WO2017097051A1 - 一种***广播消息的传输方法及基站、终端 - Google Patents

一种***广播消息的传输方法及基站、终端 Download PDF

Info

Publication number
WO2017097051A1
WO2017097051A1 PCT/CN2016/103431 CN2016103431W WO2017097051A1 WO 2017097051 A1 WO2017097051 A1 WO 2017097051A1 CN 2016103431 W CN2016103431 W CN 2016103431W WO 2017097051 A1 WO2017097051 A1 WO 2017097051A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
base station
terminal
system broadcast
broadcast message
Prior art date
Application number
PCT/CN2016/103431
Other languages
English (en)
French (fr)
Inventor
赵百轶
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017097051A1 publication Critical patent/WO2017097051A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of high frequency communication systems, and in particular to a method, a base station and a terminal for transmitting a system broadcast message in high frequency communication.
  • 5G Next Generation Communication System
  • 5G Next Generation Communication System
  • the industry's vision for 5G systems is to deliver any data to anyone or thing at any place and time. It is foreseeable that 5G will inevitably penetrate all aspects from production to life, providing the necessary material basis for industrial and social transformation and change.
  • the 5G communication system design requires much higher throughput, the number of connected terminals, delay, mobility, energy consumption and network flexibility than the previous communication system, and the system design will face more challenges.
  • One of the main challenges is to reduce network energy consumption, especially for base stations.
  • the communication system focused on reducing the energy consumption on the terminal side to extend the standby and use time of the terminal. Due to the more reliable power supply and technical considerations of the base station, the energy consumption of the base station has not received much attention. From the statistics, the current electricity cost of the base station under the system is a very important expenditure cost.
  • 5G In order to meet the needs of a variety of wireless services, 5G needs to have higher throughput and requires wider bandwidth. However, the traditional 300MHz to 3GHz frequency band cannot provide more bandwidth resources, so 5G will adopt more than before. Higher frequency bands in communication systems, such as 45 GHz and 60 GHz, have disadvantages such as large free propagation loss and easy absorption by air and rain. In urban and suburban areas, in order to meet the coverage and throughput requirements, 5G will adopt a multi-base station dense network (UDN). The density of base stations will far exceed that of previous communication systems. It can be expected if The energy consumption of the base station in 5G is still the same or similar to that of the previous communication system.
  • UDN multi-base station dense network
  • base station In order to communicate the target at any place, the base station is needed. Covering remote areas with sparsely populated areas, base stations in these areas are mostly powered by emerging energy sources such as solar energy. Base stations have lower energy consumption, making solar panels smaller, reducing the cost of base stations, and utilizing base stations. Deploy to these areas.
  • the bearer traffic of each base station is not evenly distributed, and is close to the "80/20 law".
  • a small number of base stations carry a large amount of services of the entire network, and most of the base stations only carry a small amount of the entire network.
  • the time-frequency resource utilization of base stations carrying a large number of services is at least double that of a small number of service base stations, but the energy consumption of the former is far less than double that of the latter, and the traffic volume is greatly different. The difference in energy consumption is reduced.
  • the main reason is the transmission of non-service data for cell discovery and access. Such data is frequently sent in a certain period regardless of whether the base station has services. The system broadcast message is such data. An important class.
  • 5G will avoid adopting the cyclical mode. It will use the “on-demand” method to send system broadcast messages, that is, transmit system broadcast messages only when the terminal needs it, and the higher frequency band adopted by 5G has shorter wavelengths, which can be used in units. Having more antennas in the area means that data can be transmitted by beamforming. This way, the transmission energy is concentrated in one direction, while the other directions have little or no energy. The on-demand transmission can be extended to space in this way. on. In view of this, how to use the beam to realize reliable transmission of system broadcast messages on time and space is a problem to be solved.
  • Embodiments of the present invention provide a method for transmitting a system broadcast message, a base station, and a terminal, which effectively reduce the frequency of transmitting a system broadcast message, and achieve the purpose of reducing base station energy consumption and improving resource utilization.
  • An embodiment of the present invention provides a method for transmitting a system broadcast message, including:
  • the base station sends a system broadcast message to the terminal, where
  • the system broadcast message includes an index block and one or more system message blocks, the index block is used to identify a system message block that the base station transmits to the terminal, and the system message block includes a system message that is different.
  • the sending, by the base station, the system broadcast message to the terminal includes:
  • the base station After receiving the feedback information of the terminal on the reserved resource of the predetermined period, the base station Determining, according to the feedback information and the a priori information, a beam direction of the base station to the terminal and a message block to be transmitted;
  • the system broadcast message is transmitted in a determined beam direction.
  • the sending, by the base station, the system broadcast message to the terminal includes:
  • the base station After receiving the feedback information of the terminal on the reserved resource of the predetermined period, the base station determines, according to the feedback information and the a priori information, a message block to be transmitted;
  • the system broadcast message is transmitted in all beam directions in a predetermined order of the beams.
  • the above method further has the following features:
  • the predetermined period is fixed, or
  • the predetermined period is dynamically adjusted.
  • the foregoing method further has the following feature: the time that the reserved resource lasts in the time domain includes any one of the following forms:
  • the reserved resources continue to appear in a periodic manner
  • the reserved resources appear in a periodic manner only during a specified time period.
  • the foregoing method further has the following feature: in a single cell, the location relationship of the reserved resource in the frequency domain includes any one of the following forms:
  • the reserved resources are continuous in the frequency domain
  • the reserved resources are discrete in the frequency domain.
  • the foregoing method further has the following feature: in a single cell, the allocation manner of the reserved resource in the frequency domain includes any one of the following forms:
  • the reserved resource is fixed in the frequency domain
  • the reserved resources are dynamically scheduled in the frequency domain.
  • the location relationship of the reserved resource in the frequency domain includes any one of the following forms:
  • the reserved resources of each cell are not exactly the same in the frequency domain.
  • the sending, by the base station, the system broadcast message to the terminal includes:
  • the base station actively sends the system broadcast message to the terminal in the determined beam direction according to the current state and a priori information of the terminal.
  • the foregoing method further has the following feature: the system broadcast message sent by the base station to the terminal occupies a fixed time-frequency resource, or
  • the time-frequency resource occupied by the system broadcast message sent by the base station to the terminal is dynamically scheduled, or
  • the system broadcast message of the specified part of the system broadcast message sent by the base station to the terminal occupies a fixed time-frequency resource, and the time-frequency resources occupied by other part of the system broadcast message are dynamically scheduled.
  • the foregoing method further has the following feature: the system broadcast message sent by the base station to the terminal adopts a fixed coding and modulation manner; or
  • the coding and modulation mode adopted by the base station to send the system broadcast message to the terminal is dynamically scheduled; or
  • the system broadcast message of the specified part of the system broadcast message sent by the base station to the terminal adopts a fixed coding and modulation mode, and the coding and modulation modes of the remaining part of the system broadcast message are dynamically scheduled.
  • the foregoing method further has the following feature: the system message in the system message block satisfies the following conditions:
  • Ts represents the average interval time of the content change of the system message in the system message block
  • Td represents the corresponding minimum threshold time preset by the system message block
  • Tu represents the highest threshold time preset by the system message block.
  • the index block includes any one of the following forms:
  • Each binary number in the binary string in the index block respectively identifies each system message block, and the binary number position distinguishes different system message blocks, and the value at each position of the binary number identifies whether the base station transmits the system broadcast message or not.
  • the binary string in the index block identifies a reference sequence in which all system message blocks are arranged in a specified order, the binary string being divided into offset bits and flag bits, wherein the offset bits occupy one end or end of the binary string or a plurality of binary bits, the remaining binary bits are used as identification bits, and the offset bits represent the starting position of the binary character string in the reference sequence, and the identification bits are one-to-one corresponding to a length in the reference sequence starting from the starting position indicated by the offset bit Within the system message block, the value at each position of the binary number indicates whether the system message block represented by the location is included in the base station transmission system broadcast message; or
  • the binary string in the index block includes a group identifier bit and a system message identifier bit, the group identifier bit identifies a system message block set, and the binary string of the index block occupies one or more binary bits at the beginning or end, and the system message identifier
  • the bits are concatenated by a binary string representing a set of system message blocks, the system message block set comprising one or more system message blocks, each system message block set being configured with a binary string, each in a binary string
  • Each bit corresponds to the system message block in the corresponding system message block set, and the value at each position of the binary number indicates whether the system message block represented by the location is included when the base station transmits the system broadcast message.
  • the transmission structure of the index block and the system message block in the system broadcast message sent by the base station to the terminal includes any one of the following forms:
  • the index block and each of the system message blocks are connected in a unified whole, adopting a unified coding and modulation manner, and the connection order of each of the system message blocks is consistent with the order in which they are identified in the index block; or
  • the index block and each of the system message blocks are two independent parts, and each of the system message blocks are connected in a unified whole, and the connection order is consistent with the order in which they are identified in the index block. Partially using the same coding and the same modulation, or using different coding and different modulation methods.
  • a base station including:
  • a sending module configured to send a system broadcast message to the terminal,
  • the system broadcast message includes an index block and one or more system message blocks, the index block is used to identify a system message block that the base station transmits to the terminal, and the system message block includes a system message that is different.
  • the foregoing base station further has the following features:
  • a receiving module configured to receive feedback information of the terminal on a reserved resource of a predetermined period
  • a determining module configured to determine, according to the feedback information and the a priori information, a beam direction of the base station to the terminal and a system message block to be transmitted;
  • the sending module is configured to send the system broadcast message in a determined beam direction.
  • the foregoing base station further has the following features:
  • a receiving module configured to receive feedback information of the terminal on a reserved resource of a predetermined period
  • a determining module configured to determine a system message block to be transmitted according to the feedback information and the a priori information
  • the sending module is configured to send the system broadcast message in all beam directions according to a predetermined sequence of beams.
  • the foregoing base station further has the following features:
  • the sending module is configured to actively send the system broadcast message to the terminal in the determined beam direction according to the current state and the a priori information of the terminal.
  • the foregoing base station further has the following features:
  • the sending module sends a system broadcast message to occupy a fixed time-frequency resource, or the occupied time-frequency resource is dynamically scheduled, or a system broadcast message of a specified part of the transmitted system broadcast message occupies a fixed time-frequency resource, and other parts
  • the time-frequency resource occupied by the system broadcast message is Dynamically scheduled.
  • the foregoing base station further has the following features:
  • the sending module sends a system broadcast message using a fixed coding and modulation mode; or the adopted coding and modulation mode is dynamically scheduled; or the system broadcast message of a specified part of the transmitted system broadcast message adopts a fixed coding and modulation mode.
  • the coding and modulation methods of the rest of the system broadcast messages are dynamically scheduled.
  • an embodiment of the present invention further provides a method for transmitting a system broadcast message, including:
  • the terminal receives a system broadcast message sent by the base station, where
  • the system broadcast message includes an index block and one or more system message blocks, the index block is used to identify a system message block that the base station transmits to the terminal, and the system message block includes a system message that is different.
  • the foregoing method further has the following feature: before the terminal receives the system broadcast message sent by the base station, the method includes:
  • the terminal selects a reserved resource, and sends feedback information to the base station on the selected reserved resource.
  • the feedback information includes one or more of the following:
  • the method further has the following feature: the feedback information includes energy information of whether the terminal sends energy on the reserved resource, or includes the terminal carrying the resource on the reserved resource. Information about the private sequence.
  • the foregoing method further has the following feature: the dedicated sequence includes a pre- Specify a private sequence first or generate it by a specified method.
  • the foregoing method further has the following feature: the dedicated sequence is divided into different sequence subsets, each sequence subset is composed of one or more sequences, and the sequence subset number is equal to the base station.
  • the number of beams, the subset of the sequence is mapped to the beam of the base station, and there are one or more system message block sets on each beam.
  • the configuration of the sequence subset in the system message block set includes any of the following forms:
  • Each system message block set corresponds to one sequence in the sequence subset, and the terminal selects a unique sequence as the transmission sequence according to the beam direction and the requested system message block;
  • Each system message block set corresponds to a plurality of sequences in the sequence subset, and the terminal filters out a plurality of sequences according to the beam direction and the requested system message block, and randomly selects one sequence as the transmission sequence.
  • the above method further has the following features:
