WO2017094668A1 - On-board power supply device and on-board power supply system - Google Patents

On-board power supply device and on-board power supply system Download PDF

Info

Publication number
WO2017094668A1
WO2017094668A1 PCT/JP2016/085202 JP2016085202W WO2017094668A1 WO 2017094668 A1 WO2017094668 A1 WO 2017094668A1 JP 2016085202 W JP2016085202 W JP 2016085202W WO 2017094668 A1 WO2017094668 A1 WO 2017094668A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
power supply
discharging
period
Prior art date
Application number
PCT/JP2016/085202
Other languages
French (fr)
Japanese (ja)
Inventor
速人 福嶋
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2017094668A1 publication Critical patent/WO2017094668A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/04Arrangement of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage

Definitions

  • the present invention relates to an in-vehicle power supply device and an in-vehicle power supply system.
  • Patent Document 1 describes a vehicle power generation system.
  • the vehicular power generation system includes a vehicular generator, a voltage control device, an in-vehicle battery, and an electric load.
  • the vehicular generator is rotationally driven by the engine to generate charging power for the in-vehicle battery and operating power for the electric load.
  • the voltage control device adjusts the output voltage of the vehicular generator.
  • the voltage control device suppresses the output voltage of the vehicular generator when, for example, the vehicle is accelerating and the charge amount of the in-vehicle battery exceeds a predetermined value. This reduces the load on the engine during acceleration. On the other hand, even when the vehicle is accelerating, suppression of the output voltage is prohibited when the charge amount of the on-vehicle battery is below a predetermined value. Thereby, the power generation control is stabilized.
  • Patent Document 1 does not describe or suggest the internal resistance of the in-vehicle battery. This increase in internal resistance reduces efficiency.
  • an object of the present invention is to provide an in-vehicle power supply device that performs highly efficient charge / discharge operation.
  • the on-vehicle power supply device mounted on the vehicle includes a battery and a charge / discharge control unit.
  • the charge / discharge control unit controls charging of the battery and discharging of the battery.
  • the charge / discharge control unit performs the other one after performing the other of charging and discharging.
  • FIG. 1 is a diagram schematically showing an example of an in-vehicle power supply system. It is a figure which shows roughly an example of the switching between charge and discharge in charge main body operation
  • FIG. 1 is a diagram schematically showing an example of the configuration of the in-vehicle power supply system 100.
  • This in-vehicle power supply system 100 is mounted on a vehicle.
  • the in-vehicle power supply system 100 includes an in-vehicle power supply device 10 and a vehicle load 3.
  • the in-vehicle power supply device 10 includes a charge / discharge control unit 1 and a battery 2.
  • the battery 2 is, for example, a chemical battery (for example, a lead battery).
  • the charge / discharge control unit 1 controls the charging and discharging of the battery 2.
  • the charge / discharge control unit 1 includes a generator 11 and a control unit 12.
  • the generator 11 is an alternator, for example, and generates power with the rotation of an engine mounted on the vehicle and outputs a DC voltage.
  • the generator 11 is indicated as “ALT”.
  • the generator 11 is connected to the battery 2 via wiring (for example, a wire harness).
  • the control unit 12 is a circuit that controls the DC voltage output from the generator 11.
  • the generator 11 has a field element having field windings and an armature having armature windings.
  • the control part 12 controls the direct current voltage which the generator 11 outputs by controlling the exciting current which flows through this field winding.
  • the generator 11 outputs a DC voltage larger than the voltage of the battery 2 under the control of the control unit 12, a current flows from the generator 11 to the battery 2. That is, the battery 2 is charged.
  • the generator 11 and the battery 2 are also connected to the vehicle load 3.
  • the vehicle load 3 is an electric load that is mounted on the vehicle and receives electric power from the generator 11 and the battery 2.
  • the vehicle load 3 includes a shift-by-wire actuator, an electronically controlled braking force distribution system, and an in-vehicle air conditioner.
  • the generator 11 When the generator 11 outputs a DC voltage larger than the voltage of the battery 2, the generator 11 charges the battery 2 and supplies power to the vehicle load 3.
  • the battery 2 supplies power to the vehicle load 3. That is, the battery 2 is discharged.
  • the battery 2 is charged when the generator 11 outputs a DC voltage larger than the voltage of the battery 2, and the battery when the generator 11 does not output a DC voltage larger than the voltage of the battery 2. 2 is discharged. Therefore, the generator 11 and the control unit 12 that controls the generator 11 can function as the charge / discharge control unit 1.
  • the generator 11 outputs a DC voltage larger than the voltage of the battery 2 and that the generator 11 simply outputs a DC voltage.
  • the fact that the generator 11 does not output a DC voltage larger than the voltage of the battery 2 will also be described as simply that the generator 11 stops outputting the DC voltage.
  • FIG. 2 is a diagram schematically showing the main charging operation.
  • the charge main operation is an operation in which charging and discharging are repeated and charging is performed as a whole.
  • the discharge period T12 is shorter than the charge period T11.
  • the discharge period T12 is, for example, several seconds or less.
  • the generator 11 In the charging period T11, the generator 11 outputs a DC voltage to charge the battery 2.
  • the discharge period T12 the generator 11 stops outputting the DC voltage, and the battery 2 is discharged to the vehicle load 3.
  • the charging period T11 and the discharging period T12 appear alternately.
  • the charging / discharging control unit 1 that performs the above-described charging main operation will be described.
  • the charge / discharge control unit 1 charges the battery 2 again after discharging the battery 2 when a predetermined condition is satisfied in a state where the battery 2 is charged.
  • a predetermined condition you may employ
  • the control unit 12 includes a time measuring unit 121 in order to determine whether or not this predetermined condition is met.
  • the timer unit 121 is represented as “timer” in the example of FIG.
  • the timer unit 121 is, for example, a timer circuit, and measures an elapsed period (that is, a charging period T11) after the generator 11 starts to output a DC voltage.
  • control unit 12 may include a microcomputer and a storage device.
  • the microcomputer executes each processing step (in other words, a procedure) described in the program.
  • the storage device is composed of one or more of various storage devices such as a ROM (Read Only Memory), a RAM (Random Access Memory), a rewritable nonvolatile memory (EPROM (Erasable Programmable ROM), etc.), and a hard disk device, for example. Is possible.
  • the storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program.
  • the microcomputer functions as various means corresponding to each processing step described in the program, or can realize that various functions corresponding to each processing step are realized.
  • the control unit 12 is not limited to this, and various procedures executed by the control unit 12 or various means or various functions to be realized may be realized by hardware.
  • FIG. 3 is a flowchart showing an example of the operation of the charge / discharge control unit 1.
  • control unit 12 determines whether or not battery 2 needs to be charged.
  • the control unit 12 may receive a signal indicating whether charging is necessary from the outside and make a determination based on this signal.
  • the charging / discharging control unit 1 executes a charge main operation.
  • the control unit 12 charges the battery 2 by causing the generator 11 to output a DC voltage.
  • this operation is described as “the generator generates power”.
  • the output of the DC voltage of the generator 11 may be described as the power generation of the generator 11.
  • the time measuring unit 121 measures the first elapsed period (corresponding to the charging period T11) from the start of power generation by the generator 11.
  • step ST3 it is determined whether or not the first elapsed period is longer than the first predetermined period Tref11.
  • the first predetermined period Tref11 may be stored in the storage unit of the control unit 12, for example. Whether the first elapsed period and the first predetermined period Tref11 are large or small can be determined using, for example, a comparator. Since this point is the same in the following, repeated explanation is avoided.
  • step ST3 is executed again.
  • the control unit 12 causes the generator 11 to stop outputting the DC voltage in step ST4.
  • the battery 2 is discharged to the vehicle load 3.
  • this operation is described as “the generator is stopped”.
  • this operation may be described as stopping the generator.
  • the time measuring unit 121 measures the second elapsed period (corresponding to the discharge period T12) from the stop of power generation by the generator 11.
  • step ST6 it is determined whether or not the second elapsed period is longer than a second predetermined period Tref12 ( ⁇ Tref11).
  • the second predetermined period Tref12 is, for example, several seconds or less.
  • step ST6 the control unit 12 determines whether or not the engine is stopped. For example, the control unit 12 makes this determination by receiving a signal indicating whether or not the engine is operating from the outside.
  • step ST1 is executed again. If it is determined that charging is necessary again in step ST1, the battery 2 is charged again in step ST2.
  • step ST6 the control unit 12 ends the control of the generator 11.
  • steps ST7 to ST10 are executed, which will be described later.
  • FIG. 4 is a diagram schematically showing an example of the voltage V, current I and internal resistance R of the battery 2 in the charging main operation.
  • the current I flowing into the battery 2 is defined as positive, and the current I discharged from the battery 2 is defined as negative.
  • the control unit 12 causes the generator 11 to output a DC voltage in order to start charging the battery 2.
  • the current I takes a substantially constant positive value in the charging period T ⁇ b> 11 from time t ⁇ b> 1 to time t ⁇ b> 2.
  • the internal resistance R of the battery 2 increases with time, as illustrated in FIG.
  • the voltage V of the battery 2 also increases with time. This is due to the following reason. That is, during charging, the voltage V of the battery 2 is represented by the sum of the voltage drop caused by the internal resistance R and the open voltage of the battery 2. In addition, the open voltage of the battery 2 increases with time during charging. Thus, since the internal resistance R and the open circuit voltage increase with the passage of time, the voltage V also increases with the passage of time.
  • the current I changes from positive to negative. This is because the control unit 12 stops the output of the DC voltage by the generator 11 when the charging period T11 exceeds the first predetermined period Tref11. Thereby, the battery 2 starts discharging at the time t2. Therefore, the current I is negative.
  • the current I at the time of discharge is a value corresponding to the vehicle load 3.
  • the voltage V decreases sharply at time t2. This is because the current I is discharged from the battery 2 during discharging, and the polarity of the voltage drop in the internal resistance R is opposite to that during charging. That is, the voltage V is obtained by subtracting the voltage drop in the internal resistance R from the open voltage of the battery 2.
  • the current I again changes from negative to positive.
  • the control unit 12 causes the generator 11 to output a DC voltage again when the discharge period T12 exceeds the second predetermined period Tref12 at time t3.
