WO2017086233A1 - Method for manufacturing optical panel and method for manufacturing aerial image display device - Google Patents

Method for manufacturing optical panel and method for manufacturing aerial image display device Download PDF

Info

Publication number
WO2017086233A1
WO2017086233A1 PCT/JP2016/083403 JP2016083403W WO2017086233A1 WO 2017086233 A1 WO2017086233 A1 WO 2017086233A1 JP 2016083403 W JP2016083403 W JP 2016083403W WO 2017086233 A1 WO2017086233 A1 WO 2017086233A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
transparent substrate
spacer
optical panel
filler
Prior art date
Application number
PCT/JP2016/083403
Other languages
French (fr)
Japanese (ja)
Inventor
康司 大西
俊也 富阪
平岡 潔
Original Assignee
コニカミノルタ株式会社
有限会社オプトセラミックス
泉陽光学株式会社
三国製鏡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社, 有限会社オプトセラミックス, 泉陽光学株式会社, 三国製鏡株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017551844A priority Critical patent/JPWO2017086233A1/en
Publication of WO2017086233A1 publication Critical patent/WO2017086233A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to a method for manufacturing an optical panel used in an aerial image display device that displays an image in the air, and a method for manufacturing the aerial image display device.
  • Patent Document 1 discloses an aerial video display device using two optical panels. Each optical panel cuts a laminated body obtained by laminating and bonding a plurality of transparent substrates having a reflective film on one side, perpendicular to the surface (reflective surface) on which the reflective film is formed, and at equal intervals. It is formed by doing.
  • the aerial video display device is configured by bonding the optical panels so that the reflecting surfaces of the optical panels are orthogonal in a plan view.
  • Such an aerial video display device in which two optical panels are bonded together is also disclosed in Patent Documents 2 and 3, for example.
  • the plurality of transparent substrates are bonded by an adhesive.
  • an adhesive undergoes volume shrinkage (curing shrinkage) during the curing process, whereby the adhesive thickness changes (not uniform) (see, for example, Patent Documents 4 and 5).
  • Japanese Patent No. 5318242 (refer to claim 1, paragraphs [0017] to [0022], FIG. 5 etc.) Japanese Patent No. 5085767 (see claim 1, paragraphs [0035] and [0036], FIG. 4 and FIG. 5) Japanese Patent No. 5437436 (see claim 1, paragraphs [0035] and [0036], FIG. 4 and FIG. 5) JP 2002-56582 A (see paragraph [0006]) JP-A-8-29610 (see paragraph [0015])
  • each optical panel the reflective surfaces of each transparent substrate are arranged at predetermined intervals in the stacking direction by stacking a plurality of transparent substrates.
  • the distortion and angle deviation of the reflection surfaces adjacent in the stacking direction are directly related to the distortion of the aerial image, it is important to ensure the flatness and parallelism (alignment accuracy) of the adjacent reflection surfaces.
  • the angle deviation between the reflecting surfaces adjacent to each other in the laminating direction is suppressed to 0.025 degrees or less while ensuring the flatness of the reflecting surfaces. is required.
  • the parallelism of the reflecting surfaces is poor, for example, when a lattice-like object is displayed as an aerial image, the lattice image is distorted and displayed as shown in FIG. Further, when the flatness of the reflecting surface is poor, not only the lattice is distorted but also a straight line is disturbed as shown in FIG.
  • the flatness and parallelism of the reflecting surface are determined by the flatness of the transparent substrate, the thickness accuracy of the transparent substrate, and the thickness accuracy of the adhesive (adhesion thickness accuracy). It becomes important. For example, when laminating and bonding hundreds of transparent substrates, the flatness of the transparent substrate is ensured, and when the thickness of the transparent substrate is uniform, the angle deviation of the reflecting surface is suppressed to the above range.
  • the variation in the adhesive thickness needs to be 1.3 ⁇ m or less per 1 mm in the direction perpendicular to the thickness direction of the transparent substrate. That is, while manufacturing accuracy of a transparent substrate is important, a manufacturing method that can laminate and bond a plurality of transparent substrates with a uniform bonding thickness is required.
  • an adhesive used for bonding a plurality of transparent substrates causes curing shrinkage during bonding.
  • the adhesive undergoes curing shrinkage, the adhesive thickness changes and distortion occurs in each transparent substrate, thereby reducing the flatness of each transparent substrate.
  • the transparent substrate to be used is also large, and the flatness of the transparent substrate is likely to be reduced by external force. Therefore, when the adhesive is cured and contracted, the flatness of the transparent substrate is easily reduced. Occur. When the flatness of the transparent substrate is lowered, the flatness of the reflecting surface is lowered and the quality of the aerial image is deteriorated.
  • Patent Documents 1 to 3 described above when laminating and bonding a plurality of transparent substrates using an adhesive, the distortion of each transparent substrate due to curing shrinkage of the adhesive is reduced, and the plane of each transparent substrate is reduced. There is no disclosure of a method for ensuring the degree of parallelism of each transparent substrate while ensuring the degree of adhesion and making the adhesive thickness uniform.
  • the present invention has been made in order to solve the above-described problems, and the purpose thereof is to increase the thickness of each transparent substrate without increasing the thickness of each transparent substrate when an adhesive is used to laminate and bond a plurality of transparent substrates.
  • an optical panel that can reduce the distortion of each transparent substrate due to curing shrinkage of the substrate and ensure the flatness of each transparent substrate, uniform the adhesive thickness, and ensure the parallelism of each transparent substrate It is to provide a method and a method for manufacturing an aerial image display device including the optical panel.
  • a reflective film is formed on at least one of two opposing surfaces of a transparent substrate, and a spacer is provided on one surface of the two opposing surfaces.
  • An aerial image display device manufacturing method is an aerial image display device manufacturing method including the optical panel manufacturing method described above, and is manufactured by the optical panel manufacturing method.
