WO2017095174A1 - 중합성 조성물 - Google Patents

중합성 조성물 Download PDF

Info

Publication number
WO2017095174A1
WO2017095174A1 PCT/KR2016/014087 KR2016014087W WO2017095174A1 WO 2017095174 A1 WO2017095174 A1 WO 2017095174A1 KR 2016014087 W KR2016014087 W KR 2016014087W WO 2017095174 A1 WO2017095174 A1 WO 2017095174A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
compound
polymerizable composition
independently hydrogen
Prior art date
Application number
PCT/KR2016/014087
Other languages
English (en)
French (fr)
Inventor
김상우
이승희
안기호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201680070749.0A priority Critical patent/CN108368261B/zh
Priority to US15/779,991 priority patent/US20180346646A1/en
Priority to JP2018545795A priority patent/JP6616015B2/ja
Priority to EP16871070.5A priority patent/EP3385302B1/en
Publication of WO2017095174A1 publication Critical patent/WO2017095174A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/38Polyamides prepared from aldehydes and polynitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0666Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0672Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds

Definitions

  • the present application relates to polymerizable compositions, prepolymers, phthalonitrile resins, composites, methods of making the same, and uses thereof.
  • the phthalonitrile resin can be used for various applications.
  • a composite formed by impregnating a phthalonitrile resin into a filler such as glass fiber or carbon fiber may be used as a material for automobiles, airplanes, ships, and the like.
  • the manufacturing process of the composite may include, for example, a process of curing after mixing a prepolymer and a filler formed by a mixture of a phthalonitrile and a curing agent or a reaction of the mixture (for example, Patent Document 1 Reference).
  • the monomer phthalonitrile or the polymerizable composition or prepolymer formed therefrom have appropriate meltability and fluidity, and a so-called process window is wide.
  • Patent Document 1 Korean Registered Patent No. 0558158
  • the present application provides a polymerizable composition, a prepolymer, a phthalonitrile resin, a composite, a method for preparing the same, and a use thereof.
  • One object of the present application is to provide a polymerizable composition containing a curing agent that is excellent in heat resistance and does not produce defects such as voids that may adversely affect physical properties.
  • the present application is another object to enable the polymerizable composition to exhibit a suitable curability, processing temperature and process window, to form a composite of excellent physical properties.
  • Another object of the present application is to provide a resin having both merits of a phthalonitrile resin and a polyimide by curing a phthalonitrile compound as a raw material monomer with a curing agent having a polyimide structure.
  • the present application is directed to a polymerizable composition.
  • the polymerizable composition may be a composition capable of forming a so-called phthalonitrile resin through a polymerization reaction.
  • the polymerizable composition may contain a phthalonitrile compound and a curing agent.
  • the kind of phthalonitrile compound which can be used in a polymerizable composition is not specifically limited, For example, two or more, two to phthalonitrile structures which can form a phthalonitrile resin through reaction with a hardening
  • curing agent are mentioned.
  • Compounds containing about 20, 2 to 16, 2 to 12, 2 to 8 or 2 to 4 can be used.
  • the polymerizable composition further includes a curing agent, and a compound of the following Chemical Formula 1 may be used as the curing agent.
  • the curing agent of Formula 1 includes a polyimide structure in the molecular structure, and thereby exhibits excellent heat resistance, so that the curing agent may be contained in an excessive amount in the polymerizable composition or even when the polymerizable composition is processed or cured at a high temperature. It is possible to form a polymerizable composition that does not produce voids or the like that can adversely affect.
  • M is a tetravalent radical
  • X 1 and X 2 are each independently an alkylene group, an alkylidene group or an aromatic divalent radical
  • n is a number of two or more.
  • N in Formula 1 is, in another example, 2 to 200, 2 to 150, 2 to 100, 2 to 90, 2 to 80, 2 to 70, 2 to 60, 2 to 50, 2 to 40, 2 to 30, and 20 Or in the range of about 2 to about 10 degrees.
  • n-valent radical may mean an n-valent moiety derived from a predetermined compound, unless otherwise specified.
  • M may be a tetravalent radical derived from an aliphatic, alicyclic or aromatic compound, in which case, M is formed by leaving four hydrogen atoms from the aliphatic, alicyclic or aromatic compound.
  • the radicals may each have a structure in which they are connected to a carbon atom of the carbonyl group of formula (1).
  • X 1 and X 2 may each be an aromatic divalent radical.
  • X 1 and X 2 may each represent a radical formed by leaving two hydrogen atoms from an aromatic compound with a nitrogen atom of Formula 1, respectively. It may have a structure that is connected.
  • an aromatic divalent radical may be called an arylene group in another term
  • an aromatic monovalent radical may be called an aryl group in another term.
  • alkane alkenes or alkynes which are linear or branched.
  • alkanes, alkenes or alkynes having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms may be used.
  • the alkanes, alkenes or alkynes may be optionally substituted by one or more substituents.
  • a hydrocarbon compound containing a non-aromatic ring structure having 3 to 20 carbon atoms, 3 to 16 carbon atoms, 3 to 12 carbon atoms, 3 to 8 carbon atoms or 3 to 4 carbon atoms.
  • Such an alicyclic hydrocarbon compound may include at least one hetero atom such as oxygen or nitrogen as a ring constituent atom, and may be optionally substituted with one or more substituents if necessary.
  • the aromatic compound may be benzene, a compound containing benzene, or a derivative of any one of the above.
  • the compound containing benzene a compound having a structure in which two or more benzene rings are condensed while sharing one or two carbon atoms, or connected by a directly linked structure or a suitable linker, may be used. have.
  • L 1 to L 8 are each independently a single bond, an oxygen atom, an alkylene group or an alkylidene group
  • Ar 1 and Ar 2 may each independently be an arylene group
  • R 11 may be hydrogen, an alkyl group, an alkoxy group or It may be an aryl group.
  • Aromatic compounds may include, for example, 6 to 30, 6 to 28, 6 to 27, 6 to 25, 6 to 20 or 6 to 12 carbon atoms If necessary, it may be substituted by one or more substituents.
  • the number of carbon atoms of the aromatic compound is a number including the carbon atoms present in the linker when the compound contains the linker described above.
  • a compound represented by one of the following Chemical Formulas 2 to 7 may be exemplified.
  • R 1 to R 6 in Formula 2 are each independently hydrogen, an alkyl group, an alkoxy group or an aryl group.
  • R 1 to R 8 in Formula 3 are each independently hydrogen, an alkyl group, an alkoxy group or an aryl group.
  • R 1 to R 10 in Formula 4 are each independently hydrogen, an alkyl group, an alkoxy group or an aryl group
  • Ar 1 and Ar 2 are each independently an arylene group.
  • the term single bond refers to the case where an atom is not present in a portion thereof. Therefore, when X in Formula 5 is a single bond, there is no atom in the moiety represented by X. In this case, the benzene rings on both sides of X may be directly connected to form a biphenyl structure.
  • L 1 to L 5 may be each independently an alkylene group or an alkylidene group having 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms, and the alkylene group or alkylidene group may be substituted or unsubstituted.
  • L 6 and L 8 may be an oxygen atom
  • L 7 may be represented by: It may be an alkylene group or an alkylidene group having 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms, the alkylene group or alkylidene group may be substituted or unsubstituted.
  • Ar 1 and Ar 2 in the above may be a phenylene group, in this case L 6 and L 8 based on L 7 may be connected to the ortho, meta or para position of the phenylene, respectively.
  • R 1 to R 4 are each independently hydrogen, an alkyl group, or an alkoxy group, and A is an alkylene group or an alkenylene group.
  • A is an alkylene group or an alkenylene group.
  • two of R 1 to R 4 may be connected to each other to form an alkylene group, and the alkylene group or alkenylene group of A may include one or more oxygen atoms as a hetero atom.
  • R 1 to R 4 in Formula 6 are each independently hydrogen, an alkyl group or an alkoxy group, and A is an alkylene group.
  • R 1 to R 10 in Formula 7 are each independently hydrogen, an alkyl group or an alkoxy group.
  • alkyl group may be an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkyl group may be linear, branched or cyclic and may be substituted by one or more substituents if necessary.
  • alkoxy group in the present application may be an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkoxy group may be linear, branched or cyclic and may be substituted by one or more substituents if necessary.
  • aryl group in the present application may mean a monovalent moiety derived from the aforementioned aromatic compound, unless otherwise specified.
  • alkylene group or alkylidene group in the present application means an alkylene group or alkylidene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms, unless otherwise specified. can do.
  • the alkylene group or alkylidene group may be linear, branched or cyclic.
  • the alkylene group or alkylidene group may be optionally substituted with one or more substituents.
  • substituents that may be optionally substituted with an aliphatic compound, an alicyclic compound, an aromatic compound, an alkyl group, an alkoxy group, an aryl group, an alkylene group, or an alkylidene group include halogen, glycidyl groups such as chlorine or fluorine, Epoxy groups such as epoxyalkyl groups, glycidoxyalkyl groups, or alicyclic epoxy groups, acryloyl groups, methacryloyl groups, isocyanate groups, thiol groups, alkyl groups, alkoxy groups, or aryl groups may be exemplified, but are not limited thereto.
  • benzene or 1,2,4,5-tetraalkylbenzene may be exemplified, but is not limited thereto.
  • L 5- wherein L 1 to L 5 may each independently be an alkylene group or an alkylidene group having 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms, and the alkylene group or alkylidene group is substituted or unsubstituted.
  • X is -L 6 -Ar 1 -L 7 -Ar 2 -L 8- , wherein L 6 and L 8 are oxygen atoms, and L 7 is.
  • L 7 L 6 And L 8 It may be connected to the ortho, meta or para position of the phenylene, respectively.
  • a cycloalkane having 4 to 8 carbon atoms or cyclohexene which may be substituted with one or more alkyl groups or the compound represented by the formula of any one of Formulas G to I may be exemplified. However, it is not limited thereto.
  • radicals may be formed the escape directly in R 1 to R 10 substituents of Formulas 2 to 7, or R 1 to a hydrogen belonging to groups the substituent alkyl group, an alkoxy group, an aryl group, an alkylene group or an alkenylene which may be present in R 10 It may be formed by leaving the atom.
  • radical when the radical is derived from a compound of Formula 3, at least one, at least two, at least three or four of R 1 to R 6 of Formula 3 form a radical, or the R 1 to R Hydrogen atoms of the alkyl, alkoxy or aryl groups present in 6 may be released to form the radical.
  • Forming a radical in the above may mean that the site is connected to the carbon atom of the carbonyl group of Formula 1 as described above.
  • the tetravalent radical of Formula 1 may be a tetravalent radical derived from the compound represented by Formula 4.
  • R 1 to R 10 of Formula 4 may each independently represent a hydrogen, an alkyl group, an alkoxy group, or an aryl group, and four or more may form a radical connected to Formula 1.
  • Each of which does not form a radical in the above may be hydrogen, an alkyl group or an alkoxy group, or may be hydrogen or an alkyl group.
  • any two of R 7 to R 9 and any two of R 2 to R 4 may form the radical, and the other substituents are each independently hydrogen, an alkyl group, an alkoxy group, or an aryl group, It may be a hydrogen, an alkyl group or an alkoxy group, or may be a hydrogen or an alkyl group.
  • X 1 and X 2 are each independently an alkylene group, an alkylidene group, or an aromatic divalent radical, and in another example, they may be the same or different aromatic divalent radicals.
  • the aromatic divalent radical may be a divalent radical derived from the aforementioned aromatic compound.
  • X 1 and X 2 of Formula 1 may each independently be a divalent radical derived from a compound represented by any one of Formulas 8 to 10 below.
  • R 1 to R 6 in Formula 8 are each independently hydrogen, an alkyl group, an alkoxy group, an aryl group, a hydroxy group, or a carboxyl group.
  • R 1 to R 10 are each independently hydrogen, an alkyl group, an alkoxy group, a hydroxy group, a carboxyl group or an aryl group.
  • benzene which may be substituted with at least one hydroxy group or carboxyl group may be exemplified, but is not limited thereto.
  • a biphenyl which may be substituted with at least one hydroxy group or a carboxyl group or a compound which may be substituted with at least one hydroxy group or a carboxyl group while being represented by any one of the above Formulas A to F or the following Formula Compounds which may be substituted with at least one hydroxy group or carboxyl group and represented by K or L may be exemplified, but are not limited thereto.
  • a compound which may be substituted with at least one hydroxyl group or carboxyl group and represented by the following Formula M may be exemplified, but is not limited thereto.
  • the aromatic divalent radical may be a radical derived from the compound of Formula 8 or 9, and examples thereof include phenylene, but are not limited thereto.
  • the divalent radical is phenylene
  • the substitution position of the amine group based on the site linked to N in X 1 of Formula 1 may be an ortho, meta, or para position
  • the substitution position of the amine group based on the site linked to N in X 2 of Formula 1 may also be an ortho, meta, or para position.
  • X 1 or X 2 in Formula 1 is a radical derived from a compound of Formula 9
  • any one of R 7 to R 9 of Formula 9 and R 2 to R 4 of Formula 9 are nitrogen atoms of Formula 1 To form radicals that are linked to
  • substituents other than the substituents forming the radicals may each independently be hydrogen, an alkyl group, an alkoxy group or an aryl group, a hydrogen, an alkyl group or an alkoxy group, or may be a hydrogen or an alkyl group.
  • the compound of the formula (1) can be synthesized according to a known method for synthesizing an organic compound, and the specific manner thereof is not particularly limited.
  • the compound of Formula 1 may be formed by a dehydration condensation reaction of a diene hydride compound and a diamine compound.
  • Compound (1) has a high boiling point, does not volatilize or decompose at high temperatures, thereby maintaining a stable curability of the polymerizable composition, a void that may adversely affect the physical properties of the composite during high temperature processing or curing ( void).
  • the compound may have a decomposition temperature of 300 ° C. or more, 350 ° C. or more, 400 ° C. or more, or 500 ° C. or more.
