WO2017094059A1 - Refrigerant quantity management device and refrigerant quantity management system - Google Patents

Refrigerant quantity management device and refrigerant quantity management system Download PDF

Info

Publication number
WO2017094059A1
WO2017094059A1 PCT/JP2015/083556 JP2015083556W WO2017094059A1 WO 2017094059 A1 WO2017094059 A1 WO 2017094059A1 JP 2015083556 W JP2015083556 W JP 2015083556W WO 2017094059 A1 WO2017094059 A1 WO 2017094059A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
unit
amount
temperature
management device
Prior art date
Application number
PCT/JP2015/083556
Other languages
French (fr)
Japanese (ja)
Inventor
右文 前田
弘章 尾花
佐多 裕士
森川 聡
崇仁 手島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/083556 priority Critical patent/WO2017094059A1/en
Priority to JP2017553489A priority patent/JP6490237B2/en
Priority to GB1806219.0A priority patent/GB2557837C/en
Publication of WO2017094059A1 publication Critical patent/WO2017094059A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/23High amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2102Temperatures at the outlet of the gas cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigerant quantity management device and a refrigerant quantity management system for managing the quantity of refrigerant in a refrigeration apparatus.
  • the conventional refrigeration apparatus has a function of determining whether the amount of refrigerant charged is excessive or insufficient and displaying the determination result (see, for example, Patent Document 1).
  • the refrigeration apparatus of Patent Document 1 calculates the temperature difference between the inlet refrigerant temperature and the outlet refrigerant temperature of the supercooler as the degree of supercooling, and the refrigerant leaks when the calculated degree of supercooling decreases below a set value. Judgment.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigerant quantity management device and a refrigerant quantity management system that display information indicating the transition of the refrigerant quantity.
  • a refrigerant quantity management device includes a compressor, a heat source side heat exchanger provided downstream of the compressor, and a heat source side unit including a subcooler provided downstream of the heat source side heat exchanger, A refrigerant circuit formed by connecting a load side expansion valve provided downstream of the cooler and at least one load side unit having a load side heat exchanger provided downstream of the load side expansion valve by piping.
  • a refrigerant amount management device that manages the amount of refrigerant charged, a storage unit that stores information relating to the amount of refrigerant, a degree of refrigerant supercooling at the outlet of the subcooler, a refrigerant condensing temperature and an outside air temperature
  • the temperature efficiency is periodically calculated by dividing by the maximum temperature difference that is the difference between the temperature efficiency, the temperature efficiency calculation unit that stores the obtained temperature efficiency in the storage unit, the display unit that displays information on the amount of the refrigerant, and the storage unit Within the set period stored in The information indicating the temperature efficiency, those having, an output control section having a function of displaying on the display unit.
  • the output control unit displays the information on the temperature efficiency within the set period periodically obtained by the temperature efficiency calculation unit on the display unit, the information indicating the transition of the refrigerant amount can be displayed.
  • FIG. 2 is a block diagram illustrating a configuration of a refrigerant quantity management device provided in the refrigerant quantity management system of FIG. 1. It is a graph which shows the relationship between the fluctuation
  • FIG. 4 is a graph illustrating a relationship between temperature efficiency and a refrigerant amount determination threshold value within a set period when the refrigerant amount is determined to be appropriate by the refrigerant amount determination unit of FIG. 3. It is the schematic diagram which illustrated the information which shows that the quantity of a refrigerant
  • FIG. 1 is a block diagram showing the overall configuration of the refrigerant quantity management system according to the first embodiment.
  • the refrigerant quantity management system 300 includes a refrigerant quantity management apparatus 100, a plurality of refrigeration apparatuses 200A and 200B, and a plurality of remote controllers 230A to 230D.
  • the refrigeration apparatus 200A includes a heat source side unit 210A, a load side unit 220A, and a load side unit 220B.
  • the refrigeration apparatus 200B includes a heat source side unit 210B, a load side unit 220C, and a load side unit 220D.
  • the refrigerating apparatus 200A and the refrigerating apparatus 200B are configured in the same manner.
  • the refrigerating apparatuses 200A and 200B are generically referred to or any one of them is simply referred to as the refrigerating apparatus 200.
  • the heat source side units 210A and 210B are collectively referred to, or when referring to any one of them, they are also simply referred to as the heat source side unit 210.
  • the load side units 220A to 220D are generically referred to or at least one of them is indicated, it is also simply referred to as the load side unit 220.
  • the remote controllers 230A to 230D are collectively referred to or at least one of them is simply referred to as the remote controller 230.
  • a heat source side unit 210A composed of a condensing unit, a load side unit 220A, and a load side unit 220B are connected by a refrigerant pipe to constitute a refrigerant circuit.
  • a heat source side unit 210B made of a condensing unit, a load side unit 220C, and a load side unit 220D are connected by a refrigerant pipe to constitute a refrigerant circuit.
  • the refrigeration apparatus 200 cools a room such as a room, a warehouse, a showcase, or a refrigerator by performing a vapor compression refrigeration cycle operation. That is, the refrigeration apparatus 200 is for refrigeration or freezing, for example, an indoor object.
  • the remote controller 230 receives an input operation related to air conditioning control. Further, the remote controller 230 performs operation control of the load side unit 220 by transmitting a signal related to an instruction such as a set temperature to the load side unit 220 in response to an input operation by a user or the like.
  • the remote controller 230A performs operation control of the load side unit 220A.
  • the remote controller 230B performs operation control of the load side unit 220B.
  • the remote controller 230C performs operation control of the load side unit 220C.
  • the remote controller 230D performs operation control of the load side unit 220D.
  • the remote controller 230 has a display device (not shown) made of, for example, a liquid crystal panel, and has a function of displaying information indicating the state of the refrigeration device 200 or the temperature of the room to be cooled on the display device. have.
  • FIG. 1 illustrates the case where the refrigerant amount management device 100 manages two refrigeration devices 200
  • the present invention is not limited to this, and the number of refrigeration devices 200 managed by the refrigerant amount management device 100 is one. It may be three or more.
  • 1 illustrates the case where the refrigeration apparatus 200 includes one heat source side unit 210 and two load side units 220.
  • the present invention is not limited to this, and the refrigeration apparatus 200 includes a plurality of heat source side units. 210 may be included, or one or three or more load-side units 220 may be included. When there are a plurality of heat source side units 210, the capacities of the plurality of heat source side units 210 may be the same or different.
  • the capacity of the plurality of load-side units 220 may be the same or different.
  • the refrigeration apparatus 200 in which the refrigerant exchanges heat with air will be described. However, the refrigeration apparatus 200 exchanges heat with a fluid such as water, refrigerant, or brine. It may be configured.
  • FIG. 2 is a schematic view illustrating the configuration of the refrigeration apparatus provided in the refrigerant quantity management system 300. Since the refrigeration apparatus 200A and the refrigeration apparatus 200B are configured in the same manner, a configuration example of the refrigeration apparatus 200A will be described here with reference to FIG.
  • the refrigeration apparatus 200A has one heat source side unit 210A and two load side units 220A and 220B connected in parallel to the heat source side unit 210A.
  • the heat source side unit 210A and the load side units 220A and 220B are connected by the liquid refrigerant extension pipe 6 and the gas refrigerant extension pipe 7, whereby the refrigerant circuit 10 for circulating the refrigerant is formed.
  • the refrigerant charged in the refrigerant circuit 10 of the first embodiment is, for example, R410A that is an HFC-based mixed refrigerant.
  • the heat source side unit 210 ⁇ / b> A includes, for example, a heat source side refrigerant circuit 10 b, a first injection circuit 51, a second injection circuit 53, and a heat source side control unit 31 that constitute a part of the refrigerant circuit 10.
  • a heat source side refrigerant circuit 10 b includes, for example, a heat source side refrigerant circuit 10 b, a first injection circuit 51, a second injection circuit 53, and a heat source side control unit 31 that constitute a part of the refrigerant circuit 10.
  • the refrigeration apparatus 200 is one of the first injection circuit 51 and the second injection circuit 53.
  • the structure which has one side may be sufficient.
  • the heat source side refrigerant circuit 10b includes a compressor 21, a heat source side heat exchanger 23, a receiver 25, a supercooler 22, a liquid side closing valve 28, a gas side closing valve 29, and an accumulator 24. That is, the heat source side unit 210 ⁇ / b> A includes at least the compressor 21, the heat source side heat exchanger 23 provided downstream of the compressor 21, and the subcooler 22 provided downstream of the heat source side heat exchanger 23. Yes.
  • the first injection circuit 51 branches a part of the refrigerant sent from the heat source side heat exchanger 23 to the load side heat exchanger 42 from the heat source side refrigerant circuit 10b and returns it to the intermediate pressure part of the compressor 21.
  • the injection amount adjusting valve 52 is included.
  • the second injection circuit 53 branches a part of the refrigerant sent from the heat source side heat exchanger 23 to the load side heat exchanger 42 from the heat source side refrigerant circuit 10b and flows into the suction portion of the compressor 21.
  • a capillary tube 54 and a solenoid valve 55 for suction injection.
  • the compressor 21 is, for example, an inverter compressor controlled by an inverter, and can change an operation frequency arbitrarily and change a capacity by the control from the heat source side control unit 31.
  • the capacity refers to the amount of refrigerant sent out per unit time.
  • the compressor 21 may be a constant speed compressor that operates at 50 Hz or 60 Hz.
  • FIG. 2 shows an example having one compressor 21, but two or more compressors 21 are connected in parallel according to the load size of the load side unit 220. May be.
  • the heat source side heat exchanger 23 is, for example, a fin-and-tube heat exchanger configured to include a heat transfer tube and a large number of fins, and functions as a condenser that condenses the refrigerant.
  • a heat source side fan 27 for blowing air to the heat source side heat exchanger 23 is disposed.
  • the heat source side fan 27 blows outside air sucked from the outside of the heat source side unit 210 ⁇ / b> A to the heat source side heat exchanger 23.
  • the heat source side fan 27 is composed of, for example, a centrifugal fan or a multiblade fan, and is driven by a motor (not shown).
  • the heat source side fan 27 can adjust the amount of air blown to the heat source side heat exchanger 23 under the control of the heat source side control unit 31.
  • the receiver 25 is disposed between the heat source side heat exchanger 23 and the subcooler 22 and stores excess liquid refrigerant.
  • the surplus liquid refrigerant is generated in the refrigerant circuit 10 in accordance with, for example, the load size of the load side unit 220, the refrigerant condensing temperature, the outside air temperature, the capacity of the compressor 21, or the like.
  • the supercooler 22 exchanges heat between the refrigerant and air, and is formed integrally with the heat source side heat exchanger 23. That is, in the example of the first embodiment, a part of the heat exchanger is configured as the heat source side heat exchanger 23, and the other part of the heat exchanger is configured as the subcooler 22. But the subcooler 22 and the heat source side heat exchanger 23 may be comprised separately. In such a case, a fan (not shown) that blows air to the subcooler 22 may be disposed in the vicinity of the subcooler 22.
  • the liquid side shut-off valve 28 and the gas side shut-off valve 29 are composed of valves that can be opened and closed, such as a ball valve, an on-off valve, or an operation valve.
  • the capillary tube 54 may be configured with a valve capable of adjusting the flow rate.
  • the inlets of the first injection circuit 51 and the second injection circuit 53 are connected between the supercooler 22 and the liquid side shut-off valve 28, but are not limited thereto. That is, the inlets of the first injection circuit 51 and the second injection circuit 53 may be connected between the receiver 25 and the subcooler 22 or may be connected to the receiver 25, and the heat source side heat exchanger 23 and the receiver 25 may be connected.
  • the load side unit 220 ⁇ / b> A is an indoor unit installed indoors, for example, and includes a load side refrigerant circuit 10 a and a load side control unit 32 that constitute a part of the refrigerant circuit 10.
  • the load side refrigerant circuit 10 a includes a load side expansion valve 41 and a load side heat exchanger 42. That is, the load side unit 220 includes a load side expansion valve 41 provided downstream of the subcooler 22 and a load side heat exchanger 42 provided downstream of the load side expansion valve 41.
  • the load side expansion valve 41 is composed of, for example, an electronic expansion valve or a temperature type expansion valve, and adjusts the flow rate of the refrigerant flowing through the load side refrigerant circuit 10a.
  • the load side expansion valve 41 may be disposed in the heat source side unit 210A. When adopting such a configuration, the load side expansion valve 41 is disposed, for example, between the supercooler 22 and the liquid side closing valve 28 of the heat source side unit 210A.
  • the load-side heat exchanger 42 is, for example, a fin and tube heat exchanger that includes a heat transfer tube and a large number of fins, and functions as an evaporator that evaporates the refrigerant.
  • a load side fan 43 that blows air to the load side heat exchanger 42 is disposed.
  • the load side fan 43 is composed of, for example, a centrifugal fan or a multiblade fan, and is driven by a motor (not shown).
  • the load side fan 43 is configured to be able to adjust the amount of air blown to the load side heat exchanger 42 under the control of the load side control unit 32.
  • the first injection circuit 51 is for lowering the refrigerant temperature of the discharge part of the compressor 21.
  • the inlet of the first injection circuit 51 is connected between the outlet of the supercooler 22 and the liquid side shut-off valve 28, and a part of the high-pressure liquid refrigerant supercooled by the supercooler 22 is adjusted for the injection amount.
  • the pressure is reduced by the valve 52 to become a two-phase refrigerant having an intermediate pressure and flows into the injection portion of the compressor 21.
  • the second injection circuit 53 is for lowering the refrigerating machine oil inside the compressor 21, the temperature of the motor, and the refrigerant temperature of the discharge part.
  • the inlet of the second injection circuit 53 is connected between the outlet of the supercooler 22 and the liquid side closing valve 28, and part of the high-pressure liquid refrigerant supercooled by the supercooler 22 is part of the capillary tube 54. Is reduced in pressure to become a low-pressure two-phase refrigerant and flows into the suction portion of the compressor 21.
  • the heat source side control unit 31 includes a microcomputer, a memory, and the like, and controls the entire refrigeration apparatus 200A.
  • the load-side control unit 32 includes a microcomputer, a memory, and the like, and controls the load-side unit 220A.
  • the load side control unit 32 and the heat source side control unit 31 can exchange control signals by communication.
  • the load side control unit 32 receives an operation instruction from the heat source side control unit 31.
  • the load side unit 220A is controlled in response to the control signal shown.
  • the remote controller 230A is connected to the load side control unit 32 of the load side unit 220A, and the remote controller 230B is connected to the load side control unit 32 of the load side unit 220B.
  • the remote controller 230 transmits an operation signal corresponding to the received input operation to the load side control unit 32.
  • the load-side control unit 32 executes control of the refrigeration apparatus 200 ⁇ / b> A in cooperation with the heat source-side control unit 31 as necessary according to the operation signal transmitted from the remote controller 230.
  • the refrigerating apparatus 200A includes an intake temperature sensor 33a, a discharge temperature sensor 33b, a suction outside air temperature sensor 33c, and a subcooler high pressure side outlet temperature sensor 33d in the heat source side unit 210A.
  • the refrigerating apparatus 200A includes a load-side heat exchange inlet temperature sensor 33e, a load-side heat exchange outlet temperature sensor 33f, and an intake air temperature sensor 33g in each of the load-side units 220A and 220B.
  • the refrigeration apparatus 200A includes a suction pressure sensor 34a and a discharge pressure sensor 34b in the heat source side unit 210A.
  • the suction temperature sensor 33a, the discharge temperature sensor 33b, the suction outside air temperature sensor 33c, the supercooler high pressure side outlet temperature sensor 33d, the suction pressure sensor 34a, and the discharge pressure sensor 34b are connected to the heat source side control unit 31.
  • the load side heat exchange inlet temperature sensor 33e, the load side heat exchange outlet temperature sensor 33f, and the intake air temperature sensor 33g are connected to the load side controller 32.
  • the suction temperature sensor 33a detects the temperature of the refrigerant sucked by the compressor 21.
  • the discharge temperature sensor 33b detects the temperature of the refrigerant discharged from the compressor 21.
  • the supercooler high pressure side outlet temperature sensor 33d detects a supercooled refrigerant temperature that is the temperature of the refrigerant that has passed through the supercooler 22.
  • the load-side heat exchange inlet temperature sensor 33e detects the evaporation temperature of the gas-liquid two-phase refrigerant flowing into the load-side heat exchanger 42.
  • the load-side heat exchange outlet temperature sensor 33f detects the temperature of the refrigerant that has flowed out of the load-side heat exchanger 42.
  • Each of the sensors for detecting the temperature of the refrigerant is, for example, installed in contact with the refrigerant pipe or inserted into the refrigerant pipe.
  • the suction outside air temperature sensor 33c detects the ambient temperature outside the room by detecting the outside air temperature which is the temperature of the air before passing through the heat source side heat exchanger 23.
  • the intake air temperature sensor 33g detects the ambient temperature in the room where the load side heat exchanger 42 is installed by detecting the temperature of the air before passing through the load side heat exchanger 42.
  • the suction pressure sensor 34 a is disposed on the suction side of the compressor 21 and detects a suction pressure that is the pressure of the refrigerant sucked into the compressor 21.
  • the suction pressure sensor 34 a may be disposed between the gas side closing valve 29 and the compressor 21.
  • the discharge pressure sensor 34b is disposed on the discharge side of the compressor 21, and detects a discharge pressure that is the pressure of the refrigerant discharged by the compressor 21.
  • FIG. 3 is a block diagram illustrating the configuration of the refrigerant quantity management device 100 provided in the refrigerant quantity management system 300.
  • FIG. 4 is a graph showing the relationship between the fluctuation of the low pressure in the refrigerant circuit 10 of the refrigeration apparatus 200 and the target low pressure.
  • FIG. 5 is an explanatory diagram showing the relationship between the refrigerant amount of the refrigeration apparatus 200 and the temperature efficiency T.
  • FIG. 6 is a graph illustrating the relationship between the temperature efficiency T and the refrigerant amount determination threshold Tm within the set period when the refrigerant amount determination unit 73 determines that the refrigerant amount is appropriate.
  • FIG. 4 is a graph showing the relationship between the fluctuation of the low pressure in the refrigerant circuit 10 of the refrigeration apparatus 200 and the target low pressure.
  • FIG. 5 is an explanatory diagram showing the relationship between the refrigerant amount of the refrigeration apparatus 200 and the temperature efficiency T.
  • FIG. 6 is a graph illustrating the relationship between the temperature efficiency T and the refrig
  • FIG. 7 is a schematic view illustrating information indicating that the refrigerant is insufficient, which is displayed on the display unit 80 when the refrigerant amount determination unit 73 determines that the refrigerant is insufficient.
  • FIG. 8 is a graph illustrating the relationship between the temperature efficiency T and the refrigerant amount determination threshold value Tm within the set period when the refrigerant amount determination unit 73 determines that the refrigerant is insufficient.
  • the functional configuration of the refrigerant quantity management device 100 will be specifically described with reference to FIGS.
  • the refrigerant quantity management device 100 manages the quantity of refrigerant charged in the refrigerant circuit 10 formed by connecting the heat source side unit 210 and at least one load side unit 220 with a pipe. That is, the refrigerant amount management device 100 manages the amount of refrigerant charged in the refrigeration apparatus 200. When a plurality of refrigeration apparatuses 200 are connected, the amount of refrigerant in each refrigeration apparatus 200 is determined. Manage.
  • the refrigerant amount management device 100 includes a data collection unit 60, a storage unit 70, an operation state determination unit 71, a temperature efficiency calculation unit 72, a refrigerant amount determination unit 73, an output control unit 74, a display unit 80, And a communication unit 90.
  • the data collection unit 60 periodically collects the pressure detected by the suction pressure sensor 34a as a low pressure that is a pressure on the low pressure side of the refrigerant circuit 10. Then, the data collection unit 60 transmits the collected low pressure information to the operation state determination unit 71.
  • the data collection unit 60 also detects the subcooling refrigerant temperature detected by the subcooler high-pressure side outlet temperature sensor 33d, the outside air temperature detected by the suction outside air temperature sensor 33c, and the discharge pressure detected by the discharge pressure sensor 34b. Are periodically collected as refrigerant quantity determination data.
  • the data collection unit 60 transmits the collected refrigerant amount determination data to the temperature efficiency calculation unit 72.
  • the storage unit 70 stores information related to the amount of refrigerant, a control program of the refrigerant amount management device 100, and the like.
  • the storage unit 70 stores a target low pressure P1 and a margin ⁇ used by the operation state determination unit 71 when determining whether or not the operation state is stable.
  • the storage unit 70 stores a refrigerant amount determination threshold value Tm used by the refrigerant amount determination unit 73 when determining whether or not the refrigerant is insufficient.
  • the operation state determination unit 71 uses the low pressure information transmitted from the data collection unit 60 to determine whether or not the operation state of each refrigeration apparatus 200 is stable. More specifically, the operation state determination unit 71 determines whether or not the operation state of each refrigeration apparatus 200 is stable by determining whether or not the low pressure is equal to or less than the determination reference pressure P2. is there. That is, the operation state determination unit 71 determines that the operation state is stable when the low pressure is equal to or lower than the determination reference pressure P2, and the operation state is unstable when the low pressure is greater than the determination reference pressure P2. It is determined that The operation state determination unit 71 is configured to transmit a calculation command to the temperature efficiency calculation unit 72 when it is determined that the operation state is stable.
  • running state determination part 71 is demonstrated in detail.
  • the heat source side control unit 31 increases or decreases the operating frequency of the compressor 21 so that the actual low pressure pressure approaches the preset target low pressure P1.
  • the low pressure pressure during operation of the compressor 21 changes in a state close to the target low pressure P1.
  • the refrigerant circuit 10 may be operated in a state where the pressure on the low pressure side is higher than usual.
  • the refrigerant circuit 10 when the refrigerant circuit 10 is operated in a state where the pressure on the low pressure side is higher than usual, the pressure from the load side expansion valve 41 to the suction portion of the compressor 21 increases, and the refrigerant density increases.
  • the necessary amount of refrigerant is expressed by the product of density and volume, the amount of necessary refrigerant on the low pressure side temporarily increases, and the high pressure of the receiver 25, the subcooler 22, the heat source side heat exchanger 23, and the like.
  • the side becomes a refrigerant shortage state. That is, in a state where the low-pressure pressure is higher by a certain level than usual, the accuracy of the refrigerant amount determination by the refrigerant amount determination unit 73 decreases.
  • the refrigerant amount management device 100 has the refrigerant amount determination unit 73 when the current low pressure is larger than the determination reference pressure P2 obtained by adding the margin ⁇ to the target low pressure P1.
  • the refrigerant amount determination is not performed.
  • the target low pressure P1 and the margin ⁇ are set in advance and stored in the storage unit 70, and the refrigerant amount management apparatus 100 determines the target low pressure P1 and the margin ⁇ according to detection results of various sensors. It is configured to change as appropriate.
  • a pressure sensor is provided at the outlet of the load-side heat exchanger 42, the data collection unit 60 periodically collects the pressure detected by the pressure sensor as a low pressure, and the operation state determination unit 71 uses the low pressure. You may make it determine whether the operating state of each refrigeration apparatus 200 is stable using a pressure.
  • the temperature efficiency calculation unit 72 periodically obtains the temperature efficiency T by dividing the supercooling degree of the refrigerant at the outlet of the supercooler 22 by the maximum temperature difference that is the difference between the refrigerant condensing temperature and the outside air temperature, and The obtained temperature efficiency T is stored in the storage unit 70. More specifically, the temperature efficiency calculation unit 72 converts the discharge pressure detected by the discharge pressure sensor 34b into a saturation temperature, obtains the condensation temperature of the refrigerant, and subtracts the supercooled refrigerant temperature from the obtained condensation temperature. The degree of supercooling of the refrigerant at the outlet of the supercooler 22 is obtained.
  • a temperature sensor may be provided in the heat source side heat exchanger 23, and the temperature efficiency calculation unit 72 may use the temperature detected by the temperature sensor as the condensation temperature.
  • the refrigerant amount determination unit 73 determines whether or not the refrigerant is insufficient based on the temperature efficiency T obtained by the temperature efficiency calculation unit 72.
  • the refrigerant amount determination unit 73 is configured to execute a determination as to whether or not the refrigerant is insufficient when the operating state determination unit 71 determines that the low pressure is equal to or lower than the determination reference pressure. .
  • coolant amount determination part 73 is demonstrated in detail.
  • the horizontal axis represents the refrigerant amount of the refrigeration apparatus 200
  • the vertical axis represents the temperature efficiency T of the subcooler 22.
  • the symbol “E” is a critical refrigerant amount which is a refrigerant amount when there is no surplus refrigerant.
  • the refrigerant amount determination unit 73 is configured to determine that the refrigerant is insufficient when the temperature efficiency T becomes equal to or less than the refrigerant amount determination threshold Tm.
  • the temperature efficiency T indicates the performance of the supercooler 22, and since the fluctuation due to the operating condition of the refrigeration apparatus 200 is smaller than the degree of supercooling, the refrigerant amount determination threshold for each operating condition of the refrigeration apparatus 200.
  • the accuracy of the refrigerant amount determination process can be improved without setting Tm. That is, the refrigerant amount determination threshold value Tm is set in advance based on various operating conditions of the refrigeration apparatus 200.
  • the refrigerant amount determination unit 73 increases the refrigerant amount determination threshold Tm when the air volume of the heat source side fan 27 is large, and decreases the refrigerant amount determination threshold Tm when the air volume of the heat source side fan 27 is small.
  • the refrigerant amount determination threshold value Tm may be changed according to the air volume of the heat source side fan 27 and the like.
  • the refrigerant amount determination threshold value Tm is configured to be held in the heat source side unit 210 or the load side unit 220, and the refrigerant amount determination unit 73 determines whether or not the refrigerant is insufficient. You may make it acquire the information of the refrigerant
  • the output control unit 74 has a function of causing the display unit 80 to display information indicating the temperature efficiency T within the set period, which is stored in the storage unit 70.
  • the output control unit 74 indicates the temperature efficiency T within the set period as the set period data when the refrigerant amount determining unit 73 determines whether or not the refrigerant is insufficient.
  • the information and the information indicating the refrigerant amount determination threshold value Tm are configured to be displayed on the display unit 80.
  • FIGS. 6 and 8 are examples of setting period data displayed on the display unit 80 by the output control unit 74.
  • the relationship between “*” indicating the temperature efficiency T and “•” indicating the refrigerant amount determination threshold value Tm is shown. This is a time-series graph.
  • FIG. 7 is an example of the refrigerant amount shortage information that the output control unit 74 displays on the display unit 80 when the refrigerant amount determination unit 73 determines that the refrigerant is short.
  • the output control unit 74 causes the display unit 80 to display setting period data as shown in FIG. 6 when the refrigerant amount determination unit 73 determines that the refrigerant is not insufficient.
  • the output control unit 74 exemplifies a case where the information indicating the temperature efficiency T within the set period and the information indicating the refrigerant amount determination threshold value Tm are displayed.
  • 74 may be configured to display only information indicating the temperature efficiency T within the set period on the display unit 80 as set period data. Even if it does in this way, since the change of the temperature efficiency T can be made visible to a service person etc., generation
