WO2017090248A1 - Optical fiber insertion length-adjusting mechanism, insert, and attachment member - Google Patents

Optical fiber insertion length-adjusting mechanism, insert, and attachment member Download PDF

Info

Publication number
WO2017090248A1
WO2017090248A1 PCT/JP2016/004941 JP2016004941W WO2017090248A1 WO 2017090248 A1 WO2017090248 A1 WO 2017090248A1 JP 2016004941 W JP2016004941 W JP 2016004941W WO 2017090248 A1 WO2017090248 A1 WO 2017090248A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fixing member
fiber insertion
fiber fixing
insertion portion
Prior art date
Application number
PCT/JP2016/004941
Other languages
French (fr)
Japanese (ja)
Inventor
覚 入澤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2017552274A priority Critical patent/JP6454031B2/en
Publication of WO2017090248A1 publication Critical patent/WO2017090248A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Definitions

  • the present invention relates to an insert, and more particularly to an insert that includes a hollow tube and is at least partially inserted into a subject.
  • the present invention also relates to an attachment member configured to be fitted with a hollow tube.
  • the present invention relates to an optical fiber insertion length adjustment mechanism, and more particularly to an optical fiber insertion length adjustment mechanism for adjusting the insertion length of an optical fiber inserted into a hollow tube.
  • An ultrasonic inspection method is known as a kind of image inspection method capable of non-invasively examining the state inside a living body.
  • an ultrasonic probe capable of transmitting and receiving ultrasonic waves is used.
  • the ultrasonic waves travel inside the living body and are reflected at the tissue interface.
  • the reflected ultrasound is received by the ultrasound probe, and the internal state can be imaged by calculating the distance based on the time it takes for the reflected ultrasound to return to the ultrasound probe. .
  • photoacoustic imaging in which the inside of a living body is imaged using the photoacoustic effect.
  • a living body in photoacoustic imaging, a living body is irradiated with pulsed laser light. Inside the living body, the living tissue absorbs the energy of the pulsed laser light, and ultrasonic waves (photoacoustic waves) are generated by adiabatic expansion due to the energy.
  • ultrasonic waves photoacoustic waves
  • Patent Document 1 describes that a photoacoustic wave is generated in an insert inserted into a subject and a photoacoustic image is generated based on the photoacoustic wave.
  • a light guide means such as an optical fiber.
  • a light absorbing member or the like is disposed in the vicinity of the tip of the puncture needle, and the light absorbing member is irradiated with light from the light emitting end of the optical fiber. This light irradiation generates a photoacoustic wave near the tip of the puncture needle.
  • Patent Document 1 if there is a shield between the source of the photoacoustic wave and the probe, the photoacoustic wave is attenuated by the shield and the intensity of the photoacoustic wave detected by the probe is weakened.
  • a light guide means such as an optical fiber near the tip of a puncture needle having an opening.
  • an object of the present invention is to provide an optical fiber insertion length adjustment mechanism that adjusts the insertion length of an optical fiber inserted into a hollow tube.
  • Another object of the present invention is to provide an insert and an attachment member configured such that the insertion length of the optical fiber into the hollow tube can be adjusted.
  • the present invention includes a hollow tube at least partially inserted into a subject, and an optical fiber that is inserted into the hollow tube and guides light emitted from a light source.
  • a light-absorbing member that generates a photoacoustic wave by absorbing the irradiated light when irradiated with light guided by the optical fiber, and an optical fiber that fixes the optical fiber at a position apart from the tip of the optical fiber
  • a fixing member and a proximal end portion including an optical fiber insertion portion used for insertion of an optical fiber are provided.
  • the optical fiber fixing member is displaced into the optical fiber insertion portion when the optical fiber is inserted into a hollow tube. Provide inserts inserted as possible.
  • the present invention also provides an attachment member that can be fitted to a hollow tube that is at least partially inserted into a subject, and is spaced from the tip of an optical fiber that is inserted into the fitted hollow tube.
  • the optical fiber fixing member has the optical fiber inserted into a hollow tube.
  • an attachment member that is movably inserted into an optical fiber insertion portion is provided.
  • the optical fiber fixing member is “displaceably inserted” in the optical fiber insertion portion, not only when the optical fiber fixing member is inserted into the optical fiber insertion portion to adjust the position, This includes the case where the position is finally fixed using an adhesive or the like after the position adjustment.
  • the optical fiber insertion portion may have an axis extending along a predetermined direction, and the optical fiber fixing member is displaced along the axial direction of the optical fiber insertion portion. May be allowed.
  • the optical fiber fixing member may include a first groove, and the base end portion is the first groove when the optical fiber fixing member is inserted into the optical fiber insertion portion. You may have the 1st hole part in which the tool for displacing an optical fiber fixing member is inserted in the part corresponding to this position.
  • an eccentric pin may be used as the tool, and the optical fiber fixing member is displaced along the axial direction inside the optical fiber insertion portion by rotating the eccentric pin inserted from the first hole portion. May be allowed.
  • the optical fiber fixing member may further include a second groove different from the first groove, and the base end portion is the second groove when the optical fiber fixing member is inserted into the optical fiber insertion portion. You may have the 2nd hole part for pouring an adhesive into the part corresponding to this position.
  • the base end portion may have an opening at a portion corresponding to the displaceable range of the slide knob for displacing the optical fiber fixing member along the axial direction of the optical fiber insertion portion.
  • the optical fiber insertion portion may be a hollow tube including an inner wall including a flat portion parallel to the axial direction of the optical fiber insertion portion.
  • the optical fiber insertion portion may be a hollow tube including a plurality of the flat portions, and the distance between the inner walls of the flat portion is shorter toward the back side in the optical fiber insertion direction.
  • the optical fiber fixing member may include a protrusion that contacts the inner wall of the optical fiber insertion portion.
  • the protrusion may be configured integrally with the main body portion of the optical fiber fixing member.
  • the protrusion may be configured separately from the main body portion of the optical fiber fixing member.
  • the protrusion may include an O-ring.
  • the present invention further includes insertion of an optical fiber that is inserted into the hollow tube through an optical fiber insertion portion provided at a proximal end portion of an insert at least a portion of which is inserted into a subject, including a hollow tube.
  • An optical fiber insertion length adjustment mechanism that adjusts the length, fixing the optical fiber at a position away from the tip of the optical fiber, and inserting the optical fiber into the optical fiber insertion section when inserted into a hollow tube
  • an optical fiber insertion length adjusting mechanism including an optical fiber fixing member to be moved and an insertion length adjusting portion for displacing the optical fiber fixing member inside the optical fiber insertion portion.
  • the optical fiber insertion portion may have an axis extending along a predetermined direction. Further, the insertion length adjustment unit may displace the optical fiber fixing member along the axial direction of the optical fiber insertion unit.
  • the optical fiber fixing member may include a first groove
  • the insertion length adjusting portion is a rotation having an eccentric pin that fits into the first groove of the optical fiber fixing member. May contain body.
  • the optical fiber fixing member may be displaced along the axial direction inside the optical fiber insertion portion by rotating the eccentric pin.
  • the rotating body may include an operation lever for operation, and the eccentric pin may be given a rotational force by the operation lever.
  • the operation lever may be configured to be detachable from the main body of the rotating body.
  • the optical fiber fixing member may further have a second groove different from the first groove.
  • the insertion length adjustment unit may include a slide knob for displacing the optical fiber fixing member along the axial direction of the optical fiber insertion unit.
  • the optical fiber insertion part may be a hollow tube whose inner wall includes a flat part parallel to the axial direction of the optical fiber insertion part.
  • the optical fiber insertion portion may be a hollow tube including a plurality of the flat portions, and the distance between the inner walls of the flat portion is shorter toward the back side in the optical fiber insertion direction.
  • the optical fiber fixing member may include a protrusion that contacts the inner wall of the optical fiber insertion portion.
  • the protrusion may be configured integrally with the main body portion of the optical fiber fixing member.
  • the protrusion may be configured separately from the main body portion of the optical fiber fixing member.
  • the protrusion may include an O-ring.
  • An optical fiber insertion length adjusting mechanism, an insert, and an attachment member according to the present invention can be obtained by displacing an optical fiber fixing member inside an optical fiber insertion portion provided at a proximal end portion of the hollow tube. It becomes possible to adjust the insertion length of the optical fiber to the inside.
  • FIG. 1 is a block diagram showing a photoacoustic image generation apparatus in which an insert according to a first embodiment of the present invention is used.
  • the side view which shows a puncture needle.
  • the front view which shows the front-end
  • Sectional drawing which shows the base end part of a puncture needle.
  • the perspective view which shows the optical fiber insertion length adjustment mechanism used in 1st Embodiment of this invention.
  • the front view which shows an eccentric pin.
  • Sectional drawing which shows the optical fiber insertion length adjustment mechanism which concerns on 2nd Embodiment of this invention.
  • Sectional drawing which shows the optical fiber insertion length adjustment mechanism which concerns on a 1st modification.
  • Sectional drawing which shows the optical fiber insertion length adjustment mechanism which concerns on a 2nd modification. Sectional drawing which shows the optical fiber insertion length adjustment mechanism which concerns on a 3rd modification.
  • the side view which shows the puncture needle which concerns on a 4th modification.
  • Sectional drawing which shows the front-end
  • the perspective view which shows the external appearance of a photoacoustic image generating apparatus.
  • FIG. 1 shows a photoacoustic image generation apparatus in which an insert according to a first embodiment of the present invention is used.
  • a photoacoustic image generation apparatus (photoacoustic image diagnostic apparatus) 10 includes a probe (ultrasonic probe) 11, an ultrasonic unit 12, a laser unit 13, and a puncture needle 15.
  • an ultrasonic wave is used as the acoustic wave.
  • the ultrasonic wave is not limited to the ultrasonic wave.
  • An acoustic wave having a frequency may be used.
  • the laser unit 13 is a light source.
  • the laser unit 13 is, for example, a laser diode light source (semiconductor laser light source).
  • the laser unit 13 may be an optical amplification type laser light source using a laser diode light source as a seed light source.
  • the type of laser light source used for the laser unit 13 is not particularly limited, and a solid laser light source using, for example, YAG (yttrium, aluminum, garnet) or alexandrite may be used for the laser unit 13.
  • Laser light emitted from the laser unit 13 is guided to the puncture needle 15 by using a light guide means such as an optical fiber 61.
  • a light source other than the laser light source may be used.
  • a puncture needle 15 that includes a hollow tube and that can be used for injection of a drug or the like is considered as an insert that is inserted at least in part into a subject.
  • FIG. 2 shows the puncture needle 15.
  • the puncture needle 15 has a needle tube 51 and a base end portion (needle base) 52.
  • the needle tube 51 is a hollow tube having an opening at the tip and a lumen inside.
  • the needle tube 51 is made of a metal such as stainless steel.
  • the needle tube 51 may be made of a fluororesin material such as polytetrafluoroethylene.
  • the proximal end portion 52 has an optical fiber insertion portion (optical fiber insertion port) 53 and a drug injection portion (drug injection port) 54.
  • the optical fiber insertion portion 53 has a hole having a diameter of about 4 mm, for example.
  • the drug injection part 54 has a hole with a diameter of about 6 mm to 8 mm, for example.
  • An optical fiber 61 that guides light emitted from the laser unit 13 is inserted into the needle tube 51 through the optical fiber insertion portion 53. It is preferable that the optical fiber 61 is housed in a tube made of a resin material such as polyimide inside the needle tube 51, or is covered and protected by a resin material. Also between the base end portion 52 and the laser unit 13, the optical fiber 61 is preferably protected by a flexible tube. Furthermore, it is preferable that the protective unit is further protected by another protective tube within a certain range from the base end portion 52 to the laser unit 13 side.
  • the drug injection part 54 is an injection port for a drug that is a liquid.
  • the drug used include anesthetics, infusions, anticancer agents, ethanol, contrast agents, and physiological saline.
  • a syringe, an infusion tube, and the like are attached to the drug injection unit 54.
  • the drug injection unit 54 is not only used for injecting a drug, but may also be used for taking out liquid such as blood or body fluid from the subject side.
  • FIG. 3 shows the tip of the needle tube 51.
  • a light emitting portion 62 and a light absorbing member 55 of the optical fiber 61 are disposed at the distal end portion of the needle tube 51.
  • the light emitting unit 62 is configured by an end surface on the light traveling side as viewed from the laser unit 13 of the optical fiber 61.
  • the light guided by the optical fiber 61 is applied to the light absorbing member 55 from the light emitting unit 62.
  • the diameter of the optical fiber is, for example, 130 ⁇ m, and the light absorbing member 55 is irradiated with, for example, 2 ⁇ J of laser light from the light emitting portion 62.
  • the light absorbing member 55 absorbs the light emitted from the light emitting unit 62 and generates a photoacoustic wave.
  • the light absorbing member 55 for example, an epoxy resin, a polyurethane resin, a fluororesin, or a silicone rubber mixed with a black pigment can be used.
  • the light absorbing member 55 may be made of a metal or oxide having light absorption with respect to the wavelength of the laser light.
  • an oxide such as iron oxide, chromium oxide, or manganese oxide having high light absorption with respect to the wavelength of the laser light can be used.
  • Ti, Pt, solder, or metal such as welded stainless steel may be used as the light absorbing member 55.
  • the light absorbing member 55 may also serve as a member that fixes the optical fiber 61 to the inner wall of the needle tube 51.
  • At least a part of the light emitted from the light emitting part 62 is applied to the light absorbing member 55 provided around the light emitting part 62.
  • the light absorbing member 55 absorbs the irradiated light, a photoacoustic wave is generated at the tip of the puncture needle.
  • the light absorbing member 55 exists near the tip of the puncture needle 15 and can generate a photoacoustic wave at one point of the tip of the puncture needle 15.
  • the length of the photoacoustic wave generation source (sound source) is sufficiently shorter than the entire length of the puncture needle, and the sound source can be regarded as a point sound source.
  • the vicinity of the distal end of the puncture needle 15 is light that can image the position of the distal end of the puncture needle 15 with the accuracy required for the puncture operation when the light emitting part 62 and the light absorbing member 55 are disposed at the positions. It means a position where an acoustic wave can be generated. For example, it refers to the range of 0 mm to 3 mm from the distal end having the opening of the puncture needle 15 to the proximal end side.
  • the probe 11 is an acoustic wave detecting means, and has, for example, a plurality of ultrasonic transducers arranged one-dimensionally.
  • the probe 11 detects a photoacoustic wave emitted from the light absorbing member 55 (see FIG. 3) after the puncture needle 15 is punctured in the subject.
  • the probe 11 transmits an acoustic wave (ultrasonic wave) to the subject and receives a reflected acoustic wave (reflected ultrasonic wave) with respect to the transmitted ultrasonic wave. You may perform transmission / reception of an ultrasonic wave in the separated position.
  • ultrasonic waves may be transmitted from a position different from the probe 11, and reflected ultrasonic waves with respect to the transmitted ultrasonic waves may be received by the probe 11.
  • the probe 11 is not limited to a linear probe, and may be a convex probe or a sector probe.
  • the ultrasonic unit 12 includes a reception circuit 21, a reception memory 22, a data separation unit 23, a photoacoustic image generation unit 24, an ultrasonic image generation unit 25, an image synthesis unit 26, a control unit 28, and a transmission control circuit 29.
  • the ultrasonic unit 12 constitutes a signal processing device.
  • the ultrasonic unit 12 typically includes a processor, a memory, a bus, and the like.
  • the ultrasonic unit 12 incorporates a program related to photoacoustic image generation, and the processor operates according to the program, thereby realizing at least some functions of each unit in the ultrasonic unit 12.
  • the receiving circuit 21 receives the detection signal output from the probe 11 and stores the received detection signal in the reception memory 22.
  • the reception circuit 21 typically includes a low noise amplifier, a variable gain amplifier, a low-pass filter, and an AD converter (Analog-to-Digital converter).
  • the detection signal of the probe 11 is amplified by a low-noise amplifier, and then the gain is adjusted according to the depth by a variable gain amplifier. After a high-frequency component is cut by a low-pass filter, it is stored in a digital signal by an AD converter and received. Stored in the memory 22.
  • the receiving circuit 21 is composed of, for example, one IC (Integrated Circuit).
  • the reception circuit 21 stores the AD-converted photoacoustic wave and reflected ultrasonic detection signal (sampling data) in the reception memory 22.
  • the data separation unit 23 separates the sampling data of the detection signal of the photoacoustic wave and the sampling data of the detection signal of the reflected ultrasonic wave stored in the reception memory 22.
  • the data separation unit 23 inputs the sampling data of the photoacoustic wave detection signal to the photoacoustic image generation unit 24.
  • the separated reflected ultrasound sampling data is input to the ultrasound image generating means (reflected acoustic wave image generating means) 25.
  • the photoacoustic image generation means 24 generates a photoacoustic image based on a photoacoustic wave detection signal detected by the probe 11.
  • the generation of the photoacoustic image includes, for example, image reconstruction such as phase matching addition, detection, logarithmic conversion, and the like.
  • the ultrasonic image generation unit 25 generates an ultrasonic image (reflected acoustic wave image) based on the detection signal of the reflected ultrasonic wave detected by the probe 11.
  • the generation of an ultrasonic image also includes image reconstruction such as phase matching addition, detection, logarithmic conversion, and the like.
  • the image synthesis means 26 synthesizes the photoacoustic image and the ultrasonic image.
  • the image composition unit 26 performs image composition by superimposing a photoacoustic image and an ultrasonic image, for example.
  • the synthesized image is displayed on image display means 14 such as a display device. It is also possible to display the photoacoustic image and the ultrasonic image side by side on the image display means 14 without performing image synthesis, or to switch between the photoacoustic image and the ultrasonic image.
  • the control means 28 controls each part in the ultrasonic unit 12. For example, when acquiring a photoacoustic image, the control unit 28 transmits a trigger signal to the laser unit 13 to emit laser light from the laser unit 13. In addition, a sampling trigger signal is transmitted to the receiving circuit 21 in accordance with the emission of the laser light to control the photoacoustic wave sampling start timing and the like.
  • the control means 28 When acquiring the ultrasonic image, the control means 28 sends an ultrasonic transmission trigger signal to the transmission control circuit 29 to instruct ultrasonic transmission. When receiving the ultrasonic transmission trigger signal, the transmission control circuit 29 causes the probe 11 to transmit ultrasonic waves. The control means 28 sends a sampling trigger signal to the receiving circuit 21 in synchronization with the timing of ultrasonic transmission, and starts sampling of reflected ultrasonic waves.
  • the optical fiber insertion length adjustment mechanism includes an optical fiber fixing member and an insertion length adjustment unit.
  • the optical fiber fixing member fixes the optical fiber 61 at a position away from the tip of the optical fiber 61.
  • the optical fiber fixing member is inserted into the optical fiber insertion portion 53 when the optical fiber 61 is inserted into the tube of the needle tube 51 through the optical fiber insertion portion 53.
  • the insertion length adjustment unit displaces the optical fiber fixing member inside the optical fiber insertion unit 53.
  • the insertion length of the optical fiber 61 with respect to the needle tube 51 can be adjusted by the displacement of the optical fiber fixing member.
  • the “position away from the tip of the optical fiber 61” refers to a position away from the tip of the optical fiber 61 by a predetermined distance, for example.
  • the predetermined distance is preferably substantially equal to the length from the tip of the needle tube 51 to the optical fiber insertion portion.
  • FIG. 4 shows a cross section of the proximal end portion 52 of the puncture needle 15 according to the first embodiment of the present invention.
  • the base end portion 52 is made of a resin material such as polypropylene, polycarbonate, or polyester.
  • the needle tube 51 (not shown in FIG. 4) is bonded to the distal end side of the proximal end portion 52 with an adhesive such as an epoxy resin.
  • the optical fiber insertion portion 53 has a through hole communicating with the needle tube 51.
  • the drug injection part 54 also has a through hole communicating with the needle tube 51, and the optical fiber insertion part 53 and the drug injection part 54 merge inside the base end part 52.
  • the optical fiber fixing member 56 fixes the optical fiber 61 at a position away from the tip (light emitting portion 62) of the optical fiber 61.
  • the position where the optical fiber 61 is fixed to the optical fiber fixing member 56 is determined based on the length of the needle tube 51 and the distance from the optical fiber insertion portion 53 to the end portion on the proximal end portion 52 side of the needle tube 51.
  • the optical fiber fixing member 56 has, for example, a through hole at the center thereof, and the optical fiber 61 is inserted into the through hole.
  • the inserted optical fiber 61 is fixed to the optical fiber fixing member 56 using an adhesive or the like at a desired position.
  • the optical fiber fixing member 56 is inserted into the optical fiber insertion portion 53 when the optical fiber 61 is inserted into the needle tube 51 through the optical fiber insertion portion 53.
  • the optical fiber fixing member 56 can be displaced inside the optical fiber insertion portion 53.
  • the optical fiber fixing member 56 can be displaced by about 3 mm to 5 mm in the optical fiber insertion portion 53, for example.
  • the insertion length of the optical fiber 61 with respect to the needle tube 51 changes accordingly.
  • the puncture needle 15 is configured such that the insertion length of the optical fiber 61 with respect to the needle tube 51 can be adjusted by displacing the optical fiber fixing member 56 inside the optical fiber insertion portion 53.
  • the optical fiber insertion portion 53 has an axis extending along a predetermined direction.
  • the optical fiber insertion portion 53 is configured as a hollow tube including a flat portion whose inner wall is parallel to the axial direction.
  • the optical fiber fixing member 56 is configured to be displaceable within the range of the flat portion.
  • the insertion length of the optical fiber 61 fixed to the optical fiber fixing member 56 with respect to the needle tube 51 can be adjusted by displacing the optical fiber fixing member 56 in the axial direction of the optical fiber insertion portion 53.
  • the cross-sectional shape when the optical fiber insertion portion 53 is cut along a plane perpendicular to the axial direction of the optical fiber insertion portion 53 at the flat portion may be circular, square, or six. It may be a polygon such as a square.
  • the optical fiber fixing member 56 is made of, for example, a resin material.
  • the optical fiber fixing member 56 is made of, for example, a cylindrical member having a groove around it.
  • the optical fiber fixing member 56 has a first groove 57 and a second groove 58.
  • the first groove 57 is a groove used when the optical fiber fixing member 56 is displaced.
  • the second groove 58 is provided at a position different from that of the first groove 57.
  • the second groove 58 is a groove for receiving an adhesive for fixing the optical fiber fixing member 56 to the optical fiber insertion portion 53, for example.
  • a tool for displacing the optical fiber fixing member 56 is inserted into a portion corresponding to the position of the first groove 57 when the optical fiber fixing member 56 is inserted into the optical fiber insertion portion 53.
  • a first hole is provided.
  • the base end portion 52 has a second hole portion for pouring the adhesive into a portion corresponding to the position 58 of the second groove when the optical fiber fixing member 56 is inserted into the optical fiber insertion portion 53. ing.