  • the term decomposition temperature in the present application may mean a temperature at which the decomposition rate of the compound of Formula 1 is maintained in the range of 10% or less, 5% or less, or 1% or less.
  • the upper limit of the decomposition temperature in the above is not particularly limited, and may be, for example, about 1,000 ° C. or less.
  • the compound of the formula (1) is a process window of the reactive or polymerizable composition itself, i.e., by the selection of M or a linker X 1 or X 2 of the core, that is, the melting temperature and curing temperature of the polymerizable composition or the prepolymer formed therefrom.
  • the difference can be easily adjusted, and can act as a curing agent of various physical properties depending on the use.
  • the proportion of the curing agent in the polymerizable composition is not particularly limited.
  • the ratio may be adjusted to ensure the desired curability in consideration of the ratio or kind of the curable component such as the phthalonitrile compound included in the composition.
  • the curing agent may be included in an amount of about 0.02 mol to 1.5 mol per mol of the phthalonitrile compound included in the polymerizable composition.
  • the ratio is only an example of the present application.
  • the ratio of the curing agent in the polymerizable composition is high, but the process window is narrow, and when the ratio of the curing agent is low, the curing property tends to be insufficient, so in view of this point, an appropriate ratio of curing agent can be selected. have.
  • the polymerizable composition of the present application exhibits proper curing property, melting temperature, and process window through the use of the compound of Formula 1, and is capable of forming a complex of excellent physical properties without deterioration of physical properties such as voids. It is possible to provide a sex composition and a prepolymer.
  • the processing temperature of the polymerizable composition may be in the range of 150 ° C to 350 ° C.
  • the term processing temperature in the present application may mean a temperature at which the compound, the following polymerizable composition or prepolymer including the same, and the like exist in a processable state.
  • a processing temperature may be, for example, a melting temperature (Tm) or a glass transition temperature (Tg).
  • Tm melting temperature
  • Tg glass transition temperature
  • the process window of the polymerizable composition i.e., the absolute value of the difference (Tc-Tp) between the processing temperature (Tp) and the curing temperature (Tc) of the phthalonitrile compound and the compound of Formula 1 is 30 ° C or more.
  • the curing temperature Tc may be higher than the processing temperature Tp. This range may be advantageous to secure appropriate processability in the process of producing a composite, for example, which will be described later using the polymerizable composition.
  • the upper limit of the process window is not particularly limited.
  • the absolute value of the difference (Tc-Tp) between the processing temperature Tp and the curing temperature Tc may be 400 ° C or less or 300 ° C or less.
  • the polymerizable composition may further include various additives.
  • additives can be exemplified by various fillers.
  • the kind of material that can be used as the filler is not particularly limited, and all known fillers suitable for the intended use can be used.
  • Exemplary fillers include, but are not limited to, metal materials, ceramic materials, glass, metal oxides, metal nitrides, or carbon-based materials.
  • the form of the filler is not particularly limited, and particulates, polygons including fibrous materials such as aramid fibers, glass fibers, carbon fibers or ceramic fibers, or woven fabrics, nonwoven fabrics, strings or strings, and nanoparticles formed by the materials. Or other amorphous forms.
  • Examples of the carbon-based material may include graphite, graphene, carbon nanotubes, derivatives, isomers, and the like, such as oxides thereof.
  • the polymerizable composition may include, without limitation, various monomers or other additives known to be applicable to the production of so-called engineering plastics such as, for example, polyimide, polyamide, or polystyrene, in addition to the filler.
  • engineering plastics such as, for example, polyimide, polyamide, or polystyrene
  • the present application also relates to a prepolymer formed by the reaction of the polymerizable composition, ie, the phthalonitrile compound and the polymerizable composition comprising the compound of Formula 1.
  • prepolymer state is a state in which a reaction between a phthalonitrile compound and a compound of formula 1 occurs in the polymerizable composition (for example, a so-called A or B stage stage of polymerization), It can mean the state which can process a composite_body
  • the prepolymer state is a state in which polymerization of the polymerizable composition is performed to some extent, and a melt viscosity measured at a temperature within a range of about 150 ° C to 250 ° C is 100 cP to 50,000 cP, 100 cP to 10,000 cP or a state within a range of 100 cP to 5000 cP.
  • the prepolymer may also exhibit good curability, low melting temperature and wide process window.
  • the processing temperature of the prepolymer may be in the range of 150 ° C to 350 ° C.
  • the absolute value of the process window of the prepolymer that is, the difference (Tc-Tp) between the processing temperature (Tp) and the curing temperature (Tc) of the prepolymer, may be at least 30 ° C, at least 50 ° C, or at least 100 ° C.
  • the curing temperature Tc may be higher than the processing temperature Tp. This range may be advantageous to ensure appropriate processability using a prepolymer, for example, in the preparation of the composite described below.
  • the upper limit of the process window is not particularly limited.
  • the absolute value of the difference (Tc-Tp) between the processing temperature Tp and the curing temperature Tc may be 400 ° C or less or 300 ° C or less.
  • the prepolymer may further comprise any known additive in addition to the above components.
  • examples of such an additive may include, but are not limited to, the aforementioned fillers.
  • the present application also relates to phthalonitrile resins which are polymers of the polymerizable composition.
  • phthalonitrile resins which are polymers of the polymerizable composition.
  • Such resin can be formed by polymerizing the above-mentioned polymerizable composition or prepolymer, for example.
  • the present application also relates to composites.
  • the composite may include the phthalonitrile resin and filler described above.
  • the use of the polymerizable composition of the present application enables attainment of appropriate curability, melting temperature and process window, and may adversely affect physical properties even at high temperatures applied in the formation of the composite or resin. Voids and the like can be prevented, and thus a so-called reinforced polymer composite of excellent physical properties can be easily formed.
  • the composite formed as described above may include the phthalonitrile resin and the filler, and may be applied to various applications including, for example, durable materials such as automobiles, airplanes, or ships.
  • filler is not particularly limited and may be appropriately selected in consideration of the intended use.
  • Fillers that can be used include fibrous materials such as carbon fibers, aramid fibers, glass fibers or ceramic fibers, or carbon nanomaterials such as woven fabrics, nonwovens, strings or strings or carbon nanotubes or graphemes formed by the materials. Etc. may be exemplified, but is not limited thereto.
  • the proportion of the filler is also not particularly limited and may be set in an appropriate range depending on the intended use.
  • the present application also relates to a precursor for preparing the composite, which precursor may comprise, for example, the polymerizable composition and the filler described above, or may comprise the prepolymer and the filler described above.
  • the composite can be prepared in a known manner using the precursor.
  • the composite may be formed by curing the precursor.
  • the precursor may be prepared by mixing the phthalonitrile compound in a molten state with a polymerizable composition prepared by mixing the compound of Formula 1 or the prepolymer with the filler in a molten state by heating or the like.
  • the precursor prepared as described above may be molded into a desired shape and then cured to prepare the above-described composite.
  • a method of forming a prepolymer or the like, a method of mixing the prepolymer or the like with filler, processing and curing to prepare a composite, and the like may be performed according to a known method.
  • a polymerizable composition including a curing agent that is excellent in heat resistance and does not produce defects such as voids that may adversely affect physical properties.
  • the present application may allow the polymerizable composition to exhibit an appropriate curability, processing temperature and process window, and to form a composite of excellent physical properties.
  • a phthalonitrile compound which is a raw material monomer, may be cured with a curing agent having a polyimide structure to provide a resin having advantages of a phthalonitrile resin and a polyimide.
  • NMR analysis of the compound was performed according to the manufacturer's manual using Agilent's 500 MHz NMR equipment. Samples for NMR measurements were prepared by dissolving the compound in DMSO (dimethyl sulfoxide) -d6.
  • DSC analysis was performed in an N 2 flow atmosphere using TA Instrument's Q20 system at a rate of 10 ° C./minute from 35 ° C. to 450 ° C.
  • TGA analysis was performed using a TGA e850 instrument from Mettler-Toledo. TGA analysis was performed in an N 2 flow atmosphere while increasing the temperature at a rate of 10 ° C./min from about 25 ° C. to 800 ° C. for the sample.
  • the compound of Formula 14 was synthesized by dehydration of diamine and dianhydride.
  • 24 g of a compound of formula 12 (4,4'-oxydianiline) and 60 g of NMP (N-methyl pyrrolidone) were added to a three neck round bottom flask (RBF), and the mixture was stirred at room temperature to dissolve.
  • the above was cooled by a water bath, and 12.3 g of the compound of Formula 13 was slowly added to the mixture with 60 g of NMP.
  • 24 g of toluene was added to the reactant for the azeotrope reaction.
  • Dean Stark unit and reflux condenser were installed and toluene was charged to Dean Stark unit.
  • the compound of Formula 15 was synthesized by dehydration of diamine and dianhydride.
  • 15 g of a compound of Formula 12 (4,4'-oxydianiline) of Formulation Example 1 and 40 g of NMP (N-methyl pyrrolidone) were added to a three neck round bottom flask (RBF), and the mixture was stirred at room temperature to dissolve.
  • RBF three neck round bottom flask
  • 20.5 g of the compound represented by Chemical Formula 13 of Preparation Example 1 was slowly divided into three portions and added with 30 g of NMP. When all the added compound was dissolved, 14 g of toluene was added to the reactant for the azeotrope reaction.
  • N in Formula 15 is about 3.
  • the compound of Formula 16 was synthesized by dehydration of diamine and dianhydride. 20 g of Compound (4,4′-oxydianiline) of Formula 12 and 50 g of NMP (N-methyl pyrrolidone) of Preparation Example 1 were added to a 3-neck round bottom flask (RBF), followed by stirring at room temperature to dissolve. The above was cooled by a water bath, and 30.7 g of the compound of Formula 13 of Preparation Example 1 was slowly added to 50 g of NMP in three portions. When all the added compound was dissolved, 20 g of toluene was added to the reactant for the azeotrope reaction. Dean Stark unit and reflux condenser were installed and toluene was charged to Dean Stark unit.
  • N in Formula 16 is about 5.
  • the compound of formula 19 was synthesized by dehydration of diamine and dianhydride. 13.5 g of a compound of Formula 17 (m-phenylene diamine) and 70 g of NMP (N-methyl pyrrolidone) were added to a three neck round bottom flask (RBF), and the mixture was stirred at room temperature to dissolve. The above was cooled by a water bath, and 26 g of the compound of Formula 18 was slowly added to the mixture with 60 g of NMP. When all the added compound was dissolved, 26 g of toluene was added to the reactant for the azeotrope reaction. Dean Stark unit and reflux condenser were installed and toluene was charged to Dean Stark unit.
  • NMP N-methyl pyrrolidone
  • the compound of formula 20 was synthesized by dehydration of diamine and dianhydride. 8.1 g of the compound of formula 17 (m-phenylene diamine) and 50 g of NMP (N-methyl pyrrolidone) of Preparation Example 4 were added to a three neck round bottom flask (RBF), followed by stirring at room temperature to dissolve. The above was cooled by a water bath, and 26 g of the compound of Chemical Formula 18 of Preparation Example 4 was slowly divided into three portions and added with 60 g of NMP. When all the added compound was dissolved, 23 g of toluene was added to the reactant for the azeotrope reaction.
  • N in formula 20 is about 3.
  • the compound of formula 21 was synthesized by dehydration of diamine and dianhydride. 6.5 g of the compound of formula 17 (m-phenylene diamine) and 50 g of NMP (N-methyl pyrrolidone) of Preparation Example 4 were added to a three neck round bottom flask (RBF), and the mixture was stirred at room temperature to dissolve. The above was cooled by a water bath, and 23.4 g of the compound represented by Chemical Formula 18 of Preparation Example 4 was slowly divided into three portions and added with 60 g of NMP. When all the added compound was dissolved, 23 g of toluene was added to the reactant for the azeotrope reaction.
  • N in formula 21 is about 4.
  • the compound represented by the following Chemical Formula 22 was obtained without a further purification from a commercial product of TCI (Tokyo Chemical Industry Co., Ltd.).
  • the compound of formula 23 was synthesized in the following manner. 32.7 g of the compound of Formula 25 and 120 g of DMF (dimethyl formamide) were added to a three neck round bottom flask (RBF), followed by stirring at room temperature to dissolve. Subsequently, 51.9 g of the compound of Formula 24 was further added, and 50 g of DMF was added thereto, followed by stirring to dissolve it. Subsequently, 62.2 g of potassium carbonate and 50 g of DMF were added together, and the temperature was raised to 85 ° C while stirring. After reacting for about 5 hours in the above state, the mixture was cooled to room temperature.
  • DMF dimethyl formamide
  • the TGA analysis results for the compounds of Preparations 1-7 are shown in Table 1 below. It can be seen from Table 1 that the compounds of Preparation Examples 1 to 6 (CA1 to CA6) show excellent heat resistance compared to the compound (CA7) of Preparation Example 7.
  • the CA7 compounds are all decomposed at around 300 ° C., whereas the compounds of CA1 to CA6 all have a decomposition temperature (Td10%) significantly higher than 300 ° C., so that thermal decomposition will hardly occur even at high temperature firing.
  • the single molecules CA1 and CA4 have better heat resistance than CA7, but have lower heat resistance than CA2, CA3, CA5 and CA6, and even in the case of the same monomer, higher molecular weight tends to increase heat resistance. You can check it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 출원은 중합성 조성물, 프리폴리머, 프탈로니트릴 수지, 복합체, 그 제조 방법 및 그 용도에 대한 것이다. 본 출원에서는, 내열성이 우수하여, 물성에 악영향을 줄 수 있는 보이드(void) 등의 결함을 생성시키지 않는 경화제를 포함하는 중합성 조성물을 제공할 수 있다. 또한, 본 출원은 상기 중합성 조성물이, 적절한 경화성, 가공 온도 및 프로세스 윈도우를 나타내며, 탁월한 물성의 복합체를 형성할 수 있도록 할 수 있다. 본 출원에서는 원료 단량체인 프탈로니트릴 화합물을 폴리이미드 구조를 가지는 경화제로 경화시켜서 프탈로니트릴 수지 및 폴리이미드의 장점을 겸비한 수지를 제공할 수 있다.