  • coolant amount can be suppressed.
  • the output control unit 74 displays the refrigerant amount shortage information indicating that the refrigerant is insufficient, as shown in FIG. Is displayed.
  • the display unit 80 includes, for example, a touch panel and displays information related to the amount of refrigerant and accepts a touch operation by a service person or the like.
  • a command button 81 that receives an information output command is displayed as part of the refrigerant quantity shortage information.
  • an information output command is output from the display unit 80 to the output control unit 74.
  • the output control part 74 is comprised so that the setting period data as shown in FIG. 8 may be displayed on the display part 80, when the information output instruction
  • the display unit 80 also has a switching button (not shown) that accepts a display switching operation by a service person or the like, and the output control unit 74 responds to the touch operation on the switching button by the output control unit 74. It is configured to perform switching display. That is, the refrigerant quantity management device 100 can appropriately display set period data corresponding to the set period, such as set period data for any month.
  • the output control unit 74 may cause the display unit 80 to display setting period data including information indicating the temperature efficiency T within the setting period. That is, for example, a table in which information on the temperature efficiency T and the refrigerant amount determination threshold Tm for each day or for each unit time obtained by subdividing the day is arranged on a monthly basis may be displayed on the display unit 80. Good. Further, for example, in accordance with a touch operation on the switching button of the display unit 80, information on the temperature efficiency T and the refrigerant amount determination threshold value Tm for each day or for each unit time may be switched and displayed.
  • the output control unit 74 may cause the display unit 80 to display only information indicating the temperature efficiency T within the set period. Even if it does in this way, since the change of the temperature efficiency T can be made visible to a service person etc., generation
  • coolant amount can be suppressed.
  • the output control unit 74 may be configured to cause the display unit 80 to display information indicating the temperature efficiency T within the set period and information indicating the refrigerant amount determination threshold value Tm constantly or periodically.
  • the display unit 80 has a display command button (not shown) for receiving a display command for setting period data by a serviceman or the like, and the output control unit 74 according to a touch operation on the switch button.
  • the set period data may be displayed on the display unit 80.
  • the display unit 80 may be a liquid crystal panel or the like that does not have a function of accepting a touch operation.
  • the refrigerant amount management device 100 is the same as at least one of the command button 81, the switching button, and the display command button. It is good to comprise so that it may have an operation part (not shown) with a physical button of a function. Even in this case, when a service person or the like presses the physical button, an information output command or the like is output to the output control unit 74, and the output control unit 74 can perform display processing of set period data.
  • the refrigerant quantity management device 100 may further include an external contact output terminal (not shown) for outputting information. And the output control part 74 is good to transmit each information displayed on the display part 80 to the external apparatus connected to the external contact output terminal. Further, the refrigerant quantity management device 100 may be mounted on the remote controller 230.
  • the output control unit 74 has a function of outputting each information to be displayed on the display unit 80 to an external device through an electronic mail or the like through a communication line 90 and a public line such as an open network.
  • the communication unit 90 performs information communication with an external device through a telephone line or a LAN line.
  • the data collection unit 60, the operation state determination unit 71, the temperature efficiency calculation unit 72, the refrigerant amount determination unit 73, the output control unit 74, and the communication unit 90 are implemented by hardware such as a circuit device that implements each function described above.
  • it can be realized as software executed on a microcomputer such as a DSP or an arithmetic device such as a CPU.
  • the storage unit 70 can be configured by an HDD (Hard Disk Drive), a flash memory, or the like.
  • FIG. 9 is a flowchart for explaining the operation of the refrigerant quantity management device 100 of FIG. With reference to FIG. 9, the determination process regarding the refrigerant
  • the data collection unit 60 collects information on the low pressure, which is the pressure on the low pressure side of the refrigerant circuit 10, and transmits the collected information on the low pressure to the operating state determination unit 71 (FIG. 9: Step S101). Further, the data collection unit 60 collects refrigerant amount determination data, which is information on the supercooled refrigerant temperature, the outside air temperature, and the discharge pressure, and transmits the collected refrigerant amount determination data to the temperature efficiency calculation unit 72 (FIG. 9: Step S102).
  • the operation state determination unit 71 determines whether or not the operation state of the refrigeration apparatus 200 is stable by comparing the low-pressure pressure transmitted from the data collection unit 60 with the determination reference pressure (FIG. 9: Step S103). The operation state determination unit 71 determines that the operation state of the refrigeration apparatus 200 is stable when the low pressure is equal to or less than the determination reference pressure (FIG. 9: Step S103 / Yes), and calculates the temperature efficiency calculation unit 72. The command is transmitted (FIG. 9: Step S104).
  • the temperature efficiency calculation unit 72 calculates the temperature efficiency T using the refrigerant amount determination data, and transmits information on the calculated temperature efficiency T to the refrigerant amount determination unit 73 (FIG. 9: Step S105).
  • the temperature efficiency T of the subcooler 22 be a moving average of a plurality of temperature efficiencies T that are different in time rather than using an instantaneous value.
  • the refrigerant amount determination unit 73 compares the temperature efficiency T with the refrigerant amount determination threshold value Tm to determine whether or not the refrigerant is insufficient. (FIG. 9: Step S106).
  • the operation state determination unit 71 determines that the operation state of the refrigeration apparatus 200 is unstable when the low pressure is larger than the determination reference pressure (FIG. 9: Step S103 / No). In this case, the refrigerant quantity determination unit 73 does not determine whether or not the refrigerant is insufficient, and returns to step S101.
  • the output control unit 74 displays the refrigerant amount.
  • the shortage information is displayed on the display unit 80 (FIG. 9: Step S107).
  • the output control unit 74 maintains the state in which the refrigerant amount shortage information is displayed on the display unit 80 until an information output command or the like corresponding to the display of the refrigerant amount shortage information is input (FIG. 9: Step S108 / No). And the output control part 74 is the information output instruction
  • the output control unit 74 sets the value.
  • the period data is displayed on the display unit 80 (FIG. 9: Step S109).
  • step S101 and step S102 may be performed simultaneously, or step S102 may be performed first.
  • the operation state determination unit 71 determines that the operation state of the refrigeration apparatus 200 is stable (FIG. 9: Step S103 / Yes)
  • the operation of Step S102 may be performed.
  • the refrigerant quantity management device 100 may execute the determination process and the output process relating to the refrigerant quantity when receiving an instruction from a remote device (not shown).
  • the determination process and the output process related to the refrigerant amount described above can also be applied to a refrigerant charging operation when the refrigeration apparatus 200 is installed or a refrigerant charging operation when the refrigeration apparatus 200 is maintained.
  • the refrigerant amount management device 100 uses the temperature efficiency information that accurately follows the change in the refrigerant amount as information indicating the change in the refrigerant amount on the display unit 80 or an external device. Can be displayed. Therefore, the service person or the like can grasp the transition of the refrigerant amount by checking the display unit 80 or an external device, and can perform appropriate maintenance on the refrigeration apparatus 200. Therefore, according to the refrigerant
  • the refrigerant amount management device 100 performs the refrigerant amount determination process using the temperature efficiency T that has a relatively small variation due to the operating state of the refrigeration apparatus 200, even if the refrigerant leaks, the refrigerant leak management device 100 It can be detected early. That is, since the refrigerant amount determination threshold value Tm can be set higher than the refrigerant amount determination process based on the conventional supercooling degree, the refrigerant amount management apparatus 100 can perform the refrigerant amount determination process quickly. . Furthermore, since the refrigerant quantity management device 100 does not perform the refrigerant quantity determination process when the operation state is unstable, it is possible to suppress erroneous determination.
  • the conventional refrigeration apparatus displays only the result of whether or not the refrigerant is insufficient, the service person or the like cannot recognize the change in the refrigerant amount over time. For this reason, even if an erroneous determination occurs, the service person or the like takes a countermeasure according to the erroneous determination result. That is, when a service person or the like fills the refrigerant in response to an erroneous determination that the refrigerant is insufficient, the cost increases due to the replenishment of unnecessary refrigerant. Moreover, when the liquid back occurs, the liquid back amount increases, which may lead to a malfunction of the compressor.
  • the refrigerant quantity management device 100 displays the set period data on the display unit 80, so that the refrigerant quantity can be revealed early.
  • the refrigerant amount management device 100 displays information indicating the temperature efficiency T and information indicating the refrigerant amount determination threshold Tm within a set period by a graph along a time series. Etc. can be visually recognized at a glance of the transition of the refrigerant amount.
  • FIG. 10 is a schematic view illustrating the configuration of the refrigeration apparatus according to the first modification of the first embodiment.
  • the refrigeration apparatus 200M according to the first modification includes a first subcooler 22A, a second subcooler 22B, instead of the subcooler 22 included in the refrigeration apparatus 200A in FIG. It is characterized by having The same components as those in the above-described refrigeration apparatus 200A are denoted by the same reference numerals and description thereof is omitted.
  • the second subcooler 22 ⁇ / b> B is provided downstream of the first subcooler 22 ⁇ / b> A configured in the same manner as the above-described supercooler 22.
  • the second subcooler 22B includes, for example, a double pipe or a plate heat exchanger, and has a high-pressure refrigerant flowing in the heat source side refrigerant circuit 10b and an intermediate pressure flowing in the first injection circuit 51A. Heat exchange with the refrigerant is performed.
  • a part of the refrigerant that has passed through the second subcooler 22B is expanded by the injection amount adjusting valve 52 to become an intermediate pressure refrigerant, and exchanges heat with the refrigerant that has passed through the second subcooler 22B. That is, in the first modification, the high-pressure refrigerant that flows from the receiver 25 and is heat-exchanged by the second subcooler 22B is further subcooled. Further, the intermediate-pressure refrigerant that flows in from the injection amount adjusting valve 52 and is heat-exchanged by the second subcooler 22B becomes a refrigerant having a high dryness, so that the compressor 21 can reduce the discharge temperature of the compressor 21. Injection into the suction side.
  • the temperature efficiency calculation unit 72 uses, as the temperature efficiency T, the temperature efficiency of the first subcooler 22A, the temperature efficiency of the second subcooler 22B, or the first subcooler 22A and the second subcooler.
  • the temperature efficiency of the vessel 22B may be obtained.
  • the refrigeration apparatus 200M may be configured such that the refrigerant flowing out of the receiver 25 flows into the second subcooler 22B without providing the first subcooler 22A.
  • FIG. 11 is a block diagram illustrating the configuration of the refrigerant quantity management device according to the second modification of the first embodiment.
  • the configuration of the second modification is characterized in that each component that functions in the same manner as each component provided in the refrigerant amount management device 100 described above is distributed to two different devices. is there. That is, in the second modification, the collection calculation device 100A and the refrigerant amount management device 100B function in the same manner as the refrigerant amount management device 100. Constituent members that are the same as those of the refrigerant amount management device 100 are denoted by the same reference numerals, and description thereof is omitted.
  • the collection calculation device 100A includes a data collection unit 60, a threshold storage unit 70A, an operation state determination unit 71, a temperature efficiency calculation unit 72, and a refrigerant amount determination unit 73A.
  • the collection arithmetic device 100A is connected to the refrigeration apparatus 200.
  • the refrigerant amount management device 100B includes a storage unit 70, an output control unit 74B, a display unit 80, and a communication unit 90.
  • the refrigerant amount determination unit 73A includes information indicating the result of the refrigerant amount determination, information on the temperature efficiency T periodically acquired from the temperature efficiency calculation unit 72, and information on the refrigerant amount determination threshold Tm in the threshold storage unit 70A. And output to the output control unit 74B.
  • Other configurations and operations of the refrigerant amount determination unit 73A are the same as those of the refrigerant amount determination unit 73 described above.
  • the output control unit 74B causes the storage unit 70 to store information on the temperature efficiency T and the refrigerant amount determination threshold value Tm that are periodically output from the refrigerant amount determination unit 73A. Further, the output control unit 74B indicates information indicating the temperature efficiency T within the set period and the refrigerant amount determination threshold Tm according to the result of the refrigerant amount determination by the refrigerant amount determination unit 73A or according to the information output command. Information is displayed on the display unit 80. Other configurations and operations of the output control unit 74B are the same as those of the output control unit 74 described above.
  • the collection arithmetic device 100A and the refrigerant amount management device 100B are provided outside the refrigeration device 200 .
  • the present invention is not limited to this, and among the collection arithmetic device 100A and the refrigerant amount management device 100B At least one of the above may be provided inside the refrigeration apparatus 200. That is, the collection calculation device 100A may be incorporated as a functional configuration inside the heat source side control unit 31 or the load side control unit 32 of the refrigeration apparatus 200, for example.
  • the refrigerant amount management device 100B may be mounted on the remote controller 230, for example.
  • FIG. 12 is a block diagram illustrating the configuration of the refrigerant quantity management device according to the third modification of the first embodiment.
  • the configuration of the third modification is characterized in that each component that functions in the same manner as each component provided in the refrigerant amount management device 100 described above is distributed to two different devices. is there. That is, in the third modification, the collection calculation device 100C and the refrigerant amount management device 100D function in the same manner as the refrigerant amount management device 100.
  • the same components as those in the refrigerant amount management device 100 described above are denoted by the same reference numerals and description thereof is omitted.
  • the collection calculation device 100C includes a data collection unit 60, an operation state determination unit 71, and a temperature efficiency calculation unit 72C.
  • the refrigerant amount management device 100D includes a storage unit 70, a refrigerant amount determination unit 73D, an output control unit 74, a display unit 80, and a communication unit 90.
  • the temperature efficiency calculation unit 72C periodically outputs the obtained temperature efficiency T information to the refrigerant amount determination unit 73D. Further, the temperature efficiency calculation unit 72C outputs a calculation command transmitted from the temperature efficiency calculation unit 72 to the refrigerant amount determination unit 73D. Other configurations and operations of the temperature efficiency calculation unit 72C are the same as those of the temperature efficiency calculation unit 72 described above.
  • the refrigerant amount determination unit 73D causes the storage unit 70 to store information on the temperature efficiency T that is periodically acquired from the temperature efficiency calculation unit 72C. In addition, the refrigerant amount determination unit 73D executes refrigerant amount determination when a calculation command is output from the temperature efficiency calculation unit 72C. Other configurations and operations of the refrigerant amount determination unit 73D are the same as those of the refrigerant amount determination unit 73 described above.
  • the present invention is not limited to this, and among the collection calculation device 100A and the refrigerant amount management device 100B At least one of the above may be provided inside the refrigeration apparatus 200. That is, the collection calculation device 100A may be incorporated as a functional configuration inside the heat source side control unit 31 or the load side control unit 32 of the refrigeration apparatus 200, for example. In addition, the refrigerant amount management device 100B may be mounted on the remote controller 230, for example.
  • the case where the respective structural members that function in the same manner as the respective structural members provided in the refrigerant amount management device 100 described above is distributed to two different devices, but is not limited thereto. You may make it comprise and distribute to three or more different apparatuses.
  • FIG. FIG. 13 is a block diagram illustrating a configuration example of the refrigerant quantity management device according to Embodiment 2 of the present invention. Based on FIG. 13, the structure of the refrigerant
  • the data collection unit 60E periodically collects the compressor frequency that is the operation frequency of the compressor 21. And the data collection part 60E is comprised so that the collected compressor frequency may be transmitted to the temperature efficiency calculating part 72E as needed.
  • Other configurations and operations of the data collection unit 60E are the same as those of the data collection unit 60 in the first embodiment described above.
  • the temperature efficiency calculation unit 72E receives the low pressure, the passing refrigerant temperature, and the outside air from the heat source unit 210 via the data collection unit 60. Information on at least two of the temperature and the compressor frequency is acquired as instability determination data, and the acquired instability determination data is stored in the storage unit 70.
  • the temperature efficiency calculation unit 72E acquires specific two or three pieces of information among the low pressure, the passing refrigerant temperature, the outside air temperature, and the compressor frequency as instability determination data, and stores them in the storage unit 70. It may be. Further, the temperature efficiency calculation unit 72E may acquire all the information on the low pressure, the passing refrigerant temperature, the outside air temperature, and the compressor frequency as instability determination data and store the information in the storage unit 70.
  • the temperature efficiency calculation unit 72E acquires instability determination data every time when the operation state determination unit 71 determines that the low pressure is equal to or lower than the determination reference pressure, and sequentially stores the acquired instability determination data in the storage unit 70. It is configured as follows. Other configurations and operations of the temperature efficiency calculation unit 72E are the same as those of the temperature efficiency calculation unit 72 in the first embodiment described above.
  • the refrigerant amount determination unit 73E replaces the case where the low-pressure pressure is determined to be equal to or lower than the determination reference pressure in the operation state determination unit 71, and includes the current discharge pressure, passing refrigerant temperature, outside air temperature, and compressor frequency.
  • the instability determination data it is determined that the operating state is stable, and a determination is made as to whether or not the refrigerant is insufficient. In this way, if the instability determination data is stocked, the operation state can be accurately determined even if the suction pressure sensor 34a has a problem and the low pressure cannot be acquired. It can be carried out.
  • the refrigerant amount determination unit 73E determines that the low-pressure pressure is equal to or lower than the determination reference pressure in the operation state determination unit 71, and at least of the current discharge pressure, passing refrigerant temperature, outside air temperature, and compressor frequency. If the two pieces of information coincide with at least two pieces of information in the instability determination data, it may be determined whether or not the refrigerant is insufficient. In this way, it is possible to suppress erroneous determination due to detection error or the like by performing determination in two stages as to whether or not the driving state is stable and increasing the determination accuracy.
  • the refrigerant amount determination unit 73E Whether or not to determine whether or not the refrigerant is deficient according to the number of matches of the information on the discharge pressure, the passing refrigerant temperature, the outside air temperature, and the compressor frequency and the information included in the instability determination data Can decide.
  • the refrigerant quantity determination unit 73E may acquire at least two pieces of information from the current collection pressure, the passing refrigerant temperature, the outside air temperature, and the compressor frequency from the data collection unit 60E. You may make it acquire via the calculating part 72E.
  • Other configurations and operations of the refrigerant amount determination unit 73E are the same as those of the refrigerant amount determination unit 73 in the first embodiment described above.
  • the refrigerant amount determination unit 73 includes at least two pieces of information among the current discharge pressure, the passing refrigerant temperature, the outside air temperature, and the compressor frequency.
  • the collation with at least two pieces of information included in each of the plurality of instability determination data may be executed sequentially.
  • the refrigerant quantity management device 100E can display temperature efficiency information that accurately follows the change in the refrigerant quantity on the display unit 80 or an external device. For this reason, according to the refrigerant
  • coolant amount can be suppressed as a result, and the capability fall of the freezing apparatus 200 and generation
  • Other effects are the same as those of the first embodiment.
  • the temperature efficiency calculation unit 72E exemplifies a case where at least two pieces of information among the low pressure, the passing refrigerant temperature, the outside air temperature, and the compressor frequency are used as instability determination data.
  • the present invention is not limited to this, and the temperature efficiency calculation unit 72E may appropriately select the detection results obtained by the various sensors included in the refrigeration apparatus 200 as instability determination data and data to be compared with the instability determination data.
  • FIG. 14 is a block diagram illustrating a configuration example of the refrigerant quantity management device according to Embodiment 3 of the present invention.
  • FIG. 15 is an explanatory diagram showing a relationship between the latest period change amount and the secular change amount related to the refrigerant amount determination process by the refrigerant amount management apparatus of FIG. 14. Based on FIG.14 and FIG.15, the structure of the refrigerant
  • the same components as those in the refrigerant amount management device 100 in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • the refrigerant quantity management device 100F is connected to the refrigeration apparatus 200 in the same manner as the refrigerant quantity management device 100, and constitutes a refrigerant quantity management system.
  • Refrigerant quantity judging unit 73F in response from the time criteria prior to the current predetermined period in the last period variation C 1 is the change amount of the temperature efficiency T to date, has a function of correcting the refrigerant amount determining threshold Tm Yes. More specifically, the refrigerant quantity determination unit 73F multiplies the converted rate which is set to the nearest period variation C 1, we obtain a correction amount of the refrigerant amount determining threshold Tm, the refrigerant quantity judging in accordance with the correction amount determined The threshold value Tm is corrected.
  • the conversion ratio is set in advance based on the amount of change over time obtained from the amount of change in temperature efficiency for a certain period before the reference time, and is stored in the storage unit 70.
  • the storage unit 70 stores a correction amount table in which the most recent period change amount and the correction amount of the refrigerant amount determination threshold value Tm are associated, and the refrigerant amount determination unit 73F compares the most recent period change amount with the correction amount table. Then, the correction amount of the refrigerant amount determination threshold value Tm may be obtained, and the refrigerant amount determination threshold value Tm may be corrected according to the obtained correction amount.
  • the refrigerant amount of the refrigeration apparatus 200 may decrease with the passage of a certain period of time, for example, half a year or one year. Therefore, the refrigerant quantity determination unit 73F is most recent period variation C 1 is larger than the refrigerant quantity judging reference amount obtained by adding a set amount ⁇ to secular change amount obtained from the amount of change in the temperature efficiency of the regular intervals at the reference time earlier In this case, the refrigerant is determined to be insufficient.
  • the refrigerant amount determination unit 73F causes the storage unit 70 to store information on the temperature efficiency T for each predetermined period. Further, the refrigerant amount determination unit 73F is configured to obtain an aging change amount by taking an average of the change amounts of the temperature efficiency for each fixed period before the reference time.
  • the refrigerant quantity determination unit 73F calculates the average of the change quantity C 2 and the change amount C 3 with variation C 4 as secular variation. In addition, the refrigerant quantity determination unit 73F calculates the refrigerant quantity determination reference amount by adding the set amount ⁇ to the obtained amount of aging. The refrigerant quantity judging unit 73F compares the most recent period variation C 1 and the refrigerant quantity judging reference amount. Refrigerant quantity judging unit 73F is the most recent period variation C 1 is larger than the refrigerant quantity judging reference amount, it is judged that the refrigerant is insufficient, and transmits the result of the determination to the output control section 74.
  • the output control unit 74 receives the result of the refrigerant amount determination based on the change in the refrigerant amount over time from the refrigerant amount determination unit 73F, as in the first embodiment, the information indicating the temperature efficiency T within the set period and the refrigerant Information indicating the amount determination threshold Tm is displayed on the display unit 80.
  • the output control unit 74 may cause the display unit 80 to display information indicating at least the latest period change amount and the secular change amount. .
  • refrigerant amount determination unit 73F Other configurations and operations of the refrigerant amount determination unit 73F are the same as those of the refrigerant amount determination unit 73 in the first embodiment described above.
  • the data collection unit 60 and the temperature efficiency calculation unit 72 may function in the same manner as the data collection unit 60E and the temperature efficiency calculation unit 72E in Embodiment 2 described above, respectively, and the refrigerant amount determination unit 73F It may have the same function as the refrigerant quantity determination unit 73E in the second embodiment.
  • the refrigerant amount determination unit 73F weights the amount of change in temperature efficiency for each predetermined period before the reference time in consideration of the elapsed years, and averages the amount of change after weighting over time. The amount of change may be obtained. Further, for example, refrigerant quantity judging unit 73F, as the change amount C 2, a variation of the temperature efficiency T from the reference time from the set time to the reference time may be used as the secular variation.
  • the refrigerant quantity management device 100F can display temperature efficiency information that accurately follows changes in the refrigerant quantity on the display unit 80 or an external device. For this reason, according to the refrigerant
  • coolant amount can be suppressed as a result, and the fall of the capability of the freezing apparatus 200 and generation
  • Other effects are also the same as in the first and second embodiments.
  • each of the above embodiments is a preferable specific example in the refrigerant quantity management device and the refrigerant quantity management system, and the technical scope of the present invention is not limited to these embodiments.
  • the combination of each constituent element is not limited to the combination in each of the above embodiments, and the constituent element described in any one embodiment is applied to the constituent element in another embodiment.
  • a refrigerant amount management device, a refrigerant amount management system, or the like can be configured.
  • the configuration requirements that are not particularly limited with respect to the arrangement are not limited to the arrangement disclosed in each embodiment, and can be arranged at any position where the function can be achieved.
  • the shape, size, arrangement, and the like of the configuration described in each drawing can be changed as appropriate within the scope of the present invention.
  • size or various data of each structural member may differ from an actual thing.
  • the levels of temperature, pressure, etc. are not determined in particular in relation to absolute values, but are relatively determined according to the installation environment and operating state of the refrigerant quantity management device and the refrigerant quantity management system, etc. Is.

