WO2017097049A1 - 空调机组的输入电流的方法及装置 - Google Patents

空调机组的输入电流的方法及装置 Download PDF

Info

Publication number
WO2017097049A1
WO2017097049A1 PCT/CN2016/103255 CN2016103255W WO2017097049A1 WO 2017097049 A1 WO2017097049 A1 WO 2017097049A1 CN 2016103255 W CN2016103255 W CN 2016103255W WO 2017097049 A1 WO2017097049 A1 WO 2017097049A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic system
reference current
air conditioning
power
conditioning unit
Prior art date
Application number
PCT/CN2016/103255
Other languages
English (en)
French (fr)
Inventor
李建华
冯重阳
李民杰
霍虹
蒋世用
张雪芬
宋江
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2017097049A1 publication Critical patent/WO2017097049A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption

Definitions

  • the invention relates to the field of air conditioning, and in particular to a method and a device for inputting current of an air conditioning unit.
  • the generation of photovoltaic air conditioners has set off a new revolution in new energy air-conditioning technology.
  • the photovoltaic system converts solar energy into electrical energy through inverters, and the photovoltaic system then delivers the electric energy to the air conditioning unit for power supply, which greatly saves energy consumption.
  • the power generated by the photovoltaic system will be greater than the power consumption of the air conditioning unit, which will lead to excess electricity generated by the photovoltaic system, so that the photovoltaic system will be integrated into the grid, and the grid connection of the photovoltaic system will lead to the grid.
  • Embodiments of the present invention provide a method and apparatus for inputting current of an air conditioning unit to at least solve the technical problem that the photovoltaic system is connected to the grid in a case where the output power of the photovoltaic system is much higher than the power consumption of the air conditioner.
  • a method for inputting an electric current of an air conditioning unit comprising: obtaining power consumption of an air conditioning unit, loss power of a photovoltaic system of an air conditioner, and obtaining a photovoltaic system sent by an air conditioning photovoltaic system System voltage value; generating a reference current according to the power consumption, the power loss of the photovoltaic system of the air conditioner, and the voltage value of the photovoltaic system; and transmitting the reference current to the inverter of the photovoltaic system, wherein the inverter outputs the air conditioner according to the reference current control The current level of the unit.
  • an input current of an air conditioning unit is further provided.
  • the device includes: an obtaining unit, configured to acquire power consumption of the air conditioning unit, loss power of the photovoltaic system of the air conditioner, and obtain a voltage value of the photovoltaic system sent by the photovoltaic system of the air conditioner; and generate a unit for using the power consumption,
  • the loss power of the air-conditioning photovoltaic system and the voltage value of the photovoltaic system generate a reference current
  • the first delivery unit is configured to deliver the reference current to the inverter of the photovoltaic system, wherein the inverter outputs the control current to the air conditioning unit according to the reference current The current size.
  • the power consumption of the air conditioning unit, the power loss of the photovoltaic system of the air conditioner, and the voltage value of the photovoltaic system sent by the photovoltaic system of the air conditioner are obtained, and the power consumption of the photovoltaic system according to the power consumption and the air conditioner is used.
  • the voltage value of the photovoltaic system generates a reference current; the reference current is sent to the inverter of the photovoltaic system, wherein the inverter controls the current output to the air conditioning unit according to the reference current, thereby solving the output power of the photovoltaic system is much higher than In the case of air conditioning power consumption, it will lead to technical problems of grid connection of photovoltaic systems.
  • FIG. 1 is a flow chart of a method of inputting current of an air conditioning unit according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an apparatus for inputting current of an air conditioning unit according to an embodiment of the present invention.
  • an embodiment of a method of inputting current to an air conditioning unit is provided, it being noted that the steps illustrated in the flowchart of the figures may be performed in a computer system such as a set of computer executable instructions And, although the logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in a different order than the ones described herein.
  • FIG. 1 is a method of inputting current of an air conditioning unit according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
  • step S12 the power consumption of the air conditioning unit, the power loss of the photovoltaic system of the air conditioner, and the voltage value of the photovoltaic system sent by the photovoltaic system of the air conditioner are obtained.
