WO2017086657A1 - Deionization filter device and water treatment device comprising deionization filter device - Google Patents

Deionization filter device and water treatment device comprising deionization filter device Download PDF

Info

Publication number
WO2017086657A1
WO2017086657A1 PCT/KR2016/012910 KR2016012910W WO2017086657A1 WO 2017086657 A1 WO2017086657 A1 WO 2017086657A1 KR 2016012910 W KR2016012910 W KR 2016012910W WO 2017086657 A1 WO2017086657 A1 WO 2017086657A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
voltage
deionization
filter device
ion exchange
Prior art date
Application number
PCT/KR2016/012910
Other languages
French (fr)
Korean (ko)
Inventor
문성민
이준영
이국원
강상현
Original Assignee
코웨이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160149014A external-priority patent/KR20170058853A/en
Application filed by 코웨이 주식회사 filed Critical 코웨이 주식회사
Priority to US15/777,455 priority Critical patent/US10815136B2/en
Priority to MYPI2018701839A priority patent/MY194608A/en
Priority to CN201680067757.XA priority patent/CN108290117B/en
Publication of WO2017086657A1 publication Critical patent/WO2017086657A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/52Accessories; Auxiliary operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/54Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents

Definitions

  • the present invention relates to a water treatment device comprising a deionization filter device and a deionization filter device.
  • a deionization filter for performing a deionization operation using a bipolar ion exchange membrane having a cation exchange membrane and an anion exchange membrane has been proposed.
  • the pH of the purified water may be lowered due to the imbalance of the ion exchange capacity, which may be inappropriate for drinking water quality standards.
  • the pH of the water used for the regeneration operation is increased due to the imbalance of the ion exchange capacity, and thus alkalinity is shown. Accordingly, the ions falling from the bipolar ion exchange membrane may be combined to easily generate scale. have.
  • Patent Document 1 discloses electrochemical ion exchange.
  • the present invention is to solve the above problems of the prior art, by measuring the pH of the water treated by the deionization filter device, by adjusting the type and size of the voltage applied to the electrode according to the pH of the water, deionization
  • the pH of the purified water generated by the operation can be adjusted so as not to deviate from the pH range according to the drinking water quality standard.
  • the pH of the water by the regeneration voltage can be adjusted to be below the reference value so that the scale can not be generated.
  • a water treatment device including an ion filter device and a deionized filter device is provided.
  • Deionized filter device includes a first electrode, a second electrode, a cation exchange membrane and an anion exchange membrane, at least one bipolar ion exchange sheet located between the first electrode and the second electrode, A voltage source for applying a deionization voltage or a regenerative voltage between the first electrode and the second electrode, a pH sensor for detecting the pH of the solution processed by the voltage applied by the voltage source, and the voltage source according to the pH of the solution It includes a control unit for controlling.
  • the cation exchange membrane comprises a cation adsorption sheet and a cation exchange coating layer
  • the anion exchange membrane comprises an anion adsorption sheet and an anion exchange coating layer
  • the cation exchange coating layer and the anion exchange coating layer to be bonded to face each other Can be.
  • the bipolar ion exchange sheet may further include a water decomposition catalyst layer formed between the cation exchange coating layer and the anion exchange coating layer.
  • the cation adsorption sheet and the anion adsorption sheet may be a porous sheet.
  • the porous sheet may be an extruded film.
  • the controller may adjust the type and magnitude of the voltage applied to the first electrode and the second electrode according to the pH of the solution.
  • control unit may adjust the magnitude of the deionization voltage so that the pH of the solution is included in the first range is set. .
  • control unit may change the deionization voltage applied to the first electrode and the second electrode to a regeneration voltage.
  • the controller may adjust the magnitude of the regenerative voltage so that the pH of the solution is equal to or less than a first predetermined reference value.
  • the controller may stop the application of the regenerative voltage and discharge the solution.
  • the first range may be greater than or equal to 5.8 and less than 8.5.
  • the first reference value may be 9.
  • the bipolar ion exchange sheet may include a cation exchange surface in contact with the first electrode and an anion exchange surface in contact with the second electrode.
  • the present invention is to solve the above problems of the prior art, by measuring the pH of the water treated by the deionization filter device, and of the voltage applied to the electrode according to the pH of the water By adjusting the type and size, the pH of the purified water generated by the deionization operation can be adjusted so as not to deviate from the pH range according to the drinking water quality standard.
  • the regeneration operation by adjusting the pH of the water by the regeneration voltage to be below the reference value There is an effect that can be adjusted so that scale does not occur.
  • FIG. 1 is a block diagram illustrating a deionization filter device according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing an example of a cross-sectional structure of the bipolar ion exchange sheet shown in FIG. 1.
  • FIG. 3 is a view schematically showing another example of the cross-sectional structure of the bipolar ion exchange sheet shown in FIG.
  • FIG. 4 is a conceptual view illustrating a case in which a deionization voltage is applied to the first electrode and the second electrode.
  • FIG. 5 is a conceptual diagram illustrating a case where a regenerative voltage is applied to the first electrode and the second electrode.
  • FIG. 6 is a conceptual diagram illustrating the deionization filter device of FIG. 1.
  • FIG. 7 is a perspective view illustrating a deionization filter device according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of the deionization filter device shown in FIG. 7.
  • FIG. 1 is a block diagram illustrating a deionization filter device according to an embodiment of the present invention.
  • a deionization filter device may include a first electrode 110, a second electrode 120, a bipolar ion exchange sheet 130, a voltage source 140, and a pH sensor 150. ) And the controller 160.
  • the deionization voltage or the regeneration voltage may be applied to the first electrode 110 and the second electrode 120 by the voltage source 140.
  • the first electrode 110 and the second electrode 120 may be disposed inside the housing 10 having an inlet 11 through which water is introduced and an outlet 12 through which water is discharged.
  • the bipolar ion exchange sheet 130 may be disposed between the first electrode 110 and the second electrode 120.
  • the bipolar ion exchange sheet 130 may include an anion exchange membrane 132 disposed toward the first electrode 110 and a cation exchange membrane 134 disposed toward the second electrode 120.
  • the bipolar ion exchange sheet 130 When the bipolar ion exchange sheet 130 has water introduced into the inlet 11 of the housing 10, and deionization voltage is applied to the first electrode 110 and the second electrode 120, the bipolar ion exchange sheet 130 may be formed by the deionization voltage.
  • the positive and negative ions contained in the water may be separated by the attraction force and moved to the anion exchange membrane 132 and the cation exchange membrane 134, respectively.
  • a regenerative voltage is applied to the first electrode 110 and the second electrode 120, the cation and anion components adsorbed to the anion exchange membrane 132 and the cation exchange membrane 134 by a deionization operation are generated. It can be separated from the anion exchange membrane 132 and the cation exchange membrane 134 by the repulsive force by.
  • the bipolar ion exchange sheet 130 will be described in more detail below with reference to FIGS. 2 and 3.
  • FIG. 2 is a view schematically showing an example of the cross-sectional structure of the bipolar ion exchange sheet shown in FIG. 1
  • FIG. 3 is a view schematically showing another example of the cross-sectional structure of the bipolar ion exchange sheet shown in FIG. 1.
  • the cation exchange membrane 134 includes a cation adsorption sheet 134a and a cation exchange coating layer 134b, and the anion exchange membrane 132 is an anion adsorption sheet 132a. And an anion exchange coating layer 132b, and the cation exchange coating layer 134b and the anion exchange coating layer 132b may be bonded to face each other to form a bipolar ion exchange sheet 130.
  • the bipolar ion exchange sheet 130 is formed by applying and drying an ion exchange coating solution on the ion adsorption sheets 134a and 132a to form the ion exchange coating layers 134b and 132b to form the cation exchange membrane 134 and the anion exchange membrane 132.
  • the cation exchange membrane 134 and the anion exchange membrane 132 may be manufactured by bonding the cation exchange coating layer 134b and the anion exchange coating layer 132b to face each other. Through this, it is possible to minimize the difference in the adsorption capacity of the cation exchange membrane 134 and the anion exchange membrane 132.
  • the ion adsorption sheets 134a and 132a adsorb ions by ion exchange, and may be implemented as porous sheets.
  • the porous sheets are used as the ion adsorption sheets 134a and 132a, the membrane resistance can be lowered, thereby further improving the adsorption capacity of the ions and further improving the water decomposition efficiency.
  • the porous sheet may be an extruded film. Since the extruded film can be manufactured by a simpler process, the manufacturing cost of the ion adsorption sheets 134a and 132a can be significantly reduced, and the coating of the ion exchange coating liquid on the surface of the ion adsorption sheets 134a and 132a made of the extruded film. By forming the ion exchange coating layers 134b and 132b, the thickness of the ion exchange coating layers 134b and 132b can be remarkably thin.
  • the ion exchange coating liquid is an ion exchange polymer having an ion exchange group dissolved in an organic solvent, and includes the ion exchange polymer having an ion exchange group by applying the ion exchange coating liquid to one surface of the ion adsorption sheets (134a, 132a) and drying it.
  • Ion exchange coating layers 134b and 132b may be formed.
  • the ion exchange coating layers 134b and 132b may serve as a means for providing a bonding force between the ion exchange membranes 134 and 132 of both polarities.
  • the ion exchange coating layers 134b and 132b may be heated and pressurized, and then bonded. If necessary, any one ion exchange coating layer is not completely dried. By doing so, the joining efficiency can be improved.
  • the hydrolysis catalyst layer 136 may be further included between the cation exchange coating layer 134b and the anion exchange coating layer 132b.
  • the water decomposition catalyst layer 136 is to promote the water decomposition efficiency, the metal hydroxide nano powder, such as iron hydroxide (Fe (OH) 3, Fe (OH) 2), chromium hydroxide (Cr (OH) 2)
  • the metal hydroxide nano powder such as iron hydroxide (Fe (OH) 3, Fe (OH) 2), chromium hydroxide (Cr (OH) 2)
  • the slurry dispersed in the solvent can be formed by applying and drying on either ion exchange coating layer.
  • the voltage source 140 may apply a deionization voltage or a regeneration voltage to the first electrode 110 and the second electrode 120 under the control of the controller 160.
  • the voltage source 140 may adjust the pH of the water by adjusting the magnitude of the voltage applied to the first electrode 110 and the second electrode 120 under the control of the controller 160.
  • the pH sensor 150 may be disposed inside the housing 10 to detect the pH of the water.
  • the pH sensor 150 may be disposed adjacent to the outlet 12 through which the water passing through the bipolar ion exchange sheet 130 is discharged to detect the pH of the water treated by the voltage applied by the voltage source 140. Can be.
  • the pH sensor 150 may detect the pH of the water and output the detected pH to the controller 160.
  • the controller 160 may adjust the type and magnitude of the voltage applied to the voltage source 140.
  • the controller 160 may control the voltage source 140 to apply a deionization voltage to the first electrode 110 and the second electrode 120 to remove ions from the incoming water. In this case, the removed ions may be adsorbed onto the bipolar ion exchange sheet 130.
  • the voltage source 140 may be configured to apply a regenerative voltage to the first electrode 110 and the second electrode 120 to flush the adsorbed ions. Can be controlled.
  • the controller 160 may adjust the magnitude of the deionization voltage to adjust the TDS (Total Dissolved Solids) value of the water.
  • TDS Total Dissolved Solids
  • the controller 160 may include at least one processing unit and a memory.
  • the processing unit may include, for example, a central processing unit (CPU), a graphics processing unit (GPU), a microprocessor, an application specific integrated circuit (ASIC), field programmable gate arrays (FPGA), and the like. It may have a plurality of cores.
  • the memory may be volatile memory, nonvolatile memory, or a combination thereof.
  • the controller 160 may adjust the type and magnitude of the voltage applied to the first electrode 110 and the second electrode 120 according to the pH of the water detected by the pH sensor 150.
  • the controller 160 will be described in more detail below with reference to FIGS. 4 to 6.
  • FIG. 4 is a conceptual diagram illustrating a case where a deionization voltage is applied to the first electrode and the second electrode
  • FIG. 5 is a conceptual diagram illustrating a case where a regenerative voltage is applied to the first electrode and the second electrode
  • 6 is a conceptual diagram illustrating the deionization filter device of FIG. 1.
  • the first electrode 110 is a positive (+) electrode
  • the second electrode 120 is negative ( ⁇ ).
  • the first electrode 110 when a regenerative voltage is applied to the first electrode 110 and the second electrode 120, the first electrode 110 is a negative (-) electrode and the second electrode 120 is a positive (+). It becomes an electrode.
  • the deionization filter device the pH sensor 150 and the pH sensor for detecting the pH of the water treated by the voltage applied by the voltage source 140
  • the deionization voltage is applied by including a control unit 160 for adjusting the type and magnitude of the voltage applied to the first electrode 110 and the second electrode 120 according to the pH of the water detected from 150
  • the pH of the purified water generated by the ion voltage can be adjusted so as not to deviate from the pH range according to the drinking water quality standard.
  • the regenerative voltage is applied, the pH of the water by the regenerative voltage is adjusted to be below the reference value so as not to generate scale. I can regulate it.
  • the controller 160 when the deionization voltage is applied, the controller 160 is based on the pH value of the water output from the pH sensor 150, the first range (eg , 5.8 ⁇ 8.5) can be adjusted to the size of the deionized voltage.
  • the first range eg , 5.8 ⁇ 8.5
  • the controller 160 to prevent the acidic water is supplied to the user, the first electrode 110 and the second The type of voltage applied to the electrode 120 may be changed from the deionization voltage to the regeneration voltage.
  • the controller 160 adjusts the pH of the water supplied to regenerate the bipolar ion exchange sheet 130 based on the pH value of the water output from the pH sensor 150. 9)
  • the magnitude of regenerative voltage can be adjusted to be below.
  • the controller 160 stops applying the regeneration voltage to prevent the scale from occurring. Water can be discharged to the outside.
  • a water processor (not shown) including the deionization filter device of FIG. 1 described above.
  • FIG. 7 is a perspective view illustrating a deionization filter device according to an embodiment of the present invention
  • FIG. 8 is a cross-sectional view of the deionization filter device of FIG. 7.
  • the deionization filter device may include a plurality of bipolar ion exchange sheets 130, and the plurality of bipolar ion exchange sheets 130 may have a cylindrical shape.
  • the second electrode 120 disposed in the center of the formed housing 10 may be disposed spirally.
  • the first electrode 110 may be formed to spirally surround the outer circumferential surfaces of the plurality of bipolar ion exchange sheets 130 arranged in a spiral manner.
  • the anion exchange membrane 132 of the plurality of bipolar ion exchange sheet 130 may be disposed toward the first electrode 110, and the cation exchange membrane 134 may be disposed toward the second electrode 120. Can be.
  • the purified or regenerated water may be discharged through the upper outlet 12 by passing through the bipolar ion exchange sheet 130.
  • the pH sensor 150 passes through the bipolar ion exchange sheet 130 so as to measure the pH of the purified or reclaimed water so as to measure the pH of the outlet 12 or the outlet 12. Can be disposed adjacent to (12).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A deionization filter device according to one embodiment of the present invention comprises: a first electrode; a second electrode; at least one bipolar ion exchange sheet including a cation exchange film and an anion exchange film, and located between the first electrode and the second electrode; a voltage source for applying a deionization voltage or a reproduction voltage between the first electrode and the second electrode; a pH sensor for detecting the pH of a solution treated by a voltage applied by the voltage source; and a control unit for controlling the voltage source according to the pH of the solution.