Abstract

Disclosed is a refrigerant quantity management device that manages the quantity of a refrigerant applied to a refrigerant circuit formed by connecting to each other using piping: a heat source-side unit having a compressor, a heat source-side heat exchanger, and a supercooler; and at least one load-side unit having a load-side expansion valve and a load-side heat exchanger. The refrigerant quantity management device has: a temperature efficiency calculation unit, which regularly obtains temperature efficiency, and stores the temperature efficiency in a storage unit; and an output control unit having a function of displaying, on a display unit, information indicating the temperature efficiency during a set period stored in the storage unit.

Description

冷媒量管理装置及び冷媒量管理システムRefrigerant amount management apparatus and refrigerant amount management system
 本発明は、冷凍装置内の冷媒量を管理する冷媒量管理装置及び冷媒量管理システムに関する。 The present invention relates to a refrigerant quantity management device and a refrigerant quantity management system for managing the quantity of refrigerant in a refrigeration apparatus.
 冷凍装置において、冷媒量の過不足は、冷凍装置の能力低下及び構成機器の損傷発生といった不具合の原因となる。こうした不具合の発生を防止するため、従来の冷凍装置は、充填されている冷媒量の過不足を判定し、判定の結果を表示する機能を有している(例えば特許文献1参照)。 In a refrigeration system, an excess or deficiency in the amount of refrigerant causes problems such as a decrease in capacity of the refrigeration system and occurrence of damage to components. In order to prevent the occurrence of such problems, the conventional refrigeration apparatus has a function of determining whether the amount of refrigerant charged is excessive or insufficient and displaying the determination result (see, for example, Patent Document 1).
 特許文献1の冷凍装置は、過冷却器の入口冷媒温度と出口冷媒温度との温度差を過冷却度として算出し、算出した過冷却度が設定値よりも減少したときに冷媒洩れであると判定するものである。 The refrigeration apparatus of Patent Document 1 calculates the temperature difference between the inlet refrigerant temperature and the outlet refrigerant temperature of the supercooler as the degree of supercooling, and the refrigerant leaks when the calculated degree of supercooling decreases below a set value. Judgment.
特開平9-105567号公報JP-A-9-105567
 しかしながら、特許文献1の冷凍装置は、運転条件によって大きく変化する過冷却度を冷媒量に対応づけて、冷媒不足であるか否かを判定するため、誤判定が発生しやすい。そして、特許文献1の冷凍装置は、冷媒量判定の結果のみを表示するものであるため、サービスマン等は、冷媒量の推移を確認することができない。したがって、冷媒適量との誤判定に従って、必要な冷媒が充填されなかったり、冷媒不足との誤判定に従って、不要な冷媒が充填されたりすることとなり、冷媒量の過不足が発生する。 However, since the refrigeration apparatus of Patent Document 1 associates the degree of supercooling, which varies greatly depending on the operating conditions, with the amount of refrigerant to determine whether or not the refrigerant is insufficient, erroneous determination is likely to occur. And since the freezing apparatus of patent document 1 displays only the result of refrigerant | coolant amount determination, the service person etc. cannot confirm transition of refrigerant | coolant amount. Accordingly, the necessary refrigerant is not charged according to the erroneous determination of the appropriate amount of refrigerant, or the unnecessary refrigerant is charged according to the erroneous determination that the refrigerant is insufficient, resulting in excessive or insufficient refrigerant amount.
 本発明は、上記のような課題を解決するためになされたものであり、冷媒量の推移を示す情報を表示する冷媒量管理装置及び冷媒量管理システムを提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigerant quantity management device and a refrigerant quantity management system that display information indicating the transition of the refrigerant quantity.
 本発明に係る冷媒量管理装置は、圧縮機、圧縮機の下流に設けられた熱源側熱交換器、及び熱源側熱交換器の下流に設けられた過冷却器を有する熱源側ユニットと、過冷却器の下流に設けられた負荷側膨張弁及び負荷側膨張弁の下流に設けられた負荷側熱交換器を有する少なくとも1つの負荷側ユニットとが、配管で接続されて形成された冷媒回路に充填された冷媒の量を管理する冷媒量管理装置であって、冷媒の量に関する情報を記憶する記憶部と、過冷却器の出口における冷媒の過冷却度を、冷媒の凝縮温度と外気温度との差分である最大温度差で除算して温度効率を定期的に求めると共に、求めた温度効率を記憶部へ記憶させる温度効率演算部と、冷媒の量に関する情報を表示する表示部と、記憶部に記憶された、設定期間内における温度効率を示す情報を、表示部に表示させる機能をもつ出力制御部と、を有するものである。 A refrigerant quantity management device according to the present invention includes a compressor, a heat source side heat exchanger provided downstream of the compressor, and a heat source side unit including a subcooler provided downstream of the heat source side heat exchanger, A refrigerant circuit formed by connecting a load side expansion valve provided downstream of the cooler and at least one load side unit having a load side heat exchanger provided downstream of the load side expansion valve by piping. A refrigerant amount management device that manages the amount of refrigerant charged, a storage unit that stores information relating to the amount of refrigerant, a degree of refrigerant supercooling at the outlet of the subcooler, a refrigerant condensing temperature and an outside air temperature The temperature efficiency is periodically calculated by dividing by the maximum temperature difference that is the difference between the temperature efficiency, the temperature efficiency calculation unit that stores the obtained temperature efficiency in the storage unit, the display unit that displays information on the amount of the refrigerant, and the storage unit Within the set period stored in The information indicating the temperature efficiency, those having, an output control section having a function of displaying on the display unit.
 本発明は、温度効率演算部が定期的に求めた設定期間内における温度効率の情報を、出力制御部が表示部に表示させるため、冷媒量の推移を示す情報を表示することができる。 In the present invention, since the output control unit displays the information on the temperature efficiency within the set period periodically obtained by the temperature efficiency calculation unit on the display unit, the information indicating the transition of the refrigerant amount can be displayed.
本発明の実施の形態1に係る冷媒量管理システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the refrigerant | coolant amount management system which concerns on Embodiment 1 of this invention. 図1の冷媒量管理システムに備わる冷凍装置の構成を例示した模式図である。It is the schematic diagram which illustrated the structure of the freezing apparatus with which the refrigerant | coolant amount management system of FIG. 1 is equipped. 図1の冷媒量管理システムに備わる冷媒量管理装置の構成を例示したブロック図である。FIG. 2 is a block diagram illustrating a configuration of a refrigerant quantity management device provided in the refrigerant quantity management system of FIG. 1. 図2の冷凍装置の冷媒回路における低圧圧力の変動と、目標の低圧圧力との関係を示すグラフである。It is a graph which shows the relationship between the fluctuation | variation of the low pressure in the refrigerant circuit of the freezing apparatus of FIG. 2, and the target low pressure. 図2に示す冷凍装置の冷媒量と温度効率との関係を示す説明図である。It is explanatory drawing which shows the relationship between the refrigerant | coolant amount and temperature efficiency of the freezing apparatus shown in FIG. 図3の冷媒量判定部において冷媒量が適正であると判定された場合の、設定期間内における温度効率と冷媒量判定閾値との関係を例示するグラフである。4 is a graph illustrating a relationship between temperature efficiency and a refrigerant amount determination threshold value within a set period when the refrigerant amount is determined to be appropriate by the refrigerant amount determination unit of FIG. 3. 図3の冷媒量判定部において冷媒不足であると判定された場合に表示される、冷媒の量が不足していることを示す情報を例示した模式図である。It is the schematic diagram which illustrated the information which shows that the quantity of a refrigerant | coolant is displayed when it is determined with the refrigerant | coolant amount determination part of FIG. 図3の冷媒量判定部において冷媒不足であると判定された場合の、設定期間内における温度効率と冷媒量判定閾値との関係を例示するグラフである。It is a graph which illustrates the relationship between the temperature efficiency in a setting period, and a refrigerant | coolant amount determination threshold value when it determines with it being a refrigerant | coolant shortage in the refrigerant | coolant amount determination part of FIG. 図1の冷媒量管理装置100の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the refrigerant | coolant amount management apparatus 100 of FIG. 本発明の実施の形態1の変形例1に係る冷凍装置の構成を例示した模式図である。It is the schematic diagram which illustrated the structure of the freezing apparatus which concerns on the modification 1 of Embodiment 1 of this invention. 本発明の実施の形態1の変形例2に係る冷媒量管理装置の構成を例示したブロック図である。It is the block diagram which illustrated the composition of the refrigerant quantity management device concerning modification 2 of Embodiment 1 of the present invention. 本発明の実施の形態1の変形例3に係る冷媒量管理装置の構成を例示したブロック図である。It is the block diagram which illustrated the composition of the refrigerant quantity management device concerning modification 3 of Embodiment 1 of the present invention. 本発明の実施の形態2に係る冷媒量管理装置の構成を例示したブロック図である。It is the block diagram which illustrated the composition of the refrigerant quantity management device concerning Embodiment 2 of the present invention. 本発明の実施の形態3に係る冷媒量管理装置の構成を例示したブロック図である。It is the block diagram which illustrated the composition of the refrigerant quantity management device concerning Embodiment 3 of the present invention. 図14の冷媒量管理装置による冷媒量判定処理に係る直近期間変化量と経年変化量との関係を示す説明図である。It is explanatory drawing which shows the relationship between the latest period variation | change_quantity and aging variation which concern on the refrigerant | coolant amount determination process by the refrigerant | coolant amount management apparatus of FIG.
実施の形態1.
 図1は、本実施の形態1に係る冷媒量管理システムの全体構成を示すブロック図である。図1に示すように、冷媒量管理システム300は、冷媒量管理装置100と、複数の冷凍装置200A及び200Bと、複数のリモートコントローラ230A~230Dと、を有している。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing the overall configuration of the refrigerant quantity management system according to the first embodiment. As shown in FIG. 1, the refrigerant quantity management system 300 includes a refrigerant quantity management apparatus 100, a plurality of refrigeration apparatuses 200A and 200B, and a plurality of remote controllers 230A to 230D.
 冷凍装置200Aは、熱源側ユニット210Aと、負荷側ユニット220Aと、負荷側ユニット220Bと、を有している。冷凍装置200Bは、熱源側ユニット210Bと、負荷側ユニット220Cと、負荷側ユニット220Dと、を有している。 The refrigeration apparatus 200A includes a heat source side unit 210A, a load side unit 220A, and a load side unit 220B. The refrigeration apparatus 200B includes a heat source side unit 210B, a load side unit 220C, and a load side unit 220D.
 冷凍装置200Aと冷凍装置200Bとは同様に構成されており、以降において、冷凍装置200A及び200Bを総称するとき又はこれらの内の何れか一方を指すときは、単に冷凍装置200ともいう。同様に、熱源側ユニット210A及び210Bを総称するとき又はこれらの内の何れか一方を指すときは、単に熱源側ユニット210ともいう。また、負荷側ユニット220A~220Dを総称するとき又はこれらの内の少なくとも1つを指すときは、単に負荷側ユニット220ともいう。さらに、リモートコントローラ230A~230Dを総称するとき又はこれらの内の少なくとも1つを指すときは、単にリモートコントローラ230ともいう。 The refrigerating apparatus 200A and the refrigerating apparatus 200B are configured in the same manner. Hereinafter, when the refrigerating apparatuses 200A and 200B are generically referred to or any one of them is simply referred to as the refrigerating apparatus 200. Similarly, when the heat source side units 210A and 210B are collectively referred to, or when referring to any one of them, they are also simply referred to as the heat source side unit 210. In addition, when the load side units 220A to 220D are generically referred to or at least one of them is indicated, it is also simply referred to as the load side unit 220. Further, when the remote controllers 230A to 230D are collectively referred to or at least one of them is simply referred to as the remote controller 230.
 図1に示すように、冷凍装置200Aは、例えばコンデンシングユニットからなる熱源側ユニット210Aと、負荷側ユニット220A及び負荷側ユニット220Bとが冷媒配管で接続され、冷媒回路を構成している。同様に、冷凍装置200Bは、例えばコンデンシングユニットからなる熱源側ユニット210Bと、負荷側ユニット220C及び負荷側ユニット220Dとが冷媒配管で接続され、冷媒回路を構成している。冷凍装置200は、蒸気圧縮式の冷凍サイクル運転を行うことにより、部屋、倉庫、ショーケース、又は冷蔵庫等といった室内の冷却を行うものである。すなわち、冷凍装置200は、例えば、室内の対象物を冷蔵又は冷凍するものである。 As shown in FIG. 1, in the refrigeration apparatus 200A, for example, a heat source side unit 210A composed of a condensing unit, a load side unit 220A, and a load side unit 220B are connected by a refrigerant pipe to constitute a refrigerant circuit. Similarly, in the refrigeration apparatus 200B, for example, a heat source side unit 210B made of a condensing unit, a load side unit 220C, and a load side unit 220D are connected by a refrigerant pipe to constitute a refrigerant circuit. The refrigeration apparatus 200 cools a room such as a room, a warehouse, a showcase, or a refrigerator by performing a vapor compression refrigeration cycle operation. That is, the refrigeration apparatus 200 is for refrigeration or freezing, for example, an indoor object.
 リモートコントローラ230は、空調制御に関する入力操作を受け付けるものである。また、リモートコントローラ230は、ユーザ等による入力操作に応じて、設定温度などの指示に係る信号を負荷側ユニット220へ送信することにより、当該負荷側ユニット220の動作制御等を行うものである。リモートコントローラ230Aは、負荷側ユニット220Aの動作制御等を行うものである。リモートコントローラ230Bは、負荷側ユニット220Bの動作制御等を行うものである。リモートコントローラ230Cは、負荷側ユニット220Cの動作制御等を行うものである。リモートコントローラ230Dは、負荷側ユニット220Dの動作制御等を行うものである。 The remote controller 230 receives an input operation related to air conditioning control. Further, the remote controller 230 performs operation control of the load side unit 220 by transmitting a signal related to an instruction such as a set temperature to the load side unit 220 in response to an input operation by a user or the like. The remote controller 230A performs operation control of the load side unit 220A. The remote controller 230B performs operation control of the load side unit 220B. The remote controller 230C performs operation control of the load side unit 220C. The remote controller 230D performs operation control of the load side unit 220D.
 さらに、リモートコントローラ230は、例えば液晶パネルからなる表示装置(図示せず)を有しており、冷凍装置200の状態を示す情報、又は冷却対象となる室内の温度等を表示装置に表示させる機能を有している。 Further, the remote controller 230 has a display device (not shown) made of, for example, a liquid crystal panel, and has a function of displaying information indicating the state of the refrigeration device 200 or the temperature of the room to be cooled on the display device. have.
 図1では、冷媒量管理装置100が二台の冷凍装置200を管理する場合を例示しているが、これに限定されず、冷媒量管理装置100が管理する冷凍装置200の台数は、一台であってもよく、三台以上であってもよい。また、図1では、冷凍装置200が、一台の熱源側ユニット210及び二台の負荷側ユニット220を有する場合を例示したが、これに限らず、冷凍装置200は、複数台の熱源側ユニット210を有していてもよく、一台又は三台以上の負荷側ユニット220を有していてもよい。熱源側ユニット210が複数台である場合、複数台の熱源側ユニット210の容量は、同じであってもよく、異なっていてもよい。また、負荷側ユニット220が複数台である場合、複数台の負荷側ユニット220の容量は、同じであってもよく、異なっていてもよい。なお、以下の説明では、冷媒が空気と熱交換する冷凍装置200についての説明を行うが、冷凍装置200は、封入された冷媒が、水、冷媒、又はブライン等の流体と熱交換するように構成されていてもよい。 Although FIG. 1 illustrates the case where the refrigerant amount management device 100 manages two refrigeration devices 200, the present invention is not limited to this, and the number of refrigeration devices 200 managed by the refrigerant amount management device 100 is one. It may be three or more. 1 illustrates the case where the refrigeration apparatus 200 includes one heat source side unit 210 and two load side units 220. However, the present invention is not limited to this, and the refrigeration apparatus 200 includes a plurality of heat source side units. 210 may be included, or one or three or more load-side units 220 may be included. When there are a plurality of heat source side units 210, the capacities of the plurality of heat source side units 210 may be the same or different. When there are a plurality of load-side units 220, the capacity of the plurality of load-side units 220 may be the same or different. In the following description, the refrigeration apparatus 200 in which the refrigerant exchanges heat with air will be described. However, the refrigeration apparatus 200 exchanges heat with a fluid such as water, refrigerant, or brine. It may be configured.
 図2は、冷媒量管理システム300に備わる冷凍装置の構成を例示した模式図である。冷凍装置200Aと冷凍装置200Bとは同様に構成されているため、ここでは、図2を参照して冷凍装置200Aの構成例を説明する。 FIG. 2 is a schematic view illustrating the configuration of the refrigeration apparatus provided in the refrigerant quantity management system 300. Since the refrigeration apparatus 200A and the refrigeration apparatus 200B are configured in the same manner, a configuration example of the refrigeration apparatus 200A will be described here with reference to FIG.
 図2に示すように、冷凍装置200Aは、一台の熱源側ユニット210Aと、熱源側ユニット210Aに並列に接続された二台の負荷側ユニット220A及び220Bと、を有している。熱源側ユニット210Aと、負荷側ユニット220A及び220Bとが、液冷媒延長配管6及びガス冷媒延長配管7で接続されることにより、冷媒を循環させる冷媒回路10が形成されている。本実施の形態1の冷媒回路10に充填される冷媒は、例えば、HFC系の混合冷媒であるR410Aである。 As shown in FIG. 2, the refrigeration apparatus 200A has one heat source side unit 210A and two load side units 220A and 220B connected in parallel to the heat source side unit 210A. The heat source side unit 210A and the load side units 220A and 220B are connected by the liquid refrigerant extension pipe 6 and the gas refrigerant extension pipe 7, whereby the refrigerant circuit 10 for circulating the refrigerant is formed. The refrigerant charged in the refrigerant circuit 10 of the first embodiment is, for example, R410A that is an HFC-based mixed refrigerant.
[熱源側ユニット]
 熱源側ユニット210Aは、例えば、冷媒回路10の一部分を構成する熱源側冷媒回路10b、第一インジェクション回路51、及び第二インジェクション回路53と、熱源側制御部31と、を含んでいる。なお、以下の説明では、第一インジェクション回路51と第二インジェクション回路53とを有する例についての説明を行うが、冷凍装置200は、第一インジェクション回路51及び第二インジェクション回路53のうちの何れか一方を有する構成であってもよい。
[Heat source side unit]
The heat source side unit 210 </ b> A includes, for example, a heat source side refrigerant circuit 10 b, a first injection circuit 51, a second injection circuit 53, and a heat source side control unit 31 that constitute a part of the refrigerant circuit 10. In the following description, an example having the first injection circuit 51 and the second injection circuit 53 will be described, but the refrigeration apparatus 200 is one of the first injection circuit 51 and the second injection circuit 53. The structure which has one side may be sufficient.
 熱源側冷媒回路10bは、圧縮機21、熱源側熱交換器23、レシーバ25、過冷却器22、液側閉鎖弁28、ガス側閉鎖弁29、及びアキュムレータ24を有している。すなわち、熱源側ユニット210Aは、少なくとも圧縮機21、圧縮機21の下流に設けられた熱源側熱交換器23、及び熱源側熱交換器23の下流に設けられた過冷却器22を有している。 The heat source side refrigerant circuit 10b includes a compressor 21, a heat source side heat exchanger 23, a receiver 25, a supercooler 22, a liquid side closing valve 28, a gas side closing valve 29, and an accumulator 24. That is, the heat source side unit 210 </ b> A includes at least the compressor 21, the heat source side heat exchanger 23 provided downstream of the compressor 21, and the subcooler 22 provided downstream of the heat source side heat exchanger 23. Yes.
 第一インジェクション回路51は、熱源側熱交換器23から負荷側熱交換器42へ送られる冷媒の一部を、熱源側冷媒回路10bから分岐させて圧縮機21の中間圧部に戻すものであり、インジェクション量調整弁52を含んでいる。第二インジェクション回路53は、熱源側熱交換器23から負荷側熱交換器42へ送られる冷媒の一部を、熱源側冷媒回路10bから分岐させて圧縮機21の吸入部に流入させるものであり、キャピラリチューブ54及び吸入インジェクション用電磁弁55を含んでいる。 The first injection circuit 51 branches a part of the refrigerant sent from the heat source side heat exchanger 23 to the load side heat exchanger 42 from the heat source side refrigerant circuit 10b and returns it to the intermediate pressure part of the compressor 21. The injection amount adjusting valve 52 is included. The second injection circuit 53 branches a part of the refrigerant sent from the heat source side heat exchanger 23 to the load side heat exchanger 42 from the heat source side refrigerant circuit 10b and flows into the suction portion of the compressor 21. And a capillary tube 54 and a solenoid valve 55 for suction injection.
 圧縮機21は、例えば、インバータにより制御されるインバータ圧縮機であり、熱源側制御部31からの制御により、運転周波数を任意に変化させ、容量を変化させることができる。ここで、容量とは、単位時間あたりに冷媒を送り出す量のことである。なお、圧縮機21は、50Hz又は60Hzで動作する一定速圧縮機であってもよい。また、図2には、一台の圧縮機21を有する例が記載されているが、負荷側ユニット220の負荷の大きさ等に応じて、二台以上の圧縮機21が並列に接続されていてもよい。 The compressor 21 is, for example, an inverter compressor controlled by an inverter, and can change an operation frequency arbitrarily and change a capacity by the control from the heat source side control unit 31. Here, the capacity refers to the amount of refrigerant sent out per unit time. The compressor 21 may be a constant speed compressor that operates at 50 Hz or 60 Hz. FIG. 2 shows an example having one compressor 21, but two or more compressors 21 are connected in parallel according to the load size of the load side unit 220. May be.
 熱源側熱交換器23は、例えば、伝熱管と多数のフィンとを含んで構成されたフィンアンドチューブ型熱交換器であり、冷媒を凝縮させる凝縮器として機能する。熱源側熱交換器23の近傍には、熱源側熱交換器23に空気を送風する熱源側ファン27が配設されている。熱源側ファン27は、熱源側ユニット210Aの外部から吸入した外気を、熱源側熱交換器23に送風するものである。熱源側ファン27は、例えば遠心ファン又は多翼ファンからなり、モータ(図示せず)によって駆動される。熱源側ファン27は、熱源側制御部31からの制御により、熱源側熱交換器23へ送風する空気の量を調整できるようになっている。 The heat source side heat exchanger 23 is, for example, a fin-and-tube heat exchanger configured to include a heat transfer tube and a large number of fins, and functions as a condenser that condenses the refrigerant. In the vicinity of the heat source side heat exchanger 23, a heat source side fan 27 for blowing air to the heat source side heat exchanger 23 is disposed. The heat source side fan 27 blows outside air sucked from the outside of the heat source side unit 210 </ b> A to the heat source side heat exchanger 23. The heat source side fan 27 is composed of, for example, a centrifugal fan or a multiblade fan, and is driven by a motor (not shown). The heat source side fan 27 can adjust the amount of air blown to the heat source side heat exchanger 23 under the control of the heat source side control unit 31.
 レシーバ25は、熱源側熱交換器23と過冷却器22との間に配設され、余剰液冷媒を溜めるものである。なお、余剰液冷媒は、例えば、負荷側ユニット220の負荷の大きさ、冷媒の凝縮温度、外気温度、又は圧縮機21の容量等に応じて冷媒回路10内に発生するものである。 The receiver 25 is disposed between the heat source side heat exchanger 23 and the subcooler 22 and stores excess liquid refrigerant. The surplus liquid refrigerant is generated in the refrigerant circuit 10 in accordance with, for example, the load size of the load side unit 220, the refrigerant condensing temperature, the outside air temperature, the capacity of the compressor 21, or the like.
 過冷却器22は、冷媒と空気とを熱交換させるものであり、熱源側熱交換器23と一体的に形成されている。つまり、本実施の形態1の例では、熱交換器の一部分が、熱源側熱交換器23として構成されており、熱交換器の他の部分が、過冷却器22として構成されている。もっとも、過冷却器22と熱源側熱交換器23とは別々に構成されていてもよい。かかる場合は、過冷却器22の近傍に、過冷却器22へ空気を送風するファン(図示せず)が配設されるようにするとよい。 The supercooler 22 exchanges heat between the refrigerant and air, and is formed integrally with the heat source side heat exchanger 23. That is, in the example of the first embodiment, a part of the heat exchanger is configured as the heat source side heat exchanger 23, and the other part of the heat exchanger is configured as the subcooler 22. But the subcooler 22 and the heat source side heat exchanger 23 may be comprised separately. In such a case, a fan (not shown) that blows air to the subcooler 22 may be disposed in the vicinity of the subcooler 22.
 液側閉鎖弁28及びガス側閉鎖弁29は、例えば、ボールバルブ、開閉弁、又は操作弁等の開閉動作が可能な弁で構成されている。キャピラリチューブ54は、流量を調整することができる弁で構成されていてもよい。 The liquid side shut-off valve 28 and the gas side shut-off valve 29 are composed of valves that can be opened and closed, such as a ball valve, an on-off valve, or an operation valve. The capillary tube 54 may be configured with a valve capable of adjusting the flow rate.
 なお、図2では、第一インジェクション回路51及び第二インジェクション回路53の入口が、過冷却器22と液側閉鎖弁28との間に接続されているが、これに限定されるものではない。すなわち、第一インジェクション回路51及び第二インジェクション回路53の入口は、レシーバ25と過冷却器22との間に接続されていてもよく、レシーバ25に接続されていてもよく、熱源側熱交換器23とレシーバ25との間に接続されていてもよい。 In FIG. 2, the inlets of the first injection circuit 51 and the second injection circuit 53 are connected between the supercooler 22 and the liquid side shut-off valve 28, but are not limited thereto. That is, the inlets of the first injection circuit 51 and the second injection circuit 53 may be connected between the receiver 25 and the subcooler 22 or may be connected to the receiver 25, and the heat source side heat exchanger 23 and the receiver 25 may be connected.
[負荷側ユニット]
 負荷側ユニット220Aと負荷側ユニット220Bとは同様に構成されているため、各構成部材には同一の符号を付し、ここでは、負荷側ユニット220Aの構成を説明する。負荷側ユニット220Aは、例えば室内に設置される室内ユニットであり、冷媒回路10の一部分を構成する負荷側冷媒回路10aと負荷側制御部32とを備えている。
[Load side unit]
Since the load side unit 220A and the load side unit 220B are configured in the same manner, the same reference numerals are given to the respective constituent members, and the configuration of the load side unit 220A will be described here. The load side unit 220 </ b> A is an indoor unit installed indoors, for example, and includes a load side refrigerant circuit 10 a and a load side control unit 32 that constitute a part of the refrigerant circuit 10.
 負荷側冷媒回路10aは、負荷側膨張弁41と、負荷側熱交換器42と、を有している。すなわち、負荷側ユニット220は、過冷却器22の下流に設けられた負荷側膨張弁41及び負荷側膨張弁41の下流に設けられた負荷側熱交換器42を有している。負荷側膨張弁41は、例えば電子膨張弁又は温度式膨張弁からなり、負荷側冷媒回路10aを流れる冷媒の流量を調整するものである。なお、負荷側膨張弁41は、熱源側ユニット210Aに配設されていてもよい。かかる構成を採る場合、負荷側膨張弁41は、例えば、熱源側ユニット210Aの過冷却器22と液側閉鎖弁28との間に配設される。負荷側熱交換器42は、例えば、伝熱管と多数のフィンとを含んで構成されたフィンアンドチューブ型熱交換器であり、冷媒を蒸発させる蒸発器として機能する。 The load side refrigerant circuit 10 a includes a load side expansion valve 41 and a load side heat exchanger 42. That is, the load side unit 220 includes a load side expansion valve 41 provided downstream of the subcooler 22 and a load side heat exchanger 42 provided downstream of the load side expansion valve 41. The load side expansion valve 41 is composed of, for example, an electronic expansion valve or a temperature type expansion valve, and adjusts the flow rate of the refrigerant flowing through the load side refrigerant circuit 10a. The load side expansion valve 41 may be disposed in the heat source side unit 210A. When adopting such a configuration, the load side expansion valve 41 is disposed, for example, between the supercooler 22 and the liquid side closing valve 28 of the heat source side unit 210A. The load-side heat exchanger 42 is, for example, a fin and tube heat exchanger that includes a heat transfer tube and a large number of fins, and functions as an evaporator that evaporates the refrigerant.
 負荷側熱交換器42の近傍には、負荷側熱交換器42に空気を送風する負荷側ファン43が配設されている。負荷側ファン43は、例えば遠心ファン又は多翼ファンからなり、モータ(図示せず)によって駆動される。負荷側ファン43は、負荷側制御部32からの制御により、負荷側熱交換器42へ送風する空気の量を調整できるように構成されている。 Near the load side heat exchanger 42, a load side fan 43 that blows air to the load side heat exchanger 42 is disposed. The load side fan 43 is composed of, for example, a centrifugal fan or a multiblade fan, and is driven by a motor (not shown). The load side fan 43 is configured to be able to adjust the amount of air blown to the load side heat exchanger 42 under the control of the load side control unit 32.
[インジェクション回路]
 次に、各インジェクション回路について説明を行う。第一インジェクション回路51は、圧縮機21の吐出部の冷媒温度を下げるためのものである。第一インジェクション回路51の入口は、過冷却器22の出口と液側閉鎖弁28との間に接続されており、過冷却器22で過冷却された高圧液冷媒の一部は、インジェクション量調整弁52で減圧されて中間圧の二相冷媒となり、圧縮機21のインジェクション部に流入する。
[Injection circuit]
Next, each injection circuit will be described. The first injection circuit 51 is for lowering the refrigerant temperature of the discharge part of the compressor 21. The inlet of the first injection circuit 51 is connected between the outlet of the supercooler 22 and the liquid side shut-off valve 28, and a part of the high-pressure liquid refrigerant supercooled by the supercooler 22 is adjusted for the injection amount. The pressure is reduced by the valve 52 to become a two-phase refrigerant having an intermediate pressure and flows into the injection portion of the compressor 21.