Description

중합성 조성물
관련 출원들과의 상호 인용
본 출원은 2015년 12월 4일자 한국 특허 출원 제10-2015-0172376호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 출원은 중합성 조성물, 프리폴리머, 프탈로니트릴 수지, 복합체, 그 제조 방법 및 그 용도에 대한 것이다.
프탈로니트릴 수지는, 다양한 용도에 사용될 수 있다. 예를 들면, 프탈로니트릴 수지를 유리 섬유나 탄소 섬유 등과 같은 충전제에 함침시켜 형성되는 복합체(composite)는, 자동차, 비행기 또는 선박 등의 소재로 사용될 수 있다. 상기 복합체의 제조 과정은, 예를 들면, 프탈로니트릴과 경화제의 혼합물 또는 그 혼합물의 반응에 의해 형성되는 프리폴리머와 충전제를 혼합한 후에 경화시키는 과정을 포함할 수 있다(예를 들면, 특허문헌 1 참조).
복합체의 제조 과정에 효과적으로 이루어지기 위해서는, 단량체인 프탈로니트릴 또는 그로부터 형성된 중합성 조성물이나 프리폴리머(prepolymer)가 적절한 용융성과 유동성을 가지고, 소위 프로세스 윈도우(process window)가 넓을 것이 요구된다.
또한, 상기 프탈로니트릴과 경화제의 혼합물이나 프리폴리머가 보이드(void)를 포함하거나, 가공 혹은 경화 과정에서 보이드를 생성할 경우에 복합체의 물성의 저하가 발생할 수 있으므로, 이러한 문제도 고려되어야 한다.
(특허문헌 1) 한국등록특허 제0558158호
본 출원은 중합성 조성물, 프리폴리머, 프탈로니트릴 수지, 복합체, 그 제조 방법 및 그 용도를 제공한다. 본 출원에서는, 내열성이 우수하여, 물성에 악영향을 줄 수 있는 보이드(void) 등의 결함을 생성시키지 않는 경화제를 포함하는 중합성 조성물을 제공하는 것을 하나의 목적으로 한다. 또한, 본 출원은 상기 중합성 조성물이, 적절한 경화성, 가공 온도 및 프로세스 윈도우를 나타내며, 탁월한 물성의 복합체를 형성할 수 있도록 하는 것을 또 다른 목적으로 한다. 본 출원에서는 원료 단량체인 프탈로니트릴 화합물을 폴리이미드 구조를 가지는 경화제로 경화시켜서 프탈로니트릴 수지 및 폴리이미드의 장점을 겸비한 수지를 제공하는 것을 또 다른 목적으로 한다.
본 출원은 중합성 조성물에 대한 것이다. 하나의 예시에서 상기 중합성 조성물은, 소위 프탈로니트릴 수지를 중합 반응을 통해 형성할 수 있는 조성물일 수 있다.
중합성 조성물은, 프탈로니트릴 화합물과 경화제를 포함할 수 있다.
중합성 조성물에서 사용될 수 있는 프탈로니트릴 화합물의 종류는 특별히 한정되지 않고, 예를 들면, 경화제와의 반응을 통해 프탈로니트릴 수지를 형성할 수 있는 프탈로니트릴 구조를 2개 이상, 2개 내지 20개, 2개 내지 16개, 2개 내지 12개, 2개 내지 8개 또는 2개 내지 4개 정도 포함하는 화합물을 사용할 수 있다. 프탈로니트릴 수지의 형성에 적합한 것으로 공지되어 있는 화합물은 다양하게 존재하며, 본 출원에서는 상기와 같은 공지의 화합물이 모두 사용될 수 있다. 하나의 예시에서 화합물의 예로는, 미국 특허 제4,408,035호, 미국 특허 제5,003,039호, 미국 특허 제5,003,078호, 미국 특허 제5,004,801호, 미국 특허 제5,132,396호, 미국 특허 제5,139,054호, 미국 특허 제5,208,318호, 미국 특허 제5,237,045호, 미국 특허 제5,292,854호 또는 미국 특허 제5,350,828호 등에서 공지되어 있는 화합물이 예시될 수 있으며, 상기 문헌들에 의한 것 외에도 업계에서 공지되어 있는 다양한 화합물이 상기 예시에 포함될 수 있다.
중합성 조성물은 경화제를 추가로 포함하고, 경화제로는 하기 화학식 1의 화합물이 사용될 수 있다. 화학식 1의 경화제는, 분자 구조 내에 폴리이미드(polyimide) 구조를 포함하고, 이에 의해 우수한 내열성을 나타내어, 중합성 조성물에 과량 포함되거나, 혹은 중합성 조성물이 높은 온도에서 가공 또는 경화되는 경우에도 물성에 악영향을 줄 수 있는 보이드 등을 생성시키지 않는 중합성 조성물을 형성할 수 있다. 또한, 하기 화학식 1의 경화제의 비율 등에 따라서 프탈로니트릴 수지 및 폴리이미드의 장점을 겸비한 수지를 형성하는 추가적인 이점이 있다.
[화학식 1]
Figure PCTKR2016014087-appb-I000001
화학식 1에서 M은 4가 라디칼이고, X1 및 X2는 각각 독립적으로 알킬렌기, 알킬리덴기 또는 방향족 2가 라디칼이며, n은 2 이상의 수이다. 화학식 1에서 n은 다른 예시에서 2 내지 200, 2 내지 150, 2 내지 100, 2 내지 90, 2 내지 80, 2 내지 70, 2 내지 60, 2 내지 50, 2 내지 40, 2 내지 30, 내지 20 또는 2 내지 10 정도의 범위에 있을 수 있다.
본 출원에서 용어 n가 라디칼(상기에서 n은 임의의 수)은, 특별히 달리 규정하지 않는 한, 소정 화합물로부터 유래되는 n가의 잔기를 의미할 수 있다. 예를 들면, 상기 화학식 1에서 M은, 지방족, 지환족 또는 방향족 화합물 유래의 4가 라디칼일 수 있으며, 이러한 경우, M은, 상기 지방족, 지환족 또는 방향족 화합물에서 4개의 수소 원자가 이탈되어 형성되는 라디칼이 각각 화학식 1의 카보닐기의 탄소 원자와 연결되는 구조를 가질 수 있다.
또한, 화학식 1에서 X1 및 X2는 각각 방향족 2가 라디칼일 수 있는데, 이러한 경우, X1 및 X2는, 방향족 화합물에서 2개의 수소 원자가 이탈되어 형성되는 라디칼이 각각 화학식 1의 질소 원자와 연결되는 구조를 가질 수 있다. 본 명세서에서 방향족 2가 라디칼은 다른 용어로 아릴렌기로도 불리울 수 있고, 방향족 1가 라디칼은 다른 용어로 아릴기로 불리울 수 있다.
상기에서 지방족 화합물로는, 직쇄형 또는 분지쇄형인 알칸, 알켄 또는 알킨이 예시될 수 있다. 상기 지방족 화합물로는, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알칸, 알켄 또는 알킨이 사용될 수 있다. 상기 알칸, 알켄 또는 알킨은 임의로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
상기에서 지환족 화합물로는, 탄소수 3 내지 20, 탄소수 3 내지 16, 탄소수 3 내지 12, 탄소수 3 내지 8 또는 탄소수 3 내지 4의 비방향족 고리 구조를 포함하는 탄화수소 화합물이 예시될 수 있다. 이러한 지환족 탄화수소 화합물은 고리 구성 원자로서, 산소 또는 질소와 같은 헤테로 원자를 적어도 하나 포함할 수도 있으며, 필요한 경우에 임의로 하나 이상의 치환기로 치환되어 있을 수 있다.
또한, 상기에서 방향족 화합물은, 벤젠, 벤젠을 포함하는 화합물 또는 상기 중 어느 하나의 유도체가 예시될 수 있다. 상기에서 벤젠을 포함하는 화합물로는, 2개 이상의 벤젠 고리가 하나 또는 2개의 탄소 원자를 공유하면서 축합되어 있거나, 직접 연결된 구조 또는 적절한 링커(linker)에 의해 연결되어 있는 구조의 화합물을 의미할 수 있다. 상기에서 2개의 벤젠 고리를 연결하는 것에 적용되는 링커로는, 알킬렌기, 알킬리덴기, 산소 원자, 황 원자, 카보닐기, -NR11-, -S(=O)-, -S(=O)2-, -C(=O)-O-L1-O-C(=O)-, -L2-C(=O)-O-L3-, -L4-O-C(=O)-L5- 또는 -L6-Ar1-L7-Ar2-L8- 등이 예시될 수 있다. 상기에서 L1 내지 L8는 각각 독립적으로 단일 결합, 산소 원자, 알킬렌기 또는 알킬리덴기이고, Ar1 및 Ar2는 각각 독립적으로 아릴렌기일 수 있으며, R11은 수소, 알킬기, 알콕시기 또는 아릴기일 수 있다.
방향족 화합물은, 예를 들면, 6개 내지 30개, 6개 내지 28개, 6개 내지 27개, 6개 내지 25개, 6개 내지 20개 또는 6개 내지 12개의 탄소 원자를 포함할 수 있고, 필요한 경우에 하나 이상의 치환기에 의해 치환되어 있을 수 있다. 상기에서 방향족 화합물의 탄소 원자의 수는, 그 화합물이 전술한 링커를 포함하는 경우에, 그 링커에 존재하는 탄소 원자도 포함한 수이다.
하나의 예시에서 상기 4가 라디칼을 형성하는 지환족 또는 방향족 화합물로는, 하기 화학식 2 내지 7 중 어느 하나로 표시되는 화합물이 예시될 수 있다.
[화학식 2]
Figure PCTKR2016014087-appb-I000002
화학식 2에서 R1 내지 R6는 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이다.
[화학식 3]
Figure PCTKR2016014087-appb-I000003
화학식 3에서 R1 내지 R8은 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이다.
[화학식 4]
Figure PCTKR2016014087-appb-I000004
화학식 4에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이고, X는, 단일 결합, 알킬렌기, 알킬리덴기, 산소 원자, 황 원자, 카보닐기, -S(=O)-, -S(=O)2-, -C(=O)-O-L1-O-C(=O)-, -L2-C(=O)-O-L3-, -L4-O-C(=O)-L5- 또는 -L6-Ar1-L7-Ar2-L8-이며, 상기에서 L1 내지 L8는 각각 독립적으로 단일 결합, 산소 원자, 알킬렌기 또는 알킬리덴기이고, 상기에서 Ar1 및 Ar2는 각각 독립적으로 아릴렌기이다.
본 명세서에서 용어 단일 결합은, 그 부분에 원자가 존재하지 않는 경우를 의미한다. 따라서, 상기 화학식 5에서 X가 단일 결합인 경우, X로 표시되는 부분에 원자가 존재하지 않는 경우이고, 이 경우 X의 양측의 벤젠 고리는 직접 연결되어 비페닐 구조를 형성할 수 있다.
화학식 4의 상기 X 중에서 -C(=O)-O-L1-O-C(=O)-, -L2-C(=O)-O-L3- 또는 -L4-O-C(=O)-L5-에서 L1 내지 L5는 각각 독립적으로 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기 또는 알킬리덴기일 수 있고, 상기 알킬렌기 또는 알킬리덴기는 치환 또는 비치환되어 있을 수 있다.
또한, 화학식 4의 X 중에서 -L6-Ar1-L7-Ar2-L8-에서, 상기에서 L6 및 L8은 산소 원자일 수 있고, L7은. 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기 또는 알킬리덴기일 수 있으며, 상기 알킬렌기 또는 알킬리덴기는 치환 또는 비치환되어 있을 수 있다. 한편, 상기에서 Ar1 및 Ar2는 페닐렌기일 수 있고, 이러한 경우에 L7을 기준으로 상기 L6 및 L8은 각각 상기 페닐렌의 오소, 메타 또는 파라 위치에 연결되어 있을 수 있다.
[화학식 5]
Figure PCTKR2016014087-appb-I000005
화학식 5에서 R1 내지 R4는 각각 독립적으로 수소, 알킬기 또는 알콕시기이고, A는 알킬렌기 또는 알케닐렌기이다. 화학식 6에서 R1 내지 R4 중 2개는 서로 연결되어 알킬렌기를 형성할 수도 있고, A의 알킬렌기 또는 알케닐렌기는 헤테로 원자로서 하나 이상의 산소 원자를 포함할 수 있다.
[화학식 6]
Figure PCTKR2016014087-appb-I000006
화학식 6에서 R1 내지 R4는 각각 독립적으로 수소, 알킬기 또는 알콕시기이고, A는 알킬렌기이다.
[화학식 7]
Figure PCTKR2016014087-appb-I000007
화학식 7에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기 또는 알콕시기이다.
본 출원에서 용어 알킬기는 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기일 수 있다. 상기 알킬기는 직쇄형, 분지쇄형 또는 고리형일 수 있으며, 필요한 경우에 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 출원에서 용어 알콕시기는 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기일 수 있다. 상기 알콕시기는 직쇄형, 분지쇄형 또는 고리형일 수 있으며, 필요한 경우에 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 출원에서 용어 아릴기는, 특별히 달리 규정하지 않는 한, 전술한 방향족 화합물로부터 유래된 1가 잔기를 의미할 수 있다.
