WO2017094219A1 - Electrode foil production method and capacitor production method - Google Patents

Electrode foil production method and capacitor production method Download PDF

Info

Publication number
WO2017094219A1
WO2017094219A1 PCT/JP2016/004722 JP2016004722W WO2017094219A1 WO 2017094219 A1 WO2017094219 A1 WO 2017094219A1 JP 2016004722 W JP2016004722 W JP 2016004722W WO 2017094219 A1 WO2017094219 A1 WO 2017094219A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal foil
electrode
masking member
foil
metal
Prior art date
Application number
PCT/JP2016/004722
Other languages
French (fr)
Japanese (ja)
Inventor
恭平 小林
之康 杉原
吉田 寛
吉村 満久
弘美 中西
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017553606A priority Critical patent/JP6814946B2/en
Priority to CN201680068470.9A priority patent/CN108292567B/en
Publication of WO2017094219A1 publication Critical patent/WO2017094219A1/en
Priority to US15/980,132 priority patent/US10655241B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/14Etching locally
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present disclosure relates to an electrode foil manufacturing method and a capacitor manufacturing method.
  • a metal foil containing a valve metal is used as the anode body of the capacitor element.
  • all or a part of the main surface of the metal foil is etched.
  • a film made of a resin is formed as a masking member on a part of the main surface of the metal foil and a part of the surface of the electrode for electrolytic etching, and the part on which the film on the main surface of the metal foil is not formed Teaches to perform the etching.
  • Patent Document 1 since resin is used as a masking member, the electrical resistance is very high compared to metal foil. Therefore, when electrolytic etching is performed, current concentrates near the boundary between the metal foil and the masking member. Due to the current concentration, the etching becomes deep near the boundary.
  • FIG. 7 shows a cross-sectional view of a metal foil 40 subjected to electrolytic etching by a conventional method using a resin.
  • the metal foil 40 has a region 40 ⁇ / b> Z that has been masked by the masking member 41 made of resin, and a region 40 ⁇ / b> Y that has not been covered by the masking member 41.
  • the region 40Y includes two etched portions 40E formed on the main surface of the region 40Y and an unetched portion 40N sandwiched between the etched portions 40E. Due to the concentration of the current, the etching portion 40E increases the etching depth in the thickness direction in the vicinity of the boundary B between the region 40Z and the region 40Y. That is, the thickness of the unetched portion 40N near the boundary B is particularly thin. Therefore, the metal foil 40 has a low mechanical strength near the boundary B. As a result, the reliability of the etched metal foil 40 (electrode foil) tends to decrease.
  • a current is passed between the metal foil and the electrode in the etching solution in a state where the electrode is opposed to at least one main surface of the metal foil containing the first metal.
  • An etching process for etching the metal foil, and a masking member is disposed between the main surface of the metal foil and the electrode so as to cover a partial region of the main surface,
  • the masking member is a conductor, and the masking member and the metal foil are electrically connected.
  • Sectional drawing which shows typically a part of electrode foil etched by the electrolytic etching process which concerns on embodiment of this indication.
  • the perspective view which shows typically a part of electrode foil etched by the electrolytic etching process which concerns on embodiment of this indication.
  • Explanatory drawing which shows typically the electrolytic etching apparatus used for the electrolytic etching process which concerns on embodiment of this indication.
  • the schematic diagram which shows the positional relationship of metal foil, a masking member, and an electrode in the electrolytic etching process which concerns on embodiment of this indication.
  • Sectional drawing which shows typically the capacitor
  • FIG. 3 is a cross-sectional view schematically showing a capacitor according to an embodiment of the present disclosure. Sectional drawing which shows typically a part of metal foil etched by the conventional electrolytic etching process.
  • a current is passed between the metal foil and the electrode in the etching solution in a state where the electrode is opposed to at least one main surface of the metal foil containing the first metal.
  • an electrolytic etching process for etching the metal foil In the electrolytic etching step, a masking member is disposed between the main surface of the metal foil and the electrode so as to cover a part of the main surface. Thereby, the area
  • a conductor is used as the masking member, and the masking member and the metal foil are electrically connected in the electrolytic etching process.
  • the term “electrically connected” means that electrons can move between the masking member and the metal foil.
  • gas may be generated from the etched portion.
  • a certain distance is required between the electrode and the metal foil.
  • the masking member is disposed so as to be in close contact with the metal foil, it is necessary to increase the thickness of the masking member to ensure the above-mentioned fixed interval.
  • a mask is provided at a position corresponding to the masking member of the electrode.
  • the conveyance method of metal foil is not restrict
  • the positioning of the masking member and the mask applied to the electrode is necessary, the operation is complicated.
  • the conductor is used as the masking member, it is not necessary to mask the electrode. Therefore, practical etching can be performed without performing complicated operations such as alignment. Furthermore, since it is possible to perform the electrolytic etching in a state where the masking member and the electrode are separated from each other, the degree of freedom in the method for transporting the metal foil is increased.
  • FIG. 1 schematically shows a part of a cross section of an electrode foil 10 subjected to electrolytic etching in the present embodiment.
  • the obtained electrode foil 10 has an etched portion 1E that gradually becomes deeper in the thickness direction starting from the vicinity of the boundary A between the region covered with the masking member 4 and the region not covered with the masking member 4. Is formed. Therefore, a decrease in mechanical strength of the electrode foil 10 in the vicinity of the boundary A of the electrode foil 10 is suppressed.
  • the thickness d of the unetched portion 1N in the first region 10E is preferably 2 ⁇ m or more.
  • the electrode foil 10 obtained by the electrolytic etching step has a first region 10E having an etched surface and a second region 10N having an unetched surface.
  • the first region 10E has an etched portion 1E on the surface and an unetched portion 1N inside.
  • the first region 10E and the second region 10N are divided in the vicinity of the boundary A.
  • FIG. 2 is a perspective view schematically showing a part of the electrode foil 10 etched by the electrolytic etching process.
  • Metal foil 1 contains the first metal.
  • the first metal include valve action metals such as titanium, tantalum, aluminum, and niobium.
  • the metal foil 1 may contain one kind or two or more kinds of the above-mentioned valve metal.
  • the metal foil 1 may contain a first metal in the form of an alloy or an intermetallic compound.
  • the thickness of the metal foil 1 is not particularly limited. The thickness of the metal foil 1 is, for example, 15 ⁇ m or more and 300 ⁇ m or less.
  • the masking member 4 is a conductor and includes a conductive material.
  • the conductive material is not particularly limited, and metals such as the above-mentioned valve action metals, silver, copper, iron, tin, lead, zinc, silica, nickel, gold, platinum, palladium, zirconium, tungsten, cobalt, molybdenum, Examples thereof include carbon materials such as graphite and carbon black, and conductive polymers.
  • the masking member 4 may contain one kind or two or more kinds of the conductive materials.
  • the masking member 4 may contain the metal in the form of an alloy or an intermetallic compound.
  • the resistance value of the masking member 4 (the electrical resistivity of the masking member ⁇ the thickness of the masking member) is, for example, the thickness of the metal foil 1. It is preferable that the resistance value in the direction is substantially the same.
  • the masking member 4 is easily adjusted so that the resistance value of the masking member 4 and the resistance value of the metal foil 1 are the same, and easily connected to the metal foil 1 as described later. May contain a metal (second metal).
  • the 2nd metal contained in the masking member 4 is not specifically limited, The same metal element as the 1st metal contained in the metal foil 1 may be sufficient, and a different metal element may be sufficient. Since the masking member 4 is a conductor, the surface of the masking member 4 facing the electrode can also be etched.
  • the method of covering a part of the main surface of the metal foil 1 with the masking member 4 is not particularly limited.
  • the material of the masking member 4 made of a resin (conductive ink) containing a conductive material may be applied to a part of the main surface of the metal foil 1.
  • the masking member 4 and the metal foil 1 are not only electrically connected but also physically connected.
  • the masking member 4 may have a sheet shape including a conductive material.
  • the sheet-like masking member 4 may be arranged so as to cover a part of the main surface of the metal foil 1.
  • the sheet-like masking member 4 examples include a metal foil containing a second metal and a conductive tape formed using a resin containing a conductive material.
  • the conductive tape may have adhesiveness.
  • the masking member 4 is metal foil (2nd metal foil).
  • thermosetting resin When a resin containing a conductive material is used as the material for the masking member 4, a thermosetting resin or a thermoplastic resin may be used as the resin.
  • thermosetting resin include urethane resin, phenol resin, epoxy resin, silicone resin, and polyimide.
  • thermoplastic resin include acrylic resin and polyester.
  • the electrical resistivity of the resin containing such a conductive material is, for example, 3.0 ⁇ 10 ⁇ 6 ⁇ / cm or more and 1.0 ⁇ 10 3 ⁇ / cm or less.
  • the thickness of the masking member 4 may be appropriately set in consideration of the distance between the electrode and the masking member 4. Especially, as for the thickness of the masking member 4, the resistance value of the masking member 4 calculated from the product of the electrical resistivity of the masking member 4 and the thickness of the masking member 4 is substantially the same as the resistance value of the metal foil 1. Thus, it is preferable to adjust.
  • the thickness of the masking member 4 is, for example, 15 ⁇ m or more and 300 ⁇ m or less.
  • the thickness of the masking member is preferably such that the masking member 4 can remain during the electrolytic etching step, for example.
  • the masking member 4 and the metal foil 1 may be physically connected or may not be physically connected. In particular, it is preferable that the masking member 4 and the metal foil 1 are physically connected. This is because the displacement of the masking member 4 can be prevented in the electrolytic etching process.