Description

탈이온 필터 장치 및 탈이온 필터 장치를 포함하는 수처리Water treatment including deionized filter device and deionized filter device
본 발명은 탈이온 필터 장치 및 탈이온 필터 장치를 포함하는 수처리기에 관한 것이다.The present invention relates to a water treatment device comprising a deionization filter device and a deionization filter device.
최근, 원수에 포함된 이온물질 등을 전기적 인력을 이용하여 제거하는 탈이온 필터에 대한 연구가 활발히 이루어지고 있다. Recently, research has been actively conducted on deionization filters for removing ionic substances and the like contained in raw water by using electrical attraction.
일 예로, 양이온 교환막 및 음이온 교환막을 구비하는 바이폴라(Bipolar) 이온교환막을 사용하여 탈이온 동작을 수행하는 탈이온 필터가 제안되었다.As an example, a deionization filter for performing a deionization operation using a bipolar ion exchange membrane having a cation exchange membrane and an anion exchange membrane has been proposed.
그러나, 바이폴라 이온교환막을 구성하는 양 극성의 교환막의 이온교환용량 차이에 의해 물이 적정 pH를 유지하도록 하는데 어려움이 있었다.However, there was a difficulty in maintaining water at an appropriate pH due to the difference in the ion exchange capacity of the bipolar exchange membrane constituting the bipolar ion exchange membrane.
구체적으로, 바이폴라 이온교환막을 이용하여 탈이온 동작을 수행하는 경우에는 이온교환용량의 불균형에 의해 정수의 pH가 낮아져서 먹는물 수질기준에 부적합할 수 있다.Specifically, when the deionization operation is performed using the bipolar ion exchange membrane, the pH of the purified water may be lowered due to the imbalance of the ion exchange capacity, which may be inappropriate for drinking water quality standards.
또한, 바이폴라 이온교환막의 재생 동작을 수행하는 경우에도 이온교환용량의 불균형에 의해 재생동작에 사용되는 물의 pH가 높아져서 알칼리성을 띄게 되고, 이에 따라 바이폴라 이온교환막에서 떨어지는 이온들이 결합하여 스케일이 쉽게 발생할 수 있다.In addition, even when the regeneration operation of the bipolar ion exchange membrane is performed, the pH of the water used for the regeneration operation is increased due to the imbalance of the ion exchange capacity, and thus alkalinity is shown. Accordingly, the ions falling from the bipolar ion exchange membrane may be combined to easily generate scale. have.
하기의 특허문헌 1은 전기화학전 이온 교환에 대해 개시하고 있다.Patent Document 1 below discloses electrochemical ion exchange.
한국 등록특허 제10-0518045호Korea Patent Registration No. 10-0518045
본 발명은 상기한 종래 기술의 문제점을 해결하기 위한 것으로써, 탈이온 필터 장치에 의해 처리되는 물의 pH를 측정하고, 상기 물의 pH에 따라 전극에 인가되는 전압의 종류 및 크기를 조절함으로써, 탈이온 동작에 의해 생성되는 정수의 pH가 먹는물 수질기준에 따른 pH범위를 벗어나지 않도록 조절할 수 있으며, 재생 동작시, 재생전압에 의한 물의 pH가 기준값 이하가 되도록 조절함으로써 스케일이 발생하지 않도록 조절할 수 있는 탈이온 필터 장치 및 탈이온 필터 장치를 포함하는 수처리기를 제공한다.The present invention is to solve the above problems of the prior art, by measuring the pH of the water treated by the deionization filter device, by adjusting the type and size of the voltage applied to the electrode according to the pH of the water, deionization The pH of the purified water generated by the operation can be adjusted so as not to deviate from the pH range according to the drinking water quality standard. During the regeneration operation, the pH of the water by the regeneration voltage can be adjusted to be below the reference value so that the scale can not be generated. A water treatment device including an ion filter device and a deionized filter device is provided.
본 발명의 일 실시예에 따른 탈이온 필터 장치는 제1 전극, 제2 전극, 양이온 교환막 및 음이온 교환막을 포함하며, 상기 제1 전극과 제2 전극 사이에 위치하는 적어도 하나의 바이폴라 이온교환시트, 상기 제1 전극과 제2 전극 사이에 탈이온전압 또는 재생전압을 인가하는 전압원, 상기 전압원에 의해 인가되는 전압에 의해 처리되는 용액의 pH를 검출하는 pH센서 및 상기 용액의 pH에 따라 상기 전압원을 제어하는 제어부를 포함한다.Deionized filter device according to an embodiment of the present invention includes a first electrode, a second electrode, a cation exchange membrane and an anion exchange membrane, at least one bipolar ion exchange sheet located between the first electrode and the second electrode, A voltage source for applying a deionization voltage or a regenerative voltage between the first electrode and the second electrode, a pH sensor for detecting the pH of the solution processed by the voltage applied by the voltage source, and the voltage source according to the pH of the solution It includes a control unit for controlling.
일 실시예에서, 상기 양이온 교환막은 양이온 흡착시트 및 양이온교환 코팅층을 포함하고, 상기 음이온 교환막은 음이온 흡착시트 및 음이온교환 코팅층을 포함하며, 상기 양이온교환 코팅층 및 상기 음이온교환 코팅층이 서로 마주보도록 접합될 수 있다.In one embodiment, the cation exchange membrane comprises a cation adsorption sheet and a cation exchange coating layer, the anion exchange membrane comprises an anion adsorption sheet and an anion exchange coating layer, the cation exchange coating layer and the anion exchange coating layer to be bonded to face each other Can be.
일 실시예에서, 상기 바이폴라 이온교환시트는, 상기 양이온교환 코팅층 및 상기 음이온교환 코팅층 사이에 형성되는 물 분해 촉매층을 더 포함할 수 있다.In one embodiment, the bipolar ion exchange sheet may further include a water decomposition catalyst layer formed between the cation exchange coating layer and the anion exchange coating layer.
일 실시예에서, 상기 양이온 흡착시트 및 상기 음이온 흡착시트는, 다공성 시트일 수 있다.In one embodiment, the cation adsorption sheet and the anion adsorption sheet may be a porous sheet.
일 실시예에서, 상기 다공성 시트는, 압출필름일 수 있다.In one embodiment, the porous sheet may be an extruded film.
일 실시예에서, 상기 제어부는, 상기 용액의 pH에 따라 상기 제1 전극 및 제2 전극에 인가되는 전압의 종류 및 크기를 조절할 수 있다. In one embodiment, the controller may adjust the type and magnitude of the voltage applied to the first electrode and the second electrode according to the pH of the solution.
일 실시예에서, 상기 제어부는, 상기 제1 전극 및 제2 전극에 탈이온전압이 인가되는 경우, 상기 용액의 pH가 기 설정되는 제1 범위에 포함되도록 상기 탈이온전압의 크기를 조절할 수 있다. In one embodiment, when the deionization voltage is applied to the first electrode and the second electrode, the control unit may adjust the magnitude of the deionization voltage so that the pH of the solution is included in the first range is set. .
여기서, 상기 제어부는, 상기 용액의 pH가 상기 제1 범위의 최소값 미만인 경우, 상기 제1 전극 및 제2 전극에 인가되는 탈이온전압을 재생전압으로 변경할 수 있다. Here, when the pH of the solution is less than the minimum value of the first range, the control unit may change the deionization voltage applied to the first electrode and the second electrode to a regeneration voltage.
일 실시예에서, 상기 제어부는, 상기 제1 전극 및 제2 전극에 재생전압이 인가되는 경우, 상기 용액의 pH가 기 설정된 제1 기준값 이하가 되도록 상기 재생전압의 크기를 조절할 수 있다.In one embodiment, when the regenerative voltage is applied to the first electrode and the second electrode, the controller may adjust the magnitude of the regenerative voltage so that the pH of the solution is equal to or less than a first predetermined reference value.
여기서, 상기 제어부는, 상기 용액의 pH가 상기 제1 기준값을 초과하는 경우, 상기 재생전압의 인가를 중단하고, 상기 용액을 배출시킬 수 있다.Here, when the pH of the solution exceeds the first reference value, the controller may stop the application of the regenerative voltage and discharge the solution.