본 출원에서 용어 알킬렌기 또는 알킬리덴기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기 또는 알킬리덴기를 의미할 수 있다. 상기 알킬렌기 또는 알킬리덴기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알킬렌기 또는 알킬리덴기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 지방족 화합물, 지환족 화합물, 방향족 화합물, 알킬기, 알콕시기, 아릴기, 알킬렌기 또는 알킬리덴기 등에 임의적으로 치환되어 있을 수 있는 치환기로는, 염소 또는 불소 등의 할로겐, 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등의 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 티올기, 알킬기, 알콕시기 또는 아릴기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기에서 화학식 2의 화합물로는, 벤젠 또는 1,2,4,5-테트라알킬벤젠 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기에서 화학식 4의 화합물로는, 비페닐이나 하기 화학식 A 내지 F 중 어느 하나의 화학식으로 표시되는 화합물이 예시될 수 있지만, 이에 제한되는 것은 아니다. 예를 들면, 화학식 4의 X가 -C(=O)-O-L1-O-C(=O)-, -L2-C(=O)-O-L3- 또는 -L4-O-C(=O)-L5-이고, 상기에서 L1 내지 L5는 각각 독립적으로 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기 또는 알킬리덴기일 수 있며, 상기 알킬렌기 또는 알킬리덴기는 치환 또는 비치환되어 있을 수 있는 화합물이나, 상기 화학식 4에서 X가 -L6-Ar1-L7-Ar2-L8-이고, 상기에서 L6 및 L8은 산소 원자이며, L7은. 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기 또는 알킬리덴기이고, 상기에서 알킬렌기 또는 알킬리덴기는 치환 또는 비치환되어 있을 수 있으며, Ar1 및 Ar2는 페닐렌기인 화합물도 사용될 수 있다. 상기에서 L7을 기준으로 상기 L6 및 L8은 각각 상기 페닐렌의 오소, 메타 또는 파라 위치에 연결되어 있을 수 있다.
[화학식 A]
Figure PCTKR2016014087-appb-I000008
[화학식 B]
Figure PCTKR2016014087-appb-I000009
[화학식 C]
Figure PCTKR2016014087-appb-I000010
[화학식 D]
Figure PCTKR2016014087-appb-I000011
[화학식 E]
Figure PCTKR2016014087-appb-I000012
[화학식 F]
Figure PCTKR2016014087-appb-I000013
또한, 상기에서 화학식 5의 화합물로는, 탄소수 4 내지 8의 사이클로알칸 또는 하나 이상의 알킬기로 치환되어 있을 수 있는 사이클로헥센 등이나, 화학식 G 내지 I 중 어느 하나의 화학식으로 표시되는 화합물이 예시될 수 있지만, 이에 제한되는 것은 아니다.
[화학식 G]
Figure PCTKR2016014087-appb-I000014
[화학식 H]
Figure PCTKR2016014087-appb-I000015
[화학식 I]
Figure PCTKR2016014087-appb-I000016
상기에서 화학식 6의 화합물로는, 하나 이상의 알킬기로 치환되어 있을 수 있는 하기 화학식 J로 표시되는 화합물이 예시될 수 있지만, 이에 제한되는 것은 아니다.
[화학식 J]
Figure PCTKR2016014087-appb-I000017
상기와 같은 화합물에서, 예를 들면, 4개의 수소 원자가 이탈되어 라디칼이 형성되고, 그 라디칼이 화학식 1의 구조 내에 포함될 수 있다.
이러한 라디칼은 화학식 2 내지 7의 치환기인 R1 내지 R10이 직접 이탈되어 형성되거나, 혹은 R1 내지 R10에 존재할 수 있는 치환기인 알킬기, 알콕시기, 아릴기, 알킬렌기 또는 알케닐렌기에 속하는 수소 원자가 이탈되어 형성될 수도 있다.
예를 들어, 상기 라디칼이 화학식 3의 화합물로부터 유래하는 경우, 화학식 3의 R1 내지 R6 중 1개 이상, 2개 이상, 3개 이상 또는 4개가 라디칼을 형성하거나, 혹은 상기 R1 내지 R6에 존재하는 알킬기, 알콕시기 또는 아릴기의 수소 원자가 이탈되어 상기 라디칼이 형성될 수 있다. 상기에서 라디칼을 형성한다는 것은, 상기 기술한 바와 같이 그 부위가 화학식 1의 카보닐기의 탄소 원자에 연결되는 것을 의미할 수 있다.
화학식 1의 4가 라디칼은 화학식 4로 표시되는 화합물로부터 유래하는 4가 라디칼일 수 있다. 이러한 경우에 화학식 4의 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이되, 4개 이상은 화학식 1에 연결되는 라디칼을 형성할 수 있다. 상기에서 라디칼을 형성하지 않는 각각은 수소, 알킬기 또는 알콕시기이거나, 수소 또는 알킬기일 수 있다. 하나의 예시에서 화학식 4에서는 R7 내지 R9 중 어느 2개와 R2 내지 R4 중 어느 2개가 상기 라디칼을 형성할 수 있고, 다른 치환기는 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이거나, 수소, 알킬기 또는 알콕시기이거나, 또는 수소 또는 알킬기일 수 있다.
화학식 1에서 X1 및 X2는 각각 독립적으로 알킬렌기, 알킬리덴기 또는 방향족 2가 라디칼이고, 다른 예시에서 상기는 동일하거나 상이한 방향족 2가 라디칼일 수 있다. 상기에서 방향족 2가 라디칼은 전술한 방향족 화합물로부터 유래하는 2가 라디칼일 수 있다.
하나의 예시에서 상기 화학식 1의 X1 및 X2는 각각 독립적으로 하기 화학식 8 내지 10 중 어느 하나로 표시되는 화합물로부터 유래하는 2가 라디칼일 수 있다.
[화학식 8]
Figure PCTKR2016014087-appb-I000018
화학식 8에서 R1 내지 R6는 각각 독립적으로 수소, 알킬기, 알콕시기, 아릴기, 히드록시기 또는 카복실기이다.
[화학식 9]
Figure PCTKR2016014087-appb-I000019
화학식 9에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기, 히드록시기, 카복실기 또는 아릴기이고, X는, 단일 결합, 알킬렌기, 알킬리덴기, 산소 원자, 황 원자, 카보닐기, -NR11-, -S(=O)-, -S(=O)2-, -L9-Ar3-L10- 또는 -L9-Ar3-L10-Ar4-L11-이며, 상기에서 R11은 수소, 알킬기, 알콕시기 또는 아릴기이고, 상기에서 Ar3 및 Ar4는 아릴렌기이며, L9 내지 L11은 각각 독립적으로 단일 결합, 산소 원자, 알킬렌기 또는 알킬리덴기이다.
상기에서 단일 결합의 의미는 상기에서 정의된 바와 같다.
[화학식 10]
Figure PCTKR2016014087-appb-I000020
화학식 10에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기, 히드록시기, 카복실기 또는 아릴기이다.
화학식 8의 화합물로는, 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 벤젠이 예시될 수 있으나, 이에 제한되는 것은 아니다.
또한, 화학식 9의 화합물로는, 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 비페닐 또는 상기 화학식 A 내지 F 중 어느 하나로 표시되면서 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 화합물 또는 하기 화학식 K 또는 L로 표시되면서 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 화합물이 예시될 수 있지만, 이에 제한되는 것은 아니다.
[화학식 K]
Figure PCTKR2016014087-appb-I000021
[화학식 L]
Figure PCTKR2016014087-appb-I000022
화학식 10의 화합물로는, 하기 화학식 M으로 표시되면서 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 화합물이 예시될 수 있지만, 이에 제한되는 것은 아니다.
[화학식 M]
Figure PCTKR2016014087-appb-I000023
하나의 예시에서 상기 방향족 2가 라디칼은 상기 화학식 8 또는 9의 화합물 유래의 라디칼일 수 있고, 그 예로는, 페닐렌을 들 수 있지만, 이에 제한되는 것은 아니다. 2가 라디칼이 페닐렌인 경우에, 화학식 1의 X1에서 N에 연결되는 부위를 기준으로 한 아민기의 치환 위치는 오소(ortho), 메타(meta) 또는 파라(para) 위치일 수 있고, 화학식 1의 X2에서 N에 연결되는 부위를 기준으로 한 아민기의 치환 위치는 역시 오소(ortho), 메타(meta) 또는 파라(para) 위치일 수 있다.
또한, 화학식 1에서 X1 또는 X2가 화학식 9의 화합물 유래의 라디칼인 경우에 화학식 9의 R7 내지 R9 중 어느 하나와 화학식 9의 R2 내지 R4 중 어느 하나가 화학식 1의 질소 원자에 연결되는 라디칼을 형성할 수 있다.
상기 라디칼을 형성하는 치환기를 제외한 다른 치환기는 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이거나, 수소, 알킬기 또는 알콕시기이거나, 또는 수소 또는 알킬기일 수 있다.
화학식 1의 화합물은, 공지의 유기 화합물의 합성법에 따라 합성할 수 있으며, 그 구체적인 방식은 특별히 제한되지 않는다. 예를 들면, 화학식 1의 화합물은, 디엔하이드라이드(dianhydride) 화합물과 디아민 화합물의 탈수 축합 반응 등에 의해 형성할 수 있다.
화학식 1의 화합물은, 높은 비점을 가져서, 고온에서 휘발 내지는 분해되지 않으며, 이에 따라 중합성 조성물의 경화성이 안정적으로 유지되면서, 고온의 가공 내지는 경화 과정에서 복합체의 물성에 악영향을 줄 수 있는 보이드(void)를 형성하지 않는다. 이에 따라 하나의 예시에서 상기 화합물은, 분해 온도가 300℃ 이상, 350℃ 이상, 400℃ 이상 또는 500℃ 이상일 수 있다. 본 출원에서 용어 분해 온도는, 상기 화학식 1의 화합물의 분해율이 10% 이하, 5% 이하 또는 1% 이하의 범위로 유지되는 온도를 의미할 수 있다. 상기에서 분해 온도의 상한은 특별히 제한되지 않고, 예를 들면, 약 1,000℃ 이하일 수 있다.
또한, 화학식 1의 화합물은, 코어의 M이나 링커인 X1 또는 X2의 선택에 의하여 반응성 내지는 중합성 조성물 자체의 프로세스 윈도우, 즉 상기 중합성 조성물 또는 그로부터 형성되는 프리폴리머의 용융 온도와 경화 온도의 차이를 용이하게 조절할 수 있어서, 용도에 따라 다양한 물성의 경화제로서 작용할 수 있다.
중합성 조성물 내에서의 경화제의 비율은 특별히 제한되지 않는다. 상기 비율은, 예를 들면, 조성물에 포함되어 있는 프탈로니트릴 화합물 등의 경화성 성분의 비율이나 종류 등을 고려하여 목적하는 경화성이 확보될 수 있도록 조절될 수 있다. 예를 들면, 경화제는 중합성 조성물에 포함되어 있는 프탈로니트릴 화합물 1몰 당 약 0.02몰 내지 1.5몰 정도로 포함되어 있을 수 있다. 그렇지만, 상기 비율은 본 출원의 예시에 불과하다. 통상 중합성 조성물에서 경화제의 비율이 높아지만, 프로세스 윈도우가 좁아지는 경향이 있고, 경화제의 비율이 낮아지면, 경화성이 불충분해지는 경향이 있으므로, 이러한 점 등을 고려하여 적절한 경화제의 비율이 선택될 수 있다.
본 출원의 중합성 조성물은 상기 화학식 1의 화합물의 사용을 통해 적절한 경화성, 용융 온도 및 프로세스 윈도우(process window)를 나타내며, 보이드 등의 의한 물성의 저하가 없는 우수한 물성의 복합체를 형성할 수 있는 중합성 조성물 및 프리폴리머를 제공할 수 있다.
이에 따라 하나의 예시에서 상기 중합성 조성물의 가공 온도는, 150℃ 내지 350℃의 범위 내에 있을 수 있다. 본 출원에서 용어 가공 온도는, 상기 화합물, 그를 포함하는 하기 중합성 조성물 또는 프리폴리머 등이 가공 가능한 상태로 존재하는 온도를 의미할 수 있다. 이러한 가공 온도는, 예를 들면, 용융 온도(Tm) 또는 유리전이온도(Tg)일 수 있다. 이러한 경우에 상기 중합성 조성물의 프로세스 원도우, 즉 상기 가공 온도(Tp)와 상기 프탈로니트릴 화합물과 상기 화학식 1의 화합물의 경화 온도(Tc)의 차이(Tc - Tp)의 절대값은 30℃ 이상, 50℃ 이상 또는 100℃ 이상일 수 있다. 하나의 예시에서 상기 경화 온도(Tc)가 상기 가공 온도(Tp)에 비하여 높을 수 있다. 이러한 범위는 중합성 조성물을 사용하여, 예를 들어 후술하는 복합체를 제조하는 과정에서 적절한 가공성을 확보하는 것에 유리할 수 있다. 상기에서 프로세스 윈도우의 상한은 특별히 제한되는 것은 아니나, 예를 들면, 상기 가공 온도(Tp)와 경화 온도(Tc)의 차이(Tc - Tp)의 절대값은 400℃ 이하 또는 300℃ 이하일 수 있다.