  • Each of said subsets of sequences contains the same number of sequences.
  • Each of the subsets of sequences contains a sequence number that is not identical.
  • the carrying manner of the feedback information on the reserved resource includes any one of the following forms:
  • the reserved resource is divided into one or more parts, and each part carries energy information
  • the reserved resource carries dedicated sequence information
  • Some of the reserved resources carry energy information, and another part carries dedicated sequence information.
  • the terminal acquires a time-frequency resource location occupied by the system broadcast message by using any one of the following manners:
  • the time-frequency resource location is known by detecting information carried by the control channel.
  • the terminal acquires a coding and modulation manner of the system broadcast message by using any one of the following manners:
  • the encoding and modulation methods are known by detecting the information carried by the control channel.
  • a further embodiment of the present invention further provides a terminal, including:
  • a receiving module configured to receive a system broadcast message sent by the base station, where
  • the system broadcast message includes an index block and one or more system message blocks, the index block is used to identify a system message block that the base station transmits to the terminal, and the system message block includes a system message that is different.
  • the foregoing terminal further has the following features:
  • a sending module configured to send feedback information to the base station on the reserved resource selected by the selecting module, where the feedback information includes one or more of the following: a system broadcast message transmission request message; a beam number or direction information when the terminal sends the system broadcast message; a system broadcast message to be sent by the base station.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the steps of: the base station transmitting a system broadcast message to the terminal, wherein the system broadcast message comprises an index block and one or more system message blocks, the index block being used to identify The system message block transmitted by the base station to the terminal, where the system message block includes different system messages.
  • the storage medium is further configured to store program code for performing the following steps: the foregoing method further has the following feature: the sending, by the base station, the system broadcast message to the terminal includes: the base station receiving the reserved resource on a predetermined period After the feedback information of the terminal, the beam direction of the base station to the terminal and the system message block to be transmitted are determined according to the feedback information and the a priori information; and the system broadcast message is sent in the determined beam direction.
  • the storage medium is further configured to store program code for performing the following steps: the above method further has the following feature: the base station transmitting the system broadcast message to the terminal includes: the base station After receiving the feedback information of the terminal on the reserved resource of the predetermined period, determining the system message block to be transmitted according to the feedback information and the a priori information; and transmitting the system broadcast in all beam directions according to a predetermined sequence of the beam. Message.
  • the storage medium is further arranged to store program code for performing the steps of: the method further characterized by the fact that the predetermined period is fixed or the predetermined period is dynamically adjusted.
  • the storage medium is further configured to store program code for performing the following steps: the foregoing method further has the following feature: the time that the reserved resource lasts in the time domain includes any one of the following forms: the reserved resource is The periodic mode continues to occur; the reserved resources appear in a periodic manner only during a specified time period.
  • the storage medium is further configured to store program code for performing the following steps: the foregoing method further has the following feature: in a single cell, the location relationship of the reserved resource in the frequency domain includes any one of the following forms: The reserved resources are contiguous in the frequency domain; the reserved resources are discrete in the frequency domain.
  • the storage medium is further configured to store program code for performing the following steps: the foregoing method further has the following feature: in a single cell, the allocation manner of the reserved resource in the frequency domain includes any one of the following forms: The reserved resources are fixed in the frequency domain; the reserved resources are dynamically scheduled in the frequency domain.
  • the storage medium is further configured to store program code for performing the following steps: the foregoing method further has the following feature: the location relationship of the reserved resource in the frequency domain includes any one of the following forms: all cell reserved resources are in The locations in the frequency domain are the same; the reserved resources of each cell are not exactly the same in the frequency domain.
  • the storage medium is further configured to store program code for performing the following steps: the foregoing method further has the following feature: the sending, by the base station, the system broadcast message to the terminal includes: the base station according to the current state and a priori of the terminal Information, actively transmitting the system broadcast message to the terminal in the determined beam direction.
  • the storage medium is further configured to store program code for performing the steps of:
  • the method also has the following features: the system broadcast message sent by the base station to the terminal occupies a fixed time-frequency resource, or the time-frequency resource occupied by the system broadcast message sent by the base station to the terminal is dynamically scheduled, or the base station is to the terminal
  • the system broadcast message of the specified part of the transmitted system broadcast message occupies a fixed time-frequency resource, and the time-frequency resources occupied by other part of the system broadcast message are dynamically scheduled.
  • the storage medium is further configured to store program code for performing the following steps: the foregoing method further has the following feature: the system broadcast message sent by the base station to the terminal adopts a fixed coding and modulation manner; or the base station to the terminal The coding and modulation mode adopted by the transmitted system broadcast message is dynamically scheduled; or the system broadcast message of the specified part of the system broadcast message sent by the base station to the terminal adopts a fixed coding and modulation mode, and the rest of the system broadcast message is coded. And the modulation method is dynamically scheduled.
  • the storage medium is further configured to store program code for performing the following steps: the above method further has the following feature: the system message in the system message block satisfies the following condition: Td ⁇ Ts ⁇ Tu, where Ts represents The average interval time of the content change of the system message in the system message block, Td represents the corresponding minimum threshold time preset by the system message block, and Tu represents the highest threshold time preset by the system message block.
  • the storage medium is further configured to store program code for performing the following steps: the above method further has the following feature: the index block comprises any of the following forms: each binary in the binary string in the index block The numbers respectively identify each system message block, and the binary number position distinguishes different system message blocks, and the value at each position of the binary number identifies whether the base station transmits the system broadcast message to include the system message block represented by the location; or the index block
  • the binary string identifies a reference sequence in which all system message blocks are arranged in a specified order.
  • the binary string is divided into offset bits and flag bits, where the offset bits occupy one or more binary bits at the beginning or end of the binary string.
  • the remaining binary bits are used as identification bits, and the offset bits represent the starting position of the binary character string in the reference sequence, and the identification bits correspond one-to-one to the system message within a length of the reference sequence starting from the starting position indicated by the offset bit.
  • Block the value at each position of the binary number indicates whether the base station transmits the system broadcast message if it contains this a system message block represented by the location; or, the binary string in the index block includes a group identifier bit and a system message identifier bit, and the group identifier bit identifier is a set of message blocks occupying one or more binary bits at the beginning or end of the binary string of the index block, the system message identification bits being connected by a binary string representing a system message block set, the system message block set including One or more system message blocks, each system message block set is configured with a binary string, and each bit in each binary string is in one-to-one correspondence with the system message block in the corresponding system message block set, each position of the binary number
  • the value above indicates whether the
  • the storage medium is further configured to store program code for performing the following steps: the foregoing method further has the following features: a transmission structure of an index block and a system message block in a system broadcast message sent by the base station to the terminal,
  • the method includes any one of the following forms: the index block and each of the system message blocks are connected into a unified whole, adopting a unified coding and modulation manner, and the connection order of each of the system message blocks is consistent with the order of identification in the index block.
  • the index block and each of the system message blocks are two independent parts, and each of the system message blocks are connected into a unified whole, and the connection order is the same as the order identified in the index block, and the two parts adopt the same coding.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the steps of: the terminal receiving a system broadcast message transmitted by the base station, wherein the system broadcast message includes an index block and one or more system message blocks, the index block being used to identify The system message block transmitted by the base station to the terminal, the system message block includes a system message that is different.
  • the storage medium is further configured to store program code for performing the following steps: the foregoing method further has the following feature: before the terminal receives the system broadcast message sent by the base station, the method includes: the terminal selects a reserved resource, where The selected reserved resource sends feedback information to the base station.
  • the storage medium is further configured to store program code for performing the following steps: the above method further has the following feature: the feedback information includes one or more of the following: a system broadcast message transmission request message; a beam number or direction information when the terminal sends the system broadcast message; a system broadcast message to be sent by the base station.
  • the storage medium is further configured to store program code for performing the steps of:
  • the method further has the following feature: the feedback information includes energy information of whether the terminal transmits energy on the reserved resource, or information of a dedicated sequence carried by the terminal on the reserved resource.
  • the storage medium is further arranged to store program code for performing the steps of: the above method further having the feature that the dedicated sequence comprises a pre-designated dedicated sequence or generated by a specified method.
  • the storage medium is further configured to store program code for performing the following steps: the above method further has the following feature: the dedicated sequence is divided into different sequence subsets, each sequence subset consisting of one or more sequences The number of sequence subsets is equal to the number of beams of the base station, the sequence subset is mapped to the beam of the base station, and one or more system message block sets are arranged on each beam, and the sequence subset is in the system message block.
  • the centralized configuration manner includes any one of the following forms: each system message block set corresponds to one sequence in the sequence subset, and the terminal selects a unique sequence as a transmission sequence according to the beam direction and the requested system message block; each system The message block set corresponds to a plurality of sequences in the sequence subset, and the terminal filters out a plurality of sequences according to the beam direction and the requested system message block, and randomly selects one sequence as the transmission sequence.
  • the storage medium is further configured to store program code for performing the following steps: the above method further has the following feature: each of the sequence subsets contains the same number of sequences; or each of the sequence subsets does not contain a sequence number It's exactly the same.
  • the storage medium is further configured to store program code for performing the following steps: the method further has the following feature: the manner of carrying the feedback information on the reserved resource includes any one of the following forms: The reserved resource is divided into one or more parts, and each part carries energy information; the reserved resource carries dedicated sequence information; part of the reserved resource carries energy information, and another part carries dedicated sequence information.
  • the storage medium is further configured to store program code for performing the following steps: the method further has the following feature: the terminal acquires a time-frequency resource location occupied by the system broadcast message by using any one of the following manners: The time-frequency domain resource location occupied by the system broadcast message is specified; the time-frequency resource location is learned by detecting information carried by the control channel.
  • the storage medium is further configured to store program code for performing the following steps: the foregoing method further has the following feature: the terminal acquires a coding and modulation manner of the system broadcast message by using any one of the following methods: pre-specifying the system The encoding and modulation mode of the broadcast message; the encoding and modulation modes are known by detecting the information carried by the control channel.
  • An embodiment of the present invention provides a method for transmitting a system broadcast message, a base station, and a terminal, which reclassify and encapsulate the system broadcast message according to a change period of the message content, and then add an index information identifier on the sent system broadcast message. Which part of the message is transmitted, and the time-frequency resource is reserved periodically for the terminal to feed back information such as the message request and the beam direction to the base station.
  • the system broadcast message can be transmitted on the specified beam on demand, and the reliability and flexibility are ensured. Sex.
  • the invention effectively reduces the frequency of sending broadcast messages of the system under the premise of ensuring the performance of the terminal receiving the broadcast message of the system, and achieves the purpose of reducing the energy consumption of the base station and improving the resource utilization.
  • FIG. 1 is a schematic diagram of system broadcast message transmission according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of classification of a system broadcast message according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a system broadcast message transmission structure according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an uplink reserved resource according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an application scenario used in an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for transmitting a system broadcast message according to Embodiment 1 of the present invention.
  • FIG. 7 is a flowchart of a method for transmitting a system broadcast message according to Embodiment 2 of the present invention.
  • FIG. 8 is a flowchart of a method for transmitting a system broadcast message according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic diagram of a base station according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a terminal according to an embodiment of the present invention.
