WO2017092366A1 - 一种吸热器表面辐照度测试装置及方法 - Google Patents

一种吸热器表面辐照度测试装置及方法 Download PDF

Info

Publication number
WO2017092366A1
WO2017092366A1 PCT/CN2016/089968 CN2016089968W WO2017092366A1 WO 2017092366 A1 WO2017092366 A1 WO 2017092366A1 CN 2016089968 W CN2016089968 W CN 2016089968W WO 2017092366 A1 WO2017092366 A1 WO 2017092366A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiance
control center
heat absorber
test
data acquisition
Prior art date
Application number
PCT/CN2016/089968
Other languages
English (en)
French (fr)
Inventor
邓薇
姚方刚
郭灵山
杜景龙
范宇峰
王海民
Original Assignee
朱伯秦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朱伯秦 filed Critical 朱伯秦
Publication of WO2017092366A1 publication Critical patent/WO2017092366A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0422Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using light concentrators, collectors or condensers

Definitions

  • the present invention relates to the field of solar power generation technology, and in particular, to a heat sink surface irradiance testing device and method.
  • the existing test methods mainly include direct measurement method and indirect measurement method.
  • the direct measurement method mainly uses the optical sensor to receive the radiation to directly measure the intensity of the incident light after the optical sensor is placed in the receiving area; and the indirect measurement method is adopted by The Lambertian target is placed in the receiving area, and the CCD camera is used to measure the surface of the Lambertian target.
  • a flat plate receiving device is placed at a position where the measurement is required, and a micro light sensor that can move in the direction of incidence of the concentrated light on the flat plate receiving device.
  • the sensor scans and receives the incident light on the flat plate, and converts the optical signal into an electrical signal and transmits the coordinates of the measured point to the computer terminal, and the correspondence between the electrical signal strength and the energy flow intensity in the database.
  • the relationship converts the received electrical signal data into energy flow intensity data and matches the position coordinates of the measurement points to obtain an irradiance distribution on the plane to be measured.
  • this method is not suitable for high-light ratio tower photothermal power generation; the light sensor has a certain selectivity to the wavelength of the incident light, and the optical signal is converted into the energy flow density with the middle. There is a large error and low accuracy.
  • the Optimas analysis software is mainly used to process the captured image, and the radiant flux map and irradiance distribution of the receiving surface are obtained. Since the Lambertian target has the same reflectivity for incident light of all frequencies, the intensity of the reflected light can represent the intensity of the incident energy flow, and the gray scale of the Lambertian target material is linearly related to the energy density on the sheet surface. Thereby, the gray scale information on the focal plane can be converted into the corresponding irradiance size.
  • the CCD camera combined with the Lambertian target measurement method can only obtain the regional irradiance distribution map in the entire illumination range, and the equipment purchase cost is high, and the accuracy of the irradiance value at any point in the spot range is low.
  • the tower type photothermal power generation heat sink has a high height and is difficult to test, and the result has only a certain reference value.
  • the present invention provides a device and method for illuminating the surface irradiance of a heat absorber which can accurately reflect the true irradiance distribution of the surface of the heat absorber and is convenient to test.
  • a heat sink surface irradiance testing device comprising:
  • a light beam having a beam control port through which the focused sunlight reflected by the mirror field of the photothermal power plant passes;
  • a receiver fixed to a portion of the back of the diaphragm opposite to the beam control port, the surface of which is coated with the same coating material as the surface of the heat absorber in the photothermal power station;
  • thermopile disposed on a surface of the receiver facing away from the aperture for detecting a temperature of the surface of the receiver and generating a corresponding thermoelectromotive force
  • thermopile for converting the temperature difference electromotive force outputted by the thermopile into an irradiance value and collecting the same;
  • control center connected to one end of the data collection module, configured to receive the irradiance value collected by the data collection module and display the same;
  • the control center controls the test device to move within the spot area to collect irradiance values at different locations.
  • the data acquisition module is located outside the spot area.
  • the data acquisition module includes a signal converter and a data acquisition card, and the signal converter is configured to convert the thermoelectromotive force output of the thermopile into an irradiance value, and the data acquisition A card is used to acquire the irradiance value of the signal converter output.