일 실시예에서, 상기 제1 범위는, 5.8 이상 8.5 미만일 수 있다. In one embodiment, the first range may be greater than or equal to 5.8 and less than 8.5.
일 실시예에서, 상기 제1 기준값은 9일 수 있다. In one embodiment, the first reference value may be 9.
일 실시예에서, 상기 바이폴라 이온교환시트는, 상기 제1 전극에 접하는 양이온 교환 표면 및 상기 제2 전극에 접하는 음이온 교환 표면을 포함할 수 있다. In one embodiment, the bipolar ion exchange sheet may include a cation exchange surface in contact with the first electrode and an anion exchange surface in contact with the second electrode.
본 발명의 일 실시예에 의하면, 상기 탈이온 필터 장치를 포함하는 수처리기가 있을 수 있다.According to an embodiment of the present invention, there may be a water treatment device including the deionization filter device.
본 발명의 일 실시형태에 의하면, 본 발명은 상기한 종래 기술의 문제점을 해결하기 위한 것으로써, 탈이온 필터 장치에 의해 처리되는 물의 pH를 측정하고, 상기 물의 pH에 따라 전극에 인가되는 전압의 종류 및 크기를 조절함으로써, 탈이온 동작에 의해 생성되는 정수의 pH가 먹는물 수질기준에 따른 pH범위를 벗어나지 않도록 조절할 수 있으며, 재생 동작시, 재생전압에 의한 물의 pH가 기준값 이하가 되도록 조절함으로써 스케일이 발생하지 않도록 조절할 수 있는 효과가 있다. According to one embodiment of the present invention, the present invention is to solve the above problems of the prior art, by measuring the pH of the water treated by the deionization filter device, and of the voltage applied to the electrode according to the pH of the water By adjusting the type and size, the pH of the purified water generated by the deionization operation can be adjusted so as not to deviate from the pH range according to the drinking water quality standard. During the regeneration operation, by adjusting the pH of the water by the regeneration voltage to be below the reference value There is an effect that can be adjusted so that scale does not occur.
도 1은 본 발명의 일 실시예에 따른 탈이온 필터 장치를 설명하기 위한 구성도이다.1 is a block diagram illustrating a deionization filter device according to an embodiment of the present invention.
도 2는 도 1에 도시된 바이폴라 이온교환시트의 단면 구조의 일 예를 개략적으로 나타내는 도면이다.FIG. 2 is a view schematically showing an example of a cross-sectional structure of the bipolar ion exchange sheet shown in FIG. 1.
도 3은 도 1에 도시된 바이폴라 이온교환시트의 단면 구조의 다른 예를 개략적으로 나타내는 도면이다.3 is a view schematically showing another example of the cross-sectional structure of the bipolar ion exchange sheet shown in FIG.
도 4는 제1 전극 및 제2 전극에 탈이온전압이 인가되는 경우를 설명하기 위한 개념도이다. 4 is a conceptual view illustrating a case in which a deionization voltage is applied to the first electrode and the second electrode.
도 5는 제1 전극 및 제2 전극에 재생전압이 인가되는 경우를 설명하기 위한 개념도이다. 5 is a conceptual diagram illustrating a case where a regenerative voltage is applied to the first electrode and the second electrode.
도 6은 도 1의 탈이온 필터 장치를 설명하기 위한 개념도이다.6 is a conceptual diagram illustrating the deionization filter device of FIG. 1.
도 7은 본 발명의 일 실시예에 따른 탈이온 필터 장치를 설명하기 위한 사시도이다. 7 is a perspective view illustrating a deionization filter device according to an embodiment of the present invention.
도 8은 도 7에 도시된 탈이온 필터 장치의 단면도이다. 8 is a cross-sectional view of the deionization filter device shown in FIG. 7.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태들을 설명한다. Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
본 발명에 참조된 도면에서 실질적으로 동일한 구성과 기능을 가진 구성요소들은 동일한 부호가 사용될 것이며, 도면에서 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.In the drawings referred to in the present invention, components having substantially the same configuration and function will be denoted by the same reference numerals, and the shapes and sizes of the elements in the drawings may be exaggerated for clarity.
도 1은 본 발명의 일 실시예에 따른 탈이온 필터 장치를 설명하기 위한 구성도이다.1 is a block diagram illustrating a deionization filter device according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 탈이온 필터 장치는 제1 전극(110), 제2 전극(120), 바이폴라 이온교환시트(130), 전압원(140), pH센서(150) 및 제어부(160)를 포함한다. 1, a deionization filter device according to an embodiment of the present invention may include a first electrode 110, a second electrode 120, a bipolar ion exchange sheet 130, a voltage source 140, and a pH sensor 150. ) And the controller 160.
제1 전극(110) 및 제2 전극(120)은 전압원(140)에 의해 탈이온전압 또는 재생전압이 인가될 수 있다. 여기서, 제1 전극(110) 및 제2 전극(120)은 물이 유입되는 유입구(11)와 물이 출수되는 배출구(12)를 갖는 하우징(10)의 내부에 배치될 수 있다. The deionization voltage or the regeneration voltage may be applied to the first electrode 110 and the second electrode 120 by the voltage source 140. Here, the first electrode 110 and the second electrode 120 may be disposed inside the housing 10 having an inlet 11 through which water is introduced and an outlet 12 through which water is discharged.
바이폴라 이온교환시트(130)는 제1 전극(110) 및 제2 전극(120) 사이에 배치될 수 있다. 바이폴라 이온교환시트(130)는 제1 전극(110) 측으로 배치되는 음이온교환막(132)과 제2 전극(120) 측으로 배치되는 양이온교환막(134)를 포함할 수 있다. 제1 전극(110)과 제2 전극 사이에 배치되는 바이폴라 이온교환시트(130)는 복수개일 수 있다. 일 실시예에서, 복수개의 바이폴라 이온교환시트(130)는 도 7에서와 같이 나선형으로 배열될 수 있다. The bipolar ion exchange sheet 130 may be disposed between the first electrode 110 and the second electrode 120. The bipolar ion exchange sheet 130 may include an anion exchange membrane 132 disposed toward the first electrode 110 and a cation exchange membrane 134 disposed toward the second electrode 120. There may be a plurality of bipolar ion exchange sheets 130 disposed between the first electrode 110 and the second electrode. In one embodiment, the plurality of bipolar ion exchange sheet 130 may be arranged in a spiral as shown in FIG.
바이폴라 이온교환시트(130)는 하우징(10)의 유입구(11)로 물이 유입되고, 제1 전극(110) 및 제2 전극(120)으로 탈이온전압이 인가되면, 상기 탈이온전압에 의한 인력에 의해 물 속에 포함된 양이온과 음이온 성분이 분리되어 각각 음이온교환막(132)과 양이온교환막(134)으로 이동할 수 있다. 이와 반대로, 제1 전극(110) 및 제2 전극(120)에 재생전압이 인가되면, 탈이온 동작에 의해 음이온교환막(132) 및 양이온교환막(134)에 흡착된 양이온 및 음이온 성분이 상기 재생전압에 의한 척력에 의해 음이온교환막(132) 및 양이온교환막(134)으로부터 분리될 수 있다. When the bipolar ion exchange sheet 130 has water introduced into the inlet 11 of the housing 10, and deionization voltage is applied to the first electrode 110 and the second electrode 120, the bipolar ion exchange sheet 130 may be formed by the deionization voltage. The positive and negative ions contained in the water may be separated by the attraction force and moved to the anion exchange membrane 132 and the cation exchange membrane 134, respectively. On the contrary, when a regenerative voltage is applied to the first electrode 110 and the second electrode 120, the cation and anion components adsorbed to the anion exchange membrane 132 and the cation exchange membrane 134 by a deionization operation are generated. It can be separated from the anion exchange membrane 132 and the cation exchange membrane 134 by the repulsive force by.
