WO2017088753A1 - 一种制造煤层气水合物的方法 - Google Patents

一种制造煤层气水合物的方法 Download PDF

Info

Publication number
WO2017088753A1
WO2017088753A1 PCT/CN2016/106900 CN2016106900W WO2017088753A1 WO 2017088753 A1 WO2017088753 A1 WO 2017088753A1 CN 2016106900 W CN2016106900 W CN 2016106900W WO 2017088753 A1 WO2017088753 A1 WO 2017088753A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
hydrate
water
coalbed methane
gas
Prior art date
Application number
PCT/CN2016/106900
Other languages
English (en)
French (fr)
Inventor
张建文
辛亚男
周峰
杨林
Original Assignee
北京化工大学
中能冰气能源科技(北京)有限公司
成都乾能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学, 中能冰气能源科技(北京)有限公司, 成都乾能科技有限公司 filed Critical 北京化工大学
Publication of WO2017088753A1 publication Critical patent/WO2017088753A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas

Definitions

  • the present invention relates to a method for continuously, stably and efficiently producing a coalbed methane hydrate.
  • the technology and device of the invention can safely and conveniently collect and store coalbed methane, and improve the utilization effect of coalbed methane.
  • Coalbed methane is an unconventional natural gas energy resource, a clean energy source.
  • the effective use of coalbed methane is conducive to environmental protection and the sustainable development of the national economy.
  • Coalbed methane is a hydrocarbon gas that is mainly composed of methane as a main component in the coal seam, adsorbed on the surface of coal matrix particles, partially dissolved in coal pores or dissolved in coal seam water.
  • the world's coalbed methane reserves account for more than 30% of natural gas reserves. Of the 26 largest natural gas fields discovered in the world, 16 are coalbed methane fields, and their CBM reserves account for 77% of natural gas reserves.
  • the world's major coal-producing countries attach great importance to the development of coal-bed methane. Coalbed methane development has become a new trend in the development of new energy sources in countries around the world. Coalbed methane is the most abundant and most practical clean energy source except conventional natural gas.
  • Coalbed methane is a fuel gas with high combustion value and cleanness. It can be used not only as a fuel but also as a chemical raw material and power generation. Compared with conventional natural gas, coalbed methane has almost the same gas composition and use, but the methane concentration in coalbed methane is different. Some coalbed methane has a methane content of over 95%, and some are only 30% to 50% or even lower.
  • the main component of coalbed methane is methane, which is a gas with a strong greenhouse effect. According to estimates, 20% of the greenhouse effect caused by all human activities is caused by methane, while China's coal mines emit more than 35% of the world's methane. If CBM is fully utilized, it will greatly reduce greenhouse gas emissions, such as using 1000m 3 of coalbed methane, equivalent to reducing emissions by about 15 tons of carbon dioxide.
  • the combustion and utilization of coalbed methane instead of coal can greatly reduce the total amount of atmospheric pollutants, which can save 20 million tons of coal, reduce sulfur dioxide emissions by 756,000 tons, and reduce emissions by 1.86 million tons. It also reduces the environment generated by coal ash. The problem is to avoid air pollution such as dust generated during coal processing and transportation, which is conducive to improving the environment in which humans depend on survival.
  • Coalbed methane has many useful uses. However, the realization of its purpose must be based on the premise that coalbed methane will reach the user smoothly. The main problems faced in the utilization of coalbed methane are:
  • coalbed methane development area China has not yet established a long-distance pipeline that is compatible with it, resulting in a disconnect between development and the market, and the phenomenon of “point light” appears in many areas.
  • the coalbed methane extracted from the above-scale mining areas is also transported for use without pipelines. It is mainly used for self-use and is mainly used to solve the problem of power supply and heating in the mining area.
  • the transportation problem of coalbed methane limits the large-scale utilization of coalbed methane.
  • the gas coalbed methane is bulky, and long-distance transportation requires large-scale laying of pipe networks or multiple transportations, which is costly.
  • Coalbed methane and natural gas pipeline networks are generally constructed by large state-owned enterprises, and there is monopoly in operation.
  • the coalbed methane produced by other enterprises has great difficulties in using its pipeline transportation.
  • coalbed methane with a methane concentration of less than 90% cannot directly enter the pipeline, and needs to be subjected to dehydration, desulfurization, purification, etc., so that the methane concentration reaches 95% and then enters the pipe network, but the technical requirements are high and the cost is large. Therefore, the problem that must be solved in order to make CBM utilization scale is “the problem of efficient transportation of coalbed methane”.
  • Coalbed methane needs to be pressurized in every step from the wellhead to the user, resulting in Increased costs.
  • pressurized pipeline to transport coalbed methane due to the presence of a large amount of O2 and the pressure of coalbed methane accompanied by an increase in temperature, there may be cases where the coalbed methane transport process operates within the limits of combustion and explosion. Lead to major security issues.
  • China's coalbed methane gas source is sufficient, and the total coalbed methane resources with a depth of 2000m are about 30-35 trillion m 3 , which is equivalent to the total amount of conventional natural gas resources on the land (30 trillion m 3 ), ranking third in the world.
  • Figure 1 is a multiphase system phase diagram of methane-water forming hydrates.
  • the patented technology promotes the reaction of water with coal to form methane hydrate by creating suitable pressure-temperature conditions.
  • Coalbed methane hydrate is a non-stoichiometric crystalline solid formed by coalbed methane and water. It has high energy density and is safe and economical to use. The utilization of coalbed methane by hydrate storage and transportation can achieve safe storage and transportation of coalbed methane and significantly reduce the cost of coalbed methane storage and transportation.
  • Lu Yiheng and Chen Ying et al (CN 103881775A) proposed a coalbed methane hydrate preparation and energy recovery system, mainly in the energy utilization of methane hydrate extraction, and did not thoroughly explore the preparation method and device of coalbed methane hydrate. .
  • the cooling coil heat transfer proposed in this patent still has problems in efficiency and stable operation.
  • the device is too complicated, and there are many ways for the refrigeration system only, so there are some obstacles in its industrialization.
  • Dong-Liang Zhong et al. proposed a study on the purification of methane hydrates, mainly in laboratory research, and it is difficult to show the prospect of industrialization.
  • Jing Cai et al. conducted a laboratory study on the separation method of coalbed methane hydrate by bubbling method, and did not show the prospect of industrialization.
  • Zhang Jianwen and Yang Lin (ZL201310558066.8) proposed to focus on bubbling, combined with crystallizer pair The shape is adjusted to improve manufacturing efficiency.
  • the heat mass transfer and system residence time are difficult to control during the preparation process.
  • the parallel flow and countercurrent process are proposed, the production process is fluctuating and difficult to control.
  • the object of the present invention is to provide a safe and convenient hydrate storage and transportation technology for the effective utilization of coalbed methane energy resources, and to continuously, stably and efficiently produce coalbed methane hydrate by the method and device of the present invention.
  • a method for producing a coalbed methane hydrate characterized in that the apparatus is applied as follows: the apparatus comprises two process change control units, two throttle valves, two internal circulation flow reactors, two inlet valves, and two discharge valves. , 2 transfer pumps, cold storage units, refrigeration units, intermediate storage tanks, additive storage tanks, water tanks, separators, central control systems;
  • the inner circulation flow reactor is connected to the two ends of the process change control unit to form a loop; the process change control unit is connected by a transfer pump to the transmitter, and the transmitter is connected with six control valves controlled by the logic controller; The countercurrent production process alternates;
  • the internal circulation flow reactor hereinafter referred to as the reactor, consists of three stages: the inner circulation flow reactor is equipped with a gas flow distributor in the lower stage; the refrigerant outlet of the reactor and the refrigerant inlet are connected to the two ends of the refrigeration unit to form a circuit.
  • the lower part of the reactor is provided with an inlet pipe connected to the coal seam gas source, and the inlet pipe is connected with the transportation;
  • the middle section is a reaction section formed by the reaction tube and the shell side; the coalbed methane and water flow in the reaction tube and perform hydration reaction, and the shell side provides cold
  • the amount of hydration heat in the reaction tube is removed;
  • the upper stage is a multi-phase separation zone, and an internal circulator is provided to achieve multi-phase separation; the space between the inner circulator and the gas outlet is used to adjust the pressure in the reactor; the gas outlet is provided Throttle valve
  • the refrigeration unit is provided with five circuits: one is connected to the internal circulation flow reactor, one is connected to the other internal circulation flow reactor, one is connected to the intermediate storage tank, one is connected to the water tank, and one is connected to the cold storage unit;
  • the internal circulation flow reactor forms two series and parallel production processes under the control of the process conversion unit