  • the battery 2 is charged again at the time t3. Therefore, the internal resistance R sharply decreases at time t3 and then increases again with time.
  • the voltage V increases sharply at time t3 and then increases again with time. Thereafter, the same operation is repeated until the charging of the battery 2 becomes unnecessary.
  • the battery 2 is discharged in the discharging period T12, and then the battery 2 is charged again. According to this, each time the battery 2 is discharged, the internal resistance R of the battery 2 can be initialized to a small value. Therefore, in any charging period T11, the internal resistance R increases from this small value with the passage of time.
  • the internal resistance R during charging can be suppressed as compared with the case where charging is performed continuously without discharging the battery 2.
  • the internal resistance R in continuous charging in which charging is performed continuously without discharging the battery 2 is indicated by a two-dot chain line.
  • the internal resistance R due to the continuous charging continues to increase with the passage of time, and therefore becomes higher than the internal resistance R according to the present charging method after time t2.
  • the loss caused by the internal resistance R in the charging period T11 is represented by the time integration of the product of the square of the current I and the internal resistance R if the current is constant. According to this charging method, as illustrated in FIG. 4, the time integration can be significantly reduced in the second and subsequent charging periods T ⁇ b> 11. Therefore, the battery 2 can be charged with high efficiency.
  • the current I is reduced by increasing the internal resistance R. Since the charging rate of the battery 2 increases based on the integration of the current I, the charging speed decreases as the current I decreases. On the other hand, according to the present charging method, the internal resistance R can be greatly reduced in the second and subsequent charging periods T11. Therefore, the battery 2 can be charged at a high charging speed.
  • the battery 2 is discharged to the vehicle load 3 in the discharge period T12. Therefore, compared with the case where the battery 2 is short-circuited and discharged, the power of the battery 2 can be used more effectively.
  • the discharge period T12 may be set short in the charge-main operation.
  • the discharge period T12 is shorter than the charge period T11 and is several seconds or less.
  • the discharge main operation is the same as the charge main operation. That is, when a predetermined condition is satisfied with the battery 2 discharged to the vehicle load 3, the battery 2 is charged and then discharged again.
  • the predetermined condition for example, it can be adopted that the discharge period is longer than the third predetermined period.
  • step ST7 the controller 12 causes the generator 11 to stop outputting DC voltage. Thereby, the battery 2 starts discharging to the vehicle load 3. Further, the timer 121 measures the third elapsed period (corresponding to the discharge time) from the stop of the power generation of the generator 11 in step ST7.
  • step ST8 the control unit 12 determines whether or not the third elapsed period is longer than the third predetermined period Tref21. When it is determined that the third elapsed period is shorter than the third predetermined period Tref21, step ST8 is executed again.
  • step ST9 the control unit 12 causes the generator 11 to output a DC voltage to charge the battery 2.
  • the time measuring unit 121 measures the fourth elapsed period (corresponding to the charging period) from the start of power generation by the generator 11 in step ST9.
  • step ST10 the control unit 12 determines whether or not the fourth elapsed period is longer than the fourth predetermined period Tref22 ( ⁇ Tref21).
  • the fourth predetermined period Tref22 is set to several seconds or less, for example.
  • step ST6 is executed. Therefore, when step ST7 is executed via steps ST6 and ST1 in this order, battery 2 is discharged again at step ST7.
  • FIG. 5 is a diagram schematically showing an example of the voltage V, current I and internal resistance R of the battery 2 in the discharge main operation.
  • the current I flowing into the battery 2 is defined as positive, and the current I discharged from the battery 2 is defined as negative.
  • the current I is negative in the discharge period T21.
  • the control unit 12 stops the generator 11 during the discharge period T ⁇ b> 21 and the battery 2 is discharged to the vehicle load 3.
  • the current I becomes positive in the charging period T22 next to the discharging period T21.
  • the control unit 12 causes the generator 11 to output a DC voltage in the charging period T22 next to the discharging period T12.
  • the battery 2 is charged in the charging period T22.
  • the charging period T22 is shorter than the discharging period T21, for example, and is set to several seconds or less, for example.
  • the current I becomes negative again in the charge period T22. This is because when the charging period T22 exceeds the fourth predetermined period Tref22, the control unit 12 stops the power generation of the generator 11 and causes the battery 2 to discharge the vehicle load 3. Thereafter, the same operation is repeated.
  • the internal resistance R sharply decreases at the boundary between the discharging period T21 and the charging period T22. Therefore, in any discharge period T21, the internal resistance R increases from a small value with the passage of time. Therefore, an increase in the internal resistance R during discharging can be suppressed as compared with the case where the battery 2 is continuously discharged without the charging period T22.
  • the internal resistance R is made small every time the battery is charged, so that the time integration can be greatly reduced. Therefore, power can be supplied to the vehicle load 3 with high efficiency.
  • the charging period T22 may be set short in the discharge main operation.
  • the charging period T22 is shorter than the discharging period T21 and is several seconds or less.
  • Timing of charge / discharge operation The controller 12 performs the above charging / discharging operation even while the vehicle is traveling. For example, in step ST2, when the vehicle is decelerating, it may be determined that the battery 2 needs to be charged. This deceleration of the vehicle can be recognized by the control unit 12 when, for example, information on an acceleration operation by the user (for example, accelerator opening) is input to the control unit 12.
  • the battery 2 in the charging main operation, the battery 2 is discharged when the charging period T11 exceeds the first predetermined period Tref11. However, when the internal resistance R of the battery 2 being charged is larger than a predetermined threshold value Rref, the battery 2 may be discharged. Similarly, in the discharge main operation, the battery 2 may be charged when the internal resistance R of the battery 2 being discharged is larger than a predetermined threshold value Rref. That is, as a predetermined condition for switching between charge and discharge, it may be adopted that the internal resistance R is larger than a predetermined threshold value Rref.
  • FIG. 6 is a diagram schematically showing an example of the configuration of the in-vehicle power supply system 100 for performing the charging / discharging method.
  • the charge / discharge control unit 1 further includes an internal resistance detection unit 13.
  • the internal resistance detector 13 detects the internal resistance R of the battery 2.
  • the internal resistance R is detected as follows.
  • the internal resistance detection unit 13 includes a current detection unit that detects the current I flowing through the battery 2 and a voltage detection unit that detects the voltage V of the battery 2.
  • the internal resistance detection unit 13 outputs the obtained internal resistance R to the control unit 12.
  • FIG. 7 is a flowchart showing an example of the operation of the charge / discharge control unit 1.
  • steps ST3 'and ST8' are executed instead of steps ST3 and ST8.
  • the control unit 12 determines whether or not the internal resistance R input from the internal resistance detection unit 13 is greater than a predetermined threshold value Rref. If a negative determination is made in step ST3 ', step ST3' is executed again, and if a negative determination is made in step ST8 ', step ST8' is executed again. If a positive determination is made in step ST3 ', step ST4 is executed, and if a positive determination is made in step ST8', step ST9 is executed.
  • the present charging / discharging method when the internal resistance R exceeds the threshold value Rref, an operation for reducing the internal resistance R is performed. That is, if the internal resistance R exceeds the threshold value Rref during the charge-based operation, the battery is discharged and then charged again. If the internal resistance R exceeds the threshold value Rref during the discharge-based operation, the battery is charged. Later, discharging is performed again. According to this, it is possible to more reliably avoid the internal resistance R from being greatly increased beyond the threshold value Rref.
  • the internal resistance detector 13 is often arranged in the vicinity of the battery 2. Therefore, the internal resistance detection unit 13 is connected to the control unit 12 by wiring (for example, a wire harness), and outputs the internal resistance R to the control unit 12 through the wiring. In this case, the wiring work between the control part 12 and the internal resistance detection part 13 by an operator is needed.
  • wiring for example, a wire harness
  • the time measuring unit 121 is included in the control unit 12 and does not need a wire harness.
  • the wiring harness is not required to be routed by an operator, and the manufacturing is facilitated.
  • FIG. 8 is a diagram schematically showing an example of the configuration of the in-vehicle power supply system 100.
  • the charge / discharge control unit 1 shows a generator 11, a control unit 12, and a DC / DC converter 14.
  • the DC / DC converter 14 is connected between the generator 11 and the battery 2.
  • the DC / DC converter 14 is also located between the vehicle load 3 and the battery 2. That is, the battery 2 is charged from the generator 11 via the DC / DC converter 14 and supplies power to the vehicle load 3 via the DC / DC converter 14.
  • the DC / DC converter 14 is a bidirectional converter.
  • the DC / DC converter 14 is controlled by the control unit 12. For example, when charging the battery 2, the DC voltage of the generator 11 is converted into an appropriate charging voltage, and the charging voltage is output to the battery 2. On the other hand, when the battery 2 is discharged, the voltage from the battery 2 is converted into a DC voltage appropriate for the vehicle load 3, and this DC voltage is output to the vehicle load 3.
  • the same charge / discharge operation as described above is performed. That is, in charge-based operation, the internal resistance R is initialized to a small value each time by intermittently stopping charging during charging and discharging, and in discharging-oriented operation, discharging is intermittently performed during discharging. The internal resistance R is initialized to a small value each time by stopping and charging.
  • the control part 12 controls the DC / DC converter 14 as mentioned above according to the charge / discharge. For example, in the charging periods T11 and T22, the DC / DC converter 14 converts the DC voltage of the generator 11 and outputs the converted charging voltage to the battery 2. In the discharging periods T12 and T21, the DC / DC converter 14 Converter 14 converts the voltage of battery 2 and outputs the converted DC voltage to vehicle load 3.
  • the battery 2 can be efficiently charged, and power can be efficiently supplied to the vehicle load 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is an on-board power supply device that performs highly efficient charging and discharging operations. A charge/discharge control unit controls charging and discharging of a battery. When a predetermined condition is met while one of the charging and discharging operations is being performed, the charge/discharge control unit performs the other of the charging and discharging operations for a shorter period than that of the one operation and subsequently performs the one of the charging and discharging operations again.