  • the adhesion between the metal foil 1 and the masking member 4 is greater than when the masking member 4 and the metal foil 1 are simply in contact with each other. It can be expected to improve.
  • the adhesion between the two is improved, the etching solution is suppressed from entering between the metal foil 1 and the masking member 4.
  • the boundary between the first region 10E and the second region 10N is suppressed from moving from the boundary A to the second region 10N side.
  • the solid electrolyte layer is assumed when a solid electrolyte layer described later is formed on the surface of the electrode foil 10. It is easy to climb up to the second region 10N side from the above position.
  • the masking member 4 is the second metal foil
  • the masking member 4 and the metal foil 1 are physically connected by welding.
  • the resistance value at the connection portion between the masking member 4 and the metal foil 1 is small, the current concentration is further easily suppressed.
  • welding the masking member 4 and the metal foil 1 physical connection and electrical connection between the metal foil 1 and the masking member 4 can be achieved simultaneously. Therefore, when manufacturing the electrode foil 10, workability
  • the masking member 4 is a conductive tape having adhesiveness
  • the masking member 4 and the metal foil 1 can be physically connected by being attached to a predetermined position of the metal foil 1.
  • the metal foil 1 and the masking member 4 may be physically connected by cold pressure welding or caulking.
  • FIG. 3 is an explanatory view schematically showing an electrolytic etching apparatus 5 used in the electrolytic etching process according to the present embodiment.
  • FIG. 4 is a schematic diagram showing the positional relationship between the metal foil 1, the masking member 4, and the electrode 2 in the electrolytic etching process according to the present embodiment. In FIG. 4, for convenience, the masking member 4 is shown with hatching.
  • the electrolytic etching process is performed by, for example, an apparatus shown in FIG.
  • FIG. 3 although the case where the electrolytic etching is performed with respect to the elongate metal foil 1 conveyed via the some roll 6 is shown, it is not limited to this.
  • a batch method in which an electrolytic etching process is performed on a metal foil having a fixed area that is allowed to stand may be used.
  • the electrolytic etching step is performed by passing a current between the metal foil 1 and the electrode 2 in the etching solution 3 with the electrode 2 facing the at least one main surface of the metal foil 1.
  • the masking member 4 is already arranged at a predetermined position of the metal foil 1 to be conveyed. In this case, the masking member 4 is arrange
  • the current flowing between the metal foil 1 and the electrode 2 may be an alternating current as shown in FIG. 3 or a direct current.
  • the electrolytic etching may be performed on both main surfaces of the metal foil 1 or only on one main surface.
  • the masking member 4 is provided between each main surface of the metal foil 1 and the two electrodes 2 arranged so as to face each main surface. It may be arranged.
  • the etched portion 1E is formed on both main surfaces, and the unetched portion 1N is formed between the etched portions 1E. That is, in the thickness direction of the first region 10E, the etched portion 1E, the unetched portion 1N, and the etched portion 1E are arranged in this order.
  • the etchant 3 a known etchant used for electrolytic etching can be used.
  • the etching solution 3 include an aqueous solution containing sulfuric acid, nitric acid, phosphoric acid and / or oxalic acid and hydrochloric acid.
  • the aqueous solution may contain various additives such as a chelating agent.
  • concentration of hydrochloric acid in the etching solution 3 and the concentration and temperature of other acids are not particularly limited, and may be set as appropriate according to the desired etching pit shape and capacitor performance.
  • the concentration of hydrochloric acid with respect to the etching solution 3 is, for example, 1 mol / L or more and 10 mol / L or less, and the concentration of other acids is, for example, 0.01 mol / L or more and 1 mol / L or less.
  • the temperature of the etching solution 3 during the electrolytic etching step is, for example, 15 ° C. or more and 60 ° C. or less.
  • the current waveform and frequency are not particularly limited.
  • the frequency of the AC power supply is, for example, 1 Hz or more and 500 Hz or less.
  • the density of the current flowing between the electrode foil 1 and the electrode 2 is not particularly limited, and is, for example, 0.01 / cm 2 or more and 10 A / cm 2 or less.
  • a capacitor element including the electrode foil 10 as an anode body is manufactured as follows, for example. That is, the capacitor element includes a first step of preparing the electrode foil 10 manufactured by the method including the electrolytic etching step, a dielectric layer is formed on the surface of the first region 10E of the electrode foil 10, and an electrolyte is then added. And a second step of contacting.
  • FIG. 5 shows a cross section of the capacitor element 20 according to the embodiment.
  • the dielectric layer 22 and the solid electrolyte layer 23 are sequentially formed in the first region 10 ⁇ / b> E of the electrode foil 10.
  • the solid electrolyte layer 23 is further covered with a cathode lead layer 24.
  • the cathode lead layer 24 is used for connection with a cathode terminal (not shown).
  • the masking member 4 is preferably removed before the dielectric layer 22 is formed.
  • the electrode foil 10 is prepared.
  • the electrode foil 10 is manufactured by a method including the electrolytic etching step.
  • the removal process which removes the masking member 4 used in the said electrolytic etching process after a 1st process and before a 2nd process.
  • the masking member 4 can be removed without damaging the dielectric layer 22 and the solid electrolyte layer 23 formed in the second step.
  • the dielectric layer 22 is formed by anodizing the surface of the first region 10E by chemical conversion treatment or the like. Anodization can be formed by a known method. Note that the method of forming the dielectric layer 22 is not limited to this, and it is sufficient that an insulating layer functioning as a dielectric can be formed on the surface of the first region 10E.
  • a solid electrolyte layer 23 is formed as an example of an electrolyte so as to cover the dielectric layer 22.
  • the solid electrolyte layer 23 includes, for example, a manganese compound or a conductive polymer.
  • a conductive polymer polypyrrole, polythiophene, polyaniline, and derivatives thereof can be used.
  • the solid electrolyte layer 23 containing a conductive polymer can be formed, for example, by subjecting a raw material monomer to chemical polymerization and / or electrolytic polymerization on the dielectric layer 22.
  • the dielectric layer 22 can be formed by applying a solution in which the conductive polymer is dissolved or a dispersion in which the conductive polymer is dispersed.
  • a cathode lead layer 24 is formed on the surface of the solid electrolyte layer 23.
  • the cathode lead layer 24 includes, for example, a carbon layer and a metal (for example, silver) paste layer formed on the surface of the carbon layer (both not shown).
  • a cathode lead layer 24 is formed by sequentially applying a carbon paste and a silver paste.
  • the carbon layer is formed so as to cover at least a part of the solid electrolyte layer 23.
  • the carbon layer is composed of a composition containing a conductive carbon material such as graphite.
  • a metal paste layer is comprised by the composition containing silver particle and resin, for example.
  • the configuration of the cathode lead layer 24 is not limited to this. The cathode lead layer 24 only needs to have a current collecting function.
  • FIG. 6 is a cross-sectional view schematically showing a capacitor 30 including a plurality of capacitor elements 20A to 20C. As shown in FIG. 6, the capacitor elements 20 are stacked and arranged in the capacitor 30.
  • the capacitor 30 of the present embodiment includes three capacitor elements 20, but the number of capacitor elements 20 used is not limited.
  • the capacitor 30 includes at least one capacitor element 20.
  • the capacitor 30 is electrically connected to the stacked capacitor elements 20A to 20C, the outer package 31 that seals the capacitor elements 20A to 20C, the anode terminal 32 that is electrically connected to the electrode foil 10, and the cathode lead layer 24. And a cathode terminal 33 to be connected.
  • Such a capacitor 30 is formed by bonding an anode terminal 32 or a cathode terminal 33 to a predetermined position of an arbitrary capacitor element 20 and sealing the laminated body of the capacitor elements 20A to 20C with an exterior body 31. Manufactured.
  • Each capacitor element 20 is joined by, for example, the second region 10N (not shown) being integrally crimped by the crimping member 34 and electrically connected to each other.
  • the joining method of the capacitor elements 20 is not limited to this, and may be joined by laser welding or resistance welding.
  • the exterior body 31 is formed of, for example, an insulating resin. Examples of the insulating resin include epoxy resins, phenol resins, silicone resins, melamine resins, urea resins, alkyd resins, polyurethanes, polyimides, polyamideimides, unsaturated polyesters, and the like.
  • the anode terminal 32 is joined to the second region 10N and is electrically connected to the electrode foil 10.
  • the material of the anode terminal 32 is not particularly limited as long as it has conductivity.
  • the anode terminal 32 may be joined to the second region 10N via a conductive adhesive or solder, or may be joined to the second region 10N by resistance welding or laser welding.
  • the conductive adhesive is, for example, a mixture of the above insulating material and carbon particles or metal particles.
  • the cathode terminal 33 is electrically connected to the cathode lead layer 24.
  • the material of the cathode terminal 33 is not particularly limited as long as it has conductivity.
  • the cathode terminal 33 is bonded to the cathode lead layer 24 via the conductive adhesive 35 as described above, for example.
  • the capacitor is described as a capacitor using a solid electrolyte as an electrolyte and a capacitor element housed in an exterior resin.
  • the present invention is not limited to this.
  • a capacitor element having an anode and a cathode having a strip-shaped electrode foil, a separator interposed between the anode and the cathode, and an electrolytic solution impregnated in the separator as an electrolyte is provided.
  • the electrode foil of the present disclosure can be used for at least one of the anode and cathode electrode foils.
  • the electrode foil manufactured by the method according to the present disclosure has high reliability and can be used for capacitors for various purposes.
  • Electrode 1 Metal foil 1E: Etching part 1N: Unetched part 2: Electrode 3: Etching solution 4: Masking member 5: Electrolytic etching device 6: Roll 10: Electrode foil 10E: First region 10N: Second region 20, 20A- 20C: Capacitor element 22: Dielectric layer 23: Solid electrolyte layer 24: Cathode extraction layer 30: Capacitor 31: Exterior body 32: Anode terminal 33: Cathode terminal 34: Clamping member 35: Conductive adhesive 40: Metal foil 40E : Etched part 40N: Unetched part 41: Masking member