  • the internal circulation flow reactor forms water through the discharge valve, the intermediate storage tank, the separator, the water tank and the transfer pump Circulating circuit; there are two water circulation circuits, two water circulation circuits are arranged symmetrically; the additive storage tank is connected to the water tank;
  • the central control system controls the process change unit, the internal circulation flow reactor, the cold storage unit, the intermediate storage tank, the transfer pump and the respective valves.
  • the internal circulation flow reactor has a reaction temperature of 1 to 15 ° C and a pressure of 2 to 9 MPa.
  • the ratio of the volume of the cold storage unit to the volume of the reactor is 2 to 10.
  • the process change control is realized, the pressure of the production system is stabilized, and the residence time of the multi-phase system is adjusted.
  • volume of the cold storage unit is larger than the effective volume of the reactor, and the V cold storage unit: V reactor is 4-6.
  • the present invention provides a method and apparatus for manufacturing a coalbed methane hydrate, which in turn comprises a process conversion unit, an internal circulation flow reactor, a hydrate intermediate storage tank, a water tank, Refrigeration unit, cold storage unit, separator, central control system, etc.
  • a process conversion unit an internal circulation flow reactor
  • a hydrate intermediate storage tank a water tank
  • Refrigeration unit cold storage unit
  • separator central control system
  • the high-efficiency heat exchange mechanism is directly installed to replenish the cold, and the reaction heat is removed in time;
  • the specially designed internal circulation flow reactor is composed of a feed section, a reaction section and a separation section, so that the reaction system forms a large area.
  • the fast gas-water interface is updated to promote the continuous and stable formation of hydrates, and at the same time achieve the initial separation of hydrate slurry and water and gas.
  • the process transformation unit alternates between the parallel flow and the countercurrent production process through control logic.
  • the refrigeration unit is provided with four circuits: one is connected to the reactor, one is connected to the intermediate storage tank, one is connected to the water tank, and one is connected to the cold storage unit.
  • the cold storage unit volume is larger than the reactor volume to provide the required cold storage capacity.
  • the reactor is equipped with an internal circulator to adjust the hydrate morphology, and the hydration residence time is adjusted together with the process conversion unit to increase the hydrate content of the hydrate.
  • the water/slurry mixing system was separated by a separator.
  • the central control system controls the actions of each process unit.
  • the production process can continuously, stably and efficiently produce coalbed methane hydrate.
  • Operation 1 start the transfer pump 6, fill the reactor with water, and replace the air in the reactor;
  • Operation 2 start the refrigeration unit, supply chilled water to the cold discharge in the water tank and the intermediate tank, and cool the water temperature to about 1 to 15 ° C;
  • Operation 3 Turn on the high pressure coal bed gas inlet valve to inflate the reactor to 2 to 9 MPa; then start the high pressure water pump to drive cold water from the lower part of the reactor into the reactor. When the water level at the top of the reactor exceeds the outlet of the bypass line, the specified liquid is reached. After the position, the bypass discharge valve is opened, the water is depressurized and then flows into the intermediate storage tank to adjust the action of the valve and the high-pressure water pump, and the water level at the top of the reactor is controlled to be substantially unchanged, thereby forming a stable water circulation;
  • Operation 4 Supply chilled water to the shell side of the heat exchange section of the reactor to form a cold trap.
  • the injected high-pressure coalbed methane is distributed through the distributor to form a large number of fine bubbles.
  • the coalbed methane in the bubble is in full contact with the water flow in the cold trap of the reaction section, and is disturbed vigorously, and the flow rises, and rapidly reacts to form coalbed gas hydrate.
  • the reaction temperature is about 1 to 15 ° C, preferably 3 to 8 ° C, and the pressure is 2 to 9 MPa, preferably 4 to 8 MPa;
  • Operation 5 In the inner circulator, the hydrate forms a slurry with the unreacted water, and from the bypass line on the side of the reactor, after being depressurized by the discharge valve, it enters the intermediate storage tank to perform preliminary gas-water/pulp Separation of materials. The separated gas is pressurized and recycled back to the reactor.
  • the hydration reactor is provided with an internal circulator to regulate the hydrate reaction - residence time and promote multiphase separation.
  • the technical solutions are as follows:
  • Operation 6 After the hydrate is formed, it flows upward under the action of buoyancy, and the buoyancy concentration zone is formed by the inner circulator. After the water/slurry is controlled by the inner circulator baffle, the hydrate is concentrated in the upper slurry; the unreacted gas escapes to the surface and accumulates at the top of the reactor to maintain the pressure conditions within the reactor. If the pressure is too high, open the top pressure regulating valve of the reactor to release part of the gas, and then return to the reactor after being pressurized; if it is too low, open the large intake valve to increase the intake air amount, or reduce the cooling capacity of the refrigeration unit, so that The gas is temporarily excessive, and the unreacted gas is collected at the top of the reactor to increase the pressure in the cold trap;
  • Operation 7 The hydrate slurry enters the hydrate-rich zone from the light phase flow channel, adjusts the hydrate residence time and morphology, and increases the gas content of the hydrate before discharging to the intermediate storage tank;
  • Operation 8 The hydrate slurry is separated from the intermediate storage tank into the separator to obtain hydration for removing liquid water.
  • Product The hydrate product is simply packaged and transferred to a cold storage for long-term storage.
  • the separated unreacted gas is recycled to the reactor, and the separated cold water enters the water tank, is mixed with fresh water and additives, and is returned to the reactor by a high-pressure water pump to realize material circulation and recover the cooling amount.
  • the invention further aims at the characteristics of large variation of methane concentration in coalbed methane, and provides a process transformation and pressure stabilization unit to control the pressure stability of the production system, and control the production system to form a multi-stage cocurrent and counter-current hydration reaction, which can adapt to the problem of coalbed methane concentration change.
  • a process transformation and pressure stabilization unit to control the pressure stability of the production system, and control the production system to form a multi-stage cocurrent and counter-current hydration reaction, which can adapt to the problem of coalbed methane concentration change.
  • Operation 9 Through the process change and pressure stabilization unit control, the production system in the reactors 2A, 2B maintains a stable pressure, eliminating fluctuations in the pressure of the hydrate production process;
  • Operation 10 controlling the flow-through production process of the reactor 2A, 2B by the process conversion unit, and rapidly and efficiently generating hydrate for the high concentration range coal bed gas;
  • Operation 11 The multi-stage countercurrent production process of the reactor 2A, 2B is formed by the process conversion unit control, and the hydrate can be efficiently formed for the coalbed methane of different concentration ranges, and the hydrate having high gas content is obtained.
  • the device of the invention consists of a process change and pressure stabilization unit, an internal circulation flow reactor, an intermediate storage tank, a water tank, a refrigeration unit, a cold storage unit, a separator, a central control system and the like. Its characteristics are:
  • the coalbed methane hydrate reactor is a specially designed internal circulation flow reactor.
  • the reactor is divided into three sections: the lower section is equipped with a gas flow distributor, the middle section is a gas-water reaction zone, and the upper section is provided with an internal circulator to adjust the residence time of the system and the hydrate morphology.
  • a high pressure coal bed gas inlet pipe, a cold water inlet pipe and a sewage valve outlet pipe are arranged at the bottom of the reactor.
  • the high-pressure coalbed methane inlet pipe is connected to the coalbed methane water source to supply high-pressure coalbed methane, and a coalbed methane flowmeter and a pressure gauge are arranged outside the pipe.
  • the cold water inlet pipe is connected to the high pressure water pump outlet, and a pressure gauge is also installed at the inlet.
  • a pressure gauge is also installed at the inlet.
  • the upper bypass pipe outlet is connected to the intermediate storage tank through a discharge valve, the upper part of the intermediate storage tank is provided with a gas outlet pipe and a safety valve, and the lower part has Valves and lines are connected to the filter.
  • the intermediate storage tank is provided with two chilled water inlets and outlets connected with the refrigeration unit to supply chilled water to the cold discharge in the tank;
  • the hydrate product outlet pipe has a filtrate outlet pipe connected to the water tank inlet; the upper part of the water tank is provided with an additive inlet pipe connected with the additive tank, the fresh water inlet pipe is connected with the water pipe network, and the lower outlet pipe is connected with the inlet of the high pressure water pump, Two chilled water inlets and exits are connected to the refrigeration unit on the side to supply chilled water to the cold sump in the tank.