Description

車載用電源装置および車載用電源システムIn-vehicle power supply device and in-vehicle power supply system
 この発明は、車載用電源装置および車載用電源システムに関する。 The present invention relates to an in-vehicle power supply device and an in-vehicle power supply system.
 特許文献1には、車両用発電システムが記載されている。車両用発電システムは、車両用発電機と電圧制御装置と車載バッテリと電気負荷とを備えている。車両用発電機はエンジンによって回転駆動されて、車載バッテリの充電電力および電気負荷の動作電力を発生する。電圧制御装置は車両用発電機の出力電圧を調整する。 Patent Document 1 describes a vehicle power generation system. The vehicular power generation system includes a vehicular generator, a voltage control device, an in-vehicle battery, and an electric load. The vehicular generator is rotationally driven by the engine to generate charging power for the in-vehicle battery and operating power for the electric load. The voltage control device adjusts the output voltage of the vehicular generator.
 電圧制御装置は、例えば車両が加速しており、かつ、車載バッテリの充電量が所定値を超えているときに、車両用発電機の出力電圧を抑制する。これにより、加速中のエンジンの負荷を低減している。一方で車両が加速しているときであっても、車載バッテリの充電量が所定値を下回っているときには、出力電圧の抑制を禁止する。これにより、発電制御を安定化している。 The voltage control device suppresses the output voltage of the vehicular generator when, for example, the vehicle is accelerating and the charge amount of the in-vehicle battery exceeds a predetermined value. This reduces the load on the engine during acceleration. On the other hand, even when the vehicle is accelerating, suppression of the output voltage is prohibited when the charge amount of the on-vehicle battery is below a predetermined value. Thereby, the power generation control is stabilized.
特開2004-25449号公報JP 2004-25449 A
 しかしながら、特許文献1では、車載バッテリの内部抵抗については記載も示唆もない。この内部抵抗の増大は効率を低下させる。 However, Patent Document 1 does not describe or suggest the internal resistance of the in-vehicle battery. This increase in internal resistance reduces efficiency.
 そこで本発明は、効率の高い充放電動作を行う車載用電源装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an in-vehicle power supply device that performs highly efficient charge / discharge operation.
 車両に搭載される車載用電源装置はバッテリと充放電制御部とを備える。充放電制御部はバッテリの充電とバッテリの放電とを制御する。充放電制御部は、充電および放電の一方を行う状態で所定条件が成立したときに、充電および放電の他方を行った後に当該一方を再び行う。 The on-vehicle power supply device mounted on the vehicle includes a battery and a charge / discharge control unit. The charge / discharge control unit controls charging of the battery and discharging of the battery. When a predetermined condition is satisfied in a state where one of charging and discharging is performed, the charge / discharge control unit performs the other one after performing the other of charging and discharging.
 本車載用電源装置によれば、効率の高い充放電動作を行うことができる。 According to the on-vehicle power supply device, a highly efficient charge / discharge operation can be performed.
車載用電源システムの一例を概略的に示す図である。1 is a diagram schematically showing an example of an in-vehicle power supply system. 充電主体動作における充電と放電との切替の一例を概略的に示す図である。It is a figure which shows roughly an example of the switching between charge and discharge in charge main body operation | movement. 充放電制御部の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of a charging / discharging control part. 充電主体動作時のバッテリの電圧、電流および内部抵抗の一例を概略的に示す図である。It is a figure which shows roughly an example of the voltage of the battery at the time of charge main body operation | movement, an electric current, and internal resistance. 放電主体動作時のバッテリの電圧、電流および内部抵抗の一例を概略的に示す図である。It is a figure which shows roughly an example of the voltage of the battery at the time of discharge main operation | movement, an electric current, and internal resistance. 車載用電源システムの構成の一例を概略的に示す図である。It is a figure which shows roughly an example of a structure of a vehicle-mounted power supply system. 充放電制御部の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of a charging / discharging control part. 車載用電源システムの構成の一例を概略的に示す図である。It is a figure which shows roughly an example of a structure of a vehicle-mounted power supply system.
 <1.構成>
 図1は、車載用電源システム100の構成の一例を概略的に示す図である。この車載用電源システム100は車両に搭載される。車載用電源システム100は車載用電源装置10と車両負荷3とを備えている。車載用電源装置10は充放電制御部1とバッテリ2とを備えている。バッテリ2は例えば化学電池(例えば鉛バッテリ)である。
<1. Configuration>
FIG. 1 is a diagram schematically showing an example of the configuration of the in-vehicle power supply system 100. This in-vehicle power supply system 100 is mounted on a vehicle. The in-vehicle power supply system 100 includes an in-vehicle power supply device 10 and a vehicle load 3. The in-vehicle power supply device 10 includes a charge / discharge control unit 1 and a battery 2. The battery 2 is, for example, a chemical battery (for example, a lead battery).
 充放電制御部1はバッテリ2の充電と放電とを制御する。例えば充放電制御部1は発電機11と制御部12とを含んでいる。発電機11は例えばオルタネータであって、車両に搭載されるエンジンの回転に伴って発電し、直流電圧を出力する。図1では発電機11は「ALT」と表記されている。発電機11は配線(例えばワイヤハーネス)を介してバッテリ2に接続されている。 The charge / discharge control unit 1 controls the charging and discharging of the battery 2. For example, the charge / discharge control unit 1 includes a generator 11 and a control unit 12. The generator 11 is an alternator, for example, and generates power with the rotation of an engine mounted on the vehicle and outputs a DC voltage. In FIG. 1, the generator 11 is indicated as “ALT”. The generator 11 is connected to the battery 2 via wiring (for example, a wire harness).
 制御部12は発電機11が出力する直流電圧を制御する回路である。例えば、発電機11は界磁巻線を有する界磁子と、電機子巻線を有する電機子とを有している。例えば制御部12は、この界磁巻線を流れる励磁電流を制御することで、発電機11が出力する直流電圧を制御する。制御部12の制御によって発電機11がバッテリ2の電圧よりも大きい直流電圧を出力しているときには、発電機11からバッテリ2へと電流が流れる。つまりバッテリ2が充電される。 The control unit 12 is a circuit that controls the DC voltage output from the generator 11. For example, the generator 11 has a field element having field windings and an armature having armature windings. For example, the control part 12 controls the direct current voltage which the generator 11 outputs by controlling the exciting current which flows through this field winding. When the generator 11 outputs a DC voltage larger than the voltage of the battery 2 under the control of the control unit 12, a current flows from the generator 11 to the battery 2. That is, the battery 2 is charged.
 また発電機11およびバッテリ2は車両負荷3にも接続されている。車両負荷3は車両に搭載されて、発電機11およびバッテリ2から電力を受け取る電気負荷である。例えば車両負荷3としては、シフトバイワイヤー用アクチュエータ、電子制御制動力配分システムおよび車載エアコンディショナーが挙げられる。発電機11がバッテリ2の電圧よりも大きな直流電圧を出力しているときには、発電機11はバッテリ2を充電するとともに、車両負荷3へと給電する。一方で、発電機11がバッテリ2の電圧よりも大きな直流電圧を出力していないときには、バッテリ2が車両負荷3へと給電する。つまりバッテリ2は放電する。 The generator 11 and the battery 2 are also connected to the vehicle load 3. The vehicle load 3 is an electric load that is mounted on the vehicle and receives electric power from the generator 11 and the battery 2. For example, the vehicle load 3 includes a shift-by-wire actuator, an electronically controlled braking force distribution system, and an in-vehicle air conditioner. When the generator 11 outputs a DC voltage larger than the voltage of the battery 2, the generator 11 charges the battery 2 and supplies power to the vehicle load 3. On the other hand, when the generator 11 does not output a DC voltage larger than the voltage of the battery 2, the battery 2 supplies power to the vehicle load 3. That is, the battery 2 is discharged.
 以上のように、発電機11がバッテリ2の電圧よりも大きな直流電圧を出力するときにバッテリ2が充電され、発電機11がバッテリ2の電圧よりも大きな直流電圧を出力していないときにバッテリ2が放電する。よって発電機11およびこれを制御する制御部12は充放電制御部1として機能することができる。なお以下では、簡単のために、発電機11がバッテリ2の電圧よりも大きな直流電圧を出力することを、単に発電機11が直流電圧を出力する、とも説明する。また発電機11がバッテリ2の電圧よりも大きな直流電圧を出力していないことを、単に発電機11が直流電圧の出力を停止する、とも説明する。 As described above, the battery 2 is charged when the generator 11 outputs a DC voltage larger than the voltage of the battery 2, and the battery when the generator 11 does not output a DC voltage larger than the voltage of the battery 2. 2 is discharged. Therefore, the generator 11 and the control unit 12 that controls the generator 11 can function as the charge / discharge control unit 1. In the following, for the sake of simplicity, it will be described that the generator 11 outputs a DC voltage larger than the voltage of the battery 2 and that the generator 11 simply outputs a DC voltage. The fact that the generator 11 does not output a DC voltage larger than the voltage of the battery 2 will also be described as simply that the generator 11 stops outputting the DC voltage.
 <2.充放電動作>
 <2-1.充電主体動作>
 図2は充電主体動作を概略的に示す図である。ここで、充電主体動作とは、充電と放電とを繰り返す動作であって、全体として充電が行われる動作を指す。例えば充電期間T11よりも放電期間T12の方が短い動作を指す。これにより、少なくとも時間的には、放電よりも充電が主体となる。放電期間T12は例えば数秒以下である。充電期間T11においては、発電機11が直流電圧を出力してバッテリ2を充電する。放電期間T12においては、発電機11が直流電圧の出力を停止して、バッテリ2が車両負荷3へと放電する。充電期間T11と放電期間T12とは交互に現れる。
<2. Charge / Discharge Operation>
<2-1. Charging main operation>
FIG. 2 is a diagram schematically showing the main charging operation. Here, the charge main operation is an operation in which charging and discharging are repeated and charging is performed as a whole. For example, the discharge period T12 is shorter than the charge period T11. As a result, at least in time, charging is mainly performed rather than discharging. The discharge period T12 is, for example, several seconds or less. In the charging period T11, the generator 11 outputs a DC voltage to charge the battery 2. In the discharge period T12, the generator 11 stops outputting the DC voltage, and the battery 2 is discharged to the vehicle load 3. The charging period T11 and the discharging period T12 appear alternately.
 上述の充電主体動作を行う充放電制御部1について説明する。充放電制御部1は、バッテリ2の充電を行う状態で所定の条件が成立したときに、バッテリ2を放電させた上で、再びバッテリ2を充電する。この所定の条件としては、例えばバッテリ2を連続して充電する充電期間T11が所定期間よりも長いことを採用してもよい。つまり、充電期間T11が所定期間を超えたときに、放電期間T12においてバッテリ2を放電させ、放電期間T12の経過後に再びバッテリ2を充電するのである。そして、この動作を例えばバッテリ2の充電が不要になるまで繰り返す。 The charging / discharging control unit 1 that performs the above-described charging main operation will be described. The charge / discharge control unit 1 charges the battery 2 again after discharging the battery 2 when a predetermined condition is satisfied in a state where the battery 2 is charged. As this predetermined condition, you may employ | adopt that the charging period T11 which charges the battery 2 continuously, for example is longer than a predetermined period. That is, when the charging period T11 exceeds the predetermined period, the battery 2 is discharged in the discharging period T12, and the battery 2 is charged again after the discharging period T12 has elapsed. This operation is repeated until, for example, charging of the battery 2 becomes unnecessary.
