WO2017088334A1 - 一种基于无线通讯技术的采用离网光伏发电的充电桩 - Google Patents

一种基于无线通讯技术的采用离网光伏发电的充电桩 Download PDF

Info

Publication number
WO2017088334A1
WO2017088334A1 PCT/CN2016/077523 CN2016077523W WO2017088334A1 WO 2017088334 A1 WO2017088334 A1 WO 2017088334A1 CN 2016077523 W CN2016077523 W CN 2016077523W WO 2017088334 A1 WO2017088334 A1 WO 2017088334A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
charging
wireless communication
control module
photovoltaic
Prior art date
Application number
PCT/CN2016/077523
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
刘洋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘洋 filed Critical 刘洋
Publication of WO2017088334A1 publication Critical patent/WO2017088334A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention relates to a charging pile using off-grid photovoltaic power generation based on wireless communication technology.
  • the technical problem to be solved by the present invention is to provide a charging pile using off-grid photovoltaic power generation based on wireless communication technology capable of real-time monitoring and independent power generation and power supply in order to overcome the disadvantage that the prior art charging pile is difficult to be applied to remote areas. .
  • a charging pile using off-grid photovoltaic power generation based on wireless communication technology comprising a casing, a power generating device disposed above the casing, a display device disposed on the casing, and a control device a card swiping device and two charging devices
  • the power generating device comprising a concentrating mechanism, a photovoltaic mechanism, a vertically disposed connecting rod and a cylinder, the cylinder being disposed above the outer casing, the photovoltaic mechanism being located above the cylinder, a concentrating mechanism is disposed at a top end of the connecting rod, and the cylinder is drivingly connected to the concentrating mechanism through the connecting rod;
  • the concentrating mechanism includes a concentrating plate, and the concentrating plate is uniformly provided with a plurality of through holes, the concentrating hole is provided with a concentrating assembly, the photovoltaic mechanism includes a power generating plate, and the photovoltaic board is uniformly provided with a plurality of photovoltaics
  • the assembly, the concentrating plate and the power generating plate are both curved surfaces, and the center of the concentrating plate is located on a side close to the power generating board.
  • the center of the power generating plate is located on a side close to the concentrating plate, and the concentrating plate and the power generating plate are symmetric with respect to a line where the center of the concentrating plate and the center of the power generating plate are located;
  • a central control module is disposed in the outer casing, and the central control module includes a central control system, a wireless communication module connected to the central control system, a display control module, a button control module, a card sensing module, a charging control module, and a power generation control module.
  • the display device is electrically connected to the display control module
  • the control device includes a button control module electrically connected
  • the card swipe device is electrically connected to the card swipe sensing module
  • the charging device is electrically connected to the charging control module
  • the power generating device and the power generating device The control module is electrically connected;
  • the wireless communication module includes a wireless communication circuit, and the wireless communication circuit includes a first integrated circuit, a second integrated circuit, a first resistor, a second resistor, a third resistor, and a capacitor, and the first integrated circuit is of the type MC145026
  • the second integrated circuit is of the type TDA1808, the address input end of the first integrated circuit is externally connected with a 5V DC voltage power supply, the ground of the first integrated circuit is grounded, and the output end of the first integrated circuit passes
  • the third resistor is connected to the input end of the second integrated circuit, the power supply end of the second integrated circuit is externally connected with a 5V DC voltage power supply, the ground end of the second integrated circuit is grounded, and the first integrated circuit is provided with four data outputs.
  • the two data outputs are connected by a series circuit of a first resistor and a capacitor, and the transmission timing end of the first integrated circuit is respectively connected to the first resistor and the capacitor through a second resistor.
  • the outer casing is made of glass fiber reinforced plastic.
  • the charging device includes a charging gun, and the charging gun is a double-head charging gun.
  • the concentrating assembly comprises a convex lens and two driving units, the driving unit is located at two sides of the convex lens, and the driving unit and the convex lens are driven Connected, the drive unit includes a drive motor.
  • the driving motor is a DC servo motor.
  • the display device includes a touch display screen
  • the control device includes a touch button
  • the power generation control module includes a power generation adjustment module, a cylinder control module connected to the power generation adjustment module, a motor drive module, a photovoltaic control module, and an electrical energy storage module, the cylinder and The cylinder control module is electrically connected, the drive motor is electrically connected to the motor drive module, and the photovoltaic component is electrically connected to the photovoltaic control module.
  • the area of the concentrating plate is larger than the area of the power generating plate.
  • the invention has the beneficial effects that the wireless charging technology-based charging pile using off-grid photovoltaic power generation communicates with the intelligent communication terminal through the wireless communication module to ensure real-time monitoring of the charging status by the user; the sunlight is collected by the collecting mechanism The gathering is carried out on the photovoltaic mechanism, and the photovoltaic mechanism generates electricity to realize solar power generation.