  • the surface on which the reflective film is formed on the transparent substrate of one optical panel and the surface on which the reflective film is formed on the transparent substrate of the other optical panel are orthogonal to each other in plan view. It has the bonding process which bonds the optical panel of a sheet.
  • a plurality of mirror elements By using a plurality of mirror elements in which a transparent substrate, a reflective film, and a spacer are integrally formed in advance, a plurality of mirror elements are stacked and bonded with an adhesive so that the spacer is positioned between the transparent substrates,
  • the adhesion thickness between the transparent substrates can be made uniform. Thereby, the parallelism of each transparent substrate is securable.
  • a plurality of transparent substrates are bonded using an adhesive containing a filler, curing shrinkage of the adhesive is suppressed by the filler. Thereby, without increasing the thickness of each transparent substrate, the distortion of each transparent substrate resulting from curing shrinkage of the adhesive can be reduced, and the flatness of each transparent substrate can be ensured.
  • FIG. 1 is a side view of an aerial video display device according to an embodiment of the present invention. It is a perspective view which shows typically the structure of the outline of the said aerial image display device. It is a perspective view of the transparent substrate used for one optical panel among two optical panels which comprise the said aerial image display device. It is a perspective view of the transparent substrate used for the other optical panel among the two optical panels. It is explanatory drawing which shows the imaging principle of the real image in two dimensions. It is explanatory drawing which shows typically reflection of the light ray in three-dimensional space. It is explanatory drawing which shows typically a mode that a some light ray condenses to one point via a separate reflective surface in three-dimensional space. It is a flowchart which shows the manufacturing process of the said aerial image display device.
  • FIG. 11B is a cross-sectional view taken along line A-A ′ in FIG. 11A. It is sectional drawing which shows the other structure of the said mirror element. It is sectional drawing which shows other structure of the said mirror element. It is sectional drawing of the laminated structure which laminated
  • the numerical value range includes the values of the lower limit a and the upper limit b.
  • the present invention is not limited to the following contents.
  • FIG. 1 is a side view of the aerial video display device 1 of the present embodiment.
  • the aerial image display device 1 reflects light from the object OB and collects it in the air on the side opposite to the object OB with respect to the aerial image display device 1, and the real image of the object OB in the air.
  • R image
  • the object OB may be a two-dimensional image or a three-dimensional object.
  • the light from the object OB may be light emitted from the object OB itself, or light scattered to the surroundings when the object OB hits the light (scattered light). There may be.
  • FIG. 2 is a perspective view schematically showing a schematic configuration of the aerial video display device 1.
  • the aerial video display device 1 is configured by bonding two optical panels 20 and 30 together.
  • One optical panel 20 has a plurality of mirror elements 21 arranged in one direction (for example, the X direction) of two directions perpendicular to each other within a plane perpendicular to the stacking direction (for example, the Z direction) of the optical panels 20 and 30. It is formed by adhering with an adhesive.
  • the other optical panel 30 is formed by arranging a plurality of mirror elements 31 in the other direction (for example, the Y direction) of the two directions and bonding them with an adhesive.
  • FIG. 3 is a perspective view of one mirror element 21.
  • the mirror element 21 has a rectangular parallelepiped transparent substrate 21a.
  • the transparent substrate 21a extends in the Y direction, and a reflective film 21b is formed by vapor deposition on one of two opposing surfaces (for example, two surfaces along the YZ surface).
  • the reflective film 21b may be formed on both opposing surfaces of the transparent substrate 21a.
  • FIG. 4 is a perspective view of one mirror element 31.
  • the mirror element 31 has a rectangular parallelepiped transparent substrate 31a.
  • the transparent substrate 31a extends in the X direction, and a reflective film 31b is formed by vapor deposition on one of two opposing surfaces (for example, two surfaces along the ZX surface). Note that the reflective film 31b may be formed on both opposing surfaces of the transparent substrate 31a.
  • the plurality of reflective films 21b are arranged side by side in the X direction at intervals corresponding to the width of the mirror element 21 in the X direction.
  • a plurality of reflection films 31b are arranged side by side in the Y direction at intervals corresponding to the width of the mirror element 31 in the Y direction.
  • the reflective film 21b (reflective surface) of each mirror element 21 and the reflective film 31b (reflective surface) of each mirror element 31 are viewed in plan view (from the Z-axis direction). (See) and the positional relationship is orthogonal to each other.
  • spacers for making the adhesive thickness uniform are integrally formed on the mirror elements 21 and 31, which will be described later.
  • FIG. 5 shows the imaging principle of a real image in two dimensions (in the ZX plane).
  • a plurality of light rays emitted from the point light source P are respectively reflected by a reflecting surface (reflective film 21b) parallel to the Z axis, and a position P ′ opposite to the point light source P with respect to the X axis (point light source P and Condensed at a position symmetrical to the X axis).
  • a real image of the point light source P is formed at the position P ′.
  • FIG. 6 schematically shows the reflection of light rays in a three-dimensional space (XYZ coordinate system).
  • the light beam A emitted from the point light source O is decomposed into a light beam a1 in the ZX plane and a light beam a2 in the YZ plane, and the ZX plane of the respective light beams a1 and a2 according to FIG.
  • the intersection of the ray A with the Z axis can be obtained.
  • the light ray a1 in the ZX plane is reflected by the reflective surface (reflective film 21b) parallel to the YZ plane and then goes to the Z axis
  • the light ray a2 in the YZ plane is reflective surface (reflective) parallel to the ZX plane. After being reflected by the film 31b), it goes to the Z axis.
  • These light rays a1 and a2 intersect at one point on the Z axis, that is, at the point O '. Therefore, the light ray A is reflected twice by the reflective film 21b and the reflective film 31b, and then travels toward the point O 'on the Z axis.
  • FIG. 7 schematically shows a state in which a plurality of light beams emitted from the point light source O are condensed at one point via different reflecting surfaces in a three-dimensional space.
  • a plurality of light rays emitted from the point light source O are reflected by the reflective surface (reflective film 21b) parallel to the YZ plane and the reflective surface (reflective film 31b) parallel to the ZX plane in the same manner as in FIG. Focus on the same point O ′ above. Thereby, a real image of the point light source O is formed at the point O ′.