  • the embodiment of the present invention provides a method for transmitting a system broadcast message, as shown in FIG.
  • system broadcast message sent by the base station to the terminal, where the system broadcast message includes an index block and a system message block;
  • system broadcast message is divided into the system message block according to the change period of the system broadcast message content, and each system message block includes a part of the system message, and the system message included in each system message block is different;
  • the index block contains data identifying which of the system message blocks transmitted by the base station to the terminal, and the index block is transmitted to the terminal along with the system message block.
  • the system message in the system message block satisfies Td ⁇ Ts ⁇ Tu, where Ts represents the average interval time of a system message content change, and Td and Tu represent the lowest and highest thresholds set by the system message block. Time, different system message blocks have different Td and Tu values.
  • Each system message block can further be organized into one or more system message block sets, each system message block set containing one or more system message blocks.
  • the index block includes at least one of the following forms:
  • Each system message block is identified by a binary number in the binary string.
  • the binary number position distinguishes different system message blocks, and the value at each position of the binary number identifies whether the base station includes the broadcast message when transmitting the system.
  • All system message blocks are logically arranged in a certain order as a reference sequence, and the binary string in the index block identifies the reference sequence, and the binary string is divided into offset bits and Two parts of the identification bit, wherein the offset bit occupies one or more binary bits at the beginning or end of the binary string, the remaining binary bits are used as identification bits, and the offset bits represent the starting position of the binary string in the reference sequence, and the identifier
  • the bit one-to-one corresponds to a system message block within a length of the reference sequence starting from the start position indicated by the offset bit, and the value at each position of the binary number indicates whether the base station transmission system broadcast message includes the location representative System message block.
  • the binary string in the index block consists of a group identifier bit and a system message identifier bit.
  • the group flag bit indicates which system message block set is included, and the index block binary string begins or ends with one or more binary bits, and the system message flag bit It is concatenated by a binary string representing the system message block set, and the connection order is the same as the order in the group ID.
  • the transmission structure of the index block and the system message block sent by the base station to the terminal includes one of the following forms:
  • index block and each system message block are connected into a unified whole, adopting a unified coding and modulation mode, and the index block position can be located at the head, tail or the designated middle position of the whole, and the system message block connection order of each system is in the index block. In the same order;
  • the index block and each system message block are two independent parts, and each system message block is connected into a unified whole, and the connection order is consistent with the order in the index block. These two parts can adopt different coding and modulation modes, and Transmission on different channels.
  • the size of the period includes one of the following forms:
  • the period is fixed, and the period may be the same or different between cells;
  • the period is dynamically adjusted.
  • the base station adjusts the size of the period according to a certain rule, and directly or indirectly indicates the size of the period to the terminal through other information.
  • the base station reserves part of the time-frequency resource in the uplink bandwidth for a certain period of time for the terminal to feed back information to the base station.
  • the time that the reserved resource lasts in the time domain includes one of the following forms:
  • the location relationship of the reserved resources in the frequency domain includes one of the following forms:
  • the manner in which the reserved resources are allocated in the frequency domain includes one of the following forms:
  • the reserved frequency domain resources are dynamically scheduled in the frequency domain, and the base station indicates to the terminal the location of the reserved resources in the frequency domain through other information.
  • the location relationship of the reserved resources in the frequency domain among multiple cells includes one of the following forms:
  • the resources reserved by the cells are not completely the same in the frequency domain, and the base station indicates to the terminal the location of the reserved resources in the frequency domain by using other information.
  • the manner in which the base station transmits the index block and the system message block to the terminal includes at least one of the following forms:
  • the base station After receiving the feedback information of the terminal on the reserved resources, the base station determines the beam direction of the base station to the terminal and which system message blocks need to be transmitted according to the feedback information and the a priori information, and finally the determined beam direction of the base station. Sending a system broadcast message;
  • the base station After receiving the feedback information of the terminal on the reserved resource, the base station determines which system message blocks the base station needs to transmit according to the feedback information and the a priori information, and finally the base station sends in the beam direction in the predetermined order of the beam.
  • System broadcast message
  • the base station actively sends a system broadcast message to the terminal in the determined beam direction without waiting for the terminal request according to the current state and a priori information of the terminal.
  • the a priori information is composed of information such as a time-frequency domain location of the feedback information, a base station, and terminal historical interaction data.
  • the base station transmits the time-frequency resources occupied by the index block and the system message block to the terminal, and includes one of the following forms:
  • the transmitted message occupies a fixed time-frequency resource
  • the time-frequency resource occupied by the transmitted message is dynamically scheduled, and the base station indicates the location of the occupied time-frequency resource to the terminal through other information;
  • the part of the transmitted system broadcast message occupies a fixed time-frequency resource, and the time-frequency resources occupied by the remaining part of the message are dynamically scheduled.
  • the base station transmits the encoding and modulation mode of the index block and the system message block to the terminal, including one of the following forms:
  • the transmitted message adopts a fixed coding and modulation method
  • the coding and modulation modes adopted by the transmitted message are dynamically scheduled, and the base station indicates the message coding and modulation mode to the terminal through other information;
  • the partially transmitted message adopts a fixed coding and modulation mode, and the coding and modulation modes of the remaining part of the message are dynamically scheduled.
  • the terminal receives a system broadcast message sent by the base station, where
  • the system broadcast message includes an index block and one or more system message blocks, where the index block is used to identify a system message block that the base station transmits to the terminal, and the system message block includes different system messages. .
  • the first way is to send feedback information (such as energy information or dedicated sequence information) on the reserved resources, and then receive the system broadcast message sent by the base station;
  • feedback information such as energy information or dedicated sequence information
  • the second way is to first try to receive the system broadcast message sent by the base station, and if not received, it is processed in the first manner.
  • the terminal selects the reserved time-frequency resource and transmits energy information or dedicated sequence information to the base station on the time-frequency resource;
  • the energy information or the dedicated sequence information may represent one or more of the following information:
  • a system broadcast message transmission request including a request for initial transmission (first transmission) and retransmission (retransmission);
  • the energy information or dedicated sequence information is not represented, and the remaining information required by the base station transmission system to broadcast the message may be provided by the a priori information.
  • the energy information refers to whether the terminal indicates feedback information by whether or not to transmit energy on the reserved resource, and the base station sets a certain energy threshold to determine whether there is energy information on the reserved resource.
  • the dedicated sequence information refers to that the terminal indicates the feedback information by using bearer-dedicated sequence information on the reserved resource.
  • the dedicated sequence generation manner includes one of the following forms:
  • a method of generating a dedicated sequence is specified, the parameters of which are dynamically changed.
  • the dedicated sequence is divided into different sequence subsets, each sequence subset is composed of one or more sequences, the number of subsets is equal to the number of base station beams, and each sequence subset is mapped to the beam of the base station one by one, each beam
  • Each system message block set corresponds to one sequence in the sequence subset.
  • the terminal selects a unique sequence according to the beam direction and the requested system message block, as a transmission sequence;
  • Each system message block set corresponds to multiple sequences in the sequence subset.
  • the terminal selects multiple sequences according to the beam direction and the requested system message block, and randomly selects one sequence as the transmission sequence.
  • the manner in which the terminal selects to reserve time-frequency resources includes one of the following forms:
  • the terminal selects the reserved resource in the near future
  • the bearer mode of the energy or dedicated sequence information on the reserved time-frequency resource includes one of the following forms:
  • the reserved resources are divided into one or more parts, and each part carries energy information, and the location of each part may indicate the beam direction of the terminal to the base station, which part of the system broadcast message, or other type information is needed by the terminal;
  • the reserved resources are shared by the terminals used in the cell, and carry dedicated sequence information
  • the reserved resources are divided into two parts, one part carries energy information and the other part carries dedicated sequence information.
  • the terminal knows the location of the time-frequency resource occupied by the system broadcast message in one of the following ways:
  • the terminal detects information carried by the control channel to learn the location of the time-frequency resource.
  • the terminal learns the encoding and modulation of the system broadcast message in one of the following ways:
  • the terminal detects the information carried by the control channel to learn the coding and modulation mode.
  • FIG. 5 is a schematic diagram of an application scenario used in an embodiment of the present invention, in which a high frequency base station covers a Cell1 cell through a B0 to B6 beam, and terminals UE1 and UE2 of an initial access cell are located in directions of beams B1 and B3, respectively.
  • the following describes the invention in combination with application scenarios and specific embodiments. Detailed description of the line.
  • FIG. 6 is a flowchart of a method for transmitting a system broadcast message according to Embodiment 1 of the present invention.
  • system broadcast messages are classified into three categories: a first type of system broadcast message includes cell selection, cell access, and the like.
  • the basic message required by the terminal; the second type of system broadcast message refers to other system broadcast messages required by all terminals except the first type of system broadcast message, such as channel common configuration parameters, timer constants, etc.;
  • the message is related to the terminal status.
  • different parts of the third type of system broadcast message such as cell reselection related parameters, are required.
  • the first type of system broadcast messages are transmitted on the B0 to B6 beams in a periodic manner, and the second and third types of system broadcast messages are transmitted in an on-demand manner in the embodiment of the present invention, and the second and third types of system broadcast messages are transmitted.
  • the reserved resources continue to appear in a fixed period, and the reserved resources are discrete in the frequency domain, and the reserved resource period and the frequency domain location are known in advance before the terminal accesses the cell.
  • This embodiment focuses on the transmission process of the broadcast messages of the second and third types of systems. The specific process of sending and receiving system broadcast messages is as follows:
  • Step 101 The base station BS sends the first type of system broadcast message in a certain period in all beam directions.
  • Step 102 The terminal UE2 receives the first type of system broadcast message sent by the base station BS in the direction of the beam B3.
  • Step 103 The terminal UE2 sends a second type system to the base station BS on the immediately adjacent reserved resource. Broadcast message request sequence;
  • the terminal broadcasts the relevant parameters in the message through the first type of system, generates a dedicated sequence set, and performs subset splitting and mapping.
  • the terminal UE2 randomly selects a sequence from the subset mapped to the first dedicated sequence set on the beam B3 as the transmitted request sequence.
  • Step 104 After receiving the request sequence on the reserved resource, the base station BS sends a second type of system broadcast message required by the terminal UE2 in the direction of the beam B3.
  • the base station BS determines the type of the broadcast message to be transmitted according to the category of the received sequence, and determines the direction of the transmitted beam according to the subset to which the sequence belongs.
  • the base station BS transmits the second type of system broadcast message in the specified beam direction.
  • Step 105 The terminal UE2 receives the second type system broadcast message sent by the base station BS in the direction of the beam B3.
  • the terminal UE2 learns the coding and modulation mode of the system broadcast message through the information on the control channel, and the frequency domain location in time.
  • the terminal UE2 After receiving the system broadcast message, the terminal UE2 determines whether the message includes the required second type system broadcast message by using the index block information in the received message, and if the required message is included, completes the receiving of the second type system broadcast message directly. Go to step 106.
  • the terminal UE2 receives the second type of system broadcast message. If the required second type system broadcast message is not received or not received within a certain period of time, the terminal UE2 resends the request sequence in the manner of step 103.
  • Step 106 The terminal UE2 performs a random access procedure and accesses the Cell1 cell.
  • Step 107 After accessing the cell, the base station BS actively sends a third type of system broadcast message required by the terminal UE2 according to the state of the terminal UE2.
  • the base station BS informs the terminal UE2 through the control channel information in advance that the base station will transmit the third type system. Broadcast message.
  • the base station BS If the base station BS detects the terminal UE2 retransmission request sequence on the reserved resource after transmitting the third type system broadcast message required by the terminal UE2, the base station BS retransmits the third type system broadcast message that was last sent to the terminal UE2. Send once.
  • terminals in different beam directions may need different third-class system broadcast messages, and the base station BS may transmit different third-class system broadcast messages in each beam direction according to the requirements of the terminals in each beam direction.
  • the index block identifies which messages are transmitted in each beam direction.
  • Step 108 The terminal UE2 receives the third type of system broadcast information sent by the base station BS, and the processing procedure is similar to the step 105, and is not described again. The only difference is that the feedback sequence uses the second dedicated sequence set.