  • the signal converter includes a potential/current conversion unit and a signal amplifier, and the potential/current conversion unit is configured to convert the thermoelectromotive force output of the thermopile into a current signal to the signal amplifier, The signal amplifier amplifies the current signal and sends it to the data acquisition card.
  • thermopile a heat dissipating component is disposed on the periphery of the thermopile.
  • a propulsion device is connected between the diaphragm and the control center, and the propulsion device moves the diaphragm in a spot area under the control of the control center.
  • Another object of the present invention is to provide a method for testing the surface irradiance of a heat absorber, using the above-mentioned heat absorber surface irradiance testing device, comprising the following steps:
  • the movement of the test device is controlled by the control center.
  • the movement trajectory of the test device is stored in the control center, and after the test of a specified position, the control center controls the test device to move to a next different designated position in the movement trajectory.
  • the test device By placing the test device in the concentrating area of the mirror field of the photothermal power plant, the focused solar surface reflected by the mirror field of the photothermal power plant is absorbed by a receiver covered with the same coating material as the surface material of the heat sink in the photothermal power station.
  • Light, and form a thermoelectric potential on the thermopile simply convert the thermoelectromotive force into an irradiance value to accurately measure the true irradiance of the corresponding part of the surface of the heat absorber, by performing points in the concentrating area
  • the acquisition can accurately reflect the true irradiance distribution of the surface of the heat absorber, and the test is convenient and quick.
  • FIG. 1 is a schematic structural view of a surface irradiance testing device for a heat absorber according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a method for testing the surface irradiance of a heat sink according to an embodiment of the present invention.
  • FIG 3 is a graph showing the distribution of irradiance values in the horizontal axis X and the vertical axis Y direction in one of the irradiation ranges according to an embodiment of the present invention.
  • FIG. 4 is a cloud diagram of irradiance distribution within one of the irradiation ranges of an embodiment of the present invention.
  • a heat sink surface irradiance testing device of the present invention includes a light blocking device 10, a receiver 20, a thermopile 30, a data acquisition module 40, a control center 50, and a propulsion device 60.
  • 10 is provided with a beam control port through which the focused sunlight reflected by the mirror field 1 of the photothermal power station passes; the receiver 20 is fixed on the opposite side of the aperture 10 from the beam control port, and the surface thereof is covered with the photothermal power station.
  • thermopile 30 is disposed on the surface of the receiver 20 facing away from the aperture 10 for detecting the temperature of the surface of the receiver 20 and generating a corresponding thermoelectromotive force; the data acquisition module 40 Connected to one end of the thermopile 30 for converting the temperature difference electromotive force outputted by the thermopile 30 into an irradiance value and collecting; the control center 50 is connected to one end of the data acquisition module 40 for receiving the irradiance collected by the data acquisition module 40. Value and display.
  • control center 50 can acquire irradiance values at different locations by controlling the test device to move within the spot area.
  • control center 50 is a computer that has both control, display, and analysis functions.
  • the propulsion device 60 is coupled between the aperture 10 and the control center 50 and can move the entire test device within the spot area under the control of the control center 50.
  • the data acquisition module 40 includes a signal converter and a data acquisition card, the signal converter is used to convert the temperature difference electromotive force outputted by the thermopile 30 into an irradiance value, and the data acquisition card is used to acquire the irradiance value of the signal converter output.
  • the signal converter comprises a potential/current conversion unit and a signal amplifier, and the potential/current conversion unit is configured to convert the temperature difference electromotive force outputted by the thermopile 30 into a current signal, and the signal amplifier amplifies the current signal and sends the data signal to the data acquisition card.
  • the test device is based on the principle of photothermal conversion.
  • the receiver and the heat sink of the photothermal power station receive the same irradiance, and the surface of the receiver is treated with the same coating as the surface of the heat absorber to achieve the full spectrum.
  • High absorption rate, low absorption, flat absorption, and the receiver absorbs light irradiance to produce a temperature gradient.