 第二インジェクション回路53は、圧縮機21の内部の冷凍機油、モータの温度、吐出部の冷媒温度を下げるためのものである。第二インジェクション回路53の入口は、過冷却器22の出口と液側閉鎖弁28との間に接続されており、過冷却器22で過冷却された高圧液冷媒の一部は、キャピラリチューブ54で減圧されて低圧の二相冷媒となり、圧縮機21の吸入部に流入する。 The second injection circuit 53 is for lowering the refrigerating machine oil inside the compressor 21, the temperature of the motor, and the refrigerant temperature of the discharge part. The inlet of the second injection circuit 53 is connected between the outlet of the supercooler 22 and the liquid side closing valve 28, and part of the high-pressure liquid refrigerant supercooled by the supercooler 22 is part of the capillary tube 54. Is reduced in pressure to become a low-pressure two-phase refrigerant and flows into the suction portion of the compressor 21.
[制御部及びセンサ類]
 次に、冷凍装置200Aに備わる制御部及びセンサ類について説明する。熱源側制御部31は、マイクロコンピュータ及びメモリ等を含んで構成され、冷凍装置200Aの全体の制御を行うものである。負荷側制御部32は、マイクロコンピュータ及びメモリ等を含んで構成され、負荷側ユニット220Aの制御を行うものである。負荷側制御部32と熱源側制御部31とは、通信により制御信号のやりとりを行うことができるようになっており、例えば、負荷側制御部32は、熱源側制御部31から動作の指示を示す制御信号を受けて負荷側ユニット220Aの制御を行う。
[Control unit and sensors]
Next, the control unit and sensors included in the refrigeration apparatus 200A will be described. The heat source side control unit 31 includes a microcomputer, a memory, and the like, and controls the entire refrigeration apparatus 200A. The load-side control unit 32 includes a microcomputer, a memory, and the like, and controls the load-side unit 220A. The load side control unit 32 and the heat source side control unit 31 can exchange control signals by communication. For example, the load side control unit 32 receives an operation instruction from the heat source side control unit 31. The load side unit 220A is controlled in response to the control signal shown.
 リモートコントローラ230Aは、負荷側ユニット220Aの負荷側制御部32に接続されており、リモートコントローラ230Bは、負荷側ユニット220Bの負荷側制御部32に接続されている。リモートコントローラ230は、受け付けた入力操作に応じた操作信号を負荷側制御部32へ送信する。負荷側制御部32は、リモートコントローラ230から送信された操作信号に従い、必要に応じて熱源側制御部31と連携して、冷凍装置200Aの制御を実行する。 The remote controller 230A is connected to the load side control unit 32 of the load side unit 220A, and the remote controller 230B is connected to the load side control unit 32 of the load side unit 220B. The remote controller 230 transmits an operation signal corresponding to the received input operation to the load side control unit 32. The load-side control unit 32 executes control of the refrigeration apparatus 200 </ b> A in cooperation with the heat source-side control unit 31 as necessary according to the operation signal transmitted from the remote controller 230.
 冷凍装置200Aは、熱源側ユニット210Aに、吸入温度センサ33aと、吐出温度センサ33bと、吸込み外気温度センサ33cと、過冷却器高圧側出口温度センサ33dと、を有している。また、冷凍装置200Aは、負荷側ユニット220A及び220Bのそれぞれに、負荷側熱交入口温度センサ33e、負荷側熱交出口温度センサ33f、及び吸込空気温度センサ33gを有している。さらに、冷凍装置200Aは、熱源側ユニット210Aに、吸入圧力センサ34aと、吐出圧力センサ34bと、を有している。 The refrigerating apparatus 200A includes an intake temperature sensor 33a, a discharge temperature sensor 33b, a suction outside air temperature sensor 33c, and a subcooler high pressure side outlet temperature sensor 33d in the heat source side unit 210A. The refrigerating apparatus 200A includes a load-side heat exchange inlet temperature sensor 33e, a load-side heat exchange outlet temperature sensor 33f, and an intake air temperature sensor 33g in each of the load- side units 220A and 220B. Furthermore, the refrigeration apparatus 200A includes a suction pressure sensor 34a and a discharge pressure sensor 34b in the heat source side unit 210A.
 吸入温度センサ33a、吐出温度センサ33b、吸込み外気温度センサ33c、過冷却器高圧側出口温度センサ33d、吸入圧力センサ34a、及び吐出圧力センサ34bは、熱源側制御部31に接続されている。負荷側熱交入口温度センサ33e、負荷側熱交出口温度センサ33f、及び吸込空気温度センサ33gは、負荷側制御部32に接続されている。 The suction temperature sensor 33a, the discharge temperature sensor 33b, the suction outside air temperature sensor 33c, the supercooler high pressure side outlet temperature sensor 33d, the suction pressure sensor 34a, and the discharge pressure sensor 34b are connected to the heat source side control unit 31. The load side heat exchange inlet temperature sensor 33e, the load side heat exchange outlet temperature sensor 33f, and the intake air temperature sensor 33g are connected to the load side controller 32.
 吸入温度センサ33aは、圧縮機21が吸入する冷媒の温度を検出するものである。吐出温度センサ33bは、圧縮機21が吐出する冷媒の温度を検出するものである。過冷却器高圧側出口温度センサ33dは、過冷却器22を通過した冷媒の温度である過冷却冷媒温度を検出するものである。負荷側熱交入口温度センサ33eは、負荷側熱交換器42に流入する気液二相冷媒の蒸発温度を検出するものである。負荷側熱交出口温度センサ33fは、負荷側熱交換器42から流出した冷媒の温度を検出するものである。冷媒の温度を検出する上記各センサは、例えば、冷媒配管に当接させて設置され、又は冷媒配管に挿入して配設されている。 The suction temperature sensor 33a detects the temperature of the refrigerant sucked by the compressor 21. The discharge temperature sensor 33b detects the temperature of the refrigerant discharged from the compressor 21. The supercooler high pressure side outlet temperature sensor 33d detects a supercooled refrigerant temperature that is the temperature of the refrigerant that has passed through the supercooler 22. The load-side heat exchange inlet temperature sensor 33e detects the evaporation temperature of the gas-liquid two-phase refrigerant flowing into the load-side heat exchanger 42. The load-side heat exchange outlet temperature sensor 33f detects the temperature of the refrigerant that has flowed out of the load-side heat exchanger 42. Each of the sensors for detecting the temperature of the refrigerant is, for example, installed in contact with the refrigerant pipe or inserted into the refrigerant pipe.
 吸込み外気温度センサ33cは、熱源側熱交換器23を通過する前の空気の温度である外気温度を検出することにより、室外の周囲温度を検出するものである。吸込空気温度センサ33gは、負荷側熱交換器42を通過する前の空気の温度を検出することにより、負荷側熱交換器42が設置された室内の周囲温度を検出するものである。 The suction outside air temperature sensor 33c detects the ambient temperature outside the room by detecting the outside air temperature which is the temperature of the air before passing through the heat source side heat exchanger 23. The intake air temperature sensor 33g detects the ambient temperature in the room where the load side heat exchanger 42 is installed by detecting the temperature of the air before passing through the load side heat exchanger 42.
 吸入圧力センサ34aは、圧縮機21の吸入側に配設されており、圧縮機21に吸入される冷媒の圧力である吸入圧力を検出するものである。なお、吸入圧力センサ34aは、ガス側閉鎖弁29と圧縮機21との間に配設されていればよい。吐出圧力センサ34bは、圧縮機21の吐出側に配設されており、圧縮機21が吐出した冷媒の圧力である吐出圧力を検出するものである。 The suction pressure sensor 34 a is disposed on the suction side of the compressor 21 and detects a suction pressure that is the pressure of the refrigerant sucked into the compressor 21. The suction pressure sensor 34 a may be disposed between the gas side closing valve 29 and the compressor 21. The discharge pressure sensor 34b is disposed on the discharge side of the compressor 21, and detects a discharge pressure that is the pressure of the refrigerant discharged by the compressor 21.
 図3は、冷媒量管理システム300に備わる冷媒量管理装置100の構成を例示したブロック図である。図4は、冷凍装置200の冷媒回路10における低圧圧力の変動と、目標の低圧圧力との関係を示すグラフである。図5は、冷凍装置200の冷媒量と温度効率Tとの関係を示す説明図である。図6は、冷媒量判定部73において冷媒量が適正であると判定された場合の、設定期間内における温度効率Tと冷媒量判定閾値Tmとの関係を例示するグラフである。図7は、冷媒量判定部73において冷媒不足であると判定された場合に表示部80に表示される、冷媒が不足していることを示す情報を例示した模式図である。図8は、冷媒量判定部73において冷媒不足であると判定された場合の、設定期間内における温度効率Tと冷媒量判定閾値Tmとの関係を例示するグラフである。
 図3~図8を参照して、冷媒量管理装置100の機能構成を具体的に説明する。
FIG. 3 is a block diagram illustrating the configuration of the refrigerant quantity management device 100 provided in the refrigerant quantity management system 300. FIG. 4 is a graph showing the relationship between the fluctuation of the low pressure in the refrigerant circuit 10 of the refrigeration apparatus 200 and the target low pressure. FIG. 5 is an explanatory diagram showing the relationship between the refrigerant amount of the refrigeration apparatus 200 and the temperature efficiency T. FIG. 6 is a graph illustrating the relationship between the temperature efficiency T and the refrigerant amount determination threshold Tm within the set period when the refrigerant amount determination unit 73 determines that the refrigerant amount is appropriate. FIG. 7 is a schematic view illustrating information indicating that the refrigerant is insufficient, which is displayed on the display unit 80 when the refrigerant amount determination unit 73 determines that the refrigerant is insufficient. FIG. 8 is a graph illustrating the relationship between the temperature efficiency T and the refrigerant amount determination threshold value Tm within the set period when the refrigerant amount determination unit 73 determines that the refrigerant is insufficient.
The functional configuration of the refrigerant quantity management device 100 will be specifically described with reference to FIGS.
 冷媒量管理装置100は、熱源側ユニット210と、少なくとも1つの負荷側ユニット220とが、配管で接続されて形成された冷媒回路10に充填された冷媒の量を管理するものである。すなわち、冷媒量管理装置100は、冷凍装置200に充填された冷媒の量を管理するものであり、複数の冷凍装置200が接続されている場合には、各冷凍装置200のそれぞれの冷媒の量を管理する。冷媒量管理装置100は、データ収集部60と、記憶部70と、運転状態判定部71と、温度効率演算部72と、冷媒量判定部73と、出力制御部74と、表示部80と、通信部90と、を有している。 The refrigerant quantity management device 100 manages the quantity of refrigerant charged in the refrigerant circuit 10 formed by connecting the heat source side unit 210 and at least one load side unit 220 with a pipe. That is, the refrigerant amount management device 100 manages the amount of refrigerant charged in the refrigeration apparatus 200. When a plurality of refrigeration apparatuses 200 are connected, the amount of refrigerant in each refrigeration apparatus 200 is determined. Manage. The refrigerant amount management device 100 includes a data collection unit 60, a storage unit 70, an operation state determination unit 71, a temperature efficiency calculation unit 72, a refrigerant amount determination unit 73, an output control unit 74, a display unit 80, And a communication unit 90.
 データ収集部60は、吸入圧力センサ34aにおいて検出される圧力を、冷媒回路10の低圧側の圧力である低圧圧力として定期的に収集するものである。そして、データ収集部60は、収集した低圧圧力の情報を運転状態判定部71へ送信するものである。 The data collection unit 60 periodically collects the pressure detected by the suction pressure sensor 34a as a low pressure that is a pressure on the low pressure side of the refrigerant circuit 10. Then, the data collection unit 60 transmits the collected low pressure information to the operation state determination unit 71.
 また、データ収集部60は、過冷却器高圧側出口温度センサ33dにおいて検出される過冷却冷媒温度と、吸込み外気温度センサ33cにおいて検出される外気温度と、吐出圧力センサ34bにおいて検出される吐出圧力とを、冷媒量判定データとして定期的に収集するものである。そして、データ収集部60は、収集した冷媒量判定データを温度効率演算部72へ送信するものである。 The data collection unit 60 also detects the subcooling refrigerant temperature detected by the subcooler high-pressure side outlet temperature sensor 33d, the outside air temperature detected by the suction outside air temperature sensor 33c, and the discharge pressure detected by the discharge pressure sensor 34b. Are periodically collected as refrigerant quantity determination data. The data collection unit 60 transmits the collected refrigerant amount determination data to the temperature efficiency calculation unit 72.
 記憶部70は、冷媒の量に関する情報及び冷媒量管理装置100の制御プログラムなどを記憶するものである。記憶部70には、運転状態が安定しているか否かを判定する際に運転状態判定部71が用いる目標の低圧圧力P1及びマージンαが記憶されている。記憶部70には、冷媒が不足しているか否かを判定する際に冷媒量判定部73が用いる冷媒量判定閾値Tmが記憶されている。 The storage unit 70 stores information related to the amount of refrigerant, a control program of the refrigerant amount management device 100, and the like. The storage unit 70 stores a target low pressure P1 and a margin α used by the operation state determination unit 71 when determining whether or not the operation state is stable. The storage unit 70 stores a refrigerant amount determination threshold value Tm used by the refrigerant amount determination unit 73 when determining whether or not the refrigerant is insufficient.
 運転状態判定部71は、データ収集部60から送信される低圧圧力の情報を、各冷凍装置200の運転状態が安定しているか否かの判定に用いるものである。より具体的に、運転状態判定部71は、低圧圧力が判定基準圧力P2以下であるか否かを判定することにより、各冷凍装置200の運転状態が安定しているか否かを判定するものである。すなわち、運転状態判定部71は、低圧圧力が判定基準圧力P2以下である場合に、運転状態が安定していると判定し、低圧圧力が判定基準圧力P2より大きい場合に、運転状態が不安定であると判定する。運転状態判定部71は、運転状態が安定していると判定した場合に、温度効率演算部72へ演算指令を送信するように構成されている。 The operation state determination unit 71 uses the low pressure information transmitted from the data collection unit 60 to determine whether or not the operation state of each refrigeration apparatus 200 is stable. More specifically, the operation state determination unit 71 determines whether or not the operation state of each refrigeration apparatus 200 is stable by determining whether or not the low pressure is equal to or less than the determination reference pressure P2. is there. That is, the operation state determination unit 71 determines that the operation state is stable when the low pressure is equal to or lower than the determination reference pressure P2, and the operation state is unstable when the low pressure is greater than the determination reference pressure P2. It is determined that The operation state determination unit 71 is configured to transmit a calculation command to the temperature efficiency calculation unit 72 when it is determined that the operation state is stable.
 ここで、図4を参照して、運転状態判定部71の構成をより詳細に説明する。
 図4に示すように、熱源側制御部31は、予め設定された目標の低圧圧力P1に、実際の低圧圧力が近付くように、圧縮機21の運転周波数を増加させたり、低下させたりする。これにより、圧縮機21の運転中の低圧圧力は、目標の低圧圧力P1に近い状態で推移する。しかしながら、例えば、冷凍装置200の長期停止後の冷やし込み時において、室内の温度が高い場合には、冷媒回路10の低圧側の圧力が通常よりも高い状態で運転されることがある。
Here, with reference to FIG. 4, the structure of the driving | running state determination part 71 is demonstrated in detail.
As shown in FIG. 4, the heat source side control unit 31 increases or decreases the operating frequency of the compressor 21 so that the actual low pressure pressure approaches the preset target low pressure P1. Thereby, the low pressure pressure during operation of the compressor 21 changes in a state close to the target low pressure P1. However, for example, when the indoor temperature is high at the time of cooling after the refrigeration apparatus 200 is stopped for a long time, the refrigerant circuit 10 may be operated in a state where the pressure on the low pressure side is higher than usual.
 このように、冷媒回路10の低圧側の圧力が通常よりも高い状態で運転されると、負荷側膨張弁41から圧縮機21の吸入部までの圧力が高くなり、冷媒密度が高くなる。ここで、必要冷媒量は、密度と容積との積で表されるため、低圧側の必要冷媒量が一時的に多くなり、レシーバ25、過冷却器22、熱源側熱交換器23などの高圧側が冷媒不足状態となる。すなわち、低圧圧力が通常よりも一定程度高い状態では、冷媒量判定部73による冷媒量判定の精度が低下する。 As described above, when the refrigerant circuit 10 is operated in a state where the pressure on the low pressure side is higher than usual, the pressure from the load side expansion valve 41 to the suction portion of the compressor 21 increases, and the refrigerant density increases. Here, since the necessary amount of refrigerant is expressed by the product of density and volume, the amount of necessary refrigerant on the low pressure side temporarily increases, and the high pressure of the receiver 25, the subcooler 22, the heat source side heat exchanger 23, and the like. The side becomes a refrigerant shortage state. That is, in a state where the low-pressure pressure is higher by a certain level than usual, the accuracy of the refrigerant amount determination by the refrigerant amount determination unit 73 decreases.
 このため、冷媒量管理装置100は、図4に示すように、現在の低圧圧力が、目標の低圧圧力P1にマージンαを加算した判定基準圧力P2よりも大きい場合に、冷媒量判定部73が冷媒量判定を行わないように構成されている。なお、目標の低圧圧力P1及びマージンαは、予め設定されて記憶部70に記憶されており、冷媒量管理装置100は、目標の低圧圧力P1及びマージンαを、各種センサの検出結果などに応じて適宜変更するように構成されている。 For this reason, as shown in FIG. 4, the refrigerant amount management device 100 has the refrigerant amount determination unit 73 when the current low pressure is larger than the determination reference pressure P2 obtained by adding the margin α to the target low pressure P1. The refrigerant amount determination is not performed. Note that the target low pressure P1 and the margin α are set in advance and stored in the storage unit 70, and the refrigerant amount management apparatus 100 determines the target low pressure P1 and the margin α according to detection results of various sensors. It is configured to change as appropriate.
 なお、例えば、負荷側熱交換器42の出口に圧力センサを設け、データ収集部60が、該圧力センサにおいて検出される圧力を低圧圧力として定期的に収集し、運転状態判定部71が該低圧圧力を用いて、各冷凍装置200の運転状態が安定しているか否かの判定を行うようにしてもよい。 For example, a pressure sensor is provided at the outlet of the load-side heat exchanger 42, the data collection unit 60 periodically collects the pressure detected by the pressure sensor as a low pressure, and the operation state determination unit 71 uses the low pressure. You may make it determine whether the operating state of each refrigeration apparatus 200 is stable using a pressure.
 温度効率演算部72は、過冷却器22の出口における冷媒の過冷却度を、冷媒の凝縮温度と外気温度との差分である最大温度差で除算して温度効率Tを定期的に求めると共に、求めた温度効率Tを記憶部70へ記憶させるものである。より具体的に、温度効率演算部72は、吐出圧力センサ34bにおいて検出された吐出圧力を飽和温度に換算して、冷媒の凝縮温度を求め、求めた凝縮温度から過冷却冷媒温度を減算して、過冷却器22の出口における冷媒の過冷却度を求めるものである。なお、熱源側熱交換器23に温度センサを配設し、温度効率演算部72が、該温度センサによる検出温度を凝縮温度として用いるようにしてもよい。 The temperature efficiency calculation unit 72 periodically obtains the temperature efficiency T by dividing the supercooling degree of the refrigerant at the outlet of the supercooler 22 by the maximum temperature difference that is the difference between the refrigerant condensing temperature and the outside air temperature, and The obtained temperature efficiency T is stored in the storage unit 70. More specifically, the temperature efficiency calculation unit 72 converts the discharge pressure detected by the discharge pressure sensor 34b into a saturation temperature, obtains the condensation temperature of the refrigerant, and subtracts the supercooled refrigerant temperature from the obtained condensation temperature. The degree of supercooling of the refrigerant at the outlet of the supercooler 22 is obtained. A temperature sensor may be provided in the heat source side heat exchanger 23, and the temperature efficiency calculation unit 72 may use the temperature detected by the temperature sensor as the condensation temperature.
 冷媒量判定部73は、温度効率演算部72が求めた温度効率Tをもとに、冷媒が不足しているか否かを判定するものである。また、冷媒量判定部73は、運転状態判定部71において低圧圧力が判定基準圧力以下であると判定された場合に、冷媒が不足しているか否かの判定を実行するように構成されている。 The refrigerant amount determination unit 73 determines whether or not the refrigerant is insufficient based on the temperature efficiency T obtained by the temperature efficiency calculation unit 72. The refrigerant amount determination unit 73 is configured to execute a determination as to whether or not the refrigerant is insufficient when the operating state determination unit 71 determines that the low pressure is equal to or lower than the determination reference pressure. .
 ここで、図5を参照して、冷媒量判定部73の構成をより詳細に説明する。
 図5において、横軸には、冷凍装置200の冷媒量を示し、縦軸には、過冷却器22の温度効率Tを示す。また、符号「E」は、余剰冷媒がなくなるときの冷媒量である臨界冷媒量である。図5に示すように、冷凍装置200は、冷媒量が減少して臨界冷媒量Eとなり、レシーバ25の余剰液冷媒がなくなると、温度効率Tが低下する。
Here, with reference to FIG. 5, the structure of the refrigerant | coolant amount determination part 73 is demonstrated in detail.
In FIG. 5, the horizontal axis represents the refrigerant amount of the refrigeration apparatus 200, and the vertical axis represents the temperature efficiency T of the subcooler 22. Further, the symbol “E” is a critical refrigerant amount which is a refrigerant amount when there is no surplus refrigerant. As shown in FIG. 5, in the refrigeration apparatus 200, when the refrigerant amount decreases to the critical refrigerant amount E and the excess liquid refrigerant in the receiver 25 disappears, the temperature efficiency T decreases.
 そこで、冷媒量判定部73は、温度効率Tが冷媒量判定閾値Tm以下となったときに、冷媒が不足していると判定するように構成されている。ここで、温度効率Tは、過冷却器22の性能を示すものであり、過冷却度に比べて冷凍装置200の運転条件による変動が小さいため、冷凍装置200の運転条件ごとに冷媒量判定閾値Tmを設定することなく、冷媒量判定処理の精度を向上することができる。すなわち、冷媒量判定閾値Tmは、冷凍装置200の種々の運転条件をもとに、予め設定されたものである。 Therefore, the refrigerant amount determination unit 73 is configured to determine that the refrigerant is insufficient when the temperature efficiency T becomes equal to or less than the refrigerant amount determination threshold Tm. Here, the temperature efficiency T indicates the performance of the supercooler 22, and since the fluctuation due to the operating condition of the refrigeration apparatus 200 is smaller than the degree of supercooling, the refrigerant amount determination threshold for each operating condition of the refrigeration apparatus 200. The accuracy of the refrigerant amount determination process can be improved without setting Tm. That is, the refrigerant amount determination threshold value Tm is set in advance based on various operating conditions of the refrigeration apparatus 200.
 なお、冷媒量判定部73は、例えば、熱源側ファン27の風量が大きい場合に冷媒量判定閾値Tmを増加させ、熱源側ファン27の風量が小さい場合に冷媒量判定閾値Tmを減少させるといった具合に、熱源側ファン27の風量などに応じて、冷媒量判定閾値Tmを変更するようにしてもよい。 For example, the refrigerant amount determination unit 73 increases the refrigerant amount determination threshold Tm when the air volume of the heat source side fan 27 is large, and decreases the refrigerant amount determination threshold Tm when the air volume of the heat source side fan 27 is small. In addition, the refrigerant amount determination threshold value Tm may be changed according to the air volume of the heat source side fan 27 and the like.
 また、冷媒量判定閾値Tmの情報が、熱源側ユニット210又は負荷側ユニット220に保持されるように構成し、冷媒量判定部73は、冷媒が不足しているか否かを判定する際に、熱源側ユニット210又は負荷側ユニット220から冷媒量判定閾値Tmの情報を取得するようにしてもよい。 Further, the refrigerant amount determination threshold value Tm is configured to be held in the heat source side unit 210 or the load side unit 220, and the refrigerant amount determination unit 73 determines whether or not the refrigerant is insufficient. You may make it acquire the information of the refrigerant | coolant amount determination threshold value Tm from the heat-source side unit 210 or the load side unit 220. FIG.
 出力制御部74は、記憶部70に記憶された、設定期間内における温度効率Tを示す情報を、表示部80に表示させる機能を有している。本実施の形態1において、出力制御部74は、冷媒量判定部73において冷媒が不足しているか否かの判定が行われたときに、設定期間データとして、設定期間内における温度効率Tを示す情報及び冷媒量判定閾値Tmを示す情報を、表示部80に表示させるように構成されている。 The output control unit 74 has a function of causing the display unit 80 to display information indicating the temperature efficiency T within the set period, which is stored in the storage unit 70. In the first embodiment, the output control unit 74 indicates the temperature efficiency T within the set period as the set period data when the refrigerant amount determining unit 73 determines whether or not the refrigerant is insufficient. The information and the information indicating the refrigerant amount determination threshold value Tm are configured to be displayed on the display unit 80.
 ここで、図6~図8を参照して、出力制御部74が表示部80に表示させる情報について、より具体的に説明する。図6及び図8は、出力制御部74が表示部80に表示させる設定期間データの例であり、温度効率Tを示す「*」と、冷媒量判定閾値Tmを示す「・」との関係を、時系列に沿ったグラフで表したものである。また、図6及び図8では、設定期間が一ヶ月である場合を例示している。図7は、冷媒量判定部73において冷媒不足であると判定された場合に、出力制御部74が表示部80に表示させる冷媒量不足情報の例である。 Here, the information that the output control unit 74 displays on the display unit 80 will be described more specifically with reference to FIGS. 6 and 8 are examples of setting period data displayed on the display unit 80 by the output control unit 74. The relationship between “*” indicating the temperature efficiency T and “•” indicating the refrigerant amount determination threshold value Tm is shown. This is a time-series graph. Moreover, in FIG.6 and FIG.8, the case where a setting period is one month is illustrated. FIG. 7 is an example of the refrigerant amount shortage information that the output control unit 74 displays on the display unit 80 when the refrigerant amount determination unit 73 determines that the refrigerant is short.
 出力制御部74は、冷媒量判定部73において冷媒が不足していないと判定された場合、図6に示すような設定期間データを表示部80に表示させるものである。図6の例では、出力制御部74が、設定期間内における温度効率Tを示す情報及び冷媒量判定閾値Tmを示す情報を表示させる場合を例示しているが、これに限らず、出力制御部74は、設定期間内における温度効率Tを示す情報のみを、設定期間データとして表示部80に表示させるように構成してもよい。このようにしても、温度効率Tの変化をサービスマン等に視認させることができるため、冷媒量の過不足の発生を抑制することができる。 The output control unit 74 causes the display unit 80 to display setting period data as shown in FIG. 6 when the refrigerant amount determination unit 73 determines that the refrigerant is not insufficient. In the example of FIG. 6, the output control unit 74 exemplifies a case where the information indicating the temperature efficiency T within the set period and the information indicating the refrigerant amount determination threshold value Tm are displayed. 74 may be configured to display only information indicating the temperature efficiency T within the set period on the display unit 80 as set period data. Even if it does in this way, since the change of the temperature efficiency T can be made visible to a service person etc., generation | occurrence | production of the excess and deficiency of a refrigerant | coolant amount can be suppressed.
 また、出力制御部74は、冷媒量判定部73において冷媒が不足していると判定された場合、図7に示すように、冷媒が不足していることを示す冷媒量不足情報を表示部80に表示させるものである。 Further, when the refrigerant amount determination unit 73 determines that the refrigerant is insufficient, the output control unit 74 displays the refrigerant amount shortage information indicating that the refrigerant is insufficient, as shown in FIG. Is displayed.
 ここで、表示部80は、例えばタッチパネル等からなり、冷媒の量に関する情報を表示し、サービスマン等によるタッチ操作を受け付けるものである。図7の例では、冷媒量不足情報の一部に、情報出力指令を受け付ける指令ボタン81が表示されている。そして、サービスマン等が、指令ボタン81にタッチすると、表示部80から出力制御部74へ情報出力指令が出力される。 Here, the display unit 80 includes, for example, a touch panel and displays information related to the amount of refrigerant and accepts a touch operation by a service person or the like. In the example of FIG. 7, a command button 81 that receives an information output command is displayed as part of the refrigerant quantity shortage information. When a service man or the like touches the command button 81, an information output command is output from the display unit 80 to the output control unit 74.
 そして、出力制御部74は、冷媒量不足情報の表示に応じた情報出力指令を入力したとき、図8に示すような設定期間データを表示部80へ表示させるように構成されている。図8の設定期間データから、サービスマン等は、10月31日に温度効率Tを示す「*」が急激に低下したことを、一見して視認することができる。 And the output control part 74 is comprised so that the setting period data as shown in FIG. 8 may be displayed on the display part 80, when the information output instruction | command according to the display of refrigerant | coolant amount shortage information is input. From the set period data shown in FIG. 8, the service person or the like can visually recognize that “*” indicating the temperature efficiency T has rapidly decreased on October 31.
 また、表示部80は、サービスマン等による表示切替操作を受け付ける切替ボタン(図示せず)を有しており、該切替ボタンへのタッチ操作に応じて、出力制御部74が、設定期間データの切替表示を行うように構成されている。すなわち、冷媒量管理装置100は、任意の月別の設定期間データなど、設定期間に応じた設定期間データを適宜表示することができる。 The display unit 80 also has a switching button (not shown) that accepts a display switching operation by a service person or the like, and the output control unit 74 responds to the touch operation on the switching button by the output control unit 74. It is configured to perform switching display. That is, the refrigerant quantity management device 100 can appropriately display set period data corresponding to the set period, such as set period data for any month.