  • FIG. 5 shows an optical fiber insertion length adjusting mechanism according to the first embodiment of the present invention.
  • the direction parallel to the axis of the optical fiber insertion portion 53 is defined as the x direction
  • the direction perpendicular to the x axis in the cross section shown in FIG. 4 is defined as the y direction
  • the direction orthogonal to the x direction and the y direction is defined as the z direction.
  • an eccentric driver 75 is used as the insertion length adjustment unit.
  • the eccentric driver 75 is rotated around the axis in the z direction.
  • the eccentric driver 75 has an eccentric pin 77 at the tip of the shaft 74.
  • the eccentric pin 77 at the tip of the shaft 74 is also rotated by the same rotation angle as the eccentric driver 75.
  • the eccentric pin 77 is inserted (fitted) into the first groove 57 of the optical fiber fixing member 56.
  • the width of the first groove 57 in the x direction is preferably the same as the diameter of the eccentric pin 77.
  • FIG. 6 shows the eccentric pin 77.
  • the eccentric pin 77 is provided at a position shifted from the rotation axis (rotation center O) of the shaft 74.
  • the shaft 74 eccentric driver 75
  • the position of the eccentric pin 77 in the x direction and the y direction changes with rotation.
  • the rotation angle is defined as 0 when the straight line connecting the rotation center O of the shaft 74 and the center of the eccentric pin 77 is parallel to the y direction.
  • the shaft 74 is rotated counterclockwise up to a rotation angle of 90 degrees
  • the position of the eccentric pin 77 in the x direction moves to the minus side in the x direction.
  • the shaft 74 is rotated clockwise within the range of the rotation angle up to 90 degrees
  • the position of the eccentric pin 77 in the x direction moves to the plus side in the x direction.
  • the eccentric driver 75 When the eccentric driver 75 is rotated, the positions of the eccentric pin 77 in the x direction and the y direction change with the rotation of the eccentric driver 75, and the eccentric pin 77 passes through the first groove 57 and the optical fiber fixing member 56 (see FIG. 5).
  • the optical fiber fixing member 56 By pressing (see), the optical fiber fixing member 56 is displaced in the axial direction (x direction) of the optical fiber insertion portion 53.
  • the rotational force on the eccentric driver 75 is converted into a force that displaces the optical fiber fixing member 56 in the x direction.
  • the insertion length of the optical fiber 61 see FIG. 2 with respect to the needle tube 51 is adjusted. For example, in FIG. 6, if the diameter of the shaft 74 is 3 mm and the diameter of the eccentric pin 77 is 1 mm, the adjustment range of the insertion length of the optical fiber 61 is 2 mm.
  • FIG. 7 shows the adjustment work of the insertion length of the optical fiber.
  • the optical fiber 61 (see FIG. 4) is omitted.
  • the optical fiber insertion length adjustment work according to this embodiment will be described with reference to FIG.
  • the operator fixes the optical fiber 61 to the optical fiber fixing member 56 at a position away from the tip of the optical fiber 61.
  • the optical fiber 61 is inserted into the needle tube 51 (see FIG. 2) from the distal end side of the optical fiber 61 through the optical fiber insertion portion 53, and the optical fiber fixing member 56 is inserted into the optical fiber insertion portion 53.
  • the operator places the puncture needle 15 on the work jig (lower jig) 71 in a state where the optical fiber fixing member 56 is inserted into the optical fiber insertion portion 53.
  • the lower jig 71 has a recess corresponding to the shape of the base end portion 52.
  • the operator places the base end 52 on the lower jig 71 and then superimposes the upper jig 72 on the lower jig 71.
  • the upper jig 72 also has a recess corresponding to the shape of the base end portion 52.
  • the upper jig 72 has a through hole for inserting an eccentric driver 75 which is a tool for displacing the optical fiber fixing member 56.
  • the operator inserts the eccentric driver 75 into the base end portion 52 through the through hole.
  • the base end portion 52 has a hole (first hole) at a portion corresponding to the position where the first groove 57 of the optical fiber fixing member 56 exists, and the eccentric pin 77 of the eccentric driver 75 is The optical fiber fixing member 56 is inserted into the first groove 57 through the hole.
  • the operator rotates the eccentric driver 75 to displace the optical fiber fixing member 56 in the optical fiber insertion portion 53 and adjust the insertion length of the optical fiber 61 into the needle tube 51.
  • an operation lever 76 used to rotate the eccentric driver 75 is attached to the eccentric driver 75.
  • the eccentric driver 75 is attached to the operation lever 76, and a rotational force is applied to the eccentric driver 75 through the operation lever 76, whereby the eccentric driver 75 (eccentric pin 77) can be rotated with a smaller force. Further, there is an effect that the fine adjustment of the rotation angle of the eccentric driver 75 is facilitated.
  • the operation lever 76 may be configured to be detachable from the eccentric driver 75. In that case, the operation lever 76 may be attached to the eccentric driver 75 only during work. The operation lever 76 is not essential, and the operator may rotate the eccentric driver 75 directly.
  • the operator adjusts the insertion length of the optical fiber 61 and arranges the light emitting portion 62 (see FIG. 3) that is the tip of the optical fiber 61 in the vicinity of the tip of the needle tube 51.
  • the light emitting portion 62 is fixed near the tip of the needle tube 51.
  • the light emitting part 62 is fixed near the tip of the needle tube 51 with an adhesive, for example.
  • the light emitting part 62 may be fixed near the tip of the needle tube 51 by a light absorbing member 55 (see FIG. 3).
  • the light absorbing member 55 may be attached to the tip of the optical fiber 61 in advance, and may be fixed from above the light absorbing member 55 with an ultraviolet curable adhesive, a light curable adhesive, or a thermosetting adhesive.
  • the operator removes the eccentric driver 75 from the base end 52 after adjusting the insertion length. Thereafter, the adhesive is passed through a hole (second hole) provided in the base end 52 from the adhesive inlet 73 provided in the upper jig 72, and the adhesive is supplied to the second groove of the optical fiber fixing member 56. 58 and the inner wall of the optical fiber insertion portion 53 (see also FIG. 4).
  • the optical fiber fixing member 56 can be fixed to the optical fiber insertion portion 53 by curing the adhesive.
  • An adhesive may be poured into the first groove 57 of the optical fiber fixing member 56 through a hole provided in the base end portion 52 in order to insert the eccentric pin 77.
  • the optical fiber fixing member 56 to which the optical fiber 61 is fixed is inserted into the optical fiber insertion portion 53.
  • the insertion length of the optical fiber 61 with respect to the needle tube 51 can be adjusted.
  • the tip of the optical fiber 61 can be accurately positioned near the tip of the needle tube 51.
  • an eccentric driver 75 having an eccentric pin 77 is used for the displacement of the optical fiber fixing member 56.
  • the optical fiber fixing member 56 can be displaced in the optical fiber insertion portion 53, and the insertion length of the optical fiber 61 can be adjusted.
  • the insertion length of the optical fiber 61 can be finely adjusted, and the tip of the optical fiber 61 can be accurately arranged at a desired position.
  • FIG. 8 shows an optical fiber insertion length adjusting mechanism according to the second embodiment of the present invention.
  • the optical fiber insertion length adjustment mechanism according to the present embodiment is different from the first embodiment in the shape of the optical fiber fixing member and the configuration of the insertion length adjustment unit.
  • the optical fiber fixing member 56a used in the present embodiment has protrusions 81 and 82.
  • the insertion length adjusting unit is configured by a slide knob 87 for displacing the optical fiber fixing member 56 a along the axial direction of the optical fiber insertion unit 53.
  • the main body portion of the optical fiber fixing member 56a is made of, for example, a cylindrical member.
  • the optical fiber fixing member 56a has protrusions 81 and 82 protruding from the main body portion of the optical fiber fixing member 56a over the entire circumference of the columnar optical fiber fixing member 56a.
  • the protrusions 81 and 82 are in contact with the inner wall of the optical fiber insertion portion 53.
  • the protrusions 81 and 82 are formed integrally with the main body portion of the optical fiber fixing member 56a.
  • the protrusions 81 and 82 are protrusions having a semicircular cross section, for example.
  • the protrusions 81 and 82 are rectangular like the protrusions on both sides of the first groove 57 and the second groove 58 in the optical fiber fixing member 56 (see FIG. 4) used in the first embodiment. It may be a protrusion.
  • the slide knob 87 is a knob operated by an operator, and is configured to be slidable in the axial direction (x direction) of the optical fiber insertion portion 53.
  • the slide knob 87 is formed integrally with the main body portion of the optical fiber fixing member 56, for example. Or you may be comprised so that removal from the main-body part of the optical fiber fixing member 56 is possible.
  • the base end portion 52 has an opening corresponding to the moving range of the slide knob 87 (the displaceable range of the optical fiber fixing member 56), and the distal end portion of the slide knob 87 protrudes outside from the opening. .
  • FIG. 8 shows an example in which the slide knob 87 is inserted from another surface in order to reach the optical fiber fixing member 56a to the opening having a limited movable range.
  • a structure in which the opening is open to the end of the base end and can be inserted straight may be used.
  • the operator after adjusting the insertion length of the optical fiber 61, fixes the optical fiber 61 to the needle tube 51 with an adhesive or the like. Further, the operator may fix the position of the optical fiber fixing member 56 by pouring an adhesive into the space between the protrusion 81 and the protrusion 82. Instead of using the adhesive, a lock mechanism may be provided on the slide knob 87, and the position of the optical fiber fixing member 56 may be fixed by the lock mechanism. After adjusting the insertion length of the optical fiber 61, the slide knob 87 and the main body portion of the optical fiber fixing member 56 may be separated.
  • the optical fiber fixing member 56 is displaced in the optical fiber insertion portion 53 by the slide knob 87.
  • the eccentric driver 75 having the eccentric pin 77 is not necessary for the displacement of the optical fiber fixing member 56, the labor such as tool change can be saved compared to the first embodiment in which the eccentric driver 75 is used. Can be simplified.
  • the optical fiber fixing member 56 has protrusions 81 and 82 that contact the inner wall of the optical fiber insertion portion 53. By adopting such a configuration, the optical fiber fixing member 56 is smoothly slid within the optical fiber insertion portion 53 as compared with the case where the entire main body portion of the optical fiber fixing member 56 is in contact with the inner wall of the optical fiber insertion portion 53. Can be made.
  • the probe 11 has been described as detecting both photoacoustic waves and reflected ultrasonic waves.
  • a probe used for generating an ultrasonic image and a probe used for generating a photoacoustic image are not necessarily limited. They do not have to be identical.
  • Photoacoustic waves and reflected ultrasonic waves may be detected by separate probes. Further, either the detection (sampling) of the photoacoustic wave or the detection (sampling) of the reflected ultrasonic wave may be performed first.
  • the puncture needle is not limited to a needle that is percutaneously punctured from the outside of the subject, and may be a needle for an ultrasonic endoscope.
  • An optical fiber 61 and a light absorbing member 55 are provided on a needle for an ultrasonic endoscope, light is irradiated to the light absorbing member 55 provided at the tip of the needle, a photoacoustic wave is detected, and a photoacoustic image is obtained. May be generated.
  • puncturing can be performed while observing the photoacoustic image and confirming the position of the tip of the needle for the ultrasonic endoscope.
  • the photoacoustic wave generated at the tip of the ultrasonic endoscope needle may be detected using a body surface probe, or may be detected using a probe incorporated in the endoscope.
  • optical fiber fixing member 56 has two protrusions
  • present invention is not limited to this.
  • the optical fiber fixing member 56 may have three or more protrusions along the x direction.
  • the optical fiber insertion portion 53 may be provided with a plurality of flat portions in a step shape.
  • the distance between the inner walls in the flat portion of the optical fiber insertion portion 53 is preferably shorter toward the back side in the insertion direction of the optical fiber 61. That is, it is preferable that the end portion of the optical fiber insertion portion 53 on the side where the optical fiber 61 is inserted is the widest, and the inner space becomes narrower as it goes deeper in the optical fiber insertion direction. .
  • FIG. 9 shows an optical fiber insertion length adjusting mechanism according to the first modification.
  • the slide knob 87 (see FIG. 8) is not shown for simplification of the drawing.
  • the optical fiber insertion portion 53 has two flat portions having different inner diameters. The distance between the inner walls of the optical fiber insertion portion 53 on the back side in the insertion direction of the optical fiber 61 is shorter than the distance between the inner walls of the optical fiber insertion portion 53 on the labor side (entrance side) in the insertion direction of the optical fiber 61. ing.
  • the protrusions 81 and 82 of the optical fiber fixing member 56b are in contact with the corresponding flat portions of the optical fiber insertion portion 53, respectively.
  • the protrusion 82 on the troublesome side in the insertion direction of the optical fiber 61 protrudes from the main body portion of the optical fiber fixing member 56b more than the protrusion 81 on the back side in the insertion direction (protrusion amount).
  • a step may be provided in the main body portion of the optical fiber fixing member 56b, and the protruding amount of the protruding portion 81 and the protruding portion 82 may be the same amount.
  • the insertion length of the optical fiber 61 with respect to the needle tube 51 is adjusted by sliding the optical fiber fixing member 56b thus configured in the x direction as long as the protrusions 81 and 82 are in contact with the corresponding flat portions. Can do.
  • FIG. 10 shows an optical fiber insertion length adjustment mechanism according to a second modification. Also in this figure, as in FIG. 9, the slide knob 87 is omitted for simplification of the drawing.
  • the optical fiber insertion portion 53 has three flat portions having different inner diameters. The distance between the inner walls of the innermost optical fiber insertion portion 53 in the insertion direction of the optical fiber 61 is shorter than the distance between the inner walls of the intermediate optical fiber insertion portion 53 and between the inner walls of the intermediate optical fiber insertion portion 53. The distance is shorter than the distance between the inner walls of the optical fiber insertion portion 53 on the most laborious side (entrance side) in the insertion direction of the optical fiber 61.
  • the main body portion of the optical fiber fixing member 56c has a step corresponding to the step between the flat portions of the optical fiber insertion portion 53, and each of the optical fiber fixing members 56c has a flat portion.
  • the protruding amounts of the protrusions 81, 82, and 83 are the same.
  • the protrusions 81, 82, and 83 are in contact with the corresponding flat portions of the optical fiber insertion portion 53.
  • the protrusion and the flat portion of the optical fiber insertion portion 53 may be brought into contact with each other.
  • the insertion length of the optical fiber 61 with respect to the needle tube 51 can be increased by sliding the optical fiber fixing member 56c configured in this way in the x direction as long as the protrusions 81, 82, and 83 are in contact with the corresponding flat portions. Can be adjusted.
  • FIG. 11 shows an optical fiber insertion length adjustment mechanism according to a third modification. Also in this figure, as in FIG. 9, the slide knob 87 is omitted for simplification of the drawing. In this modification, as in the example of FIG. 9, the optical fiber insertion portion 53 has two flat portions with different inner diameters.
  • the optical fiber fixing member 56 has two recesses along the x direction for attaching an O-ring around the main body portion, and O-rings 91 and 92 are attached to the recesses. .
  • O-rings 91 and 92 which are members different from the main body portion of the optical fiber fixing member 56, constitute a protrusion that contacts the flat portion of the optical fiber insertion portion 53.
  • the flat portion may be one step as in FIG. 8, or may be three steps as in FIG. And it may be four or more stages.
  • silicone rubber or the like is used as the material of the O-ring, and the frictional force at the place where the O-ring and the optical fiber insertion portion 53 are in contact with each other is relatively large.
  • the O-ring is used as the protrusion, temporary fixing after the position adjustment of the optical fiber fixing member 56 is possible, and a jig or the like for temporary fixing becomes unnecessary. In addition, it is possible to suppress the adhesive from flowing out beyond the protrusion.
  • all of the protrusions are configured by O-rings, but it is not necessary that all the protrusions are configured separately from the optical fiber fixing member 56, and the optical fiber fixing member 56 is integrated.
  • the protrusion part comprised in this and the protrusion part comprised separately may be mixed.
  • the slide knob is used for the displacement of the optical fiber fixing member 56, but the present invention is not limited to this.
  • a groove may be provided in the optical fiber fixing member 56 and the optical fiber fixing member 56 may be displaced using an eccentric driver.
  • an adhesive may be poured after removing a tool such as an eccentric pin.
  • the optical fiber insertion portion 53 is inclined with respect to the axial direction of the needle tube 51, and the optical fiber 61 is inserted into the proximal end portion 52 at an angle inclined with respect to the axial direction of the needle tube 51.
  • the positional relationship between the optical fiber insertion portion 53 and the drug injection portion 54 is not limited to that shown in FIG. 2 and is arbitrary.
  • FIG. 12 shows a puncture needle according to a fourth modification.
  • the proximal end portion 52 a of the puncture needle 15 a has an optical fiber insertion portion 53 on an extension line in the axial direction of the needle tube 51, and the drug injection portion 54 is inclined with respect to the axial direction of the needle tube 51. Even in this case, the insertion length of the optical fiber 61 can be adjusted by displacing the optical fiber fixing member 56 inserted into the optical fiber insertion portion 53.
  • the puncture needle 15 has the drug injection portion 54 at the proximal end portion 52
  • the puncture needle 15 does not necessarily have the drug injection portion 54.
  • the inside of the needle tube 51, particularly the tip portion thereof, may be closed after the optical fiber 61 is inserted.
  • the puncture needle 15 may have an inner needle and an outer needle.
  • 13A, 13B and 13C show a puncture needle 15b according to a fifth modification.
  • 13A shows the appearance of the entire puncture needle
  • 13B shows the appearance of the outer needle
  • FIG. 13C shows the appearance of the inner needle.
  • the puncture needle 15b has an outer needle 151 and an inner needle 153.
  • the outer needle 151 has a lumen inside.
  • the inner needle 153 has an outer diameter that is approximately the same as the inner diameter of the outer needle 151, for example, and is configured to be removable from the hollow outer needle 151.
  • the outer needle 151 is bonded to the outer needle base 152 (see FIG. 13B), and the inner needle 153 is bonded to the inner needle base 154 (see FIG. 13C).
  • the inner needle base 154 has an optical fiber insertion portion 53, and an optical fiber 61 (see FIG. 2 and the like) is inserted into the inner needle 153.
  • the inner needle 153 is inserted into the lumen of the outer needle 151 from the outer needle base 152 side, and seals at least a part of the lumen of the outer needle 151 to such an extent that a living section or the like can be prevented from entering the lumen.
  • the inner needle base 154 is provided with a protrusion for adjusting the connection position
  • the outer needle base 152 is provided with a groove that engages with the protrusion of the inner needle base 154.
  • FIG. 14 shows a cross section near the tip of the puncture needle 15b according to the fifth modification.
  • the outer needle 151 and the inner needle 153 have sharp end points.
  • the inner needle 153 has a tube 155 that constitutes a needle tube.
  • the optical fiber 61 is inserted into the tube 155. Inside the tube 155, the light emitting portion 62 of the optical fiber 61 is covered with a light absorbing member 55. Instead of covering the light emitting part 62 with the light absorbing member 55 after the optical fiber 61 is inserted, the optical fiber 61 may be inserted into the tube 155 after the light emitting part 62 is covered with the light absorbing member 55.
  • the positions of the light emitting portion 62 and the light absorbing member 55 with respect to the tip (opening) of the tube 155 can be adjusted.
  • the inside of the tube 155 is filled with the transparent resin 156, and the optical fiber 61 is embedded in the inside of the tube 155.
  • the transparent resin 156 for example, a soft epoxy resin with less acoustic wave attenuation is used.
  • a syringe or the like is attached to the outer needle base 152 to inject a drug such as an anesthetic.
  • a biopsy sample is taken from a location where the puncture needle 15b of the subject is punctured.
  • a puncture needle is considered as an insert, but the present invention is not limited to this.
  • the insert may be a catheter that is inserted into a blood vessel.
  • the insert may be an indwelling needle.
  • a needle having an opening at the tip is assumed as the needle, but the opening is not necessarily provided at the tip.
  • the needle is not limited to a needle such as an injection needle, and may be a biopsy needle used for biopsy. That is, it may be a biopsy needle that can puncture a living body inspection object and collect a tissue of a biopsy site in the inspection object. Further, the needle may be used as a guiding needle for puncturing to a deep part such as a subcutaneous or abdominal cavity internal organ.
  • the needle tube 51 and the base end portion 52 are not necessarily configured to be inseparable, and the portion of the needle tube 51 and the portion of the base end portion 52 may be configured to be separable.
  • a portion of the base end portion 52 to which the needle tube 51 is connected may have a screw structure that couples (fits) with a commercially available needle (needle tube), and an arbitrary needle may be attached to the base end portion 52.
  • the base end portion 52 can be an attachment member that can be fitted to a needle tube (hollow tube).
  • a light absorbing member is attached to the optical fiber in advance.
  • the surgeon inserts a separately prepared needle into the attachment member (base end), adjusts the position of the light absorbing member at the tip of the needle through adjustment of the optical fiber insertion amount by the optical fiber insertion amount adjustment mechanism,
  • the optical fiber fixing member is fixed by a mechanism or an O-ring.
  • FIG. 15 shows the appearance of the photoacoustic image generation apparatus.
  • a probe 11 is connected to the ultrasonic unit 12.
  • the ultrasonic unit 12 is configured as an integrated apparatus including the image display means 14.
  • the ultrasonic unit 12 typically includes a processor, a memory, a bus, and the like.
  • the ultrasonic unit 12 incorporates a program related to photoacoustic image generation.
  • the laser unit 40 corresponds to the laser unit 13 in FIG.
  • the ultrasonic unit 12 has a port 32 including a trigger signal port and a power supply port.
  • the connector including the power input terminal 41 and the trigger input terminal 42 of the laser unit 40 is inserted into the port 32.
  • the laser unit 40 can be held by being inserted into the port 32 of the ultrasonic unit 12. Further, a cable including a trigger signal and a power supply line comes out from the laser unit 40 and may be connected to the ultrasonic unit 12.
  • One end of the optical fiber 61 constituting the light guide member of the puncture needle 15 is connected to the light output terminal 47 of the laser unit 40.
  • the optical fibers 61 are connected by a connector structure.
  • the optical fiber 61 may be inserted into the light output terminal 47 as it is and held by a spring force or the like.
  • the optical fiber can be prevented from being pulled out of the light output terminal 47 and broken.
  • the optical fiber can be directly inserted into and removed from the optical output terminal 47, it is not necessary to provide a connector for the optical fiber extending from the puncture needle 15, and the cost can be reduced.
  • the pulse energy of the pulse laser beam output from the laser unit 40 can be 6.4 ⁇ J if the core diameter of the optical fiber 61 is 200 ⁇ m. If the core diameter of the optical fiber 61 is 100 ⁇ m, it can be set to 2.0 ⁇ J.
  • the pulse time width can be set to 80 ns.
  • the light output terminal 47 is provided on the surface opposite to the surface where the port 32 exists, but the light output terminal 47 is provided on the surface orthogonal to the surface where the port 32 exists. It is preferable.
  • the laser unit 40 When the laser unit 40 is pulled when the surgeon moves the puncture needle 15 when the surgeon moves the puncture needle 15, the laser unit 40 may come out of the port 32.
  • the laser unit 40 is difficult to be removed from the port 32 even if the laser unit 40 is pulled.
  • the trigger input signal and the power line are not necessarily the same cable, and the trigger input terminal 42 obtains the trigger signal from, for example, an ECG (Electrocardiogram) synchronization connector attached to a normal ultrasound system. May be.
  • the power supply terminal may be taken out from the USB terminal.
  • the trigger signal may be obtained from some terminals of the probe connector.
  • optical fiber insertion length adjustment mechanism of this invention is not limited only to the said embodiment, The said embodiment A configuration in which various modifications and changes are made from the above configuration is also included in the scope of the present invention.