  • Step 109 Receive third type system information.
  • the base station BS sends a system message update notification to the terminal UE2 in one of two ways: 1. by Paging (paging) information notification; 2. by the first type of system broadcast message notification;
  • the base station BS uniformly transmits the updated part of the broadcast messages of the second type and the third type in the direction of the beam B3 where the terminal UE2 is located, and the part that is not updated is not sent, and which parts are specifically identified by the index block;
  • the part of the message may be combined with the updated message, and the terminal decides which to use according to the index block information and its own requirements.
  • the terminal UE2 receives the updated system broadcast information, and the processing procedure is similar to the step 105, and details are not described herein.
  • the only non-use is the feedback sequence used, where the second dedicated sequence set is multiplexed, and the base station BS can determine which part of the message needs to be retransmitted based on the sequence of the feedback sequence and the history transmission record.
  • FIG. 7 is a flowchart of a method for transmitting a system broadcast message according to Embodiment 2 of the present invention.
  • the method divides system broadcast messages into two categories: a first type of system broadcast message includes cell selection, cell access, random access, and the like.
  • the basic message required by all terminals; the second type of system broadcast message refers to other system broadcast messages except the first type of system broadcast message, such as channel common configuration parameters, timer constants, and cell reselection related parameters.
  • the first type of system broadcast message is sent in the B0 to B6 beam in a periodic manner, and the second type of system broadcast message is sent in the on-demand mode in the embodiment of the present invention.
  • the second type of system broadcast message is respectively in the embodiment of the present invention.
  • the manner in which the change cycles are described is classified and encapsulated into system message blocks.
  • the resources reserved in this embodiment are repeated in a periodic manner only for a period of time.
  • the period of reserved resources is dynamically adjusted, and the reserved resources are consecutive in the frequency domain, but can be dynamically adjusted.
  • the reserved resources are divided into 7 parts, numbered 0 to 6, each part is mapped to the beam according to the number (B0 to B6), and the period related information, reserved resource division and mapping information are included in the first type of system broadcast message. .
  • This embodiment focuses on the transmission process of the second type of system broadcast messages. The specific process of sending and receiving system broadcast messages is described as follows:
  • Step 201 The base station BS sends the first type of system broadcast message in a certain period in all beam directions.
  • Step 202 The terminal UE1 receives the first type of system broadcast message sent by the base station BS in the direction of the beam B1.
  • Step 203 The terminal UE1 performs a random access procedure and accesses the Cell1 cell.
  • Step 204 After accessing the cell, the base station BS notifies the terminal UE1 through the control channel information that the base station will send the second type system broadcast message, and also informs the reserved resource appearance period, the system frame number at the start and end, and the frequency domain. s position;
  • Step 205 The base station BS actively sends a second type of system broadcast message necessary for the terminal UE1 in the direction of the beam B1.
  • All the second type of system broadcast messages that are not sent by the base station only send information necessary for the terminal UE1 to maintain normal services, such as channel common configuration parameters and timer constants, and the content of the transmission is identified by the index block information.
  • Step 206 The terminal UE1 receives the second type system broadcast message sent by the base station BS in the direction of the beam B1.
  • the terminal UE1 learns the coding and modulation mode of the system broadcast message and the time-frequency resource location through the information on the control channel.
  • the terminal UE1 After receiving the system broadcast message, the terminal UE1 determines whether the message contains the required system broadcast message by using the index block information in the received message, and completes the reception of the system broadcast message if the required message is included.
  • the terminal UE1 When the terminal UE1 does not receive or correctly receive the required second type system broadcast disappears, the terminal UE1 transmits a signal with a certain energy in the frequency domain position corresponding to the beam B1 in the immediately adjacent reserved resource;
  • the second type of system broadcast message is retransmitted to the terminal UE1 in the direction of the beam B1, and the terminal receives the message in step 206.
  • the base station BS determines the direction of the beam B1 according to the frequency domain position where the detected energy is located, and determines which part of the second type system broadcast message needs to be retransmitted according to the historical transmission record.
  • the base station BS sends the required second type system broadcast message (such as cell reselection information) to the terminal UE1 according to the state of the terminal UE1, with the difference that the content sent is different;
  • the base station BS sends a system message update notification to the terminal UE1 in one of two ways: 1. by paging information notification; 2. by the first type system broadcast message notification.
  • the base station BS also informs the reserved resource occurrence period, the system frame number at the start and end, and the position in the time-frequency domain through the control channel;
  • the base station BS sends the updated part of the second type of system broadcast message to the terminal UE1 in the direction of the beam B1, and the part that is not updated is not sent, and which part is specifically identified by the index block;
  • the part of the message may be combined with the updated message and transmitted by the terminal according to the index block information and its own requirements. Decide which part of the system to broadcast the message.
  • the terminal UE1 receives the updated system broadcast information, and the processing procedure is the same as step 206.
  • FIG. 8 is a flowchart of a method for system broadcast message transmission according to Embodiment 3 of the present invention.
  • the method divides system broadcast messages into two categories: a first type of system broadcast message includes cell selection, cell access, random access, and the like.
  • the basic message required by all terminals; the second type of system broadcast message refers to other system broadcast messages except the first type of system broadcast message, such as channel common configuration parameters, timer constants, and cell reselection related parameters.
  • the first type and the second type of system broadcast messages are sent in the on-demand manner in the present invention, and the two types of broadcast messages are classified and encapsulated into the system message block according to the change cycle described in the embodiment of the present invention.
  • the reserved resources continue to appear in a fixed period, and the reserved resources are divided into two parts in the frequency domain.
  • the period of the reserved resources and the position in the frequency domain are known in advance.
  • the first part of reserved resources is shared by all terminals in the base station for transmitting energy signals indicating broadcast messages of the first type of system, and the second part of reserved resources is used for transmitting a dedicated sequence set indicating broadcast messages of the second type of system, the dedicated sequence
  • the set and its partitioning and mapping methods are pre-specified as a priori information for the base station and the terminal. The specific process of sending and receiving system broadcast messages is described as follows:
  • Step 301 After completing the synchronization process, the terminal UE1 first randomly waits for a period of time, and attempts to receive the first type of system broadcast message according to the specified coding and modulation mode under the specified time-frequency resource within the waiting time period. Then skip to step 306, otherwise proceed to step 302;
  • the terminal UE1 After the waiting time arrives, the terminal UE1 sends a signal with a certain energy on the immediately reserved first part of the reserved resource;
  • Step 302 After detecting the energy exceeding a certain threshold on the first part of the reserved resources, the base station BS1 traverses and transmits the first type of system broadcast message in the direction of all beams (B0 to B1) in a certain order;
  • the first type of system broadcast message uses a fixed coding and modulation scheme and is transmitted on a fixed time-frequency resource.
  • Step 303 The terminal UE1 receives the first type of system broadcast message sent by the base station BS in the direction of the beam B1.
  • the terminal UE1 After receiving the system broadcast message, the terminal UE1 determines whether the message contains the required system broadcast message by using the index block information in the received message. If the required message is included, the system broadcast message is received, and the process proceeds to step 304. When the terminal UE1 does not receive or correctly receive the first type of system broadcast message, it sends a signal with a certain energy on the immediately adjacent first part of the reserved resource, and the base station BS processes according to step 302;
  • Step 304 The terminal UE1 performs a random access procedure and accesses the Cell1 cell.
  • Step 305 After accessing the cell, the base station BS notifies the terminal UE1 that the base station will transmit the second type of system broadcast message by using the control channel information; the base station BS actively sends the second type system broadcast message necessary for the terminal UE1 in the direction of the beam B1;
  • All the second type of system broadcast messages that are not sent by the base station only send information necessary for the terminal UE1 to maintain normal services, such as channel common configuration parameters and timer constants, and the content of the transmission is identified by the index block information.
  • Step 306 The terminal UE1 receives the second type system broadcast message sent by the base station BS in the direction of the beam B1.
  • the terminal UE1 acquires the coding and modulation mode of the system broadcast message and the frequency domain location from the control channel.
  • the terminal UE1 After receiving the system broadcast message, the terminal UE1 determines whether the message contains the required system broadcast message by using the index block information in the received message, and completes the reception of the system broadcast message if the required message is included.
  • a sequence is randomly selected from the dedicated sequence subset corresponding to the beam B1, and is transmitted in the immediately adjacent second reserved resource.
  • the base station BS When the base station BS detects the sequence on the second part of the reserved resource, retransmitting the second type of system broadcast message to the terminal UE1 in the direction of the beam B1;
  • the base station BS determines the direction of the beam B1 according to the detected sequence, and determines which part of the second type system broadcast message needs to be retransmitted according to the historical transmission record.
  • the base station BS sends a second type of system broadcast message (such as cell reselection information) required in this state according to the state of the terminal UE1, and the manner of sending and receiving is similar to the above. Is because the content sent is different;
  • the base station BS When the system broadcast message is updated, the base station BS sends a system message update notification to the terminal UE1 through the paging information notification;
  • the base station BS uniformly transmits the updated part of the first class and the second type system broadcast message in the direction of the beam B1, and the part that is not updated is not sent, and which part is specifically identified by the index block;
  • the part of the message may be combined with the updated message and transmitted by the terminal according to the index block information and its own requirements. Which part of the system is used to broadcast the message.
  • the terminal UE1 receives the updated system broadcast information.
  • FIG. 9 is a schematic diagram of a base station according to an embodiment of the present invention. As shown in FIG. 9, the base station in this embodiment includes:
  • a sending module configured to send a system broadcast message to the terminal,
  • the system broadcast message includes an index block and one or more system message blocks, where the index block is used to identify a system message block that the base station transmits to the terminal, and the system message block includes different system messages. .
  • the base station may further include:
  • a receiving module configured to receive feedback information of the terminal on a reserved resource of a predetermined period
  • Determining a module configured to determine the base station to the location according to the feedback information and the prior information Describe the beam direction of the terminal and the system message block to be transmitted;
  • the sending module is configured to send the system broadcast message in a determined beam direction.
  • the base station may further include:
  • a receiving module configured to receive feedback information of the terminal on a reserved resource of a predetermined period
  • a determining module configured to determine a system message block to be transmitted according to the feedback information and the prior information
  • the sending module is configured to send the system broadcast message in all beam directions in a predetermined order of the beams.
  • the sending module is specifically configured to actively send the system broadcast message to the terminal in the determined beam direction according to the current state and a priori information of the terminal.
  • the sending module sends a system broadcast message that occupies a fixed time-frequency resource, or the occupied time-frequency resource is dynamically scheduled, or a system broadcast message of a specified part of the transmitted system broadcast message is fixed.
  • the time-frequency resource, the time-frequency resource occupied by other part of the system broadcast message is dynamically scheduled.
  • the sending module sends a system broadcast message in a fixed coding and modulation manner; or the adopted coding and modulation mode is dynamically scheduled; or a system broadcast message of a specified part of the transmitted system broadcast message.
  • the coding and modulation schemes of the rest of the system broadcast messages are dynamically scheduled.
  • FIG. 10 is a schematic diagram of a terminal according to an embodiment of the present invention. As shown in FIG. 10, the terminal in this embodiment includes:
  • a receiving module configured to receive a system broadcast message sent by the base station, where
  • the system broadcast message includes an index block and one or more system message blocks, where the index block is used to identify a system message block that the base station transmits to the terminal, and the system message block includes different system messages. .
  • the terminal further includes:
  • a sending module configured to send feedback information to the base station on the reserved resource selected by the selecting module, where the feedback information includes one or more of the following: a system broadcast message transmission request message; a beam number or direction information when the terminal sends the system broadcast message; a system broadcast message to be sent by the base station.
  • the system broadcast message is re-classified and encapsulated according to the change period of the message content, and on the basis of this, the index information identifier is transmitted on the transmitted system broadcast message.
  • the system broadcast message can be transmitted on the specified beam on demand, and ensuring reliability and flexibility.
  • the invention effectively reduces the frequency of sending broadcast messages of the system under the premise of ensuring the performance of the terminal receiving the broadcast message of the system, and achieves the purpose of reducing the energy consumption of the base station and improving the resource utilization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种***广播消息的传输方法及基站、终端,该方法包括:基站向终端发送***广播消息,其中,所述***广播消息包括索引块和一个或多个***消息块,所述索引块用于标识所述基站向所述终端传输的***消息块,所述***消息块包括的***消息不相同。通过本发明可以在保证终端接收***广播消息性能的前提下,有效地降低了***广播消息发送的频率,达到了减少基站能耗和提高资源利用率的目的。