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

This electrode foil production method comprises an electrolytic etching step wherein an electrode is made to face at least one main surface of a metal foil that includes a first metal and, in an etching liquid, a current is passed between the metal foil and the electrode and the metal foil is etched. The electrode foil production method is characterized in that a masking member is arranged between the main surface of the metal foil and the electrode so as to cover one region of the main surface, in that the masking member is a conductor, and in that the masking member and the metal foil are electrically connected.

Description

電極箔の製造方法およびコンデンサの製造方法Electrode foil manufacturing method and capacitor manufacturing method
 本開示は、電極箔の製造方法およびコンデンサの製造方法に関する。 The present disclosure relates to an electrode foil manufacturing method and a capacitor manufacturing method.
 コンデンサ素子の陽極体として、弁作用金属を含む金属箔が用いられる。コンデンサ素子の容量を増加させるため、金属箔の主面の全部または一部に、エッチングが施される。例えば、特許文献1では、金属箔の主面の一部および電解エッチング用電極の表面の一部に、マスキング部材として樹脂による被膜を形成し、金属箔の主面における被膜が形成されていない部分に、エッチングを行うことを教示している。 A metal foil containing a valve metal is used as the anode body of the capacitor element. In order to increase the capacitance of the capacitor element, all or a part of the main surface of the metal foil is etched. For example, in Patent Document 1, a film made of a resin is formed as a masking member on a part of the main surface of the metal foil and a part of the surface of the electrode for electrolytic etching, and the part on which the film on the main surface of the metal foil is not formed Teaches to perform the etching.
特許第5333582号Japanese Patent No. 5333582
 特許文献1では、マスキング部材として樹脂を用いているため、金属箔と比べて電気抵抗が非常に高い。そのため、電解エッチングを施す場合、金属箔のマスキング部材との境界付近に電流が集中する。上記電流の集中により、上記境界付近ではエッチングが深くなる。 In Patent Document 1, since resin is used as a masking member, the electrical resistance is very high compared to metal foil. Therefore, when electrolytic etching is performed, current concentrates near the boundary between the metal foil and the masking member. Due to the current concentration, the etching becomes deep near the boundary.
 図7に、樹脂を使用した従来の方法により、電解エッチングを施した金属箔40の断面図を示す。図7に示すように、金属箔40は、樹脂からなるマスキング部材41によりマスキングされていた領域40Zと、マスキング部材41により被覆されなかった領域40Yとを有する。領域40Yは、領域40Yの主面に形成された2つのエッチング部40Eと、エッチング部40Eに挟まれた未エッチング部40Nとを有する。上記電流の集中により、エッチング部40Eは、領域40Zと領域40Yとの境界B付近において、厚み方向におけるエッチングの深さが大きくなる。すなわち、境界B付近の未エッチング部40Nの厚みが、特に薄くなる。そのため、金属箔40は、境界B付近の機械的強度が小さい。その結果、エッチングされた金属箔40(電極箔)の信頼性は、低下し易い。 FIG. 7 shows a cross-sectional view of a metal foil 40 subjected to electrolytic etching by a conventional method using a resin. As shown in FIG. 7, the metal foil 40 has a region 40 </ b> Z that has been masked by the masking member 41 made of resin, and a region 40 </ b> Y that has not been covered by the masking member 41. The region 40Y includes two etched portions 40E formed on the main surface of the region 40Y and an unetched portion 40N sandwiched between the etched portions 40E. Due to the concentration of the current, the etching portion 40E increases the etching depth in the thickness direction in the vicinity of the boundary B between the region 40Z and the region 40Y. That is, the thickness of the unetched portion 40N near the boundary B is particularly thin. Therefore, the metal foil 40 has a low mechanical strength near the boundary B. As a result, the reliability of the etched metal foil 40 (electrode foil) tends to decrease.
 本開示の電極箔の製造方法は、第1金属を含む金属箔の少なくとも一方の主面に電極を対向させた状態で、エッチング液中において、上記金属箔と上記電極との間に電流を流して、上記金属箔をエッチングする電解エッチング工程を備え、上記金属箔の上記主面と上記電極との間に、上記主面の一部の領域を覆うようにマスキング部材が配置されており、上記マスキング部材が、導電体であり、上記マスキング部材と上記金属箔とが電気的に接続されている。 In the manufacturing method of the electrode foil of the present disclosure, a current is passed between the metal foil and the electrode in the etching solution in a state where the electrode is opposed to at least one main surface of the metal foil containing the first metal. An etching process for etching the metal foil, and a masking member is disposed between the main surface of the metal foil and the electrode so as to cover a partial region of the main surface, The masking member is a conductor, and the masking member and the metal foil are electrically connected.
 本開示によれば、マスキング部材で覆われていた領域と覆われていなかった領域との境界付近において、過剰なエッチングが抑制されるため、金属箔の強度の低下が抑制される。そのため、電極箔としての信頼性が向上する。 According to the present disclosure, since excessive etching is suppressed in the vicinity of the boundary between the region covered with the masking member and the region not covered with the masking member, a decrease in the strength of the metal foil is suppressed. Therefore, the reliability as an electrode foil is improved.
本開示の実施の形態に係る電解エッチング工程によりエッチングされた電極箔の一部を模式的に示す断面図。Sectional drawing which shows typically a part of electrode foil etched by the electrolytic etching process which concerns on embodiment of this indication. 本開示の実施の形態に係る電解エッチング工程によりエッチングされた電極箔の一部を模式的に示す斜視図。The perspective view which shows typically a part of electrode foil etched by the electrolytic etching process which concerns on embodiment of this indication. 本開示の実施の形態に係る電解エッチング工程に使用される電解エッチング装置を模式的に示す説明図。Explanatory drawing which shows typically the electrolytic etching apparatus used for the electrolytic etching process which concerns on embodiment of this indication. 本開示の実施の形態に係る電解エッチング工程における、金属箔、マスキング部材および電極の位置関係を示す模式図。The schematic diagram which shows the positional relationship of metal foil, a masking member, and an electrode in the electrolytic etching process which concerns on embodiment of this indication. 本開示の実施の形態に係るコンデンサに用いられるコンデンサ素子を模式的に示す断面図。Sectional drawing which shows typically the capacitor | condenser element used for the capacitor | condenser which concerns on embodiment of this indication. 本開示の実施の形態に係るコンデンサを模式的に示す断面図。FIG. 3 is a cross-sectional view schematically showing a capacitor according to an embodiment of the present disclosure. 従来の電解エッチング工程によりエッチングされた金属箔の一部を模式的に示す断面図。Sectional drawing which shows typically a part of metal foil etched by the conventional electrolytic etching process.
 本開示に係る電極箔の製造方法は、第1金属を含む金属箔の少なくとも一方の主面に電極を対向させた状態で、エッチング液中において、金属箔と電極との間に電流を流して、金属箔をエッチングする電解エッチング工程を備える。電解エッチング工程において、金属箔の上記主面と電極との間に、上記主面の一部の領域を覆うように、マスキング部材を配置する。これにより、上記主面のマスキング部材で覆われていない領域はエッチングされる。 In the manufacturing method of the electrode foil according to the present disclosure, a current is passed between the metal foil and the electrode in the etching solution in a state where the electrode is opposed to at least one main surface of the metal foil containing the first metal. And an electrolytic etching process for etching the metal foil. In the electrolytic etching step, a masking member is disposed between the main surface of the metal foil and the electrode so as to cover a part of the main surface. Thereby, the area | region which is not covered with the masking member of the said main surface is etched.
 本開示では、マスキング部材として導電体を使用し、電解エッチング工程において、マスキング部材と金属箔とを電気的に接続させる。ここで、電気的に接続しているとは、マスキング部材と金属箔との間で、電子の移動が起こり得る状態であることを言う。マスキング部材と金属箔とを電気的に接続させることにより、金属箔のマスキング部材との境界付近に電流が集中する現象が抑制される。電流の集中が抑制されることにより、境界近傍において、過剰にエッチングされることが抑制される。そのため、電極箔としての信頼性が向上する。 In the present disclosure, a conductor is used as the masking member, and the masking member and the metal foil are electrically connected in the electrolytic etching process. Here, the term “electrically connected” means that electrons can move between the masking member and the metal foil. By electrically connecting the masking member and the metal foil, the phenomenon of current concentration near the boundary between the metal foil and the masking member is suppressed. By suppressing the concentration of current, excessive etching in the vicinity of the boundary is suppressed. Therefore, the reliability as an electrode foil is improved.
 ところで、絶縁材料からなるマスキング部材を用いる場合、電解エッチング工程において、マスキング部材と電極との間に空間が生じないようにする必要がある。つまり、マスキング部材と電極とを密着させた状態で、電解エッチングを行う必要がある。そのため、電解エッチング工程の前後あるいは電解エッチング工程中において、マスキング部材と電極との間の距離を制御する必要がある。よって、マスキング部材を金属箔に密着するように配置する場合、金属箔の搬送方法の自由度が下がる。 By the way, when a masking member made of an insulating material is used, it is necessary to prevent a space from being generated between the masking member and the electrode in the electrolytic etching process. That is, it is necessary to perform electrolytic etching in a state where the masking member and the electrode are in close contact. Therefore, it is necessary to control the distance between the masking member and the electrode before and after the electrolytic etching process or during the electrolytic etching process. Therefore, when arrange | positioning so that a masking member may closely_contact | adhere to metal foil, the freedom degree of the conveying method of metal foil falls.
 また、金属箔がエッチングされる際、エッチングされた箇所からガスが発生する場合がある。発生したガスを排気するために、電極と金属箔との間には一定の間隔が必要である。つまり、マスキング部材を金属箔に密着するように配置する場合、マスキング部材を厚くして、上記一定の間隔を確保する必要がある。 Also, when the metal foil is etched, gas may be generated from the etched portion. In order to exhaust the generated gas, a certain distance is required between the electrode and the metal foil. In other words, when the masking member is disposed so as to be in close contact with the metal foil, it is necessary to increase the thickness of the masking member to ensure the above-mentioned fixed interval.
