning system
CN110873862A (zh) 一种预定空间内的定位***和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872247

Country of ref document: EP

Kind code of ref document: A1