  • the present invention provides a refrigeration unit and a cold storage unit to replenish the shell side of the reaction section.
  • the power of the refrigeration unit and the flow rate of the chilled water are adjusted so that the supplemental cooling amount is sufficient to offset the large amount of heat generated during the reaction of the gas and water, but does not completely freeze the water in the cold trap.
  • the fine balance matching of this heat transfer and mass transfer process is realized by the refrigeration unit, the process change control unit, the flow control instrument, and the central control system.
  • the refrigeration unit consists of a high-power chiller, a transfer pump, and control instruments.
  • the low temperature chilled water can be supplied to the reactor, the intermediate storage tank and the water storage tank as needed, and the flow rate of the water is regulated by the controller.
  • the process change and pressure stabilization unit consists of a transfer pump, a control valve, a transmitter, a logic controller, a remote transmitter, etc., through pre-programmed control procedures, to achieve process change control, stabilize the pressure of the production system, and adjust the multiphase
  • the residence time of the system increases the gas content of the hydrate.
  • a cold storage unit In order to achieve continuous and efficient preparation of the process of the invention, a cold storage unit is provided.
  • the volume of the cold storage unit is greater than the effective volume of the reactor.
  • V cold storage unit The V reactor is 2 to 10, preferably 4 to 6, in order to provide the required refrigeration capacity.
  • an internal circulator is provided.
  • the inner circulator is provided with a flow guiding arc plate to form a buoyancy separation zone in the upper part of the reactor, which promotes gas-water-hydration phase separation, stabilizes the flow of the multiphase system, and improves separation efficiency and production efficiency.
  • the process change and pressure stabilization unit realizes the adjustment of the residence time of the multiphase system and the process transformation operation, stabilizes the system pressure, and changes the process flow, so that the whole production process forms a multi-stage operation. Adapt to changes in the composition of coalbed methane;
  • Figure 4 is a longitudinal section view of the reactor in the apparatus of the present invention.
  • the apparatus includes a process change control unit 1, an internal circulation flow reactor 2, an inlet valve 3, a throttle valve 4, a discharge valve 5, a transfer pump 6, a refrigeration unit 7, an intermediate storage tank 8, a cold storage unit 9, and an additive mixing tank 10. , water storage tank 11, separator 12, central control system 13.
  • the inner circulation flow reactor is connected to the two ends of the process change control unit to form a loop;
  • the process change control unit is connected to the transmitter 23 by the transfer pump 21, and the transmitter 23 is connected with six control valves controlled by the logic controller 22; Realizing the reactor cocurrent and countercurrent production processes alternately;
  • An internal circulation flow reactor hereinafter referred to simply as a reactor, consists of three stages: an air flow distributor 26 is installed in the lower stage of the reactor.
  • the refrigerant outlet 22 of the reactor is connected to the refrigerant inlet 33 to the refrigeration Both ends of the unit form a loop.
  • the lower part of the reactor is provided with an inlet pipe 27 connected to the coal seam gas source, the inlet pipe 28 is connected to the transfer pump 6, and the middle section is a reaction section formed by the reaction column pipe (24) and the shell side (25).
  • the upper part is a multi-phase separation zone, and an internal circulator (22) is provided to realize multiphase separation;
  • the space between the inner circulator and the gas outlet 21 serves to regulate the pressure within the reactor.
  • the gas outlet 21 is provided with a throttle valve 2.
  • the refrigeration unit is provided with five circuits: one is connected to the inner circulation flow reactor 2A, one is connected to the inner circulation flow reactor 2B, one is connected to the intermediate storage tank, one is connected to the water tank, and one is connected to the cold storage unit;
  • the internal circulation flow reactor is controlled in the process conversion unit to form two series and parallel production processes to adjust the hydrate residence time to increase the yield and gas content;
  • the inner circulation flow reactor forms a water circulation loop through the discharge valve 5, the intermediate hydrate storage tank 9, the separator 12, the water tank 11 and the transfer pump 6; the additive storage tank is connected to the water tank 11;
  • the central control system controls the process change unit 1, the inner circulation flow reactor 2, the cold storage unit 9, the intermediate storage tank 8, the transfer pump 6, and the respective valves.
  • the ratio of the volume of the cold storage unit to the effective volume of the reactor is 2 to 10 in order to provide the required cold storage capacity
  • the inner circulation flow reactor forms a water circulation loop through the discharge valve 5, the intermediate storage tank 9, the separator 12, the water tank 11 and the transfer pump; the additive storage tank is connected to the water tank 11;
  • the central control system controls the process conversion unit 1, the internal circulation flow reactor 3, the cold storage unit 6, the intermediate storage tank 9, the transfer pump 7, and the respective valves.
  • the temperature of the reactor is between 1 and 15 °C.
  • the pressure of the reactor is between 2 and 9 MPa.
  • the ratio of the cold storage unit volume to the reactor volume is 2 to 10 to provide the required cold storage capacity.
  • the process transformation unit control logic is shown in the table below.
  • the cold storage unit 9 and the refrigeration unit 7 are activated, and the chilled water is supplied to the heat exchange mechanism provided in the water tank 11 and the intermediate storage tank 8, and the temperature in the entire inner circulation flow reactor 2 is controlled at 4 ° C; the water pump 6 is restarted.
  • the central control system 13 pumps the water pump with the additive into the reaction unit of the reactor.
  • the discharge valve 5 of the outlet of the bypass pipe is opened, the opening degree of the regulating valve and the displacement of the pump 6 are adjusted, so that the water passes through the discharge valve 5 and the intermediate storage tank. 8.
  • the separator 12 and the water tank 11 form a stable water circulation; after that, 98% of the coalbed methane enters the tube process 24 of the inner circulation flow reactor 2 through the flow regulating valve and the gas nozzle, and the pressure is stable at 8.13 MPa;
  • the cold unit 9 and the refrigeration unit 7 supply a refrigerant removal reaction heat to the shell side of the reactor 2; the gas-water mixture flows from bottom to top and reacts to form a hydrate in the tube path of the inner circulation flow reactor 2, The heat of reaction generation is removed from the refrigerant in the shell side by the heat transfer between the partition walls. Thereby, the gas-water will continuously, stably and rapidly form a hydrate to form a slurry.
  • the inner circulator performs multiphase separation.
  • the unreacted gas accumulates from the middle into the top of the reactor to form a back pressure; the back pressure is regulated by a throttle valve and a safety valve at the top of the reactor to ensure that the pressure in the reactor satisfies the hydrate formation conditions.
  • the device is provided with a process change control unit 1 and an inner circulator 22, and the hydrate slurry enters the space between the inner circulator and the wall surface of the reactor through the baffle plate for liquid-solid separation, and the hydrate solid is suspended in the upper portion of the slurry.
  • the hydrate morphology and the residence time of the multiphase system are adjusted to increase the gas content of the hydrate.
  • the gas coming out of the top of the reactor can be pressurized by the compressor to 6 MPa and returned to the reactor to continue the reaction.
  • the hydrate slurry accumulated in the upper portion of the reactor 2 enters the intermediate storage tank 8 through the discharge valve 5.
  • the hydrate slurry in the upper portion of the intermediate storage tank 8 is automatically concentrated, and then taken out as a hydrate slurry or enters the separator 12 for liquid-solid separation to obtain a "dry" hydrate solid, which is packaged and stored in a refrigerated state.
  • the water separated by the separator 12 enters the water tank 11, is mixed with the fresh water and the additive, and is circulated back to the reactor 2 by the transfer pump 6, thereby achieving material circulation while recovering a part of the cooling capacity.
  • the obtained powdery solid hydrate is recovered and further granulated.
  • V cold storage unit V reactor is 8.
  • the reaction produced a milky white hydrate slurry, and the methane content in the hydrate reached 110.2 V/V.
  • Example 1 The process of Example 1 was employed except that the pressure in the reaction column was 7.3 MPa and the temperature in the column was 6.5 °C. The reaction produced a viscous colloidal hydrate slurry having a gas content of 174 V/V in the hydrate.
  • Example 1 The process of Example 1 was employed except that the pressure in the reaction column was 7.3 MPa and the temperature in the column was 6 °C. The concentration of coalbed methane raw materials is about 50%, and the process conversion unit controls the process according to the control logic of Fig. 2 to form a multi-stage countercurrent hydration reaction process, and the reaction produces a viscous colloidal hydrate slurry, and the methane gas content in the hydrate reaches about 160V/V. This method has significant economics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种制造煤层气水合物的方法,煤层气经气体分布器形成微细气泡自内循环流反应器底部进入,与低温、高压水流接触发生水合反应生成煤层气水合物浆料,反应热通过制冷单元移除。反应器设有内循环器形成浮力调节区,促进气—水—水合物的多相体系分离效率,实现传热传质过程的精细控制,提高水合物含气量。未反应完的气体流经内循环器后与水、水合物实现分离,之后循环回反应器;水合物浆料流经内循环器后实现液—固分离分别从轻相和重相流道流动。水合物浆料排放进入中间储罐进行气-液及液—固分离;浆料浓集后,经分离得到"干"的水合物产品,分离出的未反应气体和低温水循环回反应***。该方法能连续、稳定、高效地制造水合物。