이러한 바이폴라 이온교환시트(130)에 대해서는 도 2 및 도 3을 참조하여 이하에서 보다 상세히 설명한다. The bipolar ion exchange sheet 130 will be described in more detail below with reference to FIGS. 2 and 3.
도 2는 도 1에 도시된 바이폴라 이온교환시트의 단면 구조의 일 예를 개략적으로 나타내는 도면이고, 도 3은 도 1에 도시된 바이폴라 이온교환시트의 단면 구조의 다른 예를 개략적으로 나타내는 도면이다.FIG. 2 is a view schematically showing an example of the cross-sectional structure of the bipolar ion exchange sheet shown in FIG. 1, and FIG. 3 is a view schematically showing another example of the cross-sectional structure of the bipolar ion exchange sheet shown in FIG. 1.
본 발명의 일 예에 따르면, 도 2에 나타낸 바와 같이, 양이온 교환막(134)은 양이온 흡착시트(134a) 및 양이온교환 코팅층(134b)을 포함하고, 음이온 교환막(132)는 음이온 흡착시트(132a) 및 음이온교환 코팅층(132b)을 포함하며, 양이온교환 코팅층(134b) 및 음이온교환 코팅층(132b)이 서로 마주보도록 접합되어 바이폴라 이온교환시트(130)를 형성할 수 있다.According to one embodiment of the present invention, as shown in FIG. 2, the cation exchange membrane 134 includes a cation adsorption sheet 134a and a cation exchange coating layer 134b, and the anion exchange membrane 132 is an anion adsorption sheet 132a. And an anion exchange coating layer 132b, and the cation exchange coating layer 134b and the anion exchange coating layer 132b may be bonded to face each other to form a bipolar ion exchange sheet 130.
일 예로, 바이폴라 이온교환시트(130)는 이온 흡착시트(134a, 132a) 상에 이온교환 코팅액을 도포 및 건조하여 이온교환 코팅층(134b, 132b)을 형성함으로써 양이온 교환막(134) 및 음이온 교환막(132)을 각각 제조하고, 양이온 교환막(134) 및 음이온 교환막(132)을 양이온교환 코팅층(134b) 및 음이온교환 코팅층(132b)이 서로 마주보도록 접합함으로써 제조될 수 있다. 이를 통해, 양이온 교환막(134) 및 음이온 교환막(132)의 흡착용량의 차이를 최소화할 수 있다.For example, the bipolar ion exchange sheet 130 is formed by applying and drying an ion exchange coating solution on the ion adsorption sheets 134a and 132a to form the ion exchange coating layers 134b and 132b to form the cation exchange membrane 134 and the anion exchange membrane 132. ), And the cation exchange membrane 134 and the anion exchange membrane 132 may be manufactured by bonding the cation exchange coating layer 134b and the anion exchange coating layer 132b to face each other. Through this, it is possible to minimize the difference in the adsorption capacity of the cation exchange membrane 134 and the anion exchange membrane 132.
여기서, 이온 흡착시트(134a, 132a)는 이온교환에 의해 이온을 흡착하는 것으로, 다공성 시트로 구현될 수 있다. 이온 흡착시트(134a, 132a)로서 다공성 시트를 사용할 경우, 막 저항을 낮출 수 있고, 이로 인해 이온의 흡착능을 보다 향상시킬 수 있으며, 나아가, 물 분해 효율을 향상시킬 수 있다. Here, the ion adsorption sheets 134a and 132a adsorb ions by ion exchange, and may be implemented as porous sheets. When the porous sheets are used as the ion adsorption sheets 134a and 132a, the membrane resistance can be lowered, thereby further improving the adsorption capacity of the ions and further improving the water decomposition efficiency.
또한, 다공성 시트는 압출필름일 수 있다. 압출필름은 보다 간단한 공정에 의해 제조 가능하므로, 이온 흡착시트(134a, 132a)의 제조단가를 현저히 절감할 수 있으며, 압출필름으로 이루어진 이온 흡착시트(134a, 132a)의 표면에 이온교환 코팅액의 코팅에 의해 이온교환 코팅층(134b, 132b)을 형성함으로써 이온교환 코팅층(134b, 132b)의 두께를 현저히 얇게 형성할 수 있다.In addition, the porous sheet may be an extruded film. Since the extruded film can be manufactured by a simpler process, the manufacturing cost of the ion adsorption sheets 134a and 132a can be significantly reduced, and the coating of the ion exchange coating liquid on the surface of the ion adsorption sheets 134a and 132a made of the extruded film. By forming the ion exchange coating layers 134b and 132b, the thickness of the ion exchange coating layers 134b and 132b can be remarkably thin.
한편, 이온교환 코팅액은 이온교환기를 갖는 이온교환 고분자가 유기용매에 녹아 있는 것으로서, 이온교환 코팅액을 이온 흡착시트(134a, 132a)의 일면에 도포한 후 건조함으로써 이온교환기를 갖는 이온교환 고분자를 포함하는 이온교환 코팅층(134b, 132b)을 형성할 수 있다.On the other hand, the ion exchange coating liquid is an ion exchange polymer having an ion exchange group dissolved in an organic solvent, and includes the ion exchange polymer having an ion exchange group by applying the ion exchange coating liquid to one surface of the ion adsorption sheets (134a, 132a) and drying it. Ion exchange coating layers 134b and 132b may be formed.
여기서, 이온교환 코팅층(134b, 132b)은 양 극성의 이온교환막(134, 132) 사이의 접합력을 제공하는 수단으로서 역할을 수행할 수 있다. 양 극성의 이온교환막(134, 132)의 접합시에 이온교환 코팅층(134b, 132b)을 가열 및 가압한 후 접합할 수 있으며, 필요에 따라 어느 하나의 이온교환 코팅층이 완전히 건조되지 않은 상태에서 접합함으로써, 접합효율을 향상시킬 수 있다.Here, the ion exchange coating layers 134b and 132b may serve as a means for providing a bonding force between the ion exchange membranes 134 and 132 of both polarities. At the time of bonding the bipolar ion exchange membranes 134 and 132, the ion exchange coating layers 134b and 132b may be heated and pressurized, and then bonded. If necessary, any one ion exchange coating layer is not completely dried. By doing so, the joining efficiency can be improved.
본 발명의 다른 예에 따르면, 도 3에 나타낸 바와 같이, 양이온교환 코팅층(134b) 및 음이온교환 코팅층(132b) 사이에 물분해 촉매층(136)을 더 포함할 수 있다.According to another example of the present invention, as shown in FIG. 3, the hydrolysis catalyst layer 136 may be further included between the cation exchange coating layer 134b and the anion exchange coating layer 132b.
여기서, 물분해 촉매층(136)은 물분해 효율을 촉진하기 위한 것으로서, 철 수산화물(Fe(OH)3, Fe(OH)2), 크롬 수산화물(Cr(OH)2)과 같은 금속 수산화물 나노분말을 용매에 분산시킨 슬러리를 어느 하나의 이온교환 코팅층 상에 도포하고 건조함으로써 형성할 수 있다.Here, the water decomposition catalyst layer 136 is to promote the water decomposition efficiency, the metal hydroxide nano powder, such as iron hydroxide (Fe (OH) 3, Fe (OH) 2), chromium hydroxide (Cr (OH) 2) The slurry dispersed in the solvent can be formed by applying and drying on either ion exchange coating layer.
전압원(140)은 제어부(160)의 제어에 따라 제1 전극(110) 및 제2 전극(120)에 탈이온전압 또는 재생전압을 인가할 수 있다. 전압원(140)은 제어부(160)의 제어에 따라 제1 전극(110) 및 제2 전극(120)에 인가하는 전압의 크기를 조절하여 물의 pH를 조절할 수 있다. The voltage source 140 may apply a deionization voltage or a regeneration voltage to the first electrode 110 and the second electrode 120 under the control of the controller 160. The voltage source 140 may adjust the pH of the water by adjusting the magnitude of the voltage applied to the first electrode 110 and the second electrode 120 under the control of the controller 160.
pH센서(150)는 하우징(10) 내부에 배치되어 물의 pH를 검출할 수 있다. 여기서, pH센서(150)는 전압원(140)에 의해 인가되는 전압에 의해 처리되는 물의 pH를 검출하기 위해 바이폴라 이온교환시트(130)를 통과한 물이 배출되는 배출구(12)에 인접하여 배치될 수 있다. pH센서(150)는 물의 pH를 검출하여 제어부(160)로 출력할 수 있다. The pH sensor 150 may be disposed inside the housing 10 to detect the pH of the water. Here, the pH sensor 150 may be disposed adjacent to the outlet 12 through which the water passing through the bipolar ion exchange sheet 130 is discharged to detect the pH of the water treated by the voltage applied by the voltage source 140. Can be. The pH sensor 150 may detect the pH of the water and output the detected pH to the controller 160.