Abstract

[Problem] To provide an optical fiber insertion length-adjusting mechanism, an insert, and an attachment member, wherein the insertion length of an optical fiber to be inserted inside a hollow tube is adjusted. [Solution] The proximal end (52) of a puncture needle (15) has an optical fiber insertion section (53). An optical fiber-securing member (56) secures an optical fiber (61) at a position spaced apart from the tip of the optical fiber (61). When the optical fiber (61) is fed through the optical fiber insertion section (53) and inserted in a puncture needle tube, the optical fiber-securing member (56) is inserted inside the optical fiber insertion section (53). The optical fiber-securing member (56) is displaceably configured inside the optical fiber insertion section (53), and the insertion length of the optical fiber (61) can be adjusted with respect to the puncture needle as a result of said displacement.

Description

光ファイバ挿入長調整機構、挿入物、及びアタッチメント部材Optical fiber insertion length adjustment mechanism, insert, and attachment member
 本発明は、挿入物に関し、更に詳しくは、中空の管を含み、少なくとも一部が被検体に挿入される挿入物に関する。また、本発明は、中空の管と嵌合可能に構成されたアタッチメント部材に関する。さらに、本発明は、光ファイバ挿入長調整機構に関し、更に詳しくは、中空の管の内部に挿入される光ファイバの挿入長を調整する光ファイバ挿入長調整機構に関する。 The present invention relates to an insert, and more particularly to an insert that includes a hollow tube and is at least partially inserted into a subject. The present invention also relates to an attachment member configured to be fitted with a hollow tube. Furthermore, the present invention relates to an optical fiber insertion length adjustment mechanism, and more particularly to an optical fiber insertion length adjustment mechanism for adjusting the insertion length of an optical fiber inserted into a hollow tube.
 生体内部の状態を非侵襲で検査できる画像検査法の一種として、超音波検査法が知られている。超音波検査では、超音波の送信及び受信が可能な超音波探触子が用いられる。超音波探触子から被検体(生体)に超音波を送信させると、その超音波は生体内部を進んでいき、組織界面で反射する。超音波探触子でその反射超音波を受信し、反射超音波が超音波探触子に戻ってくるまでの時間に基づいて距離を計算することで、内部の様子を画像化することができる。 An ultrasonic inspection method is known as a kind of image inspection method capable of non-invasively examining the state inside a living body. In the ultrasonic inspection, an ultrasonic probe capable of transmitting and receiving ultrasonic waves is used. When ultrasonic waves are transmitted from the ultrasonic probe to the subject (living body), the ultrasonic waves travel inside the living body and are reflected at the tissue interface. The reflected ultrasound is received by the ultrasound probe, and the internal state can be imaged by calculating the distance based on the time it takes for the reflected ultrasound to return to the ultrasound probe. .
 また、光音響効果を利用して生体の内部を画像化する光音響イメージングが知られている。一般に光音響イメージングでは、パルスレーザ光を生体内に照射する。生体内部では、生体組織がパルスレーザ光のエネルギーを吸収し、そのエネルギーによる断熱膨張により超音波(光音響波)が発生する。この光音響波を超音波プローブなどで検出し、検出信号に基づいて光音響画像を構成することで、光音響波に基づく生体内の可視化が可能である。 Also, photoacoustic imaging is known in which the inside of a living body is imaged using the photoacoustic effect. In general, in photoacoustic imaging, a living body is irradiated with pulsed laser light. Inside the living body, the living tissue absorbs the energy of the pulsed laser light, and ultrasonic waves (photoacoustic waves) are generated by adiabatic expansion due to the energy. By detecting this photoacoustic wave with an ultrasonic probe or the like and constructing a photoacoustic image based on the detection signal, in vivo visualization based on the photoacoustic wave is possible.
 ここで、特許文献1には、被検体内に挿入する挿入物において光音響波を発生させ、その光音響波に基づいて光音響画像を生成することが記載されている。特許文献1では、光源から出射された光を、光ファイバなどの導光手段を用いて挿入物である穿刺針の先端付近まで導光する。穿刺針の先端付近には光吸収部材などが配置されており、その光吸収部材に光ファイバの光出射端から光を照射する。この光照射により、穿刺針の先端付近において光音響波が発生する。その光音響波をプローブを用いて検出し、検出した光音響波に基づいて光音響画像を生成することにより、光音響画像を用いて穿刺針の先端付近の位置を確認することができる。 Here, Patent Document 1 describes that a photoacoustic wave is generated in an insert inserted into a subject and a photoacoustic image is generated based on the photoacoustic wave. In Patent Document 1, light emitted from a light source is guided to the vicinity of the tip of a puncture needle as an insert using a light guide means such as an optical fiber. A light absorbing member or the like is disposed in the vicinity of the tip of the puncture needle, and the light absorbing member is irradiated with light from the light emitting end of the optical fiber. This light irradiation generates a photoacoustic wave near the tip of the puncture needle. By detecting the photoacoustic wave using a probe and generating a photoacoustic image based on the detected photoacoustic wave, the position near the tip of the puncture needle can be confirmed using the photoacoustic image.
特開2015-037519号公報Japanese Patent Laying-Open No. 2015-037519
 ところで、特許文献1において、光音響波の発生源とプローブとの間に遮蔽物が存在すると、その遮蔽物によって光音響波が減衰し、プローブで検出される光音響波の強度が弱くなる。プローブで検出される光音響波の強度を最大化するためには、光ファイバなどの導光手段の光出射端を、開口を有する穿刺針の先端付近に正確に位置合わせする必要がある。しかしながら、例えば数十mm程度の長さを有する穿刺針の針管に基端部側から光ファイバを挿入し、その先端を穿刺針の先端付近に高い精度で位置合わせすることは困難である。したがって、光ファイバの挿入長を調整する機構が要望される。 By the way, in Patent Document 1, if there is a shield between the source of the photoacoustic wave and the probe, the photoacoustic wave is attenuated by the shield and the intensity of the photoacoustic wave detected by the probe is weakened. In order to maximize the intensity of the photoacoustic wave detected by the probe, it is necessary to accurately align the light emitting end of a light guide means such as an optical fiber near the tip of a puncture needle having an opening. However, for example, it is difficult to insert an optical fiber from the proximal end side into a needle tube of a puncture needle having a length of about several tens of millimeters and to align the distal end thereof with the vicinity of the distal end of the puncture needle with high accuracy. Therefore, a mechanism for adjusting the insertion length of the optical fiber is desired.
 本発明は、上記事情に鑑み、中空の管の内部に挿入される光ファイバの挿入長を調整する光ファイバ挿入長調整機構を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide an optical fiber insertion length adjustment mechanism that adjusts the insertion length of an optical fiber inserted into a hollow tube.
 また、本発明は、中空の管に対する光ファイバの挿入長が調整可能に構成された挿入物及びアタッチメント部材を提供することを目的とする。 Another object of the present invention is to provide an insert and an attachment member configured such that the insertion length of the optical fiber into the hollow tube can be adjusted.
 上記目的を達成するために、本発明は、少なくとも一部が被検体内に挿入される中空の管と、中空の管の内部に挿入され、光源から出射される光を導光する光ファイバと、光ファイバにより導光された光が照射された場合に照射された光を吸収して光音響波を発生する光吸収部材と、光ファイバの先端から離間した位置において光ファイバを固定する光ファイバ固定部材と、光ファイバの挿入に用いられる光ファイバ挿入部を含む基端部とを備え、光ファイバ固定部材は、光ファイバが中空の管内に挿入された場合に光ファイバ挿入部の内部に変位可能に挿入された挿入物を提供する。 To achieve the above object, the present invention includes a hollow tube at least partially inserted into a subject, and an optical fiber that is inserted into the hollow tube and guides light emitted from a light source. A light-absorbing member that generates a photoacoustic wave by absorbing the irradiated light when irradiated with light guided by the optical fiber, and an optical fiber that fixes the optical fiber at a position apart from the tip of the optical fiber A fixing member and a proximal end portion including an optical fiber insertion portion used for insertion of an optical fiber are provided. The optical fiber fixing member is displaced into the optical fiber insertion portion when the optical fiber is inserted into a hollow tube. Provide inserts inserted as possible.
 本発明は、また、少なくとも一部が被検体内に挿入される中空の管と嵌合可能なアタッチメント部材であって、嵌合される中空の管の内部に挿入される光ファイバの先端から離間した位置において光ファイバを固定する光ファイバ固定部材と、光ファイバの挿入に用いられる光ファイバ挿入部を含む基端部とを備え、光ファイバ固定部材は、光ファイバが中空の管内に挿入された場合に光ファイバ挿入部の内部に変位可能に挿入されたアタッチメント部材を提供する。 The present invention also provides an attachment member that can be fitted to a hollow tube that is at least partially inserted into a subject, and is spaced from the tip of an optical fiber that is inserted into the fitted hollow tube. An optical fiber fixing member for fixing the optical fiber at the position, and a base end portion including an optical fiber insertion portion used for insertion of the optical fiber. The optical fiber fixing member has the optical fiber inserted into a hollow tube. In some cases, an attachment member that is movably inserted into an optical fiber insertion portion is provided.
 ここで、光ファイバ固定部材が光ファイバ挿入部の内部に「変位可能に挿入された」とは、光ファイバ固定部材を光ファイバ挿入部の内部に挿入して位置調整を行う場合だけでなく、位置調整後に最終的に接着剤などを用いて位置が固定された場合をも含む。 Here, the optical fiber fixing member is “displaceably inserted” in the optical fiber insertion portion, not only when the optical fiber fixing member is inserted into the optical fiber insertion portion to adjust the position, This includes the case where the position is finally fixed using an adhesive or the like after the position adjustment.
 本発明の挿入物及びアタッチメント部材では、光ファイバ挿入部はあらかじめ定められた方向に沿って伸びる軸を有していてもよく、光ファイバ固定部材は、光ファイバ挿入部の軸方向に沿って変位させられてもよい。 In the insert and attachment member of the present invention, the optical fiber insertion portion may have an axis extending along a predetermined direction, and the optical fiber fixing member is displaced along the axial direction of the optical fiber insertion portion. May be allowed.
 本発明の挿入物及びアタッチメント部材では、光ファイバ固定部材は第1の溝を含んでいてもよく、基端部は、光ファイバ固定部材が光ファイバ挿入部に挿入された場合における第1の溝の位置に対応する部分に光ファイバ固定部材を変位させるための工具が挿入される第1の穴部を有していてもよい。 In the insert and attachment member of the present invention, the optical fiber fixing member may include a first groove, and the base end portion is the first groove when the optical fiber fixing member is inserted into the optical fiber insertion portion. You may have the 1st hole part in which the tool for displacing an optical fiber fixing member is inserted in the part corresponding to this position.
 上記において、工具として偏心ピンが用いられてもよく、第1の穴部から挿入された偏心ピンを回転させることにより、光ファイバ固定部材が光ファイバ挿入部の内部でその軸方向に沿って変位させられてもよい。 In the above, an eccentric pin may be used as the tool, and the optical fiber fixing member is displaced along the axial direction inside the optical fiber insertion portion by rotating the eccentric pin inserted from the first hole portion. May be allowed.
 光ファイバ固定部材は、第1の溝とは異なる第2の溝を更に有していてもよく、基端部は、光ファイバ固定部材が光ファイバ挿入部に挿入された場合における第2の溝の位置に対応する部分に接着剤を流し込むための第2の穴部を有していてもよい。 The optical fiber fixing member may further include a second groove different from the first groove, and the base end portion is the second groove when the optical fiber fixing member is inserted into the optical fiber insertion portion. You may have the 2nd hole part for pouring an adhesive into the part corresponding to this position.
 上記に代えて、基端部は、光ファイバ固定部材を光ファイバ挿入部の軸方向に沿って変位させるためのスライドつまみの変位可能範囲に対応した部分に開口を有していてもよい。 Instead of the above, the base end portion may have an opening at a portion corresponding to the displaceable range of the slide knob for displacing the optical fiber fixing member along the axial direction of the optical fiber insertion portion.
 本発明の挿入物及びアタッチメント部材において、光ファイバ挿入部は、内壁が光ファイバ挿入部の軸方向に平行な平坦部を含む中空の管であってもよい。 In the insert and the attachment member of the present invention, the optical fiber insertion portion may be a hollow tube including an inner wall including a flat portion parallel to the axial direction of the optical fiber insertion portion.
 光ファイバ挿入部は上記平坦部を複数含み、平坦部における内壁間の距離が光ファイバの挿入方向の奥側ほど短い中空の管であってもよい。 The optical fiber insertion portion may be a hollow tube including a plurality of the flat portions, and the distance between the inner walls of the flat portion is shorter toward the back side in the optical fiber insertion direction.
 光ファイバ固定部材は、光ファイバ挿入部の内壁に接触する突起部を含む構成であってもよい。 The optical fiber fixing member may include a protrusion that contacts the inner wall of the optical fiber insertion portion.
 突起部は光ファイバ固定部材の本体部分と一体に構成されていてもよい。あるいは、突起部は光ファイバ固定部材の本体部分とは別体に構成されていてもよい。後者において、突起部はOリングを含んで構成されていてもよい。 The protrusion may be configured integrally with the main body portion of the optical fiber fixing member. Alternatively, the protrusion may be configured separately from the main body portion of the optical fiber fixing member. In the latter, the protrusion may include an O-ring.
 本発明は、更に、中空の管を含む、少なくとも一部が被検体に挿入される挿入物の基端部に設けられた光ファイバ挿入部を通じて中空の管の内部に挿入される光ファイバの挿入長を調整する光ファイバ挿入長調整機構であって、光ファイバの先端から離間された位置において光ファイバを固定し、光ファイバが中空の管内に挿入された場合に光ファイバ挿入部の内部に挿入される光ファイバ固定部材と、光ファイバ挿入部の内部において光ファイバ固定部材を変位させる挿入長調整部とを備えた光ファイバ挿入長調整機構を提供する。 The present invention further includes insertion of an optical fiber that is inserted into the hollow tube through an optical fiber insertion portion provided at a proximal end portion of an insert at least a portion of which is inserted into a subject, including a hollow tube. An optical fiber insertion length adjustment mechanism that adjusts the length, fixing the optical fiber at a position away from the tip of the optical fiber, and inserting the optical fiber into the optical fiber insertion section when inserted into a hollow tube There is provided an optical fiber insertion length adjusting mechanism including an optical fiber fixing member to be moved and an insertion length adjusting portion for displacing the optical fiber fixing member inside the optical fiber insertion portion.
 本発明の光ファイバ挿入長調整機構では、光ファイバ挿入部はあらかじめ定められた方向に沿って伸びる軸を有していてもよい。また、挿入長調整部は、光ファイバ挿入部の軸方向に沿って光ファイバ固定部材を変位させてもよい。 In the optical fiber insertion length adjusting mechanism of the present invention, the optical fiber insertion portion may have an axis extending along a predetermined direction. Further, the insertion length adjustment unit may displace the optical fiber fixing member along the axial direction of the optical fiber insertion unit.
 本発明の光ファイバ挿入長調整機構では、光ファイバ固定部材は第1の溝を含んでいてもよく、挿入長調整部は光ファイバ固定部材の第1の溝に嵌合する偏心ピンを有する回転体を含んでいてもよい。 In the optical fiber insertion length adjusting mechanism of the present invention, the optical fiber fixing member may include a first groove, and the insertion length adjusting portion is a rotation having an eccentric pin that fits into the first groove of the optical fiber fixing member. May contain body.
 上記において、偏心ピンを回転させることにより、光ファイバ固定部材を光ファイバ挿入部の内部でその軸方向に沿って変位させてもよい。 In the above, the optical fiber fixing member may be displaced along the axial direction inside the optical fiber insertion portion by rotating the eccentric pin.
 回転体は操作用の操作レバーを含んでいてもよく、偏心ピンには操作レバーにより回転力が与えられてもよい。その操作レバーは回転体の本体に対して着脱可能に構成されていてもよい。 The rotating body may include an operation lever for operation, and the eccentric pin may be given a rotational force by the operation lever. The operation lever may be configured to be detachable from the main body of the rotating body.
 光ファイバ固定部材は、第1の溝とは異なる第2の溝を更に有していてもよい。 The optical fiber fixing member may further have a second groove different from the first groove.
 上記に代えて、挿入長調整部は、光ファイバ固定部材を光ファイバ挿入部の軸方向に沿って変位させるためのスライドつまみを含んでいてもよい。 Instead of the above, the insertion length adjustment unit may include a slide knob for displacing the optical fiber fixing member along the axial direction of the optical fiber insertion unit.
 光ファイバ挿入部は、内壁が光ファイバ挿入部の軸方向に平行な平坦部を含む中空の管であってもよい。 The optical fiber insertion part may be a hollow tube whose inner wall includes a flat part parallel to the axial direction of the optical fiber insertion part.
 光ファイバ挿入部は上記平坦部を複数含み、平坦部における内壁間の距離が光ファイバの挿入方向の奥側ほど短い中空の管であってもよい。 The optical fiber insertion portion may be a hollow tube including a plurality of the flat portions, and the distance between the inner walls of the flat portion is shorter toward the back side in the optical fiber insertion direction.
 光ファイバ固定部材は、光ファイバ挿入部の内壁に接触する突起部を含む構成であってもよい。 The optical fiber fixing member may include a protrusion that contacts the inner wall of the optical fiber insertion portion.
 突起部は光ファイバ固定部材の本体部分と一体に構成されていてもよい。あるいは、突起部は光ファイバ固定部材の本体部分とは別体に構成されていてもよい。後者において、突起部はOリングを含んで構成されていてもよい。 The protrusion may be configured integrally with the main body portion of the optical fiber fixing member. Alternatively, the protrusion may be configured separately from the main body portion of the optical fiber fixing member. In the latter, the protrusion may include an O-ring.
 本発明の光ファイバ挿入長調整機構、挿入物、及びアタッチメント部材は、中空の管の基端部に設けられた光ファイバ挿入部の内部にて光ファイバ固定部材を変位させることにより、中空の管の中に対する光ファイバの挿入長を調整することが可能となる。 An optical fiber insertion length adjusting mechanism, an insert, and an attachment member according to the present invention can be obtained by displacing an optical fiber fixing member inside an optical fiber insertion portion provided at a proximal end portion of the hollow tube. It becomes possible to adjust the insertion length of the optical fiber to the inside.
本発明の第1実施形態に係る挿入物が用いられる光音響画像生成装置を示すブロック図。1 is a block diagram showing a photoacoustic image generation apparatus in which an insert according to a first embodiment of the present invention is used. 穿刺針を示す側面図。The side view which shows a puncture needle. 穿刺針における針管の先端部分を示す正面図。The front view which shows the front-end | tip part of the needle tube in a puncture needle. 穿刺針の基端部を示す断面図。Sectional drawing which shows the base end part of a puncture needle. 本発明の第1実施形態において用いられる光ファイバ挿入長調整機構を示す斜視図。The perspective view which shows the optical fiber insertion length adjustment mechanism used in 1st Embodiment of this invention. 偏心ピンを示す正面図。The front view which shows an eccentric pin. 光ファイバ挿入長の調整作業を示す斜視図。The perspective view which shows adjustment work of optical fiber insertion length. 本発明の第2実施形態に係る光ファイバ挿入長調整機構を示す断面図。Sectional drawing which shows the optical fiber insertion length adjustment mechanism which concerns on 2nd Embodiment of this invention. 第1の変形例に係る光ファイバ挿入長調整機構を示す断面図。Sectional drawing which shows the optical fiber insertion length adjustment mechanism which concerns on a 1st modification. 第2の変形例に係る光ファイバ挿入長調整機構を示す断面図。Sectional drawing which shows the optical fiber insertion length adjustment mechanism which concerns on a 2nd modification. 第3の変形例に係る光ファイバ挿入長調整機構を示す断面図。Sectional drawing which shows the optical fiber insertion length adjustment mechanism which concerns on a 3rd modification. 第4の変形例に係る穿刺針を示す側面図。The side view which shows the puncture needle which concerns on a 4th modification. 第5の変形例に係る穿刺針全体の外観を示す図。The figure which shows the external appearance of the whole puncture needle which concerns on a 5th modification. 外針の外観を示す図。The figure which shows the external appearance of an outer needle. 内針の外観を示す図。The figure which shows the external appearance of an inner needle. 第5の変形例に係る穿刺針の先端付近を示す断面図。Sectional drawing which shows the front-end | tip vicinity of the puncture needle which concerns on a 5th modification. 光音響画像生成装置の外観を示す斜視図。The perspective view which shows the external appearance of a photoacoustic image generating apparatus.
 以下、図面を参照し、本発明の実施の形態を詳細に説明する。図1は、本発明の第1実施形態に係る挿入物が用いられる光音響画像生成装置を示す。光音響画像生成装置(光音響画像診断装置)10は、プローブ(超音波探触子)11、超音波ユニット12、レーザユニット13、及び穿刺針15を含む。なお、本発明の実施形態では、音響波として超音波を用いるが、超音波に限定されるものでは無く、被検対象や測定条件等に応じて適切な周波数を選択してさえいれば、可聴周波数の音響波を用いてもよい。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a photoacoustic image generation apparatus in which an insert according to a first embodiment of the present invention is used. A photoacoustic image generation apparatus (photoacoustic image diagnostic apparatus) 10 includes a probe (ultrasonic probe) 11, an ultrasonic unit 12, a laser unit 13, and a puncture needle 15. In the embodiment of the present invention, an ultrasonic wave is used as the acoustic wave. However, the ultrasonic wave is not limited to the ultrasonic wave. An acoustic wave having a frequency may be used.
 レーザユニット13は光源である。レーザユニット13は、例えばレーザダイオード光源(半導体レーザ光源)である。あるいは、レーザユニット13は、レーザダイオード光源を種光源とする光増幅型レーザ光源であってもよい。レーザユニット13に用いられるレーザ光源のタイプは特に限定されず、レーザユニット13に、例えばYAG(イットリウム・アルミニウム・ガーネット)やアレキサンドライトなどを用いた固体レーザ光源を用いてもよい。レーザユニット13から出射したレーザ光は、例えば光ファイバ61などの導光手段を用いて穿刺針15まで導光される。レーザ光源以外の光源を用いてもよい。 The laser unit 13 is a light source. The laser unit 13 is, for example, a laser diode light source (semiconductor laser light source). Alternatively, the laser unit 13 may be an optical amplification type laser light source using a laser diode light source as a seed light source. The type of laser light source used for the laser unit 13 is not particularly limited, and a solid laser light source using, for example, YAG (yttrium, aluminum, garnet) or alexandrite may be used for the laser unit 13. Laser light emitted from the laser unit 13 is guided to the puncture needle 15 by using a light guide means such as an optical fiber 61. A light source other than the laser light source may be used.
 本実施形態では、中空の管を含み、少なくとも一部が被検体に挿入される挿入物として、薬剤の注入などに用いることができる穿刺針15を考える。図2は、穿刺針15を示す。穿刺針15は、針管51と基端部(針基)52とを有する。針管51は、先端に開口を有し、内部に内腔を有する中空の管である。針管51は、例えばステンレスなどの金属から成る。針管51は、例えばポリテトラフルオロエチレンなどのフッ素樹脂材料から成っていてもよい。 In the present embodiment, a puncture needle 15 that includes a hollow tube and that can be used for injection of a drug or the like is considered as an insert that is inserted at least in part into a subject. FIG. 2 shows the puncture needle 15. The puncture needle 15 has a needle tube 51 and a base end portion (needle base) 52. The needle tube 51 is a hollow tube having an opening at the tip and a lumen inside. The needle tube 51 is made of a metal such as stainless steel. The needle tube 51 may be made of a fluororesin material such as polytetrafluoroethylene.
