WO2017090599A1 - Gradient composition film, and gas barrier film and electronic device comprising same - Google Patents

Gradient composition film, and gas barrier film and electronic device comprising same Download PDF

Info

Publication number
WO2017090599A1
WO2017090599A1 PCT/JP2016/084582 JP2016084582W WO2017090599A1 WO 2017090599 A1 WO2017090599 A1 WO 2017090599A1 JP 2016084582 W JP2016084582 W JP 2016084582W WO 2017090599 A1 WO2017090599 A1 WO 2017090599A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transition metal
film
region
gradient composition
Prior art date
Application number
PCT/JP2016/084582
Other languages
French (fr)
Japanese (ja)
Inventor
森 孝博
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017552654A priority Critical patent/JPWO2017090599A1/en
Publication of WO2017090599A1 publication Critical patent/WO2017090599A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity

Definitions

  • the present invention relates to a gradient composition film, a gas barrier film and an electronic device including the gradient composition film, and more particularly relates to a gradient composition film having a high gas barrier property, a gas barrier film and an electronic device including the gradient composition film. .
  • organic electroluminescent element (hereinafter also referred to as “organic EL element”) using electroluminescence of organic material (hereinafter also referred to as “EL”) can emit light at a low voltage of several V to several tens V. It is a thin film type complete solid-state device and has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, it is applied as a backlight for various displays, display boards such as signboards and emergency lights, and surface light emitters such as illumination light sources.
  • a flexible organic EL element using a resin base material having a thin and light gas barrier layer has attracted attention, and is applied as a light source having a curved surface and a high design property.
  • the gas barrier layer studied by this method is a multi-layer stack of layers having different compositions formed by chemical vapor deposition (CVD), and also has a recently required water vapor transmission rate (Water Vapor Transmission Rate).
  • CVD chemical vapor deposition
  • Water Vapor Transmission Rate water vapor transmission rate
  • the layer is thick, it was found that there is a concern that the gas barrier property may be deteriorated, for example, when the gas barrier layer is cracked repeatedly when bent with a small diameter. Accordingly, there has been a demand for a gas barrier layer capable of obtaining a very high gas barrier property with a thinner film thickness.
  • the present invention has been made in view of the above problems and situations, and a solution to the problem is to provide a gradient composition film having a high gas barrier property, a gas barrier film and an electronic device having the same. is there.
  • the present inventor has studied the cause of the above problems, and as a result, in the detected intensity curve obtained by EDS (energy dispersive X-ray analysis) line analysis that changes in the thickness direction from the surface, It has been found that a high gas barrier property can be obtained by detecting a metal and a non-transition metal at the same time, and having an inclined region in which the detection intensity of the transition metal increases and the detection intensity of the non-transition metal decreases.
  • a gradient composition film containing a transition metal and a non-transition metal wherein the detected intensity of the transition metal and non-transition metal obtained by EDS line analysis of the cross-section of the gradient composition film changes from the surface to the thickness direction.
  • the inclined region is provided in an intermediate region between an A region which is a region containing the transition metal as a main component of the metal and a B region which is a region containing the non-transition metal as a main component of the metal.
  • a gas barrier film comprising the gradient composition film according to any one of items 1 to 7.
  • An electronic device comprising the gas barrier film according to Item 8.
  • An electronic device comprising an organic electroluminescence element.
  • the region having the non-transition metal (M1) as the main component of the metal is the B region and the region having the transition metal (M2) as the main component of the metal is the A region
  • the B region and the A region are When laminated, the non-transition metal (M1) can be diffused into the A region
  • the transition metal (M2) can be diffused into the B region
  • a region where the non-transition metal (M1) and the transition metal (M2) coexist can be formed.
  • this region has a gradient composition in which the content ratio of the non-transition metal (M1) increases and the content ratio of the transition metal (M2) decreases at the same time in the thickness direction.
  • This phenomenon is caused by the fact that the bond between the non-transition metal (M1) and the transition metal (M2) is more likely to occur than the bond between the non-transition metals (M1) or the transition metal (M2).
  • a high-density structure including a direct bond between the non-transition metal (M1) and the transition metal (M2) is formed, and thus high gas barrier properties are obtained. It is thought that it was obtained.
  • the gradient region further contains oxygen.
  • the inclined region further contains oxygen and nitrogen from the viewpoint of improving gas barrier properties.
  • the gradient composition film of the present invention is a gradient composition film containing a transition metal and a non-transition metal, and the detected intensity of the transition metal and the non-transition metal obtained by EDS line analysis of a cross section of the gradient composition film.
  • the detected intensity of the transition metal and the non-transition metal obtained by EDS line analysis of a cross section of the gradient composition film.
  • the region A is a region containing the transition metal as the main component of the metal and the region containing the non-transition metal as the main component of the metal. It is preferable to have the inclined region in an intermediate region with respect to the B region.
  • the inclined region preferably further contains oxygen, and more preferably contains oxygen and nitrogen.
  • oxygen in the inclined region, a further gas barrier property improving effect can be obtained, and in particular, by containing oxygen and nitrogen, a remarkable gas barrier property improving effect can be obtained.
  • the non-transition metal is silicon because an effect of improving gas barrier properties and transparency can be obtained.
  • the transition metal is selected from niobium (Nb), tantalum (Ta), and vanadium (V) because the effects of improving gas barrier properties and improving high temperature and high humidity durability can be obtained.
  • the thickness of the inclined region is 5 nm or more because an effect of improving the gas barrier property can be obtained.
  • the gradient composition film of the present invention can be preferably provided in a gas barrier film.
  • the gas barrier film can be provided in an electronic device.
  • the electronic device may include an organic electroluminescence element.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the gradient composition film of the present invention is a gradient composition film containing a transition metal and a non-transition metal, and the detected intensity of the transition metal and the non-transition metal obtained by EDS line analysis of a cross section of the gradient composition film.
  • the detected intensity of the transition metal and the non-transition metal obtained by EDS line analysis of a cross section of the gradient composition film.
  • the gradient composition film is a gas barrier film having an inclined region in an intermediate region between the A region and the B region.
  • the gas barrier property of the gas barrier film comprising the gradient composition film of the present invention on the substrate is measured according to JIS K 7126 when measured with a gas barrier film having the gradient composition film formed on the resin substrate.
  • -Oxygen permeability measured by a method according to 1987 is 1 ⁇ 10 -3 cm 3 / (m 2 ⁇ 24h ⁇ atm) or less
  • water vapor permeability measured by a method according to JIS K 7129-1992 25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) is preferably a high gas barrier property of 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) is 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less.
  • the layer thickness of the gas barrier layer is not particularly limited, but is preferably in the range of 5 to 1000 nm. If it is such a range, it will be excellent in high gas barrier performance, bending resistance, and cutting processability.
  • the gas barrier layer may be composed of two or more adjacent layers.
  • the “region” is a plane substantially perpendicular to the thickness direction of the gradient composition film (that is, a plane parallel to the outermost surface of the gradient composition film), and the gradient composition film has a constant or arbitrary thickness.
  • Constant means a compound constituting a specific region of the gradient composition film and a simple substance of metal or nonmetal.
  • Main component means a constituent component of the element having the highest detection intensity in the EDS line analysis applied to the present invention.
  • a region> The A region which is a transition metal-containing region refers to a region containing a transition metal as a main component of a metal.
  • the transition metal (M2) is not particularly limited, and any transition metal can be used alone or in combination.
  • the transition metal refers to a Group 3 element to a Group 11 element in the long-period periodic table, and the transition metal includes Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y , Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta , W, Re, Os, Ir, Pt, and Au.
  • Nb, Ta, V, Zr, Ti, Hf, Y, La, Ce, and the like can be cited as transition metals (M2) that can provide good gas barrier properties.
  • M2 transition metals
  • Nb, Ta, and V, which are Group 5 elements, are likely to be bonded to the non-transition metal (M1) contained in the gradient composition film, and form a dense structure based on various examination results. Since it is considered easy, it can be preferably used.
  • the transition metal (M2) is a Group 5 element (particularly Nb) and the above-mentioned non-transition metal (M1) is Si, a significant gas barrier property improvement effect can be obtained. This is presumably because the bond between Si and the Group 5 element (particularly Nb) is particularly likely to occur. Furthermore, from the viewpoint of optical properties, the transition metal (M2) is particularly preferably Nb or Ta from which a compound with good transparency can be obtained.
  • the region A preferably further contains oxygen, and more preferably contains oxygen and nitrogen. Moreover, carbon and other elements may be contained.
  • Non-transition metal-containing region B region>
  • the B region which is a non-transition metal-containing region refers to a region containing a non-transition metal as a main component of a metal.
  • the non-transition metal is preferably a non-transition metal selected from Group 12 to Group 14 metals in the long-period periodic table.
  • the non-transition metal (M1) is not particularly limited, and any metal of Group 12 to Group 14 can be used alone or in combination. Examples thereof include Si, Al, Zn, In, and Sn. Can be mentioned. Especially, it is preferable that Si, Sn, or Zn is included as the non-transition metal (M1), Si is more preferable, and Si alone is particularly preferable.
  • the B region preferably further contains oxygen, and may further contain nitrogen or carbon. Moreover, you may contain other elements.
  • the B region preferably further contains oxygen, and particularly preferably contains oxygen and nitrogen. Moreover, carbon and other elements may be contained.
  • the gradient region is a transition metal and non-transition metal detection intensity obtained by EDS line analysis of the cross section of the gradient composition film, and the transition metal detection intensity increases when measured as a detection intensity curve that changes in the thickness direction. And the area
  • the thickness of the inclined region is preferably 5 nm or more from the viewpoint of obtaining good gas barrier properties, and within the range of 5 to 100 nm from the viewpoint of achieving both gas barrier properties and productivity. More preferably, it is more preferably in the range of 7 to 50 nm.
  • the inclined region preferably contains oxygen, and may further contain nitrogen or carbon. Moreover, you may contain other elements.
  • the gradient composition film having the above-described configuration exhibits a very high gas barrier property that can be applied as a gas barrier layer for an electronic device such as an organic EL element.
  • the gradient composition film of the present invention is a gradient composition film containing a transition metal and a non-transition metal, and the detected intensity of the transition metal and the non-transition metal obtained by EDS line analysis of a cross section of the gradient composition film.
  • EDS line analysis When measured as a detection intensity curve that changes in the thickness direction from the surface, there is a slope region in which the detection intensity of the transition metal increases and the detection intensity of the non-transition metal decreases.
  • EDS (Energy Dispersive X-ray Spectroscopy) line analysis has the feature that it can detect elements with high speed and high sensitivity with high accuracy.
  • a cross-sectional observation sample processed into a thin film having a thickness of about 60 nm by FIB processing is used as the sample.
  • the substrate on which the gradient composition film is formed it is preferable to use a sample in which the gradient composition film is formed on a highly rigid substrate.
  • an EDS line analysis of the sample cross section was performed using an atomic resolution analytical electron microscope: JEM-ARM200F (manufactured by JEOL) under the condition of acceleration voltage: 200.0 kV, and within the range including the gradient composition film of the gas barrier layer.
  • a detection intensity curve that changes in the thickness direction of the element is obtained.
  • the detection intensity curve is obtained by plotting the detection intensity of each element on the vertical axis and the distance in the thickness direction on the horizontal axis.
  • the interval between the measurement points in the thickness direction is preferably 2 nm or less.
  • a data obtained by removing a wavelength component having a wavelength of less than 5 nm from raw data of a measured detection intensity curve is used as a detection intensity curve.
  • Removal of wavelength components with a wavelength of less than 5 nm can be performed by using Fourier analysis (fast Fourier transform). Specifically, for example, calculation can be performed using Fourier analysis of an analysis tool which is a data analysis function of a commercially available spreadsheet software Excel (registered trademark) manufactured by Microsoft Corporation.
  • the element is detected in the thickness direction from the surface having a low transition metal content to the surface having a high transition metal content.
  • the increase or decrease of the detection intensity is performed in the detection intensity curve that has been subjected to the noise component removal process described above.
  • An increase or decrease means an increase exceeding a certain range, and a decrease means a decrease below the certain range.
  • the certain range refers to a region that continuously increases or decreases within a range of intensity of 20% or more with respect to the maximum detected intensity of each element.
  • FIG. 2A is a detection intensity curve before removing wavelength components of Si, Nb, and O having a wavelength of less than 5 nm plotted in the thickness direction
  • FIG. 2B is a detection intensity curve of removing wavelength components having a wavelength of less than 5 nm. is there.
  • the inclined region can be obtained as 13 nm as shown in FIG. 2B.
  • a gas barrier film By providing the gradient composition film of the present invention on a resin substrate, a gas barrier film can be obtained.
  • a resin substrate a general plastic film described later can be used.
  • the gradient composition film can be formed directly on the resin substrate. Moreover, after forming on inorganic base materials, such as glass, it can also peel-transfer on a plastic film, and can also form.
  • the plastic film used is not particularly limited in material, thickness and the like as long as it can hold an underlayer, a gas barrier layer, and the like, and can be appropriately selected according to the purpose of use.
  • Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide.
  • Resin Cellulose acylate resin, Polyurethane resin, Polyether ether ketone resin, Polycarbonate resin, Alicyclic polyolefin resin, Polyarylate resin, Polyether sulfone resin, Polysulfone resin, Cycloolefin copolymer, Fluorene ring modified polycarbonate resin, Alicyclic Examples thereof include thermoplastic resins such as modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
  • the thickness of the resin substrate is preferably about 5 to 500 ⁇ m, more preferably 15 to 250 ⁇ m.
  • transition metal (M2) examples include Nb, Ta, V, Zr, Ti, Hf, Y, La, Ce, and the like from the viewpoint of obtaining good gas barrier properties as described above.
  • Nb, Ta, and V which are Group 5 elements, can be preferably used because they are likely to be bonded to the non-transition metal (M1) contained in the gradient composition film.
  • the formation of the layer containing the transition metal (M2) is not particularly limited.
  • using a conventionally known vapor deposition method using an existing thin film deposition technique efficiently forms the inclined region. It is preferable from the viewpoint.
  • the vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, ion plating, and ion assist vapor deposition, plasma CVD (chemical vapor deposition), and ALD. Examples thereof include a chemical vapor deposition (CVD) method such as an (Atomic Layer Deposition) method.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • bipolar sputtering, magnetron sputtering, dual magnetron sputtering (DMS) using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more.
  • the target application method is appropriately selected according to the target type, and any of DC (direct current) sputtering, DC pulse sputtering, AC sputtering, and RF (high frequency) sputtering may be used.
  • a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used.
  • a metal oxide film can be formed at a high film formation speed, which is preferable.
  • the inert gas used for the process gas He, Ne, Ar, Kr, Xe, or the like can be used, and Ar is preferably used.
  • oxygen, nitrogen, and carbon can be contained in the A region by introducing oxygen, nitrogen, carbon dioxide, and carbon monoxide into the process gas.
  • the film formation conditions in the sputtering method include the degree of vacuum, magnetic force, applied power, discharge current, discharge voltage, process gas supply amount, time, and the like. These depend on the sputtering apparatus, film material, layer thickness, etc. It can be appropriately selected depending on the case.
  • the sputtering method may be multi-source simultaneous sputtering using a plurality of sputtering targets including a transition metal (M2) alone or its oxide.
  • a transition metal (M2) alone or its oxide.
  • the film forming conditions for carrying out the co-evaporation method include the ratio of the transition metal (M2) and oxygen in the film forming raw material, the ratio of the inert gas to the reactive gas during the film forming, and the film forming process.
  • One or two or more conditions selected from the group consisting of the gas supply amount, the degree of vacuum during film formation, and the power during film formation are exemplified, and these film formation conditions (preferably oxygen content)
  • the composition can be controlled by adjusting the pressure.
  • the method for forming the B region containing the non-transition metal (M1) is not particularly limited, and for example, a vapor deposition method can be used by a known method.
  • the vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, ion plating, and ion assisted vapor deposition, plasma CVD (chemical vapor deposition), and ALD. Examples thereof include a chemical vapor deposition (CVD) method such as an (Atomic Layer Deposition) method.
  • PVD physical vapor deposition
  • a method of forming by a wet coating method using a polysilazane-containing coating solution containing Si as a non-transition metal is also a preferable method.
  • the “polysilazane” used in the present invention is a polymer having a silicon-nitrogen bond in the structure, and is composed of Si—N, Si—H, NH, etc., SiO 2 , Si 3 N 4 and intermediate solid solutions of both. It is a ceramic precursor inorganic polymer such as SiO x N y .
  • polysilazane polysilazane which is modified to silicon oxide, silicon nitride, and / or silicon oxynitride at a relatively low temperature as described in JP-A-8-112879 can be preferably used.
  • polysilazane those having the following structure are preferably used.
  • R 1 , R 2 and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
  • R 1 , R 2 and R 3 may each be the same or different.
  • PHPS perhydropolysilazane
  • the organopolysilazane in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like has an alkyl group such as a methyl group, so that the adhesion to the base substrate is improved and the polysilazane which is hard and brittle It is possible to impart toughness to the ceramic film produced by the above, and there is an advantage that generation of cracks can be suppressed even when the film thickness is increased.
  • these perhydropolysilazane and organopolysilazane may be selected as appropriate and may be used in combination.
  • Perhydropolysilazane is presumed to have a structure in which a linear structure and a ring structure centered on a 6- and / or 8-membered ring coexist.
  • the molecular weight of polysilazane is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and is a liquid or solid substance, and varies depending on the molecular weight.
  • polysilazane compounds are commercially available in a solution state dissolved in an organic solvent, and the commercially available product can be used as a polysilazane compound-containing coating solution as it is.
  • polysilazanes that are ceramicized at a low temperature include silicon alkoxide-added polysilazanes obtained by reacting the above polysilazanes with silicon alkoxides (Japanese Patent Laid-Open No. 5-238827), and glycidol-added polysilazanes obtained by reacting glycidol (specially No. 6-122852), an alcohol-added polysilazane obtained by reacting an alcohol (Japanese Patent Laid-Open No. 6-240208), and a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate (Japanese Patent Laid-Open No. 6-299118). No.
  • acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal fine particle-added polysilazane obtained by adding metal fine particles (JP-A-7- 1969 6 No.), and the like.
  • Coating liquid containing polysilazane As an organic solvent for preparing a coating liquid containing polysilazane, it is preferable to avoid using an alcohol or water-containing one that easily reacts with polysilazane.
  • organic solvents include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, ethers such as halogenated hydrocarbon solvents, aliphatic ethers, and alicyclic ethers. Can be used.
  • organic solvents such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran.
  • organic solvents may be selected according to the purpose such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of organic solvents may be mixed.
  • the concentration of polysilazane in the coating liquid containing polysilazane varies depending on the film thickness of the target first gas barrier layer and the pot life of the coating liquid, but is preferably about 0.2 to 35% by mass.
  • an amine or metal catalyst can be added to the coating liquid containing polysilazane in order to promote modification to silicon oxide, silicon nitride, and / or silicon oxynitride.
  • a polysilazane solution containing a catalyst such as NAX120-20, NN120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, SP140 manufactured by AZ Electronic Materials Co., Ltd. as a commercial product is used. be able to.
  • these commercial items may be used independently and may be used in mixture of 2 or more types.
  • the addition amount of the catalyst is adjusted to 2% by mass or less with respect to polysilazane in order to avoid excessive silanol formation by the catalyst, decrease in film density, increase in film defects, and the like. It is preferable.
  • the coating liquid containing polysilazane can contain an inorganic precursor compound in addition to polysilazane.
  • the inorganic precursor compound other than polysilazane is not particularly limited as long as a coating liquid can be prepared.
  • compounds other than polysilazane described in paragraphs “0110” to “0114” of JP2011-143577A can be appropriately employed.
  • An organometallic compound of a metal element other than Si can be added to the coating liquid containing polysilazane.
  • an organometallic compound of a metal element other than Si By adding an organometallic compound of a metal element other than Si, the replacement of N atom and O atom of polysilazane is promoted in the coating and drying process, and the coating composition can be changed to a stable composition close to SiO 2 after drying. it can.
  • metal elements other than Si include aluminum (Al), titanium (Ti), zirconium (Zr), zinc (Zn), gallium (Ga), indium (In), chromium (Cr), iron (Fe), Magnesium (Mg), tin (Sn), nickel (Ni), palladium (Pd), lead (Pb), manganese (Mn), lithium (Li), germanium (Ge), copper (Cu), sodium (Na), Examples include potassium (K), calcium (Ca), cobalt (Co), boron (B), beryllium (Be), strontium (Sr), barium (Ba), radium (Ra), thallium (Tl), and the like.
  • Al, B, Ti and Zr are preferable, and among them, an organometallic compound containing Al is preferable.
  • Examples of the aluminum compound applicable to the present invention include aluminum isopoloxide, aluminum-sec-butyrate, titanium isopropoxide, aluminum triethylate, aluminum triisopropylate, aluminum tritert-butylate, aluminum tri-n- Examples include butyrate, aluminum tri-sec-butylate, aluminum ethyl acetoacetate / diisopropylate, acetoalkoxyaluminum diisopropylate, aluminum diisopropylate monoaluminum-t-butylate, aluminum trisethylacetoacetate, aluminum oxide isopropoxide trimer, etc. be able to.
  • Specific commercial products include, for example, AMD (aluminum diisopropylate monosec-butyrate), ASBD (aluminum secondary butyrate), ALCH (aluminum ethyl acetoacetate / diisopropylate), ALCH-TR (aluminum trisethyl acetoate).
  • the temperature is preferably raised to 30 to 100 ° C. and maintained for 1 minute to 24 hours with stirring.
  • the content of the additive metal element in the polysilazane-containing layer constituting the gas barrier film according to the present invention is preferably 0.05 to 10 mol%, more preferably 100 mol% of silicon (Si). Is 0.5 to 5 mol%.
  • the ratio of the non-transition metal (M1) and oxygen in the deposition raw material, the ratio of the inert gas and the reactive gas during the deposition, Inclination by adjusting one or more conditions selected from the group consisting of the gas supply amount during film formation, the degree of vacuum during film formation, the magnetic force during film formation, and the power during film formation Regions can be formed.
  • a film forming raw material type (polysilazane type or the like) containing the non-transition metal (M1), a catalyst type, a catalyst content, a coating film thickness, and a drying temperature.
  • the inclined region can be formed by adjusting one or more conditions selected from the group consisting of time, reforming method, and reforming conditions.
  • the A region is formed by the above-described vapor deposition method
  • the ratio of the transition metal (M2) and oxygen in the deposition material for example, the ratio of the inert gas and the reactive gas during the deposition
  • An inclined region by adjusting one or more conditions selected from the group consisting of the gas supply amount during film formation, the degree of vacuum during film formation, the magnetic force during film formation, and the power during film formation Can be formed.
  • the formation conditions of the method for forming the A region and the B region can be appropriately adjusted and controlled.
  • a desired thickness can be obtained by controlling the deposition time.
  • the gradient composition film of the present invention is formed as a layer to be peeled through a peeling layer on a substrate such as glass as in the peeling method described in JP-A-2015-173249, and then the layer to be peeled is formed of a plastic. It can also be transferred to a film and function as a gas barrier film. Moreover, it can transfer to electronic devices, such as an organic electroluminescent (EL) element, and can also function as a sealing layer.
  • EL organic electroluminescent
  • Such a method of forming a gradient composition film makes it easy to manage the cleanliness of the process of forming a thin gas barrier layer or sealing layer in a light, thin, or flexible electronic device. It is preferable from the viewpoint of improving the yield.
  • the first step of forming a release layer on the substrate, the first layer in contact with the release layer on the release layer, and the release target including the gradient composition film of the present invention It is preferable to form the gradient composition film as a layer to be peeled by a peeling method having a second step of forming a layer and a third step of separating the peeling layer and the layer to be peeled.
  • a step of forming a starting point of peeling may be provided between the second step and the third step.
  • a peeling layer 103 with a thickness of less than 10 nm is formed over a manufacturing substrate 101, and then, as a second step, a layer to be peeled 105 is formed on the peeling layer 103 (FIG. 1A).
  • a layer to be peeled 105 is formed on the peeling layer 103 (FIG. 1A).
  • an example in which an island-shaped release layer is formed is shown, but the present invention is not limited thereto.
  • the layer to be peeled 105 may be formed in an island shape.
  • the layer to be peeled 105 when the layer to be peeled 105 is peeled from the manufacturing substrate 101, peeling occurs in the interface between the manufacturing substrate 101 and the peeling layer 103, the interface between the peeling layer 103 and the layer to be peeled 105, or the peeling layer 103.
  • Select material In this embodiment, the case where separation occurs at the interface between the separation layer 105 and the separation layer 103 is illustrated; however, the present invention is not limited to this depending on the combination of materials used for the separation layer 103 and the separation layer 105. Note that in the case where the layer to be peeled 105 has a stacked structure, a layer in contact with the peeling layer 103 is particularly referred to as a first layer.
  • the thickness of the peeling layer 103 is, for example, less than 10 nm, preferably 8 nm or less, more preferably 5 nm or less, and further preferably 3 nm or less.
  • the thickness of the release layer 103 may be, for example, 0.1 nm or more, preferably 0.5 nm or more, more preferably 1 nm or more.
  • a thicker release layer 103 is preferable because a uniform film can be formed.
  • the thickness of the release layer 103 is preferably 1 nm or more and 8 nm or less. In this embodiment, a tungsten film with a thickness of 5 nm is used.
  • the thickness of the release layer 103 is desirably as described above over the entire layer.
  • the peeling layer 103 may have a region with the above thickness at least in part.
  • the release layer 103 may have a region with the above-described thickness in a region of 50% or more of the release layer, more preferably in a region of 90% or more of the release layer. That is, in one embodiment of the present invention, part of the peeling layer 103 may have a region with a thickness of less than 0.1 mm or a region with a thickness of 10 nm or more.
  • the manufacturing substrate 101 a substrate having heat resistance that can withstand at least a processing temperature in the manufacturing process is used.
  • a glass substrate, a quartz substrate, a sapphire substrate, a semiconductor substrate, a ceramic substrate, a metal substrate, a resin substrate, a plastic substrate, or the like can be used.
  • a large glass substrate is preferably used as the manufacturing substrate 101 in order to improve mass productivity.
  • the third generation 550 mm ⁇ 650 mm
  • the third generation 600 mm ⁇ 720 mm, or 620 mm ⁇ 750 mm
  • the fourth generation (680 mm ⁇ 880 mm, or 730 mm ⁇ 920 mm)
  • the fifth generation (1100 mm ⁇ 1300 mm
  • 6th generation (1500 mm ⁇ 1850 mm
  • 7th generation (1870 mm ⁇ 2200 mm
  • 8th generation (2200 mm ⁇ 2400 mm
  • 9th generation 2400 mm ⁇ 2800 mm, 2450 mm ⁇ 3050 mm
  • 10th generation 2950 mm ⁇ 3400 mm
  • a glass substrate or a glass substrate larger than this can be used.
  • an insulating film such as a silicon oxide film, a silicon oxynitride film, a silicon nitride film, or a silicon nitride oxide film is formed as a base film between the manufacturing substrate 101 and the separation layer 103. It is preferable because contamination from the glass substrate can be prevented.
  • the separation layer 103 includes an element selected from tungsten (W), molybdenum (Mo), titanium, tantalum, niobium, nickel, cobalt, zirconium, zinc, ruthenium, rhodium, palladium, osmium, iridium, and silicon, and the element.
  • An alloy material or a compound material containing the element can be used.
  • the crystal structure of the layer containing silicon may be any of amorphous, microcrystalline, and polycrystalline.
  • a metal oxide such as aluminum oxide, gallium oxide, zinc oxide, titanium dioxide, indium oxide, indium tin oxide, indium zinc oxide, or In—Ga—Zn oxide may be used. It is preferable to use a refractory metal material such as tungsten, titanium, or molybdenum for the separation layer 103 because the degree of freedom in the formation process of the separation layer 105 is increased.
  • the peeling layer 103 is formed by, for example, sputtering, CVD (Chemical Vapor Deposition) (plasma CVD, thermal CVD, MOCVD (Metal Organic CVD), etc.), ALD (Atomic Layer Deposition), coating (spin coating, (Including a droplet discharge method, a dispensing method, and the like), a printing method, a vapor deposition method, and the like.
  • CVD Chemical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • MOCVD Metal Organic CVD
  • ALD Atomic Layer Deposition
  • coating spin coating, (Including a droplet discharge method, a dispensing method, and the like), a printing method, a vapor deposition method, and the like.
  • the separation layer 103 has a single-layer structure, it is preferable to form a tungsten film, a molybdenum film, or a film containing a mixture of tungsten and molybdenum.
  • a film containing tungsten oxide or oxynitride, a film containing molybdenum oxide or oxynitride, or a film containing an oxide or oxynitride of a mixture of tungsten and molybdenum may be formed.
  • the mixture of tungsten and molybdenum corresponds to, for example, an alloy of tungsten and molybdenum.
  • the surface of a film containing tungsten is subjected to thermal oxidation treatment, oxygen plasma treatment, nitrous oxide (N 2 O) plasma treatment, treatment with a solution having strong oxidizing power such as ozone water, and the like to form tungsten oxide.
  • a containing film may be formed.
  • Plasma treatment and heat treatment may be performed in oxygen, nitrogen, nitrous oxide alone, or a mixed gas atmosphere of the gas and other gases.
  • tungsten film with a thickness of less than 10 nm by using a tungsten film with a thickness of less than 10 nm, it is possible to easily perform separation with a small separation force in the third step, so that the plasma treatment or the heat treatment is not performed. Good. This is preferable because it can simplify the peeling process and the manufacturing process of the apparatus.
  • a gas barrier layer including the gradient composition film of the present invention in contact with the peeling layer 103 is produced. Furthermore, a functional element may be fabricated on the gas barrier layer including the gradient composition film.
  • FIG. 1B corresponds to a cross-sectional view taken along the alternate long and short dash line A1-A2 in FIG. 1C.
  • 1C is a plan view seen from the substrate 109 (not shown) side.
  • the bonding layer 107 is preferably disposed so as to overlap with the peeling layer 103 and the peeled layer 105. 1B and 1C, the end portion of the bonding layer 107 is preferably not positioned outside the end portion of the release layer 103.
  • a starting point of peeling is formed by irradiation with laser light (step of forming a starting point of peeling) (FIGS. 1B and 1D).
  • the laser light is applied to a region where the cured bonding layer 107, the layer to be peeled 105, and the peeling layer 103 overlap (see arrow P1 in FIG. 1B).
  • the laser light may be irradiated from either side of the substrate, but it is preferable to irradiate from the side of the manufacturing substrate 101 provided with the release layer 103 in order to suppress the scattered light from being irradiated to the functional element or the like. .
  • a material that transmits the laser light is used for the substrate on the laser light irradiation side.
  • At least the first layer (the layer included in the layer to be peeled 105 and in contact with the peeling layer 103) is cracked (to cause film cracking or cracking), thereby removing a part of the first layer, A starting point can be formed (see the area enclosed by the dotted line in FIG. 1D).
  • the first layer not only the first layer but also other layers of the layer to be peeled 105, the peeling layer 103, and part of the bonding layer 107 may be removed.
  • the formation method of the starting point of peeling is not ask
  • the force for separating the layer to be peeled 105 and the peeling layer 103 is concentrated on the starting point of peeling, so that the starting point of peeling is formed near the end rather than the central part of the cured bonding layer 107.
  • a starting point of peeling in the form of a solid line or a broken line by continuously or intermittently irradiating a laser beam in the vicinity of the end of the bonding layer 107 because the peeling becomes easy.
  • laser used to form the starting point of peeling there is no particular limitation on the laser used to form the starting point of peeling.
  • a continuous wave laser or a pulsed laser can be used.
  • Laser light irradiation conditions frequencies, power density, energy density, beam profile, and the like are appropriately controlled in consideration of the thickness, material, and the like of the manufacturing substrate 101 and the separation layer 103.
  • the layer to be peeled 105 and the manufacturing substrate 101 are separated from the starting point of the peeling (FIGS. 1E and 1F).
  • the layer 105 to be peeled can be transferred from the manufacturing substrate 101 to the substrate 109.
  • the manufacturing substrate 101 may be fixed to an adsorption stage, and the layer to be peeled 105 may be peeled from the manufacturing substrate 101.
  • the substrate 109 may be fixed to the suction stage and the manufacturing substrate 101 may be peeled from the substrate 109.
  • the bonding layer 107 formed outside the separation starting point remains on at least one of the manufacturing substrate 101 and the substrate 109.
  • 1E and 1F show examples that remain on both sides, but the present invention is not limited to this.
  • the layer to be peeled 105 and the manufacturing substrate 101 may be separated from the starting point of peeling by a physical force (a process of peeling with a human hand or a jig, a process of separating while rotating a roller, or the like).
  • the manufacturing substrate 101 and the layer to be peeled 105 may be separated by infiltrating a liquid such as water into the interface between the peeling layer 103 and the layer to be peeled 105.
  • the liquid can be easily separated by permeating between the peeling layer 103 and the peeled layer 105 by capillary action.
  • static electricity generated at the time of peeling can be prevented from adversely affecting the functional elements included in the layer to be peeled 105 (such as a semiconductor element being destroyed by static electricity).
  • the liquid may be sprayed in the form of mist or steam.
  • pure water, an organic solvent, or the like can be used, and a neutral, alkaline, or acidic aqueous solution, an aqueous solution in which a salt is dissolved, or the like may be used.
  • the bonding layer 107 that does not contribute to adhesion between the layer to be peeled 105 and the substrate 109 remaining on the substrate 109 after the separation may be removed. By removing, it is possible to suppress adverse effects on the functional elements in the subsequent steps (mixing of impurities, etc.), which is preferable. For example, unnecessary resin can be removed by wiping, washing, or the like.
  • a peeling starting point is formed by laser light irradiation, and the peeling layer 103 and the layer to be peeled 105 are easily peeled, and then peeling is performed. Thereby, the yield of a peeling process can be improved.
  • the gas barrier film of the present invention exhibits excellent gas barrier properties and transparency, and is used for electronic devices such as photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. It can be used for various applications such as a barrier film and an electronic device using the same.
  • a gas barrier film having a gas barrier layer formed by the transfer method as described above also has excellent bending resistance. For this reason, it can be preferably used also for an electronic device imparted with bending resistance.
  • Examples of the electronic device body used in the electronic device of the present invention include, for example, an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, a solar cell (PV), and the like. be able to. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic device body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
  • organic EL element organic electroluminescence element
  • LCD liquid crystal display element
  • PV solar cell
  • An organic EL element that is a representative example of an electronic device to which the gradient composition film of the present invention is applied includes, for example, an anode, a first organic functional layer group, a light emitting layer, a second organic functional layer group, and a cathode on a transparent substrate. It is configured by stacking.
  • the first organic functional layer group includes, for example, a hole injection layer, a hole transport layer, an electron blocking layer, and the like
  • the second organic functional layer group includes, for example, a hole blocking layer, an electron transport layer, and an electron injection layer. Etc.
  • Each of the first organic functional layer group and the second organic functional layer group may be composed of only one layer, or the first organic functional layer group and the second organic functional layer group may not be provided.
  • Anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode ii) Anode / hole injection transport layer / light emitting layer / hole blocking layer / electron injection transport layer / cathode (iii) Anode / Hole injection transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron injection transport layer / Cathode (iv) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (v) Anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / Electron transport layer / electron injection layer / cathode (vi) anode / hole injection layer / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode
  • the element may have a non-light emitting intermediate layer.
  • Example 1 ⁇ Preparation of release layer-formed substrate >> A silicon oxynitride film having a thickness of about 200 nm was formed as a base film on a non-alkali glass plate (thickness 0.7 mm) having a size of 50 mm ⁇ 50 mm.
  • the silicon oxynitride film was formed by plasma CVD under the conditions of silane gas and N 2 O gas flow rates of 10 sccm and 1200 sccm, power supply power 30 W, pressure 22 Pa, and substrate temperature 330 ° C.
  • a tungsten film was formed as a release layer on the base film.
  • the thickness of the tungsten film was 30 nm.
  • the tungsten film was formed by sputtering under the conditions of an Ar gas flow rate of 100 sccm, a power supply power of 60 kW, a pressure of 2 Pa, and a substrate temperature of 100 ° C.
  • N 2 O plasma treatment nitrous oxide (N 2 O) plasma treatment was performed.
  • the flow rate of N 2 O gas was 100 sccm, source power 500 W, pressure 100 Pa, a substrate temperature of 330 ° C., was carried out under conditions of 240 seconds.
  • a film-forming time was set to a thickness of 150 nm on the release layer of the produced release layer-forming substrate by sputtering to form a silicon oxide layer as the first layer (B region).
  • a magnetron sputtering apparatus manufactured by Canon Anelva: Model EB1100
  • a commercially available polycrystalline silicon target was used as the target.
  • Film formation by RF method was performed using Ar and O 2 as process gases.
  • the sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa.
  • a film formation time was set on the silicon oxide layer so as to have a thickness of 30 nm, and a niobium oxide layer was formed.
  • a commercially available oxygen-deficient niobium oxide target (Nb 12 O 29 ) was used as the target.
  • the process gas used and Ar and O 2 the O 2 partial pressure of 12%, a film was formed by DC method.
  • the sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa. In this way, Sample 1 was obtained.
  • a dibutyl ether solution containing 20% by mass of perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH) ))
  • a dibutyl ether solution (NAX120-20, manufactured by AZ Electronic Materials Co., Ltd.) containing 20% by mass of perhydropolysilazane in a ratio of 4: 1 (mass ratio), and further for adjusting the dry film thickness Dilution with dibutyl ether prepared a coating solution having a solid content of 5% by mass.
  • a coating solution was applied by spin coating so as to have a dry film thickness shown in Table 1 below, and dried at 80 ° C. for 2 minutes.
  • vacuum ultraviolet irradiation treatment was performed on the dried coating film using a vacuum ultraviolet irradiation apparatus having an Xe excimer lamp having a wavelength of 172 nm under the condition that the irradiation energy was 5 J / cm 2 .
  • the irradiation atmosphere was replaced with nitrogen, and the oxygen concentration was set to 0.1% by volume.
  • the stage temperature for installing the sample was set to 80 ° C.
  • a niobium oxide layer was formed on the polysilazane-containing layer in the same manner as in Sample 1, except that the film formation time was set to be 20 nm. In this way, Sample 2 was obtained.
  • Sample 3 was obtained in the same manner as Sample 2, except that the vacuum ultraviolet irradiation treatment was not performed.
  • Sample 4 was obtained in the same manner as Sample 3, except that the coating solution containing polysilazane was changed as follows.
  • a dibutyl ether solution of 20% by mass of perhydropolysilazane manufactured by AZ Electronic Materials Co., Ltd., NAX120-20
  • a liquid A diluted so as to be 5% by mass was prepared. The coating solution was adjusted in a glove box.
  • an aluminum compound liquid B was prepared by diluting aluminum ethyl acetoacetate diisopropylate with dibutyl ether so that the solid content concentration was 5 mass%.
  • Si and aluminum compound liquid B are mixed so that the Al / Si atomic ratio is 0.01, heated to 80 ° C. while stirring, held at 80 ° C. for 2 hours, and then to room temperature (25 ° C.). Slowly cooled. In this way, a coating solution having a solid content of 5% by mass was prepared.
  • Sample 5 was obtained in the same manner as Sample 1, except that the niobium oxide layer was not formed and the film formation time was set so that the thickness of the silicon oxide layer was 200 nm.
  • Sample 6 was obtained in the same manner as Sample 3, except that the niobium oxide layer was not formed.
  • Sample 7 was obtained in the same manner as Sample 3, except that the niobium oxide layer was changed to a silicon oxide layer.
  • the film formation time of the silicon oxide layer was set according to the method for preparing Sample 1 so that the thickness of the silicon oxide layer was 20 nm.
  • the thickness of each layer was obtained in advance by obtaining a calibration curve of the sputtering time and the thickness of the layer to be formed, and adjusting the sputtering film forming time to form the film to the thickness of each layer. .
  • Sample 8 was obtained in the same manner as Sample 1, except that the silicon oxide layer was not formed and the film formation time was set so that the thickness of the niobium oxide layer was 100 nm.
  • ⁇ Detection intensity curve of gradient composition film> An extremely thin section (thickness: about 60 nm) of the gradient composition film (gas barrier layer) on the glass substrate prepared above was prepared, and an acceleration voltage: 200.0 kV using an atomic resolution analysis electron microscope: ARM200F (manufactured by JEOL). The EDS line analysis was conducted under the following conditions. The measurement was performed at intervals of 2 nm or less in the thickness direction with respect to the total film thickness.
  • the detection intensity of each element was obtained as a detection intensity curve of each element changing from the surface in the thickness direction.
  • FIGS. 2A to 5B The detection intensity curves of Samples 1 to 4 are shown in FIGS. 2A to 5B.
  • Each figure attached with A is data before data processing measured by the above method, and each figure attached with B is measured at intervals of 2 nm or less in the thickness direction with respect to the figure attached with A. And it is the detection intensity curve which removed the wavelength component less than wavelength 5nm. From FIGS. A to 5B, it can be seen that Samples 1 to 4 have an inclined region of 5 nm or more. Although not shown in the figure, Samples 5 to 8 had no inclined region.
  • the surface of the second layer shows a portion where an inclined region exists in the measurement example at the left end in the figure. Also, the oxygen intensity in each figure marked with B is omitted.
  • Table 1 shows the above results and the composition of each sample.
  • thermosetting sheet-like adhesive epoxy resin
  • release film on both sides as a sealing resin layer
  • the glass plate on which the layer to be peeled of each sample including the prepared gradient composition film is formed is put in a glove box, and the Ca vapor-deposited surface of the Ca vapor-deposited glass plate and the sample to be peeled off using a vacuum laminating apparatus.
  • the laminate was bonded with a sheet-like adhesive from which the release film was removed so that the layers were opposed to each other. At this time, heating at 110 ° C. was performed. Further, the adhered sample was placed on a hot plate set at 110 ° C. with the Ca vapor-deposited glass plate down, and cured for 30 minutes.
  • the layer to be peeled including the gradient composition film was peeled off. Specifically, laser light was irradiated from the side of the glass plate on which the layer to be peeled was formed to form a starting point of peeling, and peeling was performed after the peeling layer and the layer to be peeled were easily peeled.
  • a 50 ⁇ m thick polyethylene terephthalate film (manufactured by Toray Industries Inc., Lumirror (registered trademark) (U403)) is used as a protective film on the surface of the layer to be peeled, and a 25 ⁇ m thick transparent adhesive sheet manufactured by Nitto Denko Corporation is used.
  • a 50 ⁇ m thick polyethylene terephthalate film manufactured by Toray Industries Inc., Lumirror (registered trademark) (U403)
  • a 25 ⁇ m thick transparent adhesive sheet manufactured by Nitto Denko Corporation
  • the gas barrier film provided with the gradient composition films 1 to 4 of the present invention has a very excellent gas barrier property that can be applied as a substrate of an organic electroluminescence element or a sealing film. I understand that. In particular, it can be seen that the gas barrier film having the gradient composition films 2 to 4 containing oxygen and nitrogen in the inclined region has remarkably excellent gas barrier properties.
  • the gradient composition film of the present invention has a high gas barrier property, and can be suitably applied to a gas barrier film and an electronic device having the gas barrier film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention addresses the problem of providing a gradient composition film having high gas barrier properties, and a gas barrier film and an electronic device provided with the same. This gradient composition film comprises a transition metal and a non-transition metal, and the gradient composition film is characterized by having a gradient region in which, when the detected intensities of the transition metal and non-transition metal, obtained by EDS line analysis of the cross section of the gradient composition film, are measured as a detected intensity curve that changes from the surface in the thickness direction, the detected intensity of the transition metal increases and the detected intensity of the non-transition metal decreases.

