WO2017094142A1 - 無停電電源装置 - Google Patents

無停電電源装置 Download PDF

Info

Publication number
WO2017094142A1
WO2017094142A1 PCT/JP2015/083890 JP2015083890W WO2017094142A1 WO 2017094142 A1 WO2017094142 A1 WO 2017094142A1 JP 2015083890 W JP2015083890 W JP 2015083890W WO 2017094142 A1 WO2017094142 A1 WO 2017094142A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
maximum value
inverter
power failure
Prior art date
Application number
PCT/JP2015/083890
Other languages
English (en)
French (fr)
Inventor
豊田 勝
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to US15/777,723 priority Critical patent/US10418851B2/en
Priority to PCT/JP2015/083890 priority patent/WO2017094142A1/ja
Priority to CN201580085039.0A priority patent/CN108292859B/zh
Priority to JP2017553552A priority patent/JP6530508B2/ja
Priority to TW105103485A priority patent/TWI583100B/zh
Publication of WO2017094142A1 publication Critical patent/WO2017094142A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the present invention relates to an uninterruptible power supply, and more specifically to an uninterruptible power supply configured to selectively execute commercial power supply and inverter power supply.
  • an uninterruptible power supply is a converter that converts AC power from an AC power source into DC power, and an inverter that converts DC power generated by the converter or DC power of a power storage device into AC power and supplies it to a load. And a bypass circuit connected between the AC power source and the load, and a control device for controlling them.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-115008 detects the state of AC power supplied from an AC power source, and depending on the detection result, either the constant inverter power supply method or the constant commercial power supply method is used. An uninterruptible power supply configured to select is disclosed.
  • a reference value for determining an abnormality of the AC power supply is set with respect to the voltage and frequency of the AC power supplied from the AC power supply.
  • the AC power supply is determined to be normal and the commercial power supply method is always selected.
  • the detected value deviates from the range of the reference value, it is determined that the AC power supply is abnormal and the inverter power feeding method is always selected.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide an uninterruptible power supply capable of preventing the occurrence of an instantaneous voltage drop at the time of transition from commercial power supply to inverter power supply. Is to provide a device.
  • the uninterruptible power supply is connected between an AC power supply and a load.
  • the uninterruptible power supply includes an input terminal that receives AC power output from an AC power supply, an output terminal that is connected to a load, a converter that is connected to the input terminal and converts AC power into DC power, and the converter outputs DC power or an inverter that converts DC power of the power storage device into AC power, a first switch connected between the input terminal and the output terminal, and a second switch connected between the inverter and the output terminal A switch and a control device for controlling the uninterruptible power supply.
  • the uninterruptible power supply is configured to selectively execute the first mode and the second mode.
  • the first mode is a mode in which the first switch is turned on and the second switch is turned off, and AC power from the AC power source is supplied to the load via the first switch.
  • the second mode the second switch is turned on and the first switch is turned off, and the AC power generated by the inverter is supplied to the load.
  • the control device switches to the second mode when an AC power failure is detected when the power failure detection unit configured to detect a power failure of the AC power source and the first mode is selected.
  • a controller configured to control on / off of the first and second switches and power conversion in the inverter to transition.
  • the power supply abnormality detection unit includes a voltage detection unit that detects an instantaneous value of the AC input voltage supplied from the AC power source to the input terminal, a phase detection unit that detects the phase of the AC input voltage, a voltage detection unit, and a phase detection unit.
  • a calculation unit that calculates an estimated value of the maximum value of the AC input voltage based on the detected value; and a first storage unit configured to store a time transition of the maximum value when a simulated power failure occurs in the AC power supply;
  • a determination unit configured to determine a power outage of the AC power supply based on a comparison between a time transition of the estimated value of the maximum value and a time transition of the maximum value stored in the first storage unit.
  • each of the first switch and the second switch is constituted by a mechanical switch.
  • the uninterruptible power supply further includes a semiconductor switch connected in parallel to the first switch.
  • the control unit is configured to turn on the semiconductor switch for a predetermined time when shifting from the first mode to the second mode.
  • the determination unit is configured to determine whether or not there is a possibility of a power failure of the AC power supply based on a time transition of the estimated value of the maximum value when the AC power supply is determined to be normal. Is done.
  • the control unit turns on the semiconductor switch and turns off the first switch to set the first mode. Configured to continue.
  • the control unit is configured to shift to the second mode by turning on the second switch and turning off the semiconductor switch.
  • the first storage unit is configured to store time transitions of a plurality of maximum values having different maximum value decrease rates.
  • the determination unit is configured to determine a power outage of the AC power source based on a comparison between a time transition of the maximum value selected from a plurality of time transitions of the maximum value and a time transition of the estimated value of the maximum value.
  • the uninterruptible power supply further includes a second storage unit configured to store a time transition of the estimated value of the maximum value.
  • the first storage unit is configured to learn the time transition of the maximum value at the time of a power failure based on the time transition of the estimated value of the maximum value stored in the second storage unit.
  • the determination unit determines a power outage of the AC power source based on a comparison between the time transition of the estimated value of the maximum value and the learned value of the time transition of the maximum value at the time of the power outage updated in the first storage unit. Configured.
  • an uninterruptible power supply capable of preventing the occurrence of an instantaneous voltage drop when shifting from commercial power supply to inverter power supply.
  • FIG. 1 is an overall configuration diagram of an uninterruptible power supply according to Embodiment 1.
  • FIG. It is a figure explaining the general detection method for detecting the power failure of alternating current power supply. It is a functional block diagram which shows the control structure of the power supply abnormality detection part in FIG. It is a figure explaining the estimation calculation of the maximum value of alternating current input voltage. It is a figure which shows an example of the time transition of the maximum value of the alternating current input voltage at the time of a simulation power failure. It is a figure which shows an example of the time transition of the maximum value estimated value read from the voltage maximum value transition memory
  • FIG. 3 is a flowchart for explaining a procedure of operation mode switching control in the uninterruptible power supply according to Embodiment 1; It is a flowchart for demonstrating the procedure of the power failure determination process in step S07 of FIG. 6 is a functional block diagram showing a control configuration of a power supply abnormality detection unit in the uninterruptible power supply according to Embodiment 2.
  • FIG. It is a figure which shows an example of the time transition of the maximum value estimated value read from the voltage maximum value transition memory
  • 6 is a flowchart for explaining a procedure of operation mode switching control in the uninterruptible power supply according to Embodiment 2.
  • 6 is a flowchart for explaining a procedure of operation mode switching control in the uninterruptible power supply according to Embodiment 2.
  • FIG. 9 is a functional block diagram showing a control configuration of a power supply abnormality detection unit in an uninterruptible power supply according to Embodiment 3. It is a figure which shows an example of the time transition of the maximum value at the time of a power failure memorize
  • 10 is a flowchart for explaining a procedure of operation mode switching control in the uninterruptible power supply according to Embodiment 3.
  • FIG. 10 is a functional block diagram showing a control configuration of a power supply abnormality detection unit in an uninterruptible power supply according to Embodiment 4.
  • 10 is a flowchart for explaining a procedure of operation mode switching control in the uninterruptible power supply according to Embodiment 4;
  • FIG. 1 is an overall configuration diagram of the uninterruptible power supply 100 according to the first embodiment. Referring to FIG. 1, uninterruptible power supply apparatus 100 according to Embodiment 1 is connected between AC power supply 1 and load 11.
  • AC power supply 1 is an AC power supply that supplies AC power to uninterruptible power supply 100.
  • the AC power source 1 is constituted by, for example, a commercial AC power source or a private generator.
  • a three-phase three-wire commercial power source is shown as an example of the AC power source 1.
  • the type of AC power supply is not limited to a three-phase three-wire system, and may be, for example, a three-phase four-wire power source or a single-phase three-wire power source.
  • the uninterruptible power supply 100 includes an input terminal T1 and an output terminal T2.
  • the input terminal T1 receives AC power supplied from the AC power source 1.
  • the output terminal T2 is connected to the load 11.
  • the load 11 is driven by AC power supplied from the uninterruptible power supply 100.
  • the uninterruptible power supply 100 further includes magnetic contactors (contactors) 2, 10, 13, fuses 3, reactors 4, 8, converter 5, electrolytic capacitor 6, inverter 7, capacitor 9, and thyristor switch. 12 and the control device 20.
  • the contactor 2, the fuse 3, the reactor 4, the converter 5, the inverter 7, the reactor 8, and the contactor 10 are connected in series between the input terminal T1 and the output terminal T2.
  • the contactor 2 is connected to the energization path between the input terminal T1 and the converter 5.
  • the contactor 2 is closed (ON) during normal times when AC power is normally supplied from the AC power supply 1, and is opened (OFF) during maintenance of the uninterruptible power supply 100, for example.
  • the fuse 3 is inserted into the energization path between the input terminal T1 and the converter 5 in order to prevent an overcurrent from flowing in from the AC power supply 1.
  • Reactor 4 is provided to pass AC power from AC power supply 1 and prevent a signal having a switching frequency generated by converter 5 from propagating to AC power supply 1.
  • the converter 5 and the inverter 7 are composed of semiconductor switching elements.
  • the semiconductor switching element for example, an IGBT (Insulated Gate Bipolar Transistor) is used.
  • PWM Pulse Width Modulation control can be applied as a control method of the semiconductor switching element.
  • the converter 5 normally converts the three-phase AC power supplied from the AC power source 1 into DC power.
  • the DC power generated by the converter 5 is supplied to the inverter 7 and the storage battery 14.
  • the control device 20 (converter control unit 28).
  • the electrolytic capacitor 6 is connected to the output terminal of the converter 5 and smoothes the output voltage of the converter 5.
  • the inverter 7 normally converts the DC power smoothed by the electrolytic capacitor 6 into commercial-phase three-phase AC power. On the other hand, at the time of a power failure, the inverter 7 changes the DC power of the storage battery 14 to three-phase AC power having a commercial frequency. Power conversion in the inverter 7 is controlled by the control device 20 (inverter control unit 30).
  • Reactor 8 and capacitor 9 constitute a filter for removing a switching frequency component included in AC power output from inverter 7.
  • the contactor 10 is turned on in a mode (second mode) in which AC power is supplied from the inverter 7 to the load 11.
  • second mode in which AC power is supplied from the AC power source 1 to the load 11 via the contactor 13
  • first mode when the AC power is supplied from the AC power source 1 to the load 11 via the contactor 13 (first mode), the contactor 10 is turned off. ON / OFF of the contactor 10 is controlled by the control device 20 (switch control unit 32).
  • the operation mode (first mode) in which AC power is supplied from the AC power supply 1 to the load 11 via the contactor 13 is also referred to as “commercial power supply mode”.
  • the operation mode (second mode) in which AC power is supplied from the inverter 7 to the load 11 is also referred to as “inverter power supply mode”.
  • the inverter power supply mode In the inverter power supply mode, AC power supplied from the AC power source 1 is converted into DC power by the converter 5, and the DC power is converted into AC power by the inverter 7 and supplied to the load 11. Therefore, the inverter power supply mode is excellent in power supply stability to the load 11. On the other hand, the inverter power supply mode has a problem that it is difficult to increase the efficiency of the uninterruptible power supply 100 because power loss associated with power conversion occurs in each of the converter 5 and the inverter 7.
  • the thyristor switch 12 and the contactor 13 are connected in parallel between the input terminal T1 and the output terminal T2.
  • the parallel circuit of the thyristor switch 12 and the contactor 13 is also referred to as a “bypass circuit”.
  • the thyristor switch 12 is turned on / off in response to a control signal from the control device 20 (switch control unit 32). Specifically, the thyristor switch 12 is set in response to a control signal from the control device 20 when shifting from the inverter power supply mode to the commercial power supply mode and when shifting from the commercial power supply mode to the inverter power supply mode. Turn on only for hours.
  • the contactor 13 is turned off in the inverter power supply mode and turned on in the commercial power supply mode.
  • the contactor 13 constitutes the “first switch” in the present invention
  • the contactor 10 constitutes the “second switch” in the present invention.
  • the contactors 13 and 10 correspond to an example of the “mechanical switch” in the present invention.
  • the thyristor switch 12 corresponds to an example of a “semiconductor switch” in the present invention.
  • the storage battery 14 is a power storage device for supplying DC power to the inverter 7 during a power failure.
  • the storage battery 14 normally stores the DC power generated by the converter 5.
  • the fuse 16 and the contactor 15 are connected in series between the DC side terminal of the converter 5 and the storage battery 14. Contactor 15 is normally turned on, and is turned off, for example, during maintenance of uninterruptible power supply 100 and storage battery 14. The fuse 16 prevents an overcurrent from flowing into the converter 5 and the storage battery 14.
  • Control device 20 performs ON / OFF of contactors 10 and 13 and thyristor switch 12 and power conversion in converter 5 and inverter 7 so that uninterruptible power supply 100 selectively executes the inverter power supply mode and bypass power supply mode. Configured to control.
  • Control device 20 includes a UPS activation command unit 22, an operation command unit 24, an operation mode switching command generation unit 26, a converter control unit 28, an inverter control unit 30, and a switch control unit 32.
  • the UPS startup command unit 22 generates a startup command for requesting startup of the uninterruptible power supply 100.
  • the UPS activation command unit 22 may be provided with a switch for requesting activation of the uninterruptible power supply 100, and generate an activation command when the switch is turned on by the user.
  • the activation command may be automatically generated according to a predetermined schedule without providing a switch.
  • the UPS start command unit 22 outputs a start command to the converter control unit 28 and the operation command unit 24.
  • the UPS activation command unit 22 further turns on the contactor 2 so that an energization path between the input terminal T1 and the converter 5 is formed.
  • the converter control unit 28 When the converter control unit 28 receives the start command, the converter control unit 28 operates the converter 5 in order to store DC power in the storage battery 14. Specifically, converter control unit 28 controls power conversion in converter 5 according to the remaining capacity of storage battery 14 so that storage battery 14 is in a predetermined fully charged state.
  • the operation command unit 24 When receiving the start command, the operation command unit 24 generates an operation command for instructing the start of power supply from the uninterruptible power supply 100 to the load 11.
  • the operation mode switching command generation unit 26 switches either the commercial power supply mode or the inverter power supply mode based on the output signal of the power supply abnormality detection unit 36 to the uninterruptible power supply 100. Select the operation mode.
  • the power supply abnormality detection unit 36 detects an abnormality of the AC power supply 1 leading to a power failure. Specifically, the power supply abnormality detection unit 36 detects an AC voltage (hereinafter also referred to as “AC input voltage”) supplied from the AC power supply 1 to the input terminal T1, and determines from the AC power supply 1 based on the detected value. It is determined whether or not AC power is normally supplied (that is, whether or not a power failure has occurred). The power supply abnormality detection unit 36 outputs a signal indicating the determination result to the operation mode switching command generation unit 26. The detection of a power failure in the power supply abnormality detection unit 36 will be described later.
  • AC input voltage AC voltage supplied from the AC power supply 1 to the input terminal T1
  • the operation mode switching command generator 26 selects the commercial power supply mode during normal times when the AC power is normally supplied from the AC power supply 1. On the other hand, when a power failure of AC power supply 1 is detected, operation mode switching command generation unit 26 selects the inverter power supply mode. Alternatively, the commercial power supply mode may be selected when a request for execution of the commercial power supply mode is received from a higher-level control unit (not shown) at normal times.
  • the operation mode switching command generation unit 26 sets the commercial power supply command to ON and sets the inverter power supply command to OFF.
  • the commercial power supply command is set to OFF and the inverter power supply command is set to ON.
  • the operation mode switching command generation unit 26 outputs the commercial power supply command and the inverter power supply command to the converter control unit 28, the inverter control unit 30, and the switch control unit 32.
  • the inverter control unit 30 converts the power in the inverter 7 so that an AC voltage synchronized with the AC voltage supplied from the AC power supply 1 is output from the inverter 7 when the inverter power supply command is ON (commercial power supply command is OFF). To control. In addition, after the power failure of AC power supply 1 is detected, inverter 7 is controlled to synchronize with the AC voltage supplied from AC power supply 1 before the power failure occurs. Specifically, the inverter control unit 30 generates a gate signal for turning on and off the semiconductor switching elements constituting the inverter 7 by PWM control, and outputs the gate signal to the gate drive circuit inside the inverter 7.
  • the inverter control unit 30 does not output the generated gate signal to the gate drive circuit. Therefore, the inverter 7 is not operated in the commercial power supply mode, and is in a standby state (waiting for gate signal input) until a gate signal is given.
  • the switch control unit 32 controls on / off of the bypass circuit (thyristor switch 12 and contactor 13) and the contactor 10 according to the commercial power supply command and the inverter power supply command. Specifically, the switch control unit 32 turns on the contactor 13 and turns off the contactor 10 when the commercial power supply command is on (the inverter power supply command is off). When the contactor 13 is turned on, the switch control unit 32 turns on the thyristor switch 12 for a predetermined time. The switch control unit 32 also turns on the contactor 13 and turns off the contactor 10 when the inverter power supply command is on (commercial power supply command is off). When the contactor 13 is turned off, the switch control unit 32 turns on the thyristor switch 12 for a predetermined time.
  • the uninterruptible power supply apparatus 100 executes the commercial power supply mode automatically or in response to a request from the host controller during normal times when AC power is normally supplied from the AC power supply 1. . And if the power failure of AC power supply 1 is detected at the time of commercial power supply mode, uninterruptible power supply 100 will transfer from commercial power supply mode to inverter power supply mode.