중합성 조성물은 다양한 첨가제를 추가로 포함할 수 있다. 이러한 첨가제의 예로는 다양한 충전제가 예시될 수 있다. 충전제로 사용될 수 있는 물질의 종류는 특별히 제한되지 않고, 목적하는 용도에 따라 적합한 공지의 충전제가 모두 사용될 수 있다. 예시적인 충전제로는 금속 물질, 세라믹 물질, 유리, 금속 산화물, 금속 질화물 또는 탄소계 물질 등이 있지만 이에 제한되는 것은 아니다. 또한, 상기 충전제의 형태도 특별히 제한되지 않고, 아라미드 섬유, 유리 섬유, 탄소 섬유 또는 세라믹 섬유 등과 같은 섬유상 물질, 또는 그 물질에 의해 형성된 직포, 부직포, 끈 또는 줄, 나노 입자를 포함하는 입자상, 다각형 또는 기타 무정형 등 다양한 형태일 수 있다. 상기에서 탄소계 물질로는, 그래파이트(graphite), 그래핀(graphene) 또는 탄소 나노튜브 등이나 그들의 산화물 등과 같은 유도체 내지는 이성질체 등이 예시될 수 있다.
중합성 조성물에는 상기 충전제 외에도 예를 들면, 폴리이미드, 폴리아미드 또는 폴리스티렌 등과 같은 소위 엔지니어링 플라스틱의 제조에 적용될 수 있는 것으로 알려진 다양한 단량체들이나 기타 다른 첨가제도 목적에 따라 제한 없이 포함될 수 있다.
본 출원은 또한, 상기 중합성 조성물, 즉 프탈로니트릴 화합물과 상기 화학식 1의 화합물을 포함하는 중합성 조성물의 반응에 의해 형성되는 프리폴리머(prepolymer)에 대한 것이다.
본 출원에서 용어 프리폴리머 상태는, 상기 중합성 조성물 내에서 프탈로니트릴 화합물과 화학식 1의 화합물의 반응이 어느 정도의 일어난 상태(예를 들면, 소위 A 또는 B 스테이지 단계의 중합이 일어난 상태)이나, 완전히 중합된 상태에는 이르지 않고, 적절한 유동성을 나타내어, 예를 들면, 후술하는 바와 같은 복합체의 가공이 가능한 상태를 의미할 수 있다. 하나의 예시에서 상기 프리폴리머 상태는, 상기 중합성 조성물의 중합이 어느 정도 진행된 상태로서, 그에 대하여 약 150℃ 내지 250℃의 범위 내의 온도에서 측정된 용융 점도가 100 cP 내지 50,000 cP, 100 cP 내지 10,000 cP 또는 100 cP 내지 5000 cP의 범위 내에 있는 상태를 의미할 수 있다.
상기 프리폴리머 역시 우수한 경화성, 낮은 용융 온도 및 넓은 프로세스 윈도우(process window)를 나타낼 수 있다.
예를 들면, 상기 프리폴리머의 가공 온도는, 150℃ 내지 350℃의 범위 내에 있을 수 있다. 이러한 경우에 상기 프리폴리머의 프로세스 원도우, 즉 상기 가공 온도(Tp)와 상기 프리폴리머의 경화 온도(Tc)의 차이(Tc - Tp)의 절대값은 30℃ 이상, 50℃ 이상 또는 100℃ 이상일 수 있다. 하나의 예시에서 상기 경화 온도(Tc)가 상기 가공 온도(Tp)에 비하여 높을 수 있다. 이러한 범위는 프리폴리머를 사용하여, 예를 들어 후술하는 복합체를 제조하는 과정에서 적절한 가공성을 확보하는 것에 유리할 수 있다. 상기에서 프로세스 윈도우의 상한은 특별히 제한되는 것은 아니나, 예를 들면, 상기 가공 온도(Tp)와 경화 온도(Tc)의 차이(Tc - Tp)의 절대값은 400℃ 이하 또는 300℃ 이하일 수 있다.
프리폴리머는 상기 성분 외에 공지의 임의의 첨가제를 추가로 포함할 수 있다. 이러한 첨가제의 예로는 전술한 충전제 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
본 출원은 또한 상기 중합성 조성물의 중합체인 프탈로니트릴 수지에 대한 것이다. 이러한 수지는, 예를 들면, 전술한 중합성 조성물 또는 프리폴리머를 중합시켜서 형성할 수 있다.
본 출원은 또한 복합체(composite)에 대한 것이다. 상기 복합체는 상기 기술한 프탈로니트릴 수지 및 충전제를 포함할 수 있다. 상기 기술한 바와 같이, 본 출원의 중합성 조성물을 사용하면 적절한 경화성, 용융 온도 및 프로세스 윈도우(process window)의 달성이 가능하며, 복합체 또는 수지의 형성 과정에서 적용되는 고온에서도 물성의 악영향을 미칠 수 있는 보이드(void) 등을 방지할 수 있고, 이에 따라 우수한 물성의 소위 강화 수지 복합체(reinforced polymer composite)를 용이하게 형성할 수 있다. 이와 같이 형성된 복합체는 상기 프탈로니트릴 수지와 충전제를 포함할 수 있고, 예를 들면, 자동차, 비행기 또는 선박 등의 내구재 등을 포함한 다양한 용도에 적용될 수 있다.
충전제의 종류는 특별히 제한되지 않으며, 목적하는 용도를 고려하여 적절하게 선택될 수 있다. 사용될 수 있는 충전제로는 탄소 섬유, 아라미드 섬유, 유리 섬유 또는 세라믹 섬유 등과 같은 섬유상 물질, 또는 그 물질에 의해 형성된 직포, 부직포, 끈 또는 줄이나 탄소 나노튜브 또는 그래핀(grapheme)과 같은 탄소 나노 물질 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
충전제의 비율도 특별히 제한되는 것은 아니며, 목적하는 용도에 따라 적정 범위로 설정될 수 있다.
본 출원은 또한, 상기 복합체를 제조하기 위한 전구체에 대한 것이고, 상기 전구체는 예를 들면, 상기 기술한 중합성 조성물과 상기 충전제를 포함하거나, 혹은 상기 기술한 프리폴리머와 상기 충전제를 포함할 수 있다.
복합체는 상기 전구체를 사용한 공지의 방식으로 제조할 수 있다. 예를 들면, 상기 복합체는 상기 전구체를 경화시켜서 형성할 수 있다.
하나의 예시에서 상기 전구체는, 프탈로니트릴 화합물을 용융 상태에서 상기 화학식 1의 화합물과 배합하여 제조된 중합성 조성물 내지는 상기 프리폴리머를 가열 등에 의해 용융시킨 상태에서 상기 충전제와 배합하여 제조할 수 있다. 예를 들면, 상기와 같이 제조된 전구체를 목적하는 형상으로 성형한 후에 경화시켜서 전술한 복합체의 제조가 가능하다. 상기 과정에서 프리폴리머 등을 형성하는 방법, 그러한 프리폴리머 등과 충전제를 배합하고, 가공 및 경화시켜 복합체를 제조하는 방법 등은 공지된 방식에 따라 진행될 수 있다.
본 출원에서는, 내열성이 우수하여, 물성에 악영향을 줄 수 있는 보이드(void) 등의 결함을 생성시키지 않는 경화제를 포함하는 중합성 조성물을 제공할 수 있다. 또한, 본 출원은 상기 중합성 조성물이, 적절한 경화성, 가공 온도 및 프로세스 윈도우를 나타내며, 탁월한 물성의 복합체를 형성할 수 있도록 할 수 있다. 본 출원에서는 원료 단량체인 프탈로니트릴 화합물을 폴리이미드 구조를 가지는 경화제로 경화시켜서 프탈로니트릴 수지 및 폴리이미드의 장점을 겸비한 수지를 제공할 수 있다.
도 1 내지 7은 제조예에서 제조된 화합물에 대한 NMR 측정 결과이다.
이하 실시예 및 비교예를 통하여 본 출원의 중합성 조성물 등을 구체적으로 설명하지만, 상기 중합성 조성물 등의 범위가 하기 실시예에 제한되는 것은 아니다.
1. NMR(Nuclear Magnetic Resonance) 분석
화합물에 대한 NMR 분석은 Agilent사의 500 MHz NMR 장비를 사용하여 제조사의 매뉴얼대로 수행하였다. NMR 측정을 위한 샘플은 화합물을 DMSO(dimethyl sulfoxide)-d6에 용해시켜 제조하였다.
2. DSC(Differential Scanning Calorimetry) 분석
DSC 분석은 TA Instrument사의 Q20 시스템을 사용하여 35℃에서 450℃까지 10℃/분의 속도로 온도를 상승시키면서 N2 flow 분위기에서 수행하였다.
3. TGA(Thermogravimetric Analysis) 분석
TGA 분석은 Mettler-Toledo사의 TGA e850 장비를 사용하여 수행하였다. 시료에 대하여 약 25℃에서 800℃까지 10℃/분의 속도로 온도를 상승시키면서 N2 flow 분위기에서 TGA 분석을 수행하였다.
제조예 1. 화합물(CA1)의 합성
하기 화학식 14의 화합물은 디아민과 디언하이드라이드의 탈수축합에 의해 합성하였다. 화학식 12의 화합물(4,4'-oxydianiline) 24 g과 NMP(N-methyl pyrrolidone) 60 g을 RBF(3 neck Round Bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 위터 배스(water bath)로 상기를 냉각하고, 하기 화학식 13의 화합물 12.3 g을 서서히 3번에 나누어 60 g의 NMP와 함께 투입하였다. 투입된 화합물이 모두 용해되면, azeotrope 반응을 위해 반응물에 톨루엔 24 g을 투입하였다. Dean Stark 장치와 리플럭스 콘덴서를 설치하고, Dean Stark 장치에 톨루엔을 투입하여 채웠다. 탈수 축합 촉매로 피리딘 4.2 mL을 투입하고, 온도를 170℃까지 승온시키고, 3 시간 동안 교반하였다. 이미드 고리가 형성되면서 발생되는 물을 Dean Stark 장치로 제거하면서, 2 시간 동안 추가 교반하고, 잔류 톨루엔과 피리딘을 제거하였다. 반응 생성물을 상온까지 냉각하고, 메탄올에 침전시켜서 회수하였다. 회수된 침전물을 메탄올로 soxhlet 추출하여 잔류 반응물을 제거하고, 진공 오븐에서 건조하여 화학식 14의 화합물을 약 87 중량%의 수율로 수득하였다. 상기 화학식 14의 화합물의 NMR 분석 결과는 도 1에 나타나 있다.
[화학식 12]
Figure PCTKR2016014087-appb-I000024
[화학식 13]
Figure PCTKR2016014087-appb-I000025
[화학식 14]
Figure PCTKR2016014087-appb-I000026
제조예 2. 화합물(CA2)의 합성
하기 화학식 15의 화합물은 디아민과 디언하이드라이드의 탈수축합에 의해 합성하였다. 제조예 1의 화학식 12의 화합물(4,4'-oxydianiline) 15 g과 NMP(N-methyl pyrrolidone) 40 g을 RBF(3 neck Round Bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 위터 배스(water bath)로 상기를 냉각하고, 제조예 1의 화학식 13의 화합물 20.5 g을 서서히 3번에 나누어 30 g의 NMP와 함께 투입하였다. 투입된 화합물이 모두 용해되면, azeotrope 반응을 위해 반응물에 톨루엔 14 g을 투입하였다. Dean Stark 장치와 리플럭스 콘덴서를 설치하고, Dean Stark 장치에 톨루엔을 투입하여 채웠다. 탈수 축합 촉매로 피리딘 5.2 mL을 투입하고, 온도를 170℃까지 승온시키고, 3 시간 동안 교반하였다. 이미드 고리가 형성되면서 발생되는 물을 Dean Stark 장치로 제거하면서, 2 시간 동안 추가 교반하고, 잔류 톨루엔과 피리딘을 제거하였다. 반응 생성물을 상온까지 냉각하고, 메탄올에 침전시켜서 회수하였다. 회수된 침전물을 메탄올로 soxhlet 추출하여 잔류 반응물을 제거하고, 진공 오븐에서 건조하여 화학식 15의 화합물을 약 92 중량%의 수율로 수득하였다. 상기 화학식 15의 화합물의 NMR 분석 결과는 도 2에 나타나 있다.
[화학식 15]
Figure PCTKR2016014087-appb-I000027
화학식 15에서 n은 약 3이다.
제조예 3. 화합물(CA3)의 합성
하기 화학식 16의 화합물은 디아민과 디언하이드라이드의 탈수축합에 의해 합성하였다. 제조예 1의 화학식 12의 화합물(4,4’-oxydianiline) 20 g과 NMP(N-methyl pyrrolidone) 50 g을 RBF(3 neck Round Bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 위터 배스(water bath)로 상기를 냉각하고, 제조예 1의 화학식 13의 화합물 30.7 g을 서서히 3번에 나누어 50 g의 NMP와 함께 투입하였다. 투입된 화합물이 모두 용해되면, azeotrope 반응을 위해 반응물에 톨루엔 20 g을 투입하였다. Dean Stark 장치와 리플럭스 콘덴서를 설치하고, Dean Stark 장치에 톨루엔을 투입하여 채웠다. 탈수 축합 촉매로 피리딘 5.2 mL을 투입하고, 온도를 170℃까지 승온시키고, 3 시간 동안 교반하였다. 이미드 고리가 형성되면서 발생되는 물을 Dean Stark 장치로 제거하면서, 2 시간 동안 추가 교반하고, 잔류 톨루엔과 피리딘을 제거하였다. 반응 생성물을 상온까지 냉각하고, 메탄올에 침전시켜서 회수하였다. 회수된 침전물을 메탄올로 soxhlet 추출하여 잔류 반응물을 제거하고, 진공 오븐에서 건조하여 화학식 16의 화합물을 약 88 중량%의 수율로 수득하였다. 상기 화학식 16의 화합물의 NMR 분석 결과는 도 3에 나타나 있다.