  • the height of the collecting mechanism and the angle of the driving motor control convex lens are controlled by the cylinder through the connecting rod, thereby not only improving the power generation efficiency, but also improving the work of the photovoltaic module.
  • the life span ensures the reliability and practicability of the charging pile.
  • FIG. 1 is a schematic structural view of a charging post using off-grid photovoltaic power generation based on wireless communication technology according to the present invention
  • FIG. 2 is a schematic structural view of a power generating device using a charging pile for off-grid photovoltaic power generation based on wireless communication technology according to the present invention
  • FIG. 3 is a concentrating mechanism of a charging pile using off-grid photovoltaic power generation based on wireless communication technology of the present invention. Schematic diagram of the structure;
  • FIG. 4 is a schematic diagram of a system for charging a pile using off-grid photovoltaic power generation based on wireless communication technology according to the present invention
  • FIG. 5 is a system schematic diagram of a power generation control module of a charging pile using off-grid photovoltaic power generation based on wireless communication technology according to the present invention
  • FIG. 6 is a circuit schematic diagram of a wireless communication circuit of a charging pile using off-grid photovoltaic power generation based on wireless communication technology of the present invention
  • power generation device 2. housing, 3. display device, 4. charging device, 5. control device, 6. card swiping device, 7. central control system, 8. wireless communication module, 9. display control module, 10. Button control module, 11. Swipe sensor module, 12. Charge control module, 13. Power generation control module, 14. Power generation adjustment module, 15. Cylinder control module, 16. Motor drive module, 17. Photovoltaic control module, 18. Electrical energy storage module, 1-1. concentrating plate, 1-2. concentrating component, 1-3. connecting rod, 1-4. power generation board, 1-5. photovoltaic module, 1-6. cylinder, 1-7. Through hole, 1-8. convex lens, 1-9. drive motor, U1. first integrated circuit, U2. second integrated circuit, R1. first resistor, R2. second resistor, R3. third resistor, C1. capacitance.
  • a charging pile using off-grid photovoltaic power generation based on wireless communication technology includes a casing 2, a power generating device disposed above the casing 2, a display device 3 disposed on the casing 2, and control a device 5, a card swiping device 6 and two charging devices 4, the power generating device 1 comprising a collecting mechanism, a photovoltaic mechanism, a vertically disposed connecting rod 1-3 and a cylinder 1-6, the cylinder 1-6 being disposed in the outer casing Above the second, the photovoltaic mechanism is located above the cylinder 1-6, the concentrating mechanism is disposed at the top end of the connecting rod 1-3, and the cylinder 1-6 is connected to the concentrating mechanism through the connecting rod 1-3;
  • the concentrating mechanism includes a concentrating plate 1-1.
  • the concentrating plate 1-1 is uniformly provided with a plurality of through holes 1-7, and the through holes 1-7 are provided with a concentrating assembly 1-2.
  • the mechanism includes a power generating board 1-4, and a plurality of photovoltaic modules 1-5 are evenly disposed on the power generating board 1-4, and the concentrating board 1-1 and the power generating board 1-4 are curved surfaces, and the concentrating board 1-1
  • the center of the ball is located on the side close to the power generating board 1-4, and the center of the power generating board 1-4 is located on the side close to the concentrating panel 1-1, and the concentrating board 1-1 and the power generating board 1-4 are both The center of the concentrating plate 1-1 and the center of the center of the power generating plate 1-4 are symmetrical;
  • a central control module is disposed in the outer casing 2, and the central control module includes a central control system 7, a wireless communication module 8 connected to the central control system 7, a display control module 9, a button control module 10, a card sensing module 11, and charging.
  • the control module 12 and the power generation control module 13 are electrically connected to the display control module 9, the control device 5 includes a button control module 10 electrically connected, and the card swiping device 6 is electrically connected to the card sensing module 1
  • the charging device 4 is electrically connected to the charging control module 12, and the power generating device 1 is electrically connected to the power generation control module 13;
  • the wireless communication module 8 includes a wireless communication circuit, and the wireless communication circuit includes a first integrated circuit U1, a second integrated circuit U2, a first resistor R1, a second resistor R2, a third resistor R3, and a capacitor C1.
  • An integrated circuit U1 is modeled as MC145026, and the second integrated circuit U2 is of the type TDA1808.
  • the address input of the first integrated circuit U1 is externally connected to a 5V DC voltage source, and the ground of the first integrated circuit U1 is grounded.
  • the output end of the first integrated circuit U1 is connected to the input end of the second integrated circuit U2 through the third resistor R3, and the power supply end of the second integrated circuit U2 is externally connected to the 5V DC voltage power supply, and the second integrated circuit U2
  • the first integrated circuit U1 is provided with four data output terminals, wherein the two data output ends are connected by a series circuit composed of a first resistor R1 and a capacitor C1, and the transmission timing of the first integrated circuit U1 is The terminals are respectively connected to the first resistor R1 and the capacitor C1 through the second resistor R2.
  • the outer casing 2 is made of glass. Steel material.
  • the charging device 4 includes a charging gun, which is a double-head charging gun.
  • the concentrating assembly 1-2 includes a convex lens 1-8 and two driving units, and the driving unit is located at the convex lens 1 On both sides of the -8, the drive unit is drivingly coupled to the convex lens 1-8, which includes the drive motor 1-9.
  • the driving motor 1-9 is a DC servo motor.