  • the solution can use the main controller of the photovoltaic central air conditioner to obtain the power consumption of the air conditioner input by the user and the power loss of the official system, and the main controller then obtains the real-time voltage value of the photovoltaic system sent by the photovoltaic system.
  • Step S14 generating a reference current according to the power consumption, the power loss of the photovoltaic system of the air conditioner, and the voltage value of the photovoltaic system.
  • the power consumption may be that the user needs to limit the output power value of the photovoltaic system
  • the power loss may be a fixed power loss of the grid-connected inverter.
  • the main controller can calculate the reference current by a preset formula according to the three parameters of step S14.
  • Step S16 the reference current is sent to the inverter of the photovoltaic system, wherein the inverter controls the current output to the air conditioning unit according to the reference current.
  • the main controller may send the reference current to the inverter of the photovoltaic system, that is, assign the reference current value to the current inner loop command value, and the inverter adjusts the output current to the air conditioner unit according to the reference current.
  • the solution can limit the output power of the photovoltaic system by controlling the output current of the photovoltaic system.
  • the embodiment of the invention obtains the power consumption of the air conditioning unit, the power loss of the photovoltaic system of the air conditioner, and obtains the voltage value of the photovoltaic system sent by the photovoltaic system of the air conditioner; according to the power consumption, the light of the air conditioner
  • the power loss of the volt system and the voltage value of the photovoltaic system generate a reference current; the reference current is sent to the inverter of the photovoltaic system, wherein the inverter controls the current output to the air conditioning unit according to the reference current, and solves the problem in the photovoltaic system
  • the output power is much higher than the power consumption of the air conditioner, it will cause technical problems in the grid connection of the photovoltaic system.
  • the step of generating a reference current according to the power consumption, the power loss of the photovoltaic system of the air conditioner, and the voltage value of the photovoltaic system may include:
  • step S141 the reference current can be calculated according to the following formula:
  • P 3UI, where P is the difference between the power consumption of the air conditioning unit and the power loss of the photovoltaic system, U is the voltage value of the photovoltaic system, and I is the reference current.
  • the scheme uses the power consumption of the air conditioner to calculate the reference current, the current output by the photovoltaic system can satisfy the normal use of the air conditioner without causing excessive output power of the photovoltaic system to be connected to the grid.
  • step of the inverter controlling the current output to the air conditioning unit according to the reference current in step S16 comprises:
  • step S161 the inverter controls the current output to the air conditioning unit to be less than or equal to the reference current.
  • the current output to the air conditioning unit is less than the reference current, which can effectively achieve the limitation of the output power of the air conditioning system.
  • the method further includes:
  • Step S18 detecting a rate of change of the power generation of the photovoltaic system.
  • step S20 if the rate of change of the generated power exceeds the first threshold, the first control command is sent to the photovoltaic system, wherein the photovoltaic system performs initialization according to the first control instruction.
  • the solution may also detect the rate of change of the output power in the photovoltaic system (eg, the rate of decline), and if the rate of change of the generated power exceeds the first threshold, the description of the photovoltaic system The output power suddenly drops, and the scheme can initialize the photovoltaic system to avoid failure due to the excessive rate of change of the output power.
  • the solution may perform system initialization by changing an initial value of the MPPT optimization voltage in the photovoltaic system.
  • the method further includes:
  • step S22 the illumination intensity of the photovoltaic system is detected.
  • the second control instruction is sent to the photovoltaic system, wherein the photovoltaic system turns off part of the photovoltaic component in the photovoltaic system according to the second control instruction.
  • the solution can also detect the external environment of the photovoltaic system at all times. If the external environment changes suddenly, for example, the light intensity suddenly becomes strong, which will inevitably lead to the output current of the photovoltaic system. Too large, so this program can turn off some of the PV modules in the PV system according to the specific situation, in order to solve the problem that the bus voltage is easy to lose control and the current is too large.
  • step S1 the limited power P set by the user is received.
  • the user can set the limit power value.
  • the user can set the limit power value to the power consumption of the air conditioning unit.
  • step S2 the actual limited power P-P1 is calculated.