  • the thermopile detects the value, the corresponding thermoelectric potential is output, and then converted into a corresponding irradiance value output display by the amplifying circuit, and no conversion between the photoelectric signals occurs in the middle, but the conversion between the energy signals is directly realized, which can be accurately Reflecting the true irradiance distribution of the surface of the heat sink, the test process is simple.
  • the data acquisition module 40 can be located outside of the spot area.
  • the components of the diaphragm 10, the receiver 20, the thermopile 30, the signal transmission cable and the like are completely located in the condensing area of the mirror field, and the propulsion device 60 and the signal transmission cable are subjected to the heat treatment.
  • a heat dissipating component is disposed on the periphery of the receiver 20, and the heat dissipation mode is selected according to the illuminating ratio of the mirror field of the photothermal power station, and the stability of the material of the receiver is generally ensured by fins or water cooling.
  • the propulsion device 60 is driven by the driving mode of the motor to drive the screw, and the propulsion trajectory, that is, the movement trajectory of the testing device, can be programmed in advance and stored in the control center 50 for precise control during the testing process.
  • the receiver 20 of the present embodiment is disposed in parallel with the aperture 10, and during the test, the aperture 10 is always parallel with the portion to be tested of the heat sink in the photothermal power station, and the beam control port is a through hole on the aperture 10 and A cover plate for covering the through hole, and the shape and size of the transmitted light beam can be adjusted through the beam control port.
  • the surface irradiance test of the heat absorber includes the following steps in sequence:
  • control center 50 controls the test device to move to the next one of the movement trajectories. Different specified positions, high precision of control and automation.
  • the surface of the receiver 20 receives heat after irradiation, and a temperature difference is formed across the thermopile 30 installed on the back surface of the receiver 20 to generate a temperature difference electromotive force on the thermopile 30.
  • K is the sensitivity of the test device, indicating the ratio of the output to the input after reaching the steady state, that is, the magnitude of the micro-voltage generated by the unit irradiance.
  • the magnitude of the K value is measured by the artificial light source in the laboratory.
  • the magnitude of the irradiance E in the region can be inferred by measuring the magnitude of the output voltage, and the irradiance value is collected by the data acquisition card and stored in the computer.
  • Fig. 3 is a graph showing the distribution of irradiance values in the direction of the horizontal axis X and the vertical axis Y in accordance with the 10 mm spacing in the irradiation range of 300 mm in diameter
  • Fig. 4 is a cloud diagram of the irradiance distribution in the corresponding irradiation range.
  • the test device By placing the test device in the concentrating area of the mirror field of the photothermal power plant, the focused solar surface reflected by the mirror field of the photothermal power plant is absorbed by a receiver covered with the same coating material as the surface material of the heat sink in the photothermal power station. Light, and form a thermoelectromotive force on the thermopile, only need to convert the thermoelectric potential into an irradiance value to accurately measure the true irradiance of the corresponding part of the surface of the heat absorber, and control the test device to move in the spot area The collection of points in the concentrating area can accurately reflect the true irradiance distribution of the surface of the heat absorber, which is convenient and quick to test, and the test cost is low.
  • the tower type photothermal power station with high concentration ratio is very convenient to test, and it is not affected by the position of the heat absorber far from the ground. It also avoids the use of the light sensor to select the wavelength of the incident light and cause the conversion through the optical signal. The effect of the error of the energy flow density on the test accuracy.
  • the combination of the screw and the motor drive can realize the measurement of the point-by-point irradiance in the irradiation area, ensuring the degree of automation and the position of the measuring point; and adopting the mode of forced heat dissipation to achieve the irradiance measurement under the high concentration ratio, satisfying The test requirements of the solar thermal power station; the direct visualization of the irradiance trend line and the cloud image improves the degree of visualization of the experimental data.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种吸热器表面辐照度测试装置及测试方法,测试装置包括:光阑(10)、接收器(20)、热电堆(30)、数据采集模块(40)和控制中心(50),通过控制中心(50)控制测试装置在光斑区域内移动即可采集光热电站内的吸热器表面不同位置的辐照度值;通过将测试装置放置在光热电站镜场(1)的聚光区域内,利用表面覆有与光热电站内的吸热器表面材料相同的涂层的接收器吸收光热电站镜场(1)反射的聚焦后的太阳光,并在热电堆(30)上形成温差电动势,只需将温差电动势转换成辐照度值即可精确测出吸热器表面对应部位的真实的辐照度,通过对聚光区域内的各点进行采集即可精确反映出吸热器表面真实的辐照度分布情况,测试方便快捷。