Description

傾斜組成膜、それを具備しているガスバリアー性フィルム及び電子デバイスGradient composition film, gas barrier film comprising the same, and electronic device
 本発明は傾斜組成膜、それを具備しているガスバリアー性フィルム及び電子デバイスに関し、より詳しくは、高いガスバリアー性を有する傾斜組成膜、それを具備しているガスバリアー性フィルム及び電子デバイスに関する。 The present invention relates to a gradient composition film, a gas barrier film and an electronic device including the gradient composition film, and more particularly relates to a gradient composition film having a high gas barrier property, a gas barrier film and an electronic device including the gradient composition film. .
 有機材料のエレクトロルミネッセンス(以下、「EL」ともいう。)を利用した有機エレクトロルミネッセンス素子(以下、「有機EL素子」ともいう。)は、数V~数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有する。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として応用されている。 An organic electroluminescent element (hereinafter also referred to as “organic EL element”) using electroluminescence of organic material (hereinafter also referred to as “EL”) can emit light at a low voltage of several V to several tens V. It is a thin film type complete solid-state device and has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, it is applied as a backlight for various displays, display boards such as signboards and emergency lights, and surface light emitters such as illumination light sources.
 特に近年では、薄型・軽量なガスバリアー層を有する樹脂基材を用いたフレキシブルな有機EL素子が注目されており、曲面を有する意匠性の高い光源として応用されている。 Particularly in recent years, a flexible organic EL element using a resin base material having a thin and light gas barrier layer has attracted attention, and is applied as a light source having a curved surface and a high design property.
 しかしながら、有機EL素子に曲げモーメントを加えることで、有機EL素子を構成する層間にずり応力が発生し、層の剥離を惹き起してしまうことが問題となっており、屈曲時においても層間の剥離が発生しない有機EL素子が求められており、様々な検討がなされている。 However, when a bending moment is applied to the organic EL element, shear stress is generated between the layers constituting the organic EL element, causing peeling of the layer. There is a demand for organic EL elements that do not cause peeling, and various studies have been made.
 一つの方法として、ガラス基板にガスバリアー層を形成した後、樹脂基材へ剥離転写する方法が検討されている(特許文献1参照。)。しかしながら、この方法で検討されているガスバリアー層は、化学蒸着(CVD:chemical vapor deposition)で形成された組成の異なる層の多層積層であり、また、近年求められる水蒸気透過率(Water Vaper Transmission Rate、以降WVTRともいう。)が、25℃・90%RHの環境下で、1×10-6g/(m・24h)レベルの高いガスバリアー性を得るためには総厚が非常に厚く、さらに非常に長い製膜時間を要するという問題がある。また、層が厚いことから、小径で繰り返し曲げた際に、ガスバリアー層にクラックが入る等、ガスバリアー性が劣化する懸念のあることが分かった。したがって、より薄い膜厚で非常に高いガスバリアー性が得られるガスバリアー層が望まれていた。 As one method, a method in which a gas barrier layer is formed on a glass substrate and then peeled and transferred to a resin base material has been studied (see Patent Document 1). However, the gas barrier layer studied by this method is a multi-layer stack of layers having different compositions formed by chemical vapor deposition (CVD), and also has a recently required water vapor transmission rate (Water Vapor Transmission Rate). However, in order to obtain a high gas barrier property of 1 × 10 −6 g / (m 2 · 24 h) in an environment of 25 ° C. and 90% RH, the total thickness is very thick. Furthermore, there is a problem that a very long film forming time is required. Further, since the layer is thick, it was found that there is a concern that the gas barrier property may be deteriorated, for example, when the gas barrier layer is cracked repeatedly when bent with a small diameter. Accordingly, there has been a demand for a gas barrier layer capable of obtaining a very high gas barrier property with a thinner film thickness.
特開2015-173249号公報Japanese Patent Laying-Open No. 2015-173249
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、高いガスバリアー性を有する傾斜組成膜、それを具備しているガスバリアー性フィルム及び電子デバイスを提供することである。 The present invention has been made in view of the above problems and situations, and a solution to the problem is to provide a gradient composition film having a high gas barrier property, a gas barrier film and an electronic device having the same. is there.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、表面から厚さ方向に変化するEDS(エネルギー分散型X線分析)ライン分析によって得られる検出強度曲線において、遷移金属と非遷移金属とを同時に検出し、遷移金属の検出強度が増加し、かつ、前記非遷移金属の検出強度が減少する傾斜領域を有することにより、高いガスバリアー性が得られることを見いだし本発明に至った。 In order to solve the above problems, the present inventor has studied the cause of the above problems, and as a result, in the detected intensity curve obtained by EDS (energy dispersive X-ray analysis) line analysis that changes in the thickness direction from the surface, It has been found that a high gas barrier property can be obtained by detecting a metal and a non-transition metal at the same time, and having an inclined region in which the detection intensity of the transition metal increases and the detection intensity of the non-transition metal decreases. Invented.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.遷移金属と、非遷移金属とを含有する傾斜組成膜であって、前記傾斜組成膜の断面のEDSライン分析によって得られる前記遷移金属と非遷移金属の検出強度を、表面から厚さ方向に変化する検出強度曲線として測定したとき、前記遷移金属の検出強度が増加し、かつ、前記非遷移金属の検出強度が減少する傾斜領域を有することを特徴とする傾斜組成膜。 1. A gradient composition film containing a transition metal and a non-transition metal, wherein the detected intensity of the transition metal and non-transition metal obtained by EDS line analysis of the cross-section of the gradient composition film changes from the surface to the thickness direction. A gradient composition film characterized by having a gradient region in which the detection intensity of the transition metal increases and the detection intensity of the non-transition metal decreases when measured as a detection intensity curve.
 2.前記遷移金属を金属の主成分として含有する領域であるA領域と、前記非遷移金属を金属の主成分として含有する領域であるB領域との中間領域に、前記傾斜領域を有することを特徴とする第1項に記載の傾斜組成膜。 2. The inclined region is provided in an intermediate region between an A region which is a region containing the transition metal as a main component of the metal and a B region which is a region containing the non-transition metal as a main component of the metal. The graded composition film according to item 1.
 3.前記傾斜領域が、さらに酸素を含有することを特徴とする第1項又は第2項に記載の傾斜組成膜。 3. The gradient composition film according to claim 1 or 2, wherein the gradient region further contains oxygen.
 4.前記傾斜領域が、さらに窒素を含有することを特徴とする第1項から第3項までのいずれか一項に記載の傾斜組成膜。 4. The gradient composition film according to any one of claims 1 to 3, wherein the gradient region further contains nitrogen.
 5.前記非遷移金属が、ケイ素であることを特徴とする第1項から第4項までのいずれか一項に記載の傾斜組成膜。 5. The gradient composition film according to any one of Items 1 to 4, wherein the non-transition metal is silicon.
 6.前記遷移金属が、ニオブ(Nb)、タンタル(Ta)、及びバナジウム(V)から選択されることを特徴とする第1項から第5項までのいずれか一項に記載の傾斜組成膜。 6. The gradient composition film according to any one of claims 1 to 5, wherein the transition metal is selected from niobium (Nb), tantalum (Ta), and vanadium (V).
 7.前記傾斜領域の厚さが、5nm以上であることを特徴とする第1項から第6項までのいずれか一項に記載の傾斜組成膜。 7. The gradient composition film according to any one of Items 1 to 6, wherein the gradient region has a thickness of 5 nm or more.
 8.第1項から第7項までのいずれか一項に記載の傾斜組成膜を具備していることを特徴とするガスバリアー性フィルム。 8. A gas barrier film comprising the gradient composition film according to any one of items 1 to 7.
 9.第8項に記載のガスバリアー性フィルムを具備していることを特徴とする電子デバイス。 9. An electronic device comprising the gas barrier film according to Item 8.
 10.有機エレクトロルミネッセンス素子を具備していることを特徴とする第9項に記載の電子デバイス。 10. 10. An electronic device according to item 9, comprising an organic electroluminescence element.
 本発明の上記手段により、高いガスバリアー性を有する傾斜組成膜、それを具備しているガスバリアー性フィルム及び電子デバイスを提供することができる。 By the above means of the present invention, it is possible to provide a gradient composition film having a high gas barrier property, a gas barrier film comprising the same, and an electronic device.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 非遷移金属(M1)を金属の主成分とする領域をB領域とし、遷移金属(M2)を金属の主成分とする領域をA領域とした時に、B領域とA領域とを特定条件下で積層すると、非遷移金属(M1)をA領域へ、遷移金属(M2)をB領域へと拡散させることができ、非遷移金属(M1)と遷移金属(M2)とが共存する領域を形成できることがわかった。また、この領域は、厚さ方向において、非遷移金属(M1)の含有比率が増加すると同時に遷移金属(M2)の含有比率が減少する傾斜組成を有していることがわかった。これは、非遷移金属(M1)同士の結合や遷移金属(M2)同士の結合よりも、非遷移金属(M1)と遷移金属(M2)との結合が生じやすいことに起因して生じた現象であると考えられ、この傾斜組成を有する傾斜領域において、非遷移金属(M1)と遷移金属(M2)との直接的な結合を含む高密度な構造が形成され、このため高いガスバリアー性が得られたものと考えられる。 When the region having the non-transition metal (M1) as the main component of the metal is the B region and the region having the transition metal (M2) as the main component of the metal is the A region, the B region and the A region are When laminated, the non-transition metal (M1) can be diffused into the A region, the transition metal (M2) can be diffused into the B region, and a region where the non-transition metal (M1) and the transition metal (M2) coexist can be formed. I understood. Further, it was found that this region has a gradient composition in which the content ratio of the non-transition metal (M1) increases and the content ratio of the transition metal (M2) decreases at the same time in the thickness direction. This phenomenon is caused by the fact that the bond between the non-transition metal (M1) and the transition metal (M2) is more likely to occur than the bond between the non-transition metals (M1) or the transition metal (M2). In the gradient region having this gradient composition, a high-density structure including a direct bond between the non-transition metal (M1) and the transition metal (M2) is formed, and thus high gas barrier properties are obtained. It is thought that it was obtained.
 また、本発明においては、傾斜組成膜の透明性を向上させる観点から、傾斜領域がさらに酸素を含有することが好ましい態様である。 In the present invention, from the viewpoint of improving the transparency of the gradient composition film, it is preferable that the gradient region further contains oxygen.
 さらに、本発明者が鋭意検討した結果、ガスバリアー性向上させる観点から、傾斜領域が、さらに酸素と窒素とを含有することが特に好ましい態様であることを見出した。 Furthermore, as a result of intensive studies by the present inventors, it has been found that the inclined region further contains oxygen and nitrogen from the viewpoint of improving gas barrier properties.
 これらの態様は、前記A領域に酸素や窒素を含有させること、及び前記B領域に酸素や窒素を含有させることの両方、又はいずれか一方で達成することができる。 These aspects can be achieved either by containing oxygen or nitrogen in the A region and / or by containing oxygen or nitrogen in the B region.
剥離方法を説明する図Diagram explaining the peeling method 剥離方法を説明する図Diagram explaining the peeling method 剥離方法を説明する図Diagram explaining the peeling method 剥離方法を説明する図Diagram explaining the peeling method 剥離方法を説明する図Diagram explaining the peeling method 剥離方法を説明する図Diagram explaining the peeling method 実施例1で作製した傾斜組成膜1の検出強度曲線Detected intensity curve of the gradient composition film 1 produced in Example 1 実施例1で作製した傾斜組成膜1の検出強度曲線Detected intensity curve of the gradient composition film 1 produced in Example 1 実施例1で作製した傾斜組成膜2の検出強度曲線Detection intensity curve of the gradient composition film 2 produced in Example 1 実施例1で作製した傾斜組成膜2の検出強度曲線Detection intensity curve of the gradient composition film 2 produced in Example 1 実施例1で作製した傾斜組成膜3の検出強度曲線Detected intensity curve of the gradient composition film 3 produced in Example 1 実施例1で作製した傾斜組成膜3の検出強度曲線Detected intensity curve of the gradient composition film 3 produced in Example 1 実施例1で作製した傾斜組成膜4の検出強度曲線Detection intensity curve of the gradient composition film 4 produced in Example 1 実施例1で作製した傾斜組成膜4の検出強度曲線Detection intensity curve of the gradient composition film 4 produced in Example 1
 本発明の傾斜組成膜は、遷移金属と、非遷移金属とを含有する傾斜組成膜であって、前記傾斜組成膜の断面のEDSライン分析によって得られる前記遷移金属と非遷移金属の検出強度を、表面から厚さ方向に変化する検出強度曲線として測定したとき、前記遷移金属の検出強度が増加し、かつ、前記非遷移金属の検出強度が減少する傾斜領域を有することを特徴とする。この特徴は、請求項1から請求項10までの請求項に係る発明に共通する技術的特徴である。 The gradient composition film of the present invention is a gradient composition film containing a transition metal and a non-transition metal, and the detected intensity of the transition metal and the non-transition metal obtained by EDS line analysis of a cross section of the gradient composition film. When measured as a detection intensity curve that changes in the thickness direction from the surface, there is a slope region in which the detection intensity of the transition metal increases and the detection intensity of the non-transition metal decreases. This feature is a technical feature common to the inventions according to claims 1 to 10.
 本発明の実施態様としては、本発明の効果発現の観点から、前記遷移金属を金属の主成分として含有する領域であるA領域と、前記非遷移金属を金属の主成分として含有する領域であるB領域との中間領域に、前記傾斜領域を有することが好ましい。 As an embodiment of the present invention, from the viewpoint of manifestation of the effect of the present invention, the region A is a region containing the transition metal as the main component of the metal and the region containing the non-transition metal as the main component of the metal. It is preferable to have the inclined region in an intermediate region with respect to the B region.
 さらに、本発明においては、傾斜領域がさらに酸素を含有することが好ましく、酸素と窒素とを含有することがさらに好ましい。傾斜領域に酸素が含有されることにより、いっそうのガスバリアー性向上効果が得られ、特に、酸素と窒素とが含有されることにより、著しいガスバリアー性向上効果が得られる。 Furthermore, in the present invention, the inclined region preferably further contains oxygen, and more preferably contains oxygen and nitrogen. By containing oxygen in the inclined region, a further gas barrier property improving effect can be obtained, and in particular, by containing oxygen and nitrogen, a remarkable gas barrier property improving effect can be obtained.
 前記非遷移金属が、ケイ素であることが、ガスバリアー性向上や透明性向上の効果が得られることから、好ましい。 It is preferable that the non-transition metal is silicon because an effect of improving gas barrier properties and transparency can be obtained.
 また、前記遷移金属が、ニオブ(Nb)、タンタル(Ta)、及びバナジウム(V)から選択されることが、ガスバリアー性向上や高温高湿耐久性向上の効果が得られることから、好ましい。 In addition, it is preferable that the transition metal is selected from niobium (Nb), tantalum (Ta), and vanadium (V) because the effects of improving gas barrier properties and improving high temperature and high humidity durability can be obtained.
 また、前記傾斜領域の厚さが、5nm以上であることが、ガスバリアー性向上の効果が得られることから、好ましい。 Moreover, it is preferable that the thickness of the inclined region is 5 nm or more because an effect of improving the gas barrier property can be obtained.
 本発明の傾斜組成膜はガスバリアー性フィルムに好ましく具備され得る。 The gradient composition film of the present invention can be preferably provided in a gas barrier film.
 ガスバリアー性フィルムは、電子デバイスに具備され得る。 The gas barrier film can be provided in an electronic device.
 上記電子デバイスは、有機エレクトロルミネッセンス素子を具備し得る。 The electronic device may include an organic electroluminescence element.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《本発明の傾斜組成膜の概要》
 本発明の傾斜組成膜は、遷移金属と、非遷移金属とを含有する傾斜組成膜であって、前記傾斜組成膜の断面のEDSライン分析によって得られる前記遷移金属と非遷移金属の検出強度を、表面から厚さ方向に変化する検出強度曲線として測定したとき、前記遷移金属の検出強度が増加し、かつ、前記非遷移金属の検出強度が減少する傾斜領域を有することを特徴とする。
<< Outline of Gradient Composition Film of the Present Invention >>
The gradient composition film of the present invention is a gradient composition film containing a transition metal and a non-transition metal, and the detected intensity of the transition metal and the non-transition metal obtained by EDS line analysis of a cross section of the gradient composition film. When measured as a detection intensity curve that changes in the thickness direction from the surface, there is a slope region in which the detection intensity of the transition metal increases and the detection intensity of the non-transition metal decreases.
 本発明の実施形態としては、前記傾斜組成膜が、前記A領域と、前記B領域との中間領域に、前記傾斜領域を有する態様のガスバリアー性フィルムであることが好ましい。 As an embodiment of the present invention, it is preferable that the gradient composition film is a gas barrier film having an inclined region in an intermediate region between the A region and the B region.
 また、本発明の傾斜組成膜を基材上に具備するガスバリアー性フィルムのガスバリアー性は、樹脂基材上に当該傾斜組成膜を形成させたガスバリアー性フィルムで測定した際、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3cm/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下、の高ガスバリアー性であることが好ましい。より好ましくは、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-5g/(m・24h)以下であることである。 The gas barrier property of the gas barrier film comprising the gradient composition film of the present invention on the substrate is measured according to JIS K 7126 when measured with a gas barrier film having the gradient composition film formed on the resin substrate. -Oxygen permeability measured by a method according to 1987 is 1 × 10 -3 cm 3 / (m 2 · 24h · atm) or less, water vapor permeability measured by a method according to JIS K 7129-1992 (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is preferably a high gas barrier property of 1 × 10 −3 g / (m 2 · 24 h) or less. More preferably, the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is 1 × 10 −5 g / (m 2 · 24 h) or less.
 ガスバリアー層の層厚は、特に制限されないが、5~1000nmの範囲内であることが好ましい。このような範囲であれば、高いガスバリアー性能、折り曲げ耐性、断裁加工適性に優れる。また、ガスバリアー層は隣接する2層以上から構成されてもよい。 The layer thickness of the gas barrier layer is not particularly limited, but is preferably in the range of 5 to 1000 nm. If it is such a range, it will be excellent in high gas barrier performance, bending resistance, and cutting processability. The gas barrier layer may be composed of two or more adjacent layers.
 [傾斜組成膜を構成する領域]
 本発明の傾斜組成膜を構成する領域について説明するが、以下において使用する技術用語の定義について予め説明する。
[Region constituting the gradient composition film]
The region constituting the gradient composition film of the present invention will be described, but definitions of technical terms used in the following will be described in advance.
 本願において、「領域」とは、傾斜組成膜の厚さ方向に対して略垂直な面(すなわち当該傾斜組成膜の最表面に平行な面)で当該傾斜組成膜を一定又は任意の厚さで分割したときに形成される対向する二つの面の間の三次元的範囲内(領域)をいい、当該領域内の構成成分の組成は厚さ方向において、本発明で規定する傾斜組成を少なくとも有する。 In the present application, the “region” is a plane substantially perpendicular to the thickness direction of the gradient composition film (that is, a plane parallel to the outermost surface of the gradient composition film), and the gradient composition film has a constant or arbitrary thickness. This refers to a three-dimensional range (region) between two opposing surfaces formed when divided, and the composition of components in the region has at least the gradient composition defined in the present invention in the thickness direction. .
 「構成成分」とは、傾斜組成膜の特定領域を構成する化合物及び金属若しくは非金属の単体をいう。 “Constituent” means a compound constituting a specific region of the gradient composition film and a simple substance of metal or nonmetal.
 「主成分」とは、本発明に適用するEDSライン分析において、検出強度が最も高い元素の構成成分をいう。 “Main component” means a constituent component of the element having the highest detection intensity in the EDS line analysis applied to the present invention.