 そこで、従来は、電極の上記マスキング部材に対応する位置に、マスクを施している。これにより、マスキング部材と電極とを密着させる必要がなくなるため、金属箔の搬送方法は制限されない。また、金属箔と電極の間に所定の間隔を設けることが容易となる。一方、マスキング部材と電極に施されたマスクとの位置合わせが必要となるため、作業が煩雑なものになっている。 Therefore, conventionally, a mask is provided at a position corresponding to the masking member of the electrode. Thereby, since it becomes unnecessary to make a masking member and an electrode contact | adhere, the conveyance method of metal foil is not restrict | limited. In addition, it is easy to provide a predetermined interval between the metal foil and the electrode. On the other hand, since the positioning of the masking member and the mask applied to the electrode is necessary, the operation is complicated.
 本開示によれば、マスキング部材として導電体を使用するため、電極にマスクを施す必要がない。よって、位置合わせ等の煩雑な作業を行うことなく、実用的なエッチングを行うことができる。さらに、マスキング部材と電極とを離間させた状態で電解エッチングを行うことが可能であるため、金属箔の搬送方法の自由度が高まる。 According to the present disclosure, since the conductor is used as the masking member, it is not necessary to mask the electrode. Therefore, practical etching can be performed without performing complicated operations such as alignment. Furthermore, since it is possible to perform the electrolytic etching in a state where the masking member and the electrode are separated from each other, the degree of freedom in the method for transporting the metal foil is increased.
 図1に、本実施の形態における電解エッチングが施された電極箔10の断面の一部を模式的に示す。図1に示すように、得られる電極箔10には、マスキング部材4で覆われていた領域と覆われていなかった領域との境界A付近を始点として、厚み方向に徐々に深くなるエッチング部1Eが形成される。よって、電極箔10の上記境界A付近における電極箔10の機械的強度の低下が抑制される。このとき、強度の観点から、第1領域10Eにおける未エッチング部1Nの厚みdは、2μm以上であることが好ましい。 FIG. 1 schematically shows a part of a cross section of an electrode foil 10 subjected to electrolytic etching in the present embodiment. As shown in FIG. 1, the obtained electrode foil 10 has an etched portion 1E that gradually becomes deeper in the thickness direction starting from the vicinity of the boundary A between the region covered with the masking member 4 and the region not covered with the masking member 4. Is formed. Therefore, a decrease in mechanical strength of the electrode foil 10 in the vicinity of the boundary A of the electrode foil 10 is suppressed. At this time, from the viewpoint of strength, the thickness d of the unetched portion 1N in the first region 10E is preferably 2 μm or more.
 図2に示すように、電解エッチング工程により得られる電極箔10は、エッチングされた表面を有する第1領域10Eと、エッチングされていない表面を有する第2領域10Nとを有する。第1領域10Eは、表面にエッチング部1Eを備え、内部に未エッチング部1Nを備える。第1領域10Eと第2領域10Nとは、上記境界A付近で区分される。図2は、電解エッチング工程によりエッチングされた電極箔10の一部を模式的に示す斜視図である。 As shown in FIG. 2, the electrode foil 10 obtained by the electrolytic etching step has a first region 10E having an etched surface and a second region 10N having an unetched surface. The first region 10E has an etched portion 1E on the surface and an unetched portion 1N inside. The first region 10E and the second region 10N are divided in the vicinity of the boundary A. FIG. 2 is a perspective view schematically showing a part of the electrode foil 10 etched by the electrolytic etching process.
 金属箔1は、第1金属を含む。第1金属としては、チタン、タンタル、アルミニウムおよびニオブ等の弁作用金属が挙げられる。金属箔1は、一種、または二種以上の上記弁作用金属を含んでいても良い。金属箔1は、合金または金属間化合物の形態で、第1金属を含んでいても良い。金属箔1の厚みは特に限定されない。金属箔1の厚みは、例えば、15μm以上、300μm以下である。 Metal foil 1 contains the first metal. Examples of the first metal include valve action metals such as titanium, tantalum, aluminum, and niobium. The metal foil 1 may contain one kind or two or more kinds of the above-mentioned valve metal. The metal foil 1 may contain a first metal in the form of an alloy or an intermetallic compound. The thickness of the metal foil 1 is not particularly limited. The thickness of the metal foil 1 is, for example, 15 μm or more and 300 μm or less.
 マスキング部材4は、導電体であって、導電性材料を含んでいる。導電性材料としては、特に限定されず、上記の弁作用金属、銀、銅、鉄、錫、鉛、亜鉛、シリカ、ニッケル、金、白金、パラジウム、ジルコニウム、タングステン、コバルト、モリブデン等の金属、黒鉛、カーボンブラック等の炭素材料、および、導電性高分子等が例示できる。マスキング部材4は、一種、または二種以上の上記導電性材料を含んでいても良い。マスキング部材4は、上記金属を、合金または金属間化合物の形態で含んでいても良い。 The masking member 4 is a conductor and includes a conductive material. The conductive material is not particularly limited, and metals such as the above-mentioned valve action metals, silver, copper, iron, tin, lead, zinc, silica, nickel, gold, platinum, palladium, zirconium, tungsten, cobalt, molybdenum, Examples thereof include carbon materials such as graphite and carbon black, and conductive polymers. The masking member 4 may contain one kind or two or more kinds of the conductive materials. The masking member 4 may contain the metal in the form of an alloy or an intermetallic compound.
 電解エッチング工程中、マスキング部材と金属箔とは電気的に接続される。よって、金属箔1のエッチング効率および上記のような電流の集中を抑制する観点から、マスキング部材4の抵抗値(マスキング部材の電気抵抗率×マスキング部材の厚み)は、例えば、金属箔1の厚み方向の抵抗値とほぼ同じであることが好ましい。マスキング部材4の上記抵抗値と金属箔1の上記抵抗値とが同じになるように調整し易い点、および、後述するように、金属箔1と物理的に接続させ易い点で、マスキング部材4は、金属(第2金属)を含んでいても良い。マスキング部材4に含まれる第2金属は、特に限定されず、金属箔1に含まれる第1金属と同じ金属元素であっても良いし、異なる金属元素であっても良い。なお、マスキング部材4は導電体であるため、マスキング部材4の電極に対向する表面もエッチングされ得る。 During the electrolytic etching process, the masking member and the metal foil are electrically connected. Therefore, from the viewpoint of suppressing the etching efficiency of the metal foil 1 and the current concentration as described above, the resistance value of the masking member 4 (the electrical resistivity of the masking member × the thickness of the masking member) is, for example, the thickness of the metal foil 1. It is preferable that the resistance value in the direction is substantially the same. The masking member 4 is easily adjusted so that the resistance value of the masking member 4 and the resistance value of the metal foil 1 are the same, and easily connected to the metal foil 1 as described later. May contain a metal (second metal). The 2nd metal contained in the masking member 4 is not specifically limited, The same metal element as the 1st metal contained in the metal foil 1 may be sufficient, and a different metal element may be sufficient. Since the masking member 4 is a conductor, the surface of the masking member 4 facing the electrode can also be etched.
 マスキング部材4により金属箔1の主面の一部を覆う方法は、特に限定されない。例えば、導電性材料を含む樹脂(導電性インク)からなるマスキング部材4の材料を、金属箔1の主面の一部に塗工しても良い。この場合、マスキング部材4と金属箔1とは、電気的に接続されるとともに、物理的にも接続される。また、生産性の観点から、マスキング部材4の形状は、導電性材料を含むシート状であっても良い。この場合、シート状であるマスキング部材4を、金属箔1の主面の一部を覆うように配置しても良い。シート状のマスキング部材4としては、第2金属を含む金属箔や、導電性材料を含む樹脂を用いて成形された導電性テープ等が挙げられる。導電性テープは、接着性を備えていても良い。なかでも、マスキング部材4は、金属箔(第2金属箔)であることが好ましい。 The method of covering a part of the main surface of the metal foil 1 with the masking member 4 is not particularly limited. For example, the material of the masking member 4 made of a resin (conductive ink) containing a conductive material may be applied to a part of the main surface of the metal foil 1. In this case, the masking member 4 and the metal foil 1 are not only electrically connected but also physically connected. Further, from the viewpoint of productivity, the masking member 4 may have a sheet shape including a conductive material. In this case, the sheet-like masking member 4 may be arranged so as to cover a part of the main surface of the metal foil 1. Examples of the sheet-like masking member 4 include a metal foil containing a second metal and a conductive tape formed using a resin containing a conductive material. The conductive tape may have adhesiveness. Especially, it is preferable that the masking member 4 is metal foil (2nd metal foil).
 マスキング部材4の材料として、導電性材料を含む樹脂を用いる場合、樹脂としては、熱硬化性樹脂または熱可塑性樹脂を用いれば良い。熱硬化性樹脂として、ウレタン樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ポリイミド等が例示できる。熱可塑性樹脂として、アクリル樹脂、ポリエステル等が例示できる。このような導電性材料を含む樹脂の電気抵抗率は、例えば、3.0×10-6Ω/cm以上、1.0×10Ω/cm以下である。 When a resin containing a conductive material is used as the material for the masking member 4, a thermosetting resin or a thermoplastic resin may be used as the resin. Examples of the thermosetting resin include urethane resin, phenol resin, epoxy resin, silicone resin, and polyimide. Examples of the thermoplastic resin include acrylic resin and polyester. The electrical resistivity of the resin containing such a conductive material is, for example, 3.0 × 10 −6 Ω / cm or more and 1.0 × 10 3 Ω / cm or less.
 マスキング部材4の厚みは、電極とマスキング部材4との距離を考慮して、適宜設定すれば良い。なかでも、マスキング部材4の厚みは、マスキング部材4が有する電気抵抗率とマスキング部材4の厚みとの積から算出されるマスキング部材4の抵抗値が、金属箔1の抵抗値とほぼ同じになるように、調整することが好ましい。マスキング部材4の厚みは、例えば、15μm以上、300μm以下である。なお、電解エッチング工程において、金属箔1とともに、マスキング部材4が電解エッチングされる場合、マスキング部材の厚みは、例えば、電解エッチング工程中、マスキング部材4が残存できる程度であることが好ましい。 The thickness of the masking member 4 may be appropriately set in consideration of the distance between the electrode and the masking member 4. Especially, as for the thickness of the masking member 4, the resistance value of the masking member 4 calculated from the product of the electrical resistivity of the masking member 4 and the thickness of the masking member 4 is substantially the same as the resistance value of the metal foil 1. Thus, it is preferable to adjust. The thickness of the masking member 4 is, for example, 15 μm or more and 300 μm or less. When the masking member 4 is electrolytically etched together with the metal foil 1 in the electrolytic etching step, the thickness of the masking member is preferably such that the masking member 4 can remain during the electrolytic etching step, for example.
 マスキング部材4の形状がシート状である場合、マスキング部材4と金属箔1とは、物理的に接続していても良いし、物理的に接続していなくても良い。特に、マスキング部材4と金属箔1とは、物理的に接続していることが好ましい。電解エッチング工程において、マスキング部材4の位置ずれが防止できるためである。 When the shape of the masking member 4 is a sheet shape, the masking member 4 and the metal foil 1 may be physically connected or may not be physically connected. In particular, it is preferable that the masking member 4 and the metal foil 1 are physically connected. This is because the displacement of the masking member 4 can be prevented in the electrolytic etching process.