 もっとも、出力制御部74は、設定期間内における温度効率Tを示す情報を含む設定期間データを、数値によって表示部80へ表示させるようにしてもよい。すなわち、例えば、一ヶ月単位で、一日ごとの又は一日を細分化した単位時間ごとの温度効率T及び冷媒量判定閾値Tmの情報を整理した表を表示部80に表示させるようにしてもよい。また、例えば、表示部80の切替ボタンへのタッチ操作に応じて、一日ごとの又は単位時間ごとの温度効率T及び冷媒量判定閾値Tmの情報を切り替えて表示するようにしてもよい。 However, the output control unit 74 may cause the display unit 80 to display setting period data including information indicating the temperature efficiency T within the setting period. That is, for example, a table in which information on the temperature efficiency T and the refrigerant amount determination threshold Tm for each day or for each unit time obtained by subdividing the day is arranged on a monthly basis may be displayed on the display unit 80. Good. Further, for example, in accordance with a touch operation on the switching button of the display unit 80, information on the temperature efficiency T and the refrigerant amount determination threshold value Tm for each day or for each unit time may be switched and displayed.
 加えて、出力制御部74は、設定期間内における温度効率Tを示す情報のみを表示部80に表示させるようにしてもよい。このようにしても、温度効率Tの変化をサービスマン等に視認させることができるため、冷媒量の過不足の発生を抑制することができる。 In addition, the output control unit 74 may cause the display unit 80 to display only information indicating the temperature efficiency T within the set period. Even if it does in this way, since the change of the temperature efficiency T can be made visible to a service person etc., generation | occurrence | production of the excess and deficiency of a refrigerant | coolant amount can be suppressed.
 なお、出力制御部74は、設定期間内における温度効率Tを示す情報及び冷媒量判定閾値Tmを示す情報を、常時又は定期的に表示部80へ表示させるように構成してもよい。また、例えば、表示部80が、サービスマン等による設定期間データの表示指令を受け付ける表示指令ボタン(図示せず)を有しており、該切替ボタンへのタッチ操作に応じて、出力制御部74が設定期間データを表示部80に表示させるようにしてもよい。 Note that the output control unit 74 may be configured to cause the display unit 80 to display information indicating the temperature efficiency T within the set period and information indicating the refrigerant amount determination threshold value Tm constantly or periodically. Further, for example, the display unit 80 has a display command button (not shown) for receiving a display command for setting period data by a serviceman or the like, and the output control unit 74 according to a touch operation on the switch button. However, the set period data may be displayed on the display unit 80.
 表示部80は、タッチ操作を受け付ける機能を有しない液晶パネルなどであってもよく、この場合、冷媒量管理装置100は、指令ボタン81、切替ボタン、及び表示指令ボタンのうちの少なくとも一つと同機能の物理ボタンをもつ操作部(図示せず)を有するように構成するとよい。このようにしても、サービスマン等が該物理ボタンを押下した際に、情報出力指令などが出力制御部74へ出力され、出力制御部74は、設定期間データの表示処理を行うことができる。 The display unit 80 may be a liquid crystal panel or the like that does not have a function of accepting a touch operation. In this case, the refrigerant amount management device 100 is the same as at least one of the command button 81, the switching button, and the display command button. It is good to comprise so that it may have an operation part (not shown) with a physical button of a function. Even in this case, when a service person or the like presses the physical button, an information output command or the like is output to the output control unit 74, and the output control unit 74 can perform display processing of set period data.
 さらに、冷媒量管理装置100は、情報出力用の外部接点出力端子(図示せず)をさらに有していてもよい。そして、出力制御部74は、表示部80に表示させる各情報を、外部接点出力端子に接続された外部機器へ送信するようにするとよい。また、冷媒量管理装置100は、リモートコントローラ230に搭載されていてもよい。 Furthermore, the refrigerant quantity management device 100 may further include an external contact output terminal (not shown) for outputting information. And the output control part 74 is good to transmit each information displayed on the display part 80 to the external apparatus connected to the external contact output terminal. Further, the refrigerant quantity management device 100 may be mounted on the remote controller 230.
 また、出力制御部74は、表示部80に表示させる各情報を、通信部90を通じ、オープンネットワークなどの公衆回線を介して、電子メールなどにより外部機器へ出力する機能を有している。通信部90は、電話回線又はLAN回線等を通じて、外部機器との情報通信を行うものである。 Further, the output control unit 74 has a function of outputting each information to be displayed on the display unit 80 to an external device through an electronic mail or the like through a communication line 90 and a public line such as an open network. The communication unit 90 performs information communication with an external device through a telephone line or a LAN line.
 なお、データ収集部60、運転状態判定部71、温度効率演算部72、冷媒量判定部73、出力制御部74、及び通信部90は、上述した各機能を実現する回路デバイスなどのハードウェアにより実現することもできるし、例えばDSP等のマイコン又はCPU等の演算装置上で実行されるソフトウェアとして実現することもできる。記憶部70は、HDD(Hard Disk Drive)又はフラッシュメモリ等により構成することができる。 Note that the data collection unit 60, the operation state determination unit 71, the temperature efficiency calculation unit 72, the refrigerant amount determination unit 73, the output control unit 74, and the communication unit 90 are implemented by hardware such as a circuit device that implements each function described above. For example, it can be realized as software executed on a microcomputer such as a DSP or an arithmetic device such as a CPU. The storage unit 70 can be configured by an HDD (Hard Disk Drive), a flash memory, or the like.
[動作説明]
 図9は、図1の冷媒量管理装置100の動作を説明するフローチャートである。図9を参照して、冷媒量管理装置100の冷媒量に関する判定処理及び出力処理を説明する。
[Description of operation]
FIG. 9 is a flowchart for explaining the operation of the refrigerant quantity management device 100 of FIG. With reference to FIG. 9, the determination process regarding the refrigerant | coolant amount of the refrigerant | coolant amount management apparatus 100 and an output process are demonstrated.
 まず、データ収集部60は、冷媒回路10の低圧側の圧力である低圧圧力の情報を収集し、収集した低圧圧力の情報を運転状態判定部71へ送信する(図9:ステップS101)。また、データ収集部60は、過冷却冷媒温度、外気温度、及び吐出圧力の情報である冷媒量判定データを収集し、収集した冷媒量判定データを温度効率演算部72へ送信する(図9:ステップS102)。 First, the data collection unit 60 collects information on the low pressure, which is the pressure on the low pressure side of the refrigerant circuit 10, and transmits the collected information on the low pressure to the operating state determination unit 71 (FIG. 9: Step S101). Further, the data collection unit 60 collects refrigerant amount determination data, which is information on the supercooled refrigerant temperature, the outside air temperature, and the discharge pressure, and transmits the collected refrigerant amount determination data to the temperature efficiency calculation unit 72 (FIG. 9: Step S102).
 次いで、運転状態判定部71は、データ収集部60から送信された低圧圧力と判定基準圧力とを比較することにより、冷凍装置200の運転状態が安定しているか否かを判定する(図9:ステップS103)。運転状態判定部71は、低圧圧力が判定基準圧力以下である場合に、冷凍装置200の運転状態が安定していると判定し(図9:ステップS103/Yes)、温度効率演算部72に演算指令を送信する(図9:ステップS104)。 Next, the operation state determination unit 71 determines whether or not the operation state of the refrigeration apparatus 200 is stable by comparing the low-pressure pressure transmitted from the data collection unit 60 with the determination reference pressure (FIG. 9: Step S103). The operation state determination unit 71 determines that the operation state of the refrigeration apparatus 200 is stable when the low pressure is equal to or less than the determination reference pressure (FIG. 9: Step S103 / Yes), and calculates the temperature efficiency calculation unit 72. The command is transmitted (FIG. 9: Step S104).
 温度効率演算部72は、運転状態判定部71から演算指令を受信すると、冷媒量判定データを用いて温度効率Tを求め、求めた温度効率Tの情報を冷媒量判定部73へ送信する(図9:ステップS105)。
 このときに、過冷却器22の温度効率Tは、瞬時値を用いるよりも、時間的に異なる複数の温度効率Tの移動平均をとることが望ましい。時間的に異なる複数の温度効率Tの移動平均を取ることで、冷凍サイクルの安定も考慮することができる。
When the temperature efficiency calculation unit 72 receives the calculation command from the operation state determination unit 71, the temperature efficiency calculation unit 72 calculates the temperature efficiency T using the refrigerant amount determination data, and transmits information on the calculated temperature efficiency T to the refrigerant amount determination unit 73 (FIG. 9: Step S105).
At this time, it is desirable that the temperature efficiency T of the subcooler 22 be a moving average of a plurality of temperature efficiencies T that are different in time rather than using an instantaneous value. By taking a moving average of a plurality of temperature efficiencies T that are temporally different, the stability of the refrigeration cycle can be taken into consideration.
 温度効率演算部72から温度効率Tの情報が送信されると、冷媒量判定部73は、温度効率Tと冷媒量判定閾値Tmとを比較して、冷媒が不足しているか否かを判定する(図9:ステップS106)。 When information on the temperature efficiency T is transmitted from the temperature efficiency calculation unit 72, the refrigerant amount determination unit 73 compares the temperature efficiency T with the refrigerant amount determination threshold value Tm to determine whether or not the refrigerant is insufficient. (FIG. 9: Step S106).
 一方、運転状態判定部71は、低圧圧力が判定基準圧力よりも大きい場合に、冷凍装置200の運転状態が不安定であると判定する(図9:ステップS103/No)。この場合、冷媒量判定部73は、冷媒が不足しているか否かの判定を行わず、ステップS101に戻る。 On the other hand, the operation state determination unit 71 determines that the operation state of the refrigeration apparatus 200 is unstable when the low pressure is larger than the determination reference pressure (FIG. 9: Step S103 / No). In this case, the refrigerant quantity determination unit 73 does not determine whether or not the refrigerant is insufficient, and returns to step S101.
 温度効率Tが冷媒量判定閾値Tm以下であることから、冷媒量判定部73が、冷媒が不足していると判定した場合(図9:ステップS106/Yes)、出力制御部74は、冷媒量不足情報を表示部80に表示させる(図9:ステップS107)。 Since the temperature efficiency T is equal to or less than the refrigerant amount determination threshold Tm, when the refrigerant amount determination unit 73 determines that the refrigerant is insufficient (FIG. 9: Step S106 / Yes), the output control unit 74 displays the refrigerant amount. The shortage information is displayed on the display unit 80 (FIG. 9: Step S107).
 出力制御部74は、冷媒量不足情報の表示に応じた情報出力指令等を入力するまで、表示部80に冷媒量不足情報を表示させた状態を維持する(図9:ステップS108/No)。そして、出力制御部74は、冷媒量不足情報の表示に応じた情報出力指令を入力したときに(図9:ステップS108/Yes)、設定期間内における温度効率Tを示す情報を表示部80へ表示させる(図9:ステップS109)。 The output control unit 74 maintains the state in which the refrigerant amount shortage information is displayed on the display unit 80 until an information output command or the like corresponding to the display of the refrigerant amount shortage information is input (FIG. 9: Step S108 / No). And the output control part 74 is the information output instruction | command according to the display of refrigerant | coolant amount shortage information (FIG. 9: Step S108 / Yes), and the information which shows the temperature efficiency T in the setting period to the display part 80 It is displayed (FIG. 9: Step S109).
 一方、温度効率Tが冷媒量判定閾値Tmより大きいことから、冷媒量判定部73が、冷媒が不足していないと判定した場合(図9:ステップS106/No)、出力制御部74は、設定期間データを表示部80へ表示させる(図9:ステップS109)。 On the other hand, since the temperature efficiency T is greater than the refrigerant amount determination threshold Tm, when the refrigerant amount determination unit 73 determines that the refrigerant is not insufficient (FIG. 9: Step S106 / No), the output control unit 74 sets the value. The period data is displayed on the display unit 80 (FIG. 9: Step S109).
 冷媒量管理装置100に複数の冷凍装置200が接続されている場合、冷媒量管理装置100は、各冷凍装置200のそれぞれに対して上記の処理を実行する。なお、上記動作説明では、図9に付した番号の順に動作する場合を例示したが、これに限定されるものではない。例えば、ステップS101とステップS102とは同時に行ってもよく、ステップS102を先に行ってもよい。また、運転状態判定部71において、冷凍装置200の運転状態が安定していると判定された場合に(図9:ステップS103/Yes)、ステップS102の動作を行うようにしてもよい。 When a plurality of refrigeration apparatuses 200 are connected to the refrigerant amount management apparatus 100, the refrigerant amount management apparatus 100 performs the above processing for each of the refrigeration apparatuses 200. In addition, although the case where it operate | moves in order of the number attached | subjected to FIG. 9 was illustrated in the said operation | movement description, it is not limited to this. For example, step S101 and step S102 may be performed simultaneously, or step S102 may be performed first. Further, when the operation state determination unit 71 determines that the operation state of the refrigeration apparatus 200 is stable (FIG. 9: Step S103 / Yes), the operation of Step S102 may be performed.
 また、冷媒量管理装置100は、冷媒量に関する判定処理及び出力処理を、遠隔装置(図示せず)からの指示を受けたときに実行するようにしてもよい。そして、上述した冷媒量に関する判定処理及び出力処理は、冷凍装置200の設置時における冷媒充填作業、又は冷凍装置200のメンテナンス時における冷媒充填作業にも適用することができる。 Further, the refrigerant quantity management device 100 may execute the determination process and the output process relating to the refrigerant quantity when receiving an instruction from a remote device (not shown). The determination process and the output process related to the refrigerant amount described above can also be applied to a refrigerant charging operation when the refrigeration apparatus 200 is installed or a refrigerant charging operation when the refrigeration apparatus 200 is maintained.
 以上のように、本実施の形態1における冷媒量管理装置100は、冷媒量の変化に精度よく追従する温度効率の情報を、冷媒量の推移を示す情報として、表示部80又は外部機器などに表示することができる。よって、サービスマン等は、表示部80又は外部機器などを確認することにより、冷媒量の推移を把握し、冷凍装置200への適切なメンテナンスを行うことができる。したがって、冷媒量管理装置100によれば、結果として、冷媒量の過不足の発生を抑制することができ、冷凍装置200の能力低下及び構成機器の損傷の発生を低減することができる。 As described above, the refrigerant amount management device 100 according to the first embodiment uses the temperature efficiency information that accurately follows the change in the refrigerant amount as information indicating the change in the refrigerant amount on the display unit 80 or an external device. Can be displayed. Therefore, the service person or the like can grasp the transition of the refrigerant amount by checking the display unit 80 or an external device, and can perform appropriate maintenance on the refrigeration apparatus 200. Therefore, according to the refrigerant | coolant amount management apparatus 100, generation | occurrence | production of excess and deficiency of a refrigerant | coolant amount can be suppressed as a result, and the capability fall of the freezing apparatus 200 and generation | occurrence | production of the damage of a component apparatus can be reduced.
 また、冷媒量管理装置100は、冷凍装置200の運転状態による変動が比較的小さい温度効率Tを用いて冷媒量判定処理を行うため、仮に冷媒が漏洩した場合であっても、冷媒の漏れを早期に検出することができる。すなわち、従来の過冷却度による冷媒量判定処理に比べて、冷媒量判定閾値Tmを高く設定することができるため、冷媒量管理装置100によれば、冷媒量判定処理を迅速に行うことができる。さらに、冷媒量管理装置100は、運転状態が不安定な場合には、冷媒量判定処理を行わないため、誤判定を抑制することができる。 In addition, since the refrigerant amount management device 100 performs the refrigerant amount determination process using the temperature efficiency T that has a relatively small variation due to the operating state of the refrigeration apparatus 200, even if the refrigerant leaks, the refrigerant leak management device 100 It can be detected early. That is, since the refrigerant amount determination threshold value Tm can be set higher than the refrigerant amount determination process based on the conventional supercooling degree, the refrigerant amount management apparatus 100 can perform the refrigerant amount determination process quickly. . Furthermore, since the refrigerant quantity management device 100 does not perform the refrigerant quantity determination process when the operation state is unstable, it is possible to suppress erroneous determination.
 ところで、従来の冷凍装置は、冷媒不足であるか否かの結果のみを表示するため、サービスマン等は、冷媒量の経時的な変化を認識することができない。このため、サービスマン等は、誤判定が生じた場合でも、誤判定の結果に応じた対応をとることになる。すなわち、サービスマン等が、冷媒不足との誤判定に応じて冷媒を充填すると、不要な冷媒の補充に起因してコストが増加する。また、液バックが発生したときは、液バック量が増加し、圧縮機の不具合に繋がるおそれがある。さらに、冷媒量が不必要に多くなると、冷媒漏れの発見が遅れるという事態に繋がり得る。一方、サービスマン等が、冷媒適量との誤判定に応じて冷媒を充填しなかった場合は、冷媒不足に起因して、冷凍装置の能力低下及び構成機器の損傷発生といった不具合が発生する。 By the way, since the conventional refrigeration apparatus displays only the result of whether or not the refrigerant is insufficient, the service person or the like cannot recognize the change in the refrigerant amount over time. For this reason, even if an erroneous determination occurs, the service person or the like takes a countermeasure according to the erroneous determination result. That is, when a service person or the like fills the refrigerant in response to an erroneous determination that the refrigerant is insufficient, the cost increases due to the replenishment of unnecessary refrigerant. Moreover, when the liquid back occurs, the liquid back amount increases, which may lead to a malfunction of the compressor. Furthermore, if the amount of refrigerant increases unnecessarily, it may lead to a situation where discovery of refrigerant leakage is delayed. On the other hand, when a service person or the like does not fill the refrigerant in response to an erroneous determination that the refrigerant is in an appropriate amount, problems such as a reduction in the capacity of the refrigeration apparatus and occurrence of damage to the components occur due to the lack of refrigerant.
 この点、冷媒量管理装置100は、設定期間データを表示部80に表示させるため、冷媒量を早期に顕在化することができる。特に、本実施の形態1では、冷媒量管理装置100が、設定期間内における温度効率Tを示す情報及び冷媒量判定閾値Tmを示す情報を、時系列に沿ったグラフによって表示するため、サービスマン等は、冷媒量の推移を一見して視認することができる。 In this respect, the refrigerant quantity management device 100 displays the set period data on the display unit 80, so that the refrigerant quantity can be revealed early. In particular, in the first embodiment, the refrigerant amount management device 100 displays information indicating the temperature efficiency T and information indicating the refrigerant amount determination threshold Tm within a set period by a graph along a time series. Etc. can be visually recognized at a glance of the transition of the refrigerant amount.
<変形例1>
 図10は、本実施の形態1の変形例1に係る冷凍装置の構成を例示した模式図である。図10に示すように、本変形例1に係る冷凍装置200Mは、図2における冷凍装置200Aが有する過冷却器22の代わりに、第一過冷却器22Aと、第二過冷却器22Bと、を有する点に特徴がある。前述した冷凍装置200Aと同一の構成部材については同一の符号を用いて説明は省略する。
<Modification 1>
FIG. 10 is a schematic view illustrating the configuration of the refrigeration apparatus according to the first modification of the first embodiment. As shown in FIG. 10, the refrigeration apparatus 200M according to the first modification includes a first subcooler 22A, a second subcooler 22B, instead of the subcooler 22 included in the refrigeration apparatus 200A in FIG. It is characterized by having The same components as those in the above-described refrigeration apparatus 200A are denoted by the same reference numerals and description thereof is omitted.
 図10に示すように、上述した過冷却器22と同様に構成された第一過冷却器22Aの下流に、第二過冷却器22Bを有している。第二過冷却器22Bは、例えば、二重管又はプレート型熱交換器等を含んで構成されており、熱源側冷媒回路10bに流れる高圧の冷媒と、第一インジェクション回路51Aに流れる中間圧の冷媒とを熱交換させるものである。 As shown in FIG. 10, the second subcooler 22 </ b> B is provided downstream of the first subcooler 22 </ b> A configured in the same manner as the above-described supercooler 22. The second subcooler 22B includes, for example, a double pipe or a plate heat exchanger, and has a high-pressure refrigerant flowing in the heat source side refrigerant circuit 10b and an intermediate pressure flowing in the first injection circuit 51A. Heat exchange with the refrigerant is performed.
 第二過冷却器22Bを通過した冷媒の一部は、インジェクション量調整弁52で膨張されて中間圧の冷媒となり、第二過冷却器22Bを通過する冷媒と熱交換する。すなわち、本変形例1では、レシーバ25から流入して第二過冷却器22Bで熱交換された高圧の冷媒は、更に過冷却される。また、インジェクション量調整弁52から流入して、第二過冷却器22Bで熱交換された中間圧の冷媒は、乾き度が高い冷媒となり、圧縮機21の吐出温度を下げるために圧縮機21の吸入側にインジェクションされる。 A part of the refrigerant that has passed through the second subcooler 22B is expanded by the injection amount adjusting valve 52 to become an intermediate pressure refrigerant, and exchanges heat with the refrigerant that has passed through the second subcooler 22B. That is, in the first modification, the high-pressure refrigerant that flows from the receiver 25 and is heat-exchanged by the second subcooler 22B is further subcooled. Further, the intermediate-pressure refrigerant that flows in from the injection amount adjusting valve 52 and is heat-exchanged by the second subcooler 22B becomes a refrigerant having a high dryness, so that the compressor 21 can reduce the discharge temperature of the compressor 21. Injection into the suction side.
 本変形例1では、温度効率演算部72が、温度効率Tとして、第一過冷却器22Aの温度効率、第二過冷却器22Bの温度効率、又は第一過冷却器22A及び第二過冷却器22Bの温度効率を求めるようにするとよい。なお、冷凍装置200Mは、第一過冷却器22Aを設けずに、レシーバ25から流出した冷媒が、第二過冷却器22Bに流入するように構成してもよい。 In the first modification, the temperature efficiency calculation unit 72 uses, as the temperature efficiency T, the temperature efficiency of the first subcooler 22A, the temperature efficiency of the second subcooler 22B, or the first subcooler 22A and the second subcooler. The temperature efficiency of the vessel 22B may be obtained. Note that the refrigeration apparatus 200M may be configured such that the refrigerant flowing out of the receiver 25 flows into the second subcooler 22B without providing the first subcooler 22A.
<変形例2>
 図11は、本実施の形態1の変形例2に係る冷媒量管理装置の構成を例示したブロック図である。図11に示すように、本変形例2の構成は、上述した冷媒量管理装置100に備わる各構成部材と同様に機能する各構成部材が、2つの異なる装置に分配されている点に特徴がある。すなわち、本変形例2では、収集演算装置100A及び冷媒量管理装置100Bが、冷媒量管理装置100と同様に機能する。冷媒量管理装置100と同一の構成部材については同一の符号を用いて説明は省略する。
<Modification 2>
FIG. 11 is a block diagram illustrating the configuration of the refrigerant quantity management device according to the second modification of the first embodiment. As shown in FIG. 11, the configuration of the second modification is characterized in that each component that functions in the same manner as each component provided in the refrigerant amount management device 100 described above is distributed to two different devices. is there. That is, in the second modification, the collection calculation device 100A and the refrigerant amount management device 100B function in the same manner as the refrigerant amount management device 100. Constituent members that are the same as those of the refrigerant amount management device 100 are denoted by the same reference numerals, and description thereof is omitted.
 収集演算装置100Aは、データ収集部60と、閾値記憶部70Aと、運転状態判定部71と、温度効率演算部72と、冷媒量判定部73Aと、を有している。収集演算装置100Aは、冷凍装置200に接続されている。冷媒量管理装置100Bは、記憶部70と、出力制御部74Bと、表示部80と、通信部90と、を有している。 The collection calculation device 100A includes a data collection unit 60, a threshold storage unit 70A, an operation state determination unit 71, a temperature efficiency calculation unit 72, and a refrigerant amount determination unit 73A. The collection arithmetic device 100A is connected to the refrigeration apparatus 200. The refrigerant amount management device 100B includes a storage unit 70, an output control unit 74B, a display unit 80, and a communication unit 90.
 冷媒量判定部73Aは、冷媒量判定の結果を示す情報と、温度効率演算部72から定期的に取得する温度効率Tの情報と、閾値記憶部70A内の冷媒量判定閾値Tmの情報とを、出力制御部74Bへ出力する。冷媒量判定部73Aの他の構成及び動作、上述した冷媒量判定部73と同様である。 The refrigerant amount determination unit 73A includes information indicating the result of the refrigerant amount determination, information on the temperature efficiency T periodically acquired from the temperature efficiency calculation unit 72, and information on the refrigerant amount determination threshold Tm in the threshold storage unit 70A. And output to the output control unit 74B. Other configurations and operations of the refrigerant amount determination unit 73A are the same as those of the refrigerant amount determination unit 73 described above.
 出力制御部74Bは、定期的に冷媒量判定部73Aから出力される温度効率T及び冷媒量判定閾値Tmの情報を、記憶部70に記憶させる。また、出力制御部74Bは、冷媒量判定部73Aによる冷媒量判定の結果に応じて、又は情報出力指令に応じて、設定期間内における温度効率Tを示す情報、及び冷媒量判定閾値Tmを示す情報を表示部80に表示させる。出力制御部74Bの他の構成及び動作は、上述した出力制御部74と同様である。 The output control unit 74B causes the storage unit 70 to store information on the temperature efficiency T and the refrigerant amount determination threshold value Tm that are periodically output from the refrigerant amount determination unit 73A. Further, the output control unit 74B indicates information indicating the temperature efficiency T within the set period and the refrigerant amount determination threshold Tm according to the result of the refrigerant amount determination by the refrigerant amount determination unit 73A or according to the information output command. Information is displayed on the display unit 80. Other configurations and operations of the output control unit 74B are the same as those of the output control unit 74 described above.
 本変形例2では、収集演算装置100A及び冷媒量管理装置100Bが、冷凍装置200の外部に設けられた例を説明したが、これに限らず、収集演算装置100A及び冷媒量管理装置100Bのうちの少なくとも一方は、冷凍装置200の内部に設けられていてもよい。すなわち、収集演算装置100Aは、例えば、冷凍装置200の熱源側制御部31又は負荷側制御部32の内部の機能構成として組み込まれていてもよい。また、冷媒量管理装置100Bは、例えば、リモートコントローラ230に搭載されていてもよい。 In the second modification, an example in which the collection arithmetic device 100A and the refrigerant amount management device 100B are provided outside the refrigeration device 200 has been described. However, the present invention is not limited to this, and among the collection arithmetic device 100A and the refrigerant amount management device 100B At least one of the above may be provided inside the refrigeration apparatus 200. That is, the collection calculation device 100A may be incorporated as a functional configuration inside the heat source side control unit 31 or the load side control unit 32 of the refrigeration apparatus 200, for example. In addition, the refrigerant amount management device 100B may be mounted on the remote controller 230, for example.
<変形例3>
 図12は、本実施の形態1の変形例3に係る冷媒量管理装置の構成を例示したブロック図である。図12に示すように、本変形例3の構成は、上述した冷媒量管理装置100に備わる各構成部材と同様に機能する各構成部材が、2つの異なる装置に分配されている点に特徴がある。すなわち、本変形例3では、収集演算装置100C及び冷媒量管理装置100Dが、冷媒量管理装置100と同様に機能する。上述した冷媒量管理装置100と同一の構成部材については同一の符号を用いて説明は省略する。
<Modification 3>
FIG. 12 is a block diagram illustrating the configuration of the refrigerant quantity management device according to the third modification of the first embodiment. As shown in FIG. 12, the configuration of the third modification is characterized in that each component that functions in the same manner as each component provided in the refrigerant amount management device 100 described above is distributed to two different devices. is there. That is, in the third modification, the collection calculation device 100C and the refrigerant amount management device 100D function in the same manner as the refrigerant amount management device 100. The same components as those in the refrigerant amount management device 100 described above are denoted by the same reference numerals and description thereof is omitted.
 収集演算装置100Cは、データ収集部60と、運転状態判定部71と、温度効率演算部72Cと、を有している。冷媒量管理装置100Dは、記憶部70と、冷媒量判定部73Dと、出力制御部74と、表示部80と、通信部90と、を有している。 The collection calculation device 100C includes a data collection unit 60, an operation state determination unit 71, and a temperature efficiency calculation unit 72C. The refrigerant amount management device 100D includes a storage unit 70, a refrigerant amount determination unit 73D, an output control unit 74, a display unit 80, and a communication unit 90.
 温度効率演算部72Cは、求めた温度効率Tの情報を、定期的に冷媒量判定部73Dへ出力する。また、温度効率演算部72Cは、温度効率演算部72から送信される演算指令を冷媒量判定部73Dへ出力する。温度効率演算部72Cの他の構成及び動作は、上述した温度効率演算部72と同様である。 The temperature efficiency calculation unit 72C periodically outputs the obtained temperature efficiency T information to the refrigerant amount determination unit 73D. Further, the temperature efficiency calculation unit 72C outputs a calculation command transmitted from the temperature efficiency calculation unit 72 to the refrigerant amount determination unit 73D. Other configurations and operations of the temperature efficiency calculation unit 72C are the same as those of the temperature efficiency calculation unit 72 described above.