Description

一种制造煤层气水合物的方法 技术领域
本发明涉及一种能够连续、稳定、高效地制造煤层气水合物的方法。属于煤层气储运领域,利用本发明的技术和装置能够安全、便捷地收集储运煤层气,提高煤层气的利用效果。
背景技术
煤层气是非常规天然气能源资源,一种洁净能源,煤层气的有效利用有利于环境保护和国民经济的可持续发展。
能源在国民经济中具有特别重要的战略地位。我国目前能源供需矛盾尖锐,结构不合理;能源利用效率低;一次能源消费以煤为主,化石能源的大量消费造成严重的环境污染。能源需求中油气所占比重的攀升进而促使对国外石油和天然气的依赖程度在快速增大,已成为危及国家战略安全的重要因素,能源资源结构和能源消费结构正在给现代化进程带来巨大困难。
煤层气是赋存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体。世界煤层气储量约占天然气储量的30%以上,世界上已发现的26个最大的天然气田中,就有16个是煤层气田,其煤层气储量占天然气储量的77%。世界主要产煤国都十分重视开发煤层气。煤层气开发已成为世界各国发展新能源的新趋势。煤层气是除常规天然气以外,资源量最大、最为现实的洁净能源。
煤层气是燃烧值高而且洁净的燃料气,不仅可以用作燃料,也可以作为化工原料和发电。煤层气与常规天然气相比,其气体成分和用途均大致相同,但是煤层气中甲烷浓度高低不一,有的煤层气甲烷含量达95%以上,有的仅30%~50%乃至更低。
煤层气主要成分为甲烷,是一种具有强烈温室效应的气体。据测算,所有人类活动造成的温室效应,20%是由甲烷引起的,而我国煤矿排放的甲烷占 全球的35%以上。如果煤层气得以充分利用,将大大减少温室气体的排放,如利用1000m3煤层气,相当于减排约15t二氧化碳。而煤层气替代煤炭的燃烧利用可以大大削减大气污染物排放总量,每年可节约煤炭2000万t,二氧化硫排放减少75.6万t,烟尘排放减少186万t,同时还减少煤灰占地产生的环境问题,避免了煤炭加工、运输时产生的扬尘等大气污染,有利于改善人类赖于生存的环境。
煤层气有多种利用途经。但是其利用目的的实现,必须要以煤层气顺利抵达用户为前提。煤层气利用中面临的问题主要有:
(1)远距离运输问题
中国在煤层气开发区域,尚未建立与之相配套的长输管线,致使开发与市场脱节,在众多地区出现“点天灯”现象。规模以上矿区开采出的煤层气也因为无管道往外运输,都是自采自用,主要用来解决矿区的供电、供暖问题。煤层气的运输问题限制了煤层气的规模化利用。另外,气态煤层气体积庞大,进行远距离运输需要大面积铺设管网或者多次运输,耗费的成本巨大。同时,一定体积的气态煤层气质量很小,释放的能量不足以支持大能耗的工业生产需求,要想满足工业生产需求就要不断补充,这给生产带来极大的不便。
(2)煤层气进管网问题
煤层气和天然气管网一般都是由国有大企业进行建设,在运营中存在垄断性,其他企业生产的煤层气要利用其管道输送存在很大的困难。另外,对于甲烷浓度小于90%的煤层气不能直接进入管道,需要经过脱水、脱硫、提纯等处理,使甲烷浓度达到95%左右后接入管网,但是技术要求高,成本大。因此,要使煤层气利用形成规模化必须解决的问题就是“采出煤层气的有效输送问题”。
(3)管线压力不同的连接问题
煤层气在从井口到用户输送的每一个环节中均需要进行增压处理,导致 成本增加。另外,在采用压力管道输送煤层气时,由于有大量的O2存在以及煤层气加压的同时伴有温度的升高,因此有可能存在煤层气输送过程在燃、爆极限范围内运行的情况,导致重大的安全问题。
(4)小规模气井能源资源的浪费问题
对于单井开采规模小的气井,不论是管道输运、CNG、LNG,都存在成本高、收益小的问题,使得煤层气资源无法得到很好利用,而往往不得不将其废弃,特别在开发初期,导致大量煤层气空排。
我国煤层气气源充足,埋深2000m以浅的煤层气资源总量约30~35万亿m3,与陆上常规天然气资源总量(30万亿m3)相当,居世界第三位。
为了解决煤层气储运面临的问题,实现煤层气的安全、便捷、可靠的储运,以便满足工业、民用、发电和车用等行业和领域的需要,本专利提出一种新型的煤层气储运技术。
本发明的技术原理是利用煤层气中甲烷的特性,以水合物态储运煤层气。图1是甲烷—水形成水合物的多元体系相图。本专利技术通过创造适宜的压力—温度条件,促使煤层气中与水反应形成甲烷水合物。
煤层气水合物是煤层气与水形成的非化学计量比晶态固体,能量密度大,使用安全、经济。以水合物态储运对煤层气加以利用,能够实现煤层气的安全储运,显著降低煤层气储运费用。
鲁伊恒和陈颖等(CN 103881775A)提出了一种煤层气水合物的制备及能量回收***,主要在于甲烷水合物提取时的能量利用,并未深入探讨煤层气水合物的制备方法和装置。该专利中提出的冷却盘管移热在效率和稳定操作上仍然存在问题。此外装置太过复杂,仅制冷***就有多种方式,因此其工业化方面存在一些障碍。
Dong-Liang Zhong等人提出了采用甲烷水合物提纯气体的研究,主要集中于实验室研究,难以显示出产业化的前景。Jing Cai等人采用鼓泡方法对煤层气水合物分离方法进行了实验室研究,也没有表现出工业化前景。
张建文和杨林(ZL201310558066.8)提出以鼓泡为中心,结合调晶器对 形貌加以调整,提高制造效率。制备过程中热质传递和体系停留时间难以控制,尽管提出了并流和逆流工艺流程,但生产过程波动剧烈,难以控制。
发明内容
本发明的目的在于为煤层气能源资源的有效利用提供一种安全、便捷的水合物储运技术,能够通过本发明的方法和装置持续、稳定、高效率地生产煤层气水合物。
一种制造煤层气水合物的方法,其特征在于应用如下装置:该装置包括2个工艺变化控制单元、2个节流阀、2个内循环流反应器、2个进口阀、2个排放阀、2个输送泵、储冷单元、制冷单元、中间储罐、添加剂储罐、水罐、分离机、中控***;
A)内循环流反应器连接到工艺变换控制单元的两端形成回路;工艺变换控制单元由输送泵连接变送器,变送器连接逻辑控制器控制的6个控制阀构成;实现并流和逆流生产过程交替进行;
B)内循环流反应器,以下简称为反应器,由三段构成:内循环流反应器下段安装有气流分布器;反应器的冷冻剂出口与冷冻剂入口连接到制冷单元的两端形成回路;反应器下部设有进口管与煤层气源连接,进口管与输送相连;中段为反应列管和壳侧形成的反应段;煤层气、水在反应管内流动并进行水合反应,壳侧提供冷量移除反应管内的水合反应热;上段为多相分离区,设有内循环器实现多相分离;内循环器与气体出口之间的空间用以调节反应器内的压力;气体出口设有节流阀;