  • the display device 3 includes a touch display screen, and the control device 5 includes a touch button.
  • the power generation control module 13 includes a power generation adjustment module 14, a cylinder control module 15 connected to the power generation adjustment module 14, a motor drive module 16, a photovoltaic control module 17, and electrical energy storage.
  • the module 18 is electrically connected to the cylinder control module 15 , which is electrically connected to the motor drive module 16 , which is electrically connected to the photovoltaic control module 17 .
  • the area of the concentrating plate 1-1 is larger than the area of the power generating board 1-4.
  • the charging principle of the charging pile based on the wireless communication technology using the off-grid photovoltaic power generation is: collecting the solar energy by the power generating device 1, and then generating the power to realize the self-generation, and then simultaneously performing the two electric vehicles through the two charging devices 4
  • the display device 3 can display various working states and specific parameters of the charging pile, so that the user can understand the charging condition;
  • the control device 5 facilitates the user to control the charging pile;
  • the card swiping device 6 is used for the user to swipe the card. , improve the reliability of the charging pile Sex.
  • the working principle of the power generating device 1 in the charging pile based on the wireless communication technology using the off-grid photovoltaic power generation is: the collecting mechanism is located above the photovoltaic mechanism, the collecting mechanism collects the sunlight to the photovoltaic mechanism, and the photovoltaic mechanism will Power generation to achieve solar power generation.
  • the cylinders 1-6 control the height of the concentrating mechanism through the connecting rods 1-3, thereby adjusting the distance between the concentrating plates 1-1 and the power generating plates 1-4, and improving the power generation efficiency of the power generating device 1.
  • the photovoltaic modules 1-5 When the sunlight is strong: only the light of the area is focused by the convex lens 1-8 in the concentrating plate 1-1, and concentrated on the corresponding photovoltaic modules 1-5, and the photovoltaic modules 1-5 generate electricity. However, when the solar energy is not strong enough, the intensity of the light cannot cause the photovoltaic modules 1-5 to generate electricity, so that the convex lenses 1-8 can be controlled by the driving motors 1-9 so that several convex lenses 1-8 are combined while being concentrated to correspond On the photovoltaic modules 1-5, the photovoltaic modules 1-5 will generate electricity, which not only can maximize the working efficiency of the photovoltaic modules 1-5, but also enable the photovoltaic modules 1-5 to work in turn, and improve the photovoltaic modules. 1-5 working life.
  • the area of the concentrating plate 1-1 is larger than the area of the power generating board 1-4, and the power generation efficiency of the power generating device 1 can be improved, and the charging pile can be protected from rain or the like.
  • the charging station based on wireless communication technology adopts off-grid photovoltaic power generation: the central control system 7 is used for controlling each module, and the charging pile is intelligentized; the wireless communication module 8 is used for real-time communication with the user's intelligent communication terminal. To ensure that the user can monitor the charging status in real time; the display control module 9 is used to control the display device 3 to display related information; the button control module 10 is used to control the operation of the control device 5, and the operability of the charging pile is improved; the card sensing module 11 is used to control the card swiping device 6 to perform card swiping consumption for the user; the charging control module 12 is configured to control the charging device 4 to perform charging, and improve the reliability of the charging post; the power generation control module 13 is configured to control the power generating device 1 to perform power generation with maximum efficiency.
  • the reliability of the charging pile is improved; the cylinder control module 15 is used to control the operation of the cylinder 1-6 for driving the movement of the concentrating plate 1-1; the motor driving module 16 is used for controlling the operation of the driving motor 1-9, and the improvement is made.
  • Power generation efficiency The photovoltaic control module 17 is used to control the photovoltaic modules 1-5 for power generation, and provides the power generation efficiency of the power generation device 1; the electrical energy storage module 18 is used for storing electrical energy to ensure the sustainable charging capability of the charging pile.
  • the wireless communication technology is based on the wireless communication circuit in the charging pile of the off-grid photovoltaic power generation, the first integrated circuit U1 is model MC145026, and the second integrated circuit U2 is model TDA1808, which is integrated by the first integrated circuit U1 and the second integrated circuit The combination of the circuit U2 realizes the transmission of the wireless signal.
  • the wireless charging technology-based charging pile using off-grid photovoltaic power generation communicates with the intelligent communication terminal through the wireless communication module 8 to ensure real-time monitoring of the charging status by the user;
  • the light is collected on the photovoltaic mechanism, and the photovoltaic mechanism generates electricity to realize solar power generation.
  • the height of the collecting mechanism is controlled by the connecting rods 1-3 through the cylinders 1-6 and the angle of the driving lens 1-8 is controlled by the driving motor 1-9. It not only improves the power generation efficiency, but also improves the working life of the photovoltaic modules 1-5, ensuring the reliability and practicability of the charging pile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种基于无线通讯技术的采用离网光伏发电的充电桩,包括:外壳(2),设置在外壳上方的发电装置(1),设置在外壳上的显示装置(3)、控制装置(5)、刷卡装置(6)和两个充电装置(4)。发电装置包括聚光机构、光伏机构、竖直设置的连接杆(1-3)和气缸(1-6),气缸设置在外壳上方。充电桩通过无线通讯模块(8)与智能通讯终端进行实时通讯,保证使用者对充电状况进行实时监控。通过聚光机构将太阳光聚集到光伏机构上,光伏机构进行发电。通过连接杆控制聚光机构的高度和驱动电机(1-9)控制凸透镜(1-8)的角度,提高了发电效率和光伏组件的工作寿命,保证了充电桩的可靠性和实用性。