Description

一种***广播消息的传输方法及基站、终端 技术领域
本发明涉及高频通信***领域,具体地说,涉及高频通信中一种***广播消息的传输方法及基站、终端。
背景技术
随着各种各样的无线电业务需求大量涌现,5G(第五代通信***)作为下一代通信***被提出。业界对5G***愿景为在任何地点和时间下任何人或物传递任何数据,可预见5G必将渗透到从生产到生活的各个方面,为工业和社会的转型和变革提供必要的物质基础,因此5G通信***设计在吞吐率、连接终端的数量、延迟、移动性、能耗和网络灵活性等各方面要求都要远高于之前的通信***,***设计将面临更多的挑战。
面临的主要挑战的之一是降低网络能耗,特别是基站的能耗问题。之前通信***着重降低终端侧的能耗,以延长终端的待机和使用时间,由于基站供电更有保证及技术方面考虑,基站的能耗没有受到重点关注。从统计看,目前***下基站的电费是十分重要的支出成本。
5G为了满足多种多样无线业务需求,需要有更高的吞吐率,要求有更宽的带宽,而传统使用的300MHz~3GHz的频段上已无法提供更多的带宽资源,因此5G将采用比之前通信***更高的频段,如45GHz、60GHz等,这些高频段信道具有自由传播损耗大、容易被空气和雨水吸收等缺点。在城区和郊区,为了达到覆盖和吞吐率方面的需求,5G会采用多基站密集组网(Ultra Dense Network,简称UDN)的方式,基站的密集程度会远超之前的通信***,可以预期,如果5G中基站的能耗依然和之前的通信***相同或类似,那基站电费的支出对运行商而言将不可承受,且不符合节能减排的全球共识,同时为了在任何地点通信目标,需要基站覆盖人烟稀少的偏远地区,这些地区的基站多采用如太阳能等新兴能源供电,基站有较低的能耗,使得太阳能电池板更小,降低了基站的成本,有利用基站 部署到这些地区。
现有通信***下,各基站承载业务量不是均匀分布,趋近于“80/20定律”,约少部分的基站承载了整网大量的业务,而大部分的基站仅承载了整网少量的业务;从使用的资源和能耗角度,承载大量业务的基站时频资源利用率至少是承载少量业务基站的一倍,但前者能耗远远达不到后者的一倍,业务量差异大,而能耗差异反倒减小,主要的原因是用于小区发现和接入的非业务数据的发送,这类数据无论基站是否有业务都以一定周期频繁发送,***广播消息就是这类数据中的重要一类。为了降低能耗,5G将避免采用周期方式,会采用“按需”方式发送***广播消息,即只在终端需要时传输***广播消息,同时5G采用的更高频段有更短波长,可以在单位面积上容纳更多天线,意味着可以采用波束赋形方式传输数据,这种方式将传输能量集中于某一方向,而其他方向能量很少或没有,按需传输可利用这种方式拓展到空间上。鉴于此,如何利用波束实现在时间和空间上按需可靠传输***广播消息是需要解决的问题。
发明内容
本发明实施例提供了一种***广播消息的传输方法及基站、终端,有效地降低了***广播消息发送的频率,达到了减少基站能耗和提高资源利用率的目的。
根据本发明的一个实施例提供了一种***广播消息的传输方法,包括:
基站向终端发送***广播消息,其中,
所述***广播消息包括索引块和一个或多个***消息块,所述索引块用于标识所述基站向所述终端传输的***消息块,所述***消息块包括的***消息不相同。
在本发明实施例中,上述方法还具有下面特点:所述基站向终端发送***广播消息包括:
所述基站在预定周期的预留资源上接收到所述终端的反馈信息后,根 据所述反馈信息及先验信息,确定所述基站到所述终端的波束方向和待传输***消息块;
在确定的波束方向上发送所述***广播消息。
在本发明实施例中,上述方法还具有下面特点:所述基站向终端发送***广播消息包括:
所述基站在预定周期的预留资源上接收到所述终端的反馈信息后,根据所述反馈信息及先验信息,确定待传输***消息块;
按照波束预定的顺序在所有波束方向上发送所述***广播消息。
在本发明实施例中,上述方法还具有下面特点:
所述预定周期是固定的,或者
所述预定周期是动态调整的。
在本发明实施例中,上述方法还具有下面特点:所述预留资源在时域上持续的时间包含以下任一形式:
所述预留资源以周期方式持续出现;
所述预留资源仅在指定时间段内以周期方式出现。
在本发明实施例中,上述方法还具有下面特点:在单个小区内,所述预留资源在频域上的位置关系包含以下任一形式:
所述预留资源在频域上是连续的;
所述预留资源在频域上是离散的。
在本发明实施例中,上述方法还具有下面特点:在单个小区内,所述预留资源在频域上的分配方式包含以下任一形式:
所述预留资源在频域上是固定不变的;
所述预留资源在频域上是动态调度的。
在本发明实施例中,上述方法还具有下面特点:所述预留资源在频域上的位置关系包含以下任一形式:
所有小区预留资源在频域上的位置是相同的;
各小区预留资源在频域上位置不完全相同。
在本发明实施例中,上述方法还具有下面特点:所述基站向终端发送***广播消息包括:
所述基站根据所述终端目前的状态和先验信息,主动在判定的波束方向上向所述终端发送所述***广播消息。
在本发明实施例中,上述方法还具有下面特点:所述基站向终端发送的***广播消息占用固定的时频资源,或者
所述基站向终端发送的***广播消息占用的时频资源是动态调度的,或者
所述基站向终端发送的***广播消息中指定部分的***广播消息占用固定的时频资源,其它部分的***广播消息占用的时频资源是动态调度的。
在本发明实施例中,上述方法还具有下面特点:所述基站向终端发送的***广播消息采用固定的编码和调制方式;或者
所述基站向终端发送的***广播消息采用的编码和调制方式是动态调度的;或者
所述基站向终端发送的***广播消息中指定部分的***广播消息采用固定的编码和调制方式,其余部分的***广播消息的编码和调制方式是动态调度的。
在本发明实施例中,上述方法还具有下面特点:所述***消息块中的***消息满足以下条件:
Td≤Ts≤Tu,其中,
Ts表示所述***消息块中的***消息的内容变更的平均间隔时间,Td表示所述***消息块预设的对应的最低门限时间,Tu表示所述***消息块预设的最高门限时间。
在本发明实施例中,上述方法还具有下面特点:所述索引块包含以下任一形式:
所述索引块中的二进制字符串中的每位二进制数分别标识每个***消息块,二进制数位置区分不同的***消息块,二进制数每个位置上的数值标识基站传输***广播消息时是否包含此位置代表的***消息块;或者
所述索引块中的二进制字符串标识将全部***消息块按指定顺序排列成的参考序列,该二进制字符串分成偏移位和标识位,其中偏移位占用二进制字符串开头或结尾1个或多个二进制位,其余二进制位作为标识位,偏移位表示二进制字符串在参考序列中的起始位置,标识位一一对应于参考序列中从偏移位表示的起始位置开始的一段长度内的***消息块,二进制数每个位置上的数值表示基站传输***广播消息时是否包含此位置代表的***消息块;或者
所述索引块中二进制字符串包括组标识位和***消息标识位,组标识位标识***消息块集,占用所述索引块的二进制字符串开头或结尾1个或多个二进制位,***消息标识位由表示***消息块集的二进制字符串连接而成,所述***消息块集包括一个或多个***消息块,每个***消息块集分别配置一个二进制字符串,每个二进制字符串中的每一位与对应***消息块集中的***消息块一一对应,二进制数每个位置上的数值表示基站传输***广播消息时是否包含此位置代表的***消息块。
在本发明实施例中,上述方法还具有下面特点:所述基站向所述终端发送的***广播消息中的索引块和***消息块的传输结构,包含以下任一种形式:
所述索引块和各所述***消息块连接成统一的整体,采用统一的编码和调制方式,各所述***消息块的连接顺序与其在索引块中标识的顺序一致;或者
所述索引块和各所述***消息块为两个相互独立部分,各所述***消息块连接成统一整体,连接顺序与其在索引块中标识的顺序一致,这两个 部分采用相同编码和相同调制方式,或者采用不同的编码和不同的调制方式。
根据本发明的另一实施例,还提供了一种基站,其中,包括:
发送模块,用于向终端发送***广播消息,其中,
所述***广播消息包括索引块和一个或多个***消息块,所述索引块用于标识所述基站向所述终端传输的***消息块,所述***消息块包括的***消息不相同。
在本发明实施例中,上述基站还具有下面特点:还包括:
接收模块,用于在预定周期的预留资源上接收到所述终端的反馈信息;
确定模块,用于根据所述反馈信息及先验信息,确定所述基站到所述终端的波束方向和待传输***消息块;
所述发送模块,用于在确定的波束方向上发送所述***广播消息。
在本发明实施例中,上述基站还具有下面特点:还包括:
接收模块,用于在预定周期的预留资源上接收到所述终端的反馈信息;
确定模块,用于根据所述反馈信息及先验信息,确定待传输***消息块;
所述发送模块,用于按照波束预定的顺序在所有波束方向上发送所述***广播消息。
在本发明实施例中,上述基站还具有下面特点:
所述发送模块,具体用于根据所述终端目前的状态和先验信息,主动在判定的波束方向上向所述终端发送所述***广播消息。
在本发明实施例中,上述基站还具有下面特点:
所述发送模块,发送的***广播消息占用固定的时频资源,或者占用的时频资源是动态调度的,或者发送的***广播消息中指定部分的***广播消息占用固定的时频资源,其它部分的***广播消息占用的时频资源是 动态调度的。
在本发明实施例中,上述基站还具有下面特点:
所述发送模块,发送的***广播消息采用固定的编码和调制方式;或者采用的编码和调制方式是动态调度的;或者发送的***广播消息中指定部分的***广播消息采用固定的编码和调制方式,其余部分的***广播消息的编码和调制方式是动态调度的。
为了解决上述问题,本发明实施例还提供了一种***广播消息的传输方法,包括:
终端接收基站发送的***广播消息,其中
所述***广播消息包括索引块和一个或多个***消息块,所述索引块用于标识所述基站向所述终端传输的***消息块,所述***消息块包括的***消息不相同。
在本发明实施例中,上述方法还具有下面特点:所述终端接收基站发送的***广播消息之前,包括:
所述终端选择预留资源,在所选的预留资源上向所述基站发送反馈信息。
在本发明实施例中,上述方法还具有下面特点:所述反馈信息包括以下的一项或多项:
***广播消息传输请求消息;
所述基站向所述终端发送所述***广播消息时的波束编号或方向信息;
所述基站待发送的***广播消息。
在本发明实施例中,上述方法还具有下面特点:所述反馈信息包括所述终端在所述预留资源上是否发送能量的能量信息,或者包括所述终端在所述预留资源上承载的专用序列的信息。
在本发明实施例中,上述方法还具有下面特点:所述专用序列包括预 先指定专用序列或者通过指定方法产生的。
在本发明实施例中,上述方法还具有下面特点:所述专用序列分成不同的序列子集,每个序列子集由1个或多个序列组成,所述序列子集数目等于所述基站的波束数目,序列子集一一映射到所述基站的波束,每个波束上有1个或多个***消息块集,序列子集在***消息块集中的配置方式包含以下任一形式:
每个***消息块集对应于序列子集中的1个序列,所述终端根据波束方向及请求的***消息块选择出唯一的序列作为发送序列;
每个***消息块集对应于序列子集中的多个序列,所述终端根据波束方向及请求的***消息块筛选出多个序列,随机选择一个序列作为发送序列。
在本发明实施例中,上述方法还具有下面特点:
各所述序列子集含有相同数量的序列;或者
各所述序列子集含有的序列数量不完全相同。
在本发明实施例中,上述方法还具有下面特点:所述反馈信息在所述预留资源上的承载方式包括以下的任一种形式:
所述预留资源划分为1个或多个部分,各部分均承载能量信息;
所述预留资源承载专用序列信息;
所述预留资源中一部分承载能量信息,另一部分承载专用序列信息。
在本发明实施例中,上述方法还具有下面特点:所述终端通过以下任一种方式获取所述***广播消息所占用的时频资源位置:
预先规定***广播消息所占用的时频域资源位置;
通过检测控制信道携带的信息来获知时频资源位置。
在本发明实施例中,上述方法还具有下面特点:所述终端通过以下任一种方式获取所述***广播消息的编码和调制方式:
预先规定***广播消息的编码和调制方式;
通过检测控制信道携带的信息来获知编码和调制方式。
为了解决上述问题,本发明的又一实施例,还提供了一种终端,其中,包括:
接收模块,用于接收基站发送的***广播消息,其中
所述***广播消息包括索引块和一个或多个***消息块,所述索引块用于标识所述基站向所述终端传输的***消息块,所述***消息块包括的***消息不相同。
在本发明实施例中,上述终端还具有下面特点:还包括:
选择模块,用于选择预留资源;
发送模块,用于在所述选择模块所选的预留资源上向所述基站发送反馈信息,所述反馈信息包括以下的一项或多项:***广播消息传输请求消息;所述基站向所述终端发送所述***广播消息时的波束编号或方向信息;所述基站待发送的***广播消息。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:基站向终端发送***广播消息,其中,所述***广播消息包括索引块和一个或多个***消息块,所述索引块用于标识所述基站向所述终端传输的***消息块,所述***消息块包括的***消息不相同。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述基站向终端发送***广播消息包括:所述基站在预定周期的预留资源上接收到所述终端的反馈信息后,根据所述反馈信息及先验信息,确定所述基站到所述终端的波束方向和待传输***消息块;在确定的波束方向上发送所述***广播消息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述基站向终端发送***广播消息包括:所述基站 在预定周期的预留资源上接收到所述终端的反馈信息后,根据所述反馈信息及先验信息,确定待传输***消息块;按照波束预定的顺序在所有波束方向上发送所述***广播消息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述预定周期是固定的,或者所述预定周期是动态调整的。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述预留资源在时域上持续的时间包含以下任一形式:所述预留资源以周期方式持续出现;所述预留资源仅在指定时间段内以周期方式出现。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:在单个小区内,所述预留资源在频域上的位置关系包含以下任一形式:所述预留资源在频域上是连续的;所述预留资源在频域上是离散的。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:在单个小区内,所述预留资源在频域上的分配方式包含以下任一形式:所述预留资源在频域上是固定不变的;所述预留资源在频域上是动态调度的。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述预留资源在频域上的位置关系包含以下任一形式:所有小区预留资源在频域上的位置是相同的;各小区预留资源在频域上位置不完全相同。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述基站向终端发送***广播消息包括:所述基站根据所述终端目前的状态和先验信息,主动在判定的波束方向上向所述终端发送所述***广播消息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述 方法还具有下面特点:所述基站向终端发送的***广播消息占用固定的时频资源,或者所述基站向终端发送的***广播消息占用的时频资源是动态调度的,或者所述基站向终端发送的***广播消息中指定部分的***广播消息占用固定的时频资源,其它部分的***广播消息占用的时频资源是动态调度的。