 以下、各領域について詳細な説明をする。 The following is a detailed explanation of each area.
 <遷移金属含有領域:A領域>
 遷移金属含有領域であるA領域とは、遷移金属を金属の主成分として含有する領域をいう。
<Transition metal-containing region: A region>
The A region which is a transition metal-containing region refers to a region containing a transition metal as a main component of a metal.
 遷移金属(M2)としては、特に制限されず、任意の遷移金属が単独で又は組み合わせて用いられうる。ここで、遷移金属とは、長周期型周期表の第3族元素から第11族元素を指し、遷移金属としては、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、及びAuなどが挙げられる。 The transition metal (M2) is not particularly limited, and any transition metal can be used alone or in combination. Here, the transition metal refers to a Group 3 element to a Group 11 element in the long-period periodic table, and the transition metal includes Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y , Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta , W, Re, Os, Ir, Pt, and Au.
 なかでも、良好なガスバリアー性が得られる遷移金属(M2)としては、Nb、Ta、V、Zr、Ti、Hf、Y、La、Ce等が挙げられる。これらのなかでも、種々の検討結果から、特に第5族元素であるNb、Ta、Vが、傾斜組成膜に含有される非遷移金属(M1)に対する結合が生じやすく、緻密な構造を形成しやすいと考えられるため、好ましく用いることができる。 Among these, Nb, Ta, V, Zr, Ti, Hf, Y, La, Ce, and the like can be cited as transition metals (M2) that can provide good gas barrier properties. Among these, Nb, Ta, and V, which are Group 5 elements, are likely to be bonded to the non-transition metal (M1) contained in the gradient composition film, and form a dense structure based on various examination results. Since it is considered easy, it can be preferably used.
 特に遷移金属(M2)が第5族元素(特に、Nb)であって、上述した非遷移金属(M1)がSiであると、著しいガスバリアー性の向上効果が得られる。これは、Siと第5族元素(特に、Nb)との結合が特に生じやすいためであると考えられる。さらに、光学特性の観点から、遷移金属(M2)は、透明性が良好な化合物が得られるNb、Taが特に好ましい。 Particularly, when the transition metal (M2) is a Group 5 element (particularly Nb) and the above-mentioned non-transition metal (M1) is Si, a significant gas barrier property improvement effect can be obtained. This is presumably because the bond between Si and the Group 5 element (particularly Nb) is particularly likely to occur. Furthermore, from the viewpoint of optical properties, the transition metal (M2) is particularly preferably Nb or Ta from which a compound with good transparency can be obtained.
 A領域は、さらに酸素を含有していることが好ましく、さらに酸素及び窒素を含有していることが特に好ましい。また、炭素やその他元素を含有していても良い。 The region A preferably further contains oxygen, and more preferably contains oxygen and nitrogen. Moreover, carbon and other elements may be contained.
 <非遷移金属含有領域:B領域>
 非遷移金属含有領域であるB領域とは、非遷移金属を金属の主成分として含有する領域をいう。
<Non-transition metal-containing region: B region>
The B region which is a non-transition metal-containing region refers to a region containing a non-transition metal as a main component of a metal.
 非遷移金属としては、長周期型周期表の第12族~第14族の金属から選択される非遷移金属が好ましい。当該非遷移金属(M1)としては、特に制限されず、第12族~第14族の任意の金属が単独で又は組み合わせて用いられうるが、例えば、Si、Al、Zn、In及びSnなどが挙げられる。なかでも、当該非遷移金属(M1)として、Si、Sn又はZnを含むことが好ましく、Siを含むことがより好ましく、Si単独であることが特に好ましい。 The non-transition metal is preferably a non-transition metal selected from Group 12 to Group 14 metals in the long-period periodic table. The non-transition metal (M1) is not particularly limited, and any metal of Group 12 to Group 14 can be used alone or in combination. Examples thereof include Si, Al, Zn, In, and Sn. Can be mentioned. Especially, it is preferable that Si, Sn, or Zn is included as the non-transition metal (M1), Si is more preferable, and Si alone is particularly preferable.
 B領域は、さらに酸素を含有していることが好ましく、さらに窒素や炭素を含有していてもよい。また、その他元素を含有していても良い。 The B region preferably further contains oxygen, and may further contain nitrogen or carbon. Moreover, you may contain other elements.
 B領域は、さらに酸素を含有していることが好ましく、さらに酸素及び窒素を含有していることが特に好ましい。また、炭素やその他元素を含有していても良い。 The B region preferably further contains oxygen, and particularly preferably contains oxygen and nitrogen. Moreover, carbon and other elements may be contained.
 <傾斜領域>
 傾斜領域とは、傾斜組成膜の断面のEDSライン分析によって得られる遷移金属と非遷移金属の検出強度を、厚さ方向に変化する検出強度曲線として測定したとき、遷移金属の検出強度が増加し、かつ、非遷移金属の検出強度が減少する領域をいう。
<Inclined area>
The gradient region is a transition metal and non-transition metal detection intensity obtained by EDS line analysis of the cross section of the gradient composition film, and the transition metal detection intensity increases when measured as a detection intensity curve that changes in the thickness direction. And the area | region where the detection intensity of a non-transition metal decreases.
 なお、本発明において良好なガスバリアー性が得られる観点から、傾斜領域の厚さは、5nm以上であることが好ましく、ガスバリアー性と生産性との両立の観点から、5~100nmの範囲内であることがより好ましく、7~50nmの範囲内であることがさらに好ましい。 In the present invention, the thickness of the inclined region is preferably 5 nm or more from the viewpoint of obtaining good gas barrier properties, and within the range of 5 to 100 nm from the viewpoint of achieving both gas barrier properties and productivity. More preferably, it is more preferably in the range of 7 to 50 nm.
 また、傾斜領域は、酸素を含有していることが好ましく、さらに窒素や炭素を含有していてもよい。また、その他元素を含有していても良い。 The inclined region preferably contains oxygen, and may further contain nitrogen or carbon. Moreover, you may contain other elements.
 上述したような構成を有する傾斜組成膜は、有機EL素子等の電子デバイス用のガスバリアー層として適用可能な非常に高いガスバリアー性を示す。 The gradient composition film having the above-described configuration exhibits a very high gas barrier property that can be applied as a gas barrier layer for an electronic device such as an organic EL element.
 《EDSライン分析》
 本発明の傾斜組成膜は、遷移金属と、非遷移金属とを含有する傾斜組成膜であって、前記傾斜組成膜の断面のEDSライン分析によって得られる前記遷移金属と非遷移金属の検出強度を、表面から厚さ方向に変化する検出強度曲線として測定したとき、前記遷移金属の検出強度が増加し、かつ、前記非遷移金属の検出強度が減少する傾斜領域を有することを特徴とする。
《EDS line analysis》
The gradient composition film of the present invention is a gradient composition film containing a transition metal and a non-transition metal, and the detected intensity of the transition metal and the non-transition metal obtained by EDS line analysis of a cross section of the gradient composition film. When measured as a detection intensity curve that changes in the thickness direction from the surface, there is a slope region in which the detection intensity of the transition metal increases and the detection intensity of the non-transition metal decreases.
 EDS(Energy Dispersive X-ray Spectoroscopy:エネルギー分散型X線分析装置)ライン分析は、高速高感度で精度よく元素を検出できる特徴を有する。具体的には、試料として、FIB加工によって厚さ60nm程度の薄膜に加工した断面観察用試料を用いる。傾斜組成膜を形成する基材に関しては特に制限はないが、このような薄膜試料を作製するためには、傾斜組成膜を剛性の高い基材上に形成した試料を用いることが好ましく、具体的には、Siウエハ基材やガラス基材上に傾斜組成膜を形成した試料を用いることが好ましい。次に、原子分解能分析電子顕微鏡:JEM-ARM200F(JEOL製)を用いて加速電圧:200.0kVの条件で試料断面のEDSライン分析を行い、ガスバリアー層の傾斜組成膜を含む範囲において、目的とする元素の厚さ方向に変化する検出強度曲線を得る。ここで、上記の検出強度曲線は、縦軸に各元素の検出強度、横軸に厚さ方向の距離をプロットしたものである。厚さ方向の測定点の間隔は、2nm以下の間隔とすることが好ましい。また、本発明においては、ノイズ成分を除去するため、測定した検出強度曲線の生データから波長5nm未満の波長成分を除去したものを検出強度曲線として用いている。 EDS (Energy Dispersive X-ray Spectroscopy) line analysis has the feature that it can detect elements with high speed and high sensitivity with high accuracy. Specifically, a cross-sectional observation sample processed into a thin film having a thickness of about 60 nm by FIB processing is used as the sample. There are no particular restrictions on the substrate on which the gradient composition film is formed, but in order to produce such a thin film sample, it is preferable to use a sample in which the gradient composition film is formed on a highly rigid substrate. For this, it is preferable to use a sample in which a gradient composition film is formed on a Si wafer substrate or a glass substrate. Next, an EDS line analysis of the sample cross section was performed using an atomic resolution analytical electron microscope: JEM-ARM200F (manufactured by JEOL) under the condition of acceleration voltage: 200.0 kV, and within the range including the gradient composition film of the gas barrier layer. A detection intensity curve that changes in the thickness direction of the element is obtained. Here, the detection intensity curve is obtained by plotting the detection intensity of each element on the vertical axis and the distance in the thickness direction on the horizontal axis. The interval between the measurement points in the thickness direction is preferably 2 nm or less. In the present invention, in order to remove a noise component, a data obtained by removing a wavelength component having a wavelength of less than 5 nm from raw data of a measured detection intensity curve is used as a detection intensity curve.
 波長5nm未満の波長成分を除去は、フーリエ解析(高速フーリエ変換)を用いることで行うことができる。具体的には、例えば、マイクロソフト社製の市販の表計算ソフト・エクセル(登録商標)のデータ分析機能である分析ツールのフーリエ解析を用いて計算することができる。 Removal of wavelength components with a wavelength of less than 5 nm can be performed by using Fourier analysis (fast Fourier transform). Specifically, for example, calculation can be performed using Fourier analysis of an analysis tool which is a data analysis function of a commercially available spreadsheet software Excel (registered trademark) manufactured by Microsoft Corporation.
 本発明において、元素の検出は、遷移金属の含有量の少ない表面から遷移金属の含有量の多い表面に向かって厚さ方向に行う。 In the present invention, the element is detected in the thickness direction from the surface having a low transition metal content to the surface having a high transition metal content.
 検出強度の増加及び減少は、上記のノイズ成分除去処理を行った検出強度曲線において行う。増加、減少は一定の範囲を超える増加を意味し、減少は、当該一定の範囲を下回る減少を意味する。ここで一定の範囲とは、各元素の最大検出強度に対して20%以上の強度の範囲内で連続して増加又は減少する領域をいう。 The increase or decrease of the detection intensity is performed in the detection intensity curve that has been subjected to the noise component removal process described above. An increase or decrease means an increase exceeding a certain range, and a decrease means a decrease below the certain range. Here, the certain range refers to a region that continuously increases or decreases within a range of intensity of 20% or more with respect to the maximum detected intensity of each element.
 後述する実施例に記載の図2A及び図2Bに傾斜組成膜の厚さ方向の各元素の強度をEDSライン分析法により分析した検出強度曲線の一例を示す。 2A and 2B described in the examples described later show examples of detected intensity curves obtained by analyzing the intensity of each element in the thickness direction of the gradient composition film by the EDS line analysis method.
 図2Aは、厚さ方向にプロットしたSi、Nb及びOの波長5nm未満の波長成分を除去する前の検出強度曲線であり、図2Bは、波長5nm未満の波長成分を除去した検出強度曲線である。このとき、傾斜領域は、図2Bのように、13nmと求めることができる。 FIG. 2A is a detection intensity curve before removing wavelength components of Si, Nb, and O having a wavelength of less than 5 nm plotted in the thickness direction, and FIG. 2B is a detection intensity curve of removing wavelength components having a wavelength of less than 5 nm. is there. At this time, the inclined region can be obtained as 13 nm as shown in FIG. 2B.
 <樹脂基材>
 本発明の傾斜組成膜を樹脂基材上に具備することにより、ガスバリアー性フィルムとすることができる。樹脂基材としては、後述する一般的なプラスチックフィルムを用いることができる。傾斜組成膜は、直接樹脂基材上に形成することができる。また、ガラス等の無機基材上に形成した後、プラスチックフィルム上に剥離転写して形成することもできる。
<Resin substrate>
By providing the gradient composition film of the present invention on a resin substrate, a gas barrier film can be obtained. As the resin substrate, a general plastic film described later can be used. The gradient composition film can be formed directly on the resin substrate. Moreover, after forming on inorganic base materials, such as glass, it can also peel-transfer on a plastic film, and can also form.
 用いられるプラスチックフィルムは、下地層、ガスバリアー層等を保持できるフィルムであれば材質、厚さ等に特に制限はなく、使用目的等に応じて適宜選択することができる。前記プラスチックフィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。 The plastic film used is not particularly limited in material, thickness and the like as long as it can hold an underlayer, a gas barrier layer, and the like, and can be appropriately selected according to the purpose of use. Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide. Resin, Cellulose acylate resin, Polyurethane resin, Polyether ether ketone resin, Polycarbonate resin, Alicyclic polyolefin resin, Polyarylate resin, Polyether sulfone resin, Polysulfone resin, Cycloolefin copolymer, Fluorene ring modified polycarbonate resin, Alicyclic Examples thereof include thermoplastic resins such as modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
 樹脂基材の厚さは5~500μm程度が好ましく、更に好ましくは15~250μmである。 The thickness of the resin substrate is preferably about 5 to 500 μm, more preferably 15 to 250 μm.
 その他、基材の種類、基材の製造方法等については、特開2013-226758号公報の段落「0125」~「0136」に開示されている技術を適宜採用することができる。 In addition, as for the type of base material, the manufacturing method of the base material, etc., the techniques disclosed in paragraphs “0125” to “0136” of JP2013-226758A can be appropriately employed.
 <遷移金属含有領域:A領域の形成>
 本発明に係る遷移金属(M2)は、前述のとおり良好なガスバリアー性が得られる観点から、Nb、Ta、V、Zr、Ti、Hf、Y、La、Ce等が挙げられ、これらの中でも、特に第5族元素であるNb、Ta、Vが、傾斜組成膜に含有される非遷移金属(M1)に対する結合が生じやすいと考えられるため、好ましく用いることができる。
<Transition metal-containing region: formation of region A>
Examples of the transition metal (M2) according to the present invention include Nb, Ta, V, Zr, Ti, Hf, Y, La, Ce, and the like from the viewpoint of obtaining good gas barrier properties as described above. Particularly, Nb, Ta, and V, which are Group 5 elements, can be preferably used because they are likely to be bonded to the non-transition metal (M1) contained in the gradient composition film.
 前記遷移金属(M2)を含有する層の形成は、特に限定されず、例えば、既存の薄膜堆積技術を利用した従来公知の気相成膜法を用いることが、傾斜領域を効率的に形成する観点から好ましい。 The formation of the layer containing the transition metal (M2) is not particularly limited. For example, using a conventionally known vapor deposition method using an existing thin film deposition technique efficiently forms the inclined region. It is preferable from the viewpoint.
 これらの気相成膜法は公知の方法で用いることができる。気相成膜法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法、イオンアシスト蒸着法等の物理気相成長(PVD)法、プラズマCVD(chemical vapordeposition)法、ALD(Atomic Layer Deposition)法などの化学気相成長(CVD)法が挙げられる。なかでも、機能性素子へのダメージを与えることなく成膜が可能となり、高い生産性を有することから、物理気相成長(PVD)法により形成することが好ましく、スパッタ法により形成することがより好ましい。 These vapor deposition methods can be used by known methods. The vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, ion plating, and ion assist vapor deposition, plasma CVD (chemical vapor deposition), and ALD. Examples thereof include a chemical vapor deposition (CVD) method such as an (Atomic Layer Deposition) method. In particular, it is possible to form a film without damaging the functional element, and since it has high productivity, it is preferably formed by a physical vapor deposition (PVD) method, and more preferably formed by a sputtering method. preferable.
 スパッタ法による成膜は、2極スパッタリング、マグネトロンスパッタリング、中間的な周波数領域を用いたデュアルマグネトロンスパッタリング(DMS)、イオンビームスパッタリング、ECRスパッタリングなどを単独で又は2種以上組み合わせて用いることができる。また、ターゲットの印加方式はターゲット種に応じて適宜選択され、DC(直流)スパッタリング、DCパルススパッタリング、ACスパッタリング、及びRF(高周波)スパッタリングのいずれを用いてもよい。 For the film formation by sputtering, bipolar sputtering, magnetron sputtering, dual magnetron sputtering (DMS) using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more. The target application method is appropriately selected according to the target type, and any of DC (direct current) sputtering, DC pulse sputtering, AC sputtering, and RF (high frequency) sputtering may be used.
 また、金属モードと、酸化物モードとの中間である遷移モードを利用した反応性スパッタ法も用いることができる。遷移領域となるようにスパッタ現象を制御することにより、高い成膜スピードで金属酸化物を成膜することが可能となるため好ましい。プロセスガスに用いられる不活性ガスとしては、He、Ne、Ar、Kr、Xe等を用いることができ、Arを用いることが好ましい。さらに、プロセスガス中に酸素、窒素、二酸化炭素、一酸化炭素を導入することで、A領域に、酸素や、窒素、炭素を含有させることができる。スパッタ法における成膜条件としては、真空度、磁力、印加電力、放電電流、放電電圧、プロセスガス供給量、時間等が挙げられるが、これらは、スパッタ装置や、膜の材料、層厚等に応じて適宜選択することができる。 Further, a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used. By controlling the sputtering phenomenon so as to be in the transition region, a metal oxide film can be formed at a high film formation speed, which is preferable. As the inert gas used for the process gas, He, Ne, Ar, Kr, Xe, or the like can be used, and Ar is preferably used. Furthermore, oxygen, nitrogen, and carbon can be contained in the A region by introducing oxygen, nitrogen, carbon dioxide, and carbon monoxide into the process gas. Examples of the film formation conditions in the sputtering method include the degree of vacuum, magnetic force, applied power, discharge current, discharge voltage, process gas supply amount, time, and the like. These depend on the sputtering apparatus, film material, layer thickness, etc. It can be appropriately selected depending on the case.
 スパッタ法は、遷移金属(M2)の単体又はその酸化物とを含む複数のスパッタリングターゲットを用いた多元同時スパッタであってもよい。これらのスパッタリングターゲットを作製する方法や、これらのスパッタリングターゲットを用いていわゆる複合酸化物からなる薄膜を作製する方法については、例えば、特開2000-160331号公報、特開2004-068109号公報、特開2013-047361号公報などの記載が適宜参照されうる。そして、共蒸着法を実施する際の成膜条件としては、成膜原料における前記遷移金属(M2)と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、及び、成膜時の電力からなる群から選択される1種又は2種以上の条件が例示され、これらの成膜条件(好ましくは、酸素分圧)を調節することによって、組成を制御することができる。 The sputtering method may be multi-source simultaneous sputtering using a plurality of sputtering targets including a transition metal (M2) alone or its oxide. As for the method for producing these sputtering targets and the method for producing a thin film made of a so-called complex oxide using these sputtering targets, see, for example, JP-A Nos. 2000-160331 and 2004-068109. Reference can be made to the descriptions in Japanese Unexamined Patent Publication No. 2013-047361. The film forming conditions for carrying out the co-evaporation method include the ratio of the transition metal (M2) and oxygen in the film forming raw material, the ratio of the inert gas to the reactive gas during the film forming, and the film forming process. One or two or more conditions selected from the group consisting of the gas supply amount, the degree of vacuum during film formation, and the power during film formation are exemplified, and these film formation conditions (preferably oxygen content) The composition can be controlled by adjusting the pressure.
 <非遷移金属含有領域:B領域の形成>
 本発明に係るガスバリアー層において、非遷移金属(M1)を含有するB領域を形成する方法としては、特に制限はなく、例えば、気相成膜法は公知の方法で用いることができる。気相成膜法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法、イオンアシスト蒸着法等の物理気相成長(PVD)法、プラズマCVD(chemical vapordeposition)法、ALD(Atomic Layer Deposition)法などの化学気相成長(CVD)法が挙げられる。なかでも、機能性素子へのダメージを与えることなく成膜が可能となり、高い生産性を有することから、物理気相成長(PVD)法により形成することが好ましく、スパッタ法により、非遷移金属をターゲットとして用いて形成することができる。
<Non-transition metal-containing region: Formation of B region>