 冷媒量判定部73Dは、温度効率演算部72Cから定期的に取得する温度効率Tの情報を記憶部70に記憶させる。また、冷媒量判定部73Dは、温度効率演算部72Cから演算指令が出力されたときに、冷媒量判定を実行する。冷媒量判定部73Dの他の構成及び動作は、上述した冷媒量判定部73と同様である。 The refrigerant amount determination unit 73D causes the storage unit 70 to store information on the temperature efficiency T that is periodically acquired from the temperature efficiency calculation unit 72C. In addition, the refrigerant amount determination unit 73D executes refrigerant amount determination when a calculation command is output from the temperature efficiency calculation unit 72C. Other configurations and operations of the refrigerant amount determination unit 73D are the same as those of the refrigerant amount determination unit 73 described above.
 本変形例3では、収集演算装置100C及び冷媒量管理装置100Dが、冷凍装置200の外部に設けられた例を説明したが、これに限らず、収集演算装置100A及び冷媒量管理装置100Bのうちの少なくとも一方は、冷凍装置200の内部に設けられていてもよい。すなわち、収集演算装置100Aは、例えば、冷凍装置200の熱源側制御部31又は負荷側制御部32の内部の機能構成として組み込まれていてもよい。また、冷媒量管理装置100Bは、例えば、リモートコントローラ230に搭載されていてもよい。 In the third modification, an example in which the collection calculation device 100C and the refrigerant amount management device 100D are provided outside the refrigeration device 200 has been described. However, the present invention is not limited to this, and among the collection calculation device 100A and the refrigerant amount management device 100B At least one of the above may be provided inside the refrigeration apparatus 200. That is, the collection calculation device 100A may be incorporated as a functional configuration inside the heat source side control unit 31 or the load side control unit 32 of the refrigeration apparatus 200, for example. In addition, the refrigerant amount management device 100B may be mounted on the remote controller 230, for example.
 なお、変形例2及び3では、上述した冷媒量管理装置100に備わる各構成部材と同様に機能する各構成部材が、2つの異なる装置に分配されている場合を例示したが、これに限らず、3つ以上の異なる装置等に分配して構成するようにしてもよい。 In the second and third modified examples, the case where the respective structural members that function in the same manner as the respective structural members provided in the refrigerant amount management device 100 described above is distributed to two different devices, but is not limited thereto. You may make it comprise and distribute to three or more different apparatuses.
実施の形態2.
 図13は、本発明の実施の形態2に係る冷媒量管理装置の構成例を示すブロック図である。図13に基づき、本実施の形態2に係る冷媒量管理装置100Eの構成について説明する。前述した実施の形態1における冷媒量管理装置100と同一の構成部材については同一の符号を用いて説明は省略する。なお、冷媒量管理装置100Eは、冷媒量管理装置100と同様に冷凍装置200に接続され、冷媒量管理システムを構成しているものとする。
Embodiment 2. FIG.
FIG. 13 is a block diagram illustrating a configuration example of the refrigerant quantity management device according to Embodiment 2 of the present invention. Based on FIG. 13, the structure of the refrigerant | coolant amount management apparatus 100E which concerns on this Embodiment 2 is demonstrated. The same components as those in the refrigerant amount management device 100 in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted. Note that the refrigerant quantity management device 100E is connected to the refrigeration apparatus 200 in the same manner as the refrigerant quantity management device 100, and constitutes a refrigerant quantity management system.
 データ収集部60Eは、圧縮機21の運転周波数である圧縮機周波数を定期的に収集するものである。そして、データ収集部60Eは、必要に応じて、収集した圧縮機周波数を温度効率演算部72Eへ送信するように構成されている。データ収集部60Eの他の構成及び動作は、上述した実施の形態1におけるデータ収集部60と同様である。 The data collection unit 60E periodically collects the compressor frequency that is the operation frequency of the compressor 21. And the data collection part 60E is comprised so that the collected compressor frequency may be transmitted to the temperature efficiency calculating part 72E as needed. Other configurations and operations of the data collection unit 60E are the same as those of the data collection unit 60 in the first embodiment described above.
 温度効率演算部72Eは、運転状態判定部71において低圧圧力が判定基準圧力以下であると判定された場合、熱源側ユニット210から、データ収集部60を介して、低圧圧力、通過冷媒温度、外気温度、及び圧縮機周波数のうちの少なくとも2つの情報を不安定判定データとして取得し、取得した不安定判定データを記憶部70に記憶させるものである。 When the operating state determination unit 71 determines that the low pressure is equal to or less than the determination reference pressure, the temperature efficiency calculation unit 72E receives the low pressure, the passing refrigerant temperature, and the outside air from the heat source unit 210 via the data collection unit 60. Information on at least two of the temperature and the compressor frequency is acquired as instability determination data, and the acquired instability determination data is stored in the storage unit 70.
 すなわち、温度効率演算部72Eは、低圧圧力、通過冷媒温度、外気温度、及び圧縮機周波数のうちの特定の2つ又は3つの情報を不安定判定データとして取得し、記憶部70に記憶させるようにしてもよい。また、温度効率演算部72Eは、低圧圧力、通過冷媒温度、外気温度、及び圧縮機周波数の全ての情報を不安定判定データとして取得し、記憶部70に記憶させるようにしてもよい。 That is, the temperature efficiency calculation unit 72E acquires specific two or three pieces of information among the low pressure, the passing refrigerant temperature, the outside air temperature, and the compressor frequency as instability determination data, and stores them in the storage unit 70. It may be. Further, the temperature efficiency calculation unit 72E may acquire all the information on the low pressure, the passing refrigerant temperature, the outside air temperature, and the compressor frequency as instability determination data and store the information in the storage unit 70.
 温度効率演算部72Eは、運転状態判定部71において低圧圧力が判定基準圧力以下であると判定される度に不安定判定データを取得し、取得した不安定判定データを順次記憶部70へ記憶させるように構成されている。温度効率演算部72Eの他の構成及び動作は、上述した実施の形態1における温度効率演算部72と同様である。 The temperature efficiency calculation unit 72E acquires instability determination data every time when the operation state determination unit 71 determines that the low pressure is equal to or lower than the determination reference pressure, and sequentially stores the acquired instability determination data in the storage unit 70. It is configured as follows. Other configurations and operations of the temperature efficiency calculation unit 72E are the same as those of the temperature efficiency calculation unit 72 in the first embodiment described above.
 冷媒量判定部73Eは、運転状態判定部71において低圧圧力が判定基準圧力以下であると判定された場合に代えて、現在における吐出圧力、通過冷媒温度、外気温度、及び圧縮機周波数のうちの少なくとも2つの情報が、不安定判定データのうちの少なくとも2つの情報と一致する場合に、運転状態が安定していると判断し、冷媒が不足しているか否かの判定を実行する。このように、不安定判定データをストックしておけば、仮に吸入圧力センサ34aの不具合などが生じて、低圧圧力を取得することができなくなったような場合にも、運転状態の判定を精度よく行うことができる。 The refrigerant amount determination unit 73E replaces the case where the low-pressure pressure is determined to be equal to or lower than the determination reference pressure in the operation state determination unit 71, and includes the current discharge pressure, passing refrigerant temperature, outside air temperature, and compressor frequency. When at least two pieces of information match at least two pieces of information in the instability determination data, it is determined that the operating state is stable, and a determination is made as to whether or not the refrigerant is insufficient. In this way, if the instability determination data is stocked, the operation state can be accurately determined even if the suction pressure sensor 34a has a problem and the low pressure cannot be acquired. It can be carried out.
 また、冷媒量判定部73Eは、運転状態判定部71において低圧圧力が判定基準圧力以下であると判定され、かつ、現在における吐出圧力、通過冷媒温度、外気温度、及び圧縮機周波数のうちの少なくとも2つの情報が、不安定判定データのうちの少なくとも2つの情報と一致する場合に、冷媒が不足しているか否かの判定を実行するようにしてもよい。このように、運転状態が安定しているか否かの判定を二段階で行い、判定精度を高めることにより、検出誤差などに起因した誤判定を抑制することができる。 The refrigerant amount determination unit 73E determines that the low-pressure pressure is equal to or lower than the determination reference pressure in the operation state determination unit 71, and at least of the current discharge pressure, passing refrigerant temperature, outside air temperature, and compressor frequency. If the two pieces of information coincide with at least two pieces of information in the instability determination data, it may be determined whether or not the refrigerant is insufficient. In this way, it is possible to suppress erroneous determination due to detection error or the like by performing determination in two stages as to whether or not the driving state is stable and increasing the determination accuracy.
 なお、温度効率演算部72Eが、低圧圧力、通過冷媒温度、外気温度、及び圧縮機周波数の全ての情報を不安定判定データとして取得するように構成すれば、冷媒量判定部73Eは、現在における吐出圧力、通過冷媒温度、外気温度、及び圧縮機周波数の情報と、不安定判定データに含まれる各情報とが一致する数に応じて、冷媒が不足しているか否かの判定を行うか否かを決めることができる。 Note that if the temperature efficiency calculation unit 72E is configured to acquire all the information on the low pressure, the passing refrigerant temperature, the outside air temperature, and the compressor frequency as instability determination data, the refrigerant amount determination unit 73E Whether or not to determine whether or not the refrigerant is deficient according to the number of matches of the information on the discharge pressure, the passing refrigerant temperature, the outside air temperature, and the compressor frequency and the information included in the instability determination data Can decide.
 ところで、冷媒量判定部73Eは、現在における吐出圧力、通過冷媒温度、外気温度、及び圧縮機周波数のうちの少なくとも2つの情報を、データ収集部60Eから取得するようにしてもよいし、温度効率演算部72Eを介して取得するようにしてもよい。冷媒量判定部73Eの他の構成及び動作は、上述した実施の形態1における冷媒量判定部73と同様である。 By the way, the refrigerant quantity determination unit 73E may acquire at least two pieces of information from the current collection pressure, the passing refrigerant temperature, the outside air temperature, and the compressor frequency from the data collection unit 60E. You may make it acquire via the calculating part 72E. Other configurations and operations of the refrigerant amount determination unit 73E are the same as those of the refrigerant amount determination unit 73 in the first embodiment described above.
 また、記憶部70に複数の不安定判定データが記憶されている場合、冷媒量判定部73は、現在における吐出圧力、通過冷媒温度、外気温度、及び圧縮機周波数のうちの少なくとも2つの情報と、複数の不安定判定データの各々に含まれる少なくとも2つの情報との照合を、順次実行するようにするとよい。 In addition, when a plurality of instability determination data is stored in the storage unit 70, the refrigerant amount determination unit 73 includes at least two pieces of information among the current discharge pressure, the passing refrigerant temperature, the outside air temperature, and the compressor frequency. The collation with at least two pieces of information included in each of the plurality of instability determination data may be executed sequentially.
 本実施の形態2における冷媒量管理装置100Eは、冷媒量の変化に精度よく追従する温度効率の情報を表示部80又は外部機器などに表示することができる。このため、冷媒量管理装置100Eによれば、結果として、冷媒量の過不足の発生を抑制することができ、冷凍装置200の能力低下及び構成機器の損傷の発生を低減することができる。他の効果についても、前述した実施の形態1と同様である。 The refrigerant quantity management device 100E according to the second embodiment can display temperature efficiency information that accurately follows the change in the refrigerant quantity on the display unit 80 or an external device. For this reason, according to the refrigerant | coolant amount management apparatus 100E, generation | occurrence | production of the excess and deficiency of a refrigerant | coolant amount can be suppressed as a result, and the capability fall of the freezing apparatus 200 and generation | occurrence | production of the damage of a component apparatus can be reduced. Other effects are the same as those of the first embodiment.
 なお、本実施の形態2では、温度効率演算部72Eが、低圧圧力、通過冷媒温度、外気温度、及び圧縮機周波数のうちの少なくとも2つの情報を、不安定判定データとして用いる場合を例示したが、これに限定されず、温度効率演算部72Eは、冷凍装置200に備わる各種センサによる検出結果を、不安定判定データ及びこれと比較するデータとして適宜選択するようにしてもよい。 In the second embodiment, the temperature efficiency calculation unit 72E exemplifies a case where at least two pieces of information among the low pressure, the passing refrigerant temperature, the outside air temperature, and the compressor frequency are used as instability determination data. However, the present invention is not limited to this, and the temperature efficiency calculation unit 72E may appropriately select the detection results obtained by the various sensors included in the refrigeration apparatus 200 as instability determination data and data to be compared with the instability determination data.
実施の形態3.
 図14は、本発明の実施の形態3に係る冷媒量管理装置の構成例を示すブロック図である。図15は、図14の冷媒量管理装置による冷媒量判定処理に係る直近期間変化量と経年変化量との関係を示す説明図である。図14及び図15に基づき、本実施の形態3に係る冷媒量管理装置100Fの構成について説明する。前述した実施の形態1における冷媒量管理装置100と同一の構成部材については同一の符号を用いて説明は省略する。なお、冷媒量管理装置100Fは、冷媒量管理装置100と同様に冷凍装置200に接続され、冷媒量管理システムを構成しているものとする。
Embodiment 3 FIG.
FIG. 14 is a block diagram illustrating a configuration example of the refrigerant quantity management device according to Embodiment 3 of the present invention. FIG. 15 is an explanatory diagram showing a relationship between the latest period change amount and the secular change amount related to the refrigerant amount determination process by the refrigerant amount management apparatus of FIG. 14. Based on FIG.14 and FIG.15, the structure of the refrigerant | coolant amount management apparatus 100F which concerns on this Embodiment 3 is demonstrated. The same components as those in the refrigerant amount management device 100 in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted. Note that the refrigerant quantity management device 100F is connected to the refrigeration apparatus 200 in the same manner as the refrigerant quantity management device 100, and constitutes a refrigerant quantity management system.
 冷媒量判定部73Fは、現在から一定期間遡った基準時から現在までの温度効率Tの変化量である直近期間変化量Cに応じて、冷媒量判定閾値Tmを補正する機能を有している。より具体的に、冷媒量判定部73Fは、直近期間変化量Cに設定された換算割合を乗算して、冷媒量判定閾値Tmの補正量を求め、求めた補正量に応じて冷媒量判定閾値Tmを補正するものである。換算割合は、基準時以前における一定期間ごとの温度効率の変化量から求まる経年変化量などをもとに予め設定され、記憶部70に記憶されている。 Refrigerant quantity judging unit 73F in response from the time criteria prior to the current predetermined period in the last period variation C 1 is the change amount of the temperature efficiency T to date, has a function of correcting the refrigerant amount determining threshold Tm Yes. More specifically, the refrigerant quantity determination unit 73F multiplies the converted rate which is set to the nearest period variation C 1, we obtain a correction amount of the refrigerant amount determining threshold Tm, the refrigerant quantity judging in accordance with the correction amount determined The threshold value Tm is corrected. The conversion ratio is set in advance based on the amount of change over time obtained from the amount of change in temperature efficiency for a certain period before the reference time, and is stored in the storage unit 70.
 また、記憶部70に、直近期間変化量と冷媒量判定閾値Tmの補正量とを関連付けた補正量テーブルを格納しておき、冷媒量判定部73Fが、直近期間変化量を補正量テーブルに照らして冷媒量判定閾値Tmの補正量を求め、求めた補正量に応じて冷媒量判定閾値Tmを補正するようにしてもよい。 In addition, the storage unit 70 stores a correction amount table in which the most recent period change amount and the correction amount of the refrigerant amount determination threshold value Tm are associated, and the refrigerant amount determination unit 73F compares the most recent period change amount with the correction amount table. Then, the correction amount of the refrigerant amount determination threshold value Tm may be obtained, and the refrigerant amount determination threshold value Tm may be corrected according to the obtained correction amount.
 ところで、冷凍装置200の冷媒量は、例えば半年又は一年といった一定期間の経過に伴って減少することがある。そこで、冷媒量判定部73Fは、直近期間変化量Cが、基準時以前における一定期間ごとの温度効率の変化量から求まる経年変化量に設定量βを加算した冷媒量判定基準量よりも大きい場合に、冷媒が不足していると判定するように構成されている。 By the way, the refrigerant amount of the refrigeration apparatus 200 may decrease with the passage of a certain period of time, for example, half a year or one year. Therefore, the refrigerant quantity determination unit 73F is most recent period variation C 1 is larger than the refrigerant quantity judging reference amount obtained by adding a set amount β to secular change amount obtained from the amount of change in the temperature efficiency of the regular intervals at the reference time earlier In this case, the refrigerant is determined to be insufficient.
 本実施の形態3において、冷媒量判定部73Fは、一定期間ごとの温度効率Tの情報を記憶部70に記憶させるものである。また、冷媒量判定部73Fは、基準時以前における一定期間ごとの温度効率の変化量の平均をとることにより、経年変化量を求めるように構成されている。 In the third embodiment, the refrigerant amount determination unit 73F causes the storage unit 70 to store information on the temperature efficiency T for each predetermined period. Further, the refrigerant amount determination unit 73F is configured to obtain an aging change amount by taking an average of the change amounts of the temperature efficiency for each fixed period before the reference time.
 ここで、図15を参照して、冷媒量判定部73Fによる経年変化量の算出処理を説明する。図15では、上記一定期間が一年に設定され、かつ過去4年分の温度効率Tの情報が記憶部70に記憶されていることを想定し、現在の温度効率T、一年前の温度効率T、一年前の温度効率T、一年前の温度効率T、一年前の温度効率Tを示している。この場合、現在から一定期間遡った基準時は一年前となる。さらに、図15には、一年前から現在までの温度効率Tの変化量である直近期間変化量Cと共に、基準時以前における一定期間ごとの温度効率の変化量として、二年前から一年前までの温度効率Tの変化量C、三年前から二年前までの温度効率Tの変化量C、四年前から三年前までの温度効率Tの変化量Cを示している。 Here, with reference to FIG. 15, the process of calculating the secular change amount by the refrigerant amount determination unit 73F will be described. In FIG. 15, assuming that the predetermined period is set to one year, and information on the temperature efficiency T for the past four years is stored in the storage unit 70, the current temperature efficiency T 0 , A temperature efficiency T 1 , a temperature efficiency T 2 a year ago, a temperature efficiency T 3 a year ago, and a temperature efficiency T 4 a year ago are shown. In this case, the base time that goes back a certain period from now is one year ago. Further, in FIG. 15, with the most recent period variation C 1 is the change amount of the temperature efficiency T from a year ago to the present, as the amount of change in the temperature efficiency of the regular intervals at the reference time earlier, one to two years Change amount C 2 of temperature efficiency T until 3 years ago, change amount C 3 of temperature efficiency T from 3 years ago to 2 years ago, change amount C 4 of temperature efficiency T from 4 years ago to 3 years ago are shown. ing.
 図15に示す例の場合、冷媒量判定部73Fは、変化量Cと変化量Cと変化量Cとの平均を経年変化量として算出する。また、冷媒量判定部73Fは、求めた経年変化量に設定量βを加算して冷媒量判定基準量を求める。そして、冷媒量判定部73Fは、直近期間変化量Cと冷媒量判定基準量とを比較する。冷媒量判定部73Fは、直近期間変化量Cが冷媒量判定基準量より大きい場合に、冷媒が不足していると判定し、判定の結果を出力制御部74へ送信する。 In the example shown in FIG. 15, the refrigerant quantity determination unit 73F calculates the average of the change quantity C 2 and the change amount C 3 with variation C 4 as secular variation. In addition, the refrigerant quantity determination unit 73F calculates the refrigerant quantity determination reference amount by adding the set amount β to the obtained amount of aging. The refrigerant quantity judging unit 73F compares the most recent period variation C 1 and the refrigerant quantity judging reference amount. Refrigerant quantity judging unit 73F is the most recent period variation C 1 is larger than the refrigerant quantity judging reference amount, it is judged that the refrigerant is insufficient, and transmits the result of the determination to the output control section 74.
 出力制御部74は、冷媒量の経年変化に基づく冷媒量判定の結果を冷媒量判定部73Fから受信した場合も、実施の形態1と同様に、設定期間内における温度効率Tを示す情報及び冷媒量判定閾値Tmを示す情報を表示部80に表示させる。また、出力制御部74は、冷媒量判定部73において冷媒が不足していると判定されたとき、少なくとも直近期間変化量及び経年変化量を示す情報を表示部80に表示させるようにしてもよい。 Even when the output control unit 74 receives the result of the refrigerant amount determination based on the change in the refrigerant amount over time from the refrigerant amount determination unit 73F, as in the first embodiment, the information indicating the temperature efficiency T within the set period and the refrigerant Information indicating the amount determination threshold Tm is displayed on the display unit 80. In addition, when the refrigerant amount determination unit 73 determines that the refrigerant is insufficient, the output control unit 74 may cause the display unit 80 to display information indicating at least the latest period change amount and the secular change amount. .
 冷媒量判定部73Fの他の構成及び動作は、上述した実施の形態1における冷媒量判定部73と同様である。また、データ収集部60及び温度効率演算部72は、それぞれ、前述した実施の形態2におけるデータ収集部60E及び温度効率演算部72Eと同様に機能してもよく、冷媒量判定部73Fは、実施の形態2における冷媒量判定部73Eと同様の機能を有していてもよい。 Other configurations and operations of the refrigerant amount determination unit 73F are the same as those of the refrigerant amount determination unit 73 in the first embodiment described above. In addition, the data collection unit 60 and the temperature efficiency calculation unit 72 may function in the same manner as the data collection unit 60E and the temperature efficiency calculation unit 72E in Embodiment 2 described above, respectively, and the refrigerant amount determination unit 73F It may have the same function as the refrigerant quantity determination unit 73E in the second embodiment.
 なお、冷媒量判定部73Fは、基準時以前における一定期間ごとの温度効率の変化量に対し、経過年数などを考慮して重みづけを行い、重みづけ後の変化量を平均化することで経年変化量を求めるようにしてもよい。また、例えば、冷媒量判定部73Fは、変化量Cのように、基準時より設定期間から基準時までの温度効率Tの変化量を経年変化量として用いるようにしてもよい。 The refrigerant amount determination unit 73F weights the amount of change in temperature efficiency for each predetermined period before the reference time in consideration of the elapsed years, and averages the amount of change after weighting over time. The amount of change may be obtained. Further, for example, refrigerant quantity judging unit 73F, as the change amount C 2, a variation of the temperature efficiency T from the reference time from the set time to the reference time may be used as the secular variation.
 本実施の形態3における冷媒量管理装置100Fは、冷媒量の変化に精度よく追従する温度効率の情報を表示部80又は外部機器などに表示することができる。このため、冷媒量管理装置100Fによれば、結果として、冷媒量の過不足の発生を抑制することができ、冷凍装置200の能力低下及び構成機器の損傷の発生を低減することができる。他の効果についても、上述した実施の形態1及び2と同様である。 The refrigerant quantity management device 100F according to the third embodiment can display temperature efficiency information that accurately follows changes in the refrigerant quantity on the display unit 80 or an external device. For this reason, according to the refrigerant | coolant amount management apparatus 100F, generation | occurrence | production of excess and deficiency of a refrigerant | coolant amount can be suppressed as a result, and the fall of the capability of the freezing apparatus 200 and generation | occurrence | production of the damage of a component apparatus can be reduced. Other effects are also the same as in the first and second embodiments.
 上記各実施の形態は、冷媒量管理装置及び冷媒量管理システムにおける好適な具体例であり、本発明の技術的範囲は、これらの態様に限定されるものではない。例えば、各構成要素の組み合わせは、上記各実施の形態での組み合わせに限定されるものではなく、何れか一つの実施の形態に記載した構成要素を、別の実施の形態の構成要素に適用したり、置き換えたりすることにより、冷媒量管理装置及び冷媒量管理システム等を構成することができる。また、配置について特に限定のない構成要件は、各実施の形態で開示した配置に限らず、その機能を達成できる任意の位置に配置することができる。加えて、各図面に記載した構成の形状、大きさ、及び配置等は、本発明の範囲内で適宜変更することができる。また、各図面では、各構成部材の大きさ又は各種データについての関係が、実際のものとは異なる場合がある。さらに、温度、圧力等の高低は、特に絶対的な値との関係で定まっているものではなく、冷媒量管理装置及び冷媒量管理システム等の設置環境及び動作状態等に応じて相対的に定まるものである。 Each of the above embodiments is a preferable specific example in the refrigerant quantity management device and the refrigerant quantity management system, and the technical scope of the present invention is not limited to these embodiments. For example, the combination of each constituent element is not limited to the combination in each of the above embodiments, and the constituent element described in any one embodiment is applied to the constituent element in another embodiment. Or a refrigerant amount management device, a refrigerant amount management system, or the like can be configured. In addition, the configuration requirements that are not particularly limited with respect to the arrangement are not limited to the arrangement disclosed in each embodiment, and can be arranged at any position where the function can be achieved. In addition, the shape, size, arrangement, and the like of the configuration described in each drawing can be changed as appropriate within the scope of the present invention. Moreover, in each drawing, the relationship about the magnitude | size or various data of each structural member may differ from an actual thing. Furthermore, the levels of temperature, pressure, etc. are not determined in particular in relation to absolute values, but are relatively determined according to the installation environment and operating state of the refrigerant quantity management device and the refrigerant quantity management system, etc. Is.
 6 液冷媒延長配管、7 ガス冷媒延長配管、10 冷媒回路、10a 負荷側冷媒回路、10b 熱源側冷媒回路、21 圧縮機、22 過冷却器、22A 第一過冷却器、22B 第二過冷却器、23 熱源側熱交換器、24 アキュムレータ、25 レシーバ、27 熱源側ファン、28 液側閉鎖弁、29 ガス側閉鎖弁、31 熱源側制御部、32 負荷側制御部、33a 吸入温度センサ、33b 吐出温度センサ、33c 吸込み外気温度センサ、33d 過冷却器高圧側出口温度センサ、33e 負荷側熱交入口温度センサ、33f 負荷側熱交出口温度センサ、33g 吸込空気温度センサ、34a 吸入圧力センサ、34b 吐出圧力センサ、41 負荷側膨張弁、42 負荷側熱交換器、43 負荷側ファン、51 第一インジェクション回路、51A 第一インジェクション回路、52 インジェクション量調整弁、53 第二インジェクション回路、54 キャピラリチューブ、55 吸入インジェクション用電磁弁、60、60E データ収集部、70 記憶部、70A 閾値記憶部、71 運転状態判定部、72、72C 温度効率演算部、72E 温度効率演算部、73、73A、73D、73E、73F 冷媒量判定部、74、74B 出力制御部、80 表示部、81 指令ボタン、90 通信部、100 冷媒量管理装置、100A 収集演算装置、100B 冷媒量管理装置、100C 収集演算装置、100D 冷媒量管理装置、100E 冷媒量管理装置、100F 冷媒量管理装置、200 冷凍装置、200A 冷凍装置、200B 冷凍装置、200M 冷凍装置、210、210A、210B 熱源側ユニット、220、220A、220B、220C、220D 負荷側ユニット、230、230A、230B、230C、230D リモートコントローラ、300 冷媒量管理システム、C 直近期間変化量、E 臨界冷媒量、P1 目標の低圧圧力、P2 判定基準圧力、T 温度効率、Tm 冷媒量判定閾値。 6 liquid refrigerant extension pipe, 7 gas refrigerant extension pipe, 10 refrigerant circuit, 10a load side refrigerant circuit, 10b heat source side refrigerant circuit, 21 compressor, 22 subcooler, 22A first subcooler, 22B second subcooler , 23 Heat source side heat exchanger, 24 accumulator, 25 receiver, 27 heat source side fan, 28 liquid side shutoff valve, 29 gas side shutoff valve, 31 heat source side control unit, 32 load side control unit, 33a suction temperature sensor, 33b discharge Temperature sensor, 33c Suction outside air temperature sensor, 33d Supercooler high pressure side outlet temperature sensor, 33e Load side heat exchange inlet temperature sensor, 33f Load side heat exchange outlet temperature sensor, 33g Suction air temperature sensor, 34a Suction pressure sensor, 34b Discharge Pressure sensor, 41 Load side expansion valve, 42 Load side heat exchanger, 43 Load side fan, 51 1st injection circuit, 51A 1st in Injection circuit, 52 injection amount adjusting valve, 53 second injection circuit, 54 capillary tube, 55 solenoid valve for suction injection, 60, 60E data collection unit, 70 storage unit, 70A threshold storage unit, 71 operating state determination unit, 72 , 72C Temperature efficiency calculation unit, 72E Temperature efficiency calculation unit, 73, 73A, 73D, 73E, 73F Refrigerant amount determination unit, 74, 74B Output control unit, 80 display unit, 81 command button, 90 communication unit, 100 refrigerant amount management Apparatus, 100A collection arithmetic device, 100B refrigerant amount management device, 100C collection arithmetic device, 100D refrigerant amount management device, 100E refrigerant amount management device, 100F refrigerant amount management device, 200 refrigeration device, 200A refrigeration device, 200B refrigeration device, 200M refrigeration Device, 210, 210A, 210B Heat source side unit 220,220A, 220B, 220C, 220D the load-side unit, 230 and 230, 230B, 230C, 230D remote controller, 300 refrigerant amount control system, C 1 nearest period variation, E critical refrigerant amount, P1 target low-pressure pressure, P2 Judgment standard pressure, T temperature efficiency, Tm Refrigerant amount judgment threshold.