[화학식 16]
Figure PCTKR2016014087-appb-I000028
화학식 16에서 n은 약 5이다.
제조예 4. 화합물(CA4)의 합성
하기 화학식 19의 화합물은 디아민과 디언하이드라이드의 탈수축합에 의해 합성하였다. 화학식 17의 화합물(m-phenylene diamine) 13.5 g과 NMP(N-methyl pyrrolidone) 70 g을 RBF(3 neck Round Bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 위터 배스(water bath)로 상기를 냉각하고, 하기 화학식 18의 화합물 26 g을 서서히 3번에 나누어 60 g의 NMP와 함께 투입하였다. 투입된 화합물이 모두 용해되면, azeotrope 반응을 위해 반응물에 톨루엔 26 g을 투입하였다. Dean Stark 장치와 리플럭스 콘덴서를 설치하고, Dean Stark 장치에 톨루엔을 투입하여 채웠다. 탈수 축합 촉매로 피리딘 5.2 mL을 투입하고, 온도를 170℃까지 승온시키고, 3 시간 동안 교반하였다. 이미드 고리가 형성되면서 발생되는 물을 Dean Stark 장치로 제거하면서, 2 시간 동안 추가 교반하고, 잔류 톨루엔과 피리딘을 제거하였다. 반응 생성물을 상온까지 냉각하고, 탈이온수(deinonized water)에 침전시켜서 회수하였다. 회수된 침전물을 메탄올로 soxhlet 추출하여 잔류 반응물을 제거하고, 진공 오븐에서 건조하여 화학식 19의 화합물을 약 83 중량%의 수율로 수득하였다. 상기 화학식 19의 화합물의 NMR 분석 결과는 도 4에 나타나 있다.
[화학식 17]
Figure PCTKR2016014087-appb-I000029
[화학식 18]
Figure PCTKR2016014087-appb-I000030
[화학식 19]
Figure PCTKR2016014087-appb-I000031
제조예 5. 화합물(CA5)의 합성
하기 화학식 20의 화합물은 디아민과 디언하이드라이드의 탈수축합에 의해 합성하였다. 제조예 4의 화학식 17의 화합물(m-phenylene diamine) 8.1 g과 NMP(N-methyl pyrrolidone) 50 g을 RBF(3 neck Round Bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 위터 배스(water bath)로 상기를 냉각하고, 제조예 4의 화학식 18의 화합물 26 g을 서서히 3번에 나누어 60 g의 NMP와 함께 투입하였다. 투입된 화합물이 모두 용해되면, azeotrope 반응을 위해 반응물에 톨루엔 23 g을 투입하였다. Dean Stark 장치와 리플럭스 콘덴서를 설치하고, Dean Stark 장치에 톨루엔을 투입하여 채웠다. 탈수 축합 촉매로 피리딘 5.2 mL을 투입하고, 온도를 170℃까지 승온시키고, 3 시간 동안 교반하였다. 이미드 고리가 형성되면서 발생되는 물을 Dean Stark 장치로 제거하면서, 2 시간 동안 추가 교반하고, 잔류 톨루엔과 피리딘을 제거하였다. 반응 생성물을 상온까지 냉각하고, 메탄올에 침전시켜서 회수하였다. 회수된 침전물을 메탄올로 soxhlet 추출하여 잔류 반응물을 제거하고, 진공 오븐에서 건조하여 화학식 20의 화합물을 약 93 중량%의 수율로 수득하였다. 상기 화학식 20의 화합물의 NMR 분석 결과는 도 5에 나타나 있다.
[화학식 20]
Figure PCTKR2016014087-appb-I000032
화학식 20에서 n은 약 3이다.
제조예 6. 화합물(CA6)의 합성
하기 화학식 21의 화합물은 디아민과 디언하이드라이드의 탈수축합에 의해 합성하였다. 제조예 4의 화학식 17의 화합물(m-phenylene diamine) 6.5 g과 NMP(N-methyl pyrrolidone) 50 g을 RBF(3 neck Round Bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 위터 배스(water bath)로 상기를 냉각하고, 제조예 4의 화학식 18의 화합물 23.4 g을 서서히 3번에 나누어 60 g의 NMP와 함께 투입하였다. 투입된 화합물이 모두 용해되면, azeotrope 반응을 위해 반응물에 톨루엔 23 g을 투입하였다. Dean Stark 장치와 리플럭스 콘덴서를 설치하고, Dean Stark 장치에 톨루엔을 투입하여 채웠다. 탈수 축합 촉매로 피리딘 5.2 mL을 투입하고, 온도를 170℃까지 승온시키고, 3 시간 동안 교반하였다. 이미드 고리가 형성되면서 발생되는 물을 Dean Stark 장치로 제거하면서, 2 시간 동안 추가 교반하고, 잔류 톨루엔과 피리딘을 제거하였다. 반응 생성물을 상온까지 냉각하고, 메탄올에 침전시켜서 회수하였다. 회수된 침전물을 메탄올로 soxhlet 추출하여 잔류 반응물을 제거하고, 진공 오븐에서 건조하여 화학식 21의 화합물을 약 95 중량%의 수율로 수득하였다. 상기 화학식 21의 화합물의 NMR 분석 결과는 도 6에 나타나 있다.
[화학식 21]
Figure PCTKR2016014087-appb-I000033
화학식 21에서 n은 약 4이다.
제조예 7. 화합물(CA7)의 합성
하기 화학식 22의 화합물은 TCI(Tokyo Chemical Industry Co., Ltd.)사의 시판 제품을 입수하여 추가 정제 없이 사용하였다.
[화학식 22]
Figure PCTKR2016014087-appb-I000034
제조예 8. 화합물(PN1)의 합성
하기 화학식 23의 화합물은 다음의 방식으로 합성하였다. 하기 화학식 25의 화합물 32.7 g 및 120 g의 DMF(Dimethyl Formamide)를 RBF(3 neck Round Bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 이어서, 상기 화학식 24의 화합물 51.9 g을 추가로 투입하고, DMF 50 g도 추가한 후 교반하여 용해시켰다. 이어서 탄산 칼륨 62.2 g 및 DMF 50 g을 함께 투입하고, 교반하면서 온도를 85℃까지 승온시켰다. 상기 상태에서 약 5 시간 정도 반응시킨 후에 상온까지 냉각시켰다. 냉각된 반응 용액을 0.2N 농도의 염산 수용액에 부어 중화 침전시키고, 필터링 후 물로 세척하였다. 그 후 필터링된 반응물을 100℃의 진공 오븐에서 1일 건조하고, 물과 잔류 용매를 제거한 후 하기 화학식 23의 화합물을 약 80 중량%의 수율로 수득하였다. 화학식 23의 화합물에 대한 NMR 결과는 도 7에 기재하였다.
[화학식 23]
Figure PCTKR2016014087-appb-I000035
[화학식 24]
Figure PCTKR2016014087-appb-I000036
[화학식 25]
Figure PCTKR2016014087-appb-I000037
제조예 1 내지 7의 화합물에 대한 TGA 분석 결과를 하기 표 1에 기재하였다. 표 1로부터 제조예 7의 화합물(CA7)에 비하여 제조예 1 내지 6의 화합물(CA1 내지 CA6)이 우수한 내열 특성을 보이는 것을 확인할 수 있다. CA7 화합물은 300℃ 근처에서 모두 분해되는 반면, CA1 내지 CA6의 화합물은, 분해 온도(Td10%)가 모두 300℃를 크게 상회하여 고온 소성 시에도 열 분해가 거의 발생하지 않을 것임을 확인할 수 있다. 또한, 단분자인 CA1, CA4는 CA7에 비하여 내열 특성이 우수하나, CA2, CA3, CA5 및 CA6에 비해서는 내열 특성이 떨어져서, 동일 모노머인 경우에도 분자량이 높을수록 내열성이 증가하는 경향을 보이는 것을 확인할 수 있다. 하기 표 1에서 가공 온도로는, DSC 분석을 통해 확인되는 유리전이온도(Tg) 또는 용융 온도(Tm)를 기재하였다. 표 1의 결과로부터 가공 온도는 분자량이 낮을수록 낮게 확인되는 것을 알 수 있다. 그러나, 분자량 증가 대비 가공 온도의 상승은 낮아서, CA3나 CA6와 같은 높은 분자량의 물질의 경우에도 가공 온도가 높지 않아 단량체와의 용융 혼용성이 좋고, 경화 효율도 좋으며, 프로세스 윈도우가 넓게 확보되고, 가공성이 좋을 것임을 예측할 수 있다.
가공온도(Tm or Tg) Td10% Residue at 800℃ Td100%
제조예1(CA1) 147℃ 390℃ 41.9% -
제조예2(CA2) 162.6℃ 420℃ 46.6% -
제조예3(CA3) 171.5℃ 428℃ 46.0% -
제조예4(CA4) 124℃ 366℃ 47.8% -
제조예5(CA5) 176.2℃ 513℃ 53.9% -
제조예6(CA6) 188.8℃ 513℃ 54.8% -
제조예7(CA7) 108℃ 264℃ 0% 331℃
실시예 1.
제조예 8의 화합물(PN1) 및 제조예 2의 화합물(CA2)을 상기 제조예 8의 화합물(PN1) 1몰 당 약 0.2몰의 상기 제조예 2의 화합물(CA2)이 존재하도록 혼합하였다. 이어서, TGA 분석을 통해, 상기 혼합물의 300℃에서의 residue와 Td10%(10%의 weight loss에서의 온도)를 확인하였다.
실시예 2.
제조예 8의 화합물(PN1) 및 제조예 3의 화합물(CA3)을 상기 제조예 8의 화합물(PN1) 1몰 당 약 0.2몰의 상기 제조예 2의 화합물(CA3)이 존재하도록 혼합하였다. 이어서, TGA 분석을 통해, 상기 혼합물의 300℃에서의 residue와 Td10%(10%의 weight loss에서의 온도)를 확인하였다.
실시예 3.
제조예 8의 화합물(PN1) 및 제조예 5의 화합물(CA5)을 상기 제조예 8의 화합물(PN1) 1몰 당 약 0.2몰의 상기 제조예 5의 화합물(CA5)이 존재하도록 혼합하였다. 이어서, TGA 분석을 통해, 상기 혼합물의 300℃에서의 residue와 Td10%(10%의 weight loss에서의 온도)를 확인하였다.
실시예 4.
제조예 8의 화합물(PN1) 및 제조예 6의 화합물(CA6)을 상기 제조예 8의 화합물(PN1) 1몰 당 약 0.2몰의 상기 제조예 6의 화합물(CA6)이 존재하도록 혼합하였다. 이어서, TGA 분석을 통해, 상기 혼합물의 300℃에서의 residue와 Td10%(10%의 weight loss에서의 온도)를 확인하였다.
비교예 1.
제조예 8의 화합물(PN1) 및 제조예 1의 화합물(CA1)을 상기 제조예 8의 화합물(PN1) 1몰 당 약 0.2몰의 상기 화합물(CA1)이 존재하도록 혼합하였다. 이어서, TGA 분석을 통해, 상기 혼합물의 300℃에서의 residue와 Td10%(10%의 weight loss에서의 온도)를 확인하였다.
비교예 2.
제조예 8의 화합물(PN1) 및 제조예 4의 화합물(CA4)을 상기 제조예 8의 화합물(PN1) 1몰 당 약 0.2몰의 상기 제조예 4의 화합물(CA4)이 존재하도록 혼합하였다. 이어서, TGA 분석을 통해, 상기 혼합물의 300℃에서의 residue와 Td10%(10%의 weight loss에서의 온도)를 확인하였다.
비교예 3.
제조예 8의 화합물(PN1) 및 제조예 7의 화합물(CA7)을 상기 제조예 8의 화합물(PN1) 1몰 당 약 0.2몰의 상기 제조예 7의 화합물(CA7)이 존재하도록 혼합하였다. 이어서, TGA 분석을 통해, 상기 혼합물의 300℃에서의 residue와 Td10%(10%의 weight loss에서의 온도)를 확인하였다.
상기 실시예 및 비교예의 화합물에 대한 분석 결과를 하기 표 2에 정리하여 기재하였다.
조성 Residue at 300℃ Td10%
실시예 1 PN1+CA2 98.2% 402℃
2 PN1+CA3 97.7% 402℃
3 PN1+CA5 99.4% 407.1℃
4 PN1+CA6 98.9% 408.7℃
비교예 1 PN1+CA1 97.7% 390.6℃
2 PN1+CA4 98.2% 397.5℃
3 PN1+CA7 96.1% 384.8℃
표 2의 결과로부터, 일반적인 경화제인 CA7을 사용하는 경우에, 열분해 온도가 매우 낮고, 이에 따라 열안정성이 떨어져서, 이를 사용한 경우(비교예 3)은, 300℃에서 이미 상당량의 열분해가 일어나고, Td10%의 온도도 가장 낮은 점을 확인할 수 있다. 또한, 동일한 단량체를 적용한 경우에, CA1 또는 CA4의 화합물을 적용한 경우(비교예 1, 2)에 비하여, CA2, CA3, CA5, CA6의 화합물을 경우한 경우(실시예 1 내지 4)가 보다 우수한 열안정성을 가지는 것을 확인할 수 있다. 이러한 결과로부터, 본 출원의 화합물을 적용한 경우에 우수한 열안정성이 확보되어 고온 공정에서의 out gassing을 방지하고, 이에 의해 가공 중 void나 결함을 최소화할 수 있다는 점을 확인할 수 있다.