  • AC power failure detection As a method of detecting a power failure of the AC power supply 1, the maximum value (or effective value) of the AC voltage (AC input voltage) supplied from the AC power supply 1 is detected, and the AC power supply 1 is detected based on the detected value. A method for determining a power failure is generally used. Hereinafter, a general detection method will be described.
  • FIG. 2 shows the waveform of the AC input voltage when the AC power supply 1 is normal, and the waveform of the AC input voltage when a power failure occurs in the AC power supply 1.
  • the AC power supply 1 is a commercial power supply
  • one cycle is 20 msec when the power supply frequency is 50 Hz, and 16.7 msec when the power supply frequency is 60 Hz.
  • the number of samplings in one cycle is 200, for example.
  • the maximum value (or effective value) of the AC input voltage is acquired based on the detected value of the instantaneous value of the AC input voltage in the first half cycle. Then, in the latter half cycle, it is determined whether or not a power failure has occurred in the AC power supply 1 by comparing the acquired maximum value (or effective value) with a predetermined reference value.
  • the power failure is detected approximately 1/2 cycle later after the power failure occurs.
  • an instantaneous voltage drop instantaneous drop in which the voltage output to the output terminal T2 instantaneously decreases can occur during the transition from the commercial power supply mode to the inverter power supply mode. There is sex. Therefore, it is required to detect a power failure of the AC power supply 1 at a higher speed.
  • the power supply abnormality detection unit 36 detects a power failure of the AC power supply 1 as follows.
  • FIG. 3 is a functional block diagram showing a control configuration of the power supply abnormality detection unit 36 in FIG.
  • power supply abnormality detection unit 36 includes voltage instantaneous value detection unit 40, voltage phase detection unit 42, voltage maximum value calculation unit 46, voltage maximum value transition storage unit 48, and voltage maximum at power failure.
  • a value transition storage unit 50, a comparison unit 52, a determination unit 54, and a power supply monitoring unit 56 are included.
  • the instantaneous voltage value detector 40 detects the instantaneous value of the AC input voltage.
  • the voltage instantaneous value detection unit 40 outputs a signal indicating the detection value to the voltage maximum value calculation unit 46 and the power supply monitoring unit 56.
  • the voltage phase detector 42 detects the phase of the AC input voltage.
  • the voltage phase detector 42 outputs a signal indicating the detected value to the voltage maximum value calculator 46.
  • the voltage maximum value calculation unit 46 estimates and calculates the maximum value Vm of the AC input voltage based on the output signals of the voltage instantaneous value detection unit 40 and the voltage phase detection unit 42.
  • the estimated value of the maximum value Vm is also referred to as “maximum value estimated value Vme”.
  • the maximum value estimated value Vme can be calculated.
  • Vme v / sin ⁇ (2)
  • the calculation of the maximum estimated value Vme may be executed in synchronization with the sampling of the AC input voltage in the voltage instantaneous value detection unit 40 and the voltage phase detection unit 42, or may be executed asynchronously with the sampling. .
  • the voltage maximum value transition storage unit 48 (second storage unit) stores the time transition of the maximum value estimated value Vme calculated by the voltage maximum value calculation unit 46. In normal times, the maximum value estimated value Vme is maintained at a substantially constant value. On the other hand, when a power failure occurs in the AC power supply 1, the maximum value estimated value Vme gradually decreases as shown in FIG.
  • the voltage maximum value transition storage unit 50 (first storage unit) during a power failure is configured to store a time transition of the maximum value Vm of the AC input voltage when the AC power supply 1 is subjected to a simulated power failure.
  • a simulated power outage test is performed prior to starting the uninterruptible power supply 100.
  • the In the simulated power failure test a power failure state of the AC power source 1 is intentionally created by opening a circuit breaker (not shown) connected between the AC power source 1 and the input terminal T1.
  • the power failure voltage maximum value transition storage unit 50 detects the actual measurement value of the maximum value Vm of the AC input voltage and stores the time transition of the actual measurement value of the detected maximum value Vm.
  • FIG. 5 is a diagram illustrating an example of a time transition of the maximum value of the AC input voltage at the time of a simulated power failure.
  • Vm V0
  • V0 the maximum value Vm of the AC input voltage at the normal time.
  • maximum value decrease rate The amount of decrease in the maximum value Vm per unit time (hereinafter also referred to as “maximum value decrease rate”) depends on the impedance (system impedance) of the energization path from the opened circuit breaker to the input terminal T1. Come different.
  • FIG. 5 shows two waveforms 1 and k2 having different maximum value reduction rates (that is, the slopes of the waveforms). In these two waveforms k1 and k2, since the system impedance of the waveform k1 is relatively smaller than that of the waveform k2, the maximum value reduction rate (slope) is large.
  • the system impedance becomes the smallest when the circuit breaker installed closest to the input terminal T1 is opened.
  • the maximum value reduction rate becomes the largest. Therefore, the degree of influence on the load 11 is greater than when other circuit breakers are opened.
  • a circuit breaker having a large influence on the load 11 that is, a circuit breaker closest to the input terminal T1 can be opened.
  • the time transition of the maximum value Vm of the AC input voltage when a power failure actually occurs in the AC power supply 1 can be acquired in advance by performing a simulated power failure test. That is, it is possible to acquire in advance at what speed the maximum value Vm decreases when a power failure actually occurs. As a result, whether or not a power failure has occurred in the AC power supply 1 by comparing the time transition of the maximum estimated value Vme acquired in the commercial power supply mode with the time transition of the actual measurement value of the maximum value Vm at the time of the simulated power failure. Can be determined.
  • the actually measured value of the maximum value Vm at the time of the simulated power failure is also referred to as “maximum value Vmi at the time of power failure”.
  • FIG. 6 is a diagram illustrating an example of a time transition of the maximum value estimated value Vme read from the voltage maximum value transition storage unit 48.
  • the solid line in FIG. 6 shows the time transition of the maximum estimated value Vme, and the broken line in FIG. 6 shows the time transition of the maximum value Vmi at the time of power failure.
  • the time transition of the power failure maximum value Vmi shown in FIG. 6 corresponds to the waveform k1 in FIG.
  • uninterruptible power supply 100 is executing the commercial power supply mode.
  • the maximum estimated value Vme calculated from the instantaneous value v and the phase ⁇ of the AC input voltage is maintained at V0.
  • the comparison unit 52 compares the time transition of the maximum estimated value Vme after time t2 with the time transition of the maximum value Vmi at the time of power failure.
  • the comparison unit 52 has a determination value V1 for determining whether or not a power failure has occurred in the AC power supply 1.
  • the determination value V1 is set, for example, to a magnitude of about 90% of V0, which is the maximum value Vm at normal times.
  • the comparison unit 52 obtains the elapsed time Tp until the maximum value Vmi at the time of power failure decreases from V0 to the determination value V1
  • the comparison unit 52 obtains the maximum value estimated value Vme at time t3 after the lapse of Tp from time t2.
  • the comparison unit 52 calculates a difference value between the maximum estimated value Vme at the time t3 and the determination value V1.
  • the determination unit 54 determines whether or not the time transition of the maximum estimated value Vme after the time t2 matches the time transition of the maximum value Vmi at the time of power failure. Determine. Specifically, if the difference value at time t3 is equal to or smaller than a predetermined threshold value d1, the determination unit 54 matches the time transition of the maximum value estimated value Vme after time t2 with the time transition of the power failure maximum value Vmi. It is determined that In this case, the determination unit 54 determines that a power failure has occurred in the AC power supply 1.
  • the determination unit 54 determines that the time transition of the maximum value estimated value Vme after time t2 does not match the time transition of the power failure maximum value Vmi. To do. In this case, the determination unit 54 determines that a power failure has not occurred in the AC power supply 1. The determination unit 54 outputs a signal indicating the determination result to the power supply monitoring unit 56.
  • the power supply monitoring unit 56 transmits a signal from the determination unit 54 to the operation mode switching command generation unit 26.
  • the operation mode switching command generation unit 26 selects either the commercial power supply mode or the inverter power supply mode based on the output signal of the power supply monitoring unit 56.
  • the maximum value Vm of the AC input voltage used for detection of a power failure of the AC power supply 1 is estimated from the instantaneous value v and the phase ⁇ of the AC input voltage (maximum value estimated value Vme). ).
  • a power failure of the AC power supply 1 can be detected without actually measuring the maximum value Vm of the AC input voltage. Therefore, it is possible to detect a power failure of the AC power supply 1 without waiting for a 1 ⁇ 2 cycle period.
  • the power failure of AC power supply 1 can be detected at higher speed, and it can switch to inverter electric power feeding mode. As a result, it is possible to prevent a voltage sag from occurring when shifting from the commercial power supply mode to the inverter power supply mode.
  • the uninterruptible power supply 100 it is possible to detect a power failure of the AC power supply 1 at high speed and with high accuracy and shift from the commercial power supply mode to the inverter power supply mode.
  • the reliability can be improved. Therefore, as long as a power failure of the AC power supply 1 is not detected, the uninterruptible power supply 100 can continue to execute the commercial power supply mode, so that the efficiency of the uninterruptible power supply 100 can be increased.
  • switching operation mode switching of the operation mode of the uninterruptible power supply 100 when a power failure of the AC power supply 1 is detected will be described. Further, switching of the operation mode when the supply of AC power from the AC power supply 1 is resumed, that is, at the time of power recovery will be described.
  • the operation mode switching command generation unit 26 switches the commercial power supply command from on to off and outputs the inverter power supply command. Switch from off to on.
  • the inverter control unit 30 outputs the gate signal generated by the PWM control to the gate drive circuit inside the inverter 7 in the commercial power supply mode when the inverter power supply command is turned on.
  • the inverter 7 converts the DC power stored in the storage battery 14 into AC power. Thereby, the inverter 7 outputs the alternating voltage synchronized with the alternating voltage supplied from the alternating current power supply 1 before the power failure occurred.
  • the converter control unit 28 stops the operation of the converter 5 when the inverter power supply command is switched on.
  • the switch controller 32 turns on the thyristor switch 12 and turns on the contactor 10 when the inverter power supply command is turned on.
  • the response time of the thyristor switch 12 is short, and the thyristor switch 12 is instantly turned on when an on command is received.
  • the response time of the contactor 10 is longer than the response time of the thyristor switch 12, and is turned on after a predetermined response time has elapsed after receiving the ON command. Thereby, the alternating voltage output from the inverter 7 is supplied to the output terminal T2.
  • the switch control unit 32 turns off the contactor 13. Further, after the contactor 13 is turned off, the switch control unit 32 turns off the thyristor switch 12. Thereby, the uninterruptible power supply 100 shifts from the commercial power supply mode to the inverter power supply mode with no instantaneous interruption.
  • the power supply abnormality detection unit 36 determines whether or not the AC power supply 1 is restored. Specifically, in the inverter power supply mode, the power supply monitoring unit 56 monitors the waveform of the AC input voltage based on the detection values of the voltage instantaneous value detection unit 40 and the voltage phase detection unit 42. The power supply abnormality detection unit 36 determines that the AC power supply 1 has recovered when the maximum value Vm of the AC input voltage is equal to or greater than the determination value V1.
  • the inverter 7 In the inverter power supply mode, the inverter 7 outputs an AC voltage synchronized with the AC voltage supplied from the AC power source 1 to the output terminal T2 before the power failure occurs. On the other hand, the phase of the AC voltage supplied from the AC power supply 1 may be shifted before and after the power failure. In this case, when the inverter power supply mode is returned to the commercial power supply mode, the AC voltage output to the output terminal T2 may fluctuate, which may affect the operation of the load 11.
  • the inverter control unit 30 gradually synchronizes the AC voltage output from the inverter 7 with the AC voltage supplied from the AC power source 1 after the power recovery. Specifically, inverter control unit 30 limits the amount of change in voltage command value between control cycles in PWM control to a predetermined upper limit value or less. This upper limit value is adapted by, for example, experiments so as not to affect the operation of the load 11.
  • the inverter control unit 30 determines whether or not the AC voltage output from the inverter 7 is synchronized with the AC voltage supplied from the AC power supply 1 after power recovery. Specifically, inverter control unit 30 compares the AC voltage output from inverter 7 with a predetermined normal fluctuation range.
  • FIG. 7 is a diagram for explaining the normal fluctuation range.
  • the waveform of the AC input voltage after power recovery which is drawn by the detection values of voltage instantaneous value detection unit 40 and voltage phase detection unit 42, is used as a reference waveform, and a predetermined voltage centered on this reference waveform Set the width to the normal fluctuation range.
  • the inverter control unit 30 converts the AC voltage output from the inverter 7 from the AC power supply 1 after power recovery. It determines with synchronizing with the alternating voltage supplied.
  • the inverter control unit 30 outputs a signal indicating the determination result to the operation mode switching command generation unit 26.
  • the operation mode switching command generation unit 26 switches the commercial power supply command from OFF to ON, and the inverter power supply command. Switch from on to off.
  • the switch control unit 32 When the commercial power supply command is switched on, the switch control unit 32 turns on the thyristor switch 12 and turns on the contactor 13. After the contactor 13 is turned on, the switch control unit 32 turns off the contactor 10. Further, after the contactor 10 is turned off, the switch control unit 32 turns off the thyristor switch 12. Thereby, the uninterruptible power supply apparatus 100 shifts from the inverter power supply mode to the commercial power supply mode with no instantaneous interruption.
  • the inverter control unit 30 stops the operation of the inverter 7 by stopping the output of the gate signal to the gate drive circuit inside the inverter 7. Thereby, uninterruptible power supply 100 returns to commercial power supply mode. Note that after returning to the commercial power supply mode, the inverter control unit 30 generates a gate signal for turning on and off the semiconductor switching elements constituting the inverter 7 by PWM control. However, the inverter control unit 30 does not output the generated gate signal to the gate drive circuit. For this reason, the inverter 7 again enters the gate signal input waiting state.
  • the converter control unit 28 activates the converter 5 when the commercial power supply command is switched on.
  • Converter control unit 28 generates a gate signal for controlling power conversion in converter 5 and outputs the gate signal to converter 5.
  • converter 5 converts the AC power supplied from AC power supply 1 after power recovery into DC power and supplies it to storage battery 14.
  • FIG. 8 is a flowchart for explaining a procedure of operation mode switching control in the uninterruptible power supply according to Embodiment 1.
  • control device 20 determines whether or not the commercial power supply command is on (step S01). If the commercial power supply command is on (when YES is determined in S01), the control device 20 controls the uninterruptible power supply 100 so that the uninterruptible power supply 100 executes the commercial power supply mode (step S02). Specifically, the control device 20 turns on the contactor 13 and turns off the contactor 10. When the contactor 13 is turned on, the control device 20 turns on the thyristor switch 12 for a predetermined time. Further, the control device 20 puts the inverter 7 into a gate signal input waiting state.
  • the control device 20 detects the instantaneous value v and the phase ⁇ of the AC input voltage (step S03), and calculates the maximum value estimated value Vme based on these detected values (step S04).
  • the control device 20 stores the time transition of the maximum value estimated value Vme (step S05).
  • the control device 20 performs a simulated power failure test before starting the uninterruptible power supply 100. Specifically, the circuit breaker connected between the AC power source 1 and the input terminal T1 is opened (step S20). In the simulated power failure state of AC power supply 1, control device 20 detects an actual measurement value (maximum value Vmi at the time of power failure) of maximum value Vm of the AC input voltage and stores a time transition of the detected maximum value Vmi at the time of power failure (step). S21).
  • control device 20 compares the time transition of the maximum value estimated value Vme stored in step S05 with the time transition of the power failure maximum value Vmi stored in step S21 (step S06). Based on the comparison result, control device 20 determines whether or not a power failure has occurred in AC power supply 1 (step S07).
  • FIG. 9 is a flowchart for explaining the procedure of the power failure determination process in step S07 of FIG.
  • control device 20 based on the time transition of power failure maximum value Vmi, control device 20 has elapsed time until power failure maximum value Vmi decreases from V0 (normal maximum value Vm) to determination value V1.
  • Tp is acquired (step S30).
  • the control device 20 acquires the maximum value estimated value Vme after the elapse of Tp from the time when the maximum value estimated value Vme starts to decrease from V0 (step S31).
  • control device 20 sets the commercial power supply command to on (inverter power supply command off). (Step S09). Thereby, the uninterruptible power supply 100 continues to execute the commercial power supply mode.
  • control device 20 sets the commercial power supply command to off (inverter power supply command on) (step S10).
  • the control device 20 controls the uninterruptible power supply 100 so that the uninterruptible power supply 100 executes the inverter power supply mode (step S11).
  • the control device 20 starts the inverter 7 and controls the inverter 7 so that the AC voltage output from the inverter 7 and the AC voltage supplied from the AC power supply 1 before the occurrence of the power failure are synchronized. .
  • the control device 20 turns on the contactor 10 and turns off the contactor 13. When the contactor 10 is turned on, the control device 20 turns on the thyristor switch 12 for a predetermined time.
  • the control device 20 determines whether or not the AC power source 1 has recovered based on the instantaneous value v of the AC input voltage and the detected value of the phase ⁇ (step S12). The control device 20 determines that the AC power supply 1 has recovered when the maximum value Vm of the AC input voltage becomes equal to or greater than the determination value V1 (when YES is determined in S12). On the other hand, when it is determined that AC power supply 1 has not been restored (NO in S12), the process returns to step S11, and uninterruptible power supply 100 continues to execute the inverter power supply mode.
  • control device 20 When the power recovery of the AC power source 1 is detected, the control device 20 gradually synchronizes the AC voltage output from the inverter 7 with the AC voltage supplied from the AC power source 1 after the power recovery.
  • control device 20 When the AC voltage output from inverter 7 is within the normal fluctuation range set based on the AC voltage supplied from AC power supply 1 after power recovery, control device 20 is output from inverter 7. It is determined that the AC voltage is synchronized with the AC voltage supplied from AC power supply 1 after power recovery, and the commercial power supply command is set to on (inverter power supply command is off) (step S13).