  • the present embodiment subtracts the set power limit P from the power loss P1 to obtain an actual power limit.
  • step S3 the grid-connected current is calculated.
  • the present embodiment can calculate the grid-connected current I according to (P-P1)/3U, and the above U is the real-time voltage value of the photovoltaic system collected by the scheme.
  • step S4 the grid-connected power assignment value is given to the current inner loop command value.
  • the inverter of the photovoltaic system can control the magnitude of the current output to the air conditioner unit, thereby reducing the output power of the photovoltaic system.
  • step S5 it is detected whether the external environment changes. In the case of a change, step S7 is performed, and if there is no change, step S6 is performed.
  • the present embodiment can detect the external environment of the photovoltaic system in real time, such as a sudden change in the illumination intensity and a sudden drop in the output power of the photovoltaic system.
  • step S6 the photovoltaic power is limited according to the conservation of energy.
  • the embodiment can limit the power generation of the photovoltaic system to the power consumption of the air conditioning unit.
  • step S7 the initial value of the MPPT is changed.
  • the present embodiment can achieve initialization of the photovoltaic system by changing the initial value of the MPPT.
  • the embodiment of the present invention further provides a device for inputting current of an air conditioning unit.
  • the device may include:
  • the obtaining unit 20 is configured to acquire the power consumption of the air conditioning unit, the power loss of the photovoltaic system of the air conditioner, and obtain the voltage value of the photovoltaic system sent by the photovoltaic system of the air conditioner; and the generating unit 22 is configured to use the photovoltaic system according to the power consumption and the air conditioner.
  • the loss power and the voltage value of the photovoltaic system generate a reference current;
  • the first sending unit 24 is configured to send the reference current to the inverter of the photovoltaic system, wherein the inverter controls the current output to the air conditioning unit according to the reference current .
  • the embodiment of the invention obtains the power consumption of the air conditioning unit, the power loss of the photovoltaic system of the air conditioner, and obtains the voltage value of the photovoltaic system sent by the photovoltaic system of the air conditioner; according to the power consumption, the power loss of the photovoltaic system of the air conditioner, and the voltage of the photovoltaic system
  • the value generates a reference current; the reference current is delivered to the inverter of the photovoltaic system, wherein the inverter controls the magnitude of the current output to the air conditioning unit according to the reference current. It solves the technical problem that the photovoltaic system is connected to the grid when the output power of the photovoltaic system is much higher than the power consumption of the air conditioner.
  • the apparatus provided in this embodiment may further include: a control unit, wherein the current used by the inverter to control the output to the air conditioning unit is less than or equal to the reference current.
  • the apparatus provided in this embodiment may further include: a detecting unit, configured to detect a rate of change of the power generation power of the photovoltaic system; and a second sending unit, where the rate of change of the power generation power exceeds a first threshold And issuing a first control command to the photovoltaic system, wherein the photovoltaic system is initialized according to the first control instruction.
  • a detecting unit configured to detect a rate of change of the power generation power of the photovoltaic system
  • a second sending unit where the rate of change of the power generation power exceeds a first threshold And issuing a first control command to the photovoltaic system, wherein the photovoltaic system is initialized according to the first control instruction.
  • the apparatus provided in this embodiment may further include: a processing unit, configured to detect a light intensity of the photovoltaic system, and send a second control instruction to the photovoltaic system, where the light intensity exceeds a second threshold, where The system turns off some of the photovoltaic components in the photovoltaic system according to the second control command.
  • a processing unit configured to detect a light intensity of the photovoltaic system, and send a second control instruction to the photovoltaic system, where the light intensity exceeds a second threshold, where The system turns off some of the photovoltaic components in the photovoltaic system according to the second control command.
  • the disclosed technical contents may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit may be a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inverter Devices (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调机组的输入电流的方法,该方法包括:获取空调机组的耗电功率,空调的光伏***的耗电功率、空调的光伏***的损耗功率,并获取空调的光伏***发送的光伏***发送的光伏***电压值(S12);根据耗电功率、空调的光伏***的损耗功率以及光伏***电压值生成参考电流(S14);将参考电流下发至光伏***的逆变器,其中,逆变器按照参考电流控制输出至空调机组的电流大小(S16)。可以解决在光伏***的输出功率远远高于空调耗电功率的情况下,会导致光伏***并网的技术问题。还公开了一种空调机组的输入电流的装置。