In the gas barrier layer according to the present invention, the method for forming the B region containing the non-transition metal (M1) is not particularly limited, and for example, a vapor deposition method can be used by a known method. The vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, ion plating, and ion assisted vapor deposition, plasma CVD (chemical vapor deposition), and ALD. Examples thereof include a chemical vapor deposition (CVD) method such as an (Atomic Layer Deposition) method. In particular, it is possible to form a film without damaging the functional element, and since it has high productivity, it is preferably formed by a physical vapor deposition (PVD) method. A non-transition metal is formed by a sputtering method. It can be used as a target.
 また、他の方法としては、非遷移金属としてSiを含むポリシラザン含有塗布液を用いて、湿式塗布法により形成する方法も、好ましい方法の一つである。 Further, as another method, a method of forming by a wet coating method using a polysilazane-containing coating solution containing Si as a non-transition metal is also a preferable method.
 (ポリシラザン)
 本発明において用いられる「ポリシラザン」とは、構造内にケイ素-窒素結合を持つポリマーであり、Si-N、Si-H、N-H等からなるSiO、Si及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。
(Polysilazane)
The “polysilazane” used in the present invention is a polymer having a silicon-nitrogen bond in the structure, and is composed of Si—N, Si—H, NH, etc., SiO 2 , Si 3 N 4 and intermediate solid solutions of both. It is a ceramic precursor inorganic polymer such as SiO x N y .
 ポリシラザンとしては、特開平8-112879号公報に記載されているような、比較的低温で酸化ケイ素、窒化ケイ素、及び/又は酸窒化ケイ素に変性するポリシラザンを好ましく用いることができる。 As polysilazane, polysilazane which is modified to silicon oxide, silicon nitride, and / or silicon oxynitride at a relatively low temperature as described in JP-A-8-112879 can be preferably used.
 かようなポリシラザンとしては、下記の構造を有するものが好ましく用いられる。 As such polysilazane, those having the following structure are preferably used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、R、R及びRは、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、又はアルコキシ基を表す。R、R及びRは、それぞれ、同じであっても又は異なるものであってもよい。 In the formula, R 1 , R 2 and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group. R 1 , R 2 and R 3 may each be the same or different.
 本発明では、得られる傾斜組成膜の、膜としての緻密性の観点からは、R、R及びRのすべてが水素原子であるパーヒドロポリシラザン(PHPS)が特に好ましい。 In the present invention, perhydropolysilazane (PHPS) in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferred from the viewpoint of the denseness of the resulting gradient composition film.
 一方、そのSiと結合する水素部分が一部アルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより、下地基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。 On the other hand, the organopolysilazane in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like has an alkyl group such as a methyl group, so that the adhesion to the base substrate is improved and the polysilazane which is hard and brittle It is possible to impart toughness to the ceramic film produced by the above, and there is an advantage that generation of cracks can be suppressed even when the film thickness is increased.
 用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。 Depending on the application, these perhydropolysilazane and organopolysilazane may be selected as appropriate and may be used in combination.
 なお、パーヒドロポリシラザンは、直鎖構造と6及び/又は8員環を中心とする環構造とが共存した構造を有していると推定されている。 Perhydropolysilazane is presumed to have a structure in which a linear structure and a ring structure centered on a 6- and / or 8-membered ring coexist.
 ポリシラザンの分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)であり、液体又は固体の物質であり、分子量により異なる。 The molecular weight of polysilazane is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and is a liquid or solid substance, and varies depending on the molecular weight.
 これらのポリシラザン化合物は有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン化合物含有塗布液として使用することができる。 These polysilazane compounds are commercially available in a solution state dissolved in an organic solvent, and the commercially available product can be used as a polysilazane compound-containing coating solution as it is.
 低温でセラミック化するポリシラザンの他の例としては、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等が挙げられる。 Other examples of polysilazanes that are ceramicized at a low temperature include silicon alkoxide-added polysilazanes obtained by reacting the above polysilazanes with silicon alkoxides (Japanese Patent Laid-Open No. 5-238827), and glycidol-added polysilazanes obtained by reacting glycidol (specially No. 6-122852), an alcohol-added polysilazane obtained by reacting an alcohol (Japanese Patent Laid-Open No. 6-240208), and a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate (Japanese Patent Laid-Open No. 6-299118). No. 1), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal fine particle-added polysilazane obtained by adding metal fine particles (JP-A-7- 1969 6 No.), and the like.
 (ポリシラザンを含有する塗布液)
 ポリシラザンを含有する塗布液を調製する有機溶媒としては、ポリシラザンと容易に反応してしまうようなアルコール系や水分を含有するものを用いることは避けることが好ましい。かような有機溶媒としては、例えば、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリクロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等が挙げられる。これらの有機溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等、目的にあわせて選択し、複数の有機溶剤を混合してもよい。
(Coating liquid containing polysilazane)
As an organic solvent for preparing a coating liquid containing polysilazane, it is preferable to avoid using an alcohol or water-containing one that easily reacts with polysilazane. Examples of such organic solvents include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, ethers such as halogenated hydrocarbon solvents, aliphatic ethers, and alicyclic ethers. Can be used. Specific examples include hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran. These organic solvents may be selected according to the purpose such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of organic solvents may be mixed.
 ポリシラザンを含有する塗布液におけるポリシラザンの濃度は、目的とする第1のガスバリアー層の膜厚や塗布液のポットライフによっても異なるが、0.2~35質量%程度であることが好ましい。 The concentration of polysilazane in the coating liquid containing polysilazane varies depending on the film thickness of the target first gas barrier layer and the pot life of the coating liquid, but is preferably about 0.2 to 35% by mass.
 また、ポリシラザンを含有する塗布液には、酸化ケイ素、窒化ケイ素、及び/又は酸窒化ケイ素への変性を促進するために、アミンや金属の触媒を添加することもできる。例えば、市販品としてのAZエレクトロニックマテリアルズ株式会社製のNAX120-20、NN120-20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140のような触媒が含まれるポリシラザン溶液を用いることができる。また、これらの市販品は単独で使用されてもよく、2種以上混合して使用されてもよい。 Also, an amine or metal catalyst can be added to the coating liquid containing polysilazane in order to promote modification to silicon oxide, silicon nitride, and / or silicon oxynitride. For example, a polysilazane solution containing a catalyst such as NAX120-20, NN120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, SP140 manufactured by AZ Electronic Materials Co., Ltd. as a commercial product is used. be able to. Moreover, these commercial items may be used independently and may be used in mixture of 2 or more types.
 なお、ポリシラザンを含有する塗布液中において、触媒の添加量は、触媒による過剰なシラノール形成、及び膜密度の低下、膜欠陥の増大などを避けるため、ポリシラザンに対して2質量%以下に調整することが好ましい。 In addition, in the coating liquid containing polysilazane, the addition amount of the catalyst is adjusted to 2% by mass or less with respect to polysilazane in order to avoid excessive silanol formation by the catalyst, decrease in film density, increase in film defects, and the like. It is preferable.
 ポリシラザンを含有する塗布液には、ポリシラザン以外にも無機前駆体化合物を含有させることができる。ポリシラザン以外の無機前駆体化合物としては、塗布液の調製が可能であれば特に限定はされない。例えば、特開2011-143577号公報の段落「0110」~「0114」に記載のポリシラザン以外の化合物が適宜採用されうる。 The coating liquid containing polysilazane can contain an inorganic precursor compound in addition to polysilazane. The inorganic precursor compound other than polysilazane is not particularly limited as long as a coating liquid can be prepared. For example, compounds other than polysilazane described in paragraphs “0110” to “0114” of JP2011-143577A can be appropriately employed.
 (添加元素)
 ポリシラザンを含有する塗布液には、Si以外の金属元素の有機金属化合物を添加することができる。Si以外の金属元素の有機金属化合物を添加することで、塗布乾燥過程において、ポリシラザンのN原子とO原子との置き換わりが促進され、塗布乾燥後にSiOに近い安定した組成へと変化させることができる。
(Additive elements)
An organometallic compound of a metal element other than Si can be added to the coating liquid containing polysilazane. By adding an organometallic compound of a metal element other than Si, the replacement of N atom and O atom of polysilazane is promoted in the coating and drying process, and the coating composition can be changed to a stable composition close to SiO 2 after drying. it can.
 Si以外の金属元素の例としては、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)、亜鉛(Zn)、ガリウム(Ga)、インジウム(In)、クロム(Cr)、鉄(Fe)、マグネシウム(Mg)、スズ(Sn)、ニッケル(Ni)、パラジウム(Pd)、鉛(Pb)、マンガン(Mn)、リチウム(Li)、ゲルマニウム(Ge)、銅(Cu)、ナトリウム(Na)、カリウム(K)、カルシウム(Ca)、コバルト(Co)、ホウ素(B)、ベリリウム(Be)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)、タリウム(Tl)等が挙げられる。 Examples of metal elements other than Si include aluminum (Al), titanium (Ti), zirconium (Zr), zinc (Zn), gallium (Ga), indium (In), chromium (Cr), iron (Fe), Magnesium (Mg), tin (Sn), nickel (Ni), palladium (Pd), lead (Pb), manganese (Mn), lithium (Li), germanium (Ge), copper (Cu), sodium (Na), Examples include potassium (K), calcium (Ca), cobalt (Co), boron (B), beryllium (Be), strontium (Sr), barium (Ba), radium (Ra), thallium (Tl), and the like.
 特に、Al、B、Ti及びZrが好ましく、中でもAlを含む有機金属化合物が好ましい。 Particularly, Al, B, Ti and Zr are preferable, and among them, an organometallic compound containing Al is preferable.
 本発明に適用可能なアルミニウム化合物としては、例えば、アルミニウムイソポロポキシド、アルミニウム-sec-ブチレート、チタンイソプロポキシド、アルミニウムトリエチレート、アルミニウムトリイソプロピレート、アルミニウムトリtert-ブチレート、アルミニウムトリn-ブチレート、アルミニウムトリsec-ブチレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムジイソプロピレートモノアルミニウム-t-ブチレート、アルミニウムトリスエチルアセトアセテート、アルミニウムオキシドイソプロポキシドトリマー等を挙げることができる。 Examples of the aluminum compound applicable to the present invention include aluminum isopoloxide, aluminum-sec-butyrate, titanium isopropoxide, aluminum triethylate, aluminum triisopropylate, aluminum tritert-butylate, aluminum tri-n- Examples include butyrate, aluminum tri-sec-butylate, aluminum ethyl acetoacetate / diisopropylate, acetoalkoxyaluminum diisopropylate, aluminum diisopropylate monoaluminum-t-butylate, aluminum trisethylacetoacetate, aluminum oxide isopropoxide trimer, etc. be able to.
 具体的な市販品としては、例えば、AMD(アルミニウムジイソプロピレートモノsec-ブチレート)、ASBD(アルミニウムセカンダリーブチレート)、ALCH(アルミニウムエチルアセトアセテート・ジイソプロピレート)、ALCH-TR(アルミニウムトリスエチルアセトアセテート)、アルミキレートM(アルミニウムアルキルアセトアセテート・ジイソプロピレート)、アルミキレートD(アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート)、アルミキレートA(W)(アルミニウムトリスアセチルアセトネート)(以上、川研ファインケミカル株式会社製)、プレンアクト(登録商標)AL-M(アセトアルコキシアルミニウムジイソプロピレート、味の素ファインケミカル株式会社製)等を挙げることができる。 Specific commercial products include, for example, AMD (aluminum diisopropylate monosec-butyrate), ASBD (aluminum secondary butyrate), ALCH (aluminum ethyl acetoacetate / diisopropylate), ALCH-TR (aluminum trisethyl acetoate). Acetate), aluminum chelate M (aluminum alkyl acetoacetate / diisopropylate), aluminum chelate D (aluminum bisethylacetoacetate / monoacetylacetonate), aluminum chelate A (W) (aluminum trisacetylacetonate) Ken Fine Chemical Co., Ltd.), Preneact (registered trademark) AL-M (acetoalkoxyaluminum diisopropylate, Ajinomoto Fine Chemical Co., Ltd.), etc. Rukoto can.
 なお、これらの化合物を用いる場合は、ポリシラザンを含む塗布液と不活性ガス雰囲気下で混合することが好ましい。これらの化合物が大気中の水分や酸素と反応し、激しく酸化が進むことを抑制するためである。また、これらの化合物とポリシラザンとを混合する場合は、30~100℃に昇温し、撹拌しながら1分~24時間保持することが好ましい。 In addition, when using these compounds, it is preferable to mix with the coating liquid containing polysilazane in inert gas atmosphere. This is to prevent these compounds from reacting with moisture and oxygen in the atmosphere and causing intense oxidation. When these compounds and polysilazane are mixed, the temperature is preferably raised to 30 to 100 ° C. and maintained for 1 minute to 24 hours with stirring.
 本発明に係るガスバリアー性フィルムを構成するポリシラザン含有層における上記添加金属元素の含有量は、ケイ素(Si)の含有量100mol%に対して0.05~10mol%であることが好ましく、より好ましくは0.5~5mol%である。 The content of the additive metal element in the polysilazane-containing layer constituting the gas barrier film according to the present invention is preferably 0.05 to 10 mol%, more preferably 100 mol% of silicon (Si). Is 0.5 to 5 mol%.
 <傾斜領域の形成>
 傾斜領域形成方法としては、前述したように、A領域及びB領域を形成する際に、各々の形成条件を適宜調整して、A領域とB領域との中間領域に傾斜領域を形成する方法が好ましい。
<Formation of inclined region>
As described above, as the inclined region forming method, when the A region and the B region are formed, the respective forming conditions are appropriately adjusted, and the inclined region is formed in the intermediate region between the A region and the B region. preferable.
 B領域を上述した気相成膜法により形成する場合は、例えば、成膜原料における前記非遷移金属(M1)と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、成膜時の磁力、及び、成膜時の電力からなる群から選択される1種又は2種以上の条件を調節することで傾斜領域を形成することができる。 When the B region is formed by the above-described vapor deposition method, for example, the ratio of the non-transition metal (M1) and oxygen in the deposition raw material, the ratio of the inert gas and the reactive gas during the deposition, Inclination by adjusting one or more conditions selected from the group consisting of the gas supply amount during film formation, the degree of vacuum during film formation, the magnetic force during film formation, and the power during film formation Regions can be formed.
 B領域を上述した塗布成膜法により形成する場合は、例えば、前記非遷移金属(M1)を含有する成膜原料種(ポリシラザン種等)、触媒種、触媒含有量、塗布膜厚、乾燥温度・時間、改質方法、改質条件からなる群から選択される1種又は2種以上の条件を調節することで傾斜領域を形成することができる。 When forming the B region by the above-described coating film forming method, for example, a film forming raw material type (polysilazane type or the like) containing the non-transition metal (M1), a catalyst type, a catalyst content, a coating film thickness, and a drying temperature. The inclined region can be formed by adjusting one or more conditions selected from the group consisting of time, reforming method, and reforming conditions.
 A領域を上述した気相成膜法により形成する場合は、例えば、成膜原料における前記遷移金属(M2)と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、成膜時の磁力、及び、成膜時の電力からなる群から選択される1種又は2種以上の条件を調節することで傾斜領域を形成することができる。 In the case where the A region is formed by the above-described vapor deposition method, for example, the ratio of the transition metal (M2) and oxygen in the deposition material, the ratio of the inert gas and the reactive gas during the deposition, An inclined region by adjusting one or more conditions selected from the group consisting of the gas supply amount during film formation, the degree of vacuum during film formation, the magnetic force during film formation, and the power during film formation Can be formed.
 なお、上記した方法によって、傾斜領域の厚さを制御するには、A領域及びB領域を形成する方法の形成条件を適宜調整して、制御することができる。例えば、A領域を気相成膜法で形成する際には、成膜時間を制御することにより所望の厚さにすることができる。 In addition, in order to control the thickness of the inclined region by the above-described method, the formation conditions of the method for forming the A region and the B region can be appropriately adjusted and controlled. For example, when forming the A region by a vapor deposition method, a desired thickness can be obtained by controlling the deposition time.
 <傾斜組成膜の転写方法>
 本発明の傾斜組成膜は、特開2015-173249号公報に記載されている剥離方法ように、ガラス等の基板上に剥離層を介して被剥離層として形成し、その後、被剥離層をプラスチックフィルムに転写して、ガスバリアー性フィルムとして機能させることもできる。また、有機エレクトロルミネッセンス(EL)素子等の電子デバイスに転写して、封止層として機能させることもできる。
<Transfer method of gradient composition film>
The gradient composition film of the present invention is formed as a layer to be peeled through a peeling layer on a substrate such as glass as in the peeling method described in JP-A-2015-173249, and then the layer to be peeled is formed of a plastic. It can also be transferred to a film and function as a gas barrier film. Moreover, it can transfer to electronic devices, such as an organic electroluminescent (EL) element, and can also function as a sealing layer.
 このような傾斜組成膜の形成方法は、特に、軽量、薄型、又は可撓性を有する電子デバイスに、薄膜のガスバリアー層や封止層を形成する工程のクリーン度を管理し易くし、デバイスの歩留まりを向上させる観点から好ましい。 Such a method of forming a gradient composition film makes it easy to manage the cleanliness of the process of forming a thin gas barrier layer or sealing layer in a light, thin, or flexible electronic device. It is preferable from the viewpoint of improving the yield.
 具体的には、基板上に、剥離層を形成する第1の工程と、前記剥離層上に、前記剥離層と接する第1の層を含み、かつ、本発明の傾斜組成膜を含む被剥離層を形成する第2の工程と、前記剥離層と前記被剥離層とを分離する第3の工程と、を有する剥離方法により傾斜組成膜を転写可能な被剥離層として形成することが好ましい。第2の工程と第3の工程のあいだに剥離の起点を形成する工程を設けても良い。 Specifically, the first step of forming a release layer on the substrate, the first layer in contact with the release layer on the release layer, and the release target including the gradient composition film of the present invention It is preferable to form the gradient composition film as a layer to be peeled by a peeling method having a second step of forming a layer and a third step of separating the peeling layer and the layer to be peeled. A step of forming a starting point of peeling may be provided between the second step and the third step.
 以下に剥離方法の一例を図に示す
 <剥離方法>
 はじめに、第1の工程として、作製基板101上に厚さ10nm未満の剥離層103を形成し、次いで第2の工程として、剥離層103上に被剥離層105を形成する(図1A)。ここでは、島状の剥離層を形成する例を示したがこれに限られない。また、被剥離層105を島状に形成してもよい。
An example of the peeling method is shown in the figure below <Peeling method>
First, as a first step, a peeling layer 103 with a thickness of less than 10 nm is formed over a manufacturing substrate 101, and then, as a second step, a layer to be peeled 105 is formed on the peeling layer 103 (FIG. 1A). Here, an example in which an island-shaped release layer is formed is shown, but the present invention is not limited thereto. Alternatively, the layer to be peeled 105 may be formed in an island shape.
 この工程では、作製基板101から被剥離層105を剥離する際に、作製基板101と剥離層103の界面、剥離層103と被剥離層105の界面、又は剥離層103中で剥離が生じるような材料を選択する。本実施の形態では、被剥離層105と剥離層103の界面で剥離が生じる場合を例示するが、剥離層103や被剥離層105に用いる材料の組み合わせによってはこれに限られない。なお、被剥離層105が積層構造である場合、剥離層103と接する層を特に第1の層と記す。 In this step, when the layer to be peeled 105 is peeled from the manufacturing substrate 101, peeling occurs in the interface between the manufacturing substrate 101 and the peeling layer 103, the interface between the peeling layer 103 and the layer to be peeled 105, or the peeling layer 103. Select material. In this embodiment, the case where separation occurs at the interface between the separation layer 105 and the separation layer 103 is illustrated; however, the present invention is not limited to this depending on the combination of materials used for the separation layer 103 and the separation layer 105. Note that in the case where the layer to be peeled 105 has a stacked structure, a layer in contact with the peeling layer 103 is particularly referred to as a first layer.