Description

一种基于无线通讯技术的采用离网光伏发电的充电桩 技术领域
本发明涉及一种基于无线通讯技术的采用离网光伏发电的充电桩。
背景技术
随着科技的发展和社会的进步,人们对于能源的需求越来越高,但是由于很多能源不可再生,而且还具有高污染,导致了不仅对环境破坏严重,而且整个社会面临了资源短缺的地步。电动车就是人们对于新能源的开发的重要一步。
在电动车普及的同时,一些电动车的配套设施也随之出现,充电桩作为电动车普及的基础,其重要性不言而喻。但是在很多特殊场合,如偏远地区,由于联网的成本过大,所以单个的充电桩工作很难实现。
发明内容
本发明要解决的技术问题是:为了克服现有技术充电桩很难适用于偏远地区的不足,提供一种能够实现实时监控且自主发电供电的基于无线通讯技术的采用离网光伏发电的充电桩。
本发明解决其技术问题所采用的技术方案是:一种基于无线通讯技术的采用离网光伏发电的充电桩,包括外壳、设置在外壳上方的发电装置、设置在外壳上的显示装置、控制装置、刷卡装置和两个充电装置,所述发电装置包括聚光机构、光伏机构、竖直设置的连接杆和气缸,所述气缸设置在外壳的上方,所述光伏机构位于气缸的上方,所述聚光机构设置在连接杆的顶端,所述气缸通过连接杆与聚光机构传动连接;
所述聚光机构包括聚光板,所述聚光板上均匀设有若干通孔,所述通孔中设有聚光组件,所述光伏机构包括发电板,所述发电板上均匀设有若干光伏组件,所述聚光板和发电板均为曲面,所述聚光板的球心位于靠近发电板的一侧, 所述发电板的球心位于靠近聚光板的一侧,所述聚光板和发电板均关于聚光板的球心和发电板的球心所在的直线对称;
所述外壳中设有中央控制模块,所述中央控制模块包括中央控制***、与中央控制***连接的无线通讯模块、显示控制模块、按键控制模块、刷卡感应模块、充电控制模块和发电控制模块,所述显示装置与显示控制模块电连接,所述控制装置包括按键控制模块电连接,所述刷卡装置与刷卡感应模块电连接,所述充电装置与充电控制模块电连接,所述发电装置与发电控制模块电连接;
所述无线通讯模块包括无线通讯电路,所述无线通讯电路包括第一集成电路、第二集成电路、第一电阻、第二电阻、第三电阻和电容,所述第一集成电路的型号为MC145026,所述第二集成电路的型号为TDA1808,所述第一集成电路的地址输入端均外接5V直流电压电源,所述第一集成电路的接地端接地,所述第一集成电路的输出端通过第三电阻与第二集成电路输入端连接,所述第二集成电路的电源端外接5V直流电压电源,所述第二集成电路的接地端接地,所述第一集成电路设有四个数据输出端,其中两个数据输出端通过第一电阻和电容组成的串联电路连接,所述第一集成电路的传输计时端通过第二电阻分别与第一电阻和电容连接。
作为优选,为了提高充电桩的防腐蚀作用,所述外壳采用的材质为玻璃钢材质。
作为优选,为了提高充电桩的充电效率,所述充电装置包括充电枪,所述充电枪为双头充电枪。
作为优选,为了提高聚光组件的聚光效果,提高发电装置的发电效率,所述聚光组件包括凸透镜和两个驱动单元,所述驱动单元位于凸透镜的两侧,所述驱动单元与凸透镜传动连接,所述驱动单元包括驱动电机。
作为优选,为了进一步提高聚光组件的聚光效果,所述驱动电机为直流伺服电机。
作为优选,为了提高充电桩的实用性和可操作性,所述显示装置包括触摸显示屏,所述控制装置包括轻触按键。
作为优选,为了提高充电桩的发电效率和可靠性,所述发电控制模块包括发电调节模块、与发电调节模块连接的气缸控制模块、电机驱动模块、光伏控制模块和电能储存模块,所述气缸与气缸控制模块电连接,所述驱动电机与电机驱动模块电连接,所述光伏组件与光伏控制模块电连接。
作为优选,为了提高聚光组件的聚光效果和光伏组件的发电效率,所述聚光板的面积大于发电板的面积。
本发明的有益效果是,该基于无线通讯技术的采用离网光伏发电的充电桩通过无线通讯模块与智能通讯终端进行实时通讯,保证使用者对充电状况进行实时监控;通过聚光机构将太阳光进行聚集到光伏机构上,光伏机构则进行发电,实现太阳能发电,同时通过气缸通过连接杆控制聚光机构的高度和驱动电机控制凸透镜的角度,不仅提高了发电效率,还提高了光伏组件的工作寿命,保证了充电桩的可靠性和实用性。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明基于无线通讯技术的采用离网光伏发电的充电桩的结构示意图;