  • the control device 20 When the commercial power supply command is set to ON, the control device 20 turns on the contactor 13 and turns off the contactor 10. When the contactor 13 is turned on, the control device 20 turns on the thyristor switch 12 for a predetermined time.
  • the AC power supply is based on the maximum value Vm (maximum estimated value Vme) estimated from the instantaneous value v and the phase ⁇ of the AC input voltage.
  • Vm maximum estimated value Vme
  • the time transition of the maximum value Vm of the AC input voltage at the time of power failure (maximum value Vmi at the time of power failure) is acquired in advance, and the maximum value Vmi at the time of power failure and the maximum value estimated value Vme are obtained. By comparing the time transition, a power failure of the AC power supply can be detected with high accuracy.
  • the inverter power supply mode can be quickly switched after the power failure occurs. Thereby, it is possible to prevent occurrence of a sag during transition from the commercial power supply mode to the inverter power supply mode. That is, since the reliability of the uninterruptible power supply can be improved, it is possible to keep the uninterruptible power supply in the commercial power supply mode unless an AC power failure is detected. High efficiency can be realized.
  • the maximum value Vm is a maximum value change rate smaller than the power failure maximum value Vmi. Decrease gradually. Even in such a case, it is necessary to switch to the inverter power supply mode.
  • the inverter power supply mode since the inverter power supply mode has a larger power loss than the commercial power supply mode, it is desirable to continue to execute the commercial power supply mode unless an instantaneous drop occurs in order to increase efficiency.
  • the uninterruptible power supply according to the second embodiment basically has the same configuration as that of the uninterruptible power supply 100 shown in FIG. 1, but instead of the power failure detection unit 36, the power failure detection shown in FIG. 10. It differs in that it includes the part 36A.
  • power supply abnormality detection unit 36 ⁇ / b> A according to Embodiment 2 is provided with determination units 54 ⁇ / b> A and 54 ⁇ / b> B in place of determination unit 54 in power supply abnormality detection unit 36 shown in FIG. 3. .
  • the first determination unit 54 ⁇ / b> A generates a power failure in the AC power supply 1 based on a comparison between the time transition of the maximum estimated value Vme and the time transition of the maximum value Vmi during power failure. It is determined whether or not.
  • the first determination unit 54A further determines whether or not there is a possibility of a power failure in the AC power supply 1 based on the comparison.
  • the possibility that a power failure has occurred in the AC power source 1 means that the maximum value Vm may be reduced below the determination value V1, although the maximum value decrease rate is smaller than the maximum value Vm at the time of the simulated power failure.
  • the second determination unit 54B determines that the AC power source 1 is based on the time transition of the maximum estimated value Vme. Determine whether a power outage has occurred.
  • the second determination unit 54B is provided to determine whether the decrease in the maximum value Vm is due to a power failure of the AC power supply 1 or due to temporary load fluctuations.
  • the commercial power supply mode and the inverter power supply mode are switched based on the determination results of the determination units 54A and 54B.
  • FIG. 11 switching of the operation mode in the uninterruptible power supply according to Embodiment 2 will be described.
  • FIG. 11 is a diagram showing an example of the time transition of the maximum value estimated value Vme read from the voltage maximum value transition storage unit 48.
  • the solid line in FIG. 11 shows the time transition of the maximum estimated value Vme
  • the broken line in FIG. 11 shows the time transition of the maximum value Vmi at the time of power failure. Note that the time transition of the power failure maximum value Vmi shown in FIG. 11 corresponds to the waveform k1 in FIG.
  • uninterruptible power supply apparatus 100 is executing the commercial power supply mode after time t1.
  • the maximum estimated value Vme calculated from the instantaneous value v and the phase ⁇ of the AC input voltage is maintained at V0.
  • the comparison unit 52 compares the time transition of the maximum estimated value Vme after time t2 with the time transition of the maximum value Vmi at the time of power failure. Specifically, when the comparison unit 52 acquires the elapsed time Tp until the maximum value Vmi at the time of power failure decreases from V0 to the determination value V1, the comparison unit 52 calculates the maximum value estimated value Vme from time t2 to time t3 after Tp has elapsed. get. The comparison unit 52 calculates a difference value between the maximum estimated value Vme at the time t3 and the determination value V1.
  • the first determination unit 54A determines that the time transition of the maximum value estimated value Vme after the time t2 is the time transition of the maximum value Vmi at power failure. It is determined that they match. In this case, the first determination unit 54A determines that a power failure has occurred in the AC power supply 1.
  • the first determination unit 54 determines whether or not the maximum value estimated value Vme at time t3 is equal to or less than the determination value V2.
  • the determination value V2 is a determination value for determining whether or not there is a possibility that a power failure has occurred in the AC power supply 1.
  • the determination value V2 is larger than the determination value V1, and is set to about 95% of V0, which is the maximum value Vm at normal time, for example.
  • the first determination unit 54A determines that a power failure may have occurred in the AC power source 1 when the maximum estimated value Vme at time t3 is equal to or less than the determination value V2.
  • the first determination unit 54A outputs a signal indicating the determination result to the power supply monitoring unit 56.
  • the power supply monitoring unit 56 transmits the signal from the first determination unit 54A to the operation mode switching command generation unit 26.
  • the operation mode switching command generation unit 26 selects either the commercial power supply mode or the inverter power supply mode based on the output signal of the power supply monitoring unit 56.
  • the operation mode switching command generation unit 26 sets the commercial power supply command to OFF (inverter power supply command ON).
  • OFF inverter power supply command ON
  • uninterruptible power supply apparatus 100 is controlled to execute the inverter power supply mode.
  • the switch control unit 32 turns on the contactor 10 and turns off the contactor 13.
  • the control device 20 turns on the thyristor switch 12 for a predetermined time.
  • the inverter control unit 30 starts the inverter 7 and controls the inverter 7 so that the AC voltage output from the inverter 7 and the AC voltage supplied from the AC power supply 1 before the occurrence of the power failure are synchronized.
  • the operation mode switching command generation unit 26 turns on the commercial power supply command (inverter power supply command Set to Off).
  • the switch control unit 32 turns on the thyristor switch 12 and turns off the contactor 13.
  • the switch control unit 32 turns off the contactor 10 yet.
  • the uninterruptible power supply 100 is also in the commercial power supply mode after time t3 and supplies AC power supplied from the AC power supply 1 to the load 11 via the thyristor switch 12.
  • the second determination unit 54B determines whether or not the maximum estimated value Vme drops below the determination value V1 after time t3. When maximum value estimated value Vme becomes equal to or smaller than determination value V1 at time t4 after time t3, second determination unit 54B determines that a power failure has occurred in AC power supply 1. When it is determined by the second determination unit 54B that a power failure has occurred in the AC power supply 1, the operation mode switching command generation unit 26 sets the commercial power supply command to off (inverter power supply command on).
  • the uninterruptible power supply 100 is controlled to execute the inverter power supply mode after time t4.
  • the switch control unit 32 turns on the contactor 10 and turns off the thyristor switch 12.
  • the inverter control unit 30 starts the inverter 7 and controls the inverter 7 so that the AC voltage output from the inverter 7 and the AC voltage supplied from the AC power supply 1 before the occurrence of the power failure are synchronized.
  • the thyristor switch 12 is turned on by turning on the thyristor switch 12 and turning off the contactor 13.
  • the commercial power supply mode used is executed.
  • the commercial power supply mode is switched to the inverter power supply mode by turning on the contactor 10 and turning off the thyristor switch 12.
  • FIGS. 12 and 13 are flowcharts for explaining the procedure of operation mode switching control in the uninterruptible power supply according to Embodiment 2.
  • FIG. The flowcharts shown in FIGS. 12 and 13 are obtained by adding steps S14 and S40 to S49 to the flowchart shown in FIG.
  • control device 20 turns on the commercial power supply command (turns off inverter power supply command). Set (step S09). Thereby, the uninterruptible power supply 100 continues to execute the commercial power supply mode.
  • the control device 20 determines whether or not there is a possibility that a power failure has occurred in the AC power supply 1 (step S14).
  • the control device 20 turns on the thyristor switch 12 (step S40) and turns off the contactor 13 (step S40). Step S41).
  • the uninterruptible power supply 100 supplies the AC power from the AC power source 1 to the load 11 via the thyristor switch 12 (step S42).
  • the control device 20 detects the instantaneous value v and the phase ⁇ of the AC input voltage (step S43), and calculates the maximum value estimated value Vme based on these detected values (Ste S44).
  • the control device 20 stores the time transition of the maximum value estimated value Vme (step S45).
  • the control device 20 compares the maximum value estimated value Vme and the determination value V1 (step S46). When maximum value estimated value Vme is equal to or smaller than determination value V1 (when YES is determined in S46), control device 20 determines that a power failure has occurred in AC power supply 1 (step S47). In this case, returning to step S10 in FIG. 12, the control device 20 sets the commercial power supply command to OFF (inverter power supply command is ON). The control device 20 turns on the contactor 10 and turns off the thyristor switch 12 so that the uninterruptible power supply 100 executes the inverter power supply mode. The control device 20 further activates the inverter 7 (step S11).
  • the control device 20 turns on the contactor 13 (step S48) and turns off the thyristor switch 12 (step S49). Thereby, the uninterruptible power supply 100 continues to execute the commercial power supply mode.
  • the uninterruptible power supply 100 when there is a possibility that a power failure has occurred in the AC power supply, the commercial power supply mode is continued using the thyristor switch 12.
  • the inverter power supply mode can be promptly shifted without interruption. In this way, it is possible to execute the commercial power supply mode for a longer time without impairing the reliability as compared with the case of immediately shifting to the inverter power supply mode when there is a possibility that a power failure has occurred in the AC power supply. Become. Therefore, high efficiency of the uninterruptible power supply can be realized.
  • time transitions of a plurality of power failure maximum values Vmi having different maximum value reduction rates are acquired in advance. Thereby, the time transition of the maximum value Vmi at the time of a power failure used for the power failure detection of the AC power supply 1 can be switched.
  • the uninterruptible power supply according to the third embodiment basically has the same configuration as that of the uninterruptible power supply 100 shown in FIG. 1, but instead of the power failure detection unit 36, the power failure detection shown in FIG. 14. It differs in that it includes the part 36B.
  • power failure voltage maximum value transition storage unit 50 stores time transitions of a plurality of power failure maximum values Vmi having different maximum value reduction rates.
  • FIG. 15 is a diagram illustrating an example of the time transition of the power failure maximum value Vmi stored in the power failure voltage maximum value transition storage unit 50. Referring to FIG. 15, when the circuit breaker is opened at time t and a power failure occurs, the maximum value Vm of the AC input voltage gradually decreases from V0 after time t.
  • the time transition of the plurality of power outage maximum values Vmi shown in FIG. 15 is, for example, by selectively opening a plurality of circuit breakers connected between the AC power supply 1 and the input terminal T1 in a simulated power outage test. Can be acquired. Or it is also possible to create by simulation based on the time transition of the maximum value acquired in the simulated power failure test.
  • the switching command for switching the time transition of the maximum value Vmi at the time of power failure is given from the host control unit to the voltage maximum value transition memory unit 50 at the time of power failure. For example, when the user determines that the transition from the commercial power supply mode to the inverter power supply mode is not properly performed in view of the operation status of the uninterruptible power supply, the switching command is sent to the uninterruptible power supply. It can be issued by performing an input operation.
  • the power failure voltage maximum value transition storage unit 50 selects a time transition of the power failure maximum value Vmi indicated by the switching command from a plurality of time transitions of the power failure maximum value Vmi. It outputs to the comparison part 52.
  • the comparison unit 52 provides the time transition of the maximum value Vmi at the time of power failure after switching given from the voltage maximum value transition storage unit 50 at the time of power failure and the time transition of the maximum value estimated value Vme read out from the voltage maximum value transition storage unit 48. Is detected, a power failure of the AC power supply 1 is detected.
  • FIG. 16 is a flowchart for explaining a procedure of operation mode switching control in the uninterruptible power supply according to Embodiment 3.
  • the flowchart shown in FIG. 16 is obtained by adding steps S22 and S23 to the flowchart shown in FIG.
  • the control device 20 stores time transitions of a plurality of power failure maximum values Vmi having different maximum value reduction speeds by performing the simulated power failure test in steps S20 and S21.
  • the control device 20 switches the time transition of the power failure maximum value Vmi according to the switching command (step S23).
  • control device 20 does not switch the time transition of maximum value Vmi during a power failure.
  • control device 20 compares the time transition of maximum value estimated value Vme stored in step S05 with the time transition of power failure maximum value Vmi switched in step S23. (Step S06). Based on the comparison result, control device 20 determines whether or not a power failure has occurred in AC power supply 1 (step S07).
  • the uninterruptible power supply according to Embodiment 3 it is possible to switch the time transition of the maximum value Vmi at the time of a power failure, thereby estimating the maximum value when a power failure actually occurs in the AC power source 1.
  • the deviation from the time transition of the value Vme can be reduced.
  • a power failure of the AC power source 1 can be detected with high speed and accuracy.
  • the time transition of the power failure maximum value Vmi is learned based on the time transition of the maximum value estimated value Vme.
  • a power failure of the AC power supply 1 is detected using a learning value of the time transition of the maximum value Vmi at the time of a power failure.
  • the uninterruptible power supply according to the fourth embodiment basically has the same configuration as that of the uninterruptible power supply 100 shown in FIG. 1, but instead of the power failure detection unit 36, the power failure detection shown in FIG. 17. It differs in that it includes the part 36C.
  • power supply abnormality detection unit 36 ⁇ / b> C includes a power failure voltage maximum value transition learning unit 58.
  • the voltage maximum value transition learning unit 58 at the time of a power failure acquires the time transition of the maximum value estimated value Vme stored in the voltage maximum value transition storage unit 48.
  • the voltage maximum value transition storage unit 48 stores the time transition of the maximum estimated value Vme in the commercial power supply mode.
  • the time transition of the maximum value estimated value Vme includes a plurality of decreases due to the occurrence of a power failure in the AC power supply 1.
  • the voltage maximum value transition learning unit 58 during a power failure extracts a plurality of maximum value decrease rates when the maximum value estimated value Vme decreases from the time transition of the maximum value estimated value Vme. And based on the extracted several maximum value fall speed, the maximum value fall speed of the maximum value Vmi at the time of a power failure is learned. For example, the voltage maximum value transition learning unit 58 during a power failure sets the mode value of the plurality of maximum value decrease rates as a learned value of the maximum value decrease rate of the power failure maximum value Vmi.
  • the learning value of the maximum value decrease rate of the maximum value Vmi at the time of power failure may be an average value of a plurality of maximum value decrease rates, or a maximum value decrease rate when the maximum value estimated value Vme has recently decreased. There may be.
  • the power voltage maximum value transition learning unit 58 updates the time transition of the power outage maximum value Vmi acquired by the simulated power outage test to the learning value of the time transition of the power outage maximum value Vmi.
  • the power failure voltage maximum value transition learning unit 58 updates the learning value of the time transition of the power failure maximum value Vmi based on the time transition of the maximum value estimated value Vme in the commercial power supply mode.
  • the voltage maximum value transition learning unit 58 during a power failure outputs the learning value of the time transition of the maximum value Vmi during a power failure to the comparison unit 52.
  • the comparison unit 52 is a time transition of the learned value of the time transition of the maximum value Vmi at power failure given from the voltage maximum value transition learning unit 58 at the time of power failure and the maximum value estimated value Vme read from the voltage maximum value transition storage unit 48. Is detected, a power failure of the AC power supply 1 is detected.
  • FIG. 18 is a flowchart for explaining a procedure of operation mode switching control in the uninterruptible power supply according to Embodiment 4.
  • the flowchart shown in FIG. 18 is obtained by adding steps S24 and S25 to the flowchart shown in FIG.
  • the control device 20 stores the time transition of the power failure maximum value Vmi at the time of the simulated power failure by performing the simulated power failure test of steps S20 and S21. Further, the control device 20 sequentially learns the time transition (maximum value decrease rate) of the maximum value Vmi at the time of power failure based on the time transition of the maximum value estimated value Vme in the commercial power supply mode (step S24). The control device 20 switches the time transition of the power failure maximum value Vmi by sequentially updating the learning value of the time transition of the power failure maximum value Vmi (step S25).
  • control device 20 compares the time transition of the maximum value estimated value Vme stored in step S05 with the learning value of the time transition of the maximum value Vmi at power failure switched in step S25 (step S06). Based on the comparison result, control device 20 determines whether or not a power failure has occurred in AC power supply 1 (step S07).
  • the uninterruptible power supply according to the fourth embodiment, it is possible to learn the time transition of the maximum value Vmi at the time of a power failure used for detecting the power failure of the AC power supply 1 from the operating state of the uninterruptible power supply. It can. Then, by using the learning value of the time transition of the maximum value Vmi at the time of power failure, the time transition of the maximum value Vmi at the time of power failure and the time transition of the maximum value estimated value Vme when a power failure actually occurs in the AC power supply 1. Deviation can be reduced. As a result, it is possible to detect a power failure of the AC power supply with high speed and accuracy.
  • the learning value of the maximum value Vmi at the time of power failure reflects the environment in which the uninterruptible power supply is installed. It is possible to detect a power outage of an AC power supply with high speed and accuracy without being influenced by the environment in which it is performed.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Inverter Devices (AREA)