 この所定の条件の成否を判断すべく、図1の例示では、制御部12は計時部121を備えている。計時部121は図1の例示では「タイマ」と表記されている。計時部121は例えばタイマ回路であって、発電機11が直流電圧を出力し始めてからの経過期間(つまり充電期間T11)を計時する。 In the example of FIG. 1, the control unit 12 includes a time measuring unit 121 in order to determine whether or not this predetermined condition is met. The timer unit 121 is represented as “timer” in the example of FIG. The timer unit 121 is, for example, a timer circuit, and measures an elapsed period (that is, a charging period T11) after the generator 11 starts to output a DC voltage.
 なお制御部12は、マイクロコンピュータと記憶装置を含んでいてもよい。マイクロコンピュータは、プログラムに記述された各処理ステップ(換言すれば手順)を実行する。上記記憶装置は、例えばROM(Read Only Memory)、RAM(Random Access Memory)、書き換え可能な不揮発性メモリ(EPROM(Erasable Programmable ROM)等)、ハードディスク装置などの各種記憶装置の1つ又は複数で構成可能である。当該記憶装置は、各種の情報やデータ等を格納し、またマイクロコンピュータが実行するプログラムを格納し、また、プログラムを実行するための作業領域を提供する。なお、マイクロコンピュータは、プログラムに記述された各処理ステップに対応する各種手段として機能するとも把握でき、あるいは、各処理ステップに対応する各種機能を実現するとも把握できる。また、制御部12はこれに限らず、制御部12によって実行される各種手順、あるいは実現される各種手段又は各種機能の一部又は全部をハードウェアで実現しても構わない。 Note that the control unit 12 may include a microcomputer and a storage device. The microcomputer executes each processing step (in other words, a procedure) described in the program. The storage device is composed of one or more of various storage devices such as a ROM (Read Only Memory), a RAM (Random Access Memory), a rewritable nonvolatile memory (EPROM (Erasable Programmable ROM), etc.), and a hard disk device, for example. Is possible. The storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program. It can be understood that the microcomputer functions as various means corresponding to each processing step described in the program, or can realize that various functions corresponding to each processing step are realized. Further, the control unit 12 is not limited to this, and various procedures executed by the control unit 12 or various means or various functions to be realized may be realized by hardware.
 図3は充放電制御部1の動作の一例を示すフローチャートである。ステップST1にて、制御部12はバッテリ2の充電が必要かどうかを判断する。例えば制御部12は、充電の要否を示す信号を外部から受け取り、この信号に基づいて判断を行ってもよい。 FIG. 3 is a flowchart showing an example of the operation of the charge / discharge control unit 1. In step ST1, control unit 12 determines whether or not battery 2 needs to be charged. For example, the control unit 12 may receive a signal indicating whether charging is necessary from the outside and make a determination based on this signal.
 バッテリ2の充電が必要であると判断したときには、充放電制御部1は充電主体動作を実行する。まずステップST2にて、制御部12は発電機11に直流電圧を出力させて、バッテリ2を充電する。図3のステップST2では、この動作を「発電機が発電」と表記している。以下でも、発電機11の直流電圧の出力を発電機11の発電として説明することがある。また計時部121は発電機11の発電の開始からの第1経過期間(充電期間T11に相当)を計時する。次にステップST3にて、この第1経過期間が第1所定期間Tref11よりも長いか否かを判断する。第1所定期間Tref11は例えば制御部12の記憶部に記憶されていてもよい。第1経過期間と第1所定期間Tref11との大小の判断は例えば比較器を用いて行うことができる。この点は以下でも同様であるので、繰り返しの説明を避ける。 When it is determined that the battery 2 needs to be charged, the charging / discharging control unit 1 executes a charge main operation. First, in step ST <b> 2, the control unit 12 charges the battery 2 by causing the generator 11 to output a DC voltage. In step ST <b> 2 of FIG. 3, this operation is described as “the generator generates power”. Hereinafter, the output of the DC voltage of the generator 11 may be described as the power generation of the generator 11. The time measuring unit 121 measures the first elapsed period (corresponding to the charging period T11) from the start of power generation by the generator 11. Next, in step ST3, it is determined whether or not the first elapsed period is longer than the first predetermined period Tref11. The first predetermined period Tref11 may be stored in the storage unit of the control unit 12, for example. Whether the first elapsed period and the first predetermined period Tref11 are large or small can be determined using, for example, a comparator. Since this point is the same in the following, repeated explanation is avoided.
 第1経過期間が第1所定期間Tref11よりも短いと判断すると、ステップST3を再び実行する。一方で、第1経過期間が第1所定期間Tref11よりも長いと判断したときに、ステップST4にて制御部12は発電機11に直流電圧の出力を停止させる。これにより、バッテリ2は車両負荷3へと放電する。図3のステップST4では、この動作を「発電機が停止」と表記している。以下でもこの動作を発電機の停止として説明することがある。また計時部121は発電機11の発電の停止からの第2経過期間(放電期間T12に相当)を計時する。次にステップST6にて、第2経過期間が第2所定期間Tref12(<Tref11)よりも長いか否かを判断する。第2所定期間Tref12は例えば数秒以下である。第2経過期間が第2所定期間Tref12よりも短いと判断したときには、ステップST5を再び実行する。 If it is determined that the first elapsed period is shorter than the first predetermined period Tref11, step ST3 is executed again. On the other hand, when it is determined that the first elapsed period is longer than the first predetermined period Tref11, the control unit 12 causes the generator 11 to stop outputting the DC voltage in step ST4. As a result, the battery 2 is discharged to the vehicle load 3. In step ST4 of FIG. 3, this operation is described as “the generator is stopped”. Hereinafter, this operation may be described as stopping the generator. The time measuring unit 121 measures the second elapsed period (corresponding to the discharge period T12) from the stop of power generation by the generator 11. Next, in step ST6, it is determined whether or not the second elapsed period is longer than a second predetermined period Tref12 (<Tref11). The second predetermined period Tref12 is, for example, several seconds or less. When it is determined that the second elapsed period is shorter than the second predetermined period Tref12, step ST5 is executed again.
 第2経過期間が第2所定期間Tref12よりも長いと判断したときには、ステップST6にて、制御部12はエンジンが停止しているか否かを判断する。例えば制御部12はエンジンが動作しているか否かを示す信号を外部から受け取ることで、この判断を行う。 When it is determined that the second elapsed period is longer than the second predetermined period Tref12, in step ST6, the control unit 12 determines whether or not the engine is stopped. For example, the control unit 12 makes this determination by receiving a signal indicating whether or not the engine is operating from the outside.
 エンジンが停止していないと判断したときには、再びステップST1を実行する。このステップST1にて再び充電が必要と判断されると、ステップST2にて再びバッテリ2の充電が行われることになる。ステップST6にてエンジンが停止していると判断したときには、制御部12は発電機11の制御を終了する。 When it is determined that the engine is not stopped, step ST1 is executed again. If it is determined that charging is necessary again in step ST1, the battery 2 is charged again in step ST2. When it is determined in step ST6 that the engine is stopped, the control unit 12 ends the control of the generator 11.
 なお図3の例示では、ステップST1にて充電が不要と判断されたときには、ステップST7~ST10を実行するものの、これらについては後に述べる。 In the example of FIG. 3, when it is determined in step ST1 that charging is unnecessary, steps ST7 to ST10 are executed, which will be described later.
 図4は、充電主体動作におけるバッテリ2の電圧V、電流Iおよび内部抵抗Rの一例を概略的に示す図である。なお図4では、バッテリ2へ流れ込む電流Iを正と定義し、バッテリ2から放出する電流Iを負と定義している。時点t1において、制御部12はバッテリ2への充電を開始すべく、発電機11に直流電圧を出力させる。図4の例示では、バッテリ2を定電流で充電する場合が例示されており、電流Iは時点t1から時点t2までの充電期間T11において略一定の正の値をとる。 FIG. 4 is a diagram schematically showing an example of the voltage V, current I and internal resistance R of the battery 2 in the charging main operation. In FIG. 4, the current I flowing into the battery 2 is defined as positive, and the current I discharged from the battery 2 is defined as negative. At time t1, the control unit 12 causes the generator 11 to output a DC voltage in order to start charging the battery 2. In the example of FIG. 4, the case where the battery 2 is charged with a constant current is illustrated, and the current I takes a substantially constant positive value in the charging period T <b> 11 from time t <b> 1 to time t <b> 2.
 このバッテリ2の充電に伴って、図4に例示するように、バッテリ2の内部抵抗Rは時間の経過と共に増大する。またバッテリ2の電圧Vも時間の経過と共に増大する。これは次の理由による。即ち、充電時にはバッテリ2の電圧Vは、内部抵抗Rで生じる電圧降下とバッテリ2の開放電圧との和で示される。また充電時にはバッテリ2の開放電圧も時間の経過と共に増大する。このように、内部抵抗Rも開放電圧も時間の経過と共に増大するので、電圧Vも時間の経過と共に増大するのである。 As the battery 2 is charged, the internal resistance R of the battery 2 increases with time, as illustrated in FIG. The voltage V of the battery 2 also increases with time. This is due to the following reason. That is, during charging, the voltage V of the battery 2 is represented by the sum of the voltage drop caused by the internal resistance R and the open voltage of the battery 2. In addition, the open voltage of the battery 2 increases with time during charging. Thus, since the internal resistance R and the open circuit voltage increase with the passage of time, the voltage V also increases with the passage of time.
 時点t2では電流Iが正から負に遷移する。これは、充電期間T11が第1所定期間Tref11を超えることによって、制御部12が発電機11による直流電圧の出力を停止するからである。これにより、時点t2においてバッテリ2は放電を開始する。よって電流Iは負となるのである。放電時の電流Iは車両負荷3に応じた値である。 At time t2, the current I changes from positive to negative. This is because the control unit 12 stops the output of the DC voltage by the generator 11 when the charging period T11 exceeds the first predetermined period Tref11. Thereby, the battery 2 starts discharging at the time t2. Therefore, the current I is negative. The current I at the time of discharge is a value corresponding to the vehicle load 3.
 またバッテリ2の放電に伴って、電圧Vは時点t2において急峻に低下する。なぜなら放電時には、バッテリ2から電流Iが放出するので、内部抵抗Rにおける電圧降下の極性が充電時とは反対となるからである。つまり電圧Vは、バッテリ2の開放電圧から、内部抵抗Rにおける電圧降下を減算して求められることになる。 Also, as the battery 2 is discharged, the voltage V decreases sharply at time t2. This is because the current I is discharged from the battery 2 during discharging, and the polarity of the voltage drop in the internal resistance R is opposite to that during charging. That is, the voltage V is obtained by subtracting the voltage drop in the internal resistance R from the open voltage of the battery 2.
 時点t2から時点t3までの放電期間T12において、バッテリ2は放電する。この放電に伴って内部抵抗Rは再び時間の経過共に増大する。またバッテリ2の放電に伴って開放電圧も時間の経過と共に低下する。したがって、電圧Vも放電期間T12において時間の経過と共に低下する。 In the discharge period T12 from time t2 to time t3, the battery 2 is discharged. Accompanying this discharge, the internal resistance R increases again with time. As the battery 2 is discharged, the open circuit voltage also decreases with time. Therefore, the voltage V also decreases with time in the discharge period T12.