C)制冷单元设有五个回路:一路与内循环流反应器连通,一路与另一内循环流反应器连通,一路与中间储罐连通,一路与水罐连通,一路与储冷单元连通;
D)内循环流反应器在工艺变换单元控制下形成串联和并联两种生产工艺;
E)内循环流反应器经排放阀、中间储罐、分离机、水罐和输送泵形成水 循环回路;一共有2个水循环回路,2个水循环回路对称布置;添加剂储罐连接到水罐上;
F)中控***控制工艺变换单元、内循环流反应器、储冷单元、中间储罐、输送泵及各个阀门。
进一步,内循环流反应器反应温度为1~15℃,压力为2~9Mpa。
进一步,储冷单元体积与反应器体积之比为2~10。
进一步,通过预编制的控制程序,实现工艺变换的控制,稳定生产***的压力,调节多相体系的停留时间。
进一步,储冷单元的体积大于反应器有效体积,且V储冷单元:V反应器为4~6。
基于煤层气水合物形成的必要条件和技术难点分析,本发明提出一种制造煤层气水合物的方法和装置,依次包括工艺变换单元、内循环流反应器、水合物中间储罐、水罐、制冷单元、储冷单元、分离机、中控***等。通过设计合适的反应器结构,设置高效换热机构直接补冷,及时移除反应热;特别设计的内循环流反应器由进料段、反应段和分离段构成,使反应体系形成面积大、更新快的气-水界面,促进水合物持续、稳定生成,同时达到水合物浆液与水、气的初步分离。工艺变换单元通过控制逻辑,实现并流和逆流生产过程交替进行。制冷单元设有四个回路:一路与反应器连通,一路与中间储罐连通,一路与水罐连通,一路与储冷单元连通。储冷单元体积比反应器体积大以提供所需的蓄冷能力。反应器设有内循环器对水合物形貌加以调节,与工艺变换单元共同对水合物停留时间加以调节,提高水合物含气量。水/浆料混合体系由分离机进行分离。中控***控制各工艺单元的动作。本生产工艺能连续、稳定、高效地生产煤层气水合物。
为了达到上述发明目的,本发明采用以下技术方案:
操作1:开动输送泵6,向反应器充水,置换出反应器内的空气;
操作2:开动制冷机组,向水罐和中间罐中的冷排供应冷冻水,将水温冷却到1~15℃左右;
操作3:开启高压煤层气入口阀对反应器充气、增压到2~9MPa;再开动高压水泵把冷水从反应器下部打入反应器,当反应器顶部水位超过旁通管线出口,达到指定液位后,打开旁通排放阀,水经节流降压后流入中间储罐,调节阀门和高压水泵的动作,控制反应器顶部水位基本不变,形成稳定的水循环;
操作4:向反应器换热段的壳程供应冷冻水,使反应段形成冷阱。注入的高压煤层气经分布器分布后形成大量微细气泡,气泡中的煤层气与水流在反应段的冷阱中充分接触、剧烈扰动,并流上升,迅速反应生成煤层气水合物。反应温度为1~15℃左右、优选为3~8℃,压力为2~9Mpa、优选为4~8MPa;
操作5:在内循环器内,水合物与未反应完的水形成浆料,从反应器侧面的旁通管线,经过排放阀降压后,进入中间储罐,进行初步的气一水/浆料分离。分离出的气体增压后循环回反应器。
经过以上1~5步操作后建立稳定的物料循环。
为实现发明的目的,水合反应器设有内循环器,以调节水合物反应—停留时间,促进多相分离。技术方案如下:
操作6:水合物生成后在浮力作用下向上流动,由内循环器形成浮力集中区。水/浆料经内循环器导流板控制流向后,水合物在上部浆料中浓集;未反应完的气体逸出液面后在反应器顶部聚集,维持反应器内的压力条件。若压力过高,则打开反应器顶部调压阀放出部分气体,经增压后返回反应器;若过低,则开大进气阀增加进气量,或降低制冷机组的补冷量,使气体暂时过量,未反应完的气体聚集在反应器顶部即可提高冷阱内的压力;
操作7:水合物浆料由轻相流道进入水合物富集区,对水合物停留时间和形貌加以调整,提高水合物含气量后再排出到中间储罐;
操作8:水合物浆料由中间储罐进入分离机分离,得到脱除液体水的水合 物产品。水合物产品经简单包装后转到冷库长期保存。分离出的未反应气体循环回反应器,分离出的冷水进入水罐,与新鲜水和添加剂混合后,由高压水泵打回反应器,实现物料循环,并回收其冷量。
本发明进一步针对煤层气中甲烷浓度变动大的特点,设置了工艺变换与压力稳定单元,控制生产***压力稳定,控制生产***形成多级并流和逆流水合反应,可适应煤层气浓度变化的问题,实现有效收集储运,得到利用。技术方案如下:
操作9:通过工艺变换与压力稳定单元控制,在反应器2A、2B内的生产***维持稳定的压力,消除水合物生产过程压力的波动;
操作10:通过工艺变换单元控制,形成反应器2A、2B并流生产工艺,针对高浓度范围煤层气快速有效生成水合物;
操作11:通过工艺变换单元控制,形成反应器2A、2B多级逆流生产工艺,针对不同浓度范围的煤层气都能有效生成水合物,制得含气量高的水合物。
本发明的装置由工艺变换与压力稳定单元、内循环流反应器、中间储罐、水罐、制冷单元、储冷单元、分离机、中控***等组成。其特征是:
煤层气水合物反应器是特别设计的内循环流反应器。反应器分三段:下段安装有气流分布器,中段为气-水反应区,上段设有内循环器调节体系停留时间和水合物形貌。反应器底部设置了高压煤层气进口管、冷水入口管和排污阀出口管。高压煤层气进口管与煤层气水源相连,供给高压煤层气,管外装有煤层气流量计和压力表。冷水入口管与高压水泵出口相连,入口处也装有压力表。反应器中段上下有二个冷冻水出入口,与制冷单元相连,有阀门调节流量;上部旁通管出口通过排放阀与中间储罐连接,中间储罐上部设有气体出口管和安全阀,下部有阀门和管线与过滤机连结。中间储罐设有二个冷冻水出入口与制冷机组联结,向罐里的冷排供应冷冻水;分离机侧面设有 水合物产品出口管,下面有滤液出口管与水罐入口联结;水罐上部设有添加剂入口管与添加剂罐连接、新鲜水入口管与自来水管网连接,下部有出水管与高压水泵进口相连,侧面有二个冷冻水出入口与制冷机组联结,向罐里的冷排供应冷冻水。
为了移除煤层气水合反应生成热,本发明设置了制冷单元和储冷单元向反应段壳程补充冷量。调节制冷单元的功率和冷冻水的流量,使补充的冷量足以抵消气、水反应时放出的大量生成热,但又不致使冷阱中的水完全冻结。这一传热、传质过程的精细平衡匹配由制冷机组、工艺变换控制单元、流量控制仪表、中控***等联合实现。
制冷单元由一台大功率冷水机组、输送泵、控制仪器仪表等组成。可根据需要向反应器、中间储罐和水储罐供给低温冷冻水,水的流量由控制器调节。