Abstract

制御装置(20)は、商用給電モードが選択されている場合において、電源異常検出部(36)により交流電源(1)の停電が検出されたときには、インバータ給電モードに移行するように、無停電電源装置(100)を制御する。電源異常検出部(36)は、入力端子(T1)に供給される交流入力電圧の瞬時値および位相の検出値に基づいて、交流入力電圧の最大値の推定値を演算する。電源異常検出部(36)は交流電源(1)を模擬停電させたときの最大値の時間推移を記憶するように構成される。電源異常検出部(36)は、最大値の推定値の時間推移と、記憶される停電時の最大値の時間推移との比較に基づいて、交流電源(1)の停電を判定する。

Description

無停電電源装置
 この発明は、無停電電源装置に関し、より特定的には、商用給電とインバータ給電とを選択的に実行するように構成された無停電電源装置に関する。
 従来より、無停電電源装置は、交流電源からの交流電力を直流電力に変換するコンバータと、コンバータで生成された直流電力または電力貯蔵装置の直流電力を交流電力に変換して負荷に供給するインバータと、交流電源と負荷との間に接続されたバイパス回路と、これらを制御する制御装置とを備えている。
 上記の無停電電源装置においては、交流電源から正常に交流電力が供給されている通常時はインバータによって生成された交流電力を負荷に供給し、インバータが故障した場合に交流電源からの交流電力をバイパス回路を介して負荷に供給する方式がある。この方式は、常時インバータ給電方式と呼ばれている。常時インバータ給電方式は、交流電源の品質に関わらず、電圧変動が小さな高品質の交流電力を負荷に供給できるという長所を有する。その一方で、インバータで常時電力損失が発生し、効率が低いという短所を有する。
 他の方式として、通常時に交流電源からの交流電力をバイパス回路を経由して負荷に供給し、停電時に電力貯蔵装置の直流電力をインバータによって交流電力に変換して負荷に供給する方式がある。この方式は、常時商用給電方式と呼ばれている。常時商用給電方式は、電力損失が小さく、効率が高いという長所を有する。その一方で、交流電源から供給される電圧変動の大きな低品質ので交流電力が負荷に供給されるという短所を有する。
 たとえば、特開2010-115008号公報(特許文献1)には、交流電源から供給される交流電力の状態を検出し、その検出結果に応じて、常時インバータ給電方式および常時商用給電方式のいずれかを選択するように構成された無停電電源装置が開示されている。
特開2010-115008号公報
 上記特許文献1では、交流電源から供給される交流電力の電圧および周波数に対して、交流電源の異常を判断するための基準値を設定する。そして、交流電力の電圧および周波数の検出値が基準値の範囲内にある場合には、交流電源が正常と判断して常時商用給電方式を選択する。一方、当該検出値が基準値の範囲から逸脱する場合には、交流電源の異常と判断して常時インバータ給電方式を選択する。
 ここで、常時商用給電方式においては、交流電源に停電が発生した場合、バイパス回路をオフさせた後にインバータを起動させることによって、商用給電からインバータ給電に移行する。そのため、商用給電からインバータ給電への移行時において、負荷に出力される電圧が瞬間的に低下する瞬時電圧低下(瞬低)が発生してしまい、信頼度が低いという問題がある。このような瞬低の発生を防止するためには、交流電源の停電を高速に検出してインバータ給電に移行できることが求められる。
 しかしながら、上記特許文献1のように、交流電源から供給される交流電力の電圧および周波数の検出値に基づいて交流電源の異常を判定する構成では、当該検出値が基準値の範囲から逸脱しているか否かを判定するのに時間がかかる。その結果、瞬低の程度(瞬停時間および電圧低下度)が大きくなり、負荷に大きな影響を及ぼす可能性がある。
 この発明はこのような課題を解決するためになされたものであって、この発明の目的は、商用給電からインバータ給電への移行時における瞬時電圧低下の発生を防止することが可能な無停電電源装置を提供することである。
 この発明に係る無停電電源装置は、交流電源と負荷との間に接続される。無停電電源装置は、交流電源から出力される交流電力を受ける入力端子と、負荷に接続される出力端子と、入力端子に接続され、交流電力を直流電力に変換するコンバータと、コンバータが出力する直流電力または電力貯蔵装置の直流電力を交流電力に変換するインバータと、入力端子と出力端子との間に接続される第1のスイッチと、インバータと出力端子との間に接続される第2のスイッチと、無停電電源装置を制御する制御装置とを備える。無停電電源装置は、第1のモードと第2のモードとを選択的に実行するように構成される。第1のモードは、第1のスイッチをオンするとともに第2のスイッチをオフし、交流電源からの交流電力を第1のスイッチを介して負荷に供給するモードである。第2のモードは、第2のスイッチをオンするとともに第1のスイッチをオフし、インバータによって生成される交流電力を負荷に供給するモードである。制御装置は、交流電源の停電を検出するように構成された電源異常検出部と、第1のモードが選択されている場合において、交流電源の停電が検出されたときに、第2のモードに移行するように、第1および第2のスイッチのオンオフならびにインバータにおける電力変換を制御するように構成された制御部とを含む。電源異常検出部は、交流電源から入力端子に供給される交流入力電圧の瞬時値を検出する電圧検出部と、交流入力電圧の位相を検出する位相検出部と、電圧検出部および位相検出部の検出値に基づいて、交流入力電圧の最大値の推定値を演算する演算部と、交流電源を模擬停電させたときの最大値の時間推移を記憶するように構成された第1の記憶部と、最大値の推定値の時間推移と、第1の記憶部に記憶される最大値の時間推移との比較に基づいて、交流電源の停電を判定するように構成された判定部とを含む。
 好ましくは、第1のスイッチおよび第2のスイッチの各々は、機械式スイッチにより構成される。無停電電源装置は、第1のスイッチに並列に接続された半導体スイッチをさらに備える。制御部は、第1のモードから第2のモードに移行するときには、半導体スイッチを所定時間オンするように構成される。
 好ましくは、判定部は、交流電源が正常と判定された場合にはさらに、最大値の推定値の時間推移に基づいて、交流電源の停電の可能性があるか否かを判定するように構成される。制御部は、第1のモードが選択されている場合において、交流電源の停電の可能性があると判定されたときには、半導体スイッチをオンするとともに第1のスイッチをオフして第1のモードを継続するように構成される。交流電源の停電と判定されると、制御部は、第2のスイッチをオンするとともに半導体スイッチをオフすることにより、第2のモードに移行するように構成される。
 好ましくは、第1の記憶部は、最大値低下速度が互いに異なる複数の最大値の時間推移を記憶するように構成される。判定部は、複数の最大値の時間推移から選択された最大値の時間推移と、最大値の推定値の時間推移との比較に基づいて、交流電源の停電を判定するように構成される。
 好ましくは、無停電電源装置は、最大値の推定値の時間推移を記憶するように構成された第2の記憶部をさらに備える。第1の記憶部は、第2の記憶部に記憶される最大値の推定値の時間推移に基づいて、停電時の最大値の時間推移を学習するように構成される。判定部は、最大値の推定値の時間推移と、第1の記憶部にて更新される停電時の最大値の時間推移の学習値との比較に基づいて、交流電源の停電を判定するように構成される。
 この発明によれば、商用給電からインバータ給電への移行時における瞬時電圧低下の発生を防止することが可能な無停電電源装置を提供することができる。
実施の形態1に係る無停電電源装置の全体構成図である。 交流電源の停電を検出するための一般的な検出方法を説明する図である。 図1における電源異常検出部の制御構成を示す機能ブロック図である。 交流入力電圧の最大値の推定演算を説明する図である。 模擬停電時における交流入力電圧の最大値の時間推移の一例を示す図である。 電圧最大値推移記憶部から読み出した最大値推定値の時間推移の一例を示す図である。 正常変動範囲を説明する図である。 実施の形態1に係る無停電電源装置における運転モードの切り替え制御の手順を説明するためのフローチャートである。 図8のステップS07における停電判定処理の手順を説明するためのフローチャートである。 実施の形態2に係る無停電電源装置における電源異常検出部の制御構成を示す機能ブロック図である。 電圧最大値推移記憶部から読み出した最大値推定値の時間推移の一例を示す図である。 実施の形態2に係る無停電電源装置における運転モードの切り替え制御の手順を説明するためのフローチャートである。 実施の形態2に係る無停電電源装置における運転モードの切り替え制御の手順を説明するためのフローチャートである。 実施の形態3に係る無停電電源装置における電源異常検出部の制御構成を示す機能ブロック図である。 停電時電圧最大値推移記憶部に記憶される停電時最大値の時間推移の一例を示す図である。 実施の形態3に係る無停電電源装置における運転モードの切り替え制御の手順を説明するためのフローチャートである。 実施の形態4に係る無停電電源装置における電源異常検出部の制御構成を示す機能ブロック図である。 実施の形態4に係る無停電電源装置における運転モードの切り替え制御の手順を説明するためのフローチャートである。
 以下、この発明の実施の形態について図面を参照して詳細に説明する。なお、同一または相当する部分には同一の参照符号を付して、その説明は繰返さない。
 [実施の形態1]
 (無停電電源装置の構成)
 図1は、実施の形態1に係る無停電電源装置100の全体構成図である。図1を参照して、実施の形態1に係る無停電電源装置100は、交流電源1および負荷11の間に接続される。
 交流電源1は、無停電電源装置100に交流電力を供給する交流電源である。交流電源1は、たとえば、商用交流電源もしくは自家用発電機等によって構成される。図1および以後説明する図では、交流電源1の一例として、三相三線式の商用電源を示す。図面および説明の簡単化のため、図1では、一相分の回路のみが代表的に示されている。ただし、交流電源の種類は、三相三線式に限定されず、たとえば、三相四線式の電源でもよいし、単相三線式の電源でもよい。
 無停電電源装置100は、入力端子T1および出力端子T2を備える。入力端子T1は、交流電源1から供給される交流電力を受ける。出力端子T2は、負荷11に接続される。負荷11は無停電電源装置100から供給される交流電力によって駆動される。
 無停電電源装置100はさらに、電磁接触器(コンタクタ)2,10,13と、ヒューズ3と、リアクトル4,8と、コンバータ5と、電解コンデンサ6と、インバータ7と、コンデンサ9と、サイリスタスイッチ12と、制御装置20とを備える。このうち、コンタクタ2、ヒューズ3、リアクトル4、コンバータ5、インバータ7、リアクトル8およびコンタクタ10は、入力端子T1および出力端子T2の間に直列に接続される。
 コンタクタ2は、入力端子T1とコンバータ5との間の通電経路に接続される。コンタクタ2は、交流電源1から交流電力が正常に供給されている通常時は閉成(オン)され、たとえば無停電電源装置100のメンテナンス時に開放(オフ)する。ヒューズ3は、過電流が交流電源1から流入するのを防ぐために入力端子T1とコンバータ5の間の通電経路に挿入される。リアクトル4は、交流電源1からの交流電力を通過させ、コンバータ5で発生するスイッチング周波数の信号が交流電源1に伝搬するのを防止するために設けられている。
 コンバータ5およびインバータ7は、半導体スイッチング素子により構成される。半導体スイッチング素子としては、たとえば、IGBT(Insulated Gate Bipolar Transistor)が用いられる。また、半導体スイッチング素子の制御方式として、PWM(Pulse Width Modulation)制御を適用することができる。
 コンバータ5は、通常時、交流電源1から供給される三相交流電力を直流電力に変換する。コンバータ5で生成された直流電力は、インバータ7および蓄電池14に供給される。一方、交流電源1からの交流電力の供給が停止された停電時は、コンバータ5の運転は停止される。コンバータ5における電力変換は、制御装置20(コンバータ制御部28)によって制御される。
 電解コンデンサ6は、コンバータ5の出力端子に接続され、コンバータ5の出力電圧を平滑化する。インバータ7は、通常時は、電解コンデンサ6によって平滑化された直流電力を商用周波数の三相交流電力に変換する。一方、停電時は、インバータ7は、蓄電池14の直流電力を商用周波数の三相交流電力に変化する。インバータ7における電力変換は、制御装置20(インバータ制御部30)によって制御される。
 リアクトル8およびコンデンサ9は、インバータ7から出力される交流電力に含まれるスイッチング周波数の成分を除去するためのフィルタを構成する。
 コンタクタ10は、インバータ7から負荷11に交流電力が供給されるモード(第2のモード)時にオンする。一方、交流電源1からコンタクタ13を介して負荷11に交流電力が供給されるモード(第1のモード)時、コンタクタ10がオフする。コンタクタ10のオンオフは、制御装置20(スイッチ制御部32)によって制御される。
 本実施の形態では、交流電源1からコンタクタ13を介して負荷11に交流電力が供給される運転モード(第1のモード)を、「商用給電モード」とも称する。また、インバータ7から負荷11に交流電力が供給される運転モード(第2のモード)を、「インバータ給電モード」とも称する。
 インバータ給電モードでは、交流電源1から供給される交流電力をコンバータ5によって直流電力に変換し、その直流電力をインバータ7によって交流電力に変換して負荷11に供給する。そのため、インバータ給電モードは、負荷11への給電安定性に優れている。その一方で、インバータ給電モードは、コンバータ5およびインバータ7の各々において電力変換に伴う電力損失が発生するため、無停電電源装置100の効率化が難しいという課題がある。
 これに対して、商用給電モードでは、交流電源1から供給される交流電力を、コンタクタ13を介して、言い換えればコンバータ5およびインバータ7を通さずに負荷11に供給する。これにより、コンバータ5およびインバータ7における電力損失の発生が抑制されるため、無停電電源装置100の運転効率を向上させることができる。なお、商用給電モード時においても、必要に応じてコンバータ5を運転させることにより、蓄電池14に直流電力を蓄えておくことができる。
 サイリスタスイッチ12およびコンタクタ13は、入力端子T1と出力端子T2との間に並列に接続される。本実施の形態では、サイリスタスイッチ12およびコンタクタ13の並列回路を、「バイパス回路」とも称する。
 サイリスタスイッチ12は、制御装置20(スイッチ制御部32)からの制御信号に応答してオンオフする。具体的には、サイリスタスイッチ12は、インバータ給電モードから商用給電モードに移行するとき、および、商用給電モードからインバータ給電モードに移行するときに、制御装置20からの制御信号に応答して、所定時間だけオンする。コンタクタ13は、制御装置20(スイッチ制御部32)からの制御信号に応答して、インバータ給電モード時はオフし、商用給電モード時はオンする。なお、コンタクタ13は本発明における「第1のスイッチ」を構成し、コンタクタ10は本発明における「第2のスイッチ」を構成する。また、コンタクタ13および10は、本発明における「機械式スイッチ」の一実施例に対応する。サイリスタスイッチ12は、本発明における「半導体スイッチ」の一実施例に対応する。
 蓄電池14は、停電時にインバータ7に直流電力を供給するための電力貯蔵装置である。蓄電池14は、通常時にはコンバータ5で生成された直流電力を蓄える。ヒューズ16およびコンタクタ15は、コンバータ5の直流側端子と蓄電池14との間に直列に接続される。コンタクタ15は、通常時にオンされ、たとえば無停電電源装置100および蓄電池14のメンテナンス時にオフされる。ヒューズ16は、コンバータ5および蓄電池14に過電流が流入することを防止する。