 時点t3では、電流Iが再び負から正に遷移する。これは、時点t3において放電期間T12が第2所定期間Tref12を超えることによって、制御部12が発電機11に再び直流電圧を出力させるからである。これにより、時点t3においてバッテリ2が再び充電される。よって、内部抵抗Rは時点t3において急峻に低減した後、再び時間の経過と共に増大する。同様に、電圧Vも時点t3において急峻に増大した後、再び時間の経過と共に増大する。以後、バッテリ2の充電が不要になるまで同様の動作を繰り返す。 At time t3, the current I again changes from negative to positive. This is because the control unit 12 causes the generator 11 to output a DC voltage again when the discharge period T12 exceeds the second predetermined period Tref12 at time t3. Thereby, the battery 2 is charged again at the time t3. Therefore, the internal resistance R sharply decreases at time t3 and then increases again with time. Similarly, the voltage V increases sharply at time t3 and then increases again with time. Thereafter, the same operation is repeated until the charging of the battery 2 becomes unnecessary.
 以上のように、バッテリ2の充電が所定の充電期間T11に亘って続いた後、放電期間T12においてバッテリ2を放電させ、その後、再びバッテリ2を充電させる。これによれば、バッテリ2の放電の度にバッテリ2の内部抵抗Rを小さい値に初期化することができる。よっていずれの充電期間T11においても、内部抵抗Rはこの小さい値から時間の経過と共に増大する。 As described above, after the charging of the battery 2 continues for the predetermined charging period T11, the battery 2 is discharged in the discharging period T12, and then the battery 2 is charged again. According to this, each time the battery 2 is discharged, the internal resistance R of the battery 2 can be initialized to a small value. Therefore, in any charging period T11, the internal resistance R increases from this small value with the passage of time.
 よって、バッテリ2を放電させることなく連続して充電を行う場合に比べて、充電時における内部抵抗Rの増大を抑制することができる。図4の例示では、バッテリ2を放電させることなく連続して充電を行う連続充電における内部抵抗Rが二点鎖線で示されている。図4に例示するように、この連続充電による内部抵抗Rは時間の経過と共に増大し続けるので、時点t2以降には本充電方法による内部抵抗Rよりも高くなる。 Therefore, an increase in the internal resistance R during charging can be suppressed as compared with the case where charging is performed continuously without discharging the battery 2. In the illustration of FIG. 4, the internal resistance R in continuous charging in which charging is performed continuously without discharging the battery 2 is indicated by a two-dot chain line. As illustrated in FIG. 4, the internal resistance R due to the continuous charging continues to increase with the passage of time, and therefore becomes higher than the internal resistance R according to the present charging method after time t2.
 また充電期間T11において内部抵抗Rで生じる損失は、定電流であれば、電流Iの二乗と内部抵抗Rとの積の時間積分で表される。本充電方法によれば、図4に例示するように、2回目以降の充電期間T11において当該時間積分を大幅に低減することができる。よって高い効率でバッテリ2を充電することができる。 In addition, the loss caused by the internal resistance R in the charging period T11 is represented by the time integration of the product of the square of the current I and the internal resistance R if the current is constant. According to this charging method, as illustrated in FIG. 4, the time integration can be significantly reduced in the second and subsequent charging periods T <b> 11. Therefore, the battery 2 can be charged with high efficiency.
 また定電圧であれば、内部抵抗Rの増大により電流Iが低減する。バッテリ2の充電率は電流Iの積分に基づいて増大するので、電流Iの低減によって充電速度が低下する。他方、本充電方法によれば、2回目以降の充電期間T11において内部抵抗Rを大幅に低減することができる。よって高い充電速度でバッテリ2を充電することができる。 If the voltage is constant, the current I is reduced by increasing the internal resistance R. Since the charging rate of the battery 2 increases based on the integration of the current I, the charging speed decreases as the current I decreases. On the other hand, according to the present charging method, the internal resistance R can be greatly reduced in the second and subsequent charging periods T11. Therefore, the battery 2 can be charged at a high charging speed.
 しかも放電期間T12においてバッテリ2は車両負荷3へと放電する。したがって、例えばバッテリ2を短絡させて放電する場合に比べて、バッテリ2の電力を有効に利用することができる。 Moreover, the battery 2 is discharged to the vehicle load 3 in the discharge period T12. Therefore, compared with the case where the battery 2 is short-circuited and discharged, the power of the battery 2 can be used more effectively.
 なお内部抵抗Rの低下には、非常に短い放電で足りるので、充電主体動作において放電期間T12は短く設定されてよい。例えば上述のように、放電期間T12は充電期間T11に比して短く、数秒以下である。 In addition, since a very short discharge is sufficient for the reduction of the internal resistance R, the discharge period T12 may be set short in the charge-main operation. For example, as described above, the discharge period T12 is shorter than the charge period T11 and is several seconds or less.
 <2-2.放電主体動作>
 放電主体動作も充電主体動作と同様である。つまりバッテリ2を車両負荷3へと放電させた状態で所定の条件が成立したときに、バッテリ2の充電を行った後、再びバッテリ2を放電させる。所定の条件としては、例えば放電期間が第3所定期間よりも長いことを採用できる。
<2-2. Discharge main operation>
The discharge main operation is the same as the charge main operation. That is, when a predetermined condition is satisfied with the battery 2 discharged to the vehicle load 3, the battery 2 is charged and then discharged again. As the predetermined condition, for example, it can be adopted that the discharge period is longer than the third predetermined period.
 図3を参照して、ステップST1において、充電が不要であると判断したときに、充放電制御部1は放電主体動作を実行する。まずステップST7にて、制御部12は発電機11に直流電圧の出力を停止させる。これにより、バッテリ2は車両負荷3への放電を開始する。また計時部121がステップST7における発電機11の発電の停止からの第3経過期間(放電時間に相当)を計時する。次にステップST8にて制御部12は第3経過期間が第3所定期間Tref21よりも長いか否かを判断する。第3経過期間が第3所定期間Tref21よりも短いと判断したときには、再びステップST8を実行する。 Referring to FIG. 3, when it is determined in step ST <b> 1 that charging is not necessary, the charge / discharge control unit 1 performs a discharge main operation. First, in step ST7, the controller 12 causes the generator 11 to stop outputting DC voltage. Thereby, the battery 2 starts discharging to the vehicle load 3. Further, the timer 121 measures the third elapsed period (corresponding to the discharge time) from the stop of the power generation of the generator 11 in step ST7. Next, in step ST8, the control unit 12 determines whether or not the third elapsed period is longer than the third predetermined period Tref21. When it is determined that the third elapsed period is shorter than the third predetermined period Tref21, step ST8 is executed again.
 第3経過期間が第3所定期間Tref21よりも長いと判断したときには、ステップST9にて、制御部12は発電機11に直流電圧を出力させて、バッテリ2を充電する。また計時部121はステップST9における発電機11の発電の開始からの第4経過期間(充電期間に相当)を計時する。次にステップST10にて、制御部12は第4経過期間が第4所定期間Tref22(<Tref21)よりも長いか否かを判断する。第4所定期間Tref22は例えば数秒以下に設定される。第4経過期間が第4所定期間Tref22よりも短いと判断したときには、再びステップST10を実行する。 When it is determined that the third elapsed period is longer than the third predetermined period Tref21, in step ST9, the control unit 12 causes the generator 11 to output a DC voltage to charge the battery 2. The time measuring unit 121 measures the fourth elapsed period (corresponding to the charging period) from the start of power generation by the generator 11 in step ST9. Next, in step ST10, the control unit 12 determines whether or not the fourth elapsed period is longer than the fourth predetermined period Tref22 (<Tref21). The fourth predetermined period Tref22 is set to several seconds or less, for example. When it is determined that the fourth elapsed period is shorter than the fourth predetermined period Tref22, step ST10 is executed again.
 第4経過期間が第4所定期間Tref22よりも長いと判断したときには、ステップST6を実行する。よってステップST6,ST1をこの順で経由してステップST7が実行されると、ステップST7にてバッテリ2が再び放電する。 When it is determined that the fourth elapsed period is longer than the fourth predetermined period Tref22, step ST6 is executed. Therefore, when step ST7 is executed via steps ST6 and ST1 in this order, battery 2 is discharged again at step ST7.
 図5は、放電主体動作におけるバッテリ2の電圧V、電流Iおよび内部抵抗Rの一例を概略的に示す図である。なお図5でも、バッテリ2へと流れ込む電流Iを正と定義し、バッテリ2から放出する電流Iを負と定義している。図5に例示するように、放電期間T21において電流Iが負である。これは放電期間T21において制御部12が発電機11を停止しており、バッテリ2が車両負荷3へと放電しているからである。そして、放電期間T21の次の充電期間T22において電流Iが正となる。これは、放電期間T12が第3所定期間Tref21を超えることによって、制御部12が、その放電期間T12の次の充電期間T22において、発電機11に直流電圧を出力させるからである。これにより、充電期間T22においてバッテリ2が充電される。 FIG. 5 is a diagram schematically showing an example of the voltage V, current I and internal resistance R of the battery 2 in the discharge main operation. In FIG. 5, the current I flowing into the battery 2 is defined as positive, and the current I discharged from the battery 2 is defined as negative. As illustrated in FIG. 5, the current I is negative in the discharge period T21. This is because the control unit 12 stops the generator 11 during the discharge period T <b> 21 and the battery 2 is discharged to the vehicle load 3. Then, the current I becomes positive in the charging period T22 next to the discharging period T21. This is because when the discharging period T12 exceeds the third predetermined period Tref21, the control unit 12 causes the generator 11 to output a DC voltage in the charging period T22 next to the discharging period T12. Thereby, the battery 2 is charged in the charging period T22.
 充電期間T22は例えば放電期間T21よりも短く、例えば数秒以下に設定される。放電期間T21の次には再び充電期間T22において電流Iが負となる。これは、充電期間T22が第4所定期間Tref22を超えることによって、制御部12が発電機11の発電を停止して、バッテリ2に車両負荷3への放電を行わせるからである。以後、同様の動作が繰り返される。 The charging period T22 is shorter than the discharging period T21, for example, and is set to several seconds or less, for example. Next to the discharge period T21, the current I becomes negative again in the charge period T22. This is because when the charging period T22 exceeds the fourth predetermined period Tref22, the control unit 12 stops the power generation of the generator 11 and causes the battery 2 to discharge the vehicle load 3. Thereafter, the same operation is repeated.
 これにより、図5に例示するように、放電期間T21と充電期間T22との境界において内部抵抗Rが急峻に低下する。よって、いずれの放電期間T21においても、内部抵抗Rは小さい値から時間の経過と共に増大する。よって、充電期間T22なしにバッテリ2を連続して放電させる場合に比べて、放電時の内部抵抗Rの増大を抑制することができる。しかもこの放電方法によれば、充電の度に内部抵抗Rを小さい値にするので、当該時間積分を大幅に低減することができる。よって高い効率で車両負荷3へ給電することができる。 Thereby, as illustrated in FIG. 5, the internal resistance R sharply decreases at the boundary between the discharging period T21 and the charging period T22. Therefore, in any discharge period T21, the internal resistance R increases from a small value with the passage of time. Therefore, an increase in the internal resistance R during discharging can be suppressed as compared with the case where the battery 2 is continuously discharged without the charging period T22. In addition, according to this discharging method, the internal resistance R is made small every time the battery is charged, so that the time integration can be greatly reduced. Therefore, power can be supplied to the vehicle load 3 with high efficiency.
 なお内部抵抗Rの低下には、非常に短い充電で足りるので、放電主体動作において充電期間T22は短く設定されてよい。例えば上述のように、充電期間T22は放電期間T21に比して短く、数秒以下である。 In addition, since a very short charge is sufficient for the decrease in the internal resistance R, the charging period T22 may be set short in the discharge main operation. For example, as described above, the charging period T22 is shorter than the discharging period T21 and is several seconds or less.
 <3.充放電動作のタイミング>