 基端部52は、光ファイバ挿入部(光ファイバ挿入ポート)53と薬剤注入部(薬剤注入ポート)54とを有する。光ファイバ挿入部53は例えば直径4mm程度の穴を有する。薬剤注入部54は例えば直径6mmから8mm程度の穴を有する。レーザユニット13から出射される光を導光する光ファイバ61は、光ファイバ挿入部53を通じて針管51の内部に挿入される。光ファイバ61は、針管51の内部において、例えばポリイミドなどの樹脂材料から成る管に収容されるか、又は樹脂材料により被覆され、保護されていることが好ましい。基端部52とレーザユニット13との間についても、光ファイバ61は可撓性を有する管によって保護されていることが好ましい。さらには、基端部52からレーザユニット13側に一定の範囲では、更に別の保護チューブによって保護されていることが好ましい。 The proximal end portion 52 has an optical fiber insertion portion (optical fiber insertion port) 53 and a drug injection portion (drug injection port) 54. The optical fiber insertion portion 53 has a hole having a diameter of about 4 mm, for example. The drug injection part 54 has a hole with a diameter of about 6 mm to 8 mm, for example. An optical fiber 61 that guides light emitted from the laser unit 13 is inserted into the needle tube 51 through the optical fiber insertion portion 53. It is preferable that the optical fiber 61 is housed in a tube made of a resin material such as polyimide inside the needle tube 51, or is covered and protected by a resin material. Also between the base end portion 52 and the laser unit 13, the optical fiber 61 is preferably protected by a flexible tube. Furthermore, it is preferable that the protective unit is further protected by another protective tube within a certain range from the base end portion 52 to the laser unit 13 side.
 薬剤注入部54は、液体である薬剤の注入口である。用いられる薬剤としては、例えば麻酔薬、点滴、抗がん剤、エタノール、造影剤、又は生理食塩水などが考えられる。薬剤注入部54には、シリンジや輸液チューブなどが装着される。薬剤注入部54は、薬剤を注入するために使用されるだけでなく、血液や体液などの液体を被検体側から取り出すために使用されてもよい。 The drug injection part 54 is an injection port for a drug that is a liquid. Examples of the drug used include anesthetics, infusions, anticancer agents, ethanol, contrast agents, and physiological saline. A syringe, an infusion tube, and the like are attached to the drug injection unit 54. The drug injection unit 54 is not only used for injecting a drug, but may also be used for taking out liquid such as blood or body fluid from the subject side.
 図3は、針管51の先端部分を示す。針管51の先端部分には、光ファイバ61の光出射部62と光吸収部材55とが配置される。光出射部62は、光ファイバ61のレーザユニット13から見て光進行側の端面により構成される。光ファイバ61により導光された光は、光出射部62から光吸収部材55に照射される。光ファイバの直径は例えば130μmであり、光出射部62から例えば2μJのレーザ光が光吸収部材55に照射される。 FIG. 3 shows the tip of the needle tube 51. A light emitting portion 62 and a light absorbing member 55 of the optical fiber 61 are disposed at the distal end portion of the needle tube 51. The light emitting unit 62 is configured by an end surface on the light traveling side as viewed from the laser unit 13 of the optical fiber 61. The light guided by the optical fiber 61 is applied to the light absorbing member 55 from the light emitting unit 62. The diameter of the optical fiber is, for example, 130 μm, and the light absorbing member 55 is irradiated with, for example, 2 μJ of laser light from the light emitting portion 62.
 光吸収部材55は、光出射部62から出射した光を吸収して光音響波を発生する。光吸収部材55には、例えば黒顔料を混合したエポキシ樹脂、ポリウレタン樹脂、フッ素樹脂、又はシリコーンゴムなどを用いることができる。あるいは、光吸収部材55に、レーザ光の波長に対して光吸収性を有する金属又は酸化物を用いてもよい。例えば光吸収部材55として、レーザ光の波長に対して光吸収性が高い酸化鉄、酸化クロム、又は酸化マンガンなどの酸化物を用いることができる。あるいは、Ti、Pt、若しくはハンダ、又は溶接されたステンレスなどの金属を光吸収部材55として用いてもよい。光吸収部材55は、光ファイバ61を針管51の内壁に固定する部材を兼ねていてもよい。 The light absorbing member 55 absorbs the light emitted from the light emitting unit 62 and generates a photoacoustic wave. For the light absorbing member 55, for example, an epoxy resin, a polyurethane resin, a fluororesin, or a silicone rubber mixed with a black pigment can be used. Alternatively, the light absorbing member 55 may be made of a metal or oxide having light absorption with respect to the wavelength of the laser light. For example, as the light absorbing member 55, an oxide such as iron oxide, chromium oxide, or manganese oxide having high light absorption with respect to the wavelength of the laser light can be used. Alternatively, Ti, Pt, solder, or metal such as welded stainless steel may be used as the light absorbing member 55. The light absorbing member 55 may also serve as a member that fixes the optical fiber 61 to the inner wall of the needle tube 51.
 光出射部62から出射した光の少なくとも一部は、その周囲に設けられた光吸収部材55に照射される。光吸収部材55が照射された光を吸収することで、穿刺針の先端において光音響波が発生する。光吸収部材55は穿刺針15の先端近傍に存在しており、穿刺針15の先端の一点で光音響波を発生させることができる。光音響波の発生源(音源)の長さは、穿刺針全体の長さに比べて十分に短く、音源は点音源とみなすことができる。ここで、穿刺針15の先端近傍とは、その位置に光出射部62及び光吸収部材55が配置された場合に、穿刺作業に必要な精度で穿刺針15の先端の位置を画像化できる光音響波を発生可能な位置であることを意味する。例えば、穿刺針15の開口を有する先端から基端部側へ0mm~3mmの範囲内のことを指す。 At least a part of the light emitted from the light emitting part 62 is applied to the light absorbing member 55 provided around the light emitting part 62. As the light absorbing member 55 absorbs the irradiated light, a photoacoustic wave is generated at the tip of the puncture needle. The light absorbing member 55 exists near the tip of the puncture needle 15 and can generate a photoacoustic wave at one point of the tip of the puncture needle 15. The length of the photoacoustic wave generation source (sound source) is sufficiently shorter than the entire length of the puncture needle, and the sound source can be regarded as a point sound source. Here, the vicinity of the distal end of the puncture needle 15 is light that can image the position of the distal end of the puncture needle 15 with the accuracy required for the puncture operation when the light emitting part 62 and the light absorbing member 55 are disposed at the positions. It means a position where an acoustic wave can be generated. For example, it refers to the range of 0 mm to 3 mm from the distal end having the opening of the puncture needle 15 to the proximal end side.
 図1に戻り、プローブ11は、音響波検出手段であり、例えば一次元的に配列された複数の超音波振動子を有している。プローブ11は、被検体に穿刺針15が穿刺された後に、光吸収部材55(図3を参照)から発せられた光音響波を検出する。また、プローブ11は、光音響波の検出に加えて、被検体に対する音響波(超音波)の送信、及び送信した超音波に対する反射音響波(反射超音波)の受信を行う。超音波の送受信は分離した位置で行ってもよい。例えばプローブ11とは異なる位置から超音波の送信を行い、その送信された超音波に対する反射超音波をプローブ11で受信してもよい。プローブ11は、リニアプローブに限定されず、コンベクスプローブ、又はセクタープローブでもよい。 Referring back to FIG. 1, the probe 11 is an acoustic wave detecting means, and has, for example, a plurality of ultrasonic transducers arranged one-dimensionally. The probe 11 detects a photoacoustic wave emitted from the light absorbing member 55 (see FIG. 3) after the puncture needle 15 is punctured in the subject. In addition to detecting the photoacoustic wave, the probe 11 transmits an acoustic wave (ultrasonic wave) to the subject and receives a reflected acoustic wave (reflected ultrasonic wave) with respect to the transmitted ultrasonic wave. You may perform transmission / reception of an ultrasonic wave in the separated position. For example, ultrasonic waves may be transmitted from a position different from the probe 11, and reflected ultrasonic waves with respect to the transmitted ultrasonic waves may be received by the probe 11. The probe 11 is not limited to a linear probe, and may be a convex probe or a sector probe.
 超音波ユニット12は、受信回路21、受信メモリ22、データ分離手段23、光音響画像生成手段24、超音波画像生成手段25、画像合成手段26、制御手段28、及び送信制御回路29を有する。超音波ユニット12は、信号処理装置を構成する。超音波ユニット12は、典型的にはプロセッサ、メモリ、及びバスなどを有する。超音波ユニット12には、光音響画像生成に関するプログラムが組み込まれており、そのプログラムに従ってプロセッサが動作することで、超音波ユニット12内の各部の少なくとも一部の機能が実現する。 The ultrasonic unit 12 includes a reception circuit 21, a reception memory 22, a data separation unit 23, a photoacoustic image generation unit 24, an ultrasonic image generation unit 25, an image synthesis unit 26, a control unit 28, and a transmission control circuit 29. The ultrasonic unit 12 constitutes a signal processing device. The ultrasonic unit 12 typically includes a processor, a memory, a bus, and the like. The ultrasonic unit 12 incorporates a program related to photoacoustic image generation, and the processor operates according to the program, thereby realizing at least some functions of each unit in the ultrasonic unit 12.
 受信回路21は、プローブ11が出力する検出信号を受信し、受信した検出信号を受信メモリ22に格納する。受信回路21は、典型的には、低ノイズアンプ、可変ゲインアンプ、ローパスフィルタ、及びAD変換器(Analog to Digital convertor)を含む。プローブ11の検出信号は、低ノイズアンプで増幅された後に、可変ゲインアンプで深度に応じたゲイン調整がなされ、ローパスフィルタで高周波成分がカットされた後にAD変換器でデジタル信号に格納され、受信メモリ22に格納される。受信回路21は、例えば1つのIC(Integrated Circuit)で構成される。 The receiving circuit 21 receives the detection signal output from the probe 11 and stores the received detection signal in the reception memory 22. The reception circuit 21 typically includes a low noise amplifier, a variable gain amplifier, a low-pass filter, and an AD converter (Analog-to-Digital converter). The detection signal of the probe 11 is amplified by a low-noise amplifier, and then the gain is adjusted according to the depth by a variable gain amplifier. After a high-frequency component is cut by a low-pass filter, it is stored in a digital signal by an AD converter and received. Stored in the memory 22. The receiving circuit 21 is composed of, for example, one IC (Integrated Circuit).
 受信回路21は、AD変換された光音響波及び反射超音波の検出信号(サンプリングデータ)を受信メモリ22に格納する。データ分離手段23は、受信メモリ22に格納された光音響波の検出信号のサンプリングデータと反射超音波の検出信号のサンプリングデータとを分離する。データ分離手段23は、光音響波の検出信号のサンプリングデータを光音響画像生成手段24に入力する。また、分離した反射超音波のサンプリングデータを、超音波画像生成手段(反射音響波画像生成手段)25に入力する。 The reception circuit 21 stores the AD-converted photoacoustic wave and reflected ultrasonic detection signal (sampling data) in the reception memory 22. The data separation unit 23 separates the sampling data of the detection signal of the photoacoustic wave and the sampling data of the detection signal of the reflected ultrasonic wave stored in the reception memory 22. The data separation unit 23 inputs the sampling data of the photoacoustic wave detection signal to the photoacoustic image generation unit 24. Also, the separated reflected ultrasound sampling data is input to the ultrasound image generating means (reflected acoustic wave image generating means) 25.
 光音響画像生成手段24は、プローブ11で検出された光音響波の検出信号に基づいて光音響画像を生成する。光音響画像の生成は、例えば、位相整合加算などの画像再構成や、検波、対数変換などを含む。超音波画像生成手段25は、プローブ11で検出された反射超音波の検出信号に基づいて超音波画像(反射音響波画像)を生成する。超音波画像の生成も、位相整合加算などの画像再構成や、検波、対数変換などを含む。 The photoacoustic image generation means 24 generates a photoacoustic image based on a photoacoustic wave detection signal detected by the probe 11. The generation of the photoacoustic image includes, for example, image reconstruction such as phase matching addition, detection, logarithmic conversion, and the like. The ultrasonic image generation unit 25 generates an ultrasonic image (reflected acoustic wave image) based on the detection signal of the reflected ultrasonic wave detected by the probe 11. The generation of an ultrasonic image also includes image reconstruction such as phase matching addition, detection, logarithmic conversion, and the like.
 画像合成手段26は、光音響画像と超音波画像とを合成する。画像合成手段26は、例えば光音響画像と超音波画像とを重畳することで画像合成を行う。合成された画像は、ディスプレイ装置などの画像表示手段14に表示される。画像合成を行わずに、画像表示手段14に、光音響画像と超音波画像とを並べて表示し、或いは光音響画像と超音波画像とを切り替えてすることも可能である。 The image synthesis means 26 synthesizes the photoacoustic image and the ultrasonic image. The image composition unit 26 performs image composition by superimposing a photoacoustic image and an ultrasonic image, for example. The synthesized image is displayed on image display means 14 such as a display device. It is also possible to display the photoacoustic image and the ultrasonic image side by side on the image display means 14 without performing image synthesis, or to switch between the photoacoustic image and the ultrasonic image.
 制御手段28は、超音波ユニット12内の各部を制御する。制御手段28は、例えば光音響画像を取得する場合は、レーザユニット13にトリガ信号を送信し、レーザユニット13からレーザ光を出射させる。また、レーザ光の出射に合わせて、受信回路21にサンプリングトリガ信号を送信し、光音響波のサンプリング開始タイミングなどを制御する。 The control means 28 controls each part in the ultrasonic unit 12. For example, when acquiring a photoacoustic image, the control unit 28 transmits a trigger signal to the laser unit 13 to emit laser light from the laser unit 13. In addition, a sampling trigger signal is transmitted to the receiving circuit 21 in accordance with the emission of the laser light to control the photoacoustic wave sampling start timing and the like.
 制御手段28は、超音波画像を取得する場合は、送信制御回路29に超音波送信を指示する旨の超音波送信トリガ信号を送る。送信制御回路29は、超音波送信トリガ信号を受けると、プローブ11から超音波を送信させる。制御手段28は、超音波送信のタイミングに合わせて受信回路21にサンプリグトリガ信号を送り、反射超音波のサンプリングを開始させる。 When acquiring the ultrasonic image, the control means 28 sends an ultrasonic transmission trigger signal to the transmission control circuit 29 to instruct ultrasonic transmission. When receiving the ultrasonic transmission trigger signal, the transmission control circuit 29 causes the probe 11 to transmit ultrasonic waves. The control means 28 sends a sampling trigger signal to the receiving circuit 21 in synchronization with the timing of ultrasonic transmission, and starts sampling of reflected ultrasonic waves.
 ここで、光ファイバ61の光出射部62を針管51の先端近傍に正確に位置合わせするために、本実施形態では光ファイバ挿入長調整機構が用いられる。光ファイバ挿入長調整機構は、光ファイバ固定部材と挿入長調整部とを含む。光ファイバ固定部材は、光ファイバ61の先端から離間した位置において光ファイバ61を固定する。光ファイバ固定部材は、光ファイバ61が光ファイバ挿入部53を通じて針管51の管内に挿入された場合に光ファイバ挿入部53の内部に挿入される。挿入長調整部は、光ファイバ挿入部53の内部において上記光ファイバ固定部材を変位させる。光ファイバ固定部材の変位により、光ファイバ61の針管51に対する挿入長が調整できる。ここで、「光ファイバ61の先端から離間した位置」とは、例えば光ファイバ61の先端から所定の距離だけ離れた位置を指す。その所定距離は、このましくは、針管51の先端から光ファイバ挿入部までの長さにほぼ等しい。光ファイバ固定部材がそのような距離だけ離間した位置において光ファイバ61を固定する場合、光ファイバ61の先端が針管51も先端付近に来た場合に、光ファイバ固定部材が光ファイバ挿入部の内部に収まる。 Here, in order to accurately align the light emitting portion 62 of the optical fiber 61 near the tip of the needle tube 51, an optical fiber insertion length adjusting mechanism is used in this embodiment. The optical fiber insertion length adjustment mechanism includes an optical fiber fixing member and an insertion length adjustment unit. The optical fiber fixing member fixes the optical fiber 61 at a position away from the tip of the optical fiber 61. The optical fiber fixing member is inserted into the optical fiber insertion portion 53 when the optical fiber 61 is inserted into the tube of the needle tube 51 through the optical fiber insertion portion 53. The insertion length adjustment unit displaces the optical fiber fixing member inside the optical fiber insertion unit 53. The insertion length of the optical fiber 61 with respect to the needle tube 51 can be adjusted by the displacement of the optical fiber fixing member. Here, the “position away from the tip of the optical fiber 61” refers to a position away from the tip of the optical fiber 61 by a predetermined distance, for example. The predetermined distance is preferably substantially equal to the length from the tip of the needle tube 51 to the optical fiber insertion portion. When the optical fiber 61 is fixed at a position where the optical fiber fixing member is separated by such a distance, when the tip of the optical fiber 61 comes close to the tip of the needle tube 51, the optical fiber fixing member is inside the optical fiber insertion portion. Fits in.
 図4は、本発明の第1実施形態に係る穿刺針15の基端部52の断面を示す。基端部52は、例えばポリプロピレン、ポリカーボネート、又はポリエステルなどの樹脂材料から成る。針管51(図4において図示せず)は、例えばエポキシ樹脂などの接着剤により、基端部52の先端側に接着される。光ファイバ挿入部53は、針管51に連通する貫通孔を有する。薬剤注入部54も、針管51に連通する貫通孔を有しており、光ファイバ挿入部53及び薬剤注入部54は基端部52の内部において合流する。 FIG. 4 shows a cross section of the proximal end portion 52 of the puncture needle 15 according to the first embodiment of the present invention. The base end portion 52 is made of a resin material such as polypropylene, polycarbonate, or polyester. The needle tube 51 (not shown in FIG. 4) is bonded to the distal end side of the proximal end portion 52 with an adhesive such as an epoxy resin. The optical fiber insertion portion 53 has a through hole communicating with the needle tube 51. The drug injection part 54 also has a through hole communicating with the needle tube 51, and the optical fiber insertion part 53 and the drug injection part 54 merge inside the base end part 52.
 光ファイバ固定部材56は、光ファイバ61の先端(光出射部62)から離間した位置において光ファイバ61を固定する。光ファイバ61が光ファイバ固定部材56に固定される位置は、針管51の長さ、及び光ファイバ挿入部53から針管51の基端部52側の端部までの距離に基づいて決定される。光ファイバ固定部材56は、例えばその中央部分に貫通孔を有しており、その貫通孔に光ファイバ61が挿入される。挿入された光ファイバ61は、所望の位置において、接着剤などを用いて光ファイバ固定部材56に固定される。光ファイバ固定部材56は、光ファイバ61が光ファイバ挿入部53を通じて針管51の管内に挿入された場合に光ファイバ挿入部53内に挿入される。 The optical fiber fixing member 56 fixes the optical fiber 61 at a position away from the tip (light emitting portion 62) of the optical fiber 61. The position where the optical fiber 61 is fixed to the optical fiber fixing member 56 is determined based on the length of the needle tube 51 and the distance from the optical fiber insertion portion 53 to the end portion on the proximal end portion 52 side of the needle tube 51. The optical fiber fixing member 56 has, for example, a through hole at the center thereof, and the optical fiber 61 is inserted into the through hole. The inserted optical fiber 61 is fixed to the optical fiber fixing member 56 using an adhesive or the like at a desired position. The optical fiber fixing member 56 is inserted into the optical fiber insertion portion 53 when the optical fiber 61 is inserted into the needle tube 51 through the optical fiber insertion portion 53.
 光ファイバ固定部材56は、光ファイバ挿入部53の内部で変位可能である。光ファイバ固定部材56は、例えば光ファイバ挿入部53内で、3mmから5mm程度変位可能である。光ファイバ固定部材56が光ファイバ挿入部53の内部で変位すると、それに伴って、光ファイバ61の針管51に対する挿入長が変化する。穿刺針15は、光ファイバ挿入部53の内部において光ファイバ固定部材56を変位させことにより光ファイバ61の針管51に対する挿入長が調整可能に構成されている。 The optical fiber fixing member 56 can be displaced inside the optical fiber insertion portion 53. The optical fiber fixing member 56 can be displaced by about 3 mm to 5 mm in the optical fiber insertion portion 53, for example. When the optical fiber fixing member 56 is displaced inside the optical fiber insertion portion 53, the insertion length of the optical fiber 61 with respect to the needle tube 51 changes accordingly. The puncture needle 15 is configured such that the insertion length of the optical fiber 61 with respect to the needle tube 51 can be adjusted by displacing the optical fiber fixing member 56 inside the optical fiber insertion portion 53.
 光ファイバ挿入部53は、あらかじめ定められた方向に沿って伸びる軸を有している。光ファイバ挿入部53は、内壁が軸方向に平行な平坦部を含む中空の管として構成される。光ファイバ固定部材56は、平坦部の範囲内において変位可能に構成される。光ファイバ固定部材56を、光ファイバ挿入部53における軸方向に変位させることで、光ファイバ固定部材56に固定された光ファイバ61の針管51に対する挿入長を調整することができる。なお、光ファイバ挿入部53を、平坦部の位置において光ファイバ挿入部53の軸方向に対して垂直な方向の平面で切った場合の断面形状は、円形であってもよいし、正方形や六角形などの多角形であってもよい。 The optical fiber insertion portion 53 has an axis extending along a predetermined direction. The optical fiber insertion portion 53 is configured as a hollow tube including a flat portion whose inner wall is parallel to the axial direction. The optical fiber fixing member 56 is configured to be displaceable within the range of the flat portion. The insertion length of the optical fiber 61 fixed to the optical fiber fixing member 56 with respect to the needle tube 51 can be adjusted by displacing the optical fiber fixing member 56 in the axial direction of the optical fiber insertion portion 53. The cross-sectional shape when the optical fiber insertion portion 53 is cut along a plane perpendicular to the axial direction of the optical fiber insertion portion 53 at the flat portion may be circular, square, or six. It may be a polygon such as a square.
 光ファイバ固定部材56は、例えば樹脂材料から成る。光ファイバ固定部材56は、例えば周囲に溝を有する円柱状の部材から成る。光ファイバ固定部材56は、第1の溝57と第2の溝58とを有する。第1の溝57は、光ファイバ固定部材56を変位させる場合に用いられる溝である。第2の溝58は、第1の溝57とは異なる位置に設けられる。第2の溝58は、例えば光ファイバ固定部材56を光ファイバ挿入部53に固定するための接着剤を受け入れるための溝である。基端部52は、光ファイバ固定部材56が光ファイバ挿入部53に挿入された場合における第1の溝57の位置に対応する部分に光ファイバ固定部材56を変位させるための工具が挿入される第1の穴部を有している。また、基端部52は、光ファイバ固定部材56が光ファイバ挿入部53に挿入された場合における2の溝の位置58に対応する部分に接着剤を流し込むための第2の穴部を有している。 The optical fiber fixing member 56 is made of, for example, a resin material. The optical fiber fixing member 56 is made of, for example, a cylindrical member having a groove around it. The optical fiber fixing member 56 has a first groove 57 and a second groove 58. The first groove 57 is a groove used when the optical fiber fixing member 56 is displaced. The second groove 58 is provided at a position different from that of the first groove 57. The second groove 58 is a groove for receiving an adhesive for fixing the optical fiber fixing member 56 to the optical fiber insertion portion 53, for example. In the base end portion 52, a tool for displacing the optical fiber fixing member 56 is inserted into a portion corresponding to the position of the first groove 57 when the optical fiber fixing member 56 is inserted into the optical fiber insertion portion 53. A first hole is provided. Further, the base end portion 52 has a second hole portion for pouring the adhesive into a portion corresponding to the position 58 of the second groove when the optical fiber fixing member 56 is inserted into the optical fiber insertion portion 53. ing.
 図5は、本発明の第1実施形態に係る光ファイバ挿入長調整機構を示す。以下では、光ファイバ挿入部53の軸と平行な方向をx方向とし、図4に示す断面内でx軸に直交する方向をy方向とし、x方向及びy方向に直交する方向をz方向とする。本実施形態では、上記挿入長調整部として偏心ドライバ75が用いられる。 FIG. 5 shows an optical fiber insertion length adjusting mechanism according to the first embodiment of the present invention. Hereinafter, the direction parallel to the axis of the optical fiber insertion portion 53 is defined as the x direction, the direction perpendicular to the x axis in the cross section shown in FIG. 4 is defined as the y direction, and the direction orthogonal to the x direction and the y direction is defined as the z direction. To do. In the present embodiment, an eccentric driver 75 is used as the insertion length adjustment unit.
 偏心ドライバ75は、z方向の軸周りに回転させられる。偏心ドライバ75は、そのシャフト74の先端に偏心ピン77を有している。偏心ドライバ75が回転させられると、シャフト74の先端の偏心ピン77も、偏心ドライバ75と同じ回転角度だけ回転させられる。偏心ピン77は、光ファイバ固定部材56の第1の溝57に差し込まれる(嵌合する)。第1の溝57のx方向の幅は、偏心ピン77の径と同じであることが好ましい。 The eccentric driver 75 is rotated around the axis in the z direction. The eccentric driver 75 has an eccentric pin 77 at the tip of the shaft 74. When the eccentric driver 75 is rotated, the eccentric pin 77 at the tip of the shaft 74 is also rotated by the same rotation angle as the eccentric driver 75. The eccentric pin 77 is inserted (fitted) into the first groove 57 of the optical fiber fixing member 56. The width of the first groove 57 in the x direction is preferably the same as the diameter of the eccentric pin 77.