 制御装置20は、無停電電源装置100が、インバータ給電モードおよびバイパス給電モードを選択的に実行するように、コンタクタ10,13およびサイリスタスイッチ12のオンオフと、コンバータ5およびインバータ7における電力変換とを制御するように構成される。
 以下、無停電電源装置100における制御装置20の制御構成について説明する。
 制御装置20は、UPS起動指令部22と、運転指令部24と、運転モード切替指令発生部26と、コンバータ制御部28と、インバータ制御部30と、スイッチ制御部32とを含む。
 UPS起動指令部22は、無停電電源装置100の起動を要求する起動指令を発生する。UPS起動指令部22は、たとえば、無停電電源装置100の起動を要求するためのスイッチを設けておき、当該スイッチがユーザによってオン操作されたときに、起動指令を発生するようにしてもよい。あるいは、スイッチを設けることなく、予め定められたスケジュールに従って、自動的に起動指令を発生するようにしてもよい。
 UPS起動指令部22は、起動指令をコンバータ制御部28および運転指令部24に出力する。UPS起動指令部22はさらに、入力端子T1とコンバータ5との間の通電経路が形成されるように、コンタクタ2をオンする。
 コンバータ制御部28は、起動指令を受けると、蓄電池14に直流電力を蓄えるためにコンバータ5を運転させる。具体的には、コンバータ制御部28は、蓄電池14が所定の満充電状態になるように、蓄電池14の残容量に応じてコンバータ5における電力変換を制御する。
 運転指令部24は、起動指令を受けると、無停電電源装置100から負荷11に対する電力供給の開始を指示するための運転指令を発生する。
 運転モード切替指令発生部26は、運転指令部24から運転指令を受けると、電源異常検出部36の出力信号に基づいて、商用給電モードおよびインバータ給電モードのいずれか一方を、無停電電源装置100の運転モードに選択する。
 電源異常検出部36は、停電に至る交流電源1の異常を検出する。具体的には、電源異常検出部36は、交流電源1から入力端子T1に供給される交流電圧(以下、「交流入力電圧」とも称する)を検出し、検出値に基づいて、交流電源1から交流電力が正常に供給されているか否か(すなわち、停電が発生したか否か)を判定する。電源異常検出部36は、判定結果を示す信号を運転モード切替指令発生部26に出力する。電源異常検出部36における停電の検出については後述する。
 運転モード切替指令発生部26は、交流電源1から交流電力が正常に供給されている通常時、商用給電モードを選択する。一方、交流電源1の停電が検出されたときには、運転モード切替指令発生部26は、インバータ給電モードを選択する。あるいは、通常時に上位の制御部(図示せず)から商用給電モードの実行の要求を受付けたときに、商用給電モードを選択するようにしてもよい。
 運転モード切替指令発生部26は、選択した運転モードが商用給電モードの場合、商用給電指令をオンに設定し、かつ、インバータ給電指令をオフに設定する。一方、選択した運転モードがインバータ給電モードの場合、商用給電指令をオフに設定し、かつ、インバータ給電指令をオンに設定する。運転モード切替指令発生部26は、商用給電指令およびインバータ給電指令を、コンバータ制御部28、インバータ制御部30およびスイッチ制御部32に出力する。
 インバータ制御部30は、インバータ給電指令がオン(商用給電指令がオフ)のとき、交流電源1から供給される交流電圧と同期した交流電圧がインバータ7から出力されるように、インバータ7における電力変換を制御する。なお、交流電源1の停電が検出された後は、停電発生前の交流電源1から供給される交流電圧に同期するように、インバータ7を制御する。具体的には、インバータ制御部30は、PWM制御によってインバータ7を構成する半導体スイッチング素子をオンオフするためのゲート信号を生成し、インバータ7内部のゲート駆動回路に出力する。
 一方、商用給電指令がオン(インバータ給電指令がオフ)のとき、インバータ制御部30は、生成したゲート信号をゲート駆動回路へ出力しない。そのため、インバータ7は、商用給電モード時は運転されず、ゲート信号が与えられるまで待機状態(ゲート信号入力待ち状態)となる。
 スイッチ制御部32は、商用給電指令およびインバータ給電指令に応じて、バイパス回路(サイリスタスイッチ12およびコンタクタ13)およびコンタクタ10のオンオフを制御する。具体的には、スイッチ制御部32は、商用給電指令がオン(インバータ給電指令がオフ)のとき、コンタクタ13をオンし、コンタクタ10をオフする。なお、コンタクタ13をオンするとき、スイッチ制御部32は、サイリスタスイッチ12を所定時間だけオンする。スイッチ制御部32はまた、インバータ給電指令がオン(商用給電指令がオフ)のとき、コンタクタ13をオンし、コンタクタ10をオフする。なお、コンタクタ13をオフするとき、スイッチ制御部32は、サイリスタスイッチ12を所定時間だけオンする。
 以上説明したように、無停電電源装置100は、交流電源1から交流電力が正常に供給されている通常時、自動的にもしくは上位制御部からの要求に応答して、商用給電モードを実行する。そして、商用給電モード時において交流電源1の停電が検出されると、無停電電源装置100は、商用給電モードからインバータ給電モードへ移行する。
 (交流電源の停電検出)
 ここで、交流電源1の停電を検出する方法としては、交流電源1から供給される交流電圧(交流入力電圧)の最大値(または実効値)を検出し、検出値に基づいて交流電源1の停電を判定する方法が一般的に用いられている。以下、一般的な検出方法について説明する。
 図2に、交流電源1が正常であるときの交流入力電圧の波形、および、交流電源1に停電が発生したときの交流入力電圧の波形を示す。なお、交流電源1が商用電源である場合、1サイクルは、電源周波数が50Hzのときに20msecとなり、電源周波数が60Hzのときに16.7msecとなる。1サイクルにおけるサンプリング数を、たとえば200とする。
 交流電源1に停電が発生すると、交流入力電圧の最大値Vmは、交流電源1の正常時(通常時)の最大値Vmから徐々に低下する。
 一般的な検出方法では、前半1/2サイクルにおける交流入力電圧の瞬時値の検出値に基づいて、交流入力電圧の最大値(または実効値)を取得する。そして、後半1/2サイクルで、取得された最大値(または実効値)と所定の基準値とを比較することにより、交流電源1に停電が発生したか否かを判定する。
 しかしながら、上記の一般的な検出方法では、停電が発生してから約1/2サイクル遅れて、停電が検出されることになる。このように停電の検出に遅れが生じると、商用給電モードからインバータ給電モードへの移行時において、出力端子T2に出力される電圧が瞬間的に低下する瞬時電圧低下(瞬低)が発生する可能性がある。したがって、より高速に交流電源1の停電を検出できることが求められる。
 上記の問題点を考慮して、本実施の形態に係る電源異常検出部36は、以下のように交流電源1の停電を検出する。
 図3は、図1における電源異常検出部36の制御構成を示す機能ブロック図である。
 図3を参照して、電源異常検出部36は、電圧瞬時値検出部40と、電圧位相検出部42と、電圧最大値演算部46と、電圧最大値推移記憶部48と、停電時電圧最大値推移記憶部50と、比較部52と、判定部54と、電源監視部56とを含む。
 電圧瞬時値検出部40は、交流入力電圧の瞬時値を検出する。電圧瞬時値検出部40は、検出値を示す信号を電圧最大値演算部46および電源監視部56に出力する。
 電圧位相検出部42は、交流入力電圧の位相を検出する。電圧位相検出部42は、検出値を示す信号を電圧最大値演算部46に出力する。
 電圧最大値演算部46は、電圧瞬時値検出部40および電圧位相検出部42の出力信号に基づいて、交流入力電圧の最大値Vmを推定演算する。以下、最大値Vmの推定値を「最大値推定値Vme」とも表記する。
 図4は、交流入力電圧の最大値の推定演算を説明する図である。交流電源1が歪みのない正弦波交流電源であるとすると、交流入力電圧の瞬時値vは、交流入力電圧の最大値Vmおよび位相θを用いて、下式(1)で表される。
v=Vm・sinθ  …(1)
 図4では、π≧θ≧0の正の1/2サイクル期間の交流入力電圧の波形が破線で示されている。電圧瞬時値検出部40により交流入力電圧の瞬時値vが検出され、かつ、電圧位相検出部42により位相θが検出されると、式(1)を変形した下式(2)にこれらの検出値を代入することにより、最大値推定値Vmeを算出することができる。
Vme=v/sinθ  …(2)
 なお、最大値推定値Vmeの演算は、電圧瞬時値検出部40および電圧位相検出部42における交流入力電圧のサンプリングと同期して実行されてもよいし、当該サンプリングと非同期に実行されてもよい。
 電圧最大値推移記憶部48(第2の記憶部)は、電圧最大値演算部46により演算された最大値推定値Vmeの時間推移を記憶する。通常時、最大値推定値Vmeはほぼ一定値に保たれる。一方、交流電源1に停電が発生すると、図2に示したように、最大値推定値Vmeは徐々に低下する。
 停電時電圧最大値推移記憶部50(第1の記憶部)は、交流電源1を模擬停電させたときの交流入力電圧の最大値Vmの時間推移を格納するように構成される。
 具体的には、無停電電源装置100を交流電源1と負荷11との間に接続した状態で電源が投入されると、無停電電源装置100を起動させるに先立って、模擬停電試験が実施される。模擬停電試験では、交流電源1と入力端子T1との間に接続されている遮断器(図示せず)を開放させることにより、意図的に交流電源1の停電状態を作り出す。そして、この模擬停電状態において、停電時電圧最大値推移記憶部50は、交流入力電圧の最大値Vmの実測値を検出し、検出した最大値Vmの実測値の時間推移を記憶する。
 図5は、模擬停電時における交流入力電圧の最大値の時間推移の一例を示す図である。
 図5を参照して、時刻tにて模擬停電を発生させる場合を想定する。時刻tよりも前では、交流入力電圧の最大値Vmは一定となっている(Vm=V0)。なお、V0は通常時の交流入力電圧の最大値Vmである。
 時刻tにて遮断器が開放されて停電が発生すると、時刻t以降、交流入力電圧の最大値VmはV0から徐々に低下する。
 単位時間当たりの最大値Vmの低下量(以下、「最大値低下速度」とも称する)は、開放された遮断器から入力端子T1までの間の通電経路が有するインピーダンス(系統インピーダンス)の大きさによって異なってくる。図5には、最大値低下速度(すなわち、波形の傾き)が互いに異なる2通りの波形1,k2が示されている。これら2つの波形k1,k2において、波形k1は波形k2に比べて、相対的に系統インピーダンスが小さいため、最大値低下速度(傾き)が大きくなっている。
 なお、交流電源1と入力端子T1との間に遮断器が複数設置されている場合には、入力端子T1に最も近い位置に設置される遮断器を開放したときに、系統インピーダンスが最も小さくなり、結果的に最大値低下速度が最も大きくなる。そのため、他の遮断器が開放したときに比べて、負荷11に及ぼす影響度が大きくなる。模擬停電試験では、たとえば、負荷11への影響度が大きい遮断器(すなわち、入力端子T1に最も近い遮断器)を開放させることができる。
 本実施の形態では、模擬停電試験を実施することで、実際に交流電源1に停電が発生したときの、交流入力電圧の最大値Vmの時間推移を予め取得しておくことができる。すなわち、実際に停電が発生したときに、どのような最大値低下速度で最大値Vmが低下するかを予め取得しておくことができる。これにより、商用給電モード時に取得される最大値推定値Vmeの時間推移を、模擬停電時における最大値Vmの実測値の時間推移に照らし合わせることで、交流電源1に停電が発生したか否かを判定することができる。以下、模擬停電時における最大値Vmの実測値を「停電時最大値Vmi」とも表記する。
 具体的には、図3に戻って、比較部52では、停電時電圧最大値推移記憶部50から読み出した停電時最大値Vmiの時間推移と、電圧最大値推移記憶部48から読み出した最大値推定値Vmeの時間推移とが比較される。図6は、電圧最大値推移記憶部48から読み出した最大値推定値Vmeの時間推移の一例を示す図である。図6中の実線は最大値推定値Vmeの時間推移を示し、図6中の破線は停電時最大値Vmiの時間推移を示している。なお、図6に示される停電時最大値Vmiの時間推移は、図5の波形k1に相当する。
 図6を参照して、時刻t1以降、無停電電源装置100は商用給電モードを実行している。交流入力電圧の瞬時値vおよび位相θから算出される最大値推定値VmeはV0を保っている。
 時刻t2にて、最大値推定値VmeがV0から低下し始めたものとする。比較部52は、時刻t2以降の最大値推定値Vmeの時間推移を、停電時最大値Vmiの時間推移に照らし合わせる。
 具体的には、比較部52は、交流電源1に停電が発生したか否かを判定するための判定値V1を有している。判定値V1は、たとえば、通常時の最大値VmであるV0の90%程度の大きさに設定されている。比較部52は、停電時最大値VmiがV0から判定値V1に低下するまでの経過時間Tpを取得すると、時刻t2からTp経過後の時刻t3での最大値推定値Vmeを取得する。比較部52は、時刻t3での最大値推定値Vmeと、判定値V1との差異値を算出する。
 判定部54は、比較部52により算出された差異値の大きさに基づいて、時刻t2以降の最大値推定値Vmeの時間推移が、停電時最大値Vmiの時間推移に一致しているか否かを判定する。具体的には、時刻t3における差異値が所定の閾値d1以下であれば、判定部54は、時刻t2以降の最大値推定値Vmeの時間推移が、停電時最大値Vmiの時間推移に一致していると判定する。この場合、判定部54は、交流電源1に停電が発生していると判定する。
 一方、時刻t3における差異値が所定の閾値d1より大きい場合、判定部54は、時刻t2以降の最大値推定値Vmeの時間推移が、停電時最大値Vmiの時間推移に一致していないと判定する。この場合、判定部54は、交流電源1に停電が発生していないと判定する。判定部54は、判定結果を示す信号を電源監視部56に出力する。
 電源監視部56は、判定部54からの信号を運転モード切替指令発生部26に伝達する。運転モード切替指令発生部26は、電源監視部56の出力信号に基づいて、商用給電モードおよびインバータ給電モードのいずれか一方を選択する。
 ここで、本実施の形態において、交流電源1の停電の検出に用いられる、交流入力電圧の最大値Vmは、交流入力電圧の瞬時値vおよび位相θから推定されたもの(最大値推定値Vme)である。言い換えれば、交流入力電圧の最大値Vmを実測することなく、交流電源1の停電を検出することができる。したがって、1/2サイクル期間を待たずに、交流電源1の停電を検出することが可能となる。これにより、上記の一般的な検出方法に比べて、より高速に交流電源1の停電を検出してインバータ給電モードに切り替えることができる。この結果、商用給電モードからインバータ給電モードへの移行時に瞬低が発生することを防止できる。
 さらに、最大値推定値Vmeの時間推移を、模擬停電時の交流入力電圧の最大値Vm(停電時最大値Vmi)の時間推移と比較することによって交流電源1の停電を検出するため、交流電源1の停電を精度良く検出することができる。
 すなわち、本実施の形態に従う無停電電源装置100によれば、交流電源1の停電を高速かつ高精度に検出して商用給電モードからインバータ給電モードへ移行することができるため、無停電電源装置100の信頼度を向上させることができる。したがって、交流電源1の停電が検出されない限り、無停電電源装置100に商用給電モードを実行させ続けることが可能となるため、無停電電源装置100の高効率化を実現できる。
 (運転モードの切り替え)