Description

一种吸热器表面辐照度测试装置及方法 技术领域
本发明涉及太阳能发电技术领域,尤其涉及一种吸热器表面辐照度测试装置及方法。
背景技术
太阳能聚光发电的工程中,尤其是对于在我国西北区高海拔地区,风资源往往与光照资源结伴,对镜场的聚光镜和塔顶部的吸热器的稳定性产生影响,需要掌握吸热器表面能流密度在不同工况下的分布情况,对聚光焦点位置的能流密度的测量有很大的技术和经济意义。理论方面已经出现很多数学模型采用理论计算或数值模拟的方法去预测能流的分布,而这些预测需要实验测量的佐证。对焦点能流密度的测量,可直接反映吸热器表面的能量分布情况,对镜场设计及控制技术方面的能力的提升具有很大的参考价值,是提高能量利用效率的关键,对能流密度的精细测量是改进太阳能聚光镜场和吸热器效率的基础。
现有的测试方法主要有直接测量法和间接测量法,直接测量法主要是通过在接收区域安放光学传感器后,利用光学传感器接收辐射对入射光的强度直接进行测量;而间接测量法则是通过在接收区域内安放朗伯靶,利用CCD相机拍摄朗伯靶表面的方式进行测量。
利用光学传感器进行直接测量时,首先在需要测量的区域位置安放一个平板接受装置,平板接受装置上迎着聚光光线的射入方向有可以移动的微型光传感器。在测量的过程中,该传感器在平板上扫描接受入射光,并将光信号转换为电信号与所测点的坐标一并传输到计算机终端,通过数据库中的电信号强度与能流强度的对应关系,将接收到的电信号数据转化为能流强度数据,并与测量点的位置坐标匹配输出,得到待测平面上的辐照度分布。
此种方法由于光学传感器的热防护性能较弱,不太适用于高聚光比的塔式光热发电场合;光传感器对入射光的波长具有一定的选择性,通过光信号转换成能流密度具有中间存在较大的误差,准确性低。
采用CCD相机进行间接测量时,主要运用Optimas分析软件对拍摄图像处理,获得接收面辐射通量图及辐照度分布。由于朗伯靶对所有频率的入射光都有同样的反射率,使得反射光强度能代表入射能流的强度,并且拍摄到朗伯靶材料灰度与该板材面上能流密度有线性关系,从而就可以把焦面上的灰度信息转换成对应的辐照度大小。
此种CCD相机结合朗伯靶测量的方法只能得到整个光照范围内的区域性辐照度分布图,设备购置成本较高,光斑范围内任意一点的辐照度值大小的准确性较低,塔式光热发电的吸热器高度高,测试难度大,结果仅具有一定的参考价值。
发明内容
鉴于现有技术存在的不足,本发明提供了一种能精确反映出吸热器表面真实的辐照度分布情况、测试方便的吸热器表面辐照度测试装置及方法。
为了实现上述的目的,本发明采用了如下的技术方案:
一种吸热器表面辐照度测试装置,包括:
光阑,其上设有供光热电站镜场反射的聚焦后的太阳光穿过的光束控制口;
接收器,固定在所述光阑背面与所述光束控制口相对的部位,其表面覆有与光热电站内的吸热器表面材料相同的涂层;
热电堆,设于所述接收器背向所述光阑的面上,用于对所述接收器表面的温度进行检测并产生相应的温差电动势;
数据采集模块,连接在所述热电堆一端,用于将所述热电堆输出的所述温差电动势转变为辐照度值并进行采集;
控制中心,连接在所述数据采集模块一端,用于接收所述数据采集模块采集的所述辐照度值并进行显示;
所述控制中心控制测试装置在光斑区域内移动以采集不同位置的辐照度值。
进一步地,所述数据采集模块位于光斑区域外。
进一步地,所述数据采集模块包括信号转换器和数据采集卡,所述信号转换器用于将所述热电堆输出的所述温差电动势转变为辐照度值,所述数据采集 卡用于采集所述信号转换器输出的所述辐照度值。
进一步地,所述信号转换器包括电势/电流转换单元和信号放大器,所述电势/电流转换单元用于将所述热电堆输出的所述温差电动势转变为电流信号传递给所述信号放大器,所述信号放大器将电流信号放大处理后输送至所述数据采集卡。
进一步地,所述热电堆***设有散热组件。
进一步地,所述光阑和所述控制中心之间连接有推进装置,所述推进装置在所述控制中心的控制下在光斑区域内移动所述光阑。
本发明的另一目的在于提供一种吸热器表面辐照度测试方法,使用上述的吸热器表面辐照度测试装置,包括如下步骤:
S01、组装测试装置并关闭光阑上的光束控制口;
S02、将测试装置放置在光热电站镜场的聚光区域内,并使所述光阑与光热电站内的吸热器的待测部位保持平行;
S03、移动测试装置至指定位置,并打开光束控制口;
S04、观察控制中心显示的辐照度值直至达到稳态;
S05、移动测试装置至下一个指定位置;
重复步骤S04和S05直至测试完毕。
进一步地,在测试过程中,所述测试装置的移动由所述控制中心控制。
进一步地,测试装置的移动轨迹存储在所述控制中心内,在测试完一个指定位置后所述控制中心控制测试装置移动至所述移动轨迹中的下一个不同的指定位置。
通过将测试装置放置在光热电站镜场的聚光区域内,利用表面覆有与光热电站内的吸热器表面材料相同的涂层的接收器吸收光热电站镜场反射的聚焦后的太阳光,并在热电堆上形成温差电动势,只需将温差电动势转换成辐照度值即可精确测出吸热器表面对应部位的真实的辐照度,通过对聚光区域内的各点进行采集即可精确反映出吸热器表面真实的辐照度分布情况,测试方便快捷。
附图说明
图1为本发明实施例的吸热器表面辐照度测试装置的结构示意图。
图2为本发明实施例的吸热器表面辐照度测试方法的原理图。
图3为本发明实施例的其中一个辐照范围内的水平轴X和竖直轴Y方向上的辐照度值分布曲线图。