 剥離層103の厚さは、例えば、10nm未満、好ましくは8nm以下、より好ましくは5nm以下、さらに好ましくは3nm以下とすればよい。剥離層103が薄いほど剥離の歩留まりを向上でき好ましい。また、剥離層103の厚さは、例えば、0.1nm以上、好ましくは0.5nm以上、より好ましくは1nm以上とすればよい。剥離層103が厚いほど厚さの均一な膜を成膜でき好ましい。例えば、剥離層103の厚さは1nm以上8nm以下が好ましい。本実施の形態では、厚さ5nmのタングステン膜を用いる。 The thickness of the peeling layer 103 is, for example, less than 10 nm, preferably 8 nm or less, more preferably 5 nm or less, and further preferably 3 nm or less. The thinner the release layer 103 is, the better the release yield can be improved. In addition, the thickness of the release layer 103 may be, for example, 0.1 nm or more, preferably 0.5 nm or more, more preferably 1 nm or more. A thicker release layer 103 is preferable because a uniform film can be formed. For example, the thickness of the release layer 103 is preferably 1 nm or more and 8 nm or less. In this embodiment, a tungsten film with a thickness of 5 nm is used.
 なお、剥離層103の厚さは、一例としては、層の全体にわたって、上記のような厚さであることが望ましい。ただし、本発明の実施形態の一態様は、これに限定されない。例えば、剥離層103は、少なくとも一部において、上記のような厚さの領域を有していてもよい。又は、剥離層103は、望ましくは、剥離層の50%以上の領域において、より望ましくは、剥離層の90%以上の領域において、上記のような厚さの領域を有していてもよい。つまり、本発明の一態様では、剥離層103の一部に厚さが0.1mm未満の領域や、10nm以上の領域を有していてもよい。 Note that, as an example, the thickness of the release layer 103 is desirably as described above over the entire layer. Note that one embodiment of the present invention is not limited to this. For example, the peeling layer 103 may have a region with the above thickness at least in part. Alternatively, the release layer 103 may have a region with the above-described thickness in a region of 50% or more of the release layer, more preferably in a region of 90% or more of the release layer. That is, in one embodiment of the present invention, part of the peeling layer 103 may have a region with a thickness of less than 0.1 mm or a region with a thickness of 10 nm or more.
 作製基板101には、少なくとも作製工程中の処理温度に耐えうる耐熱性を有する基板を用いる。作製基板101としては、例えばガラス基板、石英基板、サファイア基板、半導体基板、セラミック基板、金属基板、樹脂基板、プラスチック基板などを用いることができる。 As the manufacturing substrate 101, a substrate having heat resistance that can withstand at least a processing temperature in the manufacturing process is used. As the manufacturing substrate 101, for example, a glass substrate, a quartz substrate, a sapphire substrate, a semiconductor substrate, a ceramic substrate, a metal substrate, a resin substrate, a plastic substrate, or the like can be used.
 なお、量産性を向上させるため、作製基板101として大型のガラス基板を用いることが好ましい。例えば、第3世代(550mm×650mm)、第3.5世代(600mm×720mm、又は620mm×750mm)、第4世代(680mm×880mm、又は730mm×920mm)、第5世代(1100mm×1300mm)、第6世代(1500mm×1850mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2400mm)、第9世代(2400mm×2800mm、2450mm×3050mm)、第10世代(2950mm×3400mm)等のガラス基板、又はこれよりも大型のガラス基板を用いることができる。 Note that a large glass substrate is preferably used as the manufacturing substrate 101 in order to improve mass productivity. For example, the third generation (550 mm × 650 mm), the third generation (600 mm × 720 mm, or 620 mm × 750 mm), the fourth generation (680 mm × 880 mm, or 730 mm × 920 mm), the fifth generation (1100 mm × 1300 mm), 6th generation (1500 mm × 1850 mm), 7th generation (1870 mm × 2200 mm), 8th generation (2200 mm × 2400 mm), 9th generation (2400 mm × 2800 mm, 2450 mm × 3050 mm), 10th generation (2950 mm × 3400 mm), etc. A glass substrate or a glass substrate larger than this can be used.
 作製基板101にガラス基板を用いる場合、作製基板101と剥離層103との間に、下地膜として、酸化シリコン膜、酸化窒化シリコン膜、窒化シリコン膜、窒化酸化シリコン膜等の絶縁膜を形成すると、ガラス基板からの汚染を防止でき、好ましい。 In the case where a glass substrate is used as the manufacturing substrate 101, an insulating film such as a silicon oxide film, a silicon oxynitride film, a silicon nitride film, or a silicon nitride oxide film is formed as a base film between the manufacturing substrate 101 and the separation layer 103. It is preferable because contamination from the glass substrate can be prevented.
 剥離層103は、タングステン(W)、モリブデン(Mo)、チタン、タンタル、ニオブ、ニッケル、コバルト、ジルコニウム、亜鉛、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、シリコンから選択された元素、該元素を含む合金材料、又は該元素を含む化合物材料等を用いて形成できる。シリコンを含む層の結晶構造は、非晶質、微結晶、多結晶のいずれでもよい。また、酸化アルミニウム、酸化ガリウム、酸化亜鉛、二酸化チタン、酸化インジウム、インジウムスズ酸化物、インジウム亜鉛酸化物、In-Ga-Zn酸化物等の金属酸化物を用いてもよい。剥離層103に、タングステン、チタン、モリブデンなどの高融点金属材料を用いると、被剥離層105の形成工程の自由度が高まるため好ましい。 The separation layer 103 includes an element selected from tungsten (W), molybdenum (Mo), titanium, tantalum, niobium, nickel, cobalt, zirconium, zinc, ruthenium, rhodium, palladium, osmium, iridium, and silicon, and the element. An alloy material or a compound material containing the element can be used. The crystal structure of the layer containing silicon may be any of amorphous, microcrystalline, and polycrystalline. Alternatively, a metal oxide such as aluminum oxide, gallium oxide, zinc oxide, titanium dioxide, indium oxide, indium tin oxide, indium zinc oxide, or In—Ga—Zn oxide may be used. It is preferable to use a refractory metal material such as tungsten, titanium, or molybdenum for the separation layer 103 because the degree of freedom in the formation process of the separation layer 105 is increased.
 剥離層103は、例えばスパッタリング法、CVD(Chemical Vapor Deposition)法(プラズマCVD法、熱CVD法、MOCVD(Metal Organic CVD)法など)、ALD(Atomic Layer Deposition)法、塗布法(スピンコーティング法、液滴吐出法、ディスペンス法等を含む)、印刷法、蒸着法等により形成できる。 The peeling layer 103 is formed by, for example, sputtering, CVD (Chemical Vapor Deposition) (plasma CVD, thermal CVD, MOCVD (Metal Organic CVD), etc.), ALD (Atomic Layer Deposition), coating (spin coating, (Including a droplet discharge method, a dispensing method, and the like), a printing method, a vapor deposition method, and the like.
 剥離層103が単層構造の場合、タングステン膜、モリブデン膜、又はタングステンとモリブデンの混合物を含む膜を形成することが好ましい。また、タングステンの酸化物もしくは酸化窒化物を含む膜、モリブデンの酸化物もしくは酸化窒化物を含む膜、又はタングステンとモリブデンの混合物の酸化物もしくは酸化窒化物を含む膜を形成してもよい。なお、タングステンとモリブデンの混合物とは、例えば、タングステンとモリブデンの合金に相当する。例えば、Mo:W=3:1[原子数比]、Mo:W=1:1[原子数比]、又はMo:W=1:3[原子数比]などのモリブデンとタングステンの合金膜を用いてもよい。また、モリブデンとタングステンの合金膜は、例えば、Mo:W=49:51[質量%]、Mo:W=61:39[質量%]、Mo:W=14.8:85.2[質量%]の組成の金属ターゲットを用いてスパッタリング法により形成することができる。 In the case where the separation layer 103 has a single-layer structure, it is preferable to form a tungsten film, a molybdenum film, or a film containing a mixture of tungsten and molybdenum. Alternatively, a film containing tungsten oxide or oxynitride, a film containing molybdenum oxide or oxynitride, or a film containing an oxide or oxynitride of a mixture of tungsten and molybdenum may be formed. Note that the mixture of tungsten and molybdenum corresponds to, for example, an alloy of tungsten and molybdenum. For example, an alloy film of molybdenum and tungsten such as Mo: W = 3: 1 [atomic ratio], Mo: W = 1: 1 [atomic ratio], or Mo: W = 1: 3 [atomic ratio]. It may be used. The alloy film of molybdenum and tungsten is, for example, Mo: W = 49: 51 [mass%], Mo: W = 61: 39 [mass%], Mo: W = 14.8: 85.2 [mass%]. ] Can be formed by a sputtering method using a metal target having the composition.
 タングステン膜の表面状態を変えることにより、剥離層103と後に形成される被剥離層との密着性を制御することが可能である。例えば、タングステンを含む膜の表面を、熱酸化処理、酸素プラズマ処理、亜酸化窒素(NO)プラズマ処理、オゾン水等の酸化力の強い溶液での処理等を行ってタングステンの酸化物を含む膜を形成してもよい。またプラズマ処理や加熱処理は、酸素、窒素、亜酸化窒素単独、あるいは該ガスとその他のガスとの混合気体雰囲気下で行ってもよい。 By changing the surface state of the tungsten film, adhesion between the peeling layer 103 and a layer to be peeled later can be controlled. For example, the surface of a film containing tungsten is subjected to thermal oxidation treatment, oxygen plasma treatment, nitrous oxide (N 2 O) plasma treatment, treatment with a solution having strong oxidizing power such as ozone water, and the like to form tungsten oxide. A containing film may be formed. Plasma treatment and heat treatment may be performed in oxygen, nitrogen, nitrous oxide alone, or a mixed gas atmosphere of the gas and other gases.
 本発明の一態様では、厚さ10nm未満のタングステン膜を用いることで、第3の工程において、小さい剥離力で容易に剥離を行うことができるため、上記プラズマ処理や加熱処理を行わなくてもよい。これにより、剥離工程、さらには装置の作製工程を簡略化でき好ましい。 In one embodiment of the present invention, by using a tungsten film with a thickness of less than 10 nm, it is possible to easily perform separation with a small separation force in the third step, so that the plasma treatment or the heat treatment is not performed. Good. This is preferable because it can simplify the peeling process and the manufacturing process of the apparatus.
 被剥離層105としては、剥離層103上に接する本発明の傾斜組成膜を含むガスバリアー層を作製する。さらに、傾斜組成膜を含むガスバリアー層上に機能素子を作製してもよい。 As the peeled layer 105, a gas barrier layer including the gradient composition film of the present invention in contact with the peeling layer 103 is produced. Furthermore, a functional element may be fabricated on the gas barrier layer including the gradient composition film.
 次に、被剥離層105と基板109とを接合層107を用いて貼り合わせ、接合層107を硬化させる(図1B)。ここで、図1Bは図1Cにおける一点鎖線A1-A2間の断面図に相当する。なお、図1Cは、基板109(図示しない)側から見た平面図である。 Next, the peeled layer 105 and the substrate 109 are bonded together using the bonding layer 107, and the bonding layer 107 is cured (FIG. 1B). Here, FIG. 1B corresponds to a cross-sectional view taken along the alternate long and short dash line A1-A2 in FIG. 1C. 1C is a plan view seen from the substrate 109 (not shown) side.
 ここで、接合層107は剥離層103及び被剥離層105と重なるように配置することが好ましい。そして、図1B、図1Cに示すように、接合層107の端部は、剥離層103の端部よりも外側に位置しないことが好ましい。 Here, the bonding layer 107 is preferably disposed so as to overlap with the peeling layer 103 and the peeled layer 105. 1B and 1C, the end portion of the bonding layer 107 is preferably not positioned outside the end portion of the release layer 103.
 次に、レーザ光の照射により、剥離の起点を形成する(剥離の起点を形成する工程)(図1B、図1D)。 Next, a starting point of peeling is formed by irradiation with laser light (step of forming a starting point of peeling) (FIGS. 1B and 1D).
 レーザ光の照射を用いることで、剥離の起点を形成するために基板の切断等をする必要がなく、ゴミ等の発生を抑制でき、好ましい。 It is preferable to use laser light irradiation because it is not necessary to cut the substrate in order to form the separation starting point, and generation of dust or the like can be suppressed.
 レーザ光は、硬化状態の接合層107と、被剥離層105と、剥離層103とが重なる領域に対して照射する(図1Bの矢印P1参照)。 The laser light is applied to a region where the cured bonding layer 107, the layer to be peeled 105, and the peeling layer 103 overlap (see arrow P1 in FIG. 1B).
 レーザ光は、どちらの基板側から照射してもよいが、散乱した光が機能素子等に照射されることを抑制するため、剥離層103が設けられた作製基板101側から照射することが好ましい。なお、レーザ光を照射する側の基板は、該レーザ光を透過する材料を用いる。 The laser light may be irradiated from either side of the substrate, but it is preferable to irradiate from the side of the manufacturing substrate 101 provided with the release layer 103 in order to suppress the scattered light from being irradiated to the functional element or the like. . Note that a material that transmits the laser light is used for the substrate on the laser light irradiation side.
 少なくとも第1の層(被剥離層105に含まれる、剥離層103と接する層)にクラックを入れる(膜割れやひびを生じさせる)ことで、第1の層の一部を除去し、剥離の起点を形成できる(図1Dの点線で囲った領域参照)。このとき、第1の層だけでなく、被剥離層105の他の層や、剥離層103、接合層107の一部を除去してもよい。レーザ光の照射によって、膜の一部を溶解、蒸発、又は熱的に破壊することができる。また、剥離の起点の形成方法は問わない。少なくとも第1の層の一部が剥離層から剥離されればよく、第1の層の一部を除去しなくてもよい。 At least the first layer (the layer included in the layer to be peeled 105 and in contact with the peeling layer 103) is cracked (to cause film cracking or cracking), thereby removing a part of the first layer, A starting point can be formed (see the area enclosed by the dotted line in FIG. 1D). At this time, not only the first layer but also other layers of the layer to be peeled 105, the peeling layer 103, and part of the bonding layer 107 may be removed. By irradiation with laser light, a part of the film can be dissolved, evaporated, or thermally destroyed. Moreover, the formation method of the starting point of peeling is not ask | required. It is sufficient that at least a part of the first layer is peeled from the peeling layer, and a part of the first layer may not be removed.
 剥離工程時、剥離の起点に、被剥離層105と剥離層103を引き離す力が集中することが好ましいため、硬化状態の接合層107の中央部よりも端部近傍に剥離の起点を形成することが好ましい。特に、端部近傍の中でも、辺部近傍に比べて、角部近傍に剥離の起点を形成することが好ましい。 At the time of the peeling process, it is preferable that the force for separating the layer to be peeled 105 and the peeling layer 103 is concentrated on the starting point of peeling, so that the starting point of peeling is formed near the end rather than the central part of the cured bonding layer 107. Is preferred. In particular, it is preferable to form the separation starting point in the vicinity of the corner portion, in the vicinity of the edge portion, in comparison with the vicinity of the side portion.
 また、接合層107の端部近傍に連続的もしくは断続的にレーザ光を照射することで、実線状もしくは破線状に剥離の起点を形成すると、剥離が容易となるため好ましい。 In addition, it is preferable to form a starting point of peeling in the form of a solid line or a broken line by continuously or intermittently irradiating a laser beam in the vicinity of the end of the bonding layer 107 because the peeling becomes easy.
 剥離の起点を形成するために用いるレーザには特に限定はない。例えば、連続発振型のレーザやパルス発振型のレーザを用いることができる。レーザ光の照射条件(周波数、パワー密度、エネルギー密度、ビームプロファイル等)は、作製基板101や剥離層103の厚さ、材料等を考慮して適宜制御する。 There is no particular limitation on the laser used to form the starting point of peeling. For example, a continuous wave laser or a pulsed laser can be used. Laser light irradiation conditions (frequency, power density, energy density, beam profile, and the like) are appropriately controlled in consideration of the thickness, material, and the like of the manufacturing substrate 101 and the separation layer 103.
 そして、形成した剥離の起点から、被剥離層105と作製基板101とを分離する(図1E、図1F)。これにより、被剥離層105を作製基板101から基板109に転置することができる。このとき、一方の基板を吸着ステージ等に固定することが好ましい。例えば、作製基板101を吸着ステージに固定し、作製基板101から被剥離層105を剥離してもよい。また、基板109を吸着ステージに固定し、基板109から作製基板101を剥離してもよい。なお、剥離の起点よりも外側に形成された接合層107は、作製基板101又は基板109の少なくとも一方に残存することになる。図1E、図1Fでは双方の側に残存する例を示すがこれに限られない。 Then, the layer to be peeled 105 and the manufacturing substrate 101 are separated from the starting point of the peeling (FIGS. 1E and 1F). Thus, the layer 105 to be peeled can be transferred from the manufacturing substrate 101 to the substrate 109. At this time, it is preferable to fix one substrate to an adsorption stage or the like. For example, the manufacturing substrate 101 may be fixed to an adsorption stage, and the layer to be peeled 105 may be peeled from the manufacturing substrate 101. Alternatively, the substrate 109 may be fixed to the suction stage and the manufacturing substrate 101 may be peeled from the substrate 109. Note that the bonding layer 107 formed outside the separation starting point remains on at least one of the manufacturing substrate 101 and the substrate 109. 1E and 1F show examples that remain on both sides, but the present invention is not limited to this.
 例えば、剥離の起点から、物理的な力(人間の手や治具で引き剥がす処理や、ローラーを回転させながら分離する処理等)によって被剥離層105と作製基板101とを分離すればよい。 For example, the layer to be peeled 105 and the manufacturing substrate 101 may be separated from the starting point of peeling by a physical force (a process of peeling with a human hand or a jig, a process of separating while rotating a roller, or the like).
 また、剥離層103と被剥離層105との界面に水などの液体を浸透させて作製基板101と被剥離層105とを分離してもよい。毛細管現象により液体が剥離層103と被剥離層105の間にしみこむことで、容易に分離することができる。また、剥離時に生じる静電気が、被剥離層105に含まれる機能素子に悪影響を及ぼすこと(半導体素子が静電気により破壊されるなど)を抑制できる。なお、液体を霧状又は蒸気にして吹き付けてもよい。液体としては、純水や有機溶剤などを用いることができ、中性、アルカリ性、もしくは酸性の水溶液や、塩が溶けている水溶液などを用いてもよい。 Alternatively, the manufacturing substrate 101 and the layer to be peeled 105 may be separated by infiltrating a liquid such as water into the interface between the peeling layer 103 and the layer to be peeled 105. The liquid can be easily separated by permeating between the peeling layer 103 and the peeled layer 105 by capillary action. In addition, static electricity generated at the time of peeling can be prevented from adversely affecting the functional elements included in the layer to be peeled 105 (such as a semiconductor element being destroyed by static electricity). The liquid may be sprayed in the form of mist or steam. As the liquid, pure water, an organic solvent, or the like can be used, and a neutral, alkaline, or acidic aqueous solution, an aqueous solution in which a salt is dissolved, or the like may be used.
 なお、剥離後に、基板109上に残った、被剥離層105と基板109との接着に寄与していない接合層107を除去してもよい。除去することで、後の工程で機能素子に悪影響を及ぼすこと(不純物の混入など)を抑制でき好ましい。例えば、ふき取り、洗浄等によって、不要な樹脂を除去することができる。以上に示した本発明の一態様の剥離方法では、レーザ光の照射により剥離の起点を形成し、剥離層103と被剥離層105とを剥離しやすい状態にしてから、剥離を行う。これにより、剥離工程の歩留まりを向上させることができる。 Note that the bonding layer 107 that does not contribute to adhesion between the layer to be peeled 105 and the substrate 109 remaining on the substrate 109 after the separation may be removed. By removing, it is possible to suppress adverse effects on the functional elements in the subsequent steps (mixing of impurities, etc.), which is preferable. For example, unnecessary resin can be removed by wiping, washing, or the like. In the peeling method of one embodiment of the present invention described above, a peeling starting point is formed by laser light irradiation, and the peeling layer 103 and the layer to be peeled 105 are easily peeled, and then peeling is performed. Thereby, the yield of a peeling process can be improved.
 <電子デバイス>
 本発明のガスバリアー性フィルムは、優れたガスバリアー性及び透明性を示し、光電変換素子(太陽電池素子)や有機エレクトロルミネッセンス(EL)素子、液晶表示素子等の等の電子デバイスに用いられるガスバリアー性フィルム及びこれを用いた電子デバイスなど、様々な用途に使用することができる。
<Electronic device>
The gas barrier film of the present invention exhibits excellent gas barrier properties and transparency, and is used for electronic devices such as photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. It can be used for various applications such as a barrier film and an electronic device using the same.
 特に、上記したような転写方法で形成したガスバリアー層を有するガスバリアー性フィルムは、優れた耐屈曲性をも有する。このため、耐屈曲性を付与した電子デバイスにも好ましく使用することができる。 In particular, a gas barrier film having a gas barrier layer formed by the transfer method as described above also has excellent bending resistance. For this reason, it can be preferably used also for an electronic device imparted with bending resistance.
 本発明の電子デバイスに用いられる電子デバイス本体の例としては、例えば、有機エレクトロルミネッセンス素子(有機EL素子)、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等を挙げることができる。本発明の効果がより効率的に得られるという観点から、該電子デバイス本体は有機EL素子又は太陽電池が好ましく、有機EL素子がより好ましい。 Examples of the electronic device body used in the electronic device of the present invention include, for example, an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, a solar cell (PV), and the like. be able to. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic device body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