 マスキング部材4と金属箔1とが、物理的に接続されている場合、単にマスキング部材4と金属箔1とが接触している場合に比べて、金属箔1とマスキング部材4との密着性が向上することが期待できる。両者の密着性が向上すると、金属箔1とマスキング部材4との間に、エッチング液が入り込むことが抑制される。エッチング液の浸入が抑制されることにより、第1領域10Eと第2領域10Nとの境界が、上記境界Aから第2領域10N側に移動することが抑制される。第1領域10Eと第2領域10Nとの境界が、上記境界Aから第2領域10N側に移動すると、後述する固体電解質層を電極箔10の表面に形成する際、固体電解質層は、想定された位置より第2領域10N側に這い上がり易くなる。 When the masking member 4 and the metal foil 1 are physically connected, the adhesion between the metal foil 1 and the masking member 4 is greater than when the masking member 4 and the metal foil 1 are simply in contact with each other. It can be expected to improve. When the adhesion between the two is improved, the etching solution is suppressed from entering between the metal foil 1 and the masking member 4. By suppressing the penetration of the etchant, the boundary between the first region 10E and the second region 10N is suppressed from moving from the boundary A to the second region 10N side. When the boundary between the first region 10E and the second region 10N moves from the boundary A toward the second region 10N, the solid electrolyte layer is assumed when a solid electrolyte layer described later is formed on the surface of the electrode foil 10. It is easy to climb up to the second region 10N side from the above position.
 マスキング部材4が第2金属箔である場合、マスキング部材4と金属箔1とは、溶接により物理的に接続していることが好ましい。この場合、マスキング部材4と金属箔1との接続部における抵抗値が小さいため、電流の集中がさらに抑制され易い。また、マスキング部材4と金属箔1とを溶接することにより、金属箔1とマスキング部材4との物理的な接続と電気的な接続とを、同時に達成することができる。そのため、電極箔10を製造する際、作業性が向上する。マスキング部材4が接着性を備える導電性テープである場合、金属箔1の所定の位置に貼り付けることにより、マスキング部材4と金属箔1とを、物理的に接続することができる。また、金属箔1とマスキング部材4とは、冷間圧接または加締めにより、物理的に接続されていても良い。 When the masking member 4 is the second metal foil, it is preferable that the masking member 4 and the metal foil 1 are physically connected by welding. In this case, since the resistance value at the connection portion between the masking member 4 and the metal foil 1 is small, the current concentration is further easily suppressed. In addition, by welding the masking member 4 and the metal foil 1, physical connection and electrical connection between the metal foil 1 and the masking member 4 can be achieved simultaneously. Therefore, when manufacturing the electrode foil 10, workability | operativity improves. When the masking member 4 is a conductive tape having adhesiveness, the masking member 4 and the metal foil 1 can be physically connected by being attached to a predetermined position of the metal foil 1. Moreover, the metal foil 1 and the masking member 4 may be physically connected by cold pressure welding or caulking.
 マスキング部材4と金属箔1とを物理的に接続させずに、電解エッチング工程を行う場合、マスキング部材4を、予め、電極2と金属箔1との間であって金属箔1の一部の領域を覆うことができるような位置に配置しておいても良い。この場合、電解エッチング工程において、別の導電性部材を介して、金属箔1とマスキング部材4とを電気的に接続させる。
(電解エッチング工程)
 以下、図3および図4を参照しながら、本実施の形態に係る電解エッチング工程を説明する。図3は、本実施の形態に係る電解エッチング工程に使用される電解エッチング装置5を模式的に示す説明図である。図4は、本実施の形態に係る電解エッチング工程における、金属箔1、マスキング部材4および電極2の位置関係を示す模式図である。図4では、便宜上、マスキング部材4を、ハッチングを付して示している。
When the electrolytic etching process is performed without physically connecting the masking member 4 and the metal foil 1, the masking member 4 is previously placed between the electrode 2 and the metal foil 1 and a part of the metal foil 1. You may arrange | position in the position which can cover an area | region. In this case, in the electrolytic etching process, the metal foil 1 and the masking member 4 are electrically connected via another conductive member.
(Electrolytic etching process)
Hereinafter, the electrolytic etching process according to the present embodiment will be described with reference to FIGS. 3 and 4. FIG. 3 is an explanatory view schematically showing an electrolytic etching apparatus 5 used in the electrolytic etching process according to the present embodiment. FIG. 4 is a schematic diagram showing the positional relationship between the metal foil 1, the masking member 4, and the electrode 2 in the electrolytic etching process according to the present embodiment. In FIG. 4, for convenience, the masking member 4 is shown with hatching.
 電解エッチング工程は、例えば、図3に示される装置により行われる。なお、図3では、複数のロール6を介して搬送される長尺の金属箔1に対して、電解エッチングが行われる場合を示しているが、これに限定されるものではない。例えば、静置された一定の面積を有する金属箔に対して電解エッチング工程を行う、バッチ方式であっても良い。 The electrolytic etching process is performed by, for example, an apparatus shown in FIG. In addition, in FIG. 3, although the case where the electrolytic etching is performed with respect to the elongate metal foil 1 conveyed via the some roll 6 is shown, it is not limited to this. For example, a batch method in which an electrolytic etching process is performed on a metal foil having a fixed area that is allowed to stand may be used.
 電解エッチング工程は、金属箔1の少なくとも一方の主面に電極2を対向させた状態で、エッチング液3中において、金属箔1と電極2との間に電流を流すことにより行われる。図3では、搬送される金属箔1の所定の位置に、すでにマスキング部材4が配置されている。この場合、マスキング部材4は、例えば図4に示すように、金属箔1の長手方向Dに沿って帯状に配置される。 The electrolytic etching step is performed by passing a current between the metal foil 1 and the electrode 2 in the etching solution 3 with the electrode 2 facing the at least one main surface of the metal foil 1. In FIG. 3, the masking member 4 is already arranged at a predetermined position of the metal foil 1 to be conveyed. In this case, the masking member 4 is arrange | positioned in strip | belt shape along the longitudinal direction D of the metal foil 1, for example, as shown in FIG.
 金属箔1と電極2との間に流れる電流は、図3のように交流であっても良いし、直流であっても良い。また、電解エッチングは、金属箔1の両方の主面に対して行われても良いし、一方の主面のみに対して行われても良い。金属箔1の両方の主面に電解エッチングを行う場合、マスキング部材4は、金属箔1の各主面と、各主面に対向するように配置された2つの電極2との間に、それぞれ配置しても良い。この場合、図1および図2のように、第1領域10Eでは、両方の主面に、エッチング部1Eが形成され、各エッチング部1Eの間に未エッチング部1Nが形成される。つまり、第1領域10Eの厚さ方向において、エッチング部1E、未エッチング部1N、エッチング部1Eが、この順で配置される。 The current flowing between the metal foil 1 and the electrode 2 may be an alternating current as shown in FIG. 3 or a direct current. Further, the electrolytic etching may be performed on both main surfaces of the metal foil 1 or only on one main surface. When electrolytic etching is performed on both main surfaces of the metal foil 1, the masking member 4 is provided between each main surface of the metal foil 1 and the two electrodes 2 arranged so as to face each main surface. It may be arranged. In this case, as shown in FIGS. 1 and 2, in the first region 10E, the etched portion 1E is formed on both main surfaces, and the unetched portion 1N is formed between the etched portions 1E. That is, in the thickness direction of the first region 10E, the etched portion 1E, the unetched portion 1N, and the etched portion 1E are arranged in this order.
 エッチング液3としては、電解エッチングに用いられる公知のエッチング液を使用できる。エッチング液3として、例えば、硫酸、硝酸、リン酸および/またはシュウ酸と塩酸とを含む水溶液が挙げられる。水溶液には、キレート剤等の各種添加剤が含まれていても良い。エッチング液3の塩酸の濃度、その他の酸の濃度および温度は特に限定されず、所望のエッチングピットの形状やコンデンサの性能に応じて適宜設定すれば良い。エッチング液3に対する塩酸の濃度は、例えば、1モル/L以上、10モル/L以下であり、その他の酸の濃度は、例えば、0.01モル/L以上、1モル/L以下である。電解エッチング工程中のエッチング液3の温度は、例えば、15℃以上、60℃以下である。 As the etchant 3, a known etchant used for electrolytic etching can be used. Examples of the etching solution 3 include an aqueous solution containing sulfuric acid, nitric acid, phosphoric acid and / or oxalic acid and hydrochloric acid. The aqueous solution may contain various additives such as a chelating agent. The concentration of hydrochloric acid in the etching solution 3 and the concentration and temperature of other acids are not particularly limited, and may be set as appropriate according to the desired etching pit shape and capacitor performance. The concentration of hydrochloric acid with respect to the etching solution 3 is, for example, 1 mol / L or more and 10 mol / L or less, and the concentration of other acids is, for example, 0.01 mol / L or more and 1 mol / L or less. The temperature of the etching solution 3 during the electrolytic etching step is, for example, 15 ° C. or more and 60 ° C. or less.
 交流電源を用いる場合、電流波形や周波数も特に限定されない。交流電源の周波数は、例えば、1Hz以上、500Hz以下ある。電極箔1と電極2との間に流れる電流の密度も特に限定されず、例えば、0.01/cm以上、10A/cm以下である。 When an AC power supply is used, the current waveform and frequency are not particularly limited. The frequency of the AC power supply is, for example, 1 Hz or more and 500 Hz or less. The density of the current flowing between the electrode foil 1 and the electrode 2 is not particularly limited, and is, for example, 0.01 / cm 2 or more and 10 A / cm 2 or less.
 なお、本実施の形態では、一対の電極2を用いて電解エッチング工程を行う方法を説明したが、これに限定されない。例えば、1つの電極2と、金属箔1を対向させるとともに、電極2と金属箔1とを電源に接続して電解エッチングを行ってもよい。
[コンデンサ素子]
 電極箔10を陽極体として備えるコンデンサ素子は、例えば、以下のようにして製造される。すなわち、コンデンサ素子は、上記電解エッチング工程を含む方法により製造される電極箔10を準備する第1工程と、電極箔10の第1領域10Eの表面に、誘電体層を形成した後、電解質を接触させる第2工程と、を備える方法により製造される。
In the present embodiment, the method of performing the electrolytic etching process using the pair of electrodes 2 has been described, but the present invention is not limited to this. For example, the electrode 2 and the metal foil 1 may be opposed to each other, and the electrode 2 and the metal foil 1 may be connected to a power source to perform electrolytic etching.
[Capacitor element]
A capacitor element including the electrode foil 10 as an anode body is manufactured as follows, for example. That is, the capacitor element includes a first step of preparing the electrode foil 10 manufactured by the method including the electrolytic etching step, a dielectric layer is formed on the surface of the first region 10E of the electrode foil 10, and an electrolyte is then added. And a second step of contacting.
 実施の形態に係るコンデンサ素子20の断面を、図5に示す。図5では、電極箔10の第1領域10Eに、誘電体層22および固体電解質層23が、順次形成されている。固体電解質層23は、さらに陰極引出層24によって覆われる。陰極引出層24は、図示しない陰極端子との接続に用いられる。なお、誘電体層22が形成される前に、マスキング部材4は除去されることが好ましい。
(第1工程)
 第1工程では、電極箔10を準備する。電極箔10は、上記電解エッチング工程を含む方法により製造される。第1工程の後、第2工程の前に、上記電解エッチング工程において使用されたマスキング部材4を除去する除去工程を備えることが好ましい。除去工程を第2工程の前に行うことにより、第2工程で形成される誘電体層22および固体電解質層23を損傷することなく、マスキング部材4を除去することができる。
(第2工程)
 第2工程では、まず、第1領域10Eの表面に、誘電体層22が形成される。