 制御部12は上述の充放電動作を車両の走行中にも行う。例えばステップST2において、車両が減速しているときに、バッテリ2の充電が必要であると判断してもよい。この車両の減速は例えばユーザによる加速についての操作(例えばアクセルの開度)の情報が制御部12へと入力されることで、制御部12が認識できる。
<3. Timing of charge / discharge operation>
The controller 12 performs the above charging / discharging operation even while the vehicle is traveling. For example, in step ST2, when the vehicle is decelerating, it may be determined that the battery 2 needs to be charged. This deceleration of the vehicle can be recognized by the control unit 12 when, for example, information on an acceleration operation by the user (for example, accelerator opening) is input to the control unit 12.
 これにより、走行中における充放電に伴う内部抵抗Rの増大を抑制し、効率のよい充放電を行うことができる。ひいては燃費の向上に資する。 Thereby, it is possible to suppress an increase in the internal resistance R accompanying charging / discharging during traveling and to perform efficient charging / discharging. As a result, it contributes to improvement of fuel consumption.
 <4.所定条件の他の例>
 上述の例では、充電主体動作において、充電期間T11が第1所定期間Tref11を超えたときに、バッテリ2を放電させた。しかるに、充電中のバッテリ2の内部抵抗Rが所定の閾値Rrefよりも大きいときに、バッテリ2を放電させてもよい。同様に、放電主体動作においては、放電中のバッテリ2の内部抵抗Rが所定の閾値Rrefよりも大きいときに、バッテリ2を充電してもよい。つまり充放電を切り替えるための所定の条件として、内部抵抗Rが所定の閾値Rrefよりも大きいことを採用してもよい。
<4. Other examples of predetermined conditions>
In the above-described example, in the charging main operation, the battery 2 is discharged when the charging period T11 exceeds the first predetermined period Tref11. However, when the internal resistance R of the battery 2 being charged is larger than a predetermined threshold value Rref, the battery 2 may be discharged. Similarly, in the discharge main operation, the battery 2 may be charged when the internal resistance R of the battery 2 being discharged is larger than a predetermined threshold value Rref. That is, as a predetermined condition for switching between charge and discharge, it may be adopted that the internal resistance R is larger than a predetermined threshold value Rref.
 図6はかかる充放電方法を行うための車載用電源システム100の構成の一例を概略的に示す図である。図1と比較して、充放電制御部1は内部抵抗検出部13を更に備えている。内部抵抗検出部13はバッテリ2の内部抵抗Rを検出する。例えば次のようにして内部抵抗Rを検出する。内部抵抗検出部13は、バッテリ2を流れる電流Iを検出する電流検出部と、バッテリ2の電圧Vを検出する電圧検出部とを含んでいる。内部抵抗検出部13は電流Iの積分に基づいてバッテリ2の開放電圧Voを算出する。そして内部抵抗検出部13は、算出した開放電圧Voと、検出される電流Iおよび電圧Vとに基づいて、内部抵抗Rを算出する。具体的には、R=|V-Vo|/|I|を用いて内部抵抗Rを算出する。内部抵抗検出部13は、得られた内部抵抗Rを制御部12へと出力する。 FIG. 6 is a diagram schematically showing an example of the configuration of the in-vehicle power supply system 100 for performing the charging / discharging method. Compared to FIG. 1, the charge / discharge control unit 1 further includes an internal resistance detection unit 13. The internal resistance detector 13 detects the internal resistance R of the battery 2. For example, the internal resistance R is detected as follows. The internal resistance detection unit 13 includes a current detection unit that detects the current I flowing through the battery 2 and a voltage detection unit that detects the voltage V of the battery 2. The internal resistance detector 13 calculates the open circuit voltage Vo of the battery 2 based on the integration of the current I. Then, the internal resistance detector 13 calculates the internal resistance R based on the calculated open circuit voltage Vo and the detected current I and voltage V. Specifically, the internal resistance R is calculated using R = | V−Vo | / | I |. The internal resistance detection unit 13 outputs the obtained internal resistance R to the control unit 12.
 図7は充放電制御部1の動作の一例を示すフローチャートである。図7のフローチャートでは、図3と比較して、ステップST3,ST8の替わりにステップST3’,ST8’がそれぞれ実行される。ステップST3’,ST8’では、制御部12は内部抵抗検出部13から入力される内部抵抗Rが、所定の閾値Rrefよりも大きいか否かを判断する。ステップST3’にて否定的な判断がなされると、ステップST3’を再び実行し、ステップST8’にて否定的な判断がなされると、ステップST8’を再び実行する。ステップST3’にて肯定的な判断がなされると、ステップST4を実行し、ステップST8’にて肯定的な判断がなされると、ステップST9を実行する。 FIG. 7 is a flowchart showing an example of the operation of the charge / discharge control unit 1. In the flowchart of FIG. 7, as compared with FIG. 3, steps ST3 'and ST8' are executed instead of steps ST3 and ST8. In steps ST3 'and ST8', the control unit 12 determines whether or not the internal resistance R input from the internal resistance detection unit 13 is greater than a predetermined threshold value Rref. If a negative determination is made in step ST3 ', step ST3' is executed again, and if a negative determination is made in step ST8 ', step ST8' is executed again. If a positive determination is made in step ST3 ', step ST4 is executed, and if a positive determination is made in step ST8', step ST9 is executed.
 以上のように本充放電方法によれば、内部抵抗Rが閾値Rrefを超えることを契機として、その内部抵抗Rを低減する動作が行われる。つまり充電主体動作の充電中に内部抵抗Rが閾値Rrefを超えれば、放電を行った後、再び充電を行い、放電主体動作の放電中に内部抵抗Rが閾値Rrefを超えれば、充電を行った後に、再び放電を行う。これによれば、内部抵抗Rが閾値Rrefよりも大きく増大することをより確実に回避することができる。 As described above, according to the present charging / discharging method, when the internal resistance R exceeds the threshold value Rref, an operation for reducing the internal resistance R is performed. That is, if the internal resistance R exceeds the threshold value Rref during the charge-based operation, the battery is discharged and then charged again. If the internal resistance R exceeds the threshold value Rref during the discharge-based operation, the battery is charged. Later, discharging is performed again. According to this, it is possible to more reliably avoid the internal resistance R from being greatly increased beyond the threshold value Rref.
 なお内部抵抗検出部13はバッテリ2の近傍に配置されることが多い。よって内部抵抗検出部13は配線(例えばワイヤハーネス)で制御部12に接続され、当該配線を介して内部抵抗Rを制御部12へと出力する。この場合、作業員による制御部12と内部抵抗検出部13との間の配索作業が必要となる。 Note that the internal resistance detector 13 is often arranged in the vicinity of the battery 2. Therefore, the internal resistance detection unit 13 is connected to the control unit 12 by wiring (for example, a wire harness), and outputs the internal resistance R to the control unit 12 through the wiring. In this case, the wiring work between the control part 12 and the internal resistance detection part 13 by an operator is needed.
 一方で、図1の例示では、計時部121は制御部12に含まれており、ワイヤハーネスを必要としなくてもよい。この場合、作業員によるワイヤハーネスの配索作業が不要となり、製造が容易になる。 On the other hand, in the illustration of FIG. 1, the time measuring unit 121 is included in the control unit 12 and does not need a wire harness. In this case, the wiring harness is not required to be routed by an operator, and the manufacturing is facilitated.
 <5.変形例>
 図8は、車載用電源システム100の構成の一例を概略的に示す図である。図1と比較して、充放電制御部1は発電機11と制御部12とDC/DCコンバータ14とを示している。DC/DCコンバータ14は発電機11とバッテリ2との間に接続される。またこのDC/DCコンバータ14は車両負荷3とバッテリ2との間にも位置する。つまりバッテリ2はDC/DCコンバータ14を介して発電機11から充電され、DC/DCコンバータ14を介して車両負荷3へと給電する。
<5. Modification>
FIG. 8 is a diagram schematically showing an example of the configuration of the in-vehicle power supply system 100. Compared with FIG. 1, the charge / discharge control unit 1 shows a generator 11, a control unit 12, and a DC / DC converter 14. The DC / DC converter 14 is connected between the generator 11 and the battery 2. The DC / DC converter 14 is also located between the vehicle load 3 and the battery 2. That is, the battery 2 is charged from the generator 11 via the DC / DC converter 14 and supplies power to the vehicle load 3 via the DC / DC converter 14.
 DC/DCコンバータ14は双方向のコンバータである。DC/DCコンバータ14は制御部12によって制御される。例えばバッテリ2の充電時には、発電機11の直流電圧を適切な充電電圧に変換して、その充電電圧をバッテリ2へと出力する。一方で、バッテリ2の放電時には、バッテリ2からの電圧を車両負荷3にとって適切な直流電圧に変換して、この直流電圧を車両負荷3へと出力する。 The DC / DC converter 14 is a bidirectional converter. The DC / DC converter 14 is controlled by the control unit 12. For example, when charging the battery 2, the DC voltage of the generator 11 is converted into an appropriate charging voltage, and the charging voltage is output to the battery 2. On the other hand, when the battery 2 is discharged, the voltage from the battery 2 is converted into a DC voltage appropriate for the vehicle load 3, and this DC voltage is output to the vehicle load 3.
 このような車載用電源システム100においても、上述と同様の充放電動作が行われる。即ち、充電主体動作においては、充電中に間欠的に充電を停止して放電を行うことで、都度、内部抵抗Rを小さい値に初期化し、放電主体動作においては、放電中に間欠的に放電を停止して充電を行うことで、都度、内部抵抗Rを小さい値に初期化する。ただし制御部12はその充電/放電に応じて、上述のようにDC/DCコンバータ14を制御する。例えば充電期間T11,T22においては、DC/DCコンバータ14は発電機11の直流電圧を変換して、変換後の充電電圧をバッテリ2へと出力し、放電期間T12,T21においては、DC/DCコンバータ14はバッテリ2の電圧を変換して、変換後の直流電圧を車両負荷3へと出力する。 In such an in-vehicle power supply system 100, the same charge / discharge operation as described above is performed. That is, in charge-based operation, the internal resistance R is initialized to a small value each time by intermittently stopping charging during charging and discharging, and in discharging-oriented operation, discharging is intermittently performed during discharging. The internal resistance R is initialized to a small value each time by stopping and charging. However, the control part 12 controls the DC / DC converter 14 as mentioned above according to the charge / discharge. For example, in the charging periods T11 and T22, the DC / DC converter 14 converts the DC voltage of the generator 11 and outputs the converted charging voltage to the battery 2. In the discharging periods T12 and T21, the DC / DC converter 14 Converter 14 converts the voltage of battery 2 and outputs the converted DC voltage to vehicle load 3.
 これによっても、充電主体動作における充電中の内部抵抗Rの増大を抑制でき、放電主体動作における放電中の内部抵抗Rの増大を抑制できる。よって効率的にバッテリ2を充電でき、また効率的に車両負荷3へと給電することができる。 Also by this, it is possible to suppress the increase in the internal resistance R during charging in the charge main operation, and it is possible to suppress the increase in the internal resistance R during discharge in the discharge main operation. Therefore, the battery 2 can be efficiently charged, and power can be efficiently supplied to the vehicle load 3.
 上記各実施形態及び各変形例で説明した各構成は、相互に矛盾しない限り適宜組み合わせることができる。 The configurations described in the above embodiments and modifications can be combined as appropriate as long as they do not contradict each other.
 以上のようにこの発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail as described above, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
 1 充放電制御部
 2 バッテリ
 3 車両負荷
 10 車載用電源装置
 13 内部抵抗検出部
 100 車載用電源システム
 121 計時部
DESCRIPTION OF SYMBOLS 1 Charge / discharge control part 2 Battery 3 Vehicle load 10 In-vehicle power supply device 13 Internal resistance detection part 100 In-vehicle power supply system 121 Timekeeping part