 <有機EL素子>
 本発明の傾斜組成膜を適用する電子デバイスの代表例である有機EL素子は、例えば、透明基材上に、陽極、第1有機機能層群、発光層、第2有機機能層群、陰極が積層されて構成されている。第1有機機能層群は、例えば、正孔注入層、正孔輸送層、電子阻止層等から構成され、第2有機機能層群は、例えば、正孔阻止層、電子輸送層、電子注入層等から構成されている。第1有機機能層群及び第2有機機能層群はそれぞれ1層のみで構成されていても良いし、第1有機機能層群及び第2有機機能層群はそれぞれ設けられていなくても良い。
<Organic EL device>
An organic EL element that is a representative example of an electronic device to which the gradient composition film of the present invention is applied includes, for example, an anode, a first organic functional layer group, a light emitting layer, a second organic functional layer group, and a cathode on a transparent substrate. It is configured by stacking. The first organic functional layer group includes, for example, a hole injection layer, a hole transport layer, an electron blocking layer, and the like, and the second organic functional layer group includes, for example, a hole blocking layer, an electron transport layer, and an electron injection layer. Etc. Each of the first organic functional layer group and the second organic functional layer group may be composed of only one layer, or the first organic functional layer group and the second organic functional layer group may not be provided.
 以下に、有機EL素子の構成の代表例を示す。 The following is a typical example of the configuration of the organic EL element.
 (i)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
 (ii)陽極/正孔注入輸送層/発光層/正孔阻止層/電子注入輸送層/陰極
 (iii)陽極/正孔注入輸送層/電子阻止層/発光層/正孔阻止層/電子注入輸送層/
陰極
 (iv)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 (v)陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 (vi)陽極/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 更に、有機EL素子は、非発光性の中間層を有していても良い。中間層は電荷発生層であっても良く、マルチフォトンユニット構成であっても良い。
(I) Anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode (ii) Anode / hole injection transport layer / light emitting layer / hole blocking layer / electron injection transport layer / cathode (iii) Anode / Hole injection transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron injection transport layer /
Cathode (iv) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (v) Anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / Electron transport layer / electron injection layer / cathode (vi) anode / hole injection layer / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode The element may have a non-light emitting intermediate layer. The intermediate layer may be a charge generation layer or a multi-photon unit configuration.
 本発明に適用可能な有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。 As for the outline of the organic EL element applicable to the present invention, for example, JP2013-157634A, JP2013-168552A, JP2013-177361A, JP2013-187221A, JP JP 2013-191644 A, JP 2013-191804 A, JP 2013-225678 A, JP 2013-235994 A, JP 2013-243234 A, JP 2013-243236 A, JP 2013-2013 A. JP 242366, JP 2013-243371, JP 2013-245179, JP 2014-003249, JP 2014-003299, JP 2014-013910, JP 2014-017493. Gazette, JP 2014-017494 A It can be mentioned configurations described in equal.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 [実施例1]
 《剥離層形成基板の作製》
 50mm×50mmサイズの無アルカリガラス板(厚さ0.7mm)上に厚さ約200nmの酸化窒化シリコン膜を下地膜として形成した。酸化窒化シリコン膜は、プラズマCVD法にて、シランガスとNOガスの流量をそれぞれ10sccm、1200sccmとし、電源電力30W、圧力22Pa、基板温度330℃の条件で形成した。
[Example 1]
<< Preparation of release layer-formed substrate >>
A silicon oxynitride film having a thickness of about 200 nm was formed as a base film on a non-alkali glass plate (thickness 0.7 mm) having a size of 50 mm × 50 mm. The silicon oxynitride film was formed by plasma CVD under the conditions of silane gas and N 2 O gas flow rates of 10 sccm and 1200 sccm, power supply power 30 W, pressure 22 Pa, and substrate temperature 330 ° C.
 次に、下地膜上にタングステン膜を剥離層として形成した。タングステン膜の厚さは30nmとした。タングステン膜は、スパッタリング法にて、Arガスの流量を100sccmとし、電源電力60kW、圧力2Pa、基板温度100℃の条件で形成した。 Next, a tungsten film was formed as a release layer on the base film. The thickness of the tungsten film was 30 nm. The tungsten film was formed by sputtering under the conditions of an Ar gas flow rate of 100 sccm, a power supply power of 60 kW, a pressure of 2 Pa, and a substrate temperature of 100 ° C.
 次に、亜酸化窒素(NO)プラズマ処理を行った。NOプラズマ処理は、NOガスの流量を100sccmとし、電源電力500W、圧力100Pa、基板温度330℃、240秒間の条件で行った。 Next, nitrous oxide (N 2 O) plasma treatment was performed. N 2 O plasma treatment, the flow rate of N 2 O gas was 100 sccm, source power 500 W, pressure 100 Pa, a substrate temperature of 330 ° C., was carried out under conditions of 240 seconds.
 《傾斜組成膜試料、及び、比較試料の作製》
 〔試料1の作製〕
 前記作製した剥離層形成基板の剥離層上にスパッタ法により、厚さ150nmとなるように製膜時間を設定し、第1層(B領域)として、酸化ケイ素層を形成した。スパッタ装置としては、マグネトロンスパッタ装置(キャノンアネルバ社製:型式EB1100)を用いた。ターゲットとして、市販の多結晶シリコンターゲットを用いた。プロセスガスにはArとOとを用いて、RF方式による成膜を行った。スパッタ電源パワーは5.0W/cmとし、成膜圧力は0.4Paとした。
<< Production of gradient composition film sample and comparative sample >>
[Preparation of Sample 1]
A film-forming time was set to a thickness of 150 nm on the release layer of the produced release layer-forming substrate by sputtering to form a silicon oxide layer as the first layer (B region). As the sputtering apparatus, a magnetron sputtering apparatus (manufactured by Canon Anelva: Model EB1100) was used. A commercially available polycrystalline silicon target was used as the target. Film formation by RF method was performed using Ar and O 2 as process gases. The sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa.
 次いで、同じスパッタ装置を用いて、第2層(A領域)として、酸化ケイ素層上に、厚さ30nmとなるように製膜時間を設定し、酸化ニオブ層を形成した。ターゲットとして、市販の酸素欠損型酸化ニオブターゲット(Nb1229)を用いた。プロセスガスにはArとOとを用い、O分圧を12%として、DC方式による成膜を行った。スパッタ電源パワーは5.0W/cmとし、成膜圧力は0.4Paとした。このようにして、試料1を得た。 Next, using the same sputtering apparatus, as the second layer (A region), a film formation time was set on the silicon oxide layer so as to have a thickness of 30 nm, and a niobium oxide layer was formed. A commercially available oxygen-deficient niobium oxide target (Nb 12 O 29 ) was used as the target. The process gas used and Ar and O 2, the O 2 partial pressure of 12%, a film was formed by DC method. The sputtering power source power was 5.0 W / cm 2 and the film forming pressure was 0.4 Pa. In this way, Sample 1 was obtained.
 〔試料2の作製〕
 前記作製した剥離層形成基板の剥離層上に、下記に示すようなポリシラザンを含む塗布液を塗布して塗布膜を形成した後、真空紫外線照射による改質を行って、第1層として、厚さ150nmのポリシラザン含有層を形成した。
[Preparation of Sample 2]
After forming a coating film by applying a coating liquid containing polysilazane as shown below onto the release layer of the produced release layer forming substrate, the coating layer is modified by vacuum ultraviolet irradiation to form a first layer having a thickness A 150 nm thick polysilazane-containing layer was formed.
 パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン(TMDAH))を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらに乾燥膜厚調整のためジブチルエーテルで希釈し、固形分5質量%の塗布液を調製した。 A dibutyl ether solution containing 20% by mass of perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH) )) And a dibutyl ether solution (NAX120-20, manufactured by AZ Electronic Materials Co., Ltd.) containing 20% by mass of perhydropolysilazane in a ratio of 4: 1 (mass ratio), and further for adjusting the dry film thickness Dilution with dibutyl ether prepared a coating solution having a solid content of 5% by mass.
 上記樹脂基材上に、第2層として、スピンコート法により塗布液を下記表1に示す乾燥膜厚になるよう塗布し、80℃で2分間乾燥した。次いで、乾燥した塗膜に対して、波長172nmのXeエキシマランプを有する真空紫外線照射装置を用い、照射エネルギーを5J/cmとした条件で真空紫外線照射処理を行った。この際、照射雰囲気は窒素で置換し、酸素濃度は0.1体積%とした。また、試料を設置するステージ温度を80℃とした。 On the resin base material, as a second layer, a coating solution was applied by spin coating so as to have a dry film thickness shown in Table 1 below, and dried at 80 ° C. for 2 minutes. Next, vacuum ultraviolet irradiation treatment was performed on the dried coating film using a vacuum ultraviolet irradiation apparatus having an Xe excimer lamp having a wavelength of 172 nm under the condition that the irradiation energy was 5 J / cm 2 . At this time, the irradiation atmosphere was replaced with nitrogen, and the oxygen concentration was set to 0.1% by volume. The stage temperature for installing the sample was set to 80 ° C.
 次いで、ポリシラザン含有層上に、厚さ20nmとなるように製膜時間を設定した以外は、試料1と同様にして、酸化ニオブ層を形成した。このようにして、試料2を得た。 Next, a niobium oxide layer was formed on the polysilazane-containing layer in the same manner as in Sample 1, except that the film formation time was set to be 20 nm. In this way, Sample 2 was obtained.
 〔試料3の作製〕
 真空紫外線照射処理を行わなかった以外は、試料2と同様にして、試料3を得た。
[Preparation of Sample 3]
Sample 3 was obtained in the same manner as Sample 2, except that the vacuum ultraviolet irradiation treatment was not performed.
 〔試料4の作製〕
 ポリシラザンを含む塗布液を下記のように変更した以外は、試料3と同様にして、試料4を得た。
[Preparation of Sample 4]
Sample 4 was obtained in the same manner as Sample 3, except that the coating solution containing polysilazane was changed as follows.
 パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン(TMDAH))を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらにジブチルエーテルで固形分濃度が5質量%となるように希釈した液Aを調製した。塗布液の調整はグローブボックス内で行った。次に、アルミニウムエチルアセトアセテート・ジイソプロピレートをジブチルエーテルで固形分濃度が5質量%となるように希釈したアルミニウム化合物液Bを作製した。Siとアルミニウム化合物液Bとを、Al/Si原子比率が0.01となるように混合し、攪拌しながら80℃まで昇温し、80℃で2時間保持した後、室温(25℃)まで徐冷した。このようにして、固形分5質量%の塗布液を調製した。 A dibutyl ether solution containing 20% by mass of perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH) )) And a dibutyl ether solution of 20% by mass of perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NAX120-20) at a ratio of 4: 1 (mass ratio), and further solid content concentration with dibutyl ether A liquid A diluted so as to be 5% by mass was prepared. The coating solution was adjusted in a glove box. Next, an aluminum compound liquid B was prepared by diluting aluminum ethyl acetoacetate diisopropylate with dibutyl ether so that the solid content concentration was 5 mass%. Si and aluminum compound liquid B are mixed so that the Al / Si atomic ratio is 0.01, heated to 80 ° C. while stirring, held at 80 ° C. for 2 hours, and then to room temperature (25 ° C.). Slowly cooled. In this way, a coating solution having a solid content of 5% by mass was prepared.
 〔試料5の作製〕
 酸化ニオブ層を形成せず、酸化ケイ素層の厚さが200nmとなるように製膜時間を設定した以外は、試料1と同様にして、試料5を得た。
[Preparation of Sample 5]
Sample 5 was obtained in the same manner as Sample 1, except that the niobium oxide layer was not formed and the film formation time was set so that the thickness of the silicon oxide layer was 200 nm.
 〔試料6の作製〕
 酸化ニオブ層を形成しなかった以外は、試料3と同様にして、試料6を得た。
[Preparation of Sample 6]
Sample 6 was obtained in the same manner as Sample 3, except that the niobium oxide layer was not formed.
 〔試料7の作製〕
 酸化ニオブ層を酸化ケイ素層に変えた以外は、試料3と同様にして、試料7を得た。酸化ケイ素層は試料1の作製方法に従い、酸化ケイ素層の厚さが20nmとなるように製膜時間を設定した。
[Preparation of Sample 7]
Sample 7 was obtained in the same manner as Sample 3, except that the niobium oxide layer was changed to a silicon oxide layer. The film formation time of the silicon oxide layer was set according to the method for preparing Sample 1 so that the thickness of the silicon oxide layer was 20 nm.
 なお、それぞれの層の厚さは、あらかじめ、スパッタ時間と形成される層の厚さの検量線を求め、スパッタの製膜時間を調整して、それぞれの層の厚さになるよう製膜した。 In addition, the thickness of each layer was obtained in advance by obtaining a calibration curve of the sputtering time and the thickness of the layer to be formed, and adjusting the sputtering film forming time to form the film to the thickness of each layer. .
 〔試料8の作製〕
 酸化ケイ素層を形成せず、酸化ニオブ層の厚さが100nmとなるように製膜時間を設定した以外は、試料1と同様にして、試料8を得た。
[Preparation of Sample 8]
Sample 8 was obtained in the same manner as Sample 1, except that the silicon oxide layer was not formed and the film formation time was set so that the thickness of the niobium oxide layer was 100 nm.
 《傾斜組成膜の検出強度曲線》
 上記作製したガラス基板上の傾斜組成膜(ガスバリアー層)の非常に薄い切片(厚さ約60nm)を作製し、原子分解能分析電子顕微鏡:ARM200F(JEOL製)を用いて加速電圧:200.0kVの条件でEDSライン分析を行った。測定は、全膜厚に対して、厚さ方向に2nm以下の間隔で測定した。
<Detection intensity curve of gradient composition film>
An extremely thin section (thickness: about 60 nm) of the gradient composition film (gas barrier layer) on the glass substrate prepared above was prepared, and an acceleration voltage: 200.0 kV using an atomic resolution analysis electron microscope: ARM200F (manufactured by JEOL). The EDS line analysis was conducted under the following conditions. The measurement was performed at intervals of 2 nm or less in the thickness direction with respect to the total film thickness.
 その結果、各元素の検出強度を、表面から厚さ方向に変化する各元素の検出強度曲線として得た。 As a result, the detection intensity of each element was obtained as a detection intensity curve of each element changing from the surface in the thickness direction.
 試料1~4の各検出強度曲線を図2A~図5Bに示す。それぞれ図に対してAを付した図は上記方法で測定したデータ処理前のデータであり、Bを付した図はAを付した図に対して、厚さ方向に2nm以下の間隔で測定し、かつ、波長5nm未満の波長成分を除去した検出強度曲線である。図A~図5Bより試料1~4には、5nm以上の傾斜領域のあることがわかる。また図には示さないが、試料5~8には傾斜領域は無かった。 The detection intensity curves of Samples 1 to 4 are shown in FIGS. 2A to 5B. Each figure attached with A is data before data processing measured by the above method, and each figure attached with B is measured at intervals of 2 nm or less in the thickness direction with respect to the figure attached with A. And it is the detection intensity curve which removed the wavelength component less than wavelength 5nm. From FIGS. A to 5B, it can be seen that Samples 1 to 4 have an inclined region of 5 nm or more. Although not shown in the figure, Samples 5 to 8 had no inclined region.
 なお、図2A~図5Bでは、第2層の表面が、図では左端になる測定例で傾斜領域が存在する部分を示した。また、それぞれのBを付した図の酸素の強度は割愛した。 In FIGS. 2A to 5B, the surface of the second layer shows a portion where an inclined region exists in the measurement example at the left end in the figure. Also, the oxygen intensity in each figure marked with B is omitted.
 以上の結果と各試料の構成とを表1に示す。 Table 1 shows the above results and the composition of each sample.
 〈Ca法によるガスバリアー性の評価〉
 下記のようにして作製したCa法評価試料を40℃90%RH環境に500時間まで保存し、この間、一定時間ごとに透過濃度(任意の4点の平均)を測定した。透過濃度の初期値と、その経時変化の傾きから、水蒸気透過率(単位:g/(m・24h))を算出した。結果を表1に示した。
<Evaluation of gas barrier properties by Ca method>
The Ca method evaluation sample prepared as described below was stored in an environment of 40 ° C. and 90% RH for up to 500 hours. During this period, the transmission density (average of arbitrary 4 points) was measured at regular intervals. The water vapor transmission rate (unit: g / (m 2 · 24 h)) was calculated from the initial value of the transmission density and the slope of the change over time. The results are shown in Table 1.
 〔Ca法評価試料の作製〕
 封止樹脂層として両面に剥離フィルムを有する厚さ20μm熱硬化型のシート状接着剤(エポキシ系樹脂)を厚さ20μmを用意した。これを50mm×50mmのサイズに打ち抜いた後、グローブボックス内に入れて、24時間乾燥処理を行った。
[Preparation of Ca method evaluation sample]
A 20 μm thick thermosetting sheet-like adhesive (epoxy resin) having a release film on both sides as a sealing resin layer was prepared to a thickness of 20 μm. This was punched out to a size of 50 mm × 50 mm, then placed in a glove box and dried for 24 hours.
 次に、50mm×50mmサイズの無アルカリガラス板(厚さ0.7mm)の片面をUV洗浄した。株式会社エイエルエステクノロジー製の真空蒸着装置を用い、ガラス板の中央に、マスクを介して20mm×20mmのサイズでCaを蒸着した。Caの厚さは80nmとした。Ca蒸着後のガラス板をグローブボックス内に取り出した。 Next, one side of a 50 mm × 50 mm non-alkali glass plate (thickness 0.7 mm) was UV cleaned. Ca was vapor-deposited by the size of 20 mm x 20 mm through the mask in the center of the glass plate using the vacuum vapor deposition apparatus made from an EILS technology. The thickness of Ca was 80 nm. The glass plate after Ca deposition was taken out into the glove box.
 次に、上記作製した傾斜組成膜を含む各試料の被剥離層を形成したガラス板をグローブボックス内に入れ、真空ラミネート装置を用いて、Ca蒸着ガラス板のCa蒸着面と各試料の被剥離層とが対向するようにして、剥離フィルムを除去したシート状接着剤で貼り合せた。この際、110℃の加熱を行った。さらに、接着した試料を110℃に設定したホットプレート上にCa蒸着ガラス板を下にして置き、30分間硬化させた。 Next, the glass plate on which the layer to be peeled of each sample including the prepared gradient composition film is formed is put in a glove box, and the Ca vapor-deposited surface of the Ca vapor-deposited glass plate and the sample to be peeled off using a vacuum laminating apparatus. The laminate was bonded with a sheet-like adhesive from which the release film was removed so that the layers were opposed to each other. At this time, heating at 110 ° C. was performed. Further, the adhered sample was placed on a hot plate set at 110 ° C. with the Ca vapor-deposited glass plate down, and cured for 30 minutes.
 次いで、傾斜組成膜を含む被剥離層の剥離処理を行った。具体的には、被剥離層を形成したガラス板側からレーザ光を照射して剥離の起点を形成し、剥離層と被剥離層とが剥離しやすい状態にしてから、剥離を行った。 Next, the layer to be peeled including the gradient composition film was peeled off. Specifically, laser light was irradiated from the side of the glass plate on which the layer to be peeled was formed to form a starting point of peeling, and peeling was performed after the peeling layer and the layer to be peeled were easily peeled.
 次いで、被剥離層の表面に、保護フィルムとして、厚さ50μmのポリエチレンテレフタレートフィルム(東レ株式会社製、ルミラー(登録商標)(U403))を日東電工社製の25μm厚の透明粘着剤シートを用いて貼り合せ、Ca法評価試料を得た。 Next, a 50 μm thick polyethylene terephthalate film (manufactured by Toray Industries Inc., Lumirror (registered trademark) (U403)) is used as a protective film on the surface of the layer to be peeled, and a 25 μm thick transparent adhesive sheet manufactured by Nitto Denko Corporation is used. To obtain a Ca method evaluation sample.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から本発明の傾斜組成膜1~4を具備したガスバリアー性フィルムは、有機エレクトロルミネッセンス素子の基板や、封止フィルムとして適用可能なレベルの、非常に優れたガスバリアー性を有していることが分かる。特に、傾斜領域に酸素及び窒素を含有する傾斜組成膜2~4を具備したガスバリアー性フィルムは、その中でも著しく優れたガスバリアー性を有していることが分かる。 From Table 1, the gas barrier film provided with the gradient composition films 1 to 4 of the present invention has a very excellent gas barrier property that can be applied as a substrate of an organic electroluminescence element or a sealing film. I understand that. In particular, it can be seen that the gas barrier film having the gradient composition films 2 to 4 containing oxygen and nitrogen in the inclined region has remarkably excellent gas barrier properties.
 本発明の傾斜組成膜は、高いガスバリアー性を有し、ガスバリアー性フィルム及びそれを具備した電子デバイスに好適に適用することができる。 The gradient composition film of the present invention has a high gas barrier property, and can be suitably applied to a gas barrier film and an electronic device having the gas barrier film.
 101 作製基板
 103 剥離層
 105 被剥離層
 107 接合層
 109 基板
101 Fabrication substrate 103 Peeling layer 105 Peeled layer 107 Bonding layer 109 Substrate