FIG. 5 shows a cross section of the capacitor element 20 according to the embodiment. In FIG. 5, the dielectric layer 22 and the solid electrolyte layer 23 are sequentially formed in the first region 10 </ b> E of the electrode foil 10. The solid electrolyte layer 23 is further covered with a cathode lead layer 24. The cathode lead layer 24 is used for connection with a cathode terminal (not shown). The masking member 4 is preferably removed before the dielectric layer 22 is formed.
(First step)
In the first step, the electrode foil 10 is prepared. The electrode foil 10 is manufactured by a method including the electrolytic etching step. It is preferable to provide the removal process which removes the masking member 4 used in the said electrolytic etching process after a 1st process and before a 2nd process. By performing the removing step before the second step, the masking member 4 can be removed without damaging the dielectric layer 22 and the solid electrolyte layer 23 formed in the second step.
(Second step)
In the second step, first, the dielectric layer 22 is formed on the surface of the first region 10E.
 誘電体層22は、第1領域10Eの表面を、化成処理等により陽極酸化することにより形成される。陽極酸化は、公知の方法により形成され得る。なお、誘電体層22の形成方法はこれに限定されず、第1領域10Eの表面に、誘電体として機能する絶縁性の層を形成できれば良い。 The dielectric layer 22 is formed by anodizing the surface of the first region 10E by chemical conversion treatment or the like. Anodization can be formed by a known method. Note that the method of forming the dielectric layer 22 is not limited to this, and it is sufficient that an insulating layer functioning as a dielectric can be formed on the surface of the first region 10E.
 次いで、誘電体層22を覆うように、電解質の一例として固体電解質層23が形成される。固体電解質層23は、例えば、マンガン化合物や導電性高分子を含む。導電性高分子として、ポリピロール、ポリチオフェン、ポリアニリンおよびこれらの誘導体などを用いることができる。 Next, a solid electrolyte layer 23 is formed as an example of an electrolyte so as to cover the dielectric layer 22. The solid electrolyte layer 23 includes, for example, a manganese compound or a conductive polymer. As the conductive polymer, polypyrrole, polythiophene, polyaniline, and derivatives thereof can be used.
 導電性高分子を含む固体電解質層23は、例えば、原料モノマーを誘電体層22上で化学重合および/または電解重合することにより、形成することができる。あるいは、導電性高分子が溶解した溶液、または、導電性高分子が分散した分散液を、誘電体層22に塗布することにより、形成することができる。 The solid electrolyte layer 23 containing a conductive polymer can be formed, for example, by subjecting a raw material monomer to chemical polymerization and / or electrolytic polymerization on the dielectric layer 22. Alternatively, the dielectric layer 22 can be formed by applying a solution in which the conductive polymer is dissolved or a dispersion in which the conductive polymer is dispersed.
 続いて、固体電解質層23の表面に、陰極引出層24が形成される。陰極引出層24は、例えば、カーボン層と、カーボン層の表面に形成された金属(例えば、銀)ペースト層と、を有している(いずれも図示せず)。このような陰極引出層24は、カーボンペーストおよび銀ペーストを順次、塗布することにより形成される。 Subsequently, a cathode lead layer 24 is formed on the surface of the solid electrolyte layer 23. The cathode lead layer 24 includes, for example, a carbon layer and a metal (for example, silver) paste layer formed on the surface of the carbon layer (both not shown). Such a cathode lead layer 24 is formed by sequentially applying a carbon paste and a silver paste.
 カーボン層は、固体電解質層23の少なくとも一部を覆うように形成されている。カーボン層は、黒鉛等の導電性炭素材料を含む組成物により構成される。金属ペースト層は、例えば、銀粒子と樹脂とを含む組成物により構成される。なお、陰極引出層24の構成は、これに限られない。陰極引出層24は、集電機能を有していれば良い。 The carbon layer is formed so as to cover at least a part of the solid electrolyte layer 23. The carbon layer is composed of a composition containing a conductive carbon material such as graphite. A metal paste layer is comprised by the composition containing silver particle and resin, for example. The configuration of the cathode lead layer 24 is not limited to this. The cathode lead layer 24 only needs to have a current collecting function.
 上記のように、第1工程および第2工程を経て作製された電極箔10は、第2工程の後、上記第1領域10Eと第2領域10Nとを含む所望の形状に裁断される。これにより、コンデンサ素子20の陽極体を構成する電極箔が得られる。
[コンデンサ]
 図6は、複数のコンデンサ素子20A~20Cを備えるコンデンサ30を模式的に示す断面図である。図6のように、各コンデンサ素子20は積層されて、コンデンサ30内に配置される。
As described above, the electrode foil 10 manufactured through the first step and the second step is cut into a desired shape including the first region 10E and the second region 10N after the second step. Thereby, the electrode foil which comprises the anode body of the capacitor | condenser element 20 is obtained.
[Capacitor]
FIG. 6 is a cross-sectional view schematically showing a capacitor 30 including a plurality of capacitor elements 20A to 20C. As shown in FIG. 6, the capacitor elements 20 are stacked and arranged in the capacitor 30.
 以下、本開示に係るコンデンサ30の構成について、詳細に説明する。なお、本実施の形態のコンデンサ30はコンデンサ素子20を3つ備えているが、用いられるコンデンサ素子20の数は限定されない。コンデンサ30は、少なくとも1つのコンデンサ素子20を備える。 Hereinafter, the configuration of the capacitor 30 according to the present disclosure will be described in detail. The capacitor 30 of the present embodiment includes three capacitor elements 20, but the number of capacitor elements 20 used is not limited. The capacitor 30 includes at least one capacitor element 20.
 コンデンサ30は、積層されたコンデンサ素子20A~20Cと、コンデンサ素子20A~20Cを封止する外装体31と、電極箔10と電気的に接続する陽極端子32と、陰極引出層24と電気的に接続する陰極端子33と、を備える。このようなコンデンサ30は、任意のコンデンサ素子20の所定の位置に、それぞれ陽極端子32または陰極端子33を接合して、コンデンサ素子20A~20Cの積層体を外装体31で封止することにより、製造される。 The capacitor 30 is electrically connected to the stacked capacitor elements 20A to 20C, the outer package 31 that seals the capacitor elements 20A to 20C, the anode terminal 32 that is electrically connected to the electrode foil 10, and the cathode lead layer 24. And a cathode terminal 33 to be connected. Such a capacitor 30 is formed by bonding an anode terminal 32 or a cathode terminal 33 to a predetermined position of an arbitrary capacitor element 20 and sealing the laminated body of the capacitor elements 20A to 20C with an exterior body 31. Manufactured.
 各コンデンサ素子20は、例えば、第2領域10N(図示せず)が、加締め部材34により一体的に加締められることによって接合され、互いに電気的に接続されている。コンデンサ素子20同士の接合方法はこれに限定されず、レーザー溶接や抵抗溶接によって接合されても良い。
(外装体)
 外装体31は、例えば、絶縁性の樹脂により形成される。絶縁性の樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、ポリウレタン、ポリイミド、ポリアミドイミド、不飽和ポリエステル等が挙げられる。
(陽極端子)
 陽極端子32は、第2領域10Nに接合され、電極箔10と電気的に接続している。陽極端子32の材質は、導電性を有するものであれば、特に限定されない。陽極端子32は、導電性接着剤やはんだを介して第2領域10Nと接合していても良いし、抵抗溶接やレーザー溶接により、第2領域10Nに接合されても良い。導電性接着剤は、例えば、上記のような絶縁性材料と炭素粒子や金属粒子との混合物である。
(陰極端子)
 陰極端子33は、陰極引出層24と電気的に接続している。陰極端子33の材質も、導電性を有するものであれば、特に限定されない。陰極端子33は、例えば、上記のような導電性接着剤35を介して、陰極引出層24に接合している。
Each capacitor element 20 is joined by, for example, the second region 10N (not shown) being integrally crimped by the crimping member 34 and electrically connected to each other. The joining method of the capacitor elements 20 is not limited to this, and may be joined by laser welding or resistance welding.
(Exterior body)
The exterior body 31 is formed of, for example, an insulating resin. Examples of the insulating resin include epoxy resins, phenol resins, silicone resins, melamine resins, urea resins, alkyd resins, polyurethanes, polyimides, polyamideimides, unsaturated polyesters, and the like.
(Anode terminal)
The anode terminal 32 is joined to the second region 10N and is electrically connected to the electrode foil 10. The material of the anode terminal 32 is not particularly limited as long as it has conductivity. The anode terminal 32 may be joined to the second region 10N via a conductive adhesive or solder, or may be joined to the second region 10N by resistance welding or laser welding. The conductive adhesive is, for example, a mixture of the above insulating material and carbon particles or metal particles.
(Cathode terminal)
The cathode terminal 33 is electrically connected to the cathode lead layer 24. The material of the cathode terminal 33 is not particularly limited as long as it has conductivity. The cathode terminal 33 is bonded to the cathode lead layer 24 via the conductive adhesive 35 as described above, for example.
 なお、本実施の形態では、コンデンサとして、電解質に固体電解質を用い、コンデンサ素子を外装樹脂内に収容したコンデンサを用いて説明したが、これに限定されない。例えば、帯状の電極箔を有する陽極および陰極と、陽極および陰極の間に介在するセパレータと、電解質としてセパレータに含浸された電解液と、を有するコンデンサ素子を備え、このコンデンサ素子を有底筒状のケースに収容した構成のコンデンサにおいて、陽極および陰極の少なくとも一方の電極箔に、本開示の電極箔を使用することができる。 In the present embodiment, the capacitor is described as a capacitor using a solid electrolyte as an electrolyte and a capacitor element housed in an exterior resin. However, the present invention is not limited to this. For example, a capacitor element having an anode and a cathode having a strip-shaped electrode foil, a separator interposed between the anode and the cathode, and an electrolytic solution impregnated in the separator as an electrolyte is provided. In the capacitor housed in this case, the electrode foil of the present disclosure can be used for at least one of the anode and cathode electrode foils.
 本開示に係る方法により製造される電極箔は、高い信頼性を備えるため、様々な用途のコンデンサに利用できる。 The electrode foil manufactured by the method according to the present disclosure has high reliability and can be used for capacitors for various purposes.
 1:金属箔
 1E:エッチング部
 1N:未エッチング部
 2:電極
 3:エッチング液
 4:マスキング部材
 5:電解エッチング装置
 6:ロール
 10:電極箔
 10E:第1領域
 10N:第2領域
 20、20A~20C:コンデンサ素子
 22:誘電体層
 23:固体電解質層
 24:陰極引出層
 30:コンデンサ
 31:外装体
 32:陽極端子
 33:陰極端子
 34:加締め部材
 35:導電性接着剤
 40:金属箔
 40E:エッチング部
 40N:未エッチング部
 41:マスキング部材
1: Metal foil 1E: Etching part 1N: Unetched part 2: Electrode 3: Etching solution 4: Masking member 5: Electrolytic etching device 6: Roll 10: Electrode foil 10E: First region 10N: Second region 20, 20A- 20C: Capacitor element 22: Dielectric layer 23: Solid electrolyte layer 24: Cathode extraction layer 30: Capacitor 31: Exterior body 32: Anode terminal 33: Cathode terminal 34: Clamping member 35: Conductive adhesive 40: Metal foil 40E : Etched part 40N: Unetched part 41: Masking member