图2是本发明基于无线通讯技术的采用离网光伏发电的充电桩的发电装置的结构示意图;
图3是本发明基于无线通讯技术的采用离网光伏发电的充电桩的聚光机构 的结构示意图;
图4是本发明基于无线通讯技术的采用离网光伏发电的充电桩的***原理图;
图5是本发明基于无线通讯技术的采用离网光伏发电的充电桩的发电控制模块的***原理图;
图6是本发明基于无线通讯技术的采用离网光伏发电的充电桩的无线通讯电路的电路原理图;
图中:1.发电装置,2.外壳,3.显示装置,4.充电装置,5.控制装置,6.刷卡装置,7.中央控制***,8.无线通讯模块,9.显示控制模块,10.按键控制模块,11.刷卡感应模块,12.充电控制模块,13.发电控制模块,14.发电调节模块,15.气缸控制模块,16.电机驱动模块,17.光伏控制模块,18.电能储存模块,1-1.聚光板,1-2.聚光组件,1-3.连接杆,1-4.发电板,1-5.光伏组件,1-6.气缸,1-7.通孔,1-8.凸透镜,1-9.驱动电机,U1.第一集成电路,U2.第二集成电路,R1.第一电阻,R2.第二电阻,R3.第三电阻,C1.电容。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
如图1-图6所示,一种基于无线通讯技术的采用离网光伏发电的充电桩,包括外壳2、设置在外壳2上方的发电装置1、设置在外壳2上的显示装置3、控制装置5、刷卡装置6和两个充电装置4,所述发电装置1包括聚光机构、光伏机构、竖直设置的连接杆1-3和气缸1-6,所述气缸1-6设置在外壳2的上方,所述光伏机构位于气缸1-6的上方,所述聚光机构设置在连接杆1-3的顶端,所述气缸1-6通过连接杆1-3与聚光机构传动连接;
所述聚光机构包括聚光板1-1,所述聚光板1-1上均匀设有若干通孔1-7,所述通孔1-7中设有聚光组件1-2,所述光伏机构包括发电板1-4,所述发电板1-4上均匀设有若干光伏组件1-5,所述聚光板1-1和发电板1-4均为曲面,所述聚光板1-1的球心位于靠近发电板1-4的一侧,所述发电板1-4的球心位于靠近聚光板1-1的一侧,所述聚光板1-1和发电板1-4均关于聚光板1-1的球心和发电板1-4的球心所在的直线对称;
所述外壳2中设有中央控制模块,所述中央控制模块包括中央控制***7、与中央控制***7连接的无线通讯模块8、显示控制模块9、按键控制模块10、刷卡感应模块11、充电控制模块12和发电控制模块13,所述显示装置3与显示控制模块9电连接,所述控制装置5包括按键控制模块10电连接,所述刷卡装置6与刷卡感应模块1电连接,所述充电装置4与充电控制模块12电连接,所述发电装置1与发电控制模块13电连接;
所述无线通讯模块8包括无线通讯电路,所述无线通讯电路包括第一集成电路U1、第二集成电路U2、第一电阻R1、第二电阻R2、第三电阻R3和电容C1,所述第一集成电路U1的型号为MC145026,所述第二集成电路U2的型号为TDA1808,所述第一集成电路U1的地址输入端均外接5V直流电压电源,所述第一集成电路U1的接地端接地,所述第一集成电路U1的输出端通过第三电阻R3与第二集成电路U2的输入端连接,所述第二集成电路U2的电源端外接5V直流电压电源,所述第二集成电路U2的接地端接地,所述第一集成电路U1设有四个数据输出端,其中两个数据输出端通过第一电阻R1和电容C1组成的串联电路连接,所述第一集成电路U1的传输计时端通过第二电阻R2分别与第一电阻R1和电容C1连接。
作为优选,为了提高充电桩的防腐蚀作用,所述外壳2采用的材质为玻璃 钢材质。
作为优选,为了提高充电桩的充电效率,所述充电装置4包括充电枪,所述充电枪为双头充电枪。