 図6は、偏心ピン77を示す。偏心ピン77は、シャフト74の回転軸(回転中心O)からずれた位置に設けられている。シャフト74(偏心ドライバ75)を回転軸に沿って回転させると、偏心ピン77のx方向及びy方向の位置は回転に伴って変化する。例えば、シャフト74の回転中心Oと偏心ピン77の中心とを結ぶ直線がy方向に平行な場合を回転角度0と定義する。シャフト74を回転角度90度までの範囲で反時計回りに回転させれば、偏心ピン77のx方向の位置はx方向のマイナス側に移動する。反対に、シャフト74を回転角度90度までの範囲で時計回りに回転させれば、偏心ピン77のx方向の位置はx方向のプラス側に移動する。 FIG. 6 shows the eccentric pin 77. The eccentric pin 77 is provided at a position shifted from the rotation axis (rotation center O) of the shaft 74. When the shaft 74 (eccentric driver 75) is rotated along the rotation axis, the position of the eccentric pin 77 in the x direction and the y direction changes with rotation. For example, the rotation angle is defined as 0 when the straight line connecting the rotation center O of the shaft 74 and the center of the eccentric pin 77 is parallel to the y direction. If the shaft 74 is rotated counterclockwise up to a rotation angle of 90 degrees, the position of the eccentric pin 77 in the x direction moves to the minus side in the x direction. On the contrary, if the shaft 74 is rotated clockwise within the range of the rotation angle up to 90 degrees, the position of the eccentric pin 77 in the x direction moves to the plus side in the x direction.
 偏心ドライバ75を回転させると、偏心ドライバ75の回転に伴って偏心ピン77のx方向及びy方向の位置が変化し、偏心ピン77が第1の溝57を通じて光ファイバ固定部材56(図5を参照)を押すことで、光ファイバ固定部材56が光ファイバ挿入部53の軸方向(x方向)に変位させられる。別の言い方をすると、偏心ピン77と第1の溝57との作用により、偏心ドライバ75に対する回転力が、光ファイバ固定部材56をx方向に変位させる力に変換される。光ファイバ固定部材56のx方向の変位に伴って、光ファイバ61(図2を参照)の針管51に対する挿入長が調整される。例えば図6において、シャフト74の径が3mmで、偏心ピン77の径が1mmであるとすると、光ファイバ61の挿入長の調整範囲は2mmとなる。 When the eccentric driver 75 is rotated, the positions of the eccentric pin 77 in the x direction and the y direction change with the rotation of the eccentric driver 75, and the eccentric pin 77 passes through the first groove 57 and the optical fiber fixing member 56 (see FIG. 5). By pressing (see), the optical fiber fixing member 56 is displaced in the axial direction (x direction) of the optical fiber insertion portion 53. In other words, due to the action of the eccentric pin 77 and the first groove 57, the rotational force on the eccentric driver 75 is converted into a force that displaces the optical fiber fixing member 56 in the x direction. As the optical fiber fixing member 56 is displaced in the x direction, the insertion length of the optical fiber 61 (see FIG. 2) with respect to the needle tube 51 is adjusted. For example, in FIG. 6, if the diameter of the shaft 74 is 3 mm and the diameter of the eccentric pin 77 is 1 mm, the adjustment range of the insertion length of the optical fiber 61 is 2 mm.
 図7は、光ファイバの挿入長の調整作業を示す。なお、図7においては、光ファイバ61(図4を参照)を省略して図示している。図7を参照しつつ、本実施形態に係る光ファイバ挿入長調整作業を説明する。作業者は、光ファイバ61の先端から離間した位置において光ファイバ61を光ファイバ固定部材56に固定する。次いで、光ファイバ61を、光ファイバ61の先端側から光ファイバ挿入部53を通じて針管51(図2を参照)の内部に挿入し、光ファイバ固定部材56を光ファイバ挿入部53に挿入する。 FIG. 7 shows the adjustment work of the insertion length of the optical fiber. In FIG. 7, the optical fiber 61 (see FIG. 4) is omitted. The optical fiber insertion length adjustment work according to this embodiment will be described with reference to FIG. The operator fixes the optical fiber 61 to the optical fiber fixing member 56 at a position away from the tip of the optical fiber 61. Next, the optical fiber 61 is inserted into the needle tube 51 (see FIG. 2) from the distal end side of the optical fiber 61 through the optical fiber insertion portion 53, and the optical fiber fixing member 56 is inserted into the optical fiber insertion portion 53.
 作業者は、光ファイバ固定部材56が光ファイバ挿入部53に挿入された状態で、穿刺針15を作業用の治具(下部治具)71の上に置く。下部治具71は、基端部52の形状に対応した凹部を有している。作業者は、基端部52を下部治具71の上に置いた後、下部治具71に上部治具72を重ねる。上部治具72も、基端部52の形状に対応した凹部を有している。 The operator places the puncture needle 15 on the work jig (lower jig) 71 in a state where the optical fiber fixing member 56 is inserted into the optical fiber insertion portion 53. The lower jig 71 has a recess corresponding to the shape of the base end portion 52. The operator places the base end 52 on the lower jig 71 and then superimposes the upper jig 72 on the lower jig 71. The upper jig 72 also has a recess corresponding to the shape of the base end portion 52.
 上部治具72は、光ファイバ固定部材56を変位させるための工具である偏心ドライバ75を差し込むための貫通孔を有している。作業者は、その貫通孔を通じて、基端部52に偏心ドライバ75を差し込む。基端部52は、光ファイバ固定部材56の第1の溝57が存在する位置に対応した部分に穴部(第1の穴部)を有しており、偏心ドライバ75の偏心ピン77は、その穴を通じて光ファイバ固定部材56の第1の溝57に差し込まれる。作業者は、偏心ドライバ75を回転させることにより、光ファイバ固定部材56を光ファイバ挿入部53内で変位させ、光ファイバ61の針管51に対する挿入長を調整する。 The upper jig 72 has a through hole for inserting an eccentric driver 75 which is a tool for displacing the optical fiber fixing member 56. The operator inserts the eccentric driver 75 into the base end portion 52 through the through hole. The base end portion 52 has a hole (first hole) at a portion corresponding to the position where the first groove 57 of the optical fiber fixing member 56 exists, and the eccentric pin 77 of the eccentric driver 75 is The optical fiber fixing member 56 is inserted into the first groove 57 through the hole. The operator rotates the eccentric driver 75 to displace the optical fiber fixing member 56 in the optical fiber insertion portion 53 and adjust the insertion length of the optical fiber 61 into the needle tube 51.
 図7においては、偏心ドライバ75には、偏心ドライバ75の回転に用いられる操作レバー76が取り付けられている。偏心ドライバ75が操作レバー76を取り付けられ、操作レバー76を通じて偏心ドライバ75に回転力が加えられることで、より小さな力で偏心ドライバ75(偏心ピン77)を回転させることができる。また、偏心ドライバ75の回転角度の微調整が容易になるという効果もある。操作レバー76は、偏心ドライバ75に対して着脱可能に構成されていてもよい。その場合、操作レバー76は、作業時のみ偏心ドライバ75に取り付けることとしてもよい。操作レバー76は必須ではなく、作業者は偏心ドライバ75を直接回転させてもよい。 In FIG. 7, an operation lever 76 used to rotate the eccentric driver 75 is attached to the eccentric driver 75. The eccentric driver 75 is attached to the operation lever 76, and a rotational force is applied to the eccentric driver 75 through the operation lever 76, whereby the eccentric driver 75 (eccentric pin 77) can be rotated with a smaller force. Further, there is an effect that the fine adjustment of the rotation angle of the eccentric driver 75 is facilitated. The operation lever 76 may be configured to be detachable from the eccentric driver 75. In that case, the operation lever 76 may be attached to the eccentric driver 75 only during work. The operation lever 76 is not essential, and the operator may rotate the eccentric driver 75 directly.
 作業者は、光ファイバ61の挿入長を調整し、光ファイバ61の先端である光出射部62(図3を参照)を、針管51の先端近傍に配置する。光出射部62の位置が針管51の先端近傍の所望の位置となった場合、光出射部62を針管51の先端近傍に固定する。光出射部62は、例えば接着剤により針管51の先端付近に固定される。光出射部62は、光吸収部材55(図3を参照)により針管51の先端付近に固定されてもよい。あるいは、あらかじめ光ファイバ61の先端に光吸収部材55が付けられており、その光吸収部材55の上から紫外線硬化接着剤、光硬化接着剤、又は熱硬化接着剤で固定されてもよい。 The operator adjusts the insertion length of the optical fiber 61 and arranges the light emitting portion 62 (see FIG. 3) that is the tip of the optical fiber 61 in the vicinity of the tip of the needle tube 51. When the position of the light emitting portion 62 becomes a desired position near the tip of the needle tube 51, the light emitting portion 62 is fixed near the tip of the needle tube 51. The light emitting part 62 is fixed near the tip of the needle tube 51 with an adhesive, for example. The light emitting part 62 may be fixed near the tip of the needle tube 51 by a light absorbing member 55 (see FIG. 3). Alternatively, the light absorbing member 55 may be attached to the tip of the optical fiber 61 in advance, and may be fixed from above the light absorbing member 55 with an ultraviolet curable adhesive, a light curable adhesive, or a thermosetting adhesive.
 作業者は、挿入長の調整後、偏心ドライバ75を基端部52から抜き取る。その後、上部治具72に設けられた接着剤の注入口73から、基端部52に設けられた穴部(第2の穴部)を通じて、接着剤を光ファイバ固定部材56の第2の溝58と光ファイバ挿入部53の内壁(図4も参照)との間に流し込む。その接着剤を硬化させることで、光ファイバ固定部材56を、光ファイバ挿入部53に固定することができる。偏心ピン77を差し込むために基端部52に設けられた穴を通じて、光ファイバ固定部材56の第1の溝57に接着剤を流し込んでもよい。 The operator removes the eccentric driver 75 from the base end 52 after adjusting the insertion length. Thereafter, the adhesive is passed through a hole (second hole) provided in the base end 52 from the adhesive inlet 73 provided in the upper jig 72, and the adhesive is supplied to the second groove of the optical fiber fixing member 56. 58 and the inner wall of the optical fiber insertion portion 53 (see also FIG. 4). The optical fiber fixing member 56 can be fixed to the optical fiber insertion portion 53 by curing the adhesive. An adhesive may be poured into the first groove 57 of the optical fiber fixing member 56 through a hole provided in the base end portion 52 in order to insert the eccentric pin 77.
 本実施形態では、光ファイバ61が固定された光ファイバ固定部材56が光ファイバ挿入部53に挿入される。光ファイバ挿入部53内で光ファイバ固定部材56を変位させることにより、光ファイバ61の針管51に対する挿入長を調整できる。そのような調整を通じて、光ファイバ61の先端を、針管51の先端近傍に正確に位置合わせすることが可能である。本実施形態では、特に、光ファイバ固定部材56の変位に、偏心ピン77を有する偏心ドライバ75を用いている。この偏心ドライバ75を回転させることにより、光ファイバ固定部材56を光ファイバ挿入部53内で変位させることができ、光ファイバ61の挿入長の調整が可能である。本実施形態では、光ファイバ61の挿入長の微調整が可能であり、光ファイバ61の先端を、所望の位置に精度よく配置することができる。 In this embodiment, the optical fiber fixing member 56 to which the optical fiber 61 is fixed is inserted into the optical fiber insertion portion 53. By displacing the optical fiber fixing member 56 in the optical fiber insertion portion 53, the insertion length of the optical fiber 61 with respect to the needle tube 51 can be adjusted. Through such adjustment, the tip of the optical fiber 61 can be accurately positioned near the tip of the needle tube 51. In this embodiment, in particular, an eccentric driver 75 having an eccentric pin 77 is used for the displacement of the optical fiber fixing member 56. By rotating the eccentric driver 75, the optical fiber fixing member 56 can be displaced in the optical fiber insertion portion 53, and the insertion length of the optical fiber 61 can be adjusted. In the present embodiment, the insertion length of the optical fiber 61 can be finely adjusted, and the tip of the optical fiber 61 can be accurately arranged at a desired position.
 次いで、本発明の第2実施形態を説明する。図8は、本発明の第2実施形態に係る光ファイバ挿入長調整機構を示す。本実施形態に係る光ファイバ挿入長調整機構は、光ファイバ固定部材の形状、及び挿入長調整部の構成が第1実施形態とは異なる。本実施形態で用いられる光ファイバ固定部材56aは、突起部81及び82を有する。また、本実施形態では、挿入長調整部が、光ファイバ固定部材56aを光ファイバ挿入部53の軸方向に沿って変位させるためのスライドつまみ87により構成されている。 Next, a second embodiment of the present invention will be described. FIG. 8 shows an optical fiber insertion length adjusting mechanism according to the second embodiment of the present invention. The optical fiber insertion length adjustment mechanism according to the present embodiment is different from the first embodiment in the shape of the optical fiber fixing member and the configuration of the insertion length adjustment unit. The optical fiber fixing member 56a used in the present embodiment has protrusions 81 and 82. In the present embodiment, the insertion length adjusting unit is configured by a slide knob 87 for displacing the optical fiber fixing member 56 a along the axial direction of the optical fiber insertion unit 53.
 光ファイバ固定部材56aの本体部分は、例えば円柱状の部材から成る。光ファイバ固定部材56aは、円柱状の光ファイバ固定部材56aの全周にわたって光ファイバ固定部材56aの本体部分から突き出した突起部81及び82を有している。突起部81及び82は、光ファイバ挿入部53の内壁に接触する。 The main body portion of the optical fiber fixing member 56a is made of, for example, a cylindrical member. The optical fiber fixing member 56a has protrusions 81 and 82 protruding from the main body portion of the optical fiber fixing member 56a over the entire circumference of the columnar optical fiber fixing member 56a. The protrusions 81 and 82 are in contact with the inner wall of the optical fiber insertion portion 53.
 突起部81及び82は、光ファイバ固定部材56aの本体部分と一体に構成されている。突起部81及び82は、例えば断面形状が半円形状の突起である。突起部81及び82は、第1実施形態で用いられた光ファイバ固定部材56(図4を参照)における第1の溝57及び第2の溝58の両側に存在する突起と同様に、矩形状の突起であってもよい。 The protrusions 81 and 82 are formed integrally with the main body portion of the optical fiber fixing member 56a. The protrusions 81 and 82 are protrusions having a semicircular cross section, for example. The protrusions 81 and 82 are rectangular like the protrusions on both sides of the first groove 57 and the second groove 58 in the optical fiber fixing member 56 (see FIG. 4) used in the first embodiment. It may be a protrusion.
 スライドつまみ87は、作業者によって操作されるつまみであり、光ファイバ挿入部53の軸方向(x方向)にスライド移動可能に構成される。スライドつまみ87は、例えば光ファイバ固定部材56の本体部分と一体に構成されている。あるいは、光ファイバ固定部材56の本体部分から取り外し可能に構成されていてもよい。基端部52は、スライドつまみ87の移動範囲(光ファイバ固定部材56の変位可能範囲)に対応した開口部を有しており、その開口部からスライドつまみ87の先端部分が外部に突き出ている。作業者は、スライドつまみ87をx方向に沿ってスライドさせることで、光ファイバ固定部材56をx方向に変位させ、それにより光ファイバ61の針管51に対する挿入長を調整する。なお、図8では、光ファイバ固定部材56aを可動範囲の制限された開口部に達するために、別の面からスライドつまみ87を挿入している例を示している。これに代えて、開口が基端部の端まで開いていてストレートに挿入できる構造でもよい。 The slide knob 87 is a knob operated by an operator, and is configured to be slidable in the axial direction (x direction) of the optical fiber insertion portion 53. The slide knob 87 is formed integrally with the main body portion of the optical fiber fixing member 56, for example. Or you may be comprised so that removal from the main-body part of the optical fiber fixing member 56 is possible. The base end portion 52 has an opening corresponding to the moving range of the slide knob 87 (the displaceable range of the optical fiber fixing member 56), and the distal end portion of the slide knob 87 protrudes outside from the opening. . The operator slides the slide knob 87 along the x direction to displace the optical fiber fixing member 56 in the x direction, thereby adjusting the insertion length of the optical fiber 61 into the needle tube 51. FIG. 8 shows an example in which the slide knob 87 is inserted from another surface in order to reach the optical fiber fixing member 56a to the opening having a limited movable range. Alternatively, a structure in which the opening is open to the end of the base end and can be inserted straight may be used.
 作業者は、光ファイバ61の挿入長の調整後、接着剤などにより光ファイバ61を針管51に固定する。また、作業者は、突起部81と突起部82の間の空間に接着剤を流し込み、光ファイバ固定部材56の位置を固定してもよい。接着剤を用いるのに代えて、スライドつまみ87にロック機構を設け、そのロック機構により光ファイバ固定部材56の位置を固定してもよい。光ファイバ61の挿入長の調整後、スライドつまみ87と光ファイバ固定部材56の本体部分とを分離してもよい。 The operator, after adjusting the insertion length of the optical fiber 61, fixes the optical fiber 61 to the needle tube 51 with an adhesive or the like. Further, the operator may fix the position of the optical fiber fixing member 56 by pouring an adhesive into the space between the protrusion 81 and the protrusion 82. Instead of using the adhesive, a lock mechanism may be provided on the slide knob 87, and the position of the optical fiber fixing member 56 may be fixed by the lock mechanism. After adjusting the insertion length of the optical fiber 61, the slide knob 87 and the main body portion of the optical fiber fixing member 56 may be separated.
 本実施形態では、スライドつまみ87により、光ファイバ固定部材56を光ファイバ挿入部53内で変位させる。本実施形態では、光ファイバ固定部材56の変位に偏心ピン77を有する偏心ドライバ75が不要であるため、偏心ドライバ75を用いる第1実施形態に比して、工具持ち替えなどの手間を省き、作業を簡素化できる。また、本実施形態では、光ファイバ固定部材56は、光ファイバ挿入部53の内壁に接触する突起部81及び82を有する。このような構成の採用により、光ファイバ固定部材56の本体部分の全体が光ファイバ挿入部53の内壁に接触する場合に比べて、光ファイバ固定部材56をスムーズに光ファイバ挿入部53内でスライドさせることができる。 In this embodiment, the optical fiber fixing member 56 is displaced in the optical fiber insertion portion 53 by the slide knob 87. In the present embodiment, since the eccentric driver 75 having the eccentric pin 77 is not necessary for the displacement of the optical fiber fixing member 56, the labor such as tool change can be saved compared to the first embodiment in which the eccentric driver 75 is used. Can be simplified. In the present embodiment, the optical fiber fixing member 56 has protrusions 81 and 82 that contact the inner wall of the optical fiber insertion portion 53. By adopting such a configuration, the optical fiber fixing member 56 is smoothly slid within the optical fiber insertion portion 53 as compared with the case where the entire main body portion of the optical fiber fixing member 56 is in contact with the inner wall of the optical fiber insertion portion 53. Can be made.
 なお、上記各実施形態では、プローブ11が光音響波と反射超音波の双方を検出するものとして説明したが、超音波画像の生成に用いるプローブと光音響画像の生成に用いるプローブとは、必ずしも同一である必要はない。光音響波と反射超音波とを、それぞれ別個のプローブで検出してもよい。また、光音響波の検出(サンプリング)と、反射超音波の検出(サンプリング)とは、どちらを先に行ってもよい。 In each of the above embodiments, the probe 11 has been described as detecting both photoacoustic waves and reflected ultrasonic waves. However, a probe used for generating an ultrasonic image and a probe used for generating a photoacoustic image are not necessarily limited. They do not have to be identical. Photoacoustic waves and reflected ultrasonic waves may be detected by separate probes. Further, either the detection (sampling) of the photoacoustic wave or the detection (sampling) of the reflected ultrasonic wave may be performed first.
 穿刺針は、経皮的に被検体外部から被検体に穿刺されるものには限定されず、超音波内視鏡用の針であってもよい。超音波内視鏡用の針に光ファイバ61と光吸収部材55とを設け、針先端部分に設けられた光吸収部材55に対して光を照射し、光音響波を検出して光音響画像を生成してもよい。その場合、光音響画像を観察して超音波内視鏡用の針の先端部の位置を確認しながら穿刺することができる。超音波内視鏡用の針の先端部で発生した光音響波は、体表用プローブを用いて検出してもよいし、内視鏡に組み込まれたプローブを用いて検出してもよい。 The puncture needle is not limited to a needle that is percutaneously punctured from the outside of the subject, and may be a needle for an ultrasonic endoscope. An optical fiber 61 and a light absorbing member 55 are provided on a needle for an ultrasonic endoscope, light is irradiated to the light absorbing member 55 provided at the tip of the needle, a photoacoustic wave is detected, and a photoacoustic image is obtained. May be generated. In that case, puncturing can be performed while observing the photoacoustic image and confirming the position of the tip of the needle for the ultrasonic endoscope. The photoacoustic wave generated at the tip of the ultrasonic endoscope needle may be detected using a body surface probe, or may be detected using a probe incorporated in the endoscope.
 上記第2実施形態では光ファイバ固定部材56が突起部を2つ有する例を説明したが、これには限定されない。光ファイバ固定部材56は、x方向に沿って突起部を3つ以上有していてもよい。 In the second embodiment, the example in which the optical fiber fixing member 56 has two protrusions has been described, but the present invention is not limited to this. The optical fiber fixing member 56 may have three or more protrusions along the x direction.
 上記各実施形態においては、光ファイバ挿入部53の内壁が軸方向に平行な平坦部を1つ有する例について説明したが、これには限定されない。光ファイバ挿入部53には、階段状に複数の平坦部を設けてもよい。光ファイバ挿入部53の平坦部における内壁間の距離は、光ファイバ61の挿入方向の奥側ほど短いことが好ましい。つまり、光ファイバ挿入部53は、光ファイバ挿入部53の光ファイバ61を挿入する側の端部が最も広く、光ファイバ挿入方向の奥に進むほど、内部の空間が狭くなっていくことが好ましい。光ファイバ挿入部53の光ファイバ61を挿入する側の端部が広いことで、射出成型などで基端部52を形成する場合に、光ファイバ挿入部53に対応した部分において金型を抜き取る作業が容易になる。 In each of the above embodiments, the example in which the inner wall of the optical fiber insertion portion 53 has one flat portion parallel to the axial direction has been described, but the present invention is not limited to this. The optical fiber insertion portion 53 may be provided with a plurality of flat portions in a step shape. The distance between the inner walls in the flat portion of the optical fiber insertion portion 53 is preferably shorter toward the back side in the insertion direction of the optical fiber 61. That is, it is preferable that the end portion of the optical fiber insertion portion 53 on the side where the optical fiber 61 is inserted is the widest, and the inner space becomes narrower as it goes deeper in the optical fiber insertion direction. . When the base end portion 52 is formed by injection molding or the like because the end portion of the optical fiber insertion portion 53 on the side where the optical fiber 61 is inserted is wide, an operation of extracting the mold at a portion corresponding to the optical fiber insertion portion 53 Becomes easier.
 図9は、第1の変形例に係る光ファイバ挿入長調整機構を示す。なお、同図では、図面簡略化のため、スライドつまみ87(図8を参照)は図示を省略している。図9の例では、光ファイバ挿入部53は、内径が異なる2段の平坦部を有する。光ファイバ61の挿入方向の奥側の光ファイバ挿入部53の内壁間の距離は、光ファイバ61の挿入方向の手間側(入り口側)の光ファイバ挿入部53の内壁間の距離よりも短くなっている。 FIG. 9 shows an optical fiber insertion length adjusting mechanism according to the first modification. In the figure, the slide knob 87 (see FIG. 8) is not shown for simplification of the drawing. In the example of FIG. 9, the optical fiber insertion portion 53 has two flat portions having different inner diameters. The distance between the inner walls of the optical fiber insertion portion 53 on the back side in the insertion direction of the optical fiber 61 is shorter than the distance between the inner walls of the optical fiber insertion portion 53 on the labor side (entrance side) in the insertion direction of the optical fiber 61. ing.
 光ファイバ固定部材56bの突起部81及び82は、それぞれ光ファイバ挿入部53の対応する平坦部と接触する。2つの突起部81及び82のうち、光ファイバ61の挿入方向の手間側の突起部82は、挿入方向奥側の突起部81よりも光ファイバ固定部材56bの本体部分から突き出す量(突き出し量)が多い。これに代えて、光ファイバ固定部材56bの本体部分に段差を設け、突起部81と突起部82の突き出し量を同じ量としてもよい。このように構成された光ファイバ固定部材56bを、突起部81及び82がそれぞれ対応する平坦部と接触する限度においてx方向にスライドさせることにより、光ファイバ61の針管51に対する挿入長を調整することができる。 The protrusions 81 and 82 of the optical fiber fixing member 56b are in contact with the corresponding flat portions of the optical fiber insertion portion 53, respectively. Of the two protrusions 81 and 82, the protrusion 82 on the troublesome side in the insertion direction of the optical fiber 61 protrudes from the main body portion of the optical fiber fixing member 56b more than the protrusion 81 on the back side in the insertion direction (protrusion amount). There are many. Instead of this, a step may be provided in the main body portion of the optical fiber fixing member 56b, and the protruding amount of the protruding portion 81 and the protruding portion 82 may be the same amount. The insertion length of the optical fiber 61 with respect to the needle tube 51 is adjusted by sliding the optical fiber fixing member 56b thus configured in the x direction as long as the protrusions 81 and 82 are in contact with the corresponding flat portions. Can do.
 図10は、第2の変形例に係る光ファイバ挿入長調整機構を示す。同図においても、図9と同様に、図面簡略化のためスライドつまみ87は図示を省略している。図10の例では、光ファイバ挿入部53は、内径が異なる3段の平坦部を有する。光ファイバ61の挿入方向の最も奥側の光ファイバ挿入部53の内壁間の距離は中間の光ファイバ挿入部53の内壁間の距離よりも短く、その中間の光ファイバ挿入部53の内壁間の距離は光ファイバ61の挿入方向の最も手間側(入り口側)の光ファイバ挿入部53の内壁間の距離よりも短くなっている。 FIG. 10 shows an optical fiber insertion length adjustment mechanism according to a second modification. Also in this figure, as in FIG. 9, the slide knob 87 is omitted for simplification of the drawing. In the example of FIG. 10, the optical fiber insertion portion 53 has three flat portions having different inner diameters. The distance between the inner walls of the innermost optical fiber insertion portion 53 in the insertion direction of the optical fiber 61 is shorter than the distance between the inner walls of the intermediate optical fiber insertion portion 53 and between the inner walls of the intermediate optical fiber insertion portion 53. The distance is shorter than the distance between the inner walls of the optical fiber insertion portion 53 on the most laborious side (entrance side) in the insertion direction of the optical fiber 61.