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述基站向终端发送的***广播消息采用固定的编码和调制方式;或者所述基站向终端发送的***广播消息采用的编码和调制方式是动态调度的;或者所述基站向终端发送的***广播消息中指定部分的***广播消息采用固定的编码和调制方式,其余部分的***广播消息的编码和调制方式是动态调度的。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述***消息块中的***消息满足以下条件:Td≤Ts≤Tu,其中,Ts表示所述***消息块中的***消息的内容变更的平均间隔时间,Td表示所述***消息块预设的对应的最低门限时间,Tu表示所述***消息块预设的最高门限时间。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述索引块包含以下任一形式:所述索引块中的二进制字符串中的每位二进制数分别标识每个***消息块,二进制数位置区分不同的***消息块,二进制数每个位置上的数值标识基站传输***广播消息时是否包含此位置代表的***消息块;或者,所述索引块中的二进制字符串标识将全部***消息块按指定顺序排列成的参考序列,该二进制字符串分成偏移位和标识位,其中偏移位占用二进制字符串开头或结尾1个或多个二进制位,其余二进制位作为标识位,偏移位表示二进制字符串在参考序列中的起始位置,标识位一一对应于参考序列中从偏移位表示的起始位置开始的一段长度内的***消息块,二进制数每个位置上的数值表示基站传输***广播消息时是否包含此位置代表的***消息块;或者,所述索引块中二进制字符串包括组标识位和***消息标识位,组标识位标识系 统消息块集,占用所述索引块的二进制字符串开头或结尾1个或多个二进制位,***消息标识位由表示***消息块集的二进制字符串连接而成,所述***消息块集包括一个或多个***消息块,每个***消息块集分别配置一个二进制字符串,每个二进制字符串中的每一位与对应***消息块集中的***消息块一一对应,二进制数每个位置上的数值表示基站传输***广播消息时是否包含此位置代表的***消息块。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述基站向所述终端发送的***广播消息中的索引块和***消息块的传输结构,包含以下任一种形式:所述索引块和各所述***消息块连接成统一的整体,采用统一的编码和调制方式,各所述***消息块的连接顺序与其在索引块中标识的顺序一致;或者所述索引块和各所述***消息块为两个相互独立部分,各所述***消息块连接成统一整体,连接顺序与其在索引块中标识的顺序一致,这两个部分采用相同编码和相同调制方式,或者采用不同的编码和不同的调制方式。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:终端接收基站发送的***广播消息,其中,所述***广播消息包括索引块和一个或多个***消息块,所述索引块用于标识所述基站向所述终端传输的***消息块,所述***消息块包括的***消息不相同。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述终端接收基站发送的***广播消息之前,包括:所述终端选择预留资源,在所选的预留资源上向所述基站发送反馈信息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述反馈信息包括以下的一项或多项:***广播消息传输请求消息;所述基站向所述终端发送所述***广播消息时的波束编号或方向信息;所述基站待发送的***广播消息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述 方法还具有下面特点:所述反馈信息包括所述终端在所述预留资源上是否发送能量的能量信息,或者包括所述终端在所述预留资源上承载的专用序列的信息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述专用序列包括预先指定专用序列或者通过指定方法产生的。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述专用序列分成不同的序列子集,每个序列子集由1个或多个序列组成,所述序列子集数目等于所述基站的波束数目,序列子集一一映射到所述基站的波束,每个波束上有1个或多个***消息块集,序列子集在***消息块集中的配置方式包含以下任一形式:每个***消息块集对应于序列子集中的1个序列,所述终端根据波束方向及请求的***消息块选择出唯一的序列作为发送序列;每个***消息块集对应于序列子集中的多个序列,所述终端根据波束方向及请求的***消息块筛选出多个序列,随机选择一个序列作为发送序列。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:各所述序列子集含有相同数量的序列;或者各所述序列子集含有的序列数量不完全相同。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述反馈信息在所述预留资源上的承载方式包括以下的任一种形式:所述预留资源划分为1个或多个部分,各部分均承载能量信息;所述预留资源承载专用序列信息;所述预留资源中一部分承载能量信息,另一部分承载专用序列信息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述终端通过以下任一种方式获取所述***广播消息所占用的时频资源位置:预先规定***广播消息所占用的时频域资源位置;通过检测控制信道携带的信息来获知时频资源位置。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:上述方法还具有下面特点:所述终端通过以下任一种方式获取所述***广播消息的编码和调制方式:预先规定***广播消息的编码和调制方式;通过检测控制信道携带的信息来获知编码和调制方式。
本发明实施例提供一种***广播消息的传输方法及基站、终端,将***广播消息按消息内容的变更周期进行重新分类和封装,在此基础上,在发送的***广播消息上增加索引信息标识传输的哪部分消息,同时周期预留时频资源供终端向基站反馈消息请求、波束方向等的信息,通过上述方法,***广播消息可在指定的波束上按需传输,并保证了可靠和灵活性。本发明在保证终端接收***广播消息性能的前提下,有效地降低了***广播消息发送的频率,达到了减少基站能耗和提高资源利用率的目的。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例的***广播消息传输的示意图;
图2为本发明实施例的***广播消息分类的示意图;
图3为本发明实施例的***广播消息传输结构的示意图
图4为本发明实施例的上行预留资源示意图;
图5为本发明实施例对用的应用场景的示意图;
图6为本发明实施例一的一种***广播消息的传输方法的流程图;
图7为本发明实施例二的一种***广播消息的传输方法的流程图;
图8为本发明实施例三的一种***广播消息传输的方法的流程图;
图9为本发明实施例的基站的示意图;
图10为本发明实施例的终端的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
基于上述问题,本发明实施例提出了一种***广播消息的传输方法,如图1-4所示:
基站侧
基站向终端发送的***广播消息,其中,所述***广播消息包含索引块和***消息块两部分;
本实施例中,依据***广播消息内容的变更周期将***广播消息划分成所述***消息块,每个***消息块包含一部分***消息,各***消息块包含的***消息不相同;
所述索引块包含的数据标识了本次基站向终端传输了哪些所述的***消息块,索引块随***消息块一起被发送到终端。
如图2所示,所述***消息块中的***消息满足Td≤Ts≤Tu,其中,Ts表示某***消息内容变更的平均间隔时间,Td和Tu表示***消息块设定的最低和最高门限时间,不同的***消息块具有不同的Td和Tu值。
各个***消息块进一步可以组织成1个或多个***消息块集,每个***消息块集包含1个或多个***消息块。
所述索引块至少包含以下形式之一:
a、每个***消息块都由二进制字符串中的一位二进制数标识,二进制数位置区分不同的***消息块,而二进制数每个位置上的数值标识基站本次传输***广播消息时是否包含此位置代表的***消息块;
b、将全部***消息块在逻辑上按一定顺序排列,作为参考序列,而索引块中二进制字符串标识所述的参考序列,二进制字符串分成偏移位和 标识位两个部分,其中偏移位占用二进制字符串开头或结尾1个或多个二进制位,其余二进制位作为标识位,偏移位表示二进制字符串在参考序列中的起始位置,而标识位一一对应于参考序列中从偏移位表示的起始位置开始的一段长度内的***消息块,用二进制数每个位置上的数值表示本次基站传输***广播消息时是否包含此位置代表的***消息块。
c、为每个所述***消息块集分别配置一个二进制字符串,字符串中各位与***消息块集中的***消息块都一一对应,用二进制数每个位置上的数值表示本次基站传输***广播消息时是否包含此位置代表的***消息块。索引块中二进制字符串由组标识位和***消息标识位构成,组标识位表明包含哪些***消息块集,占用索引块二进制字符串开头或结尾1个或多个二进制位,而***消息标识位由表示***消息块集的二进制字符串连接而成,连接顺序与组标识中的顺序一致。
如图3所示,所述基站向终端发送的索引块和***消息块的传输结构,包含以下形式之一:
1、索引块和各***消息块连接成统一的整体,采用统一的编码和调制方式,索引块位置可以位于整体的首部、尾部或指定的中部位置,各***消息块连接顺序与其在索引块中的顺序一致;
2、索引块和各***消息块为两个相互独立部分,各***消息块连接成统一整体,连接顺序与其在索引块中的顺序一致,这两个部分可以采用不同编码和调制方式,可以在不同的信道上传输。
本实施例中,所述周期的大小包含以下形式之一:
1)周期是固定的,周期在各小区间可以相同,或不相同;
2)周期是动态调整的,基站按一定规则调整所述周期的大小,并通过其他信息向终端直接或间接地指示周期的大小。
本实施例中,基站在上行带宽中以一定周期预留部分时频资源用于终端向基站反馈信息。
其中,所述预留的资源在时域上持续的时间包含以下形式之一:
1)预留的资源以周期方式一直持续出现;
2)预留的资源仅在一个时间段内以周期方式出现。
在一优选实施例中,在单个小区内,所述预留的资源在频域上的位置关系包含以下形式之一:
1)预留的频域资源在频域上是连续的;
2)预留的频域资源在频域上是离散的。
在一优选实施例中,在单个小区内,所述预留的资源在频域上的分配方式包含以下形式之一:
1)预留的频域资源在频域上是固定不变的;
2)预留的频域资源在频域上是动态调度的,基站通过其他信息向终端指示预留的资源在频域上的位置。
在一优选实施例中,在多个小区间,所述预留的资源在频域上的位置关系包含以下形式之一:
1)所有小区预留的资源在频域上的位置是相同的;
2)各小区预留的资源在频域上位置不完全相同,基站通过其他信息向终端指示预留的资源在频域上的位置。
其中,所述基站向终端传输索引块和***消息块的方式,至少包含以下形式之一:
1)基站在预留的资源上接收到终端的反馈信息后,根据反馈信息及先验信息,判断基站到终端的波束方向和需要传输哪些所述的***消息块,最后基站在判定的波束方向上发送***广播消息;
2)基站在预留的资源上接收到终端的反馈信息后,根据反馈信息及先验信息,判断基站需要传输哪些所述的***消息块,最后基站按照波束预定的顺序在所有波束方向上发送***广播消息;
3)基站根据终端目前的状态和先验信息,不等待终端请求,主动在判定的波束方向上向终端发送***广播消息。
其中,所述先验信息由反馈信息的时频域位置、基站和终端历史交互数据等信息构成。
在一优选实施例中,所述基站向终端传输索引块和***消息块占用的时频资源,包含以下形式之一:
1)传输的消息占用固定的时频资源;
2)传输的消息占用的时频资源是动态调度的,并由基站通过其他信息向终端指示占用的时频资源的位置;
3)部分传输的***广播消息占用固定的时频资源,其余部分消息占用的时频资源是动态调度的。
在一优选实施例中,所述基站向终端传输索引块和***消息块的编码和调制方式,包含以下形式之一:
1)传输的消息采用固定的编码和调制方式;
2)传输的消息采用的编码和调制方式是动态调度的,并由基站通过其他信息向终端指示消息编码和调制方式;
3)部分传输的消息采用固定的编码和调制方式,其余部分消息的编码和调制方式是动态调度的。
终端侧
终端接收基站发送的***广播消息,其中
所述***广播消息包括索引块和一个或多个***消息块,所述索引块用于标识所述基站本次向所述终端传输的***消息块,所述***消息块包括的***消息不相同。
终端获取***广播消息方式包括两种方式:
第一种方式为在预留的资源上发送反馈信息(例如能量信息或专用序列信息),然后接收基站发送的***广播消息;
第二种方式为先尝试接收基站发送的***广播消息,如没有接收到,则在按第一种方式处理。
在第一种方式中,终端选择所述的预留的时频资源并在该时频资源上向基站传输能量信息或专用序列信息;
所述能量信息或专用序列信息可表示以下信息中的1项或多项:
1)***广播消息传输请求,包括初传(第一次传输)和重传(再次传输)的请求;
2)基站向终端传输***广播消息时的波束编号或方向;
3)基站需要传输哪些***广播消息。
所述能量信息或专用序列信息没有表示的,且基站传输***广播消息时所需的其余信息可由所述的先验信息提供。
所述能量信息指终端在预留资源上通过是否发送能量表示反馈信息,且基站设置一定能量阈值来判定预留资源上的是否有能量信息。
所述专用序列信息指终端在预留资源上通过承载专用的序列信息表示反馈信息。
所述专用序列产生方式包含以下形式之一:
1)预先指定专用序列,指定的序列作为基站和终端的先验信息;
2)规定专用序列产生方法,该方法的参数是动态改变的。
所述专用序列分割成不同的序列子集,每个序列子集由1个或多个序列组成,子集数目等于基站波束数目,各序列子集一一映射到基站的波束,每个波束上有1个或多个***消息块集,序列子集在***消息块集中的配置方式,包含以下形式之一:
a、每个***消息块集对应于序列子集中1个序列,反馈时,终端根据波束方向及请求的***消息块,选择出唯一的序列,作为发送序列;
b、每个***消息块集对应于序列子集中多个序列,反馈时,终端根据波束方向及请求的***消息块,筛选出多个序列,随机选择一个序列作为发送序列。
所属的专用序列分割成子集的方式包含以下形式之一:
1)均匀方式分割专用序列,即各子集上都含有相同数量序列的;
2)非均匀方式分割专用序列,即各子集上的序列数量不完全相同。
所述终端选择预留时频资源的方式包含以下形式之一:
a、终端选择在最近的预留资源;
b、按一定规则随机等待一段时间,然后选择在最近的预留资源。
所述能量或专用序列信息在预留时频资源上的承载方式,包含以下形式之一:
预留的资源划分为1个或多个部分,各部分均承载能量信息,各部分的所在位置可表示终端到基站的波束方向、终端所需要哪部分***广播消息、或其他类型信息;
预留的资源被小区内所用终端共享,且承载专用序列信息;
预留的资源分为两大部分,一部分承载能量信息,另一部分承载专用序列信息。
在一优选实施例中,终端以下列方式之一获知***广播消息所占用的时频资源位置:
a、预先规定***广播消息所占用的时频域资源位置;