Claims (10)

  1.  遷移金属と、非遷移金属とを含有する傾斜組成膜であって、前記傾斜組成膜の断面のEDSライン分析によって得られる前記遷移金属と非遷移金属の検出強度を、表面から厚さ方向に変化する検出強度曲線として測定したとき、前記遷移金属の検出強度が増加し、かつ、前記非遷移金属の検出強度が減少する傾斜領域を有することを特徴とする傾斜組成膜。 A gradient composition film containing a transition metal and a non-transition metal, wherein the detected intensity of the transition metal and non-transition metal obtained by EDS line analysis of the cross-section of the gradient composition film changes from the surface to the thickness direction. A gradient composition film characterized by having a gradient region in which the detection intensity of the transition metal increases and the detection intensity of the non-transition metal decreases when measured as a detection intensity curve.
  2.  前記遷移金属を金属の主成分として含有する領域であるA領域と、前記非遷移金属を金属の主成分として含有する領域であるB領域との中間領域に、前記傾斜領域を有することを特徴とする請求項1に記載の傾斜組成膜。 The inclined region is provided in an intermediate region between an A region which is a region containing the transition metal as a main component of the metal and a B region which is a region containing the non-transition metal as a main component of the metal. The graded composition film according to claim 1.
  3.  前記傾斜領域が、さらに酸素を含有することを特徴とする請求項1又は請求項2に記載の傾斜組成膜。 The gradient composition film according to claim 1 or 2, wherein the gradient region further contains oxygen.
  4.  前記傾斜領域が、さらに窒素を含有することを特徴とする請求項1から請求項3までのいずれか一項に記載の傾斜組成膜。 The gradient composition film according to any one of claims 1 to 3, wherein the gradient region further contains nitrogen.
  5.  前記非遷移金属が、ケイ素であることを特徴とする請求項1から請求項4までのいずれか一項に記載の傾斜組成膜。 The gradient composition film according to any one of claims 1 to 4, wherein the non-transition metal is silicon.
  6.  前記遷移金属が、ニオブ(Nb)、タンタル(Ta)、及びバナジウム(V)から選択されることを特徴とする請求項1から請求項5までのいずれか一項に記載の傾斜組成膜。 The gradient composition film according to any one of claims 1 to 5, wherein the transition metal is selected from niobium (Nb), tantalum (Ta), and vanadium (V).
  7.  前記傾斜領域の厚さが、5nm以上であることを特徴とする請求項1から請求項6までのいずれか一項に記載の傾斜組成膜。 The gradient composition film according to any one of claims 1 to 6, wherein the thickness of the gradient region is 5 nm or more.
  8.  請求項1から請求項7までのいずれか一項に記載の傾斜組成膜を具備していることを特徴とするガスバリアー性フィルム。 A gas barrier film comprising the gradient composition film according to any one of claims 1 to 7.
  9.  請求項8に記載のガスバリアー性フィルムを具備していることを特徴とする電子デバイス。 An electronic device comprising the gas barrier film according to claim 8.
  10.  有機エレクトロルミネッセンス素子を具備していることを特徴とする請求項9に記載の電子デバイス。 The electronic device according to claim 9, further comprising an organic electroluminescence element.
PCT/JP2016/084582 2015-11-24 2016-11-22 Gradient composition film, and gas barrier film and electronic device comprising same WO2017090599A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017552654A JPWO2017090599A1 (en) 2015-11-24 2016-11-22 Gradient composition film, gas barrier film comprising the same, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-228386 2015-11-24
JP2015228386 2015-11-24