作为优选,为了提高聚光组件1-2的聚光效果,提高发电装置1的发电效率,所述聚光组件1-2包括凸透镜1-8和两个驱动单元,所述驱动单元位于凸透镜1-8的两侧,所述驱动单元与凸透镜1-8传动连接,所述驱动单元包括驱动电机1-9。
作为优选,为了进一步提高聚光组件1-2的聚光效果,所述驱动电机1-9为直流伺服电机。
作为优选,为了提高充电桩的实用性和可操作性,所述显示装置3包括触摸显示屏,所述控制装置5包括轻触按键。
作为优选,为了提高充电桩的发电效率和可靠性,所述发电控制模块13包括发电调节模块14、与发电调节模块14连接的气缸控制模块15、电机驱动模块16、光伏控制模块17和电能储存模块18,所述气缸1-6与气缸控制模块15电连接,所述驱动电机1-9与电机驱动模块16电连接,所述光伏组件1-5与光伏控制模块17电连接。
作为优选,为了提高聚光组件1-2的聚光效果和光伏组件1-5的发电效率,所述聚光板1-1的面积大于发电板1-4的面积。
该基于无线通讯技术的采用离网光伏发电的充电桩的工作原理是:通过发电装置1对太阳能采集,随后进行发电,实现自发电,再通过两个充电装置4能够同时对两个电动车进行充电;同时通过显示装置3能够显示充电桩的各种工作状态和具体参数,便于使用者了解充电状况;控制装置5便于使用者对充电桩进行控制;刷卡装置6用于对使用者进行***,提高了充电桩的可靠 性。
该基于无线通讯技术的采用离网光伏发电的充电桩中的发电装置1的工作原理是:聚光机构位于光伏机构上方,聚光机构将太阳光进行聚集到光伏机构上,光伏机构则就会进行发电,实现太阳能发电。其中气缸1-6通过连接杆1-3控制聚光机构的高度,从而调节聚光板1-1和发电板1-4之间的距离,提高发电装置1的发电效率。
在太阳光强烈时:则只需通过聚光板1-1中的凸透镜1-8将该区域的光进行聚焦,集中到对应的光伏组件1-5上,则光伏组件1-5就会进行发电;但是当太阳能不够强烈时,光的强度不能够使得光伏组件1-5进行发电,从而可以通过驱动电机1-9控制凸透镜1-8,使得几个凸透镜1-8进行组合,同时集中到对应的光伏组件1-5上,则光伏组件1-5就会进行发电,这样不仅能够最大化的提高光伏组件1-5的工作效率,还能使得光伏组件1-5轮流工作,提高了光伏组件1-5的工作寿命。其中聚光板1-1的面积大于发电板1-4的面积,不仅能够提高了发电装置1的发电效率,还能对充电桩进行遮雨等保护。
该基于无线通讯技术的采用离网光伏发电的充电桩中:中央控制***7用于控制各个模块,提高了充电桩的智能化;无线通讯模块8用于与使用者的智能通讯终端进行实时通讯,保证使用者对充电状况进行实时监控;显示控制模块9用于控制显示装置3显示相关信息;按键控制模块10用于控制控制装置5的工作,提高了充电桩的可操作性;刷卡感应模块11用于控制刷卡装置6对使用者进行***;充电控制模块12用于控制充电装置4进行充电,提高充电桩的可靠性;发电控制模块13用于控制发电装置1进行最大效率的发电,提高了充电桩的可靠性;气缸控制模块15用于控制气缸1-6的工作,用来驱动聚光板1-1的移动;电机驱动模块16用于控制驱动电机1-9的工作,提高了发电效 率;光伏控制模块17用于控制光伏组件1-5进行发电,提供了发电装置1的发电效率;电能储存模块18用于对电能进行存储,保证了充电桩的可持续充电能力。
该基于无线通讯技术的采用离网光伏发电的充电桩中的无线通讯电路,第一集成电路U1的型号为MC145026,第二集成电路U2的型号为TDA1808,通过第一集成电路U1和第二集成电路U2的组合,实现了无线信号的发送。
与现有技术相比,该基于无线通讯技术的采用离网光伏发电的充电桩通过无线通讯模块8与智能通讯终端进行实时通讯,保证使用者对充电状况进行实时监控;通过聚光机构将太阳光进行聚集到光伏机构上,光伏机构则进行发电,实现太阳能发电,同时通过气缸1-6通过连接杆1-3控制聚光机构的高度和驱动电机1-9控制凸透镜1-8的角度,不仅提高了发电效率,还提高了光伏组件1-5的工作寿命,保证了充电桩的可靠性和实用性。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (8)