Claims (18)

  1. 프탈로니트릴 화합물 및 하기 화학식 1의 화합물을 포함하는 중합성 조성물:
    [화학식 1]
    Figure PCTKR2016014087-appb-I000038
    화학식 1에서 M은 4가 라디칼이고, X1 및 X2는 각각 독립적으로 알킬렌기, 알킬리덴기 또는 방향족 2가 라디칼이며, n은 2 이상의 수이다.
  2. 제 1 항에 있어서, 4가 라디칼은 지방족, 지환족 또는 방향족 화합물 유래의 4가 라디칼인 중합성 조성물.
  3. 제 1 항에 있어서, 4가 라디칼은 알칸, 알켄 또는 알킨 유래의 4가 라디칼이거나, 하기 화학식 2 내지 7 중 어느 하나로 표시되는 화합물 유래의 4가 라디칼인 중합성 조성물:
    [화학식 2]
    Figure PCTKR2016014087-appb-I000039
    화학식 2에서 R1 내지 R6는 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이다:
    [화학식 3]
    Figure PCTKR2016014087-appb-I000040
    화학식 3에서 R1 내지 R8은 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이다:
    [화학식 4]
    Figure PCTKR2016014087-appb-I000041
    화학식 4에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이고, X는, 단일 결합, 알킬렌기, 알킬리덴기, 산소 원자, 황 원자, 카보닐기, -S(=O)-, -S(=O)2-, -C(=O)-O-L1-O-C(=O)-, -L2-C(=O)-O-L3-, -L4-O-C(=O)-L5- 또는 -L6-Ar1-L7-Ar2-L8-이며, 상기에서 L1 내지 L8는 각각 독립적으로 단일 결합, 산소 원자, 알킬렌기 또는 알킬리덴기이고, 상기에서 Ar1 및 Ar2는 각각 독립적으로 아릴렌기이다:
    [화학식 5]
    Figure PCTKR2016014087-appb-I000042
    화학식 5에서 R1 내지 R4는 각각 독립적으로 수소, 알킬기 또는 알콕시기이고, A는 알킬렌기 또는 알케닐렌기이다(단, 상기에서 R1 내지 R4 중 2개는 서로 연결되어 알킬렌기를 형성할 수도 있고, A의 알킬렌기 또는 알케닐렌기는 헤테로 원자로서 하나 이상의 산소 원자를 포함할 수 있다.):
    [화학식 6]
    Figure PCTKR2016014087-appb-I000043
    화학식 6에서 R1 내지 R4는 각각 독립적으로 수소, 알킬기 또는 알콕시기이고, A는 알킬렌기이다:
    [화학식 7]
    Figure PCTKR2016014087-appb-I000044
    화학식 7에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기 또는 알콕시기이다.
  4. 제 1 항에 있어서, X1 및 X2는 방향족 2가 라디칼인 중합성 조성물.
  5. 제 4 항에 있어서, 방향족 2가 라디칼은 탄소수 6 내지 28의 방향족 화합물 유래의 2가 라디칼인 중합성 조성물.
  6. 제 1 항에 있어서, X1 및 X2는 하기 화학식 8 내지 10 중 어느 하나로 표시되는 화합물 유래의 2가 라디칼인 중합성 조성물:
    [화학식 8]
    Figure PCTKR2016014087-appb-I000045
    화학식 8에서 R1 내지 R6는 각각 독립적으로 수소, 알킬기, 알콕시기, 아릴기, 히드록시기 또는 카복실기이다:
    [화학식 9]
    Figure PCTKR2016014087-appb-I000046
    화학식 9에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기, 히드록시기, 카복실기 또는 아릴기이고, X는, 단일 결합, 알킬렌기, 알킬리덴기, 산소 원자, 황 원자, 카보닐기, -NR11-, -S(=O)-, -S(=O)2-, -L9-Ar3-L10- 또는 -L9-Ar3-L10-Ar4-L11-이며, 상기에서 R11은 수소, 알킬기, 알콕시기 또는 아릴기이고, 상기에서 Ar3 및 Ar4는 아릴렌기이며, L9 내지 L11은 각각 독립적으로 단일 결합, 산소 원자, 알킬렌기 또는 알킬리덴기이다:
    [화학식 10]
    Figure PCTKR2016014087-appb-I000047
    화학식 10에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기, 히드록시기, 카복실기 또는 아릴기이다.
  7. 제 1 항에 있어서, n은 2 내지 200 의 범위 내의 수인 중합성 조성물.
  8. 제 1 항에 있어서, 화학식 1의 화합물은 분해 온도가 350℃ 이상인 중합성 조성물.
  9. 제 1 항에 있어서, 가공 온도(Tp)가 150℃ 내지 350℃의 범위 내에 있는 중합성 조성물.
  10. 제 1 항에 있어서, 충전제를 추가로 포함하는 중합성 조성물.
  11. 제 1 항에 있어서, 화학식 1의 화합물은 프탈로니트릴 화합물 1몰 당 약 0.02몰 내지 1.5몰로 포함되어 있는 중합성 조성물.
  12. 제 1 항의 중합성 조성물의 반응물인 프리폴리머.
  13. 제 12 항에 있어서, 가공 온도(Tp)가 150℃ 내지 350℃의 범위 내에 있는 프리폴리머.
  14. 제 1 항의 중합성 조성물의 중합체인 프탈로니트릴 수지.
  15. 제 14 항의 프탈로니트릴 수지 및 충전제를 포함하는 복합체.
  16. 제 15 항에 있어서, 충전제는 금속 물질, 세라믹 물질, 유리, 금속 산화물, 금속 질화물 또는 탄소계 물질인 복합체.
  17. 제 1 항의 중합성 조성물을 경화시키는 단계를 포함하는 복합체의 제조 방법.
  18. 제 12 항의 프리폴리머를 경화시키는 단계를 포함하는 복합체의 제조 방법.
PCT/KR2016/014087 2015-12-04 2016-12-02 중합성 조성물 WO2017095174A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680070749.0A CN108368261B (zh) 2015-12-04 2016-12-02 可聚合组合物
US15/779,991 US20180346646A1 (en) 2015-12-04 2016-12-02 Polymerizable composition
JP2018545795A JP6616015B2 (ja) 2015-12-04 2016-12-02 重合性組成物
EP16871070.5A EP3385302B1 (en) 2015-12-04 2016-12-02 Polymeric composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0172376 2015-12-04
KR1020150172376A KR101953369B1 (ko) 2015-12-04 2015-12-04 중합성 조성물

Publications (1)

Publication Number Publication Date
WO2017095174A1 true WO2017095174A1 (ko) 2017-06-08

Family

ID=58797207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014087 WO2017095174A1 (ko) 2015-12-04 2016-12-02 중합성 조성물