Claims (6)

  1.  車両に搭載される車載用電源装置であって、
     バッテリと、
     前記バッテリの充電と前記バッテリの放電とを制御する充放電制御部と
    を備え、
     前記充放電制御部は前記充電および前記放電の一方を行う状態で、所定条件が成立したときに、前記充電および前記放電の他方を行った後に前記一方を再び行う充放電動作を行う、車載用電源装置。
    An in-vehicle power supply device mounted on a vehicle,
    Battery,
    A charge / discharge control unit for controlling charging of the battery and discharging of the battery;
    The charging / discharging control unit performs a charging / discharging operation in which one of the charging and discharging is performed again after performing the other of the charging and discharging when a predetermined condition is satisfied in a state in which the charging and discharging are performed. Power supply.
  2.  請求項1に記載の車載用電源装置であって、
     前記充放電制御部は、期間を計時する計時部を備え、
     前記所定条件は、前記充電および前記放電の前記一方を連続して行う期間が所定期間よりも長いことである、車載用電源装置。
    The in-vehicle power supply device according to claim 1,
    The charge / discharge control unit includes a time measuring unit for measuring a period,
    The predetermined condition is an in-vehicle power supply device in which a period during which the one of the charging and the discharging is continuously performed is longer than a predetermined period.
  3.  請求項1に記載の車載用電源装置であって、
     前記充放電制御部は、前記バッテリの内部抵抗を検出する内部抵抗検出部を備え、
     前記所定条件は、前記内部抵抗が所定の閾値よりも大きいことである、車載用電源装置。
    The in-vehicle power supply device according to claim 1,
    The charge / discharge control unit includes an internal resistance detection unit that detects an internal resistance of the battery,
    The on-vehicle power supply device, wherein the predetermined condition is that the internal resistance is larger than a predetermined threshold.
  4.  請求項1から請求項3のいずれか1項に記載の車載用電源装置であって、
     前記充放電制御部は、前記車両の走行中に前記充放電動作を行う、車載用電源装置。
    The in-vehicle power supply device according to any one of claims 1 to 3,
    The charging / discharging control unit is an in-vehicle power supply device that performs the charging / discharging operation while the vehicle is running.
  5.  請求項1から請求項4のいずれか1項に記載の車載用電源装置であって、
     前記充電および前記放電の前記他方を行う期間は、前記充電および前記放電の前記一方を行う期間よりも短い、車載用電源装置。
    The vehicle-mounted power supply device according to any one of claims 1 to 4,
    The on-vehicle power supply device, wherein a period during which the other of the charging and discharging is performed is shorter than a period during which the one of the charging and discharging is performed.
  6.  請求項1から請求項5のいずれか1項に記載の車載用電源装置と、
     前記バッテリから電力を受け取る車両負荷と
    を備える、車載用電源システム。
    The in-vehicle power supply device according to any one of claims 1 to 5,
    An in-vehicle power supply system comprising: a vehicle load that receives electric power from the battery.
PCT/JP2016/085202 2015-12-04 2016-11-28 On-board power supply device and on-board power supply system WO2017094668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-237318 2015-12-04
JP2015237318A JP2017100644A (en) 2015-12-04 2015-12-04 On-board power supply device and on-board power supply system