Publications (1)

Publication Number Publication Date
WO2017090599A1 true WO2017090599A1 (en) 2017-06-01

Family

ID=58764215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084582 WO2017090599A1 (en) 2015-11-24 2016-11-22 Gradient composition film, and gas barrier film and electronic device comprising same

Country Status (3)

Country Link
JP (1) JPWO2017090599A1 (en)
TW (1) TW201733790A (en)
WO (1) WO2017090599A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004376A1 (en) * 2000-07-12 2002-01-17 Nippon Sheet Glass Co., Ltd. Photocatalytic member
JP2005035128A (en) * 2003-07-18 2005-02-10 Sumitomo Bakelite Co Ltd Transparent gas barrier film and display device using it
JP2008275737A (en) * 2007-04-26 2008-11-13 Toppan Printing Co Ltd Optical thin film layered product
JP2016175372A (en) * 2015-03-23 2016-10-06 コニカミノルタ株式会社 Gas barrier film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004376A1 (en) * 2000-07-12 2002-01-17 Nippon Sheet Glass Co., Ltd. Photocatalytic member
JP2005035128A (en) * 2003-07-18 2005-02-10 Sumitomo Bakelite Co Ltd Transparent gas barrier film and display device using it
JP2008275737A (en) * 2007-04-26 2008-11-13 Toppan Printing Co Ltd Optical thin film layered product
JP2016175372A (en) * 2015-03-23 2016-10-06 コニカミノルタ株式会社 Gas barrier film

Also Published As

Publication number Publication date
JPWO2017090599A1 (en) 2018-10-18
TW201733790A (en) 2017-10-01

Similar Documents

Publication Publication Date Title
TWI620827B (en) Transparent conductive layer manufacturing method and apparatus, sputtering target and transparent conductive layer
WO2015053405A1 (en) Method for manufacturing gas barrier film
US10196740B2 (en) Laminate and method of manufacturing the same, and gas barrier film and method of manufacturing the same
TWI617459B (en) Gas barrier film and manufacturing method thereof
JPWO2016190284A6 (en) Gas barrier film and method for producing the same
JP2017095758A (en) Method for producing gas barrier film
WO2017090599A1 (en) Gradient composition film, and gas barrier film and electronic device comprising same
JP4106931B2 (en) Transparent gas barrier thin film coating film
TWI604751B (en) Electronic device and electronic device sealing method
TWI623433B (en) Gas barrier film and method for producing gas barrier film
TW201730009A (en) Gas barrier film, and electronic device provided with same
JP2016171038A (en) Method for manufacturing electronic device
WO2017110463A1 (en) Gas barrier film and method for manufacturing same
WO2015029795A1 (en) Method for producing gas barrier film
WO2018034179A1 (en) Gas barrier film, method for manufacturing same, and electronic device provided with same
WO2017090605A1 (en) Gas barrier film and electronic device
WO2017013980A1 (en) Gas barrier film
TWI627063B (en) Gas barrier film and method of manufacturing same
JP2018012234A (en) Gas barrier film and electronic device
JP2010192294A (en) Method of manufacturing transparent conductive film, transparent conductive film and device
JP6794994B2 (en) Touch panel sensor film
WO2017090579A1 (en) Multilayer gas barrier film and electronic device
WO2017090591A1 (en) Gas barrier film and electronic device
WO2016136843A1 (en) Gas barrier film and electronic device using gas barrier film
Yang Area selective atomic layer deposition, and vacuum ultraviolet enhanced annealing for next generation nanofabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868542

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552654

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868542

Country of ref document: EP

Kind code of ref document: A1