图4为本发明实施例的其中一个辐照范围内的辐照度分布云图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参阅图1,本发明的吸热器表面辐照度测试装置,包括可起遮光作用的光阑10、接收器20、热电堆30、数据采集模块40、控制中心50和推进装置60,光阑10上设有供光热电站镜场1反射的聚焦后的太阳光穿过的光束控制口;接收器20固定在光阑10背面与光束控制口相对的部位,其表面覆有与光热电站内的吸热器表面材料相同的涂层;热电堆30设于接收器20背向光阑10的面上,用于对接收器20表面的温度进行检测并产生相应的温差电动势;数据采集模块40连接在热电堆30一端,用于将热电堆30输出的温差电动势转变为辐照度值并进行采集;控制中心50连接在数据采集模块40一端,用于接收数据采集模块40采集的辐照度值并进行显示。
在测试过程中,控制中心50通过控制测试装置在光斑区域内移动可以采集不同位置的辐照度值。这里,控制中心50为计算机,兼具控制、显示和分析功能,推进装置60连接在光阑10和控制中心50之间,并可在控制中心50的控制下在光斑区域内移动整个测试装置。
进一步地,数据采集模块40包括信号转换器和数据采集卡,信号转换器用于将热电堆30输出的温差电动势转变为辐照度值,数据采集卡用于采集信号转换器输出的辐照度值。信号转换器包括电势/电流转换单元和信号放大器,电势/电流转换单元用于将热电堆30输出的温差电动势转变为电流信号传递给信号放大器,信号放大器将电流信号放大处理后输送至数据采集卡。
本测试装置以光热转换原理为基础,接收器与光热电站的吸热器接收辐照度的过程相同,将接收器表面经过与吸热器表面相同涂层处理,可实现全光谱范围内高吸收率低反射率的平坦吸收,接收器吸收光辐照度后产生温度梯度, 热电堆探测出值后输出相应的温差电动势,再经放大电路转换成对应的辐照度值输出显示,中间不出现光电信号之间的转换,而是直接实现能量信号之间的变换,能精确反映出吸热器表面真实的辐照度分布,测试过程简便。
为避免数据采集模块40在高温条件下受到损坏,数据采集模块40可以位于光斑区域外。测试装置在测试时,光阑10、接收器20、热电堆30、信号传输线缆等部件完全位于镜场聚光区域内,推进装置60和信号传输线缆经过绝热处理。接收器20***设有散热组件,其散热方式根据光热电站的镜场聚光比选择,通常采用翅片或水冷强制散热的方式保证接收器材料的稳定性。
推进装置60采用电机推动螺杆的驱动方式逐次推进,其推进轨迹即测试装置的移动轨迹,可事先编程后存储在控制中心50内以便测试过程中实现精确控制。
本实施例的接收器20与光阑10平行设置,且在测试过程中,光阑10与光热电站内的吸热器的待测部位始终平行,光束控制口为光阑10上的通孔和用于盖住通孔的盖板,通过光束控制口可以调节透过光束的形状和尺寸。
如图2,吸热器表面辐照度测试时,依次包括如下步骤:
S01、组装测试装置并关闭光阑10上的光束控制口;
S02、将测试装置放置在光热电站镜场1的聚光区域内,并使光阑10与光热电站内的吸热器的待测部位保持平行;
S03、移动测试装置至指定位置,并打开光束控制口;
S04、观察控制中心50显示的辐照度值直至达到稳态(即辐照度值不再发生明显变化);
S05、移动测试装置至下一个指定位置;最后,重复步骤S04和S05直至测试完毕。
在测试过程中,由于测试装置的移动由控制中心50控制,且测试装置的移动轨迹存储在控制中心50内,在测试完一个指定位置后控制中心50控制测试装置移动至移动轨迹中的下一个不同的指定位置,控制精度和自动化程度高。
具体测试时,接收器20表面接收辐照后产生热量,安装在接收器20背面的热电堆30两端形成温度差,在热电堆30上产生温差电动势。辐照度E越大,热电堆30两端的温差ΔT就越大,输出的电动势V也就越大。三者呈线性关系: V=K×E。其中,K为测试装置的灵敏度,表示达到稳态后,输出量与输入量之比,即单位辐照度产生的微电压大小,K值的大小是在实验室内经过人工光源的测量标定。测量过程中,通过测量输出的电压大小就可以推知区域内辐照度E的大小,由数据采集卡对辐照度值进行采集后存储至计算机内。
测试完成后,光斑区域内的所有指定位置采集到的辐照度值可以以excel表格化的结果输出,还可以根据吸热器坐标生成吸热器表面辐照度分布曲线和相应的云图。如图3为直径300mm辐照范围内,按照10mm间距对水平轴X和竖直轴Y方向上的辐照度值分布曲线图,图4为相应的辐照范围内的辐照度分布云图。
通过将测试装置放置在光热电站镜场的聚光区域内,利用表面覆有与光热电站内的吸热器表面材料相同的涂层的接收器吸收光热电站镜场反射的聚焦后的太阳光,并在热电堆上形成温差电动势,只需将温差电动势转换成辐照度值即可精确测出吸热器表面对应部位的真实的辐照度,通过控制测试装置在光斑区域内移动对聚光区域内的各点进行采集即可精确反映出吸热器表面真实的辐照度分布情况,测试方便快捷,且测试成本低。即使是对具有高聚光比的塔式光热电站进行测试也非常方便,不受吸热器位置距离地面远的影响,也避免了使用光传感器对入射光的波长具有选择性而导致通过光信号转换成能流密度的误差对测试准确性的影响。
另外,螺杆与电机驱动相结合的方式可实现辐照区域内逐点辐照度大小测量,保证了自动化程度和测点位置;采用强制散热的模式,实现高聚光比下的辐照度测量,满足光热电站的测试需求;由于可直接生成辐照度趋势线和云图,提高了实验数据的直观化程度。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (20)