Country Status (6)

Country Link
US (1) US20180346646A1 (ko)
EP (1) EP3385302B1 (ko)
JP (1) JP6616015B2 (ko)
KR (1) KR101953369B1 (ko)
CN (1) CN108368261B (ko)
WO (1) WO2017095174A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036443A1 (ko) * 2018-08-17 2020-02-20 주식회사 엘지화학 저마찰 수지 복합체
KR20200020617A (ko) * 2018-08-17 2020-02-26 주식회사 엘지화학 저마찰 수지 복합체

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6559369B2 (ja) * 2016-03-31 2019-08-14 スリーエム イノベイティブ プロパティズ カンパニー ビスフェノールmジフタロニトリルエーテル樹脂、ビスフェノールpジフタロニトリルエーテル樹脂、その製造方法、樹脂ブレンド、及び2成分システム
CN109563266B (zh) * 2016-08-08 2021-11-30 株式会社Lg化学 可聚合组合物
KR102071909B1 (ko) * 2016-11-29 2020-01-31 주식회사 엘지화학 중합성 조성물
WO2018212533A1 (ko) * 2017-05-18 2018-11-22 주식회사 엘지화학 저마찰 중합성 조성물
KR102046576B1 (ko) 2017-05-18 2019-11-21 주식회사 엘지화학 저마찰 중합성 조성물
KR102060191B1 (ko) 2017-05-22 2019-12-27 주식회사 엘지화학 브레이크 패드 마찰재용 수지 조성물 및 상기 수지 조성물로 제조된 브레이크 패드 마찰재
WO2018216986A1 (ko) * 2017-05-22 2018-11-29 주식회사 엘지화학 브레이크 패드 마찰재용 수지 조성물 및 상기 수지 조성물로 제조된 브레이크 패드 마찰재
CN108865047A (zh) * 2018-06-12 2018-11-23 山东科思姆特种材料技术开发有限公司 耐高温抗辐射胶黏剂及其制备方法
KR102218559B1 (ko) * 2018-08-28 2021-02-22 주식회사 엘지화학 향상된 충격 강도를 갖는 프탈로니트릴계 수지
WO2020045897A1 (ko) * 2018-08-28 2020-03-05 주식회사 엘지화학 향상된 충격 강도를 갖는 프탈로니트릴계 수지
KR102323553B1 (ko) * 2018-09-21 2021-11-05 주식회사 엘지화학 프탈로니트릴 올리고머를 포함하는 3차원 프린팅용 잉크
KR102340253B1 (ko) * 2018-09-21 2021-12-15 주식회사 엘지화학 프탈로니트릴 올리고머를 포함하는 경화성 수지 조성물 및 이의 프리폴리머
WO2020060266A1 (ko) * 2018-09-21 2020-03-26 주식회사 엘지화학 프탈로니트릴 올리고머를 포함하는 3차원 프린팅용 잉크

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058505A (en) * 1973-05-25 1977-11-15 University Of Notre Dame Du Lac Chain-extending amine end-capped polyimides
US4408035A (en) 1981-08-24 1983-10-04 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile resin from diphthalonitrile monomer and amine
US5003039A (en) 1988-11-18 1991-03-26 The United States Of America As Represented By The Secretary Of The Navy Amino phenyl containing curing agent for high performance phthalonitrile resin
US5003078A (en) 1989-05-16 1991-03-26 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages
US5004801A (en) 1988-11-21 1991-04-02 The United States Of America As Represented By The Secretary Of The Navy Polymer of dithioether-linked phthalonitrile
US5132396A (en) 1990-04-30 1992-07-21 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile monomers containing imide and/or phenoxy linkages, and polymers thereof
US5139054A (en) 1991-06-28 1992-08-18 Leggett & Platt, Incorporated Spring interior forming and assembling apparatus
US5208318A (en) 1991-03-15 1993-05-04 Keller Teddy M Phosphazene-containing amine as curing agent for phthalonitrile-base polymer
US5237045A (en) 1992-01-09 1993-08-17 The United States Of America As Represented By The Secretary Of The Navy Curing phthalonitrile resins with acid and amine
US5292854A (en) 1989-05-16 1994-03-08 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages with aromatic diamine curing agent
KR20010024393A (ko) * 1997-10-02 2001-03-26 엘워드 사울 할로겐을 함유한 방향족 아민 경화제로 경화된프탈로니트릴 열경화성 폴리머 및 복합물
WO2002079301A2 (en) * 2001-04-02 2002-10-10 Eikos, Inc. Polymer nanocomposites and methods of preparation
KR100558158B1 (ko) 1997-10-02 2006-03-10 더 거번먼트 오브 더 유나이티드 스테이츠 오브 아메리카, 애즈 레프리젠티드 바이 더 세크러테리 오브 더 네이비 네이벌 리서치 래보러토리 낮은 반응성을 지닌 방향족 아민 경화제로 경화시킨섬유-강화 프탈로니트릴 조성물
CN101880389A (zh) * 2010-07-05 2010-11-10 大连理工大学 邻苯二甲腈封端含二氮杂萘酮联苯结构聚酰亚胺树脂、固化物及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277583A (en) * 1979-12-03 1981-07-07 Plastics Engineering Company Oxirane polyimide copolymers
US4619986A (en) * 1985-06-28 1986-10-28 The United States Of America As Represented By The Secretary Of The Navy Epoxy phthalonitrile polymers
EP0214750B1 (en) * 1985-07-31 1993-09-22 Sumitomo Chemical Company, Limited Use of imides hardeners for epoxy resins and epoxy resin compositions containing these imides.
JPS6451436A (en) * 1987-08-21 1989-02-27 Hitachi Ltd Aromatic imino-isoindoline ether compound
JPH02622A (ja) * 1987-12-01 1990-01-05 Hercules Inc 複合材が高いガラス転移温度を有し、接着剤に好適なエポキシ樹脂組成物
US5965268A (en) * 1998-06-26 1999-10-12 The United States Of America As Represented By The Secretary Of The Navy Carbon-based composites derived from phthalonitrile resins
JP3950560B2 (ja) * 1998-08-14 2007-08-01 株式会社巴川製紙所 電子部品用接着剤および電子部品用接着テープ
KR101186395B1 (ko) * 2004-04-19 2012-09-27 가부시키가이샤 가네카 열경화성 수지 조성물, 이것을 사용하여 이루어지는 적층체및 회로 기판
EP2246383A4 (en) * 2008-02-07 2013-01-09 Daiwa Can Co Ltd IMIDOLIGOMER AND THROUGH THERMAL HARDENING POLYIMID RESIN THEREOF

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058505A (en) * 1973-05-25 1977-11-15 University Of Notre Dame Du Lac Chain-extending amine end-capped polyimides
US4408035A (en) 1981-08-24 1983-10-04 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile resin from diphthalonitrile monomer and amine
US5003039A (en) 1988-11-18 1991-03-26 The United States Of America As Represented By The Secretary Of The Navy Amino phenyl containing curing agent for high performance phthalonitrile resin
US5350828A (en) 1988-11-21 1994-09-27 The United States Of America As Represented By The Secretary Of The Navy Synthesis and polymerization of dithioether-linked phthalonitrile monomers
US5004801A (en) 1988-11-21 1991-04-02 The United States Of America As Represented By The Secretary Of The Navy Polymer of dithioether-linked phthalonitrile
US5003078A (en) 1989-05-16 1991-03-26 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages
US5292854A (en) 1989-05-16 1994-03-08 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages with aromatic diamine curing agent
US5132396A (en) 1990-04-30 1992-07-21 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile monomers containing imide and/or phenoxy linkages, and polymers thereof
US5208318A (en) 1991-03-15 1993-05-04 Keller Teddy M Phosphazene-containing amine as curing agent for phthalonitrile-base polymer
US5304625A (en) * 1991-03-15 1994-04-19 The United States Of America As Represented By The Secretary Of The Navy Phosphazene-containing amine as curing agent for phthalonitrile-based polymer
US5139054A (en) 1991-06-28 1992-08-18 Leggett & Platt, Incorporated Spring interior forming and assembling apparatus
US5237045A (en) 1992-01-09 1993-08-17 The United States Of America As Represented By The Secretary Of The Navy Curing phthalonitrile resins with acid and amine
KR20010024393A (ko) * 1997-10-02 2001-03-26 엘워드 사울 할로겐을 함유한 방향족 아민 경화제로 경화된프탈로니트릴 열경화성 폴리머 및 복합물
KR100558158B1 (ko) 1997-10-02 2006-03-10 더 거번먼트 오브 더 유나이티드 스테이츠 오브 아메리카, 애즈 레프리젠티드 바이 더 세크러테리 오브 더 네이비 네이벌 리서치 래보러토리 낮은 반응성을 지닌 방향족 아민 경화제로 경화시킨섬유-강화 프탈로니트릴 조성물
WO2002079301A2 (en) * 2001-04-02 2002-10-10 Eikos, Inc. Polymer nanocomposites and methods of preparation
CN101880389A (zh) * 2010-07-05 2010-11-10 大连理工大学 邻苯二甲腈封端含二氮杂萘酮联苯结构聚酰亚胺树脂、固化物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3385302A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036443A1 (ko) * 2018-08-17 2020-02-20 주식회사 엘지화학 저마찰 수지 복합체
KR20200020617A (ko) * 2018-08-17 2020-02-26 주식회사 엘지화학 저마찰 수지 복합체
KR102202060B1 (ko) * 2018-08-17 2021-01-12 주식회사 엘지화학 저마찰 수지 복합체
EP3741808A4 (en) * 2018-08-17 2021-06-23 Lg Chem, Ltd. REDUCED FRICTION RESIN COMPOSITE
JP2021516274A (ja) * 2018-08-17 2021-07-01 エルジー・ケム・リミテッド 低摩擦樹脂複合体
JP7039109B2 (ja) 2018-08-17 2022-03-22 エルジー・ケム・リミテッド 低摩擦樹脂複合体
US11905371B2 (en) 2018-08-17 2024-02-20 Lg Chem, Ltd. Low friction resin composites

Also Published As

Publication number Publication date
EP3385302B1 (en) 2019-06-19
KR101953369B1 (ko) 2019-02-28
KR20170065954A (ko) 2017-06-14
JP6616015B2 (ja) 2019-12-04
US20180346646A1 (en) 2018-12-06
EP3385302A1 (en) 2018-10-10
CN108368261A (zh) 2018-08-03
CN108368261B (zh) 2020-10-16
EP3385302A4 (en) 2018-12-12
JP2018538425A (ja) 2018-12-27

Similar Documents

Publication Publication Date Title
WO2017095174A1 (ko) 중합성 조성물
WO2018084465A1 (ko) 중합성 조성물
WO2018030552A1 (ko) 중합성 조성물
WO2017052323A1 (ko) 프탈로니트릴 화합물
WO2017119793A2 (ko) 프탈로니트릴 수지
WO2018080088A1 (ko) 화합물
WO2017209413A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2017188630A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2016190621A1 (ko) 프탈로니트릴 화합물
WO2017003250A1 (ko) 프탈로니트릴 수지
WO2017209414A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2014200249A1 (ko) 나프탈렌 다이이미드 유도체 화합물 및 제조방법과 이를 포함하는 유기전자소자
WO2016140459A1 (ko) 인계 에폭시 화합물 및 이의 제조방법, 이를 포함하는 에폭시 조성물
WO2018097496A9 (ko) 화합물
WO2012148090A2 (ko) 터피리딘 또는 페난쓰롤린 기능기를 함유하는 새로운 구조의 디아민의 제조와 이의 응용
WO2020009481A1 (ko) 폴리아릴렌 설파이드의 제조 방법
WO2017095177A2 (ko) 프탈로니트릴 화합물
WO2020130261A1 (ko) 가교제 화합물, 이를 포함하는 감광성 조성물, 및 이를 이용한 감광 재료
WO2020159193A1 (ko) 폴리이미드 전구체 조성물 및 이로부터 제조된 폴리이미드 필름, 디스플레이 장치용 기판, 및 광학 장치
WO2016080762A1 (ko) 프탈로니트릴 수지
WO2020045897A1 (ko) 향상된 충격 강도를 갖는 프탈로니트릴계 수지
WO2021066438A1 (ko) 아라미드 나노섬유를 포함하는 고분자 복합소재 및 이의 제조방법
WO2018101703A1 (ko) 중합성 조성물
WO2016060340A1 (ko) 가압 조건 하에서 수행되는 폴리이미드 제조방법
WO2020060266A1 (ko) 프탈로니트릴 올리고머를 포함하는 3차원 프린팅용 잉크

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16871070

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018545795

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016871070

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016871070

Country of ref document: EP

Effective date: 20180703