  • FIG. 8 is a flowchart showing the manufacturing process of the aerial video display device 1.
  • the aerial video display device 1 includes a manufacturing process (S1) for manufacturing the two optical panels 20 and 30 and a bonding process (S2) for bonding the two optical panels 20 and 30 together.
  • S1 manufacturing process
  • S2 bonding process
  • the reflective surface of the transparent substrate 21a of one optical panel 20 produced in S1 the surface on which the reflective film 21b is formed
  • the reflective surface of the transparent substrate 31a of the other optical panel 30 reflective film
  • the production process of S1 further includes a lamination adhesion process (S11), a cutting process (S12), and a polishing process (S13).
  • a plurality of later-described mirror elements 41 necessary for manufacturing the optical panel 40 are prepared in advance.
  • the mirror element 41 manufactured in advance may be prepared, or the mirror element 41 may be manufactured and prepared on the spot.
  • a plurality of mirror elements 41 prepared in advance are laminated and bonded with an adhesive 42 to obtain a laminated structure 40a.
  • the cutting step of S12 as shown in FIG. 10, the laminated structure 40a is cut at equal intervals with a wire saw or the like.
  • the cutting line is shown with the broken line.
  • the polishing step of S13 the cut surface of each structure obtained by cutting is polished. Thereby, the some optical panel 40 is obtained.
  • the laminated structure 40a may be formed in a shape that matches the shape of the optical panel 40 shown in FIG. In this case, since the optical panel 40 is completed at the same time when the laminated structure 40a is formed, the above-described cutting process and polishing process become unnecessary.
  • FIG. 11A is a plan view of one mirror element 41
  • FIG. 11B is a cross-sectional view taken along line AA ′ in FIG. 11A.
  • the mirror element 41 is a structure in which a transparent substrate 41a, a reflective film 41b, and a spacer 41c are integrally formed.
  • the transparent substrate 41a is made of transparent glass or resin.
  • the thickness of the transparent substrate 41a is usually set to 0.1 mm to 1 mm in consideration of resolution. For example, when the transparent substrate 41a is made of glass, the thickness is about 0.5 mm, and when the transparent substrate 41a is made of resin, the thickness is about 0.2 mm.
  • the reflection film 41b is composed of a single layer film made of a single metal such as aluminum, or a multilayer film containing a metal or a dielectric, and the film thickness is appropriately controlled so that all incident light is reflected. .
  • the reflective film 41b is formed on at least one of the two opposing surfaces of the transparent substrate 41a. That is, the reflective film 41b may be formed on both surfaces of the transparent substrate 41a as shown in FIG. 11B, or may be formed only on one surface of the transparent substrate 41a as shown in FIGS. .
  • the thickness is, for example, about 100 nm.
  • the spacer 41c is a projecting portion (projecting portion) projecting in the thickness direction from the transparent substrate 41a, and is formed in an independent island shape.
  • the “spacer” here refers to a portion (shape, structure) having a protruding height, and does not include a flat portion between the spacers.
  • the spacer 41c is arranged so that the thickness of the adhesive 42 shown in FIG. 10 (adhesion thickness, adhesion gap) is uniform or the transparent substrate 41a is opposed to the transparent substrate 41a in order to make the sum of the thickness and the adhesion thickness uniform. It is discretely formed in advance on one of the two surfaces.
  • the spacer 41c may be formed on the transparent substrate 41a via the reflective film 41b as shown in FIG. 11B and FIG. 13, or may be directly formed on the transparent substrate 41a as shown in FIG. .
  • the spacers 41c are arranged in a matrix in a plan view, and the arrangement pitch P1 in the row direction and the arrangement pitch P2 in the column direction are set to 1 mm, for example. Further, the height T of all the spacers 41c is set within a range of 20 ⁇ m ⁇ 1 ⁇ m, for example. As described above, the spacer 41c is formed at a predetermined height at a predetermined position with respect to the transparent substrate 41a.
  • the lamination bonding step includes a preparation step of preparing a plurality of mirror elements 41 in advance and a bonding step of stacking the prepared plurality of mirror elements 41 and bonding them with the adhesive 42. Details of the adhesive 42 will be described later.
  • a plurality of mirror elements 41 in which the transparent substrate 41a, the reflective film 41b, and the spacer 41c are integrally formed are prepared in advance, and the spacer 41c is positioned between the transparent substrates 41a and 41a.
  • the spacer 41c of one mirror element 41 adjacent in the stacking direction is brought into contact with the other mirror element 41 (transparent substrate 41a or reflective film 41b).
  • the mirror elements 41 can be bonded in contact with each other.
  • the thickness of the adhesive 42 is defined by the height of the spacer 41c, and variations in the thickness of the adhesive 42 are less likely to occur.
  • the adhesive thickness between the transparent substrates 41a and 41a can be made uniform, and the parallelism of the transparent substrates 41a and 41a can be ensured.
  • the parallelism of the reflective surface (surface on which the reflective film 41b is formed) of each transparent substrate 41a can be ensured.
  • the angle shift of each reflecting surface can be suppressed to 0.025 degrees or less. Therefore, in the aerial video display device 1, it is possible to cause the observer to observe a high-quality aerial video.
  • the optical panel 40 can be produced by a simple method in which these mirror elements 41 are stacked and bonded with an adhesive 42. Therefore, according to the manufacturing method of the present embodiment, it is possible to achieve both the securing of the arrangement accuracy of each reflecting surface and the improvement of the productivity of the optical panel 40.
  • FIG. 15 is an enlarged view of part A of FIG.
  • the adhesive 42 for bonding the transparent substrates 41a and 41a includes a filler 42a.
  • the filler 42 a is mixed in the adhesive 42 in order to suppress curing shrinkage of the adhesive 42.