 以下では、交流電源1の停電が検出されたときにおける無停電電源装置100の運転モードの切り替えについて説明する。また、交流電源1からの交流電力の供給が再開されたとき、すなわち復電時における運転モードの切り替えについて説明する。
 (1)交流電源1の停電検出時
 上述した検出方法によって交流電源1の停電が検出されると、運転モード切替指令発生部26は、商用給電指令をオンからオフに切り替えるとともに、インバータ給電指令をオフからオンに切り替える。
 インバータ制御部30は、インバータ給電指令がオンに切り替わると、商用給電モード時にPWM制御によって生成したゲート信号をインバータ7内部のゲート駆動回路へ出力する。インバータ7は、蓄電池14に蓄えられた直流電力を交流電力に変換する。これにより、インバータ7は、停電発生前に交流電源1から供給されていた交流電圧に同期した交流電圧を出力する。
 コンバータ制御部28は、インバータ給電指令がオンに切り替わると、コンバータ5の運転を停止する。
 スイッチ制御部32は、インバータ給電指令がオンに切り替わると、サイリスタスイッチ12をオンするとともに、コンタクタ10をオンする。サイリスタスイッチ12の応答時間は短く、オン指令を受けるとサイリスタスイッチ12は瞬時にオンする。一方、コンタクタ10の応答時間はサイリスタスイッチ12の応答時間よりも長く、オン指令を受けてから所定の応答時間経過後にオンする。これにより、インバータ7から出力された交流電圧は出力端子T2に供給される。コンタクタ10がオンされた後、スイッチ制御部32はコンタクタ13をオフする。さらにコンタクタ13がオフされた後、スイッチ制御部32はサイリスタスイッチ12をオフする。これにより、無停電電源装置100は、無瞬断で商用給電モードからインバータ給電モードに移行する。
 (2)交流電源1の復電時
 インバータ給電モード時、電源異常検出部36は、交流電源1が復電したか否かを判定する。具体的には、インバータ給電モード時、電源監視部56は、電圧瞬時値検出部40および電圧位相検出部42の検出値に基づいて、交流入力電圧の波形を監視している。電源異常検出部36は、交流入力電圧の最大値Vmが判定値V1以上となったときに、交流電源1が復電したと判定する。
 なお、インバータ給電モード時、インバータ7は、停電発生前に交流電源1から供給されていた交流電圧に同期した交流電圧を出力端子T2に出力している。一方、停電発生前と復電後とで交流電源1から供給される交流電圧の位相がずれている場合がある。この場合に、インバータ給電モードから商用給電モードに復帰させると、出力端子T2に出力される交流電圧に変動が生じてしまい、負荷11の運転に影響を及ぼす可能性がある。
 そこで、インバータ制御部30は、交流電源1の復電が検出されると、インバータ7から出力される交流電圧を、復電後の交流電源1から供給される交流電圧に徐々に同期させる。具体的には、インバータ制御部30は、PWM制御における制御周期間の電圧指令値の変化量を、予め定められた上限値以下に制限する。この上限値は負荷11の運転に影響を与えないよう、たとえば実験等によって適合される。
 インバータ制御部30は、インバータ7から出力される交流電圧が、復電後の交流電源1から供給される交流電圧に同期したか否かを判定する。具体的には、インバータ制御部30は、インバータ7から出力される交流電圧と、予め定められた正常変動範囲とを比較する。
 図7は、正常変動範囲を説明する図である。図7を参照して、電圧瞬時値検出部40および電圧位相検出部42の検出値により描かれる、復電後の交流入力電圧の波形を基準波形とし、この基準波形を中心とする所定の電圧幅を、正常変動範囲に設定する。インバータ制御部30は、インバータ7から出力される交流電圧が、図7に示される正常変動範囲内に収まっているときに、インバータ7から出力される交流電圧が、復電後の交流電源1から供給される交流電圧に同期したと判定する。インバータ制御部30は、判定結果を示す信号を運転モード切替指令発生部26に出力する。
 インバータ7から出力される交流電圧が、復電後の交流電源1から供給される交流電圧に同期すると、運転モード切替指令発生部26は、商用給電指令をオフからオンに切り替えるとともに、インバータ給電指令をオンからオフに切り替える。
 スイッチ制御部32は、商用給電指令がオンに切り替わると、サイリスタスイッチ12をオンするとともに、コンタクタ13をオンする。コンタクタ13がオンされた後、スイッチ制御部32はコンタクタ10をオフする。さらにコンタクタ10がオフされた後、スイッチ制御部32はサイリスタスイッチ12をオフする。これにより、無停電電源装置100は、無瞬断でインバータ給電モードから商用給電モードに移行する。
 インバータ制御部30は、インバータ7内部のゲート駆動回路へのゲート信号の出力を停止することにより、インバータ7の運転を停止する。これにより、無停電電源装置100は商用給電モードに復帰する。なお、商用給電モードに復帰した後、インバータ制御部30は、PWM制御によってインバータ7を構成する半導体スイッチング素子をオンオフするためのゲート信号を生成する。ただし、インバータ制御部30は、生成したゲート信号をゲート駆動回路へ出力しない。そのため、インバータ7は再びゲート信号入力待ち状態となる。
 コンバータ制御部28は、商用給電指令がオンに切り替わると、コンバータ5を起動する。コンバータ制御部28は、コンバータ5における電力変換を制御するためのゲート信号を生成してコンバータ5へ出力する。これにより、コンバータ5は、復電後の交流電源1から供給される交流電力を直流電力に変換し、蓄電池14に供給する。
 (フローチャート)
 図8は、実施の形態1に係る無停電電源装置における運転モードの切り替え制御の手順を説明するためのフローチャートである。
 図8を参照して、制御装置20は、商用給電指令がオンであるか否かを判定する(ステップS01)。商用給電指令がオンであれば(S01のYES判定時)、制御装置20は、無停電電源装置100が商用給電モードを実行するように、無停電電源装置100を制御する(ステップS02)。具体的には、制御装置20は、コンタクタ13をオンし、コンタクタ10をオフする。なお、コンタクタ13をオンするとき、制御装置20は、サイリスタスイッチ12を所定時間だけオンする。制御装置20はさらに、インバータ7をゲート信号入力待ち状態とする。
 商用給電モード時、制御装置20は、交流入力電圧の瞬時値vおよび位相θを検出し(ステップS03)、これらの検出値に基づいて最大値推定値Vmeを演算する(ステップS04)。制御装置20は、最大値推定値Vmeの時間推移を記憶する(ステップS05)。
 制御装置20は、無停電電源装置100を起動する前に、模擬停電試験を実施する。具体的には、交流電源1と入力端子T1との間に接続されている遮断器を開放する(ステップS20)。交流電源1の模擬停電状態において、制御装置20は、交流入力電圧の最大値Vmの実測値(停電時最大値Vmi)を検出し、検出した停電時最大値Vmiの時間推移を記憶する(ステップS21)。
 制御装置20は、ステップS05にて記憶された最大値推定値Vmeの時間推移と、ステップS21にて記憶された停電時最大値Vmiの時間推移とを比較する(ステップS06)。制御装置20は、比較結果に基づいて、交流電源1に停電が発生したか否かを判定する(ステップS07)。
 図9は、図8のステップS07における停電判定処理の手順を説明するためのフローチャートである。図9を参照して、制御装置20は、停電時最大値Vmiの時間推移に基づいて、停電時最大値VmiがV0(通常時の最大値Vm)から判定値V1に低下するまでの経過時間Tpを取得する(ステップS30)。次いで、制御装置20は、最大値推定値VmeがV0から低下し始めた時刻からTp経過後の最大値推定値Vmeを取得する(ステップS31)。
 制御装置20は、ステップS31で取得した最大値推定値Vmeと、判定値V1との差異値(=|Vme-V1|)を算出し、差異値と所定の閾値d1とを比較する(ステップS32)。差異値が閾値d1より大きい場合(S32のNO判定時)、制御装置20は、交流電源1から交流電力が正常に供給されていると判定する(ステップS33)。一方、差異値が閾値d1以下である場合(S32のYES判定時)、制御装置20は、交流電源1に停電が発生していると判定する(ステップS34)。
 図8に戻って、交流電源1から交流電力が正常に供給されている場合(S08のNO判定時)には、制御装置20は、商用給電指令をオン(インバータ給電指令をオフ)に設定する(ステップS09)。これにより、無停電電源装置100は引き続き商用給電モードを実行する。
 一方、交流電源1の停電が検出された場合(S08のYES判定時)、制御装置20は、商用給電指令をオフ(インバータ給電指令をオン)に設定する(ステップS10)。制御装置20は、無停電電源装置100がインバータ給電モードを実行するように、無停電電源装置100を制御する(ステップS11)。具体的には、制御装置20は、インバータ7を起動し、インバータ7から出力される交流電圧と停電発生前の交流電源1から供給される交流電圧とが同期するように、インバータ7を制御する。また制御装置20は、コンタクタ10をオンするとともに、コンタクタ13をオフする。なお、コンタクタ10をオンするとき、制御装置20は、サイリスタスイッチ12を所定時間だけオンする。
 インバータ給電モード時、制御装置20は、交流入力電圧の瞬時値vおよび位相θの検出値に基づいて、交流電源1が復電したか否かを判定する(ステップS12)。制御装置20は、交流入力電圧の最大値Vmが判定値V1以上となったときに、交流電源1が復電したと判定する(S12のYES判定時)。一方、交流電源1が復電していないと判定された場合(S12のNO判定時)、ステップS11に戻され、無停電電源装置100は引き続きインバータ給電モードを実行する。
 制御装置20は、交流電源1の復電が検出されると、インバータ7から出力される交流電圧を、復電後の交流電源1から供給される交流電圧に徐々に同期させる。インバータ7から出力される交流電圧が、復電後の交流電源1から供給される交流電圧に基づいて設定された正常変動範囲内に収まっているとき、制御装置20は、インバータ7から出力される交流電圧が、復電後の交流電源1から供給される交流電圧に同期したと判定し、商用給電指令をオン(インバータ給電指令をオフ)に設定する(ステップS13)。
 制御装置20は、商用給電指令がオンに設定されると、コンタクタ13をオンするとともに、コンタクタ10をオフする。なお、コンタクタ13をオンするとき、制御装置20は、サイリスタスイッチ12を所定時間だけオンする。
 以上のように、実施の形態1に係る無停電電源装置によれば、交流入力電圧の瞬時値vおよび位相θから推定された最大値Vm(最大値推定値Vme)に基づいて、交流電源に停電が発生したか否かを判定するため、最大値Vmの実測値に基づいて判定する構成に比べて、より高速に交流電源の停電を検出することができる。
 また、模擬停電試験を実施することによって停電時の交流入力電圧の最大値Vm(停電時最大値Vmi)の時間推移を予め取得しておき、停電時最大値Vmiと最大値推定値Vmeとの時間推移を比較することで、交流電源の停電を精度良く検出することができる。
 この結果、実施の形態1に係る無停電電源装置によれば、商用給電モード時に交流電源の停電が発生した場合、停電発生後、迅速にインバータ給電モードへ切り替えることができる。これにより、商用給電モードからインバータ給電モードへの移行時に瞬低が発生することを防止することができる。すなわち、無停電電源装置の信頼度を向上させることができるため、交流電源の停電が検出されない限り無停電電源装置に商用給電モードを実行させ続けることが可能となり、結果的に無停電電源装置の高効率化を実現できる。
 [実施の形態2]
 模擬停電試験では、交流電源1と入力端子T1との間に接続される遮断器を開放させることで、意図的に交流電源1の停電状態を作り出し、そのときの交流入力電圧の最大値Vm(停電時最大値Vmi)の時間推移を取得している。
 しかしながら、商用給電モード時に開放した遮断器が、模擬停電試験で開放させた遮断器よりも交流電源1側に位置する場合、最大値Vmは、停電時最大値Vmiよりも小さい最大値変化速度で徐々に低下する。このような場合であってもインバータ給電モードに切り替える必要がある。
 一方、インバータ給電モードは商用給電モードに比べて電力損失が大きいため、高効率化のためには、瞬低を生じさせない限り商用給電モードを実行し続けることが望ましい。
 そこで、実施の形態2に係る無停電電源装置では、商用給電モード時において、交流電源1に停電が発生している可能性があるときには、商用給電モードを継続しつつインバータ給電モードに移行する準備を行なう。これにより、交流電源1の停電が検出されたときに、直ちにインバータ給電モードに移行することを可能とする。
 実施の形態2に係る無停電電源装置は、基本的には図1に示した無停電電源装置100と同様の構成を備えるが、電源異常検出部36に代えて、図10に示す電源異常検出部36Aを含む点で異なる。
 図10を参照して、実施の形態2に係る電源異常検出部36Aは、図3に示した電源異常検出部36において、判定部54に代えて、判定部54A,54Bを設けたものである。
 第1判定部54Aは、図3に示した判定部54と同様に、最大値推定値Vmeの時間推移と停電時最大値Vmiの時間推移との比較に基づいて、交流電源1に停電が発生しているか否かを判定する。
 第1判定部54Aはさらに、上記比較に基づいて、交流電源1に停電が発生している可能性があるか否かを判定する。交流電源1に停電が発生している可能性とは、模擬停電時の最大値Vmに比べて最大値低下速度が小さいが、最大値Vmが判定値V1以下に低下する可能性を意味する。
 第2判定部54Bは、第1判定部54Aにより交流電源1に停電が発生している可能性があると判定された場合において、最大値推定値Vmeの時間推移に基づいて、交流電源1に停電が発生しているか否かを判定する。第2判定部54Bは、最大値Vmの低下が交流電源1の停電によるものか、あるいは、一時的な負荷の変動によるものかを判別するために設けられている。
 実施の形態2に係る無停電電源装置では、判定部54A,54Bの判定結果に基づいて、商用給電モードおよびインバータ給電モードを切り替える。図11を参照して、実施の形態2に係る無停電電源装置における運転モードの切り替えについて説明する。
 図11は、電圧最大値推移記憶部48から読み出した最大値推定値Vmeの時間推移の一例を示す図である。図11中の実線は最大値推定値Vmeの時間推移を示し、図11中の破線は停電時最大値Vmiの時間推移を示している。なお、図11に示される停電時最大値Vmiの時間推移は、図5の波形k1に相当する。
 図11を参照して、時刻t1以降、無停電電源装置100は商用給電モードを実行している。交流入力電圧の瞬時値vおよび位相θから算出される最大値推定値VmeはV0を保っている。
 時刻t2にて、最大値推定値VmeがV0から低下し始めたものとする。比較部52は、時刻t2以降の最大値推定値Vmeの時間推移を、停電時最大値Vmiの時間推移に照らし合わせる。具体的には、比較部52は、停電時最大値VmiがV0から判定値V1に低下するまでの経過時間Tpを取得すると、時刻t2からTp経過後の時刻t3での最大値推定値Vmeを取得する。比較部52は、時刻t3での最大値推定値Vmeと、判定値V1との差異値を算出する。
 第1判定部54Aは、時刻t3における差異値が所定の閾値d1以下であれば、判定部54は、時刻t2以降の最大値推定値Vmeの時間推移が、停電時最大値Vmiの時間推移に一致していると判定する。この場合、第1判定部54Aは、交流電源1に停電が発生していると判定する。
 一方、時刻t3における差異値が閾値d1より大きい場合、第1判定部54は、時刻t3での最大値推定値Vmeが判定値V2以下であるか否かを判定する。判定値V2は、交流電源1に停電が発生している可能性があるか否かを判定するための判定値である。判定値V2は、判定値V1よりも大きく、たとえば、通常時の最大値VmであるV0の95%程度の大きさに設定されている。