Description

空调机组的输入电流的方法及装置
本申请要求于2015年12月08日提交中国专利局、申请号为201510903539.2、发明名称为“空调机组的输入电流的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及空调领域,具体而言,涉及一种空调机组的输入电流的方法及装置。
背景技术
光伏空调的产生掀起了新能源空调技术的新革命,光伏***将太阳能通过逆变器转换为电能,光伏***再将电能输送至空调机组进行供电,大大节省了能源的消耗。
需要说明的是,在有些情况下,光伏***的发电功率会大于空调机组的耗电功率,这会导致光伏***产生的电量过剩,从而光伏***会并入电网,而光伏***并网会导致电网***的紊乱。目前限制光伏***的输出功率的方法主要有缩小MPPT寻优电压范围以及通过DC-DC装置时来控制功率,上述两种方法控制效果较差,不能有效的=控制光伏***的输出功率。
针对上述在光伏***的输出功率远远高于空调耗电功率的情况下,会导致光伏***并网的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种空调机组的输入电流的方法及装置,以至少解决在光伏***的输出功率远远高于空调耗电功率的情况下,会导致光伏***并网的技术问题。
根据本发明实施例的一个方面,提供了一种空调机组的输入电流的方法,该方法包括:获取空调机组的耗电功率、空调的光伏***的损耗功率,并获取空调的光伏***发送的光伏***电压值;根据耗电功率、空调的光伏***的损耗功率以及光伏***电压值生成参考电流;将参考电流下发至光伏***的逆变器,其中,逆变器按照参考电流控制输出至空调机组的电流大小。
根据本发明实施例的另一方面,还提供了一种空调机组的输入电流的装 置,该装置包括:获取单元,用于获取空调机组的耗电功率、空调的光伏***的损耗功率,并获取空调的光伏***发送的光伏***电压值;生成单元,用于根据耗电功率、空调的光伏***的损耗功率以及光伏***电压值生成参考电流;第一下发单元,用于将参考电流下发至光伏***的逆变器,其中,逆变器按照参考电流控制输出至空调机组的电流大小。
在本发明实施例中,采用获取空调机组的耗电功率、空调的光伏***的损耗功率,并获取空调的光伏***发送的光伏***电压值;根据耗电功率、空调的光伏***的损耗功率以及光伏***电压值生成参考电流;将参考电流下发至光伏***的逆变器,其中,逆变器按照参考电流控制输出至空调机组的电流大小,解决了在光伏***的输出功率远远高于空调耗电功率的情况下,会导致光伏***并网的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种空调机组的输入电流的方法的流程图;以及
图2是根据本发明实施例的一种空调机组的输入电流的装置的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包 含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例一
根据本发明实施例,提供了一种空调机组的输入电流的方法的实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机***中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1是根据本发明实施例的空调机组的输入电流的方法,如图1所示,该方法包括如下步骤:
步骤S12,获取空调机组的耗电功率、空调的光伏***的损耗功率,并获取空调的光伏***发送的光伏***电压值。
具体地,本方案可以采用光伏中央空调的主控制器来获取用户输入的空调的耗电功率以及官府***的损耗功率,主控制器然后获取光伏***发送的光伏***实时的电压值。
步骤S14,根据耗电功率、空调的光伏***的损耗功率以及光伏***电压值生成参考电流。
具体地,上述耗电功率可以为用户需要限制光伏***的输出功率值,上述损耗功率可以为并网逆变器的固定损耗功率。主控制器可以根据步骤S14的三个参数通过预设的公式计算出参考电流。
步骤S16,将参考电流下发至光伏***的逆变器,其中,逆变器按照参考电流控制输出至空调机组的电流大小。
具体地,主控制器可以将上述参考电流发送至光伏***的逆变器,即将上述参考电流值赋值给电流内环指令值,逆变器则按照参考电流来调整输出至空调机组电流大小。
由此可知,本方案可以通过对光伏***输出电流的大小的控制,从而限制光伏***的输出功率。