b、终端检测控制信道携带的信息获知时频资源位置。
在一优选实施例中,终端以下列方式之一获知***广播消息的编码和调制方式:
a、预先规定***广播消息所的编码和调制方式;
b、终端检测控制信道携带的信息获知编码和调制方式。
图5为本发明实施例对用的应用场景的示意图,其中高频基站通过B0到B6波束覆盖Cell1小区,而初始接入小区的终端UE1和UE2分别位于波束B1和B3方向上。下面结合应用场景及具体实施例对本发明进 行详细说明。
实施例一
图6为本发明实施例一的一种***广播消息的传输方法的流程图,本实施例中,把***广播消息分为三类:第一类***广播消息包含小区选择、小区接入等所有终端都需要的基础性消息;第二类***广播消息是指除第一类***广播消息外所有终端都需要的其他***广播消息,如信道通用配置参数、定时器常量等;第三类***广播消息跟终端状态相关,当终端所处的状态不同时,需要不同部分的第三类***广播消息,如小区重选相关参数等。
第一类***广播消息采用周期方式在B0到B6波束上发送,而第二类和第三类***广播消息采用本发明实施例中的按需方式发送,第二类和第三类***广播消息分别按本发明实施例中所述的变更周期的方式进行分类并封装进***消息块中,同时为第二类和第三类***广播消息分别配置第一和第二专用序列集,每个专用序列集进一步分割成不同子集,每个子集至少包含一个序列,各子集一一映射到各波束上(B0到B6),产生专用序列集的方法是唯一固定的,而各序列集分割成子集方式及子集到波束的映射方式虽是固定的,但存在多个备选方案,序列集产生方法的参数、选用哪种分割和一一映射方法等信息包含在第一类***广播消息中。
本实施例中预留资源持续以固定的周期出现,预留的资源在频域上是离散的,终端接入小区前预先知道预留资源周期和频域位置。本实施例侧重于描述第二类和第三类***广播消息的传输过程,***广播消息的发送和接收的具体过程描述如下:
步骤101:基站BS在所有波束方向上按一定周期发送第一类***广播消息;
步骤102:终端UE2在波束B3方向上接收到基站BS发送的第一类***广播消息;
步骤103:终端UE2在紧邻的预留资源上向基站BS发送第二类*** 广播消息请求序列;
终端通过第一类***广播消息中相关参数,产生专用序列集、并进行子集分割和映射。
终端UE2从映射到波束B3上的第一专用序列集的子集中的随机选择一个序列作为发送的请求序列。
步骤104:基站BS在预留资源上接收到请求序列后,在波束B3方向上发送终端UE2所需的第二类***广播消息;
基站BS根据接收的序列所属类别判定所要发送***广播消息的类别,再根据序列所属子集判定发送的波束方向。
需要注意的是,第一专用序列集不区分初传和重传功能,因此基站BS只要接收到该类序列后,就将第二类***广播消息在指定的波束方向上全部发送一次。
步骤105:终端UE2在波束B3方向上接收基站BS发送的第二类***广播消息;
终端UE2通过控制信道上的信息获知***广播消息的编码和调制方式,及时频域位置。
终端UE2收到***广播消息后,通过接收的消息中的索引块信息判定消息是否包含所需的第二类***广播消息,如果包含所需消息,则完成第二类***广播消息的接收,直接进行步骤106。
终端UE2接收第二类***广播消息,如果在一段时间内没有接受到或没有正确接收到所需第二类***广播消息,则终端UE2则按步骤103中的方式重新发送请求序列。
步骤106:终端UE2进行随机接入过程并接入Cell1小区;
步骤107:接入小区后,基站BS根据终端UE2的状态择机主动发送终端UE2所需第三类***广播消息;
基站BS事先通过控制信道信息通知终端UE2基站将发送第三类*** 广播消息。
如果基站BS发送完终端UE2所需的第三类***广播消息后,在预留资源上检测到终端UE2重传请求序列,则基站BS将上次发送给终端UE2的第三类***广播消息重新发送一次。
值得注意的是,不同波束方向上的终端可能需要不同的第三类***广播消息,基站BS可以根据各波束方向上终端的需求,在各波束方向上传输不同的第三类***广播消息,由索引块标识具体每个波束方向上传输了哪些消息。
步骤108:终端UE2接收基站BS发送的第三类***广播信息,处理过程与步骤105类似,不再赘述,唯一不用之处在于反馈序列采用的是第二专用序列集;
步骤109:接收第三类***信息。
***广播消息变化时,基站BS采用以下两种方式之一向终端UE2发送***消息更新通知:1、通过Paging(寻呼)信息通知;2、通过第一类***广播消息通知;
基站BS在终端UE2所在的波束B3方向上统一发送第二类和第三类***广播消息中被更新的部分,没有更新的部分不发送,具体发送了哪些部分由索引块标识;
值得注意的是,如果波束B3方向上同时需要为其他终端传输其他部分***广播消息,则该部分消息可以和上述更新的消息合并在一起传输,由终端根据索引块信息及自身需求决定取用哪部分***广播消息。
终端UE2接收被更新的***广播信息,处理过程与步骤105类似,不再赘述。唯一不用之处在于采用的反馈序列,这里复用的是第二专用序列集,基站BS根据反馈的序列所属类别和历史传输记录,就可确定需要重传哪部分消息。
实施例二
图7为本发明实施例二的一种***广播消息的传输方法的流程图,该方法把***广播消息分为两类:第一类***广播消息包含小区选择、小区接入、随机接入等所有终端都需要的基础性消息;第二类***广播消息是指除第一类***广播消息外的其余***广播消息,如信道通用配置参数、定时器常量、小区重选相关参数等。
第一类***广播消息采用周期方式在B0到B6波束上发送,而第二类***广播消息采用本发明实施例中的按需方式发送,第二类***广播消息分别按本发明实施例中所述的变更周期的方式进行分类并封装进***消息块中。
本实施例中预留的资源仅在一段时间内以周期的方式的重复出现,预留资源的周期是动态调整的,预留的资源在频域上的位置是连续的,但可动态调整。预留的资源被分成编号0到6共7个部分,每个部分依据编号映射到波束上(B0到B6),周期相关信息、预留资源分割和映射信息包含在第一类***广播消息中。本实施例侧重于描述第二类***广播消息的传输过程,***广播消息的发送和接收的具体过程描述如下:
步骤201:基站BS在所有波束方向上按一定周期发送第一类***广播消息;
步骤202:终端UE1在波束B1方向上接收到基站BS发送的第一类***广播消息;
步骤203:终端UE1进行随机接入过程并接入Cell1小区;
步骤204:接入小区后,基站BS通过控制信道信息通知终端UE1基站将发送第二类***广播消息,还告知预留资源出现周期,起始和终止时的***帧号,及在频域上的位置;
值得注意的是,各次通知的预留资源的周期和频域上位置可以根据实际情况动态改变。
步骤205:基站BS主动在波束B1方向上发送终端UE1必需的第二类***广播消息;
基站不发送的全部的第二类***广播消息,只发送包括信道通用配置参数、定时器常量等终端UE1维持正常业务所必需的信息,发送内容由索引块信息标识。
步骤206:终端UE1在波束B1方向上接收基站BS发送的第二类***广播消息;
终端UE1通过控制信道上的信息获知***广播消息的编码和调制方式,及时频资源位置。
终端UE1收到***广播消息后,通过接收的消息中的索引块信息判定消息是否包含所需的***广播消息,如果包含所需消息,则完成***广播消息的接收。
终端UE1没有收到或正确收到所需的第二类***广播消失时,在紧邻的预留资源中波束B1所对应的频域位置上发送具有一定能量的信号;
当基站BS在预留资源上检测到超过给定阈值的能量时,在波束B1方向上向终端UE1重传第二类***广播消息,终端按步骤206接收消息。
基站BS根据检测到的能量所在的频域位置判断出波束B1方向,再根据历史传输记录确定需要重传哪部分第二类***广播消息。
终端UE1的状态发生变化时,基站BS根据终端UE1的状态再向其发送所需的第二类***广播消息(如小区重选信息),区别在于发送的内容不同;
当***广播消息需要更新时,基站BS采用以下两种方式之一向终端UE1发送***消息更新通知:1、通过寻呼信息通知;2、通过第一类***广播消息通知。基站BS还通过控制信道告知预留资源出现周期,起始和终止时的***帧号,及在时频域上的位置;
基站BS在波束B1方向上向在终端UE1发送第二类***广播消息中被更新的部分,没有更新的部分不发送,具体发送了哪些部分由索引块标识;
值得注意的是,如果波束B1方向上同时需要为其他终端传输其他部分的第二类***广播消息,则该部分消息可以和上述更新的消息合并在一起传输,由终端根据索引块信息及自身需求决定取用哪部分***广播消息。
终端UE1接收被更新的***广播信息,处理过程与步骤206相同。
实施例三
图8为本发明实施例三的一种***广播消息传输的方法的流程图,该方法把***广播消息分为两类:第一类***广播消息包含小区选择、小区接入、随机接入等所有终端都需要的基础性消息;第二类***广播消息是指除第一类***广播消息外的其余***广播消息,如信道通用配置参数、定时器常量、小区重选相关参数等。
第一类和第二类***广播消息采用本发明中的按需方式发送,且这两类广播消息分别按本发明实施例中所述的变更周期的方式进行分类并封装进***消息块中。
本实施例中预留资源持续以固定的周期出现,并且预留资源在频域上分为是离散的两部分,终端接入小区前预先知道预留资源的周期和在频域上的位置,第一部分预留资源被基站内所有终端共享,用于传输表示第一类***广播消息的能量信号,第二部分预留资源用于传输表示第二类***广播消息的专用序列集,此专用序列集及其分割和映射方式预先指定,作为基站和终端先验信息。***广播消息的发送和接收的具体过程描述如下:
步骤301:终端UE1完成同步过程后,首先随机等待一段时间,在等待的时间段内,尝试在指定的时频资源下按指定的编码和调制方式接收第一类***广播消息,如果接收到,则跳至步骤306,否则进行步骤302;
等待时间到达后,终端UE1在紧邻的第一部分预留资源上发送有一定能量的信号;
步骤302:基站BS1在第一部分预留资源上检测到超过一定阈值的能量后,按一定顺序在所有波束(B0到B1)方向上遍历传输第一类***广播消息一次;
第一类***广播消息采用固定的编码和调制方式,并在固定的时频资源上发送。
步骤303:终端UE1在波束B1方向上接收基站BS发送的第一类***广播消息;
终端UE1收到***广播消息后,通过接收的消息中的索引块信息判定消息是否包含所需的***广播消息,如果包含所需消息,则完成***广播消息的接收,跳至步骤304。终端UE1没有收到或正确收到第一类***广播消息时,在紧邻的第一部分预留资源上发送具有一定能量的信号,基站BS按步骤302处理;
步骤304:终端UE1进行随机接入过程并接入Cell1小区;
步骤305:接入小区后,基站BS通过控制信道信息通知终端UE1基站将发送第二类***广播消息;基站BS主动在波束B1方向上发送终端UE1必需的第二类***广播消息;
基站不发送的全部的第二类***广播消息,只发送包括信道通用配置参数、定时器常量等终端UE1维持正常业务所必需的信息,发送内容由索引块信息标识。
步骤306:终端UE1在波束B1方向上接收基站BS发送的第二类***广播消息;
终端UE1从控制信道上获取***广播消息的编码和调制方式及时频域位置。
终端UE1收到***广播消息后,通过接收的消息中的索引块信息判定消息是否包含所需的***广播消息,如果包含所需消息,则完成***广播消息的接收。
终端UE1没有收到或正确收到所需的***广播消失时,从波束B1所对应的专用序列子集中随机选择一个序列,并在紧邻的第二部分预留资源中发送。
当基站BS在第二部分预留资源上检测到序列时,在波束B1方向上向终端UE1重传第二类***广播消息;
基站BS根据检测到的序列判断出波束B1方向,再根据历史传输记录确定需要重传哪部分第二类***广播消息。
终端UE1的状态发生变化时,基站BS根据终端UE1的状态再向其发送此状态下所需的第二类***广播消息(如小区重选信息),发送和接收的方式与上文类似,区别在于发送的内容不同;
***广播消息更新时,基站BS通过寻呼信息通知向终端UE1发送***消息更新通知;
基站BS在波束B1方向上统一向在终端UE1发送第一类和第二类***广播消息中被更新的部分,没有更新的部分不发送,具体发送了哪些部分由索引块标识;
值得注意的是,如果波束B1方向上同时需要为其他终端传输其他部分的***广播消息时,则该部分消息可以和上述更新的消息合并在一起传输,由终端根据索引块信息及自身需求决定取用哪部分***广播消息。
终端UE1接收被更新的***广播信息。
图9为本发明实施例的基站的示意图,如图9所示,本实施例的基站包括:
发送模块,设置为向终端发送***广播消息,其中,
所述***广播消息包括索引块和一个或多个***消息块,所述索引块用于标识所述基站本次向所述终端传输的***消息块,所述***消息块包括的***消息不相同。
在一优选实施例中,所述基站还可以包括:
接收模块,设置为在预定周期的预留资源上接收到所述终端的反馈信息;
确定模块,设置为根据所述反馈信息及先验信息,确定所述基站到所 述终端的波束方向和待传输***消息块;
所述发送模块,设置为在确定的波束方向上发送所述***广播消息。
在一优选实施例中,所述基站还可以包括:
接收模块,设置为在预定周期的预留资源上接收到所述终端的反馈信息;
确定模块,设置为根据所述反馈信息及先验信息,确定待传输***消息块;
所述发送模块,设置为按照波束预定的顺序在所有波束方向上发送所述***广播消息。
在一优选实施例中,所述发送模块,具体设置为根据所述终端目前的状态和先验信息,主动在判定的波束方向上向所述终端发送所述***广播消息。
在一优选实施例中,所述发送模块,发送的***广播消息占用固定的时频资源,或者占用的时频资源是动态调度的,或者发送的***广播消息中指定部分的***广播消息占用固定的时频资源,其它部分的***广播消息占用的时频资源是动态调度的。
在一优选实施例中,所述发送模块,发送的***广播消息采用固定的编码和调制方式;或者采用的编码和调制方式是动态调度的;或者发送的***广播消息中指定部分的***广播消息采用固定的编码和调制方式,其余部分的***广播消息的编码和调制方式是动态调度的。
图10为本发明实施例的终端的示意图,如图10所示,本实施例的终端包括:
接收模块,设置为接收基站发送的***广播消息,其中
所述***广播消息包括索引块和一个或多个***消息块,所述索引块用于标识所述基站本次向所述终端传输的***消息块,所述***消息块包括的***消息不相同。
在一优选实施例中,所述终端还包括:
选择模块,设置为选择预留资源;
发送模块,设置为在所述选择模块所选的预留资源上向所述基站发送反馈信息,所述反馈信息包括以下的一项或多项:***广播消息传输请求消息;所述基站向所述终端发送所述***广播消息时的波束编号或方向信息;所述基站待发送的***广播消息。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明不限制于任何特定形式的硬件和软件的结合。
以上仅为本发明的优选实施例,当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业实用性
在本发明实施例的***广播消息的传输方法过程中,将***广播消息按消息内容的变更周期进行重新分类和封装,在此基础上,在发送的***广播消息上增加索引信息标识传输的哪部分消息,同时周期预留时频资源供终端向基站反馈消息请求、波束方向等的信息,通过上述方法,***广播消息可在指定的波束上按需传输,并保证了可靠和灵活性。本发明在保证终端接收***广播消息性能的前提下,有效地降低了***广播消息发送的频率,达到了减少基站能耗和提高资源利用率的目的。