Claims (20)

  1.  圧縮機、前記圧縮機の下流に設けられた熱源側熱交換器、及び前記熱源側熱交換器の下流に設けられた過冷却器を有する熱源側ユニットと、前記過冷却器の下流に設けられた負荷側膨張弁及び前記負荷側膨張弁の下流に設けられた負荷側熱交換器を有する少なくとも1つの負荷側ユニットとが、配管で接続されて形成された冷媒回路に充填された冷媒の量を管理する冷媒量管理装置であって、
     前記冷媒の量に関する情報を記憶する記憶部と、
     前記過冷却器の出口における前記冷媒の過冷却度を、前記冷媒の凝縮温度と外気温度との差分である最大温度差で除算して温度効率を定期的に求めると共に、求めた前記温度効率を前記記憶部へ記憶させる温度効率演算部と、
     前記冷媒の量に関する情報を表示する表示部と、
     前記記憶部に記憶された、設定期間内における前記温度効率を示す情報を、前記表示部に表示させる機能をもつ出力制御部と、を有する冷媒量管理装置。
    A heat source side unit having a compressor, a heat source side heat exchanger provided downstream of the compressor, and a supercooler provided downstream of the heat source side heat exchanger, and provided downstream of the supercooler. The amount of refrigerant filled in a refrigerant circuit formed by connecting a load-side expansion valve and at least one load-side unit having a load-side heat exchanger provided downstream of the load-side expansion valve with a pipe A refrigerant amount management device for managing
    A storage unit for storing information on the amount of the refrigerant;
    The degree of supercooling of the refrigerant at the outlet of the subcooler is periodically divided by the maximum temperature difference that is the difference between the condensation temperature of the refrigerant and the outside air temperature, and the temperature efficiency is periodically obtained. A temperature efficiency calculation unit to be stored in the storage unit;
    A display unit for displaying information on the amount of the refrigerant;
    The refrigerant | coolant amount management apparatus which has an output control part with the function to display the information which shows the said temperature efficiency in the setting period memorize | stored in the said memory | storage part on the said display part.
  2.  前記温度効率演算部が求めた前記温度効率をもとに、前記冷媒が不足しているか否かを判定する冷媒量判定部をさらに有し、
     出力制御部は、前記冷媒量判定部において前記冷媒が不足しているか否かの判定が行われたときに、前記設定期間内における前記温度効率を示す情報を前記表示部に表示させるものである請求項1に記載の冷媒量管理装置。
    Based on the temperature efficiency obtained by the temperature efficiency calculation unit, further includes a refrigerant amount determination unit that determines whether or not the refrigerant is insufficient,
    The output control unit causes the display unit to display information indicating the temperature efficiency within the set period when the refrigerant amount determination unit determines whether or not the refrigerant is insufficient. The refrigerant quantity management device according to claim 1.
  3.  前記出力制御部は、前記冷媒量判定部において前記冷媒が不足していると判定された場合に、前記冷媒が不足していることを示す情報を前記表示部に表示させ、当該情報の表示に応じた表示指令を入力したときに、前記設定期間内における前記温度効率を示す情報を前記表示部に表示させるものである請求項2に記載の冷媒量管理装置。 When the refrigerant amount determination unit determines that the refrigerant is insufficient, the output control unit displays information indicating that the refrigerant is insufficient on the display unit, and displays the information. The refrigerant quantity management device according to claim 2, wherein when the corresponding display command is input, information indicating the temperature efficiency within the set period is displayed on the display unit.
  4.  前記出力制御部は、前記冷媒量判定部において前記冷媒が不足していないと判定された場合に、前記設定期間内における前記温度効率を示す情報を前記表示部に表示させるものである請求項2又は3に記載の冷媒量管理装置。 The output control unit causes the display unit to display information indicating the temperature efficiency in the set period when the refrigerant amount determination unit determines that the refrigerant is not insufficient. Or the refrigerant | coolant amount management apparatus of 3.
  5.  前記冷媒量判定部は、前記温度効率演算部において求められた前記温度効率が冷媒量判定閾値以下である場合に、前記冷媒が不足していると判定するものである請求項2~4の何れか一項に記載の冷媒量管理装置。 The refrigerant amount determination unit determines that the refrigerant is insufficient when the temperature efficiency obtained by the temperature efficiency calculation unit is equal to or less than a refrigerant amount determination threshold value. The refrigerant quantity management device according to claim 1.
  6.  前記冷媒量判定部は、現在から一定期間遡った基準時から現在までの前記温度効率の変化量である直近期間変化量に応じて前記冷媒量判定閾値を補正するものである請求項5に記載の冷媒量管理装置。 The said refrigerant | coolant amount determination part correct | amends the said refrigerant | coolant amount determination threshold value according to the latest period variation | change_quantity which is the variation | change_quantity of the said temperature efficiency from the reference time retroactive for a fixed period from the present to the present. Refrigerant quantity management device.
  7.  前記記憶部には、前記直近期間変化量を前記冷媒量判定閾値の補正量に換算する換算割合が記憶されており、
     前記冷媒量判定部は、前記直近期間変化量に前記換算割合を乗算して前記補正量を求め、当該補正量に応じて前記冷媒量判定閾値を補正するものである請求項6に記載の冷媒量管理装置。
    The storage unit stores a conversion ratio for converting the most recent period change amount into a correction amount of the refrigerant amount determination threshold value,
    The refrigerant according to claim 6, wherein the refrigerant amount determination unit is configured to obtain the correction amount by multiplying the amount of change during the most recent period by the conversion ratio, and to correct the refrigerant amount determination threshold according to the correction amount. Quantity management device.
  8.  前記記憶部には、前記直近期間変化量と前記冷媒量判定閾値の補正量とを関連付けた補正量テーブルが格納されており、
     前記冷媒量判定部は、前記直近期間変化量を前記補正量テーブルに照らして前記補正量を求め、当該補正量に応じて前記冷媒量判定閾値を補正するものである請求項6に記載の冷媒量管理装置。
    The storage unit stores a correction amount table that associates the most recent period change amount and the correction amount of the refrigerant amount determination threshold,
    The refrigerant according to claim 6, wherein the refrigerant amount determination unit obtains the correction amount by comparing the amount of change in the latest period with the correction amount table, and corrects the refrigerant amount determination threshold according to the correction amount. Quantity management device.
  9.  前記冷媒量判定閾値の情報は、前記熱源側ユニット又は前記負荷側ユニットに保持されており、
     前記冷媒量判定部は、前記冷媒が不足しているか否かを判定する際に、前記熱源側ユニット又は前記負荷側ユニットから前記冷媒量判定閾値の情報を取得するものである請求項5~8の何れか一項に記載の冷媒量管理装置。
    Information of the refrigerant amount determination threshold is held in the heat source side unit or the load side unit,
    The refrigerant amount determination unit acquires information of the refrigerant amount determination threshold from the heat source side unit or the load side unit when determining whether or not the refrigerant is insufficient. The refrigerant | coolant amount management apparatus as described in any one of these.
  10.  前記出力制御部は、前記冷媒量判定部において前記冷媒が不足しているか否かの判定が行われたとき、前記設定期間内における前記温度効率を示す情報と共に、前記冷媒量判定閾値を示す情報を前記表示部に表示させるものである請求項5~9の何れか一項に記載の冷媒量管理装置。 The output control unit includes information indicating the refrigerant amount determination threshold together with information indicating the temperature efficiency within the set period when the refrigerant amount determination unit determines whether or not the refrigerant is insufficient. The refrigerant quantity management device according to any one of claims 5 to 9, wherein the display unit displays the above.
  11.  前記冷媒量判定部は、現在から一定期間遡った基準時から現在までの前記温度効率の変化量である直近期間変化量が、前記基準時以前における前記一定期間ごとの前記温度効率の変化量から求まる経年変化量に設定量を加算した冷媒量判定基準量よりも大きい場合に、前記冷媒が不足していると判定する機能を有する請求項5~10の何れか一項に記載の冷媒量管理装置。 The refrigerant amount determination unit is configured so that the most recent period change amount, which is the change amount of the temperature efficiency from the reference time retroactive for a certain period from the present time to the present time, The refrigerant amount management according to any one of claims 5 to 10, wherein the refrigerant amount management has a function of determining that the refrigerant is insufficient when a refrigerant amount determination reference amount obtained by adding a set amount to an obtained amount of secular change is larger. apparatus.
  12.  前記出力制御部は、前記冷媒量判定部において前記冷媒が不足していると判定されたとき、少なくとも前記直近期間変化量及び前記経年変化量を示す情報を前記表示部に表示させるものである請求項11に記載の冷媒量管理装置。 The output control unit is configured to cause the display unit to display at least information indicating the most recent period change amount and the aging change amount when the refrigerant amount determination unit determines that the refrigerant is insufficient. Item 12. The refrigerant quantity management device according to Item 11.
  13.  前記冷媒回路の低圧圧力が判定基準圧力以下であるか否かを判定する運転状態判定部をさらに有し、
     前記冷媒量判定部は、前記運転状態判定部において前記低圧圧力が前記判定基準圧力以下であると判定された場合に、前記冷媒が不足しているか否かの判定を実行するものである請求項2~12の何れか一項に記載の冷媒量管理装置。
    An operation state determination unit that determines whether or not the low pressure of the refrigerant circuit is equal to or lower than a determination reference pressure;
    The said refrigerant | coolant amount determination part performs determination whether the said refrigerant | coolant is insufficient when it determines with the said low-pressure pressure being below the said determination reference pressure in the said operation state determination part. The refrigerant quantity management device according to any one of 2 to 12.
  14.  前記温度効率演算部は、前記運転状態判定部において前記低圧圧力が前記判定基準圧力以下であると判定された場合、前記熱源側ユニットから、前記圧縮機が吐出した前記冷媒の圧力である吐出圧力、前記過冷却器を通過した前記冷媒の温度である通過冷媒温度、前記熱源側熱交換器を通過する前の空気の温度である前記外気温度、及び前記圧縮機の運転周波数である圧縮機周波数のうちの少なくとも2つの情報を不安定判定データとして取得すると共に、取得した前記不安定判定データを前記記憶部に記憶させる機能を有し、
     前記冷媒量判定部は、前記運転状態判定部において前記低圧圧力が前記判定基準圧力以下であると判定され、かつ、現在における前記吐出圧力、前記通過冷媒温度、前記外気温度、及び前記圧縮機周波数のうちの少なくとも2つの情報が、前記不安定判定データのうちの少なくとも2つの情報と一致する場合に、前記冷媒が不足しているか否かの判定を実行するものである請求項13に記載の冷媒量管理装置。
    The temperature efficiency calculation unit is a discharge pressure that is a pressure of the refrigerant discharged by the compressor from the heat source side unit when the operation state determination unit determines that the low pressure is equal to or less than the determination reference pressure. A refrigerant temperature that is a temperature of the refrigerant that has passed through the supercooler, an outside air temperature that is a temperature of the air before passing through the heat source side heat exchanger, and a compressor frequency that is an operating frequency of the compressor And acquiring at least two pieces of information as instability determination data, and storing the acquired instability determination data in the storage unit,
    The refrigerant amount determination unit determines that the low-pressure pressure is equal to or lower than the determination reference pressure in the operating state determination unit, and the current discharge pressure, the passing refrigerant temperature, the outside air temperature, and the compressor frequency The determination as to whether or not the refrigerant is insufficient is performed when at least two pieces of information coincide with at least two pieces of information of the instability determination data. Refrigerant amount management device.
  15.  前記圧縮機に吸入される前記冷媒の圧力である低圧圧力が判定基準圧力以下であるか否かを判定する運転状態判定部をさらに有し、
     前記温度効率演算部は、前記運転状態判定部において前記低圧圧力が前記判定基準圧力以下であると判定された場合、前記熱源側ユニットから、前記圧縮機が吐出した前記冷媒の圧力である吐出圧力、前記過冷却器を通過した前記冷媒の温度である通過冷媒温度、前記熱源側熱交換器を通過する前の空気の温度である前記外気温度、及び前記圧縮機の運転周波数である圧縮機周波数のうちの少なくとも2つの情報を不安定判定データとして取得すると共に、取得した前記不安定判定データを前記記憶部に記憶させる機能を有し、
     前記冷媒量判定部は、現在における前記吐出圧力、前記通過冷媒温度、前記外気温度、及び前記圧縮機周波数のうちの少なくとも2つの情報が、前記不安定判定データのうちの少なくとも2つの情報と一致する場合に、前記冷媒が不足しているか否かの判定を実行するものである請求項2~12の何れか一項に記載の冷媒量管理装置。
    An operating state determination unit that determines whether or not a low-pressure pressure that is a pressure of the refrigerant sucked into the compressor is equal to or less than a determination reference pressure;
    The temperature efficiency calculation unit is a discharge pressure that is a pressure of the refrigerant discharged by the compressor from the heat source side unit when the operation state determination unit determines that the low pressure is equal to or less than the determination reference pressure. A refrigerant temperature that is a temperature of the refrigerant that has passed through the supercooler, an outside air temperature that is a temperature of the air before passing through the heat source side heat exchanger, and a compressor frequency that is an operating frequency of the compressor And acquiring at least two pieces of information as instability determination data, and storing the acquired instability determination data in the storage unit,
    In the refrigerant amount determination unit, at least two pieces of information of the current discharge pressure, the passing refrigerant temperature, the outside air temperature, and the compressor frequency coincide with at least two pieces of information of the instability determination data. The refrigerant quantity management device according to any one of claims 2 to 12, wherein when determining whether or not the refrigerant is insufficient, it is determined whether or not the refrigerant is insufficient.
  16.  前記出力制御部は、前記設定期間内における前記温度効率を示す情報を、時系列に沿ったグラフによって前記表示部に表示させるものである請求項1~15の何れか一項に記載の冷媒量管理装置。 The refrigerant amount according to any one of claims 1 to 15, wherein the output control unit displays information indicating the temperature efficiency within the set period on the display unit in a time-series graph. Management device.
  17.  前記負荷側ユニットに接続され、空調制御に関する入力操作を受け付けるリモートコントローラに搭載されている請求項1~16の何れか一項に記載の冷媒量管理装置。 The refrigerant amount management device according to any one of claims 1 to 16, wherein the refrigerant amount management device is mounted on a remote controller that is connected to the load side unit and receives an input operation related to air conditioning control.
  18.  前記出力制御部は、前記表示部に表示させる各情報を、公衆回線を介して外部機器へ出力する機能を有する請求項1~17の何れか一項に記載の冷媒量管理装置。 The refrigerant amount management device according to any one of claims 1 to 17, wherein the output control unit has a function of outputting each information to be displayed on the display unit to an external device via a public line.
  19.  情報出力用の外部接点出力端子をさらに有し、
     前記出力制御部は、前記表示部に表示させる各情報を前記外部接点出力端子に接続された外部機器へ送信する機能を有する請求項1~18の何れか一項に記載の冷媒量管理装置。
    It further has an external contact output terminal for information output,
    The refrigerant quantity management device according to any one of claims 1 to 18, wherein the output control unit has a function of transmitting each piece of information to be displayed on the display unit to an external device connected to the external contact output terminal.
  20.  圧縮機、前記圧縮機の下流に設けられた熱源側熱交換器、及び前記熱源側熱交換器の下流に設けられた過冷却器を有する熱源側ユニットと、前記過冷却器の下流に設けられた負荷側膨張弁及び前記負荷側膨張弁の下流に設けられた負荷側熱交換器を有する少なくとも1つの負荷側ユニットとが、配管で接続されて形成された冷媒回路を有する少なくとも一台の冷凍装置と、
     前記冷凍装置の前記冷媒回路に充填された前記冷媒の量を管理する請求項1~19の何れか一項に記載の冷媒量管理装置と、を有する冷媒量管理システム。
    A heat source side unit having a compressor, a heat source side heat exchanger provided downstream of the compressor, and a supercooler provided downstream of the heat source side heat exchanger, and provided downstream of the supercooler. At least one refrigeration having a refrigerant circuit formed by connecting a load side expansion valve and at least one load side unit having a load side heat exchanger provided downstream of the load side expansion valve by a pipe Equipment,
    The refrigerant quantity management system according to any one of claims 1 to 19, which manages the quantity of the refrigerant charged in the refrigerant circuit of the refrigeration apparatus.
PCT/JP2015/083556 2015-11-30 2015-11-30 Refrigerant quantity management device and refrigerant quantity management system WO2017094059A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/083556 WO2017094059A1 (en) 2015-11-30 2015-11-30 Refrigerant quantity management device and refrigerant quantity management system
JP2017553489A JP6490237B2 (en) 2015-11-30 2015-11-30 Refrigerant amount management apparatus and refrigerant amount management system
GB1806219.0A GB2557837C (en) 2015-11-30 2015-11-30 Refrigerant amount management device and refrigerant amount management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/083556 WO2017094059A1 (en) 2015-11-30 2015-11-30 Refrigerant quantity management device and refrigerant quantity management system