  1. 一种吸热器表面辐照度测试装置,其中,包括:
    光阑,其上设有供光热电站镜场反射的聚焦后的太阳光穿过的光束控制口;
    接收器,固定在所述光阑背面与所述光束控制口相对的部位,其表面覆有与光热电站内的吸热器表面材料相同的涂层;
    热电堆,设于所述接收器背向所述光阑的面上,用于对所述接收器表面的温度进行检测并产生相应的温差电动势;
    数据采集模块,连接在所述热电堆一端,用于将所述热电堆输出的所述温差电动势转变为辐照度值并进行采集;
    控制中心,连接在所述数据采集模块一端,用于接收所述数据采集模块采集的所述辐照度值并进行显示;
    所述控制中心控制测试装置在光斑区域内移动以采集不同位置的辐照度值。
  2. 根据权利要求1所述的吸热器表面辐照度测试装置,其中,所述数据采集模块位于光斑区域外。
  3. 根据权利要求1所述的吸热器表面辐照度测试装置,其中,所述数据采集模块包括信号转换器和数据采集卡,所述信号转换器用于将所述热电堆输出的所述温差电动势转变为辐照度值,所述数据采集卡用于采集所述信号转换器输出的所述辐照度值。
  4. 根据权利要求3所述的吸热器表面辐照度测试装置,其中,所述信号转换器包括电势/电流转换单元和信号放大器,所述电势/电流转换单元用于将所述热电堆输出的所述温差电动势转变为电流信号传递给所述信号放大器,所述信号放大器将电流信号放大处理后输送至所述数据采集卡。
  5. 根据权利要求1所述的吸热器表面辐照度测试装置,其中,所述接收器***设有散热组件。
  6. 根据权利要求1所述的吸热器表面辐照度测试装置,其中,所述光阑和所述控制中心之间连接有推进装置,所述推进装置在所述控制中心的控制下在光斑区域内移动整个测试装置。
  7. 根据权利要求2所述的吸热器表面辐照度测试装置,其中,所述光阑和所述控制中心之间连接有推进装置,所述推进装置在所述控制中心的控制下在光斑区域内移动整个测试装置。
  8. 根据权利要求3所述的吸热器表面辐照度测试装置,其中,所述光阑和所述控制中心之间连接有推进装置,所述推进装置在所述控制中心的控制下在光斑区域内移动整个测试装置。
  9. 根据权利要求4所述的吸热器表面辐照度测试装置,其中,所述光阑和所述控制中心之间连接有推进装置,所述推进装置在所述控制中心的控制下在光斑区域内移动整个测试装置。
  10. 根据权利要求5所述的吸热器表面辐照度测试装置,其中,所述光阑和所述控制中心之间连接有推进装置,所述推进装置在所述控制中心的控制下在光斑区域内移动整个测试装置。
  11. 一种吸热器表面辐照度测试方法,其中,使用权利要求1所述的吸热器表面辐照度测试装置,包括如下步骤:
    S01、组装测试装置并关闭光阑上的光束控制口;
    S02、将测试装置放置在光热电站镜场的聚光区域内,并使所述光阑与光热电站内的吸热器的待测部位保持平行;
    S03、移动测试装置至指定位置,并打开光束控制口;
    S04、观察控制中心显示的辐照度值直至达到稳态;
    S05、移动测试装置至下一个指定位置;
    重复步骤S04和S05直至测试完毕。
  12. 根据权利要求11所述的吸热器表面辐照度测试方法,其中,在测试过程中,所述测试装置的移动由所述控制中心控制。
  13. 根据权利要求12所述的吸热器表面辐照度测试方法,其中,测试装置的移动轨迹存储在所述控制中心内,在测试完一个指定位置后所述控制中心控制测试装置移动至所述移动轨迹中的下一个不同的指定位置。
  14. 根据权利要求11所述的吸热器表面辐照度测试方法,其中,所述数据采集模块位于光斑区域外。
  15. 根据权利要求11所述的吸热器表面辐照度测试方法,其中,所述数据采集模块包括信号转换器和数据采集卡,所述信号转换器用于将所述热电堆输出的所述温差电动势转变为辐照度值,所述数据采集卡用于采集所述信号转换器输出的所述辐照度值。
  16. 根据权利要求15所述的吸热器表面辐照度测试方法,其中,所述信号转换器包括电势/电流转换单元和信号放大器,所述电势/电流转换单元用于将所述热电堆输出的所述温差电动势转变为电流信号传递给所述信号放大器,所述信号放大器将电流信号放大处理后输送至所述数据采集卡。
  17. 根据权利要求11所述的吸热器表面辐照度测试方法,其中,所述接收器***设有散热组件。
  18. 根据权利要求11所述的吸热器表面辐照度测试方法,其中,所述光阑和所述控制中心之间连接有推进装置,所述推进装置在所述控制中心的控制下在光斑区域内移动整个测试装置。
  19. 根据权利要求15所述的吸热器表面辐照度测试方法,其中,所述光阑和所述控制中心之间连接有推进装置,所述推进装置在所述控制中心的控制下在光斑区域内移动整个测试装置。
  20. 根据权利要求16所述的吸热器表面辐照度测试方法,其中,所述光阑和所述控制中心之间连接有推进装置,所述推进装置在所述控制中心的控制下在光斑区域内移动整个测试装置。
PCT/CN2016/089968 2015-11-30 2016-07-14 一种吸热器表面辐照度测试装置及方法 WO2017092366A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510861323.4A CN105371947B (zh) 2015-11-30 2015-11-30 一种吸热器表面辐照度测试装置及方法
CN201510861323.4 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017092366A1 true WO2017092366A1 (zh) 2017-06-08