本发明实施例通过获取空调机组的耗电功率、空调的光伏***的损耗功率,并获取空调的光伏***发送的光伏***电压值;根据耗电功率、空调的光 伏***的损耗功率以及光伏***电压值生成参考电流;将参考电流下发至光伏***的逆变器,其中,逆变器按照参考电流控制输出至空调机组的电流大小,解决了在光伏***的输出功率远远高于空调耗电功率的情况下,会导致光伏***并网的技术问题。
可选地,步骤S14根据耗电功率、空调的光伏***的损耗功率以及光伏***的电压值生成参考电流的步骤可以包括:
步骤S141,可以按照如下公式计算得到参考电流:
P=3UI,其中,P为空调机组的耗电功率与光伏***的损耗功率的差值,U为光伏***电压值,I为参考电流。
需要说明的是,由于本方案采用了空调的耗电功率来计算上述参考电流,因此,光伏***输出的电流既可以满足空调的正常使用,又不会导致光伏***输出功率过大而并网。
可选地,步骤S16逆变器按照参考电流控制输出至空调机组的电流大小的步骤包括:
步骤S161,逆变器控制输出至空调机组的电流小于等于参考电流。
具体地,输出至空调机组的电流小于参考电流,可以有效的实现空调***输出功率的限制。
可选地,在步骤S16,将参考电流下发至光伏***的逆变器之后,方法还包括:
步骤S18,检测光伏***的发电功率的变化速率。
步骤S20,在发电功率的变化速率超过第一阈值的情况下,下发第一控制指令至光伏***,其中,光伏***根据第一控制指令进行初始化。
具体地,在对光伏***的输出电流进行限制之后,本方案还可以时刻检测光伏***中输出功率的变化速率(例如下降速率),如果发电功率的变化速率超过第一阈值,则说明光伏***的输出功率突然下降,本方案则可以对光伏***进行初始化,以避免由于输出功率的变化速率过快导致的故障。可选地,本方案可以通过改变光伏***中的MPPT寻优电压的初始值值进行***初始化。
可选地,在步骤S16,将参考电流下发至光伏***的逆变器之后,方法还包括:
步骤S22,检测光伏***的光照强度,在光照强度超过第二阈值的情况下,下发第二控制指令至光伏***,其中,光伏***根据第二控制指令关闭光伏***中的部分光伏组件。
具体地,在对光伏***的输出电流进行限制之后,本方案还可以时刻检测光伏***的外部环境,如果外部环境发生突变,例如,光照强度突然变得很强,势必会导致光伏***的输出电流过大,因此本方案可以根据具体情况来关闭光伏***中的部分光伏组件,以解决母线电压容易失去控制、电流过大等问题。
下面介绍本发明的一种可选地实施例:
步骤S1,接收用户设定的限制功率P。
具体地,用户可以对限制功率值进行设定,优选的,用户可以将限制功率值设定为空调机组的耗电功率。
步骤S2,计算实际的限制功率P-P1。
具体地,由于光伏***本身会带有损耗功率P1,因此本实施例将设定的限制功率P同损耗功率P1相减,得到实际的限制功率。
步骤S3,计算并网限制电流。
具体地,本实施例可以根据(P-P1)/3U计算并网限制电流I,上述U为本方案采集的光伏***的实时电压值。
步骤S4,将并网限制电赋值给电流内环指令值。
具体地,在将并网限制电赋值给电流内环指令值之后,光伏***的逆变器可以控制输出至空调机组的电流的大小,从而起到限制光伏***输出功率的效果。
步骤S5,检测外部环境是否变化,在变化的情况下,执行步骤S7,在没发生变化的情况下,执行步骤S6。
具体地,本实施例可以实时检测光伏***的外部环境,比如光照强度的突然改变以及光伏***输出功率突然下降等。
步骤S6,根据能量守恒限制光伏功率。
具体地,本实施例可以将光伏***的发电功率限制为空调机组的耗电功率。
步骤S7,改变MPPT的初始值。
具体地,本实施例可以通过改变MPPT的初始值以实现光伏***的初始化。
实施例二
本发明实施例还提供了一种空调机组的输入电流的装置,如图2所示,该装置可以包括:
获取单元20,用于获取空调机组的耗电功率、空调的光伏***的损耗功率,并获取空调的光伏***发送的光伏***电压值;生成单元22,用于根据耗电功率、空调的光伏***的损耗功率以及光伏***电压值生成参考电流;第一下发单元24,用于将参考电流下发至光伏***的逆变器,其中,逆变器按照参考电流控制输出至空调机组的电流大小。
本发明实施例通过获取空调机组的耗电功率、空调的光伏***的损耗功率,并获取空调的光伏***发送的光伏***电压值;根据耗电功率、空调的光伏***的损耗功率以及光伏***电压值生成参考电流;将参考电流下发至光伏***的逆变器,其中,逆变器按照参考电流控制输出至空调机组的电流大小。解决了在光伏***的输出功率远远高于空调耗电功率的情况下,会导致光伏***并网的技术问题。
可选地,生成单元包括:计算模块,用于按照如下公式计算得到参考电流:P=3UI,其中,P为空调机组的耗电功率与光伏***的损耗功率的差值,U为光伏***电压值,I为参考电流。