Claims (9)

  1.  第1金属を含む金属箔の少なくとも一方の主面に電極を対向させた状態で、エッチング液中において、前記金属箔と前記電極との間に電流を流して、前記金属箔をエッチングする電解エッチング工程を備える、電極箔の製造方法であって、
     前記金属箔の前記主面と前記電極との間に、前記主面の一部の領域を覆うようにマスキング部材が配置されており、
     前記マスキング部材が、導電体であり、
     前記マスキング部材と前記金属箔とが電気的に接続されている、電極箔の製造方法。
    Electrolytic etching for etching the metal foil by passing a current between the metal foil and the electrode in an etching solution in a state where the electrode is opposed to at least one main surface of the metal foil containing the first metal. A process for producing an electrode foil comprising a step,
    Between the main surface of the metal foil and the electrode, a masking member is disposed so as to cover a partial region of the main surface,
    The masking member is a conductor;
    The method for producing an electrode foil, wherein the masking member and the metal foil are electrically connected.
  2.  前記導電体が、第2金属を含む、
     請求項1に記載の電極箔の製造方法。
    The conductor includes a second metal;
    The manufacturing method of the electrode foil of Claim 1.
  3.  前記導電体の形状が、シート状である、
     請求項1または2に記載の電極箔の製造方法。
    The shape of the conductor is a sheet.
    The manufacturing method of the electrode foil of Claim 1 or 2.
  4.  前記導電体の少なくとも一部が、前記金属箔に溶接されることにより、電気的に接続されている、請求項3に記載の電極箔の製造方法。 4. The method for producing an electrode foil according to claim 3, wherein at least a part of the conductor is electrically connected by welding to the metal foil.
  5.  前記導電体が、前記金属箔に貼り付けられることにより、電気的に接続される、
     請求項1~3のいずれか一項に記載の電極箔の製造方法。
    The conductor is electrically connected by being attached to the metal foil,
    The method for producing an electrode foil according to any one of claims 1 to 3.
  6.  前記導電体が、前記金属箔に塗布されることにより、電気的に接続される、
     請求項1または2に記載の電極箔の製造方法。
    The conductor is electrically connected by being applied to the metal foil,
    The manufacturing method of the electrode foil of Claim 1 or 2.
  7.  前記電解エッチング工程の後に、前記マスキング部材を除去する工程を備える、
     請求項1~6のいずれか一項に記載の電極箔の製造方法。
    A step of removing the masking member after the electrolytic etching step;
    The method for producing an electrode foil according to any one of claims 1 to 6.
  8.  前記電解エッチング工程において、前記マスキング部材の前記電極に対向する表面がエッチングされる、
     請求項1~7のいずれか一項に記載の電極箔の製造方法。
    In the electrolytic etching step, a surface of the masking member facing the electrode is etched.
    The method for producing an electrode foil according to any one of claims 1 to 7.
  9.  請求項1に記載の方法により製造される電極箔を準備する第1工程と、
     エッチングされた前記電極箔の前記主面に、誘電体層を形成した後、前記誘電体層に電解質を接触させる第2工程と、を備える、コンデンサの製造方法。
    A first step of preparing an electrode foil produced by the method according to claim 1;
    And a second step of contacting an electrolyte with the dielectric layer after forming a dielectric layer on the principal surface of the etched electrode foil.
PCT/JP2016/004722 2015-11-30 2016-10-27 Electrode foil production method and capacitor production method WO2017094219A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017553606A JP6814946B2 (en) 2015-11-30 2016-10-27 Electrode foil manufacturing method and capacitor manufacturing method
CN201680068470.9A CN108292567B (en) 2015-11-30 2016-10-27 Method for manufacturing electrode foil and method for manufacturing capacitor
US15/980,132 US10655241B2 (en) 2015-11-30 2018-05-15 Electrode foil production method and capacitor production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015234228 2015-11-30
JP2015-234228 2015-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/980,132 Continuation US10655241B2 (en) 2015-11-30 2018-05-15 Electrode foil production method and capacitor production method