Family

ID=55374349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089968 WO2017092366A1 (zh) 2015-11-30 2016-07-14 一种吸热器表面辐照度测试装置及方法

Country Status (2)

Country Link
CN (1) CN105371947B (zh)
WO (1) WO2017092366A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108186A (zh) * 2019-06-06 2019-08-09 中国能源建设集团陕西省电力设计院有限公司 测量太阳能镜场光斑直径的***及方法
CN110108050A (zh) * 2019-06-06 2019-08-09 中国能源建设集团陕西省电力设计院有限公司 抛物面集热光斑能量与热流密度测量***及方法
CN112880816A (zh) * 2021-01-21 2021-06-01 内蒙古工业大学 一种线性菲涅尔能流密度测试***

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105371947B (zh) * 2015-11-30 2017-10-17 黄河水电光伏产业技术有限公司 一种吸热器表面辐照度测试装置及方法
CN110108326B (zh) * 2019-06-06 2023-10-10 中国能源建设集团陕西省电力设计院有限公司 梯形集热光斑能量与热流密度测量***及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281863A (ja) * 2008-05-22 2009-12-03 Mitsubishi Electric Corp 非冷却赤外線撮像システム
CN201653545U (zh) * 2009-12-04 2010-11-24 北京卫星环境工程研究所 光电探测器探头结构及使用其的辐照均匀性测试仪
CN101936771A (zh) * 2010-08-02 2011-01-05 中国科学院长春光学精密机械与物理研究所 红外成像测温式能流密度测量装置
CN102297757A (zh) * 2011-05-20 2011-12-28 中国科学院电工研究所 一种太阳能碟式聚光器聚光性能测试方法及测试装置
CN102445287A (zh) * 2011-09-16 2012-05-09 浙江中控太阳能技术有限公司 一种表面能流密度测量***和方法
CN102607708A (zh) * 2012-04-13 2012-07-25 哈尔滨工业大学 太阳能聚集器聚集太阳能流分布的红外测量装置及太阳能流分布图的获取方法
CN102706448A (zh) * 2012-06-13 2012-10-03 哈尔滨工业大学 红外辐射照度测量仪及应用该测量仪测量红外辐射照度的方法
CN104457978A (zh) * 2014-10-20 2015-03-25 青岛农业大学 一种光辐照强度检测器及其检测方法
CN105371947A (zh) * 2015-11-30 2016-03-02 黄河水电光伏产业技术有限公司 一种吸热器表面辐照度测试装置及方法
CN205262604U (zh) * 2015-11-30 2016-05-25 黄河水电光伏产业技术有限公司 一种吸热器表面辐照度测试装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240707A (ja) * 1992-02-27 1993-09-17 Yokogawa Electric Corp 光パワー測定装置
CN101008584A (zh) * 2007-01-13 2007-08-01 中国科学院安徽光学精密机械研究所 红外光谱辐射定标***
US8569701B2 (en) * 2011-03-16 2013-10-29 Alliance For Sustainable Energy, Llc Absolute cavity pyrgeometer
CN202631108U (zh) * 2012-05-22 2012-12-26 河海大学常州校区 用于光伏组件的辐照度及温度监测***