 第1判定部54Aは、時刻t3における最大値推定値Vmeが判定値V2以下である場合、交流電源1に停電が発生している可能性があると判定する。第1判定部54Aは、判定結果を示す信号を電源監視部56に出力する。
 電源監視部56は、第1判定部54Aからの信号を運転モード切替指令発生部26に伝達する。運転モード切替指令発生部26は、電源監視部56の出力信号に基づいて、商用給電モードおよびインバータ給電モードのいずれか一方を選択する。
 第1判定部54Aにより交流電源1に停電が発生していると判定された場合、運転モード切替指令発生部26は商用給電指令をオフ(インバータ給電指令をオン)に設定する。これにより、図6で説明したように、インバータ給電モードを実行するように、無停電電源装置100が制御される。具体的には、スイッチ制御部32は、コンタクタ10をオンするとともに、コンタクタ13をオフする。なお、コンタクタ10をオンするとき、制御装置20は、サイリスタスイッチ12を所定時間だけオンする。インバータ制御部30は、インバータ7を起動し、インバータ7から出力される交流電圧と停電発生前の交流電源1から供給される交流電圧とが同期するように、インバータ7を制御する。
 これに対して、第1判定部54Aにより交流電源1の停電が発生している可能性があると判定された場合には、運転モード切替指令発生部26は商用給電指令をオン(インバータ給電指令をオフ)に設定する。この場合、スイッチ制御部32は、サイリスタスイッチ12をオンするとともに、コンタクタ13をオフする。一方、スイッチ制御部32は、コンタクタ10を未だオフとする。
 これにより、図11に示すように、時刻t3以降も、無停電電源装置100は商用給電モードとなり、交流電源1から供給される交流電力を、サイリスタスイッチ12を介して負荷11に供給する。
 第2判定部54Bは、時刻t3以降、最大値推定値Vmeが判定値V1以下に低下するか否かを判定する。時刻t3より後の時刻t4において最大値推定値Vmeが判定値V1以下になると、第2判定部54Bは、交流電源1に停電が発生していると判定する。第2判定部54Bにより交流電源1に停電が発生していると判定された場合、運転モード切替指令発生部26は商用給電指令をオフ(インバータ給電指令をオン)に設定する。
 これにより、時刻t4以降インバータ給電モードを実行するように、無停電電源装置100が制御される。具体的には、スイッチ制御部32は、コンタクタ10をオンし、サイリスタスイッチ12をオフする。インバータ制御部30は、インバータ7を起動し、インバータ7から出力される交流電圧と停電発生前の交流電源1から供給される交流電圧とが同期するように、インバータ7を制御する。
 以上のように、商用給電モード時に交流電源1に停電が発生している可能性があると判定された場合には、サイリスタスイッチ12をオンするとともにコンタクタ13をオフすることにより、サイリスタスイッチ12を用いた商用給電モードが実行される。そして、サイリスタスイッチ12をオンした後に最大値推定値Vmeが判定値V1以下に低下すると、コンタクタ10をオンするとともにサイリスタスイッチ12をオフすることにより、商用給電モードからインバータ給電モードに移行される。
 (フローチャート)
 図12および図13は、実施の形態2に係る無停電電源装置における運転モードの切り替え制御の手順を説明するためのフローチャートである。図12および図13に示すフローチャートは、図8に示したフローチャートに対して、ステップS14およびステップS40~S49を追加したものである。
 図12を参照して、交流電源1に停電が発生していないと判定された場合(S08のNO判定時)には、制御装置20は、商用給電指令をオン(インバータ給電指令をオフ)に設定する(ステップS09)。これにより、無停電電源装置100は引き続き商用給電モードを実行する。
 続いて制御装置20は、交流電源1に停電が発生している可能性があるか否かを判定する(ステップS14)。交流電源1に停電が発生している可能性があると判定された場合(S14のYES判定時)、制御装置20は、サイリスタスイッチ12をオンするとともに(ステップS40)、コンタクタ13をオフする(ステップS41)。これにより、無停電電源装置100は、交流電源1からの交流電力を、サイリスタスイッチ12を介して負荷11に供給する(ステップS42)。
 サイリスタスイッチ12を用いた商用給電モード時、制御装置20は、交流入力電圧の瞬時値vおよび位相θを検出し(ステップS43)、これらの検出値に基づいて最大値推定値Vmeを演算する(ステップS44)。制御装置20は、最大値推定値Vmeの時間推移を記憶する(ステップS45)。
 制御装置20は、最大値推定値Vmeと判定値V1とを比較する(ステップS46)。最大値推定値Vmeが判定値V1以下である場合(S46のYES判定時)、制御装置20は、交流電源1に停電が発生していると判定する(ステップS47)。この場合、図12のステップS10に戻って、制御装置20は、商用給電指令をオフ(インバータ給電指令をオン)に設定する。制御装置20は、無停電電源装置100がインバータ給電モードを実行するように、コンタクタ10をオンするとともにサイリスタスイッチ12をオフする。制御装置20はさらに、インバータ7を起動する(ステップS11)。
 これに対して、最大値推定値Vmeが判定値V1より大きい場合(S46のNO判定時)、交流電源1に停電が発生している可能性がない、すなわち、交流電源1から交流電力が正常に供給されていると判定する。この場合、制御装置20は、コンタクタ13をオンするとともに(ステップS48)、サイリスタスイッチ12をオフする(ステップS49)。これにより、無停電電源装置100は引き続き商用給電モードを実行する。
 以上のように、実施の形態2に係る無停電電源装置100によれば、交流電源に停電が発生している可能性がある場合には、サイリスタスイッチ12を用いて商用給電モードを継続して実行することにより、交流電源に停電が発生していると判定されたときに無瞬断で迅速にインバータ給電モードに移行することができる。このようにすると、交流電源に停電が発生している可能性があると直ちにインバータ給電モードに移行する場合に比べて、信頼度を損なうことなく、より長く商用給電モードを実行することが可能となる。したがって、無停電電源装置の高効率化を実現できる。
 [実施の形態3]
 商用給電モード時に開放される遮断器が、模擬停電試験で開放させた遮断器と異なる場合が起こり得る。このような場合、模擬停電試験で取得した停電時最大値Vmiの時間推移と、実際に交流電源1に停電が発生したときの最大値推定値Vmeの時間推移との間にズレが生じる。その結果、高速かつ精度良く交流電源1の停電を検出できなくなる可能性がある。
 そこで、実施の形態3に係る無停電電源装置では、模擬停電試験において、最大値低下速度が互いに異なる複数の停電時最大値Vmiの時間推移を取得しておく。これにより、交流電源1の停電検出に用いられる、停電時最大値Vmiの時間推移を切り替え可能とする。
 実施の形態3に係る無停電電源装置は、基本的には図1に示した無停電電源装置100と同様の構成を備えるが、電源異常検出部36に代えて、図14に示す電源異常検出部36Bを含む点で異なる。
 図14を参照して、電源異常検出部36Bにおいて、停電時電圧最大値推移記憶部50は、最大値低下速度が互いに異なる複数の停電時最大値Vmiの時間推移を記憶している。図15は、停電時電圧最大値推移記憶部50に記憶されている停電時最大値Vmiの時間推移の一例を示す図である。図15を参照して、時刻tにて遮断器が開放されて停電が発生すると、時刻t以降、交流入力電圧の最大値VmはV0から徐々に低下する。
 図15の例では、最大値低下速度(すなわち、波形の傾き)が互いに異なる4通りの波形k1~k4が示されている。これら4つの波形k1~k4のうち、波形k1は最も系統インピーダンスが小さいため、最大値低下速度(傾き)が最も大きくなっている。
 図15に示される複数の停電時最大値Vmiの時間推移は、たとえば、模擬停電試験において、交流電源1と入力端子T1との間に接続される複数の遮断器を選択的に開放させることで取得することができる。あるいは、模擬停電試験で取得した最大値の時間推移を基にして、シミュレーションにより作成することも可能である。
 停電時電圧最大値推移記憶部50には、上位の制御部から、停電時最大値Vmiの時間推移を切り替えるための切替指令が与えられる。この切替指令は、たとえば、ユーザが、無停電電源装置の運転状況を見て商用給電モードからインバータ給電モードへの移行が適当に行なわれていないと判断されたときに、無停電電源装置への入力操作を行なうことで発することができる。
 停電時電圧最大値推移記憶部50は、切替指令を受けると、複数の停電時最大値Vmiの時間推移の中から、切替指令で指示されている停電時最大値Vmiの時間推移を選択して比較部52に出力する。比較部52は、停電時電圧最大値推移記憶部50から与えられた、切り替え後の停電時最大値Vmiの時間推移と、電圧最大値推移記憶部48から読み出した最大値推定値Vmeの時間推移とを比較することによって、交流電源1の停電を検出する。
 (フローチャート)
 図16は、実施の形態3に係る無停電電源装置における運転モードの切り替え制御の手順を説明するためのフローチャートである。図16に示すフローチャートは、図7に示すフローチャートに対して、ステップS22およびS23を追加したものである。
 制御装置20は、ステップS20およびS21の模擬停電試験を実施することにより、最大値低下速度が互いに異なる複数の停電時最大値Vmiの時間推移を記憶しておく。上位の制御部より切替指令を受けると(S22のYES判定時)、制御装置20は、切替指令に従って停電時最大値Vmiの時間推移を切り替える(ステップS23)。一方、切替指令を受け付けていなければ(S22のNO判定時)、制御装置20は、停電時最大値Vmiの時間推移の切り替えを行なわない。
 これにより、切替指令を受付けると、制御装置20は、ステップS05にて記憶された最大値推定値Vmeの時間推移と、ステップS23にて切り替えられた停電時最大値Vmiの時間推移とを比較する(ステップS06)。制御装置20は、比較結果に基づいて、交流電源1に停電が発生したか否かを判定する(ステップS07)。
 以上のように、実施の形態3に係る無停電電源装置によれば、停電時最大値Vmiの時間推移を切り替え可能とすることで、実際に交流電源1に停電が発生したときの最大値推定値Vmeの時間推移とのズレを小さくすることができる。その結果、高速かつ精度良く交流電源1の停電を検出することができる。
 [実施の形態4]
 上記の実施の形態3では、交流電源1の停電検出に用いられる停電時最大値Vmiの時間推移を、たとえばユーザからの入力操作に基づいた切替指令に応答して切り替える構成について説明したが、制御装置20が自律的に停電時最大値Vmiの時間推移を切り替える構成としてもよい。
 実施の形態4に係る無停電電源装置では、商用給電モード時、最大値推定値Vmeの時間推移に基づいて、停電時最大値Vmiの時間推移を学習する。停電時最大値Vmiの時間推移の学習値を用いて、交流電源1の停電を検出する。
 実施の形態4に係る無停電電源装置は、基本的には図1に示した無停電電源装置100と同様の構成を備えるが、電源異常検出部36に代えて、図17に示す電源異常検出部36Cを含む点で異なる。
 図17を参照して、電源異常検出部36Cは、停電時電圧最大値推移学習部58を含む。停電時電圧最大値推移学習部58は、電圧最大値推移記憶部48に記憶されている最大値推定値Vmeの時間推移を取得する。電圧最大値推移記憶部48には、商用給電モード時における最大値推定値Vmeの時間推移が記憶されている。最大値推定値Vmeの時間推移には、交流電源1に停電が発生したことによる低下が、複数含まれている。
 停電時電圧最大値推移学習部58は、最大値推定値Vmeの時間推移から、最大値推定値Vmeが低下したときの最大値低下速度を複数抽出する。そして、抽出した複数の最大値低下速度に基づいて、停電時最大値Vmiの最大値低下速度を学習する。たとえば、停電時電圧最大値推移学習部58は、複数の最大値低下速度の最頻値を、停電時最大値Vmiの最大値低下速度の学習値とする。
 なお、停電時最大値Vmiの最大値低下速度の学習値は、複数の最大値低下速度の平均値であってもよいし、直近に最大値推定値Vmeが低下したときの最大値低下速度であってもよい。
 停電時電圧最大値推移学習部58は、模擬停電試験によって取得した停電時最大値Vmiの時間推移を、停電時最大値Vmiの時間推移の学習値に更新する。停電時電圧最大値推移学習部58は、商用給電モード時、最大値推定値Vmeの時間推移に基づいて、停電時最大値Vmiの時間推移の学習値を更新する。
 停電時電圧最大値推移学習部58は、停電時最大値Vmiの時間推移の学習値を比較部52に出力する。比較部52は、停電時電圧最大値推移学習部58から与えられた、停電時最大値Vmiの時間推移の学習値と、電圧最大値推移記憶部48から読み出した最大値推定値Vmeの時間推移とを比較することによって、交流電源1の停電を検出する。
 (フローチャート)
 図18は、実施の形態4に係る無停電電源装置における運転モードの切り替え制御の手順を説明するためのフローチャートである。図18に示すフローチャートは、図7に示すフローチャートに対して、ステップS24およびS25を追加したものである。
 制御装置20は、ステップS20およびS21の模擬停電試験を実施することにより、模擬停電時における停電時最大値Vmiの時間推移を記憶しておく。制御装置20はさらに、商用給電モード時における最大値推定値Vmeの時間推移に基づいて、停電時最大値Vmiの時間推移(最大値低下速度)を逐次学習する(ステップS24)。制御装置20は、停電時最大値Vmiの時間推移の学習値を逐次更新することにより、停電時最大値Vmiの時間推移を切り替える(ステップS25)。
 制御装置20は、ステップS05にて記憶された最大値推定値Vmeの時間推移と、ステップS25にて切り替えられた停電時最大値Vmiの時間推移の学習値とを比較する(ステップS06)。制御装置20は、比較結果に基づいて、交流電源1に停電が発生したか否かを判定する(ステップS07)。
 以上のように、実施の形態4に係る無停電電源装置によれば、交流電源1の停電検出に用いられる停電時最大値Vmiの時間推移を、無停電電源装置の運転状況から学習することができる。そして、停電時最大値Vmiの時間推移の学習値を用いることにより、停電時最大値Vmiの時間推移と、実際に交流電源1に停電が発生したときの最大値推定値Vmeの時間推移とのズレを小さくすることができる。その結果、高速かつ精度良く交流電源の停電を検出することができる。
 また、実施の形態4に係る無停電電源装置によれば、停電時最大値Vmiの学習値は、無停電電源装置が設置されている環境を反映したものとなるため、無停電電源装置が設置される環境に左右されることなく、高速かつ精度良く交流電源の停電を検出することが可能となる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 交流電源、2,10,13,15 コンタクタ、11 負荷、3,16 ヒューズ、4,8 リアクトル、5 コンバータ、6 電解コンデンサ、7 インバータ、12 サイリスタスイッチ、14 蓄電池、20 制御装置、22 UPS起動指令部、24 運転指令部、26 運転モード切替指令発生部、28 コンバータ制御部、30 インバータ制御部、32 スイッチ制御部、36,36A,36B,36C 電源異常検出部、40 電圧瞬時値検出部、42 電圧位相検出部、46 電圧最大値演算部、48 電圧最大値推移記憶部、50 停電時電圧最大値推移記憶部、52 比較部、54 判定部、54A 第1判定部、54B 第2判定部、56 電源監視部、58 停電時電圧最大値推移学習部、100 無停電電源装置、T1 入力端子、T2 出力端子、Vm 最大値、Vme 最大値推定値、Vmi 停電時最大値。