Publications (1)

Publication Number Publication Date
WO2017094059A1 true WO2017094059A1 (en) 2017-06-08

Family

ID=58796515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083556 WO2017094059A1 (en) 2015-11-30 2015-11-30 Refrigerant quantity management device and refrigerant quantity management system

Country Status (3)

Country Link
JP (1) JP6490237B2 (en)
GB (1) GB2557837C (en)
WO (1) WO2017094059A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053858A1 (en) * 2017-09-14 2019-03-21 三菱電機株式会社 Refrigeration cycle apparatus and refrigeration apparatus
KR20200008628A (en) * 2018-01-05 2020-01-28 일루미나, 인코포레이티드 Prediction of Reagent Cooler Instability and Flow Cell Heater Failure in Sequencing Systems
WO2021049463A1 (en) * 2019-09-09 2021-03-18 ダイキン工業株式会社 Refrigerant leakage determination system
JP2022041146A (en) * 2020-08-31 2022-03-11 株式会社富士通ゼネラル Refrigeration cycle device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163573A (en) * 1979-06-06 1980-12-19 Hitachi Ltd Device for displaying data in abnormal time
JPS60137322U (en) * 1984-02-24 1985-09-11 横河電機株式会社 display device
JPH0470975U (en) * 1990-10-31 1992-06-23
JPH07104836A (en) * 1993-09-30 1995-04-21 Toshiba Corp Trend graph alarm and display device
JPH10307622A (en) * 1997-05-02 1998-11-17 Mitsubishi Electric Corp Monitor device, and monitor controller
JP2004021949A (en) * 2002-06-20 2004-01-22 Toshiba Corp Mobile monitoring system
JP2006275303A (en) * 2005-03-28 2006-10-12 Daikin Ind Ltd Abnormality detection system
WO2008035418A1 (en) * 2006-09-21 2008-03-27 Mitsubishi Electric Corporation Refrigerating/air conditioning system having refrigerant learage detecting function, refrigerator/air conditioner and method for detecting leakage of refrigerant
JP2008196829A (en) * 2007-02-15 2008-08-28 Mitsubishi Electric Corp Air conditioner
JP4975052B2 (en) * 2009-03-30 2012-07-11 三菱電機株式会社 Refrigeration cycle equipment
JP2012132639A (en) * 2010-12-22 2012-07-12 Mitsubishi Electric Corp Refrigeration unit
WO2013183414A1 (en) * 2012-06-04 2013-12-12 ダイキン工業株式会社 Refrigeration device management system
WO2015004747A1 (en) * 2013-07-10 2015-01-15 三菱電機株式会社 Refrigeration cycle apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000148231A (en) * 1998-11-10 2000-05-26 Yokogawa Electric Corp State display device, and recording medium recorded with state display program
WO2004023994A1 (en) * 2002-08-27 2004-03-25 Dainippon Pharmaceutical Co., Ltd. Biological information trend display and its method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163573A (en) * 1979-06-06 1980-12-19 Hitachi Ltd Device for displaying data in abnormal time
JPS60137322U (en) * 1984-02-24 1985-09-11 横河電機株式会社 display device
JPH0470975U (en) * 1990-10-31 1992-06-23
JPH07104836A (en) * 1993-09-30 1995-04-21 Toshiba Corp Trend graph alarm and display device
JPH10307622A (en) * 1997-05-02 1998-11-17 Mitsubishi Electric Corp Monitor device, and monitor controller
JP2004021949A (en) * 2002-06-20 2004-01-22 Toshiba Corp Mobile monitoring system
JP2006275303A (en) * 2005-03-28 2006-10-12 Daikin Ind Ltd Abnormality detection system
WO2008035418A1 (en) * 2006-09-21 2008-03-27 Mitsubishi Electric Corporation Refrigerating/air conditioning system having refrigerant learage detecting function, refrigerator/air conditioner and method for detecting leakage of refrigerant
JP2008196829A (en) * 2007-02-15 2008-08-28 Mitsubishi Electric Corp Air conditioner
JP4975052B2 (en) * 2009-03-30 2012-07-11 三菱電機株式会社 Refrigeration cycle equipment
JP2012132639A (en) * 2010-12-22 2012-07-12 Mitsubishi Electric Corp Refrigeration unit
WO2013183414A1 (en) * 2012-06-04 2013-12-12 ダイキン工業株式会社 Refrigeration device management system
WO2015004747A1 (en) * 2013-07-10 2015-01-15 三菱電機株式会社 Refrigeration cycle apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053858A1 (en) * 2017-09-14 2019-03-21 三菱電機株式会社 Refrigeration cycle apparatus and refrigeration apparatus
JPWO2019053858A1 (en) * 2017-09-14 2020-03-26 三菱電機株式会社 Refrigeration cycle device and refrigeration device
EP3683523A4 (en) * 2017-09-14 2020-09-30 Mitsubishi Electric Corporation Refrigeration cycle apparatus and refrigeration apparatus
US11656015B2 (en) 2017-09-14 2023-05-23 Mitsubishi Electric Corporation Refrigeration cycle apparatus and refrigeration apparatus
KR20200008628A (en) * 2018-01-05 2020-01-28 일루미나, 인코포레이티드 Prediction of Reagent Cooler Instability and Flow Cell Heater Failure in Sequencing Systems
KR102316648B1 (en) 2018-01-05 2021-10-22 일루미나, 인코포레이티드 Prediction of reagent chiller instability and flow cell heater failure in sequencing systems
WO2021049463A1 (en) * 2019-09-09 2021-03-18 ダイキン工業株式会社 Refrigerant leakage determination system
JP2022041146A (en) * 2020-08-31 2022-03-11 株式会社富士通ゼネラル Refrigeration cycle device
JP7092169B2 (en) 2020-08-31 2022-06-28 株式会社富士通ゼネラル Refrigeration cycle device

Also Published As

Publication number Publication date
GB201806219D0 (en) 2018-05-30
JP6490237B2 (en) 2019-03-27
GB2557837C (en) 2020-10-21
GB2557837B (en) 2020-09-23
GB2557837A (en) 2018-06-27
JPWO2017094059A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP5334909B2 (en) Refrigeration air conditioner and refrigeration air conditioning system
JP4864110B2 (en) Refrigeration air conditioner
US20090095000A1 (en) Air conditioner
US20230134047A1 (en) Refrigeration cycle apparatus and refrigeration apparatus
WO2009157191A1 (en) Air conditioner and method for determining the amount of refrigerant therein
KR101900901B1 (en) Air conditional and method for controlling the same
JP2006292213A (en) Air conditioner
JP2008164265A (en) Air conditioner and its coolant amount determining method
JP6490237B2 (en) Refrigerant amount management apparatus and refrigerant amount management system
EP1856458A1 (en) Control of a refrigeration circuit with an internal heat exchanger
JP2019086251A (en) Control device of multi-type air conditioning device, multi-type air conditioning device, control method of multi-type air conditioning device, and control program of multi-type air conditioning device
JP5505477B2 (en) AIR CONDITIONER AND REFRIGERANT AMOUNT JUDGING METHOD FOR AIR CONDITIONER
JP6732862B2 (en) Refrigeration equipment
JP6588626B2 (en) Refrigeration equipment
JP2006292214A (en) Addition method of refrigerant amount determining function of air conditioner, and air conditioner
JP2017075760A (en) Air conditioner
JP2021081187A (en) Air conditioner
JP6373475B2 (en) Refrigerant amount abnormality detection device and refrigeration device
JP6449979B2 (en) Refrigeration equipment
JP5245576B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP6590945B2 (en) Refrigeration equipment
WO2017094172A1 (en) Air conditioning device
JP6848027B2 (en) Refrigeration equipment
JP2020169807A (en) Refrigeration equipment
JP2020159687A (en) Refrigeration cycle device and refrigeration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909689

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553489

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201806219

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20151130

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909689

Country of ref document: EP

Kind code of ref document: A1