Claims (32)

  1. 一种***广播消息的传输方法,包括:
    基站向终端发送***广播消息,其中,
    所述***广播消息包括索引块和一个或多个***消息块,所述索引块用于标识所述基站向所述终端传输的***消息块,所述***消息块包括的***消息不相同。
  2. 如权利要求1所述的方法,其中,所述基站向终端发送***广播消息包括:
    所述基站在预定周期的预留资源上接收到所述终端的反馈信息后,根据所述反馈信息及先验信息,确定所述基站到所述终端的波束方向和待传输***消息块;
    在确定的波束方向上发送所述***广播消息。
  3. 如权利要求1所述的方法,其中,所述基站向终端发送***广播消息包括:
    所述基站在预定周期的预留资源上接收到所述终端的反馈信息后,根据所述反馈信息及先验信息,确定待传输***消息块;
    按照波束预定的顺序在所有波束方向上发送所述***广播消息。
  4. 如权利要求2或3所述的方法,其中,
    所述预定周期是固定的,或者
    所述预定周期是动态调整的。
  5. 如权利要求2或3所述的方法,其中,所述预留资源在时域上持续的时间包含以下任一形式:
    所述预留资源以周期方式持续出现;
    所述预留资源仅在指定时间段内以周期方式出现。
  6. 如权利要求2或3所述的方法,其中,在单个小区内,所述预留资源在频域上的位置关系包含以下任一形式:
    所述预留资源在频域上是连续的;
    所述预留资源在频域上是离散的。
  7. 如权利要求2或3所述的方法,其中,在单个小区内,所述预留资源在频域上的分配方式包含以下任一形式:
    所述预留资源在频域上是固定不变的;
    所述预留资源在频域上是动态调度的。
  8. 如权利要求2或3所述的方法,其中,所述预留资源在频域上的位置关系包含以下任一形式:
    所有小区预留资源在频域上的位置是相同的;
    各小区预留资源在频域上位置不完全相同。
  9. 如权利要求1所述的方法,其中,所述基站向终端发送***广播消息包括:
    所述基站根据所述终端目前的状态和先验信息,主动在判定的波束方向上向所述终端发送所述***广播消息。
  10. 如权利要求1所述的方法,其中,
    所述基站向终端发送的***广播消息占用固定的时频资源,或者
    所述基站向终端发送的***广播消息占用的时频资源是动态调度的,或者
    所述基站向终端发送的***广播消息中指定部分的***广播消息占用固定的时频资源,其它部分的***广播消息占用的时频资源是动态调度的。
  11. 如权利要求1所述的方法,其中,
    所述基站向终端发送的***广播消息采用固定的编码和调制方式;或者
    所述基站向终端发送的***广播消息采用的编码和调制方式是动态调度的;或者
    所述基站向终端发送的***广播消息中指定部分的***广播消息采用固定的编码和调制方式,其余部分的***广播消息的编码和调制方式是动态调度的。
  12. 如权利要求1所述的方法,其中,所述***消息块中的***消息满足以下条件:
    Td≤Ts≤Tu,其中,
    Ts表示所述***消息块中的***消息的内容变更的平均间隔时间,Td表示所述***消息块预设的对应的最低门限时间,Tu表示所述***消息块预设的最高门限时间。
  13. 如权利要求1所述的方法,其中,所述索引块包含以下任一形式:
    所述索引块中的二进制字符串中的每位二进制数分别标识每个***消息块,二进制数位置区分不同的***消息块,二进制数每个位置上的数值标识基站传输***广播消息时是否包含此位置代表的***消息块;或者
    所述索引块中的二进制字符串标识将全部***消息块按指定顺序排列成的参考序列,该二进制字符串分成偏移位和标识位,其中偏移位占用二进制字符串开头或结尾1个或多个二进制位,其余二进制位作为标识位,偏移位表示二进制字符串在参考序列中的起始位置,标识位一一对应于参考序列中从偏移位表示的起始位置开始的一段长度内的***消息块,二进制数每个位置上的数值表示基站传输***广播消息时是否包含此位置代表的***消息块;或者
    所述索引块中二进制字符串包括组标识位和***消息标识位,组标识位标识***消息块集,占用所述索引块的二进制字符串开头或结尾1个或多个二进制位,***消息标识位由表示***消息块集的二进制字符串连接而成,所述***消息块集包括一个或多个***消息块,每个***消息块集分别配置一个二进制字符串,每个二进制字符串中的每一位与对应***消息块集中的***消息块一一对应,二进制数每个位置上的数值表示基站传输***广播消息时是否包含此位置代表的***消息块。
  14. 如权利要求1所述的方法,其中,所述基站向所述终端发送的***广播消息中的索引块和***消息块的传输结构,包含以下任一种形式:
    所述索引块和各所述***消息块连接成统一的整体,采用统一的编码和调制方式,各所述***消息块的连接顺序与其在索引块中标识的顺序一致;或者
    所述索引块和各所述***消息块为两个相互独立部分,各所述***消息块连接成统一整体,连接顺序与其在索引块中标识的顺序一致,这两个部分采用相同编码和相同调制方式,或者采用不同的编码和不同的调制方式。
  15. 一种基站,包括:
    发送模块,设置为向终端发送***广播消息,其中,
    所述***广播消息包括索引块和一个或多个***消息块,所述索引块用于标识所述基站向所述终端传输的***消息块,所述***消息块包括的***消息不相同。
  16. 如权利要求15所述的基站,其中,还包括:
    接收模块,设置为在预定周期的预留资源上接收到所述终端的反馈信息;
    确定模块,设置为根据所述反馈信息及先验信息,确定所述基站到所述终端的波束方向和待传输***消息块;
    所述发送模块,设置为在确定的波束方向上发送所述***广播消息。
  17. 如权利要求15所述的基站,其中,还包括:
    接收模块,设置为在预定周期的预留资源上接收到所述终端的反馈信息;
    确定模块,设置为根据所述反馈信息及先验信息,确定待传输***消息块;
    所述发送模块,设置为按照波束预定的顺序在所有波束方向上发送所述***广播消息。
  18. 如权利要求15所述的基站,其中,
    所述发送模块,设置为根据所述终端目前的状态和先验信息,主动在判定的波束方向上向所述终端发送所述***广播消息。
  19. 如权利要求15-18任一项所述的基站,其中,
    所述发送模块,发送的***广播消息占用固定的时频资源,或者占用的时频资源是动态调度的,或者发送的***广播消息中指定部分的***广播消息占用固定的时频资源,其它部分的***广播消息占用的时频资源是动态调度的。
  20. 如权利要求15-18任一项所述的基站,其中,
    所述发送模块,发送的***广播消息采用固定的编码和调制方式;或者采用的编码和调制方式是动态调度的;或者发送的***广播消息中指定部分的***广播消息采用固定的编码和调制方式,其余部分的***广播消息的编码和调制方式是动态调度的。
  21. 一种***广播消息的传输方法,包括:
    终端接收基站发送的***广播消息,其中
    所述***广播消息包括索引块和一个或多个***消息块,所述索引块用于标识所述基站向所述终端传输的***消息块,所述***消息块包括的***消息不相同。
  22. 如权利要求21所述的方法,其中,所述终端接收基站发送的***广播消息之前,包括:
    所述终端选择预留资源,在所选的预留资源上向所述基站发送反馈信息。
  23. 如权利要求22所述的方法,其中,所述反馈信息包括以下的一项或多项:
    ***广播消息传输请求消息;
    所述基站向所述终端发送所述***广播消息时的波束编号或方向信息;
    所述基站待发送的***广播消息。
  24. 如权利要求22所述的方法,其中,
    所述反馈信息包括所述终端在所述预留资源上是否发送能量的能量信息,或者包括所述终端在所述预留资源上承载的专用序列的信息。
  25. 如权利要求24所述的方法,其中,
    所述专用序列包括预先指定专用序列或者通过指定方法产生的。
  26. 如权利要求24所述的方法,其中,
    所述专用序列分成不同的序列子集,每个序列子集由1个或多个序列组成,所述序列子集数目等于所述基站的波束数目,序列子集一一映射到所述基站的波束,每个波束上有1个或多个***消息块集, 序列子集在***消息块集中的配置方式包含以下任一形式:
    每个***消息块集对应于序列子集中的1个序列,所述终端根据波束方向及请求的***消息块选择出唯一的序列作为发送序列;
    每个***消息块集对应于序列子集中的多个序列,所述终端根据波束方向及请求的***消息块筛选出多个序列,随机选择一个序列作为发送序列。
  27. 如权利要求26所述的方法,其中,
    各所述序列子集含有相同数量的序列;或者
    各所述序列子集含有的序列数量不完全相同。
  28. 如权利要求24所述的方法,其中,所述反馈信息在所述预留资源上的承载方式包括以下的任一种形式:
    所述预留资源划分为1个或多个部分,各部分均承载能量信息;
    所述预留资源承载专用序列信息;
    所述预留资源中一部分承载能量信息,另一部分承载专用序列信息。
  29. 如权利要求21-28任一项所述的方法,其中,所述终端通过以下任一种方式获取所述***广播消息所占用的时频资源位置:
    预先规定***广播消息所占用的时频域资源位置;
    通过检测控制信道携带的信息来获知时频资源位置。
  30. 如权利要求21-28任一项所述的方法,其中,所述终端通过以下任一种方式获取所述***广播消息的编码和调制方式:
    预先规定***广播消息的编码和调制方式;
    通过检测控制信道携带的信息来获知编码和调制方式。
  31. 一种终端,其中,包括:
    接收模块,设置为接收基站发送的***广播消息,其中
    所述***广播消息包括索引块和一个或多个***消息块,所述索引块用于标识所述基站向所述终端传输的***消息块,所述***消息块包括的***消息不相同。
  32. 如权利要求31所述的终端,其中,还包括:
    选择模块,设置为选择预留资源;
    发送模块,设置为在所述选择模块所选的预留资源上向所述基站发送反馈信息,所述反馈信息包括以下的一项或多项:***广播消息传输请求消息;所述基站向所述终端发送所述***广播消息时的波束编号或方向信息;所述基站待发送的***广播消息。
PCT/CN2016/103431 2015-12-08 2016-10-26 一种***广播消息的传输方法及基站、终端 WO2017097051A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510897201.0A CN106856614A (zh) 2015-12-08 2015-12-08 一种***广播消息的传输方法及基站、终端
CN201510897201.0 2015-12-08

Publications (1)

Publication Number Publication Date
WO2017097051A1 true WO2017097051A1 (zh) 2017-06-15

Family

ID=59013719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103431 WO2017097051A1 (zh) 2015-12-08 2016-10-26 一种***广播消息的传输方法及基站、终端

Country Status (2)

Country Link
CN (1) CN106856614A (zh)
WO (1) WO2017097051A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116471604A (zh) * 2023-05-04 2023-07-21 乾位智通(深圳)技术有限公司 组网***、方法、装置、uwb定位基站和存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118215144A (zh) 2016-08-11 2024-06-18 华为技术有限公司 ***信息传输方法及装置
US11877299B2 (en) * 2020-03-05 2024-01-16 Qualcomm Incorporated Control channel resources for group-feedback in multi-cast
WO2022226966A1 (zh) * 2021-04-30 2022-11-03 京东方科技集团股份有限公司 一种推介信息发送的方法、定位服务设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705040B1 (ko) * 2005-11-28 2007-04-09 엘지전자 주식회사 이동통신시스템의 데이터 전송방법 및 그에 따른이동통신단말기의 제어방법
CN101137185A (zh) * 2007-01-18 2008-03-05 中兴通讯股份有限公司 一种智能天线技术应用于无线通信***的方法
CN101217689A (zh) * 2007-01-05 2008-07-09 大唐移动通信设备有限公司 一种***消息传送方法及其实现装置
CN101390425A (zh) * 2005-12-13 2009-03-18 松下电器产业株式会社 将广播***信息映射到移动通信***中的传输信道

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705040B1 (ko) * 2005-11-28 2007-04-09 엘지전자 주식회사 이동통신시스템의 데이터 전송방법 및 그에 따른이동통신단말기의 제어방법
CN101390425A (zh) * 2005-12-13 2009-03-18 松下电器产业株式会社 将广播***信息映射到移动通信***中的传输信道
CN101217689A (zh) * 2007-01-05 2008-07-09 大唐移动通信设备有限公司 一种***消息传送方法及其实现装置
CN101137185A (zh) * 2007-01-18 2008-03-05 中兴通讯股份有限公司 一种智能天线技术应用于无线通信***的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116471604A (zh) * 2023-05-04 2023-07-21 乾位智通(深圳)技术有限公司 组网***、方法、装置、uwb定位基站和存储介质

Also Published As

Publication number Publication date
CN106856614A (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
US11297604B2 (en) Methods and devices of assigning resource for sidelink communication system
JP7246396B2 (ja) データ伝送方法及び装置、コンピュータ記憶媒体
US20230319899A1 (en) Apparatus and method for prioritization of random access in a multi-user wireless communication system
US11711857B2 (en) Orthogonal frequency division multiple access communication apparatus and communication method
US10524200B2 (en) System and method for dynamically configurable air interfaces
US20190246337A1 (en) System information broadcast in machine-to-machine radio access systems
US9402254B2 (en) Method and apparatus for device discovery through beaconing
US8781419B2 (en) Method of cooperative data transmission between terminals and a method of receiving data
US20180049168A1 (en) Method and apparatus for transmitting and receiving downlink control information in a wireless communication system
WO2017097051A1 (zh) 一种***广播消息的传输方法及基站、终端
CN106464646B (zh) 一种信号传输方法及装置
CN102857327A (zh) 一种数据传输方法和装置
CN107889263B (zh) 数据的发送方法、接收方法、装置、设备和存储介质
US20140080534A1 (en) Signaling to enable network controlled tethering of wireless devices
JP5195917B2 (ja) 基地局、端末装置、制御チャネル割当て方法及び領域サイズ決定方法
US20130124937A1 (en) Method and apparatus for transmitting data in device-to-device service system
CN112073974B (zh) 协作终端通信的非授权频谱边缘接入与抗干扰方法及装置
US20230345510A1 (en) Method and device for resource determination
CN112970237A (zh) 针对组播通信中的反馈的资源分配
CN101521902A (zh) 下行信道测量信息上报方法、终端设备和基站设备
CN109257825B (zh) 一种基于二元逻辑关系的无线数据发送方法
KR20210145562A (ko) V2x 시스템에서 단말 간 협력을 통한 자원 할당 방법 및 장치
CN106921975B (zh) 一种基于230m无线通信专网的中继传输方法和装置
KR20220168079A (ko) 통신 시스템에서 사이드링크의 단말 간 협력을 통한 자원 할당 방법 및 장치
CN110167156B (zh) 上行复用时频资源确定方法、用户终端及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872244

Country of ref document: EP

Kind code of ref document: A1