 図10の例では、光ファイバ固定部材56cの本体部が、光ファイバ挿入部53の平坦部間の段差に対応した段差を有しており、光ファイバ固定部材56cは、それぞれが各平坦部に対応した3つの突起部81、82、及び83を有する。突起部81、82、及び83の突き出し量は同じ量となっている。突起部81、82、及び83は、それぞれ光ファイバ挿入部53の対応する平坦部と接触する。光ファイバ固定部材56cの本体部分に段差を設け、各突起部の突き出し量を同じにするのに代えて、図9の例と同様に、突起部の突き出し量を変えることで、各平坦部において突起部と光ファイバ挿入部53の平坦部とを接触させてもよい。このように構成された光ファイバ固定部材56cを、突起部81、82、及び83がそれぞれ対応する平坦部と接触する限度においてx方向にスライドさせることにより、光ファイバ61の針管51に対する挿入長を調整することができる。 In the example of FIG. 10, the main body portion of the optical fiber fixing member 56c has a step corresponding to the step between the flat portions of the optical fiber insertion portion 53, and each of the optical fiber fixing members 56c has a flat portion. There are three corresponding protrusions 81, 82 and 83. The protruding amounts of the protrusions 81, 82, and 83 are the same. The protrusions 81, 82, and 83 are in contact with the corresponding flat portions of the optical fiber insertion portion 53. In place of providing a step in the main body portion of the optical fiber fixing member 56c and making the protruding amount of each protruding portion the same, by changing the protruding amount of the protruding portion as in the example of FIG. The protrusion and the flat portion of the optical fiber insertion portion 53 may be brought into contact with each other. The insertion length of the optical fiber 61 with respect to the needle tube 51 can be increased by sliding the optical fiber fixing member 56c configured in this way in the x direction as long as the protrusions 81, 82, and 83 are in contact with the corresponding flat portions. Can be adjusted.
 光ファイバ固定部材56の突起部は、光ファイバ固定部材56の本体部分と一体に構成されている必要はなく、突起部が本体部分とは別体に構成されていてもよい。図11は、第3の変形例に係る光ファイバ挿入長調整機構を示す。同図においても、図9と同様に、図面簡略化のためスライドつまみ87は図示を省略している。本変形例では、図9の例と同様に、光ファイバ挿入部53は、内径が異なる2段の平坦部を有している。 The protruding portion of the optical fiber fixing member 56 does not need to be configured integrally with the main body portion of the optical fiber fixing member 56, and the protruding portion may be configured separately from the main body portion. FIG. 11 shows an optical fiber insertion length adjustment mechanism according to a third modification. Also in this figure, as in FIG. 9, the slide knob 87 is omitted for simplification of the drawing. In this modification, as in the example of FIG. 9, the optical fiber insertion portion 53 has two flat portions with different inner diameters.
 図11の例では、光ファイバ固定部材56は、その本体部分の周囲にOリングを取り付けるための凹部をx方向に沿って2つ有しており、その凹部にOリング91及び92が取り付けられる。図11の例では、図9の例とは異なり、光ファイバ固定部材56の本体部部分とは別部材のOリング91及び92が、光ファイバ挿入部53の平坦部に接触する突起部を構成する。なお、図11は、図9と同様に平坦部が2段ある例を示しているが、平坦部は図8と同様に1段であってもよいし、図10と同様に3段でもよいし、4段以上であってもよい。 In the example of FIG. 11, the optical fiber fixing member 56 has two recesses along the x direction for attaching an O-ring around the main body portion, and O- rings 91 and 92 are attached to the recesses. . In the example of FIG. 11, unlike the example of FIG. 9, O- rings 91 and 92, which are members different from the main body portion of the optical fiber fixing member 56, constitute a protrusion that contacts the flat portion of the optical fiber insertion portion 53. To do. 11 shows an example in which there are two flat portions as in FIG. 9, but the flat portion may be one step as in FIG. 8, or may be three steps as in FIG. And it may be four or more stages.
 一般にOリングの素材にはシリコーンゴムなどが用いられており、Oリングと光ファイバ挿入部53とが接触している箇所における摩擦力は比較的大きい。Oリングを突起部として用いた場合、光ファイバ固定部材56の位置調整後の仮止めが可能となり、仮止めのための治具等が不要となる。また、接着剤が突起部を越えて流出するのを抑制することが可能となる。 Generally, silicone rubber or the like is used as the material of the O-ring, and the frictional force at the place where the O-ring and the optical fiber insertion portion 53 are in contact with each other is relatively large. When the O-ring is used as the protrusion, temporary fixing after the position adjustment of the optical fiber fixing member 56 is possible, and a jig or the like for temporary fixing becomes unnecessary. In addition, it is possible to suppress the adhesive from flowing out beyond the protrusion.
 なお、図11の例では、突起部の全てOリングで構成されているが、全ての突起部が光ファイバ固定部材56と別体に構成されている必要はなく、光ファイバ固定部材56と一体に構成された突起部と、別体に構成された突起部とが混在してもよい。 In the example of FIG. 11, all of the protrusions are configured by O-rings, but it is not necessary that all the protrusions are configured separately from the optical fiber fixing member 56, and the optical fiber fixing member 56 is integrated. The protrusion part comprised in this and the protrusion part comprised separately may be mixed.
 また、図9から図11の説明に関して、光ファイバ固定部材56の変位にはスライドつまみが用いられることとしたが、これには限定されない。これらにおいても、光ファイバ固定部材56に溝を設け、偏心ドライバを用いて光ファイバ固定部材56を変位させてもよい。また、偏心ピンなどの調整用の工具を挿入する溝を、接着剤を流し込むための溝として用いてもよい。この場合は、偏心ピン等の工具を取り除いたあとで接着剤を流し込めばよい。あるいは、光ファイバ挿入部に工具を挿入する穴と別の方向から接着剤を注入する穴を設けてもよい。 Further, regarding the description of FIGS. 9 to 11, the slide knob is used for the displacement of the optical fiber fixing member 56, but the present invention is not limited to this. Also in these, a groove may be provided in the optical fiber fixing member 56 and the optical fiber fixing member 56 may be displaced using an eccentric driver. Moreover, you may use the groove | channel which inserts tools for adjustments, such as an eccentric pin, as a groove | channel for pouring an adhesive agent. In this case, an adhesive may be poured after removing a tool such as an eccentric pin. Or you may provide the hole which inject | pours an adhesive agent from the direction different from the hole which inserts a tool in an optical fiber insertion part.
 なお、図2では、光ファイバ挿入部53が針管51の軸方向に対して傾いており、光ファイバ61が針管51の軸方向に対して傾いた角度で基端部52に挿入される例を示したが、これには限定されない。光ファイバ挿入部53と薬剤注入部54との位置関係は、図2に示したものには限定されず、任意である。図12は、第4の変形例に係る穿刺針を示す。この穿刺針15aの基端部52aは、針管51の軸方向の延長線上に光ファイバ挿入部53を有しており、薬剤注入部54は針管51の軸方向に対して傾いている。この場合でも、光ファイバ挿入部53内に挿入された光ファイバ固定部材56を変位させることで、光ファイバ61の挿入長の調整が可能である。 In FIG. 2, the optical fiber insertion portion 53 is inclined with respect to the axial direction of the needle tube 51, and the optical fiber 61 is inserted into the proximal end portion 52 at an angle inclined with respect to the axial direction of the needle tube 51. Although shown, it is not limited to this. The positional relationship between the optical fiber insertion portion 53 and the drug injection portion 54 is not limited to that shown in FIG. 2 and is arbitrary. FIG. 12 shows a puncture needle according to a fourth modification. The proximal end portion 52 a of the puncture needle 15 a has an optical fiber insertion portion 53 on an extension line in the axial direction of the needle tube 51, and the drug injection portion 54 is inclined with respect to the axial direction of the needle tube 51. Even in this case, the insertion length of the optical fiber 61 can be adjusted by displacing the optical fiber fixing member 56 inserted into the optical fiber insertion portion 53.
 上記各実施形態では、穿刺針15が基端部52に薬剤注入部54を有する例について説明したが、穿刺針15は必ずしも薬剤注入部54を有していなくてもよい。そのような場合、針管51の内部、特にその先端部分は光ファイバ61の挿入後に塞がれてもよい。 In each of the above embodiments, the example in which the puncture needle 15 has the drug injection portion 54 at the proximal end portion 52 has been described, but the puncture needle 15 does not necessarily have the drug injection portion 54. In such a case, the inside of the needle tube 51, particularly the tip portion thereof, may be closed after the optical fiber 61 is inserted.
 穿刺針15は、内針と外針とを有するものであってもよい。図13A,13B及び13Cは、第5の変形例に係る穿刺針15bを示す。図13Aは穿刺針全体の外観を示し、13Bは外針の外観を示し、図13Cは内針の外観を示す。穿刺針15bは、外針151と内針153とを有する。外針151は、内部に内腔を有している。内針153は、例えば外針151の内径とほぼ同じ大きさの外径を有しており、中空の外針151に対して抜き差し可能に構成される。外針151は外針基152に接着され(図13Bを参照)、内針153は内針基154に接着される(図13Cを参照)。内針基154は、光ファイバ挿入部53を有しており、内針153の内部には光ファイバ61(図2などを参照)が挿入されている。 The puncture needle 15 may have an inner needle and an outer needle. 13A, 13B and 13C show a puncture needle 15b according to a fifth modification. 13A shows the appearance of the entire puncture needle, 13B shows the appearance of the outer needle, and FIG. 13C shows the appearance of the inner needle. The puncture needle 15b has an outer needle 151 and an inner needle 153. The outer needle 151 has a lumen inside. The inner needle 153 has an outer diameter that is approximately the same as the inner diameter of the outer needle 151, for example, and is configured to be removable from the hollow outer needle 151. The outer needle 151 is bonded to the outer needle base 152 (see FIG. 13B), and the inner needle 153 is bonded to the inner needle base 154 (see FIG. 13C). The inner needle base 154 has an optical fiber insertion portion 53, and an optical fiber 61 (see FIG. 2 and the like) is inserted into the inner needle 153.
 内針153は、外針基152側から外針151の内腔に挿入され、外針151の内腔の少なくとも一部を、生体の切片等が内腔に侵入するのを防ぐ程度に封止する。内針基154には、接続位置合わせのための突起部が設けられており、外針基152には、内針基154の突起部に係合する溝が設けられている。外針151内に内針153をセットする場合、内針基154の突起と外針基152の溝との位置を合わせた上で、内針基154を外針基152に嵌合させる。 The inner needle 153 is inserted into the lumen of the outer needle 151 from the outer needle base 152 side, and seals at least a part of the lumen of the outer needle 151 to such an extent that a living section or the like can be prevented from entering the lumen. To do. The inner needle base 154 is provided with a protrusion for adjusting the connection position, and the outer needle base 152 is provided with a groove that engages with the protrusion of the inner needle base 154. When the inner needle 153 is set in the outer needle 151, the inner needle base 154 is fitted to the outer needle base 152 after the protrusions of the inner needle base 154 and the grooves of the outer needle base 152 are aligned.
 図14は、第5の変形例に係る穿刺針15bの先端付近の断面を示す。外針151及び内針153は、先端部分が鋭角に尖っている。内針153は、針管を構成するチューブ155を有する。光ファイバ61は、チューブ155の管内に挿入される。チューブ155の内部において、光ファイバ61の光出射部62は光吸収部材55により覆われている。光ファイバ61の挿入後に光吸収部材55で光出射部62を覆うのに代えて、光出射部62を光吸収部材55で覆った後に光ファイバ61をチューブ155の管内に挿入してもよい。内針153(チューブ155)に対する光ファイバの挿入長を調整することで、チューブ155の先端(開口)に対する光出射部62及び光吸収部材55の位置の調整が可能である。光ファイバ61の挿入長の調整後、チューブ155の内部は透明樹脂156で満たされ、チューブ155の内部に光ファイバ61が埋め込まれる。透明樹脂156には、例えば音響波の減衰が少ない軟性エポキシ樹脂が用いられる。 FIG. 14 shows a cross section near the tip of the puncture needle 15b according to the fifth modification. The outer needle 151 and the inner needle 153 have sharp end points. The inner needle 153 has a tube 155 that constitutes a needle tube. The optical fiber 61 is inserted into the tube 155. Inside the tube 155, the light emitting portion 62 of the optical fiber 61 is covered with a light absorbing member 55. Instead of covering the light emitting part 62 with the light absorbing member 55 after the optical fiber 61 is inserted, the optical fiber 61 may be inserted into the tube 155 after the light emitting part 62 is covered with the light absorbing member 55. By adjusting the insertion length of the optical fiber with respect to the inner needle 153 (tube 155), the positions of the light emitting portion 62 and the light absorbing member 55 with respect to the tip (opening) of the tube 155 can be adjusted. After adjusting the insertion length of the optical fiber 61, the inside of the tube 155 is filled with the transparent resin 156, and the optical fiber 61 is embedded in the inside of the tube 155. For the transparent resin 156, for example, a soft epoxy resin with less acoustic wave attenuation is used.
 術者は、外針151内に内針153がセットされた状態(図13Aを参照)で、穿刺針15bを被検体へ穿刺する。外針151の内腔が内針153により塞がれるため、針を穿刺している途中に肉片などを巻き込むことを防止でき、術者の刺す感覚が妨げられることを防止できる。また、穿刺部位から外針151の内腔への水分の流入も防止できる。術者は、被検体への穿刺後、内針基154と外針基152との接続を解除し、外針151から内針153を抜去する。内針153の抜去後、外針基152にシリンジなどを装着し、例えば麻酔薬などの薬剤の注入を行う。あるいは、被検体の穿刺針15bが穿刺された箇所から生検試料を採取する。 The surgeon punctures the subject with the puncture needle 15b with the inner needle 153 set in the outer needle 151 (see FIG. 13A). Since the lumen of the outer needle 151 is blocked by the inner needle 153, it is possible to prevent a piece of meat from being caught while the needle is being punctured, and to prevent the operator's sense of puncturing from being hindered. Moreover, the inflow of moisture from the puncture site into the lumen of the outer needle 151 can be prevented. After puncturing the subject, the operator releases the connection between the inner needle base 154 and the outer needle base 152 and removes the inner needle 153 from the outer needle 151. After the inner needle 153 is removed, a syringe or the like is attached to the outer needle base 152 to inject a drug such as an anesthetic. Alternatively, a biopsy sample is taken from a location where the puncture needle 15b of the subject is punctured.
 上記各実施形態では、挿入物として穿刺針を考えたが、これには限定されない。挿入物は、血管内に挿入されるカテーテルであってもよい。また、挿入物は、留置針であってもよい。上記各実施形態では、針として先端に開口を有する針を想定したが、開口は必ずしも先端部分に設けられている必要はない。針は、注射針のような針には限定されず、生体検査に用いられる生検針であってよい。すなわち、生体の検査対象物に穿刺して検査対象物中の生検部位の組織を採取可能な生検針であってもよい。また、針は、皮下や腹くう内臓器など、深部までの穿刺を目的とするガイディングニードルとして使用されてもよい。 In each of the above embodiments, a puncture needle is considered as an insert, but the present invention is not limited to this. The insert may be a catheter that is inserted into a blood vessel. The insert may be an indwelling needle. In each of the above embodiments, a needle having an opening at the tip is assumed as the needle, but the opening is not necessarily provided at the tip. The needle is not limited to a needle such as an injection needle, and may be a biopsy needle used for biopsy. That is, it may be a biopsy needle that can puncture a living body inspection object and collect a tissue of a biopsy site in the inspection object. Further, the needle may be used as a guiding needle for puncturing to a deep part such as a subcutaneous or abdominal cavity internal organ.
 図4において、針管51と基端部52とは必ずしも分離不能に構成されている必要はなく、針管51の部分と基端部52の部分とが分離可能に構成されていてもよい。例えば、基端部52の針管51が接続される部分を市販の針(針管)と結合(嵌合)するねじ構造とし、基端部52に対して任意の針を取り付け可能としてもよい。その場合、基端部52の部分を、針管(中空の管)に対して嵌合可能なアタッチメント部材とすることができる。針管を付け替え可能に構成する場合、光ファイバにはあらかじめ光吸収部材が取り付けられていることが望ましい。術者などは、別途準備した針をアタッチメント部材(基端部)に嵌め込み、光ファイバ挿入量調整機構による光ファイバ挿入量の調整を通じて光吸収部材を針先端に位置調整し、瞬間接着材、ロック機構、又はOリングによって光ファイバ固定部材を固定する。このようにすることで、施術直前に針先端位置を超音波で確認できる機能を有する針を組み立てることができる。 In FIG. 4, the needle tube 51 and the base end portion 52 are not necessarily configured to be inseparable, and the portion of the needle tube 51 and the portion of the base end portion 52 may be configured to be separable. For example, a portion of the base end portion 52 to which the needle tube 51 is connected may have a screw structure that couples (fits) with a commercially available needle (needle tube), and an arbitrary needle may be attached to the base end portion 52. In this case, the base end portion 52 can be an attachment member that can be fitted to a needle tube (hollow tube). When the needle tube is configured to be replaceable, it is desirable that a light absorbing member is attached to the optical fiber in advance. The surgeon inserts a separately prepared needle into the attachment member (base end), adjusts the position of the light absorbing member at the tip of the needle through adjustment of the optical fiber insertion amount by the optical fiber insertion amount adjustment mechanism, The optical fiber fixing member is fixed by a mechanism or an O-ring. By doing in this way, the needle | hook which has a function which can confirm a needle | hook tip position with an ultrasonic wave just before treatment can be assembled.
 最後に、図15に、光音響画像生成装置の外観を示す。超音波ユニット12にはプローブ11が接続される。超音波ユニット12は、画像表示手段14を含む一体型の装置として構成されている。超音波ユニット12は、典型的にはプロセッサ、メモリ、及びバスなどを有する。超音波ユニット12には、光音響画像生成に関するプログラムが組み込まれている。なお、レーザユニット40は図1のレーザユニット13に対応する。 Finally, FIG. 15 shows the appearance of the photoacoustic image generation apparatus. A probe 11 is connected to the ultrasonic unit 12. The ultrasonic unit 12 is configured as an integrated apparatus including the image display means 14. The ultrasonic unit 12 typically includes a processor, a memory, a bus, and the like. The ultrasonic unit 12 incorporates a program related to photoacoustic image generation. The laser unit 40 corresponds to the laser unit 13 in FIG.
 超音波ユニット12は、トリガ信号ポート及び電源ポートを含むポート32を有する。レーザユニット40の電源入力端子41及びトリガ入力端子42を含むコネクタは、ポート32に挿し込まれる。レーザユニット40を、カードサイズの小型・軽量な装置とした場合、超音波ユニット12のポート32に挿し込むことでその保持が可能である。また、レーザユニット40から、トリガ信号、電源ラインを含むケーブルが出ており、それが超音波ユニット12に接続されてもよい。 The ultrasonic unit 12 has a port 32 including a trigger signal port and a power supply port. The connector including the power input terminal 41 and the trigger input terminal 42 of the laser unit 40 is inserted into the port 32. When the laser unit 40 is a small and light card-sized device, the laser unit 40 can be held by being inserted into the port 32 of the ultrasonic unit 12. Further, a cable including a trigger signal and a power supply line comes out from the laser unit 40 and may be connected to the ultrasonic unit 12.
 穿刺針15の導光部材を構成する光ファイバ61の一端は、レーザユニット40の光出力端子47に接続される。光ファイバ61は、コネクタ構造によって接続される。または、光ファイバ61がそのまま光出力端子47に挿入され、ばね力などにより保持されてもよい。術者が穿刺針15を引っ張るなどして光出力端子47に強い力が働くと、光ファイバが光出力端子47から抜け、光ファイバが折れることが防止できる。また、光出力端子47に対して光ファイバを直接抜き差し可能とすることで、穿刺針15から延びる光ファイバにはコネクタを設ける必要がなく、コストを低減できる効果がある。 One end of the optical fiber 61 constituting the light guide member of the puncture needle 15 is connected to the light output terminal 47 of the laser unit 40. The optical fibers 61 are connected by a connector structure. Alternatively, the optical fiber 61 may be inserted into the light output terminal 47 as it is and held by a spring force or the like. When a surgeon pulls the puncture needle 15 to apply a strong force to the light output terminal 47, the optical fiber can be prevented from being pulled out of the light output terminal 47 and broken. In addition, since the optical fiber can be directly inserted into and removed from the optical output terminal 47, it is not necessary to provide a connector for the optical fiber extending from the puncture needle 15, and the cost can be reduced.
 レーザユニット40から出力されるパルスレーザ光のパルスエネルギーは、光ファイバ61のコア直径が200μmであれば、6.4μJとすることができる。光ファイバ61のコア直径が100μmであれば、2.0μJとすることができる。パルス時間幅については、80nsとすることができる。 The pulse energy of the pulse laser beam output from the laser unit 40 can be 6.4 μJ if the core diameter of the optical fiber 61 is 200 μm. If the core diameter of the optical fiber 61 is 100 μm, it can be set to 2.0 μJ. The pulse time width can be set to 80 ns.
 なお、図15においては、ポート32が存在する面と対向する面に光出力端子47が設けられているが、光出力端子47は、ポート32が存在する面と直交する面に設けられていることが好ましい。対向する面に設けられている場合、術者が穿刺針15を動かしたときにレーザユニット40が引っ張られると、レーザユニット40がポート32から抜けることがある。これに対し、直交する面に設けられている場合、レーザユニット40が引っ張られても、レーザユニット40がポート32から抜けにくくなる。 In FIG. 15, the light output terminal 47 is provided on the surface opposite to the surface where the port 32 exists, but the light output terminal 47 is provided on the surface orthogonal to the surface where the port 32 exists. It is preferable. When the laser unit 40 is pulled when the surgeon moves the puncture needle 15 when the surgeon moves the puncture needle 15, the laser unit 40 may come out of the port 32. On the other hand, in the case where the laser unit 40 is provided on the orthogonal plane, the laser unit 40 is difficult to be removed from the port 32 even if the laser unit 40 is pulled.
 トリガ入力信号と電源ラインは必ずしも同じケーブルでなくてもよく、トリガ入力端子42は、例えば通常の超音波システムに附属しているECG(心電図:Electrocardiogram)同期用のコネクタなどからトリガ信号を取得してもよい。また、電源端子は、USB端子から取り出してもよい。あるいは、プローブのコネクタの一部の端子からトリガ信号を取得してもよい。 The trigger input signal and the power line are not necessarily the same cable, and the trigger input terminal 42 obtains the trigger signal from, for example, an ECG (Electrocardiogram) synchronization connector attached to a normal ultrasound system. May be. The power supply terminal may be taken out from the USB terminal. Alternatively, the trigger signal may be obtained from some terminals of the probe connector.
 以上、本発明をその好適な実施形態に基づいて説明したが、本発明の光ファイバ挿入長調整機構、挿入物、及びアタッチメント部材は、上記実施形態にのみ限定されるものではなく、上記実施形態の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。 As mentioned above, although this invention was demonstrated based on the suitable embodiment, the optical fiber insertion length adjustment mechanism of this invention, an insert, and an attachment member are not limited only to the said embodiment, The said embodiment A configuration in which various modifications and changes are made from the above configuration is also included in the scope of the present invention.
10:光音響画像生成装置
11:プローブ
12:超音波ユニット
13:レーザユニット
14:画像表示手段
15:穿刺針
21:受信回路
22:受信メモリ
23:データ分離手段
24:光音響画像生成手段
25:超音波画像生成手段
26:画像合成手段
28:制御手段
29:送信制御回路
32:レーザ接続用ポート
41:電源入力端子
42:トリガ入力端子
47:光出力端子
51:針管
52:基端部
53:光ファイバ挿入部
54:薬剤注入部
55:光吸収部材
56:光ファイバ固定部材
57:第1の溝
58:第2の溝
71:下部治具
72:上部治具
73:注入口
74:シャフト
75:偏心ドライバ
76:操作レバー
77:偏心ピン
81~83:突起部
87:スライドつまみ
91、92:Oリング
61:光ファイバ
62:光出射部
151:外針
152:外針基
153:内針
154:内針基
155:チューブ
156:透明樹脂
10: Photoacoustic image generation apparatus 11: Probe 12: Ultrasonic unit 13: Laser unit 14: Image display means 15: Puncture needle 21: Reception circuit 22: Reception memory 23: Data separation means 24: Photoacoustic image generation means 25: Ultrasonic image generating means 26: image synthesizing means 28: control means 29: transmission control circuit 32: laser connection port 41: power input terminal 42: trigger input terminal 47: light output terminal 51: needle tube 52: proximal end 53: Optical fiber insertion portion 54: Drug injection portion 55: Light absorption member 56: Optical fiber fixing member 57: First groove 58: Second groove 71: Lower jig 72: Upper jig 73: Injection port 74: Shaft 75 : Eccentric driver 76: Operation lever 77: Eccentric pins 81 to 83: Projection part 87: Slide knob 91, 92: O-ring 61: Optical fiber 62: Light emitting part 151: Outer needle 1 2: outer needle base 153: inner needle 154: Uchiharimoto 155: Tube 156: transparent resin