Publications (1)

Publication Number Publication Date
WO2017094668A1 true WO2017094668A1 (en) 2017-06-08

Family

ID=58796794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085202 WO2017094668A1 (en) 2015-12-04 2016-11-28 On-board power supply device and on-board power supply system

Country Status (2)

Country Link
JP (1) JP2017100644A (en)
WO (1) WO2017094668A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130824A1 (en) * 2020-12-18 2022-06-23 ウシオ電機株式会社 Battery system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243048A (en) * 2002-02-19 2003-08-29 Nippon Soken Inc Judging method for deterioration of secondary battery
JP2006338944A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Battery control device
JP2006352970A (en) * 2005-06-14 2006-12-28 Nissan Motor Co Ltd Controller of power supply device
JP2010045902A (en) * 2008-08-11 2010-02-25 Seishiro Munehira Switching converter and pulse generation circuit
JP2011151943A (en) * 2010-01-21 2011-08-04 Toyota Motor Corp Secondary battery system, and hybrid vehicle
JP2012075298A (en) * 2010-09-30 2012-04-12 Hitachi Ltd Secondary battery system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243048A (en) * 2002-02-19 2003-08-29 Nippon Soken Inc Judging method for deterioration of secondary battery
JP2006338944A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Battery control device
JP2006352970A (en) * 2005-06-14 2006-12-28 Nissan Motor Co Ltd Controller of power supply device
JP2010045902A (en) * 2008-08-11 2010-02-25 Seishiro Munehira Switching converter and pulse generation circuit
JP2011151943A (en) * 2010-01-21 2011-08-04 Toyota Motor Corp Secondary battery system, and hybrid vehicle
JP2012075298A (en) * 2010-09-30 2012-04-12 Hitachi Ltd Secondary battery system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130824A1 (en) * 2020-12-18 2022-06-23 ウシオ電機株式会社 Battery system

Also Published As

Publication number Publication date
JP2017100644A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
US10308119B2 (en) Vehicle power supply control apparatus
US9533584B2 (en) Power supply degradation determination apparatus
US20150336474A1 (en) Vehicle power supply apparatus and vehicle power regeneration system
JP2018133914A (en) Vehicle power supply system
US8655574B2 (en) Idling stop device, engine start system, and engine start method
JP6848770B2 (en) In-vehicle power control system
JP6406495B2 (en) Battery system for vehicles
JP4936017B2 (en) Battery temperature rise control device
US9014942B2 (en) Idling stop device and idling stop control method
US9083202B2 (en) Alternator control for battery charging
JP6084667B2 (en) Supply of rising voltage using transient operation
JP6577981B2 (en) Power system
WO2017043311A1 (en) On-vehicle power source apparatus
JP6131533B2 (en) Vehicle power supply control method and apparatus
WO2017094668A1 (en) On-board power supply device and on-board power supply system
WO2017043295A1 (en) Power supply device for vehicle
JP5661166B1 (en) Vehicle charging system
JP2016137803A (en) Power supply device for automobile and method for controlling power supply device for automobile
JP2018082579A (en) Controller, on-vehicle device, control method and charge and discharge circuit
JP2017123748A (en) On-vehicle power supply apparatus and on-vehicle power supply system
JP2016163526A (en) Power control device
JP2017109690A (en) On-vehicle power supply device and on-vehicle power supply system
JP5326333B2 (en) Vehicle power supply system
JP2017011944A (en) Power generation control device of alternator
JP4893434B2 (en) Vehicle generator control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870605

Country of ref document: EP

Kind code of ref document: A1