可选地,本实施例提供的装置还可以包括:控制单元,用于逆变器控制输出至空调机组的电流小于等于参考电流。
可选地,本实施例提供的装置还可以包括:检测单元,用于检测光伏***的发电功率的变化速率;第二下发单元,用于在发电功率的变化速率超过第一阈值的情况下,下发第一控制指令至光伏***,其中,光伏***根据第一控制指令进行初始化。
可选地,本实施例提供的装置还可以包括:处理单元,用于检测光伏***的光照强度,在光照强度超过第二阈值的情况下,下发第二控制指令至光伏***,其中,光伏***根据第二控制指令关闭光伏***中的部分光伏组件。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种空调机组的输入电流的方法,其特征在于,包括:
    获取空调机组的耗电功率、空调的光伏***的损耗功率,并获取所述空调的光伏***发送的光伏***电压值;
    根据所述耗电功率、所述空调的光伏***的损耗功率以及所述光伏***电压值生成参考电流;
    将所述参考电流下发至所述光伏***的逆变器,其中,所述逆变器按照所述参考电流控制输出至所述空调机组的电流大小。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述耗电功率、所述空调的光伏***的损耗功率以及所述光伏***的电压值生成参考电流的步骤包括:
    按照如下公式计算得到所述参考电流:
    P=3UI,其中,所述P为所述空调机组的耗电功率与所述光伏***的损耗功率的差值,所述U为所述光伏***电压值,所述I为所述参考电流。
  3. 根据权利要求1或2所述的方法,其特征在于,所述逆变器按照所述参考电流控制输出至所述空调机组的电流大小的步骤包括:
    所述逆变器控制所述输出至所述空调机组的电流小于等于所述参考电流。
  4. 根据权利要求1所述的方法,其特征在于,在将所述参考电流下发至所述光伏***的逆变器之后,所述方法还包括:
    检测所述光伏***的发电功率的变化速率;
    在所述发电功率的变化速率超过第一阈值的情况下,下发第一控制指令至所述光伏***,其中,所述光伏***根据所述第一控制指令进行初始化。
  5. 根据权利要求1所述的方法,其特征在于,在将所述参考电流下发至所述光伏***的逆变器之后,所述方法还包括:
    检测所述光伏***的光照强度,在所述光照强度超过第二阈值的情况下,下发第二控制指令至所述光伏***,其中,所述光伏***根据所述第二控制指令关闭所述光伏***中的部分光伏组件。
  6. 一种空调机组的输入电流的装置,其特征在于,包括:
    获取单元,用于获取空调机组的耗电功率、所述空调的光伏***的损耗功率,并获取所述空调的光伏***发送的光伏***电压值;
    生成单元,用于根据所述耗电功率、所述空调的光伏***的损耗功率以及所述光伏***电压值生成参考电流;
    第一下发单元,用于将所述参考电流下发至所述光伏***的逆变器,其中,所述逆变器按照所述参考电流控制输出至所述空调机组的电流大小。
  7. 根据权利要求6所述的装置,其特征在于,所述生成单元包括:
    计算模块,用于按照如下公式计算得到所述参考电流:
    P=3UI,其中,所述P为所述空调机组的耗电功率与所述光伏***的损耗功率的差值,所述U为所述光伏***电压值,所述I为所述参考电流。
  8. 根据权利要求6或7所述的装置,其特征在于,所述装置还包括:
    控制单元,用于所述逆变器控制所述输出至所述空调机组的电流小于等于所述参考电流。
  9. 根据权利要求6所述的装置,其特征在于,所述装置还包括:
    检测单元,用于检测所述光伏***的发电功率的变化速率;
    第二下发单元,用于在所述发电功率的变化速率超过第一阈值的情况下,下发第一控制指令至所述光伏***,其中,所述光伏***根据所述第一控制指令进行初始化。
  10. 根据权利要求6所述的装置,其特征在于,所述装置还包括:
    处理单元,用于检测所述光伏***的光照强度,在所述光照强度超过第二阈值的情况下,下发第二控制指令至所述光伏***,其中,所述光伏***根据所述第二控制指令关闭所述光伏***中的部分光伏组件。
PCT/CN2016/103255 2015-12-08 2016-10-25 空调机组的输入电流的方法及装置 WO2017097049A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510903539.2 2015-12-08
CN201510903539.2A CN105444355B (zh) 2015-12-08 2015-12-08 空调机组的输入电流的方法及装置