Claims (38)

  1.  少なくとも一部が被検体内に挿入される中空の管と、
     前記中空の管の内部に挿入され、光源から出射される光を導光する光ファイバと、
     前記光ファイバにより導光された光が照射された場合に該光を吸収して光音響波を発生する光吸収部材と、
     前記光ファイバの先端から離間した位置において前記光ファイバを固定する光ファイバ固定部材と、
     前記光ファイバの挿入に用いられる光ファイバ挿入部を含む基端部とを備え、
     前記光ファイバ固定部材は、前記光ファイバが前記中空の管内に挿入された場合に前記光ファイバ挿入部の内部に変位可能に挿入された挿入物。
    A hollow tube at least partially inserted into the subject;
    An optical fiber that is inserted into the hollow tube and guides light emitted from the light source;
    A light-absorbing member that absorbs the light and emits a photoacoustic wave when the light guided by the optical fiber is irradiated;
    An optical fiber fixing member for fixing the optical fiber at a position spaced from the tip of the optical fiber;
    A base end including an optical fiber insertion portion used for insertion of the optical fiber,
    The optical fiber fixing member is an insert inserted so as to be displaceable inside the optical fiber insertion portion when the optical fiber is inserted into the hollow tube.
  2.  前記光ファイバ挿入部はあらかじめ定められた方向に沿って伸びる軸を有しており、前記光ファイバ固定部材は前記軸方向に沿って変位させられる請求項1に記載の挿入物。 The insert according to claim 1, wherein the optical fiber insertion portion has an axis extending along a predetermined direction, and the optical fiber fixing member is displaced along the axial direction.
  3.  前記光ファイバ固定部材が第1の溝を含み、前記基端部は、前記光ファイバ固定部材が前記光ファイバ挿入部に挿入された場合における前記第1の溝の位置に対応する部分に前記光ファイバ固定部材を変位させるための工具が挿入される第1の穴部を有している請求項2に記載の挿入物。 The optical fiber fixing member includes a first groove, and the base end portion is formed on the portion corresponding to the position of the first groove when the optical fiber fixing member is inserted into the optical fiber insertion portion. The insert according to claim 2, further comprising a first hole into which a tool for displacing the fiber fixing member is inserted.
  4.  前記工具として偏心ピンが用いられ、前記光ファイバ固定部材は、前記第1の穴部から挿入された偏心ピンを回転させることにより、前記光ファイバ挿入部の内部で前記軸方向に沿って変位させられる請求項3に記載の挿入物。 An eccentric pin is used as the tool, and the optical fiber fixing member is displaced along the axial direction inside the optical fiber insertion portion by rotating the eccentric pin inserted from the first hole portion. The insert according to claim 3.
  5.  前記光ファイバ固定部材は、前記第1の溝とは異なる第2の溝を更に有し、前記基端部は、前記光ファイバ固定部材が前記光ファイバ挿入部に挿入された場合における前記第2の溝の位置に対応する部分に接着剤を流し込むための第2の穴部を有している請求項3又は4に記載の挿入物。 The optical fiber fixing member further includes a second groove different from the first groove, and the base end portion is the second groove when the optical fiber fixing member is inserted into the optical fiber insertion portion. The insert according to claim 3 or 4, further comprising a second hole for pouring the adhesive into a portion corresponding to the position of the groove.
  6.  前記基端部は、前記光ファイバ固定部材を前記軸方向に沿って変位させるためのスライドつまみの変位可能範囲に対応した部分に開口を有している請求項2に記載の挿入物。 The insert according to claim 2, wherein the base end portion has an opening in a portion corresponding to a displaceable range of a slide knob for displacing the optical fiber fixing member along the axial direction.
  7.  前記光ファイバ挿入部は、内壁が前記軸方向に平行な平坦部を含む中空の管である請求項1から6何れか1項に記載の挿入物。 The insert according to any one of claims 1 to 6, wherein the optical fiber insertion portion is a hollow tube having an inner wall including a flat portion parallel to the axial direction.
  8.  前記光ファイバ挿入部は、前記平坦部を複数含み、該平坦部における内壁間の距離が前記光ファイバの挿入方向の奥側ほど短い中空の管である請求項7に記載の挿入物。 The insert according to claim 7, wherein the optical fiber insertion portion is a hollow tube including a plurality of the flat portions, and the distance between the inner walls of the flat portions is shorter toward the back side in the optical fiber insertion direction.
  9.  前記光ファイバ固定部材は、前記光ファイバ挿入部の内壁に接触する突起部を含む請求項1から8何れか1項に記載の挿入物。 The insert according to any one of claims 1 to 8, wherein the optical fiber fixing member includes a protrusion that contacts an inner wall of the optical fiber insertion portion.
  10.  前記突起部は前記光ファイバ固定部材の本体部分と一体に構成される請求項9に記載の挿入物。 The insert according to claim 9, wherein the protrusion is configured integrally with a main body portion of the optical fiber fixing member.
  11.  前記突起部は前記光ファイバ固定部材の本体部分とは別体に構成される請求項9に記載の挿入物。 The insert according to claim 9, wherein the protrusion is configured separately from a main body portion of the optical fiber fixing member.
  12.  前記突起部はOリングを含む請求項11に記載の挿入物。 The insert according to claim 11, wherein the protrusion includes an O-ring.
  13.  少なくとも一部が被検体内に挿入される中空の管と嵌合可能なアタッチメント部材であって、
     前記中空の管の内部に挿入される光ファイバの先端から離間した位置において前記光ファイバを固定する光ファイバ固定部材と、
     前記光ファイバの挿入に用いられる光ファイバ挿入部を含む基端部とを備え、
     前記光ファイバ固定部材は、前記光ファイバが前記中空の管内に挿入された場合に前記光ファイバ挿入部の内部に変位可能に挿入されたアタッチメント部材。
    An attachment member that can be fitted to a hollow tube at least partially inserted into a subject,
    An optical fiber fixing member for fixing the optical fiber at a position apart from the tip of the optical fiber inserted into the hollow tube;
    A base end including an optical fiber insertion portion used for insertion of the optical fiber,
    The optical fiber fixing member is an attachment member that is slidably inserted into the optical fiber insertion portion when the optical fiber is inserted into the hollow tube.
  14.  前記光ファイバ挿入部はあらかじめ定められた方向に沿って伸びる軸を有しており、前記光ファイバ固定部材は前記軸方向に沿って変位させられる請求項13に記載のアタッチメント部材。 The attachment member according to claim 13, wherein the optical fiber insertion portion has an axis extending along a predetermined direction, and the optical fiber fixing member is displaced along the axial direction.
  15.  前記光ファイバ固定部材が第1の溝を含み、前記基端部は、前記光ファイバ固定部材が前記光ファイバ挿入部に挿入された場合における前記第1の溝の位置に対応する部分に前記光ファイバ固定部材を変位させるための工具が挿入される第1の穴部を有している請求項14に記載のアタッチメント部材。 The optical fiber fixing member includes a first groove, and the base end portion is formed on the portion corresponding to the position of the first groove when the optical fiber fixing member is inserted into the optical fiber insertion portion. The attachment member according to claim 14, further comprising a first hole portion into which a tool for displacing the fiber fixing member is inserted.
  16.  前記工具として偏心ピンが用いられ、前記光ファイバ固定部材は、前記第1の穴部から挿入された偏心ピンを回転させることにより、前記光ファイバ挿入部の内部で前記軸方向に沿って変位させられる請求項15に記載のアタッチメント部材。 An eccentric pin is used as the tool, and the optical fiber fixing member is displaced along the axial direction inside the optical fiber insertion portion by rotating the eccentric pin inserted from the first hole portion. The attachment member according to claim 15.
  17.  前記光ファイバ固定部材は、前記第1の溝とは異なる第2の溝を更に有し、前記基端部は、前記光ファイバ固定部材が前記光ファイバ挿入部に挿入された場合における前記第2の溝の位置に対応する部分に接着剤を流し込むための第2の穴部を有している請求項15又は16に記載のアタッチメント部材。 The optical fiber fixing member further includes a second groove different from the first groove, and the base end portion is the second groove when the optical fiber fixing member is inserted into the optical fiber insertion portion. The attachment member according to claim 15 or 16, further comprising a second hole for pouring the adhesive into a portion corresponding to the position of the groove.
  18.  前記基端部は、前記光ファイバ固定部材を前記軸方向に沿って変位させるためのスライドつまみの変位可能範囲に対応した部分に開口を有している請求項14に記載のアタッチメント部材。 The attachment member according to claim 14, wherein the base end portion has an opening in a portion corresponding to a displaceable range of a slide knob for displacing the optical fiber fixing member along the axial direction.
  19.  前記光ファイバ挿入部は、内壁が前記軸方向に平行な平坦部を含む中空の管である請求項13から18何れか1項に記載のアタッチメント部材。 The attachment member according to any one of claims 13 to 18, wherein the optical fiber insertion portion is a hollow tube having an inner wall including a flat portion parallel to the axial direction.
  20.  前記光ファイバ挿入部は、前記平坦部を複数含み、該平坦部における内壁間の距離が前記光ファイバの挿入方向の奥側ほど短い中空の管である請求項19に記載のアタッチメント部材。 The attachment member according to claim 19, wherein the optical fiber insertion portion is a hollow tube including a plurality of the flat portions, and the distance between the inner walls of the flat portion is shorter toward the back side in the optical fiber insertion direction.
  21.  前記光ファイバ固定部材は、前記光ファイバ挿入部の内壁に接触する突起部を含む請求項13から20何れか1項に記載のアタッチメント部材。 The attachment member according to any one of claims 13 to 20, wherein the optical fiber fixing member includes a protruding portion that contacts an inner wall of the optical fiber insertion portion.
  22.  前記突起部は前記光ファイバ固定部材の本体部分と一体に構成される請求項21に記載のアタッチメント部材。 The attachment member according to claim 21, wherein the protrusion is configured integrally with a main body portion of the optical fiber fixing member.
  23.  前記突起部は前記光ファイバ固定部材の本体部分とは別体に構成される請求項21に記載のアタッチメント部材。 The attachment member according to claim 21, wherein the protrusion is configured separately from a main body portion of the optical fiber fixing member.
  24.  前記突起部はOリングを含む請求項23に記載のアタッチメント部材。 The attachment member according to claim 23, wherein the protrusion includes an O-ring.
  25.  中空の管を含む、少なくとも一部が被検体に挿入される挿入物の基端部に設けられた光ファイバ挿入部を通じて前記中空の管の内部に挿入される光ファイバの挿入長を調整する光ファイバ挿入長調整機構であって、
     前記光ファイバの先端から離間した位置において前記光ファイバを固定し、前記光ファイバが前記中空の管内に挿入された場合に前記光ファイバ挿入部の内部に挿入される光ファイバ固定部材と、
     前記光ファイバ挿入部の内部において前記光ファイバ固定部材を変位させる挿入長調整部とを備えた光ファイバ挿入長調整機構。
    Light that adjusts the insertion length of an optical fiber that is inserted into the hollow tube through an optical fiber insertion portion that is provided at the proximal end of an insert that is inserted into the subject, including a hollow tube. A fiber insertion length adjustment mechanism,
    An optical fiber fixing member that fixes the optical fiber at a position spaced from the tip of the optical fiber, and is inserted into the optical fiber insertion portion when the optical fiber is inserted into the hollow tube;
    An optical fiber insertion length adjustment mechanism comprising: an insertion length adjustment unit that displaces the optical fiber fixing member inside the optical fiber insertion unit.
  26.  前記光ファイバ挿入部はあらかじめ定められた方向に沿って伸びる軸を有しており、前記挿入長調整部は、前記軸方向に沿って固定部材を変位させる請求項25に記載の光ファイバ挿入長調整機構。 The optical fiber insertion length according to claim 25, wherein the optical fiber insertion portion has an axis extending along a predetermined direction, and the insertion length adjustment portion displaces a fixing member along the axial direction. Adjustment mechanism.
  27.  前記光ファイバ固定部材が第1の溝を含み、前記挿入長調整部が前記第1の溝に嵌合する偏心ピンを有する回転体を含む請求項26に記載の光ファイバ挿入長調整機構。 27. The optical fiber insertion length adjustment mechanism according to claim 26, wherein the optical fiber fixing member includes a first groove, and the insertion length adjustment unit includes a rotating body having an eccentric pin that fits into the first groove.
  28.  前記偏心ピンを回転させることにより、前記光ファイバ固定部材が前記光ファイバ挿入部の内部で前記軸方向に沿って変位させられる請求項27に記載の光ファイバ挿入長調整機構。 28. The optical fiber insertion length adjusting mechanism according to claim 27, wherein the optical fiber fixing member is displaced along the axial direction inside the optical fiber insertion portion by rotating the eccentric pin.
  29.  前記回転体は操作用の操作レバーを含み、前記偏心ピンには前記操作レバーにより回転力が与えられる請求項28に記載の光ファイバ挿入長調整機構。 29. The optical fiber insertion length adjustment mechanism according to claim 28, wherein the rotating body includes an operation lever for operation, and a rotational force is applied to the eccentric pin by the operation lever.
  30.  前記操作レバーは前記回転体の本体に対して着脱可能に構成される請求項29に記載の光ファイバ挿入長調整機構。 30. The optical fiber insertion length adjustment mechanism according to claim 29, wherein the operation lever is configured to be detachable from the main body of the rotating body.
  31.  前記光ファイバ固定部材は、前記第1の溝とは異なる第2の溝を更に有する請求項27から30何れか1項に記載の光ファイバ挿入長調整機構。 The optical fiber insertion length adjustment mechanism according to any one of claims 27 to 30, wherein the optical fiber fixing member further includes a second groove different from the first groove.
  32.  前記挿入長調整部は、前記光ファイバ固定部材を前記軸方向に沿って変位させるためのスライドつまみを含む請求項26に記載の光ファイバ挿入長調整機構。 27. The optical fiber insertion length adjustment mechanism according to claim 26, wherein the insertion length adjustment unit includes a slide knob for displacing the optical fiber fixing member along the axial direction.
  33.  前記光ファイバ挿入部は、内壁が前記軸方向に平行な平坦部を含む中空の管である請求項26から32何れか1項に記載の光ファイバ挿入長調整機構。 The optical fiber insertion length adjusting mechanism according to any one of claims 26 to 32, wherein the optical fiber insertion portion is a hollow tube having an inner wall including a flat portion parallel to the axial direction.
  34.  前記光ファイバ挿入部は、前記平坦部を複数含み、該平坦部における内壁間の距離が前記光ファイバの挿入方向の奥側ほど短い中空の管である請求項33に記載の光ファイバ挿入長調整機構。 34. The optical fiber insertion length adjustment according to claim 33, wherein the optical fiber insertion portion includes a plurality of the flat portions, and the distance between the inner walls of the flat portions is a hollow tube that is shorter toward the back side in the optical fiber insertion direction. mechanism.
  35.  前記光ファイバ固定部材は、前記光ファイバ挿入部の内壁に接触する突起部を含む請求項25から34何れか1項に記載の光ファイバ挿入長調整機構。 35. The optical fiber insertion length adjustment mechanism according to any one of claims 25 to 34, wherein the optical fiber fixing member includes a protrusion that contacts an inner wall of the optical fiber insertion portion.
  36.  前記突起部は前記光ファイバ固定部材の本体部分と一体に構成される請求項35に記載の光ファイバ挿入長調整機構。 36. The optical fiber insertion length adjustment mechanism according to claim 35, wherein the protrusion is configured integrally with a main body portion of the optical fiber fixing member.
  37.  前記突起部は前記光ファイバ固定部材の本体部分とは別体に構成される請求項35に記載の光ファイバ挿入長調整機構。 36. The optical fiber insertion length adjustment mechanism according to claim 35, wherein the protrusion is configured separately from a main body portion of the optical fiber fixing member.
  38.  前記突起部はOリングを含む請求項37に記載の光ファイバ挿入長調整機構。 38. The optical fiber insertion length adjustment mechanism according to claim 37, wherein the protrusion includes an O-ring.
PCT/JP2016/004941 2015-11-24 2016-11-21 Optical fiber insertion length-adjusting mechanism, insert, and attachment member WO2017090248A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017552274A JP6454031B2 (en) 2015-11-24 2016-11-21 Optical fiber insertion length adjustment mechanism, insert, and attachment member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-229144 2015-11-24
JP2015229144 2015-11-24