  • the reason why the shrinkage of the adhesive 42 can be suppressed by mixing the filler 42a is as follows. That is, (1) the amount of use (volume) of the adhesive 42 is reduced by the mixing of the filler 42a as compared to before mixing, thereby reducing the cure shrinkage amount (absolute amount) of the adhesive 42. (2) of the filler 42a Due to the mixing, the curing shrinkage force of the adhesive 42 is divided by the filler 42a, thereby reducing the cure shrinkage amount (absolute amount) of the adhesive 42.
  • the filler 42a can be composed of fine particles of an organic material or an inorganic material, for example.
  • the organic material for example, an acrylic polymer (true specific gravity: 1.1 to 1.2) can be used.
  • inorganic materials include hollow glass beads (true specific gravity: 0.2 to 0.8), amorphous silica (true specific gravity: 2.2), crystalline silica (true specific gravity: 2.6), and talc (true Specific gravity: 2.6 to 2.8), mica (true specific gravity: 2.7 to 2.9), alumina (true specific gravity: 4.0), and the like can be used.
  • specific gravity is synonymous with specific gravity, when an object contains space like a hollow glass bead, for example, it points out specific gravity of the part except the said space in the object.
  • the specific gravity refers to the ratio between the density of a certain substance and the standard water density (1.0 g / cm 3 ).
  • Talc (talc) and mica (mica) are types of silicate minerals.
  • FIG. 16 schematically shows the state of the plurality of transparent substrates 41a in the vicinity of one spacer 41c before and after curing shrinkage of the adhesive 42 not containing the filler 42a.
  • FIG. 17 schematically shows the state of the plurality of transparent substrates 41a before and after the curing shrinkage of the adhesive 42 over the arrangement region of the plurality of spacers 41c.
  • illustration of the reflective films 41b on both surfaces of the transparent substrate 41a is omitted for convenience.
  • each transparent substrate 41a is distorted, making it difficult to ensure the flatness of each transparent substrate 41a (see FIG. 17).
  • the lattice image is displayed as an aerial image, as shown in FIG. 18, since the parallelism is ensured by the spacer 41c, distortion of the entire lattice does not occur, but it corresponds to the region where the flatness is deteriorated. Waviness occurs in the straight line.
  • the plurality of transparent substrates 41a are bonded using the adhesive 42 containing the filler 42a. Since the adhesive 42 contains the filler 42a, the curing shrinkage itself of the adhesive 42 is suppressed more than when the filler 42a is not contained for the reasons (1) and (2). Thereby, without increasing the thickness of each transparent substrate 41a (even if the substrate is not easily deformed by increasing the thickness), the distortion occurs in each transparent substrate 41a due to curing shrinkage of the adhesive 42. It can be suppressed (see FIG. 15). As a result, the flatness of each transparent substrate 41a and thus the flatness of the reflecting surface can be ensured satisfactorily, and distortion in the aerial image can be suppressed. In addition, since the above-described effect can be obtained without increasing the thickness of each transparent substrate 41a, the pitch between the reflecting surfaces does not widen, thereby avoiding the deterioration of the quality of the aerial image.
  • the amount of the filler 42a contained in the adhesive 42 is 5 to 50% by volume ratio with respect to the adhesive 42 before containing the filler 42a, that is, with respect to the adhesive 42 before containing the filler 42a. It is desirable to be 5 to 50 vol%. In this case, the effect of suppressing the curing shrinkage of the adhesive 42 by the filler 42a and the effect of improving the adhesive force of the adhesive 42 can be obtained in a balanced manner, and furthermore, the flatness of the transparent substrate 41a can be reliably ensured. Is also possible.
  • the content of the filler 42a when the content of the filler 42a is less than 5 vol%, the content of the filler 42a is too small, and the effect of suppressing the curing shrinkage of the adhesive 42 by the filler 42a cannot be sufficiently obtained.
  • the content of the filler 42 a exceeds 50 vol%, the amount of the filler 42 a in the adhesive 42 is too large, and the adhesive force of the adhesive 42 is reduced.
  • the laminated body 40a is obtained by repeating the step of applying the adhesive 42 on one transparent substrate 41a and laminating the other transparent substrate 41a as in Specific Example 1 described later, If the amount is too large, part of the filler 42a contained in the adhesive 42 is likely to remain on the spacer 41c even if the adhesive 42 on the spacer 41c is moved to the side by pressing the transparent substrate 41a. Become. In this case, since the filler 42a remaining on the spacer 41c becomes a foreign substance, and the transparent substrate 41a is laminated via the spacer 41c and the foreign substance, there is a concern that the flatness of the transparent substrate 41a is lowered.
  • the filler 42a reduces the amount of the adhesive 42 used and reduces the curing shrinkage, and the filler 42a cures The effect of dividing the shrinkage force cannot be sufficiently obtained, and as a result, the effect of suppressing the curing shrinkage of the adhesive 42 cannot be obtained sufficiently.
  • the filler 42a may be too large to act as a foreign substance, thereby reducing the flatness of the transparent substrate 41a. For example, foreign matters may aggregate and the aggregate may exceed the height h of the spacer 41c, so that the flatness of the transparent substrate 41a may decrease.
  • the filler 42a varies, the filler 42a having a large particle size mixed in at a constant ratio locally contacts the transparent substrate 41a, which causes a significant decrease in flatness. For this reason, it is desirable that the variation in the particle size of the filler 42a is small (the dispersion of the particle size distribution is desirably small).
  • the filler 42a when the specific gravity A of the filler 42a is smaller than 0.9B, the filler 42a is too light with respect to the adhesive 42 before containing the filler 42a, and therefore the filler 42a is not easily mixed with the adhesive 42 uniformly.
  • the specific gravity A of the filler 42a is larger than 1.1B, the filler 42a is too heavy with respect to the adhesive 42 before containing the filler 42a, and even if the filler 42a is mixed into the adhesive 42, the filler 42a Settles and it becomes difficult to maintain a good dispersion state. As a result, uneven distribution of the filler 42a is likely to occur in the adhesive 42.