제어부(160)는 전압원(140)에 인가되는 전압의 종류 및 크기를 조절할 수 있다. 제어부(160)는 유입되는 물에서 이온을 제거하기 위해서 제1 전극(110) 및 제2 전극(120)에 탈이온전압이 인가되도록 전압원(140)을 제어할 수 있다. 이 경우, 제거된 이온은 바이폴라 이온교환시트(130)에 흡착될 수 있는데, 흡착된 이온을 플러싱하기 위해 제1 전극(110) 및 제2 전극(120)에 재생전압이 인가되도록 전압원(140)을 제어할 수 있다. The controller 160 may adjust the type and magnitude of the voltage applied to the voltage source 140. The controller 160 may control the voltage source 140 to apply a deionization voltage to the first electrode 110 and the second electrode 120 to remove ions from the incoming water. In this case, the removed ions may be adsorbed onto the bipolar ion exchange sheet 130. The voltage source 140 may be configured to apply a regenerative voltage to the first electrode 110 and the second electrode 120 to flush the adsorbed ions. Can be controlled.
또한, 제어부(160)는 탈이온전압을 인가하는 경우, 물의 TDS(Total Dissolved Solids, 총용존고형물) 값을 조절하기 위해 탈이온전압의 크기를 조절할 수 있다. 여기서, 탈이온전압의 크기가 클수록 물의 이온 제거율이 높아지므로, TDS값은 낮아질 수 있다. In addition, when the deionization voltage is applied, the controller 160 may adjust the magnitude of the deionization voltage to adjust the TDS (Total Dissolved Solids) value of the water. Here, the larger the magnitude of the deionization voltage, the higher the ion removal rate of the water, and thus the lower the TDS value.
일 실시예에서, 제어부(160)는 적어도 하나의 프로세싱 유닛 및 메모리를 포함할 수 있다. 여기서, 프로세싱 유닛은 예를 들어 중앙처리장치(CPU), 그래픽처리장치(GPU), 마이크로프로세서, 주문형 반도체(Application Specific Integrated Circuit, ASIC), Field Programmable Gate Arrays(FPGA) 등을 포함할 수 있으며, 복수의 코어를 가질 수 있다. 메모리는 휘발성 메모리, 비휘발성 메모리 또는 이들의 조합일 수 있다.In one embodiment, the controller 160 may include at least one processing unit and a memory. Here, the processing unit may include, for example, a central processing unit (CPU), a graphics processing unit (GPU), a microprocessor, an application specific integrated circuit (ASIC), field programmable gate arrays (FPGA), and the like. It may have a plurality of cores. The memory may be volatile memory, nonvolatile memory, or a combination thereof.
일 실시예에서, 제어부(160)는 pH센서(150)에 의해 검출된 물의 pH에 따라 제1 전극(110) 및 제2 전극(120)에 인가되는 전압의 종류 및 크기를 조절할 수 있다. In one embodiment, the controller 160 may adjust the type and magnitude of the voltage applied to the first electrode 110 and the second electrode 120 according to the pH of the water detected by the pH sensor 150.
이러한 제어부(160)에 대해서는 도 4 내지 도 6을 참조하여 이하에서 보다 상세히 설명한다. The controller 160 will be described in more detail below with reference to FIGS. 4 to 6.
도 4는 제1 전극 및 제2 전극에 탈이온전압이 인가되는 경우를 설명하기 위한 개념도이며, 도 5는 제1 전극 및 제2 전극에 재생전압이 인가되는 경우를 설명하기 위한 개념도이고, 도 6은 도 1의 탈이온 필터 장치를 설명하기 위한 개념도이다.4 is a conceptual diagram illustrating a case where a deionization voltage is applied to the first electrode and the second electrode, and FIG. 5 is a conceptual diagram illustrating a case where a regenerative voltage is applied to the first electrode and the second electrode. 6 is a conceptual diagram illustrating the deionization filter device of FIG. 1.
도 4를 참조하면, 제1 전극(110)과 제2 전극(120)에 탈이온전압이 인가되면, 제1 전극(110)은 양(+)전극, 제2 전극(120)은 음(-)전극이 된다. Referring to FIG. 4, when a deionization voltage is applied to the first electrode 110 and the second electrode 120, the first electrode 110 is a positive (+) electrode, and the second electrode 120 is negative (−). ) Electrode.
이 경우, 제1 전극(110)과 제2 전극(120)에 탈이온전압이 인가되면, 양이온 교환막(134)에 흡착되어 있는 H+ 및 음이온 교환막(132)에 흡착되어 있는 OH-가 물에 포함된 양이온(Na+) 및 음이온(Cl-)과 각각 교환된다. 여기서, 양이온 교환막(134)과 음이온 교환막(132)의 흡착용량이 차이가 생기는 경우, 양이온 교환막(134)과 음이온 교환막(132) 사이의 이온교환용량의 균형이 맞지 않게 된다. 이러한 흡착용량의 차이에 의해 H+가 상대적으로 많이 발생하는 경우, 탈이온 장치를 통과하는 물의 pH는 산성이 된다. In this case, when deionization voltage is applied to the first electrode 110 and the second electrode 120, H + adsorbed on the cation exchange membrane 134 and OH- adsorbed on the anion exchange membrane 132 are included in the water. And cations (Na +) and anions (Cl −), respectively. Here, when the adsorption capacity of the cation exchange membrane 134 and the anion exchange membrane 132 is different, the ion exchange capacity between the cation exchange membrane 134 and the anion exchange membrane 132 is not balanced. When a relatively large amount of H + occurs due to the difference in adsorption capacity, the pH of the water passing through the deionizer becomes acidic.
그러나, 먹는물 수질기준에 따른 정수의 pH는 5.8 ~ 8.5인 바, 탈이온 장치를 통과하는 물의 pH가 상기 범위를 벗어나지 않도록 전압원(140)의 제어가 필요하다. However, since the pH of the purified water according to the drinking water quality standards is 5.8 to 8.5, it is necessary to control the voltage source 140 so that the pH of the water passing through the deionization device does not exceed the above range.
도 5를 참조하면, 제1 전극(110)과 제2 전극(120)에 재생전압이 인가되면, 제1 전극(110)은 음(-)전극, 제2 전극(120)은 양(+)전극이 된다.Referring to FIG. 5, when a regenerative voltage is applied to the first electrode 110 and the second electrode 120, the first electrode 110 is a negative (-) electrode and the second electrode 120 is a positive (+). It becomes an electrode.
이 경우, 제1 전극(110)과 제2 전극(120)에 재생전압이 인가되면, 재생전압에 의한 전기적 척력에 의해 음이온 교환막(132) 및 양이온 교환막(134)에 흡착된 양이온(Na+)과 음이온(Cl-)이 떨어져 하우징(10)으로 유입된 물에 녹게 된다. In this case, when a regenerative voltage is applied to the first electrode 110 and the second electrode 120, cations (Na +) adsorbed to the anion exchange membrane 132 and the cation exchange membrane 134 by electrical repulsion by the regenerative voltage and Anion (Cl-) is separated and is dissolved in the water introduced into the housing (10).
그러나, 재생전압을 인가하는 경우에도, 양이온 교환막(134)과 음이온 교환막(132)의 흡착용량이 차이가 생기게 되는 경우, 양이온 교환막(134)과 음이온 교환막(132) 사이의 이온교환용량의 불균형이 발생할 수 있다. However, even when a regenerative voltage is applied, if there is a difference in adsorption capacity between the cation exchange membrane 134 and the anion exchange membrane 132, an imbalance in the ion exchange capacity between the cation exchange membrane 134 and the anion exchange membrane 132 is caused. May occur.
이 경우, OH-가 H+에 비해 많이 발생하는 경우, 탈이온 장치를 통과하는 물의 pH는 알칼리성이 되며, pH가 상승하여 알칼리성이 되면 바이폴라 이온교환시트(130)에서 떨어지는 이온들이 결합하여 탈이온 필터 장치 또는 배수 밸브와 같은 내부 장치에 스케일이 발생하는 문제점이 발생할 수 있다. In this case, when OH- occurs more than H +, the pH of the water passing through the deionization device becomes alkaline, and when the pH rises to alkalinity, the ions falling from the bipolar ion exchange sheet 130 combine to deionize the filter. The problem may arise that scale occurs in an internal device such as a device or a drain valve.