  1. 一种基于无线通讯技术的采用离网光伏发电的充电桩,其特征在于,包括外壳(2)、设置在外壳(2)上方的发电装置(1)、设置在外壳(2)上的显示装置(3)、控制装置(5)、刷卡装置(6)和两个充电装置(4),所述发电装置(1)包括聚光机构、光伏机构、竖直设置的连接杆(1-3)和气缸(1-6),所述气缸(1-6)设置在外壳(2)的上方,所述光伏机构位于气缸(1-6)的上方,所述聚光机构设置在连接杆(1-3)的顶端,所述气缸(1-6)通过连接杆(1-3)与聚光机构传动连接;
    所述聚光机构包括聚光板(1-1),所述聚光板(1-1)上均匀设有若干通孔(1-7),所述通孔(1-7)中设有聚光组件(1-2),所述光伏机构包括发电板(1-4),所述发电板(1-4)上均匀设有若干光伏组件(1-5),所述聚光板(1-1)和发电板(1-4)均为曲面,所述聚光板(1-1)的球心位于靠近发电板(1-4)的一侧,所述发电板(1-4)的球心位于靠近聚光板(1-1)的一侧,所述聚光板(1-1)和发电板(1-4)均关于聚光板(1-1)的球心和发电板(1-4)的球心所在的直线对称;
    所述外壳(2)中设有中央控制模块,所述中央控制模块包括中央控制***(7)、与中央控制***(7)连接的无线通讯模块(8)、显示控制模块(9)、按键控制模块(10)、刷卡感应模块(11)、充电控制模块(12)和发电控制模块(13),所述显示装置(3)与显示控制模块(9)电连接,所述控制装置(5)包括按键控制模块(10)电连接,所述刷卡装置(6)与刷卡感应模块(11)电连接,所述充电装置(4)与充电控制模块(12)电连接,所述发电装置(1)与发电控制模块(13)电连接;
    所述无线通讯模块(8)包括无线通讯电路,所述无线通讯电路包括第一集成电路(U1)、第二集成电路(U2)、第一电阻(R1)、第二电阻(R2)、第三电 阻(R3)和电容(C1),所述第一集成电路(U1)的型号为MC145026,所述第二集成电路(U2)的型号为TDA1808,所述第一集成电路(U1)的地址输入端均外接5V直流电压电源,所述第一集成电路(U1)的接地端接地,所述第一集成电路(U1)的输出端通过第三电阻(R3)与第二集成电路(U2)的输入端连接,所述第二集成电路(U2)的电源端外接5V直流电压电源,所述第二集成电路(U2)的接地端接地,所述第一集成电路(U1)设有四个数据输出端,其中两个数据输出端通过第一电阻(R1)和电容(C1)组成的串联电路连接,所述第一集成电路(U1)的传输计时端通过第二电阻(R2)分别与第一电阻(R1)和电容(C1)连接。
  2. 如权利要求1所述的基于无线通讯技术的采用离网光伏发电的充电桩,其特征在于,所述外壳(2)采用的材质为玻璃钢材质。
  3. 如权利要求1所述的基于无线通讯技术的采用离网光伏发电的充电桩,其特征在于,所述充电装置(4)包括充电枪,所述充电枪为双头充电枪。
  4. 如权利要求1所述的基于无线通讯技术的采用离网光伏发电的充电桩,其特征在于,所述聚光组件(1-2)包括凸透镜(1-8)和两个驱动单元,所述驱动单元位于凸透镜(1-8)的两侧,所述驱动单元与凸透镜(1-8)传动连接,所述驱动单元包括驱动电机(1-9)。
  5. 如权利要求4所述的基于无线通讯技术的采用离网光伏发电的充电桩,其特征在于,所述驱动电机(1-9)为直流伺服电机。
  6. 如权利要求1所述的基于无线通讯技术的采用离网光伏发电的充电桩,其特征在于,所述显示装置(3)包括触摸显示屏,所述控制装置(5)包括轻触按键。
  7. 如权利要求1所述的基于无线通讯技术的采用离网光伏发电的充电桩, 其特征在于,所述发电控制模块(13)包括发电调节模块(14)、与发电调节模块(14)连接的气缸控制模块(15)、电机驱动模块(16)、光伏控制模块(17)和电能储存模块(18),所述气缸(1-6)与气缸控制模块(15)电连接,所述驱动电机(1-9)与电机驱动模块(16)电连接,所述光伏组件(1-5)与光伏控制模块(17)电连接。
  8. 如权利要求1所述的基于无线通讯技术的采用离网光伏发电的充电桩,其特征在于,所述聚光板(1-1)的面积大于发电板(1-4)的面积。
PCT/CN2016/077523 2015-11-25 2016-03-28 一种基于无线通讯技术的采用离网光伏发电的充电桩 WO2017088334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510831085.2 2015-11-25
CN201510831085.2A CN105305561B (zh) 2015-11-25 2015-11-25 一种基于无线通讯技术的采用离网光伏发电的充电桩