  • the effect of suppressing the curing shrinkage of the adhesive 42 varies depending on the bonding position, and there is a concern that the flatness of the transparent substrate 41a may be reduced.
  • the specific gravity of the adhesive is about 1.0 to 1.5. Therefore, for example, when a two-component mixed epoxy adhesive having a specific gravity of 1.3 is used, the filler 42a having a specific gravity of about 1.2 to 1.4 (for example, the above-described acrylic type) is obtained from the above-described conditional expression regarding the specific gravity. It can be said that it is desirable to use a polymer.
  • the amorphous silica has a specific gravity of 2.2, and has a large specific gravity difference from the two-component mixed epoxy adhesive having a specific gravity of about 1.0 to 1.5.
  • increasing the blending ratio of amorphous silica has a high effect of suppressing curing shrinkage of the adhesive 42. Therefore, when emphasizing the effect of suppressing curing shrinkage of the adhesive 42, it can be said that it is desirable to use amorphous silica as the filler 42a.
  • the general cure shrinkage of the adhesive is 5 to 10% for the photo-curable adhesive, 3 to 5% for the thermosetting adhesive, and a two-component mixed adhesive (made of resin). Adhesive used by mixing the main agent and curing agent) is less than a few percent.
  • thermosetting adhesive it is desirable to use the adhesive 42 having a small curing shrinkage rate from the viewpoint of suppressing the curing shrinkage of the adhesive 42.
  • thermosetting adhesive a thermosetting adhesive or a two-component mixed adhesive as the adhesive 42.
  • epoxy adhesives adhesives that are used by mixing a main agent composed of an epoxy resin and a curing agent
  • the thermosetting adhesive has high hardness after curing (because it is hard)
  • the thermosetting adhesive is suitable for accurately laminating and bonding the transparent substrate 41a provided with the reflective film 41b with an adhesive thickness of 1 to 100 ⁇ m.
  • the viscosity of the adhesive 42 used in the present embodiment is desirably 1000 mPa ⁇ s or less. In this case, the thickness of the adhesive 42 can be easily aligned with the height of the spacer 41c. Incidentally, if the adhesive 42 has a high viscosity, the adhesive 42 can be applied even when the one transparent substrate 41a is pressed when the adhesive 42 is applied onto the one transparent substrate 41a and the other transparent substrate 41a is laminated. Is difficult to spread and the adhesive layer tends to be thick.
  • the viscosity of the adhesive 42 is 1000 mPa ⁇ s or less, for example, even when the adhesive 42 is simultaneously injected from the side into the gap between the transparent substrates 41a in a state where a plurality of transparent substrates 41a are stacked, the adhesive 42 can be injected smoothly. From the viewpoint of reliably obtaining the above effect, the viscosity of the adhesive 42 is more desirably 200 mPa ⁇ s or less.
  • the adhesive 42 may be an anaerobic adhesive.
  • An anaerobic adhesive is an adhesive that hardens only when the air (oxygen) is blocked. As described above, even if an anaerobic adhesive is used as the adhesive 42 and the filler 42a is included in the adhesive 42, the transparent substrate 41a including the reflective film 41b can be accurately obtained with a uniform adhesive thickness of 1 to 100 ⁇ m. Can be laminated and bonded well.
  • the outermost layer of the reflective film 41b be a metal.
  • the reflective film 41b may be a metal such as aluminum in the case of a single layer film, and the outermost layer may be a metal such as aluminum in the case of a multilayer film. Since the anaerobic adhesive 42 blocks air and cures by reacting with the metal, if the outermost layer of the reflective film 41b is a metal, the anaerobic adhesive 42 is used to attach the reflective film 41b.
  • the transparent substrate 41a can be laminated and bonded.
  • the curing time of the adhesive is preferably 24 hours or longer.
  • the curing time of the adhesive is a time required for the tensile shear adhesive strength (adhesive surface: 12.5 mm ⁇ 25 mm) of the single overlap to reach 10 N / mm 2 or more at 23 ° C.
  • the spacers 41c are arranged in a matrix in a plan view, when the adhesive 42 is filled between the transparent substrates 41a, the adhesive 42 is interposed between the adjacent spacers 41c and 41c. Spread evenly. Further, between the adjacent spacers 41c and 41c, the adhesive 42 is in direct contact with the transparent substrate 41a or the reflective film 41b. Therefore, the matrix arrangement of the spacers 41c is suitable for securing the flow path and the bonding area of the adhesive 42.
  • FIG. 19 shows the arrangement positions of the spacers 41c of the four mirror elements 41 arranged in the stacking direction.
  • the first (first layer), second (second layer), third (third layer), and fourth (fourth layer) mirror elements 41 from one side in the stacking direction each spacer 41c, respectively, and spacers 41c 1, 41c 2, 41c 3 , 41c 4.
  • the spacer 41c 2 is disposed with a half pitch (for example, 0.5 mm) in the row direction with respect to the spacer 41c 1
  • the spacer 41c 3 is a half pitch (for example, 0.5 mm) with respect to the spacer 41c 2 in the column direction.
  • the spacer 41c 4 is displaced by a half pitch (for example, 0.5 mm) in the row direction with respect to the spacer 41c 3 and is a half pitch (for example, 0.5 mm) in the column direction with respect to the spacer 41c 1 . ) It is shifted.
  • the spacers 41c (41c 1 to 41c 4 ) are arranged at the same position in plan view (viewed from the stacking direction), the position where the spacer 41c does not exist, that is, the position where the adhesive 42 is filled is also shown in plan view. It becomes the same position.
  • the spacer 41c of one mirror element 41 adjacent in the stacking direction is perpendicular to the stacking direction with respect to the spacer 41c of the other mirror element 41 (corresponding to the above row direction and column direction).
  • FIG. 20 shows another arrangement example of the spacer 41c.
  • the spacers 41c may be arranged in a staggered pattern on one surface side of the transparent substrate 41a.