Publications (1)

Publication Number Publication Date
WO2017094219A1 true WO2017094219A1 (en) 2017-06-08

Family

ID=58796626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004722 WO2017094219A1 (en) 2015-11-30 2016-10-27 Electrode foil production method and capacitor production method

Country Status (4)

Country Link
US (1) US10655241B2 (en)
JP (1) JP6814946B2 (en)
CN (1) CN108292567B (en)
WO (1) WO2017094219A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292564B (en) * 2015-11-30 2021-04-23 松下知识产权经营株式会社 Method for manufacturing electrode foil and method for manufacturing capacitor
CN111074331B (en) * 2020-01-14 2020-12-08 南通海星电子股份有限公司 Electrochemical corrosion polar plate equipped with electromagnetic protection sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030979A (en) * 1998-07-13 2000-01-28 Matsushita Electric Ind Co Ltd Manufacture of aluminum electrode foil for electrolytic capacitor and etching device used for same
JP2003124068A (en) * 2001-10-10 2003-04-25 Showa Denko Kk Anode foil for capacitor, method for manufacturing anode foil and solid electrolytic capacitor using anode foil
JP2005223180A (en) * 2004-02-06 2005-08-18 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing electrode foil for aluminum electrolytic capacitor
JP2006161090A (en) * 2004-12-06 2006-06-22 Canon Inc Electrolytic etching method and electrolytic etching apparatus
WO2010131289A1 (en) * 2009-05-12 2010-11-18 日本軽金属株式会社 Manufacturing method of aluminum electrode plate for electrolytic capacitor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL159370B (en) 1968-05-13 1979-02-15 American Cyanamid Co PROCESS FOR PREPARING BIS-URETHANS.
US20070242418A1 (en) * 2004-04-27 2007-10-18 Showa Denko K.K. Manufacturing Method of Capacitor Electrode Foil, Capacitor Electrode Foil, Laminate Type Electrolytic Capacitor and Winding Type Electrolytic Capacitor
US7180727B2 (en) * 2004-07-16 2007-02-20 Cardiac Pacemakers, Inc. Capacitor with single sided partial etch and stake
US8100409B2 (en) * 2007-09-11 2012-01-24 Federal-Mogul World Wide, Inc. Metallic cylinder head gasket
JP4978509B2 (en) 2008-02-22 2012-07-18 富士通株式会社 Manufacturing method of electrode foil
TW201226088A (en) * 2010-12-30 2012-07-01 Metal Ind Res & Dev Ct Electrolytic processing method and semi-finished product of electrolytic processing workpiece
US9365947B2 (en) * 2013-10-04 2016-06-14 Invensas Corporation Method for preparing low cost substrates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030979A (en) * 1998-07-13 2000-01-28 Matsushita Electric Ind Co Ltd Manufacture of aluminum electrode foil for electrolytic capacitor and etching device used for same
JP2003124068A (en) * 2001-10-10 2003-04-25 Showa Denko Kk Anode foil for capacitor, method for manufacturing anode foil and solid electrolytic capacitor using anode foil
JP2005223180A (en) * 2004-02-06 2005-08-18 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing electrode foil for aluminum electrolytic capacitor
JP2006161090A (en) * 2004-12-06 2006-06-22 Canon Inc Electrolytic etching method and electrolytic etching apparatus
WO2010131289A1 (en) * 2009-05-12 2010-11-18 日本軽金属株式会社 Manufacturing method of aluminum electrode plate for electrolytic capacitor

Also Published As

Publication number Publication date
JP6814946B2 (en) 2021-01-20
US10655241B2 (en) 2020-05-19
CN108292567A (en) 2018-07-17
CN108292567B (en) 2020-04-21
US20180258548A1 (en) 2018-09-13
JPWO2017094219A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP5679275B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4662368B2 (en) Manufacturing method of solid electrolytic capacitor
JP7029600B2 (en) Solid electrolytic capacitors and their manufacturing methods
JP2006040938A (en) Solid electrolytic capacitor, laminated capacitor using the same and its manufacturing method
WO2017094219A1 (en) Electrode foil production method and capacitor production method
JP5445673B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPWO2006114917A1 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JP4986230B2 (en) Multilayer solid electrolytic capacitor
JP4753890B2 (en) Manufacturing method of solid electrolytic capacitor
JP6857809B2 (en) Electrode foil manufacturing method and capacitor manufacturing method
JP4743896B2 (en) Solid electrolytic capacitor
JP2011014663A (en) Solid electrolytic capacitor
JP2009260235A (en) Solid electrolytic capacitor device and method of manufacturing the same
JP4026819B2 (en) Manufacturing method of multilayer aluminum solid electrolytic capacitor and capacitor by the method
JP2004158577A (en) Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
JP4936458B2 (en) Multilayer solid electrolytic capacitor
JP6475417B2 (en) Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor
JP5411047B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JP5450001B2 (en) Electrolytic capacitor manufacturing method
JP5642508B2 (en) Surface mount thin capacitors
JP4863896B2 (en) Solid electrolytic capacitor element and manufacturing method thereof
JPH07106204A (en) Solid electrolytic capacitor
JP2006245476A (en) Method for manufacturing three-terminal solid electrolytic capacitor element
JP6492424B2 (en) Manufacturing method of solid electrolytic capacitor
JP5770444B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553606

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870162

Country of ref document: EP

Kind code of ref document: A1