工艺变换与压力稳定单元由输送泵、控制阀、变送器、逻辑控制器、远程变送器等构成,通过预编制的控制程序,实现工艺变换的控制,稳定生产***的压力,调节多相体系的停留时间,提高水合物含气量。
为实现本发明工艺持续和高效制备,设置了储冷单元。储冷单元的体积大于反应器有效体积。V储冷单元:V反应器为2~10,优选为4~6,以便提供所需的冷冻能力。
为实现本发明工艺过程和提供多相分离效果,设置了内循环器。内循环器设有导流弧板,在反应器上部形成浮力分离区,促进气—水—水合的相间分离,并稳定多相体系的流动,提高分离效率和生产效率。
本发明的方法具有以下优点:
1.独创性地设置内循环器,可对多相体系停留时间和水合物形貌进行精细控制,提高水合物含气量;
2.工艺变换与压力稳定单元实现了多相体系停留时间的调节和工艺变换操作,稳定体系压力,变换工艺流程,使得整个生产过程形成多级操 作,适应煤层气成分的变动;
3.设置高效换热机构和储冷单元,快速移除反应热,促进水合物在冷阱中快速生成,显著提高了效率。
附图说明
图1、煤层气—水—水合物多相体系相图及其操作区间
图2、工艺变换与压力稳定单元图
图3、煤层气水合物制造工艺流程图
图中:1-工艺变换单元;2-内循环流反应器;3-进口阀;4-节流阀;5-排放阀;6-输送泵;7-制冷单元;8-中间储罐;9-储冷单元;10-添加剂储罐;11-水罐;12-分离机;13-中控***。
图4、为本发明装置中反应器纵剖面图。
图中:21-气体出口;22-内循环器;23-观察孔;24-反应管;25-壳程;26-气流分配器;27-煤层气入口;28-冷水入口;31-浆料出口;32-制冷剂出口;33-制冷剂入口。
具体实施方式
下面结合附图由实施例对本发明作进一步说明。但是,实施例并不构成本发明权利范围的限制。
装置包括工艺变化控制单元1、内循环流反应器2、进口阀3、节流阀4、排放阀5、输送泵6、制冷单元7、中间储罐8、储冷单元9、添加剂混合罐10、水储罐11、分离机12、中控***13。
A)内循环流反应器连接到工艺变换控制单元的两端形成回路;工艺变换控制单元由输送泵21连接变送器23,变送器23连接逻辑控制器22控制的6个控制阀构成;实现反应器并流和逆流生产过程交替进行;
B)内循环流反应器,以下简称为反应器,由三段构成:反应器下段安装有气流分配器26。反应器的制冷剂出口22与制冷剂入口33连接到制冷 单元的两端形成回路。反应器下部设有进口管27与煤层气源连接,进口管28与输送泵6相连;中段为反应列管(24)和壳侧(25)形成的反应段。煤层气、水在反应管24内流动并进行水合反应,壳侧25提供冷量移除反应管内的水合反应热;上段为多相分离区,设有内循环器(22)实现多相分离;内循环器与气体出口21之间的空间用以调节反应器内的压力。气体出口21设有节流阀2。
C)制冷单元设有五个回路:一路与内循环流反应器2A连通,一路与内循环流反应器2B连通,一路与中间储罐连通,一路与水罐连通,一路与储冷单元连通;
D)内循环流反应器在工艺变换单元控制形成串联和并联两种生产工艺共同对水合物停留时间加以调节,以提高产量和含气量;
E)内循环流反应器经排放阀5、中间水合物储罐9、分离机12、水罐11和输送泵6形成水循环回路;添加剂储罐连接到水罐11上;
F)中控***控制工艺变换单元1、内循环流反应器2、储冷单元9、中间储罐8、输送泵6及各个阀门。
G)储冷单元体积与反应器有效体积之比为2~10,以便提供所需的蓄冷能力;
H)内循环流反应器经排放阀5、中间储罐9、分离机12、水罐11和输送泵形成水循环回路;添加剂储罐连接到水罐11上;
I)中控***控制工艺变换单元1、内循环流反应器3、储冷单元6、中间储罐9、输送泵7及各个阀门。
反应器的温度在1~15℃。
反应器的压力在2~9MPa。
储冷单元体积与反应器体积之比为2~10,以便提供所需的蓄冷能力。
工艺变换单元控制逻辑如下表所示。
Figure PCTCN2016106900-appb-000001
实施例1:
开动储冷单元9和制冷单元7,向水罐11、中间储罐8内设的换热机构供应冷冻水,将整个内循环流反应器2里的温度控制在4℃;再启动水泵6和中控***13,把配有添加剂的水泵入反应器的反应单元内。当反应器顶部水位超过内循环器顶部,达到指定液位以后,开启旁通管出口的排放阀5,调节阀的开启度和输送泵6的排量,使水经排放阀5、中间储罐8、分离机12和水罐11形成稳定的水循环;此后98%的煤层气经流量调节阀和气体喷嘴后进入内循环流反应器2的管程24,压力稳定为8.13MPa;其后启动储冷单元9和制冷单元7向反应器2的壳程供应冷冻剂移除反应热;气-水混合物在内循环流反应器2的管程内,自下而上流动并发生反应生成水合物,反应生成热通过间壁换热由壳程中的冷冻剂及时移除。由此气—水就会连续、稳定、迅速地生成水合物,形成浆料。内循环器进行多相分离。未反应完的气体自中部进入反应器顶部聚集,形成回压;回压通过反应器顶部的节流阀和安全阀进行调节,以保证反应器内的压力满足水合物的形成条件。本装置设有工艺变换控制单元1和内循环器22,水合物浆料经导流板进入内循环器与反应器壁面之间的空间进行液固分离,水合物固体悬浮于浆料上部。对水合物形貌和多相体系停留时间加以调节,提高水合物含气量。从反应器顶部出来的气体,可由压缩机增压到6MPa后返回反应器继续反应。聚集在反应器2上部 的水合物浆料,经排放阀5进入中间储罐8。中间储罐8上部的水合物浆料自动浓集后,以水合物浆液形式采出或进入分离机12进行液固分离,获得“干”的水合物固体,经包装后冷藏保存。分离机12分离出的水进入水罐11,与补充的新鲜水、添加剂混合后,由输送泵6循环回反应器2,实现物料循环,同时回收部分冷量。回收得到的粉状固体水合物,可进一步造粒成型。V储冷单元:V反应器为8。
反应制得乳白色水合物浆液,水合物中甲烷含气量达到110.2V/V。
实施例2:
采用实施例1的工艺过程,但反应塔内的压力为7.3MPa,塔内温度为6.5℃。反应制得粘稠胶状水合物浆液,水合物中甲烷含气量达到174V/V。
实施例3:
采用实施例1的工艺过程,但反应塔内的压力为7.3MPa,塔内温度为6℃。煤层气原料浓度50%左右,由工艺变换单元依照图2的控制逻辑,控制工艺过程,形成多级逆流水合反应流程,反应制得粘稠胶状水合物浆液,水合物中甲烷含气量达到约160V/V。本方法具备显著的经济性。