  • the staggered arrangement refers to a mode in which the spacers 41c are arranged with a half pitch shift in the column direction between adjacent rows, or the spacers 41c are arranged with a half pitch shift in the row direction between adjacent columns. Even in this case, the flow path and the bonding area of the adhesive 42 can be secured. Even in the zigzag arrangement, the spacer 41c of one mirror element 41 adjacent in the stacking direction is shifted from the spacer 41c of the other mirror element 41 in a direction perpendicular to the stacking direction, and the adhesive is used. You may make it reduce the unevenness
  • the arrangement of the spacers 41c may be a random arrangement.
  • the spacer 41c is formed on the reflective film 41b as shown in FIG. 11B and FIG. 13, other members are less likely to come into direct contact with the reflective film 41b when the mirror element 41 is transported or laminated. (Because the member first contacts the spacer 41c). Therefore, the configuration in which the spacer 41c is formed on the reflective film 41b is advantageous in that the reflective film 41b is less likely to be damaged than the configuration in which the spacer 41c is directly formed on the transparent substrate 41a (see FIG. 12). is there.
  • the spacer 41c can be formed of an energy curable resin, a pigment-based resin (including a resin, a pigment, and a solvent), a resin that is cured by a chemical reaction at room temperature (for example, an epoxy-based resin), and the like. It is desirable that it is made of a functional resin.
  • the energy curable resin is a resin that is cured by applying energy such as heat or light from the outside, such as a thermosetting resin or a photocurable resin. Since the energy curable resin has little volume change at the time of curing and is chemically stable, the spacer 41c can be efficiently formed at a predetermined height at a predetermined position, and is suitable as a resin for spacer formation. It is.
  • the spacer 41c and the adhesive 42 are preferably transparent and have substantially the same refractive index as that of the transparent substrate 41a. In this case, scattering of light and reflection of stray light at the interface between any two of the spacer 41c, the adhesive 42, and the transparent substrate 41a can be reduced, and deterioration of the aerial image due to scattered light and stray light can be prevented. it can.
  • a glass having a refractive index of 1.52 to 1.53 is used as the transparent substrate 41a
  • a transparent ultraviolet (UV) curable resin having a refractive index of 1.53 is used as the spacer 41c, and the adhesive 42 is refracted.
  • the above effect can be obtained by using a transparent epoxy adhesive having a rate of 1.528.
  • the refractive index difference among the transparent substrate 41a, the spacer 41c, and the adhesive 42 is preferably within a range of ⁇ 0.01.
  • the spacer 41c is preferably formed by ink jet printing.
  • inkjet printing ink droplets can be landed accurately at a desired position, and the height of the landed ink can be easily adjusted by controlling the number of ink droplets landed at the same position. .
  • the spacer 41c can be formed at a predetermined position at a predetermined height with high accuracy and efficiency.
  • the ink containing the material which forms the spacer 41c mentioned above can be used as an ink used for inkjet printing.
  • an ink containing no volatile component for example, an ink made of an energy curable resin
  • an ink containing a volatile component for example, a pigment Ink
  • drying the ink after landing makes the ink height lower than before drying because the solvent contained in the ink volatilizes.
  • the spacer 41c is desirably formed at a height corresponding to the amount of depression on the surface of the transparent substrate 41a or the thickness of the transparent substrate 41a.
  • the amount of depression and the thickness may be obtained by measurement immediately before ink is ejected, or may be a value acquired in advance (for example, a value measured when the transparent substrate 41a is manufactured). Also good. Note that the amount of depression is the original amount of depression on the surface of the transparent substrate 41 a and not the amount of depression caused by the curing shrinkage of the adhesive 42.
  • the spacer 41c By forming the spacer 41c as described above, variations in the amount of depression and thickness of the surface of the transparent substrate 41a can be corrected by the spacer 41c. Specifically, as shown in FIG. 21, even if there is variation in the amount of depressions (amount indicated by C in the figure) and the thickness (amount indicated by D in the figure) of one transparent substrate 41a, the transparent substrate The sum W of the thickness of 41a and the height of the spacer 41c can be made substantially constant in a direction perpendicular to the thickness direction of the transparent substrate 41a.
  • the sum of the thickness of the transparent substrate 41a and the height of the spacer 41c is made substantially constant between the plurality of mirror elements 41. Can do.
  • a reflective film 41b (not shown) is formed on the back surface side (the side opposite to the spacer forming side) of the transparent substrate 41a.
  • the spacer 41c can correct variations in the dent amount and thickness of the surface of the transparent substrate 41a, the parallelism of the reflecting surfaces of the transparent substrates 41a can be reliably improved.
  • the aerial video display device 1 configured using the optical panel 40 can display a high-quality video with little distortion in the air.
  • FIG. 22 schematically shows an example of forming the spacer 41c by ink jet printing.
  • the displacement meter 52 is composed of a distance measuring sensor that measures the distance to the surface of the transparent substrate 41a, for example. Using the distance between the displacement meter and the transparent substrate at the measurement start position (for example, the edge of the substrate) as a reference, this distance and the distance between the displacement meter and the transparent substrate measured at each position in the direction perpendicular to the substrate thickness direction. By obtaining the difference, the amount of depression on the surface of the transparent substrate 41a can be obtained for each measurement position.
  • the displacement meter 52 may not be installed. Further, instead of measuring the amount of depression, the thickness may be measured for each position of the transparent substrate 41a.
  • ink for example, UV curable resin
  • inkjet head 51 is ejected from the inkjet head 51 to a predetermined position on the transparent substrate 41a so that the spacer 41c is formed at a height corresponding to the amount of depression on the surface of the transparent substrate 41a.
  • the number of ink droplet ejections at the same position is not limited as long as the spacer 41c is formed at a desired height, and may be once or a plurality of times.
  • the ink is cured by UV irradiation from the UV light source 53.
  • the spacer 41c is formed at a desired height at a predetermined position.
  • the spacer 41c is preferably formed by ejecting one drop of ink (the number of ejections at the same position is desirably one). This is because if the spacer 41c is formed by a plurality of ink ejections, the height may vary when ejection misalignment (printing position misalignment) occurs. In other words, the spacer 41c is formed by discharging one drop of ink, whereby the spacer 41c having excellent height accuracy can be formed.