Publications (1)

Publication Number Publication Date
WO2017097049A1 true WO2017097049A1 (zh) 2017-06-15

Family

ID=55554845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103255 WO2017097049A1 (zh) 2015-12-08 2016-10-25 空调机组的输入电流的方法及装置

Country Status (2)

Country Link
CN (1) CN105444355B (zh)
WO (1) WO2017097049A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531772A (zh) * 2020-11-27 2021-03-19 珠海格力电器股份有限公司 无功功率的控制方法及装置、***、存储介质、电子装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444355B (zh) * 2015-12-08 2019-04-16 珠海格力电器股份有限公司 空调机组的输入电流的方法及装置
CN106500219A (zh) * 2016-11-24 2017-03-15 广东美的制冷设备有限公司 太阳能空调及其控制方法、控制装置
CN108662723B (zh) * 2018-05-17 2020-10-20 广东美的制冷设备有限公司 空调器控制方法、装置、空调器及计算机可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233435A (ja) * 2009-03-30 2010-10-14 Daisan Kikaku Kk 電力供給システム
CN202435314U (zh) * 2012-01-09 2012-09-12 中国科学院广州能源研究所 最大功率跟踪式太阳能空调装置
CN102843035A (zh) * 2012-09-19 2012-12-26 南京国臣信息自动化技术有限公司 具有精确限压限流及最大功率点跟踪的变换器的控制方法
CN203798002U (zh) * 2014-03-24 2014-08-27 珠海格力电器股份有限公司 光伏直驱压缩机组
CN104089378A (zh) * 2014-07-23 2014-10-08 珠海格力电器股份有限公司 光伏空调***的控制方法、控制装置及光伏空调***
CN104113078A (zh) * 2014-07-03 2014-10-22 珠海格力电器股份有限公司 光伏直驱***及其控制方法
CN104682426A (zh) * 2014-12-03 2015-06-03 上海交通大学 单相两级光伏并网***的控制方法
CN105444355A (zh) * 2015-12-08 2016-03-30 珠海格力电器股份有限公司 空调机组的输入电流的方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241213A (ja) * 2007-03-28 2008-10-09 Toshiba Carrier Corp 空気調和機
CN102410607B (zh) * 2011-08-29 2013-11-20 深圳市锐钜科技有限公司 一种风能光能互补变频空调控制***
CN202872386U (zh) * 2012-09-27 2013-04-10 广东易事特电源股份有限公司 一种具有防逆流装置的并网发电***
CN102868181B (zh) * 2012-09-27 2015-08-19 广东易事特电源股份有限公司 一种并网发电***防逆流方法和装置
JP5942769B2 (ja) * 2012-10-17 2016-06-29 株式会社デンソー 電力供給システム
CN104728998B (zh) * 2013-12-23 2017-08-01 珠海格力电器股份有限公司 光伏供电空调机组的控制方法和装置
CN104110795B (zh) * 2014-07-01 2017-01-11 珠海格力电器股份有限公司 光伏空调***及其控制方法
CN104779640B (zh) * 2015-04-15 2017-11-10 湖北追日电气股份有限公司 防分布式发电***向电网倒灌电功率的***及控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233435A (ja) * 2009-03-30 2010-10-14 Daisan Kikaku Kk 電力供給システム
CN202435314U (zh) * 2012-01-09 2012-09-12 中国科学院广州能源研究所 最大功率跟踪式太阳能空调装置
CN102843035A (zh) * 2012-09-19 2012-12-26 南京国臣信息自动化技术有限公司 具有精确限压限流及最大功率点跟踪的变换器的控制方法
CN203798002U (zh) * 2014-03-24 2014-08-27 珠海格力电器股份有限公司 光伏直驱压缩机组
CN104113078A (zh) * 2014-07-03 2014-10-22 珠海格力电器股份有限公司 光伏直驱***及其控制方法
CN104089378A (zh) * 2014-07-23 2014-10-08 珠海格力电器股份有限公司 光伏空调***的控制方法、控制装置及光伏空调***
CN104682426A (zh) * 2014-12-03 2015-06-03 上海交通大学 单相两级光伏并网***的控制方法
CN105444355A (zh) * 2015-12-08 2016-03-30 珠海格力电器股份有限公司 空调机组的输入电流的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531772A (zh) * 2020-11-27 2021-03-19 珠海格力电器股份有限公司 无功功率的控制方法及装置、***、存储介质、电子装置