Claims (5)

  1. 一种制造煤层气水合物的方法,其特征在于应用如下装置:该装置包括2个工艺变化控制单元、2个节流阀、2个内循环流反应器、2个进口阀、2个排放阀、2个输送泵、储冷单元、制冷单元、中间储罐、添加剂储罐、水罐、分离机、中控***;
    A)内循环流反应器连接到工艺变换控制单元的两端形成回路;工艺变换控制单元由输送泵连接变送器,变送器连接逻辑控制器控制的6个控制阀构成;实现并流和逆流生产过程交替进行;
    B)内循环流反应器,以下简称为反应器,由三段构成:内循环流反应器下段安装有气流分布器;反应器的冷冻剂出口与冷冻剂入口连接到制冷单元的两端形成回路;反应器下部设有进口管与煤层气源连接,进口管与输送相连;中段为反应列管和壳侧形成的反应段;煤层气、水在反应管内流动并进行水合反应,壳侧提供冷量移除反应管内的水合反应热;上段为多相分离区,设有内循环器实现多相分离;内循环器与气体出口之间的空间用以调节反应器内的压力;气体出口设有节流阀;
    C)制冷单元设有五个回路:一路与内循环流反应器连通,一路与另一内循环流反应器连通,一路与中间储罐连通,一路与水罐连通,一路与储冷单元连通;
    D)内循环流反应器在工艺变换单元控制下形成串联和并联两种生产工艺;
    E)内循环流反应器经排放阀、中间储罐、分离机、水罐和输送泵形成水循环回路;一共有2个水循环回路,2个水循环回路对称布置;添加剂储罐连接到水罐上;
    F)中控***控制工艺变换单元、内循环流反应器、储冷单元、中间储罐、输送泵及各个阀门。
  2. 根据权利要求1所述的方法,其特征在于:内循环流反应器反应温度为1~15℃,压力为2~9Mpa。
  3. 根据权利要求1所述的方法,其特征在于:储冷单元体积与反应器体积之比为2~10。
  4. 根据权利要求1所述的方法,其特征在于:通过预编制的控制程序,实现工艺变换的控制,稳定生产***的压力,调节多相体系的停留时间。
  5. 根据权利要求1所述的方法,其特征在于:储冷单元的体积大于反应器有效体积,且V储冷单元:V反应器为4~6。
PCT/CN2016/106900 2015-11-24 2016-11-23 一种制造煤层气水合物的方法 WO2017088753A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510823073.5 2015-11-24
CN201510823073.5A CN105779049B (zh) 2015-11-24 2015-11-24 一种制造煤层气水合物的方法