  • the piezoelectric body which may be a piezoelectric thin film
  • the piezoelectric body is expanded and contracted, and pressure is applied to the ink in the pressure chamber.
  • Ink discharge is performed.
  • the amount of ink discharged at one time can be changed by adjusting the drive waveform (drive voltage, voltage application time, etc.) of the drive signal. Therefore, the height of the spacer 41c formed by ejecting one drop of ink can be adjusted by adjusting the drive waveform.
  • the spacer 41c may be formed by screen printing. Even when screen printing is used, the spacer 41c can be formed at a predetermined position at a predetermined height with high accuracy and efficiency.
  • the spacer 41c may be black.
  • the black spacer 41c can be realized by adding a black pigment or carbon black to the resin constituting the spacer 41c. If the spacer 41c is black, light incident on the spacer 41c is absorbed there, and therefore no light scattering or stray light reflection occurs on the surface of the spacer 41c. Accordingly, it is possible to reduce the deterioration of the aerial image due to scattered light or stray light.
  • the spacer 41c may be formed of the same material as the transparent substrate 41a.
  • both the spacer 41c and the transparent substrate 41a may be formed of glass or may be formed of resin.
  • the spacer 41c is formed by pressing the mold against the transparent substrate 41a, the spacer 41c and the transparent substrate 41a are integrally formed by injection molding, or the surface of the transparent substrate 41a is etched to form the spacer 41c. It is possible to form the spacer 41c by various methods such as forming.
  • FIG. 23 is a cross-sectional view showing an example of the manufacturing process of the mirror element 41.
  • the spacer 41c pushes the negative mold 54 in which the shape of the spacer 41c is inverted against the transparent substrate 41a (before curing).
  • the shape may be integrally formed with the transparent substrate 41a by transferring the shape to the transparent substrate 41a.
  • the spacer 41c excellent in height accuracy can be formed at a predetermined position of the transparent substrate 41a.
  • both the spacer 41c and the transparent substrate 41a are formed of resin, they may be integrally formed by injection molding, and even in this case, the same effect as described above can be obtained.
  • the mirror element 41 is completed, for example, by forming the reflective film 41b on the back surface of the transparent substrate 41a (the surface opposite to the side on which the spacer 41c is formed).
  • FIG. 24 is a cross-sectional view showing another example of the manufacturing process of the mirror element 41.
  • the transparent substrate 41a is made of glass, and the spacer 41c may be formed by etching the transparent substrate 41a.
  • a mask 55 made of a resist or a film is formed on the transparent substrate 41a, and an unmasked portion of the transparent substrate 41a is dug by etching, so that the unetched portion remains as the spacer 41c. Accordingly, even in this case, the spacer 41c can be formed at a predetermined position of the transparent substrate 41a, and the spacer 41c having excellent height accuracy can be formed by managing the etching amount.
  • the parallelism of the reflecting surface is determined only by the thickness accuracy of the original transparent substrate 41a, the parallelism of the reflecting surface is ensured by managing the thickness of the transparent substrate 41a with high accuracy. Can do.
  • FIG. 25 is a cross-sectional view showing still another example of the manufacturing process of the mirror element 41.
  • the spacer 41c is formed by applying an energy curable resin 56a on a transparent substrate 41a made of glass, for example, and curing the energy curable resin 56a while pressing the negative mold 57 in which the shape of the spacer 41c is reversed. It may be formed by forming and releasing. In this case, a portion having a protruding height in the cured film 56 becomes the spacer 41c. Thus, even when the transparent substrate 41a and the spacer 41c are made of different materials, the spacer 41c can be formed at a predetermined position on the transparent substrate 41a with high accuracy.
  • the height of the spacer 41c is desirably 1 ⁇ m to 100 ⁇ m.
  • the thickness of the adhesive 42 can be ensured by 1 ⁇ m or more.
  • the adhesive 42 can be sufficiently spread between the transparent substrates 41a and 41a arranged in the stacking direction, and sufficient adhesive strength can be ensured.
  • the spacer 41c can be surely brought into contact with the transparent substrate 41a to ensure the parallelism of each reflecting surface.
  • the spacer 41c when the height of the spacer 41c is 100 ⁇ m or less, it is difficult for bubbles to be involved when the adhesive 42 is filled, and light scattering in the adhesive 42 is less likely to occur. Further, distortion and warpage of the transparent substrate 41a due to curing shrinkage of the adhesive 42 are less likely to occur, which can contribute to ensuring the parallelism of each reflecting surface.
  • the diameter of the spacer 41c is L ( ⁇ m) and the height is T ( ⁇ m)
  • the diameter L is preferably 1 to 1000 ⁇ m
  • the aspect ratio (T / L) is 1 to 1/300 is desirable.
  • the total area of the spacers 41c is desirably 10% or less of the area of the reflective surface (surface on which the reflective film 41b is formed) in the transparent substrate 41a.
  • the total area of the spacers 41c is represented by ⁇ (L / 2) 2 ⁇ (number of spacers included in one mirror element).
  • FIG. 26 shows an example of a method of laminating and bonding a plurality of mirror elements 41.
  • a step of applying an adhesive 42 on the mirror element 41 and (2) a step of laminating another mirror element 41 on the mirror element 41 via the adhesive 42. , May be repeated. That is, the adhesive 42 may be supplied onto the mirror element 41, and the mirror element 41 (transparent substrate 41a) may be sequentially stacked and bonded.
  • each mirror element 41 can be laminated
  • the thickness of the adhesive 42 can be defined by the height of the spacer 41c, and the laminated structure 40a with little variation in the thickness of the adhesive 42 can be obtained.
  • FIG. 27 shows another example of the lamination adhesion method, and corresponds to a cross-sectional view taken along the line B-B ′ of FIG.
  • the plurality of mirror elements 41 may be arranged in a stacked manner, and the adhesive 42 may be simultaneously injected into all the gaps between the transparent substrates 41a adjacent to each other in the stacking direction. .