Claims (5)

  1.  交流電源と負荷との間に接続される無停電電源装置であって、
     前記交流電源から出力される交流電力を受ける入力端子と、
     前記負荷に接続される出力端子と、
     前記入力端子に接続され、前記交流電力を直流電力に変換するコンバータと、
     前記コンバータが出力する直流電力または電力貯蔵装置の直流電力を交流電力に変換するインバータと、
     前記入力端子と前記出力端子との間に接続される第1のスイッチと、
     前記インバータと前記出力端子との間に接続される第2のスイッチと、
     前記無停電電源装置を制御する制御装置とを備え、
     前記無停電電源装置は、前記第1のスイッチをオンするとともに前記第2のスイッチをオフし、前記交流電源からの交流電力を前記第1のスイッチを介して前記負荷に供給する第1のモードと、前記第2のスイッチをオンするとともに前記第1のスイッチをオフし、前記インバータによって生成される交流電力を前記負荷に供給する第2のモードとを選択的に実行するように構成され、
     前記制御装置は、
     前記交流電源の停電を検出するように構成された電源異常検出部と、
     前記第1のモードが選択されている場合において、前記交流電源の停電が検出されたときに、前記第2のモードに移行するように、前記第1および第2のスイッチのオンオフならびに前記インバータにおける電力変換を制御するように構成された制御部とを含み、
     前記電源異常検出部は、
     前記交流電源から前記入力端子に供給される交流入力電圧の瞬時値を検出する電圧検出部と、
     前記交流入力電圧の位相を検出する位相検出部と、
     前記電圧検出部および前記位相検出部の検出値に基づいて、前記交流入力電圧の最大値の推定値を演算する演算部と、
     前記交流電源を模擬停電させたときの前記最大値の時間推移を記憶するように構成された第1の記憶部と、
     前記最大値の前記推定値の時間推移と、前記第1の記憶部に記憶される前記最大値の時間推移との比較に基づいて、前記交流電源の停電を判定するように構成された判定部とを含む、無停電電源装置。
  2.  前記第1のスイッチおよび前記第2のスイッチの各々は、機械式スイッチにより構成され、
     前記無停電電源装置は、前記第1のスイッチに並列に接続された半導体スイッチをさらに備え、
     前記制御部は、前記第1のモードから前記第2のモードに移行するときには、前記半導体スイッチを所定時間オンするように構成される、請求項1に記載の無停電電源装置。
  3.  前記判定部は、前記交流電源が正常と判定された場合にはさらに、前記最大値の前記推定値の時間推移に基づいて、前記交流電源の停電の可能性があるか否かを判定するように構成され、
     前記制御部は、前記第1のモードが選択されている場合において、前記交流電源の停電の可能性があると判定されたときには、前記半導体スイッチをオンするとともに前記第1のスイッチをオフして前記第1のモードを継続し、かつ、前記交流電源の停電と判定されると、前記第2のスイッチをオンするとともに前記半導体スイッチをオフすることにより、前記第2のモードに移行するように構成される、請求項2に記載の無停電電源装置。
  4.  前記第1の記憶部は、最大値低下速度が互いに異なる複数の前記最大値の時間推移を記憶するように構成され、
     前記判定部は、前記複数の前記最大値の時間推移から選択された前記最大値の時間推移と、前記最大値の前記推定値の時間推移との比較に基づいて、前記交流電源の停電を判定するように構成される、請求項1または2に記載の無停電電源装置。
  5.  前記最大値の前記推定値の時間推移を記憶するように構成された第2の記憶部をさらに備え、
     前記第1の記憶部は、前記第2の記憶部に記憶される前記最大値の前記推定値の時間推移に基づいて、停電時の前記最大値の時間推移を学習するように構成され、
     前記判定部は、前記最大値の前記推定値の時間推移と、前記第1の記憶部にて更新される停電時の前記最大値の時間推移の学習値との比較に基づいて、前記交流電源の停電を判定するように構成される、請求項1または2に記載の無停電電源装置。
PCT/JP2015/083890 2015-12-02 2015-12-02 無停電電源装置 WO2017094142A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/777,723 US10418851B2 (en) 2015-12-02 2015-12-02 Uninterruptible power supply device
PCT/JP2015/083890 WO2017094142A1 (ja) 2015-12-02 2015-12-02 無停電電源装置
CN201580085039.0A CN108292859B (zh) 2015-12-02 2015-12-02 不间断电源装置
JP2017553552A JP6530508B2 (ja) 2015-12-02 2015-12-02 無停電電源装置
TW105103485A TWI583100B (zh) 2015-12-02 2016-02-03 不停電電源裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/083890 WO2017094142A1 (ja) 2015-12-02 2015-12-02 無停電電源装置

Publications (1)

Publication Number Publication Date
WO2017094142A1 true WO2017094142A1 (ja) 2017-06-08

Family

ID=58796598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083890 WO2017094142A1 (ja) 2015-12-02 2015-12-02 無停電電源装置

Country Status (5)

Country Link
US (1) US10418851B2 (ja)
JP (1) JP6530508B2 (ja)
CN (1) CN108292859B (ja)
TW (1) TWI583100B (ja)
WO (1) WO2017094142A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019017170A (ja) * 2017-07-05 2019-01-31 東芝三菱電機産業システム株式会社 無停電電源装置および無停電電源装置の制御方法
WO2020017164A1 (ja) * 2018-07-19 2020-01-23 富士電機株式会社 無停電電源装置
WO2020255189A1 (ja) * 2019-06-17 2020-12-24 東芝三菱電機産業システム株式会社 電源装置および交流電源の異常検出方法
KR20210024132A (ko) * 2018-08-03 2021-03-04 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 무정전 전원 장치
JP2022068542A (ja) * 2020-10-22 2022-05-10 東芝三菱電機産業システム株式会社 無停電電源システムおよび無停電電源装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077698A1 (ja) * 2017-10-18 2019-04-25 東芝三菱電機産業システム株式会社 無停電電源装置
JP6711385B2 (ja) * 2018-10-16 2020-06-17 ダイキン工業株式会社 電源回路、その電源回路を備えたモータ駆動回路、及び、その電源回路又はそのモータ駆動回路を備えた冷凍装置
US11378628B2 (en) * 2019-09-02 2022-07-05 Toshiba Mitsubishi—Electric Industrial Systems Corporation Testing device of inverter device
CN113640695A (zh) * 2020-05-11 2021-11-12 杭州海康汽车软件有限公司 检测装置及检测方法
JP7120474B1 (ja) * 2020-10-08 2022-08-17 東芝三菱電機産業システム株式会社 電力変換装置
EP4084273A1 (en) * 2021-04-28 2022-11-02 ABB Schweiz AG Power supply assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061262A (ja) * 2001-08-10 2003-02-28 Densei Lambda Kk 無停電電源装置および電圧異常検出方法
JP2005172427A (ja) * 2003-12-05 2005-06-30 Mitsubishi Electric Corp 交流電圧低下検出装置
JP2006010435A (ja) * 2004-06-24 2006-01-12 Toshiba Mitsubishi-Electric Industrial System Corp 電圧異常検出装置
JP2006126135A (ja) * 2004-11-01 2006-05-18 Densei Lambda Kk 停電検出装置、電源切換装置、無停電電源装置、および、停電検出用プログラム
JP2010115029A (ja) * 2008-11-07 2010-05-20 Murata Mfg Co Ltd 絶縁型スイッチング電源装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2634709Y (zh) * 2002-11-08 2004-08-18 杨胜武 三相应急电源
JP2010115008A (ja) 2008-11-06 2010-05-20 Tdk-Lambda Corp 無停電電源装置
US8552589B2 (en) * 2010-05-14 2013-10-08 Schneider Electric It Corporation Digital control method for operating the UPS systems in parallel
TWI499167B (zh) * 2013-09-06 2015-09-01 Delta Electronics Inc 電源供應轉換系統及其控制方法
JP6190059B2 (ja) * 2014-06-26 2017-08-30 東芝三菱電機産業システム株式会社 無停電電源装置
CN104242439B (zh) * 2014-08-30 2016-07-06 沈亚斌 一种交直流无延时切换方法及切换***
US10461576B2 (en) * 2014-12-08 2019-10-29 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061262A (ja) * 2001-08-10 2003-02-28 Densei Lambda Kk 無停電電源装置および電圧異常検出方法
JP2005172427A (ja) * 2003-12-05 2005-06-30 Mitsubishi Electric Corp 交流電圧低下検出装置
JP2006010435A (ja) * 2004-06-24 2006-01-12 Toshiba Mitsubishi-Electric Industrial System Corp 電圧異常検出装置
JP2006126135A (ja) * 2004-11-01 2006-05-18 Densei Lambda Kk 停電検出装置、電源切換装置、無停電電源装置、および、停電検出用プログラム
JP2010115029A (ja) * 2008-11-07 2010-05-20 Murata Mfg Co Ltd 絶縁型スイッチング電源装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019017170A (ja) * 2017-07-05 2019-01-31 東芝三菱電機産業システム株式会社 無停電電源装置および無停電電源装置の制御方法
WO2020017164A1 (ja) * 2018-07-19 2020-01-23 富士電機株式会社 無停電電源装置
JPWO2020017164A1 (ja) * 2018-07-19 2020-12-17 富士電機株式会社 無停電電源装置
US11289941B2 (en) 2018-07-19 2022-03-29 Fuji Electric Co., Ltd. Uninterruptible power supply
KR20210024132A (ko) * 2018-08-03 2021-03-04 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 무정전 전원 장치
KR102566567B1 (ko) 2018-08-03 2023-08-11 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 무정전 전원 장치
WO2020255189A1 (ja) * 2019-06-17 2020-12-24 東芝三菱電機産業システム株式会社 電源装置および交流電源の異常検出方法
JP6816307B1 (ja) * 2019-06-17 2021-01-20 東芝三菱電機産業システム株式会社 電源装置および交流電源の異常検出方法
KR20210055727A (ko) * 2019-06-17 2021-05-17 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 전원 장치 및 교류 전원의 이상 검출 방법
KR102620030B1 (ko) * 2019-06-17 2023-12-29 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 전원 장치 및 교류 전원의 이상 검출 방법
JP2022068542A (ja) * 2020-10-22 2022-05-10 東芝三菱電機産業システム株式会社 無停電電源システムおよび無停電電源装置
JP7350706B2 (ja) 2020-10-22 2023-09-26 東芝三菱電機産業システム株式会社 無停電電源システムおよび無停電電源装置

Also Published As

Publication number Publication date
TWI583100B (zh) 2017-05-11
CN108292859A (zh) 2018-07-17
CN108292859B (zh) 2021-02-19
US20180375372A1 (en) 2018-12-27
TW201722029A (zh) 2017-06-16
JP6530508B2 (ja) 2019-06-12
JPWO2017094142A1 (ja) 2018-09-13
US10418851B2 (en) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2017094142A1 (ja) 無停電電源装置
JP6190059B2 (ja) 無停電電源装置
JP6224831B2 (ja) 無停電電源装置
WO2017022329A1 (ja) 入力電圧の異常検出方法及び電源装置
JP6058233B1 (ja) 電力変換装置
JPH11175490A (ja) 縮退制御方法、多重化制御装置
JP6680957B2 (ja) 交流スイッチならびにそれを備える無停電電源装置および瞬低補償装置
US11644506B2 (en) Power switch fault detection method and power switch fault detection circuit
JP6816307B1 (ja) 電源装置および交流電源の異常検出方法
JP4530919B2 (ja) 無停電電源装置
WO2013051429A1 (ja) 系統連系用電力変換装置の制御装置、及び系統連系用電力変換装置
US20230155520A1 (en) Power conversion device
JP5444774B2 (ja) 無停電電源システム
JP6623746B2 (ja) 分散電源の単独運転検出システム
JP7136541B2 (ja) 無停電電源装置および無停電電源装置の制御方法
JP6398057B2 (ja) 交流電源装置及びその瞬時電圧変動検出方法
JP2015073399A (ja) 分散型電源の単独運転検出装置及び方法
JP5481055B2 (ja) 電力変換装置
JP2012100494A (ja) 分散型電源装置
JP4618222B2 (ja) 系統連系インバータ装置
JP5683364B2 (ja) インバータ制御装置
TWI418807B (zh) 微電網分散式電源系統之微動孤島偵測方法
CN117678154A (zh) 相位同步控制电路以及使用该相位同步控制电路的电力转换装置
JP2024075033A (ja) 無停電電源システム
JP2023039641A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553552

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909772

Country of ref document: EP

Kind code of ref document: A1