Publications (1)

Publication Number Publication Date
WO2017088753A1 true WO2017088753A1 (zh) 2017-06-01

Family

ID=56389835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106900 WO2017088753A1 (zh) 2015-11-24 2016-11-23 一种制造煤层气水合物的方法

Country Status (2)

Country Link
CN (1) CN105779049B (zh)
WO (1) WO2017088753A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107880960A (zh) * 2017-11-22 2018-04-06 中能冰气能源科技(北京)有限公司 瓦斯气烷烃水合物提纯方法和***
CN111830231A (zh) * 2020-07-21 2020-10-27 安徽理工大学 一种煤水气混合物的高效分离、回收处理与循环利用试验方法
CN112795410A (zh) * 2020-12-04 2021-05-14 大连理工大学 一种基于扭矩测量的两级连续式天然气水合物的制备***
CN114717032A (zh) * 2022-04-06 2022-07-08 中煤科工集团重庆研究院有限公司 一种低浓度煤层气发电提效***及方法
CN114774173A (zh) * 2022-04-06 2022-07-22 中煤科工集团重庆研究院有限公司 一种低浓度瓦斯气源品质调节***及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105779049B (zh) * 2015-11-24 2019-03-01 北京化工大学 一种制造煤层气水合物的方法
CN110862851A (zh) * 2019-12-16 2020-03-06 北京化工大学 一种制备气水合物的方法
CN116731760B (zh) * 2023-07-20 2024-01-02 北京化工大学 一种低浓度煤层气气水合物法循环提纯***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1281420A (zh) * 1997-10-14 2001-01-24 美孚石油公司 生产气体水化物的方法和设备
US6192691B1 (en) * 1999-09-20 2001-02-27 Taiyo Kogyo Corporation Method of collecting methane hydrate gas and apparatus therefor
CN103571557A (zh) * 2013-11-12 2014-02-12 北京化工大学 一种制造天然气水合物的方法
CN203620609U (zh) * 2013-11-12 2014-06-04 北京化工大学 一种专用于制造天然气水合物的装置
CN205223137U (zh) * 2015-11-24 2016-05-11 北京化工大学 一种制造煤层气水合物的装置
CN105779049A (zh) * 2015-11-24 2016-07-20 北京化工大学 一种制造煤层气水合物的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9601030D0 (en) * 1996-01-18 1996-03-20 British Gas Plc a method of producing gas hydrate
CN1269778C (zh) * 2004-10-15 2006-08-16 西南石油学院 一种制备固体天然气的方法和装置
CN103881775B (zh) * 2014-04-02 2016-01-06 安徽理工大学 一种煤层气水合物的制备及能量回收***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1281420A (zh) * 1997-10-14 2001-01-24 美孚石油公司 生产气体水化物的方法和设备
US6192691B1 (en) * 1999-09-20 2001-02-27 Taiyo Kogyo Corporation Method of collecting methane hydrate gas and apparatus therefor
CN103571557A (zh) * 2013-11-12 2014-02-12 北京化工大学 一种制造天然气水合物的方法
CN203620609U (zh) * 2013-11-12 2014-06-04 北京化工大学 一种专用于制造天然气水合物的装置
CN205223137U (zh) * 2015-11-24 2016-05-11 北京化工大学 一种制造煤层气水合物的装置
CN105779049A (zh) * 2015-11-24 2016-07-20 北京化工大学 一种制造煤层气水合物的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107880960A (zh) * 2017-11-22 2018-04-06 中能冰气能源科技(北京)有限公司 瓦斯气烷烃水合物提纯方法和***
CN111830231A (zh) * 2020-07-21 2020-10-27 安徽理工大学 一种煤水气混合物的高效分离、回收处理与循环利用试验方法
CN112795410A (zh) * 2020-12-04 2021-05-14 大连理工大学 一种基于扭矩测量的两级连续式天然气水合物的制备***
CN114717032A (zh) * 2022-04-06 2022-07-08 中煤科工集团重庆研究院有限公司 一种低浓度煤层气发电提效***及方法
CN114774173A (zh) * 2022-04-06 2022-07-22 中煤科工集团重庆研究院有限公司 一种低浓度瓦斯气源品质调节***及方法

Also Published As

Publication number Publication date
CN105779049A (zh) 2016-07-20
CN105779049B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2017088753A1 (zh) 一种制造煤层气水合物的方法
CN103571557B (zh) 一种制造天然气水合物的方法
CN101456556B (zh) 一种水合物法混合气体中co2工业化分离提纯装置及方法
CN106837258B (zh) 一种天然气水合物开采装置和方法
EA017722B1 (ru) Образование гидрата для разделения или транспортировки газа
CN104560201B (zh) 高纯度氢气的生产工艺和***以及合成氨工艺和***
WO2016074306A1 (zh) 催化裂化分馏和吸收稳定***及节能方法
CN108579361A (zh) 一种lng发电厂尾气中二氧化碳低能耗捕集装置
CN203319966U (zh) 煤层气水合物分离精制***
CN211546450U (zh) 一种制备气水合物的装置
CN109824106A (zh) 一种基于水合物法的常压连续海水淡化***及其使用方法
WO2019024403A1 (zh) 一种水合物法连续分离气体的装置与方法
CN202107679U (zh) 一种水合物法连续分离天然气中二氧化碳的装置
CN103480275A (zh) 一种脱硫液再生后的酸气提浓、除盐及分离装置及方法
CN111996049A (zh) 集水合物法与膜分离法于一体联合脱除天然气中酸气的装置和方法
CN104031692A (zh) 一种焦化荒煤气高温直接急冷制取工艺热媒水的装置及方法
CN109019600A (zh) 一种采用多塔精馏联产工业级、食品级和高纯液体二氧化碳的装置及方法
CN1269778C (zh) 一种制备固体天然气的方法和装置
CN109701364B (zh) 一种水合法分离气体的***及方法
CN103175380A (zh) 低浓度煤层气含氧深冷液化制取lng装置
CN103773529B (zh) 一种撬装式伴生气液化***
CN108826833B (zh) 一种天然气杂质分离回收装置
CN205223137U (zh) 一种制造煤层气水合物的装置
CN103739024A (zh) 利用液化天然气气化吸收热淡化海水的装置及方法
JP2014188405A (ja) 二酸化炭素分離装置及び二酸化炭素分離方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16867976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16867976

Country of ref document: EP

Kind code of ref document: A1