한편, 상술한 본 발명의 실시예에 따르면, 바이폴라 이온교환시트(130)를 도 2 또는 도 3에 도시된 바와 같이 형성함으로써 양 극성의 교환막(134, 132)의 흡착용량의 차이를 최소화할 수 있으나, 이 경우에도 이온교환용량의 불균형이 발생할 여지는 남아 있다.On the other hand, according to the embodiment of the present invention described above, by forming the bipolar ion exchange sheet 130 as shown in Fig. 2 or 3 can minimize the difference in the adsorption capacity of the exchange membrane of both polarity (134, 132) However, even in this case, the imbalance of the ion exchange capacity remains.
상기와 같은 문제점을 해결하기 위해, 본 발명의 일 실시예에 따른 탈이온 필터 장치는, 전압원(140)에 의해 인가되는 전압에 의해 처리되는 물의 pH를 검출하는 pH센서(150)와 pH센서(150)로부터 감지되는 물의 pH에 따라 제1 전극(110) 및 제2 전극(120)에 인가되는 전압의 종류 및 크기를 조절하는 제어부(160)를 포함함으로써, 탈이온전압이 인가되는 경우, 탈이온전압에 의해 생성되는 정수의 pH가 먹는물 수질기준에 따른 pH범위를 벗어나지 않도록 조절할 수 있으며, 재생전압이 인가되는 경우, 재생전압에 의한 물의 pH가 기준값 이하가 되도록 조절함으로써 스케일이 발생하지 않도록 조절할 수 있다. In order to solve the above problems, the deionization filter device according to an embodiment of the present invention, the pH sensor 150 and the pH sensor for detecting the pH of the water treated by the voltage applied by the voltage source 140 ( When the deionization voltage is applied by including a control unit 160 for adjusting the type and magnitude of the voltage applied to the first electrode 110 and the second electrode 120 according to the pH of the water detected from 150, The pH of the purified water generated by the ion voltage can be adjusted so as not to deviate from the pH range according to the drinking water quality standard. When the regenerative voltage is applied, the pH of the water by the regenerative voltage is adjusted to be below the reference value so as not to generate scale. I can regulate it.
구체적으로, 탈이온전압이 인가되는 경우, 제어부(160)는 pH센서(150)로부터 출력되는 물의 pH값에 기초하여 상기 탈이온 전압에 의해 생성되는 정수의 pH가 기 설정되는 제1 범위(예컨대, 5.8~8.5)에 포함되도록 탈이온전압의 크기를 조절할 수 있다. Specifically, when the deionization voltage is applied, the controller 160 is based on the pH value of the water output from the pH sensor 150, the first range (eg , 5.8 ~ 8.5) can be adjusted to the size of the deionized voltage.
여기서, pH센서(150)로부터 출력되는 물의 pH값이 제1 범위의 최소값(예컨대 5.8) 미만인 경우, 제어부(160)는 사용자에게 산성수가 공급되는 것을 방지하기 위해 제1 전극(110) 및 제2 전극(120)에 인가되는 전압의 종류를 탈이온전압에서 재생전압으로 변경할 수 있다. Here, when the pH value of the water output from the pH sensor 150 is less than the minimum value of the first range (for example, 5.8), the controller 160 to prevent the acidic water is supplied to the user, the first electrode 110 and the second The type of voltage applied to the electrode 120 may be changed from the deionization voltage to the regeneration voltage.
재생전압이 인가되는 경우, 제어부(160)는 pH센서(150)로부터 출력되는 물의 pH값에 기초하여 바이폴라 이온교환시트(130)을 재생하기 위해 공급된 물의 pH가 기 설정된 제1 기준값(예컨대, 9) 이하가 되도록 재생전압의 크기를 조절할 수 있다.When a regenerative voltage is applied, the controller 160 adjusts the pH of the water supplied to regenerate the bipolar ion exchange sheet 130 based on the pH value of the water output from the pH sensor 150. 9) The magnitude of regenerative voltage can be adjusted to be below.
여기서, 바이폴라 이온교환시트(130)을 재생하기 위해 공급된 물의 pH가 기 설정된 제1 기준값을 초과하는 경우, 제어부(160)는 스케일이 발생하는 것을 방지하기 위해 재생전압의 인가를 중단하고, 상기 물을 외부로 배출시킬 수 있다. Here, when the pH of the water supplied to regenerate the bipolar ion exchange sheet 130 exceeds the first predetermined reference value, the controller 160 stops applying the regeneration voltage to prevent the scale from occurring. Water can be discharged to the outside.
본 발명의 일 실시예에 따르면, 상술한 도 1의 탈이온 필터 장치를 포함하는 수처리기(미도시)가 있을 수 있다.According to an embodiment of the present invention, there may be a water processor (not shown) including the deionization filter device of FIG. 1 described above.
도 7은 본 발명의 일 실시예에 따른 탈이온 필터 장치를 설명하기 위한 사시도이며, 도 8은 도 7의 탈이온 필터 장치의 단면도이다. 7 is a perspective view illustrating a deionization filter device according to an embodiment of the present invention, and FIG. 8 is a cross-sectional view of the deionization filter device of FIG. 7.
도 7 및 도 8을 참조하면, 본 발명의 일 실시예에 따른 탈이온 필터 장치는 복수개의 바이폴라 이온교환시트(130)을 포함할 수 있으며, 상기 복수개의 바이폴라 이온교환시트(130)는 원통형으로 형성된 하우징(10)의 중심에 배치되는 제2 전극(120)을 중심으로 나선형으로 배치될 수 있다. 7 and 8, the deionization filter device according to an embodiment of the present invention may include a plurality of bipolar ion exchange sheets 130, and the plurality of bipolar ion exchange sheets 130 may have a cylindrical shape. The second electrode 120 disposed in the center of the formed housing 10 may be disposed spirally.
여기서, 제1 전극(110)은 나선형으로 배치된 복수개의 바이폴라 이온교환시트(130)의 외주면을 나선형으로 둘러싸는 형태로 형성될 수 있다. Here, the first electrode 110 may be formed to spirally surround the outer circumferential surfaces of the plurality of bipolar ion exchange sheets 130 arranged in a spiral manner.
상기와 같은 배치에 의하면, 복수개의 바이폴라 이온교환시트(130)의 음이온 교환막(132)은 제1 전극(110) 측으로 배치될 수 있고, 양이온 교환막(134)은 제2 전극(120) 측으로 배치될 수 있다. According to the above arrangement, the anion exchange membrane 132 of the plurality of bipolar ion exchange sheet 130 may be disposed toward the first electrode 110, and the cation exchange membrane 134 may be disposed toward the second electrode 120. Can be.
하우징(10)의 측면에 배치되는 유입구(11)를 통해 물이 유입되면, 바이폴라 이온교환시트(130)을 통과함으로써 정수 처리된 또는 재생된 물이 상측의 배출구(12)를 통해 배출될 수 있다. When water is introduced through the inlet 11 disposed on the side of the housing 10, the purified or regenerated water may be discharged through the upper outlet 12 by passing through the bipolar ion exchange sheet 130. .
여기서, 비록 도 7 및 도 8에 도시되진 않았지만, pH센서(150)는 바이폴라 이온교환시트(130)을 통과함으로써 정수 처리된 또는 재생된 물의 pH를 측정할 수 있도록 배출구(12)의 내부 또는 배출구(12)에 인접하여 배치될 수 있다. Here, although not shown in FIGS. 7 and 8, the pH sensor 150 passes through the bipolar ion exchange sheet 130 so as to measure the pH of the purified or reclaimed water so as to measure the pH of the outlet 12 or the outlet 12. Can be disposed adjacent to (12).
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고 후술하는 특허청구범위에 의해 한정되며, 본 발명의 구성은 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 그 구성을 다양하게 변경 및 개조할 수 있다는 것을 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 쉽게 알 수 있다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, but is defined by the claims below, and the configuration of the present invention may be modified in various ways without departing from the technical spirit of the present invention. It will be apparent to those skilled in the art that the present invention may be changed and modified.