Publications (1)

Publication Number Publication Date
WO2017088334A1 true WO2017088334A1 (zh) 2017-06-01

Family

ID=55202476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077523 WO2017088334A1 (zh) 2015-11-25 2016-03-28 一种基于无线通讯技术的采用离网光伏发电的充电桩

Country Status (2)

Country Link
CN (1) CN105305561B (zh)
WO (1) WO2017088334A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110303921A (zh) * 2018-03-09 2019-10-08 上海寰晟新能源科技有限公司 新能源充电桩
CN112356718A (zh) * 2020-12-04 2021-02-12 江苏点点续航互联网科技有限公司 一种具有智能管控的电动自行车充电桩
CN112776646A (zh) * 2021-02-02 2021-05-11 深圳市冰糖柚科技有限公司 一种智能网联充电桩
CN113733961A (zh) * 2021-10-21 2021-12-03 江苏星来电新能源科技有限公司 一种环保型新能源充电桩结构
CN114074568A (zh) * 2021-10-14 2022-02-22 李开鹏 一种防护效果好的充电桩监控设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105697227A (zh) * 2016-05-11 2016-06-22 兰州理工大学 一种风光互补一体化结构
CN106787073A (zh) * 2016-12-31 2017-05-31 深圳天珑无线科技有限公司 一种藉由透镜将光线聚焦产生电能的手机充电装置
CN108422879B (zh) * 2018-03-15 2020-08-18 良信电器股份有限公司 一种基于无线通讯技术的采用离网光伏发电的充电桩

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299092A (zh) * 2008-06-18 2008-11-05 林于纮 太阳能强效旋环聚光装置
KR101047218B1 (ko) * 2010-12-16 2011-07-06 박상희 구형 렌즈를 이용한 다방향성 태양광 집광장치
CN102355162A (zh) * 2011-09-06 2012-02-15 重庆师范大学 一种主动均衡接收太阳辐射量的聚光光伏发电***
CN202906510U (zh) * 2012-09-26 2013-04-24 北京国网普瑞特高压输电技术有限公司 一种电动汽车充电桩
JP2014233180A (ja) * 2013-05-30 2014-12-11 株式会社日立アイイ−システム 電動車両用バッテリ充電システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183931B1 (en) * 1994-09-29 2001-02-06 Xerox Corporation Liquid developer processes
CN102628432A (zh) * 2012-03-30 2012-08-08 王德恒 一种太阳能光热发电的方法及***
CN102903186B (zh) * 2012-09-26 2014-05-21 北京国网普瑞特高压输电技术有限公司 一种电动汽车充电桩及其运行方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299092A (zh) * 2008-06-18 2008-11-05 林于纮 太阳能强效旋环聚光装置
KR101047218B1 (ko) * 2010-12-16 2011-07-06 박상희 구형 렌즈를 이용한 다방향성 태양광 집광장치
CN102355162A (zh) * 2011-09-06 2012-02-15 重庆师范大学 一种主动均衡接收太阳辐射量的聚光光伏发电***
CN202906510U (zh) * 2012-09-26 2013-04-24 北京国网普瑞特高压输电技术有限公司 一种电动汽车充电桩
JP2014233180A (ja) * 2013-05-30 2014-12-11 株式会社日立アイイ−システム 電動車両用バッテリ充電システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110303921A (zh) * 2018-03-09 2019-10-08 上海寰晟新能源科技有限公司 新能源充电桩
CN112356718A (zh) * 2020-12-04 2021-02-12 江苏点点续航互联网科技有限公司 一种具有智能管控的电动自行车充电桩
CN112776646A (zh) * 2021-02-02 2021-05-11 深圳市冰糖柚科技有限公司 一种智能网联充电桩
CN114074568A (zh) * 2021-10-14 2022-02-22 李开鹏 一种防护效果好的充电桩监控设备
CN113733961A (zh) * 2021-10-21 2021-12-03 江苏星来电新能源科技有限公司 一种环保型新能源充电桩结构

Also Published As

Publication number Publication date
CN105305561A (zh) 2016-02-03
CN105305561B (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
WO2017088334A1 (zh) 一种基于无线通讯技术的采用离网光伏发电的充电桩
CN204886274U (zh) 一种太阳能光伏车棚智能充电站
CN105897161B (zh) 一种基于动态电容充放电的户外光伏组件检测***的测试方法
CN103823417A (zh) 一种太阳能光伏发电远程智能监控***
CN103684228A (zh) 一种太阳自动跟踪装置及其跟踪方法
CN207392086U (zh) 一种新型可调支架
CN207410288U (zh) 室外智能空气质量态势感知设备
CN206673871U (zh) 一种太阳能发电储电装置
CN202997674U (zh) 一种离网聚光光伏发电***
CN103034245A (zh) 蜂窝型太阳能采集装置
CN105743149A (zh) 一种具有聚光功能的太阳能电动汽车充电桩
CN105575236A (zh) 风光互补发电演示实验***
CN207444130U (zh) 智能驱鸟器及监控***
CN207926203U (zh) 一种激光充电装置
CN203690980U (zh) 太阳能快速充电控制***
CN206313515U (zh) 一种光伏板清洁机器人与换道小车之间供电装置
CN203466204U (zh) 改进型光伏发电聚光器
CN204943300U (zh) 一种并网储能型太阳能照明与充电一体化路灯
CN103294067A (zh) 太阳能自动追踪器
CN207637005U (zh) 高效聚光的太阳跟踪控制***
CN208094706U (zh) 一种基于arm与人脸识别的智能视频监控***
CN206364765U (zh) 一种基于太阳光聚光转为线性光源的装置
CN202836754U (zh) 一种日辐照强度及光伏发电量采集设备
CN207166447U (zh) 薄膜式太阳能充电装置
CN105650588A (zh) 一种实用性强的路灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16867563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16867563

Country of ref document: EP

Kind code of ref document: A1