Publications (1)

Publication Number Publication Date
WO2017090248A1 true WO2017090248A1 (en) 2017-06-01

Family

ID=58764179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004941 WO2017090248A1 (en) 2015-11-24 2016-11-21 Optical fiber insertion length-adjusting mechanism, insert, and attachment member

Country Status (2)

Country Link
JP (1) JP6454031B2 (en)
WO (1) WO2017090248A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053938A1 (en) * 2017-09-15 2019-03-21 富士フイルム株式会社 Insert, optical insert, and photoacoustic measurement device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013713A (en) * 2011-06-07 2013-01-24 Fujifilm Corp Photoacoustic image generating device and method
WO2014109148A1 (en) * 2013-01-09 2014-07-17 富士フイルム株式会社 Photoacoustic image generating device and insertion object
JP2015043969A (en) * 2013-08-02 2015-03-12 富士フイルム株式会社 Photoacoustic image generation apparatus and light source control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013713A (en) * 2011-06-07 2013-01-24 Fujifilm Corp Photoacoustic image generating device and method
WO2014109148A1 (en) * 2013-01-09 2014-07-17 富士フイルム株式会社 Photoacoustic image generating device and insertion object
JP2015043969A (en) * 2013-08-02 2015-03-12 富士フイルム株式会社 Photoacoustic image generation apparatus and light source control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053938A1 (en) * 2017-09-15 2019-03-21 富士フイルム株式会社 Insert, optical insert, and photoacoustic measurement device
US11445916B2 (en) 2017-09-15 2022-09-20 Fujifilm Corporation Insert, optical insert, and photoacoustic measurement device

Also Published As

Publication number Publication date
JP6454031B2 (en) 2019-01-16
JPWO2017090248A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP6482695B2 (en) Photoacoustic image generating apparatus and insert
CN107252304B (en) Photoacoustic image generating device and insert
JP6215470B2 (en) Photoacoustic image generating apparatus and insert
JP2001104315A (en) Ultrasonic-guided paracentesis system device
US10849507B2 (en) Photoacoustic image generation apparatus and insert
JP2012179255A (en) Catheter
US10241272B2 (en) Insert and attachment member
EP3320852B1 (en) Photoacoustic image-generating apparatus and insertion object
JP6454031B2 (en) Optical fiber insertion length adjustment mechanism, insert, and attachment member
US20230355102A1 (en) Insert, photoacoustic measurement device comprising insert, and method for manufacturing insert
JP5963977B1 (en) Rigid endoscope set
JP4339539B2 (en) Ultrasound puncture needle
CN219271069U (en) Pliers type bending-adjustable ultrasonic guide venipuncture system
WO2016051764A1 (en) Photoacoustic image generation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552274

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868199

Country of ref document: EP

Kind code of ref document: A1