Also Published As

Publication number Publication date
CN105444355B (zh) 2019-04-16
CN105444355A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2017097049A1 (zh) 空调机组的输入电流的方法及装置
AU2015386857B2 (en) Method and system for controlling air conditioner outdoor unit
US9966795B2 (en) Intelligent electric grid management system and method
GB2550818A (en) Interface for renewable energy system
WO2016011954A1 (zh) 光伏空调***的控制方法、控制装置及光伏空调***
WO2015192613A1 (zh) 电力***控制方法和装置
CN110567139B (zh) 光伏空调的限频及降频控制方法、装置及光伏空调
KR101843881B1 (ko) 태양광 발전 시스템의 역전력 차단을 위한 발전 제어 장치 및 그 방법
WO2019128069A1 (zh) 一种自适应发电机空调控制方法及装置
US20180347834A1 (en) Method and device for controlling photovoltaic air conditioning system
CN106026178B (zh) 一种区域多分布式电源自律发电控制方法和装置
KR102522118B1 (ko) 스마트 분산전원의 전압-무효전력 및 주파수-유효전력 제어 곡선 설정 방법, 그 방법을 수행하는 장치 및 컴퓨터 프로그램
US20160105026A1 (en) Dynamic power distribution in photovoltaic installations
CN205847438U (zh) 一种监控平台智能散热***
US20150309553A1 (en) Server and method for adjustment of frequency of monitoring components of server
SG10201609493PA (en) System and method for operating a mains power grid
CN104728998B (zh) 光伏供电空调机组的控制方法和装置
CN114884086B (zh) 基于风储***的控制方法、装置、设备和存储介质
CN203798002U (zh) 光伏直驱压缩机组
GB201202816D0 (en) Solar PV system and power grid
CN104635783A (zh) 风力发电机组的变流器的湿度控制方法及装置
CN104612994B (zh) 一种服务器电源pwm风机控制的设计方法
CN107355964B (zh) 空调机组及其电压过低保护方法和装置
CN104949363B (zh) 光伏直驱压缩机组及其控制方法
CN106911259B (zh) 老化电源板的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872242

Country of ref document: EP

Kind code of ref document: A1