Claims (13)

  1. 제1 전극; A first electrode;
    제2 전극;Second electrode;
    양이온 교환막 및 음이온 교환막을 포함하며, 상기 제1 전극과 제2 전극 사이에 위치하는 적어도 하나의 바이폴라 이온교환시트; At least one bipolar ion exchange sheet including a cation exchange membrane and an anion exchange membrane and positioned between the first electrode and the second electrode;
    상기 제1 전극과 제2 전극 사이에 탈이온전압 또는 재생전압을 인가하는 전압원; A voltage source applying a deionization voltage or a regeneration voltage between the first electrode and the second electrode;
    상기 전압원에 의해 인가되는 전압에 의해 처리되는 용액의 pH를 검출하는 pH센서; 및A pH sensor for detecting the pH of the solution treated by the voltage applied by the voltage source; And
    상기 용액의 pH에 따라 상기 전압원을 제어하는 제어부;A control unit controlling the voltage source according to the pH of the solution;
    를 포함하는 탈이온 필터 장치.Deionized filter device comprising a.
  2. 제1항에 있어서, The method of claim 1,
    상기 양이온 교환막은 양이온 흡착시트 및 양이온교환 코팅층을 포함하고,The cation exchange membrane includes a cation adsorption sheet and a cation exchange coating layer,
    상기 음이온 교환막은 음이온 흡착시트 및 음이온교환 코팅층을 포함하며,The anion exchange membrane includes an anion adsorption sheet and an anion exchange coating layer,
    상기 양이온교환 코팅층 및 상기 음이온교환 코팅층이 서로 마주보도록 접합되는 탈이온 필터 장치.Deionized filter device is bonded to the cation exchange coating layer and the anion exchange coating layer facing each other.
  3. 제2항에 있어서, 상기 바이폴라 이온교환시트는,The method of claim 2, wherein the bipolar ion exchange sheet,
    상기 양이온교환 코팅층 및 상기 음이온교환 코팅층 사이에 형성되는 물 분해 촉매층을 더 포함하는 탈이온 필터 장치.Deionization filter device further comprising a water decomposition catalyst layer formed between the cation exchange coating layer and the anion exchange coating layer.
  4. 제2항에 있어서, 상기 양이온 흡착시트 및 상기 음이온 흡착시트는,The method of claim 2, wherein the cation adsorption sheet and the anion adsorption sheet,
    다공성 시트인 탈이온 필터 장치.Deionized filter device that is a porous sheet.
  5. 제4항에 있어서, 상기 다공성 시트는,The method of claim 4, wherein the porous sheet,
    압출필름인 탈이온 필터 장치.Deionized filter device that is an extruded film.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 제어부는,The method according to any one of claims 1 to 3, wherein the control unit,
    상기 용액의 pH에 따라 상기 제1 전극 및 제2 전극에 인가되는 전압의 종류 및 크기를 조절하는 탈이온 필터 장치.Deionized filter device for adjusting the type and size of the voltage applied to the first electrode and the second electrode according to the pH of the solution.
  7. 제6항에 있어서, 상기 제어부는,The method of claim 6, wherein the control unit,
    상기 제1 전극 및 제2 전극에 탈이온전압이 인가되는 경우, When a deionization voltage is applied to the first electrode and the second electrode,
    상기 용액의 pH가 기 설정되는 제1 범위에 포함되도록 상기 탈이온전압의 크기를 조절하는 탈이온 필터 장치.Deionization filter device for adjusting the size of the deionization voltage so that the pH of the solution is included in the first range is set.
  8. 제7항에 있어서, 상기 제어부는,The method of claim 7, wherein the control unit,
    상기 용액의 pH가 상기 제1 범위의 최소값 미만인 경우, 상기 제1 전극 및 제2 전극에 인가되는 탈이온전압을 재생전압으로 변경하는 탈이온 필터 장치.The deionization filter device for changing the deionization voltage applied to the first electrode and the second electrode to a regeneration voltage when the pH of the solution is less than the minimum value of the first range.
  9. 제6항에 있어서, 상기 제어부는,The method of claim 6, wherein the control unit,
    상기 제1 전극 및 제2 전극에 재생전압이 인가되는 경우,When a regenerative voltage is applied to the first electrode and the second electrode,
    상기 용액의 pH가 기 설정된 제1 기준값 이하가 되도록 상기 재생전압의 크기를 조절하는 탈이온 필터 장치.Deionized filter device for adjusting the magnitude of the regeneration voltage so that the pH of the solution is equal to or less than the first predetermined reference value.
  10. 제9항에 있어서, 상기 제어부는,The method of claim 9, wherein the control unit,
    상기 용액의 pH가 상기 제1 기준값을 초과하는 경우, If the pH of the solution exceeds the first reference value,
    상기 재생전압의 인가를 중단하고, 상기 용액을 배출시키는 탈이온 필터 장치.A deionization filter device which stops applying the regenerative voltage and discharges the solution.
  11. 제7항에 있어서, 상기 제1 범위는,The method of claim 7, wherein the first range is,
    5.8 이상 8.5 미만인 탈이온 필터 장치.Deionization filter apparatus which is 5.8 or more and less than 8.5.
  12. 제9항에 있어서, The method of claim 9,
    상기 제1 기준값은 9인 탈이온 필터 장치.And the first reference value is nine.
  13. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 탈이온 필터 장치를 포함하는 수처리기.The water treatment device according to any one of claims 1 to 5, comprising the deionization filter device.
PCT/KR2016/012910 2015-11-19 2016-11-10 Deionization filter device and water treatment device comprising deionization filter device WO2017086657A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/777,455 US10815136B2 (en) 2015-11-19 2016-11-10 Deionization filter device and water treatment device comprising deionization filter device
MYPI2018701839A MY194608A (en) 2015-11-19 2016-11-10 Deionization Filter Device and Water Treatment Device Comprising Deionization Filter Device
CN201680067757.XA CN108290117B (en) 2015-11-19 2016-11-10 Deionizing filter device and water treatment device comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0162753 2015-11-19
KR20150162753 2015-11-19
KR1020160149014A KR20170058853A (en) 2015-11-19 2016-11-09 Deionization filter apparatus and water treatment apparatus having the deionization filter apparatus
KR10-2016-0149014 2016-11-09