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281863A (ja) * 2008-05-22 2009-12-03 Mitsubishi Electric Corp 非冷却赤外線撮像システム
CN201653545U (zh) * 2009-12-04 2010-11-24 北京卫星环境工程研究所 光电探测器探头结构及使用其的辐照均匀性测试仪
CN101936771A (zh) * 2010-08-02 2011-01-05 中国科学院长春光学精密机械与物理研究所 红外成像测温式能流密度测量装置
CN102297757A (zh) * 2011-05-20 2011-12-28 中国科学院电工研究所 一种太阳能碟式聚光器聚光性能测试方法及测试装置
CN102445287A (zh) * 2011-09-16 2012-05-09 浙江中控太阳能技术有限公司 一种表面能流密度测量***和方法
CN102607708A (zh) * 2012-04-13 2012-07-25 哈尔滨工业大学 太阳能聚集器聚集太阳能流分布的红外测量装置及太阳能流分布图的获取方法
CN102706448A (zh) * 2012-06-13 2012-10-03 哈尔滨工业大学 红外辐射照度测量仪及应用该测量仪测量红外辐射照度的方法
CN104457978A (zh) * 2014-10-20 2015-03-25 青岛农业大学 一种光辐照强度检测器及其检测方法
CN105371947A (zh) * 2015-11-30 2016-03-02 黄河水电光伏产业技术有限公司 一种吸热器表面辐照度测试装置及方法
CN205262604U (zh) * 2015-11-30 2016-05-25 黄河水电光伏产业技术有限公司 一种吸热器表面辐照度测试装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108186A (zh) * 2019-06-06 2019-08-09 中国能源建设集团陕西省电力设计院有限公司 测量太阳能镜场光斑直径的***及方法
CN110108050A (zh) * 2019-06-06 2019-08-09 中国能源建设集团陕西省电力设计院有限公司 抛物面集热光斑能量与热流密度测量***及方法
CN110108050B (zh) * 2019-06-06 2023-11-21 中国能源建设集团陕西省电力设计院有限公司 抛物面集热光斑能量与热流密度测量***及方法
CN110108186B (zh) * 2019-06-06 2024-02-20 中国能源建设集团陕西省电力设计院有限公司 测量太阳能镜场光斑直径的***及方法
CN112880816A (zh) * 2021-01-21 2021-06-01 内蒙古工业大学 一种线性菲涅尔能流密度测试***
CN112880816B (zh) * 2021-01-21 2022-09-23 内蒙古工业大学 一种线性菲涅尔能流密度测试***

Also Published As

Publication number Publication date
CN105371947A (zh) 2016-03-02
CN105371947B (zh) 2017-10-17

Similar Documents

Publication Publication Date Title
WO2017092366A1 (zh) 一种吸热器表面辐照度测试装置及方法
Du et al. Progress and trends in fault diagnosis for renewable and sustainable energy system based on infrared thermography: A review
CN101995233B (zh) 用于太阳精密跟踪的数字式光电角度传感器
Abuseada et al. Characterization of a new 10 kWe high flux solar simulator via indirect radiation mapping technique
CN100429478C (zh) 基于微透镜阵列的激光光束发散角测试方法
WO2016090776A1 (zh) 一种太阳能聚光器镜面测量、调整方法及其装置
CN102023083A (zh) 太阳能抛物面聚光焦斑测试装置
CN102494779B (zh) 海水表面温度红外测量***及测量方法
Schmitz et al. On-sun optical characterization of a solar dish concentrator based on elliptical vacuum membrane facets
CN105509998A (zh) 聚焦型太阳模拟器能流密度测量装置及测量方法
CN102607708A (zh) 太阳能聚集器聚集太阳能流分布的红外测量装置及太阳能流分布图的获取方法
Reddy et al. In-situ prediction of focal flux distribution for concentrating photovoltaic (CPV) system using inverse heat transfer technique for effective design of receiver
CN104792413A (zh) 激光功率计
CN107976632B (zh) 一种光电转换效率测试装置及方法
CN205664955U (zh) 极紫外光源收集镜温度的空间分布测量***
CN111323341B (zh) 颗粒聚光辐射吸收特性测量装置及其测量方法
Djafar et al. A new hybrid of photovoltaic-thermoelectric generator with hot mirror as spectrum splitter
CN205262604U (zh) 一种吸热器表面辐照度测试装置
JP2009210280A (ja) 方位センサ装置
Mlatho et al. Determination of the spatial extent of the focal point of a parabolic dish reflector using a red laser diode
CN102109413B (zh) 均匀度测量***与方法
CN109357664B (zh) 一种碟式镜面三维结构实时监控的方法
CN105823439A (zh) 基于方形光斑的四象限探测器及其测角方法
CN111162159A (zh) 一种基于光热电效应的激光轨迹***件及跟踪测试方法
CN104614070A (zh) 一种多光谱测量的光资源监测方法及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16869677

Country of ref document: EP

Kind code of ref document: A1