Publications (1)

Publication Number Publication Date
WO2017086657A1 true WO2017086657A1 (en) 2017-05-26

Family

ID=58717565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012910 WO2017086657A1 (en) 2015-11-19 2016-11-10 Deionization filter device and water treatment device comprising deionization filter device

Country Status (2)

Country Link
MY (1) MY194608A (en)
WO (1) WO2017086657A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11180381B2 (en) * 2018-07-31 2021-11-23 Walter Villa Water treatment system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080043894A (en) * 2006-11-15 2008-05-20 두원공과대학산학협력단 Electrolysis reduction water generator
KR20120104719A (en) * 2011-03-14 2012-09-24 삼성전자주식회사 Regenerable filter unit, regenerable filter system including the same and method of operating regenerable filter system
KR20120132324A (en) * 2011-05-26 2012-12-05 웅진코웨이주식회사 Method of active regeneration of deionization module and apparatus for treating water using thereof
US20140353167A1 (en) * 2011-12-29 2014-12-04 Coway Co., Ltd. Apparatus for water treatment using capacitive deionization and method for controlling the same
KR20150010089A (en) * 2013-07-18 2015-01-28 (주) 시온텍 Bipolar ion exchange sheet and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080043894A (en) * 2006-11-15 2008-05-20 두원공과대학산학협력단 Electrolysis reduction water generator
KR20120104719A (en) * 2011-03-14 2012-09-24 삼성전자주식회사 Regenerable filter unit, regenerable filter system including the same and method of operating regenerable filter system
KR20120132324A (en) * 2011-05-26 2012-12-05 웅진코웨이주식회사 Method of active regeneration of deionization module and apparatus for treating water using thereof
US20140353167A1 (en) * 2011-12-29 2014-12-04 Coway Co., Ltd. Apparatus for water treatment using capacitive deionization and method for controlling the same
KR20150010089A (en) * 2013-07-18 2015-01-28 (주) 시온텍 Bipolar ion exchange sheet and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11180381B2 (en) * 2018-07-31 2021-11-23 Walter Villa Water treatment system

Also Published As

Publication number Publication date
MY194608A (en) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2013100628A1 (en) Apparatus for water treatment using capacitive deionization and method for controlling the same
CN108290117B (en) Deionizing filter device and water treatment device comprising same
WO2012161421A1 (en) Active regeneration method for deionization module and water treatment apparatus using the same
US8968546B2 (en) Capacitive deionization cell with radial flow
WO2014088190A1 (en) System for washing membrane, and method for washing membrane using same
WO2013100691A1 (en) Preparation method of granular oxide adsorbent, and water treatment method using same
WO2016013797A1 (en) Filter system
WO2015020419A1 (en) Desalination device and desalination method using same
WO2008083546A1 (en) Liquid processing module
WO2017086657A1 (en) Deionization filter device and water treatment device comprising deionization filter device
WO2013176508A1 (en) Polyamide-based reverse osmosis membrane having excellent initial permeate flow rate and method for manufacturing same
WO2018012786A1 (en) Water purifier
WO2020116884A1 (en) Water purifier and control method of the same
KR20180082251A (en) filter for water treatment apparatus and water treatment apparatus having the same
WO2017052021A1 (en) Apparatus for collecting useful metal ions from aqueous solution and method for collecting useful metal ions using same
WO2019182366A1 (en) Water purifier having deionization filter
WO2019112179A1 (en) Water purifier equipped with deionization filter and control method therefor
KR102267917B1 (en) filter for water treatment apparatus
CN106630043B (en) Filter
WO2014171745A1 (en) Method for manufacturing electrically conductive separation membrane for water treatment, separation membrane manufactured thereby, and water treatment method using same separation membrane
CN106673143B (en) Electrodialysis device and filtration equipment
WO2014051263A1 (en) Laminated disk filter and filtering apparatus using same
WO2017043803A1 (en) Composite filter
KR102436864B1 (en) Electric deionized water production device
KR20210021836A (en) filter for water treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866609

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15777455

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866609

Country of ref document: EP

Kind code of ref document: A1