  • the stacking direction of the plurality of mirror elements 41 is the z direction, and two directions perpendicular to each other in the plane perpendicular to the z direction are the x direction and the y direction.
  • the xyz directions are different from the XYZ directions shown in FIG.
  • FIG. 28 and FIG. 29 in a laminated body 40b in which a plurality of mirror elements 41 are arranged so that spacers 41c are positioned between the transparent substrates 41a, each surface is arranged on two surfaces opposed in the x direction.
  • Adhesive film 40c is affixed so that it may cover. Thereby, the clearance gap between each transparent substrate 41a * 41a of the laminated body 40b is sealed except a y direction.
  • FIG. 27 the one end side of this laminated body 40b in the y direction is fixed to the suction nozzle 62 through the packing 61, and the other end side is used by the adhesive 42 put in the container 63.
  • the stacked body 40b is disposed.
  • the vacuum degree in the gap during suction by the vacuum pump is preferably 0.05 MPa or less, and more preferably 0.01 MPa.
  • the adhesive 42 can be smoothly filled in the gaps between the transparent substrates 41a and 41a.
  • the spacer 42c of one mirror element 41 adjacent in the stacking direction is also brought into contact with the other mirror element 41 by injecting the adhesive 42 by differential pressure and bonding the plurality of mirror elements 41.
  • each mirror element 41 can be adhered. Therefore, the thickness of the adhesive 42 can be defined by the height of the spacer 41c, and the laminated structure 40a with little variation in the thickness of the adhesive 42 can be obtained.
  • FIG. 30 shows still another example of the lamination adhesion method.
  • the laminated body 40b in the step of laminating and adhering a plurality of mirror elements 41, the laminated body 40b is sealed in the vacuum chamber 71 of the fixing device 70, and the vacuum chamber 71 is evacuated. Thereafter, the adhesive 42 may be simultaneously injected and bonded to all the gaps G of the transparent substrates 41a adjacent in the stacking direction.
  • the configuration of the stacked body 40b is the same as the configuration shown in FIGS. 28 and 29, and the cross section of the stacked body 40b in FIG. 30 corresponds to the cross section taken along the line B-B 'of FIG.
  • the laminated body 40b is disposed in the vacuum chamber 71, and the vacuum pump 73 is driven for a predetermined time with the on-off valve 72 closed.
  • air in the gap G of air and stack 40b of the vacuum chamber 71, from the end 40b 1 of the exhaust side of the laminate 40b, is evacuated in the direction indicated by the arrow S, the vacuum chamber 71 is evacuated Depressurized.
  • the open / close valve 72 is opened while the vacuum pump 73 is continuously driven.
  • the degree of vacuum in the vacuum chamber 71 is adjusted to, for example, 500 Pa by the vacuum regulator 74.
  • the liquid adhesive 42 in the storage tank 75 flows into the vacuum chamber 71 via the inflow pipe 76 and the outflow port 77 that is the outlet of the inflow pipe 76.
  • the inflow pipe 76 and the outflow port 77 are located on the opposite side of the vacuum chamber 71 from the exhaust side of the vacuum pump 73, so that the adhesive 42 in the storage tank 75 is contained in the vacuum chamber 71. It flows into the vacuum chamber 71 from the side opposite to the exhaust side through the inlet pipe 76 and the outlet 77.
  • the storage tank 75 and the vacuum chamber 71 are provided with temperature adjusting devices 78 and 79, respectively.
  • the temperature of the adhesive 42 is set to a predetermined range lower than the curing temperature (for example, 30 ° C.) by the temperature adjusting devices 78 and 79. To 35 ° C).
  • the adhesive 42 can be kept uncured and in a low viscosity state, while preventing the adhesive 42 from being cured during the filling of the adhesive 42 into the gap G of the laminate 40b, The adhesive 42 can be smoothly filled into the gap G.
  • the adhesive 42 flows between the outlet 77 of the inlet pipe 76 and the end 40b 2 on the intake side of the stacked body 40b.
  • the on-off valve 72 is once closed.
  • the bubbles M inside the adhesive 42 gather on the liquid surface of the adhesive 42 and burst. That is, the adhesive 42 that has passed through the on-off valve 72 and the inflow pipe 76 is defoamed in the vacuum chamber 71. Accordingly, it is possible to prevent the adhesive 42 including the bubbles M from being filled in the gap G of the stacked body 40b.
  • the on-off valve 41 is opened again.
  • the liquid level of the adhesive 42 in the vacuum chamber 71 is raised, the adhesive 42 enters into the gap G from the end 40b 1 on the intake side of the laminate 40b.
  • a predetermined time for example, 30 minutes
  • the adhesive 42 reaches the end 40b 1 on the exhaust side of the stacked body 40b.
  • the vacuum pump 73 is stopped, and the vacuum chamber 71 is disassembled before the adhesive 42 is cured. Thereby, the laminated body 40b is taken out. After the excess adhesive 42 adhered to the peripheral surface of the laminate 40b is wiped off and removed, the adhesive 42 filled in the gap G is cured by heating to 40 ° C., for example, to obtain the laminate shown in FIG. The structure 40a is obtained.
  • the gap G is filled with the adhesive 42, whereby the adhesive 42 flows into the gap G due to the flow of the adhesive 42. It is possible to prevent the air from being entrained and to fill the adhesive 42 without generating a void (cavity) between the adjacent transparent substrates 41a and 41a.
  • the degree of vacuum in the vacuum chamber 71 when the adhesive 42 flows in is preferably 500 Pa or less from the viewpoint of further preventing air from being entrained by the adhesive 42 flowing in the gap G.
  • the gap G increases, so that the aerial image observed when the aerial image display device is configured becomes rough. For this reason, the gap G is desirably 50 ⁇ m or less.
  • the gap G is desirably 10 ⁇ m or more.
  • the method for manufacturing the optical panel 40 of the present embodiment may include a cutting step.
  • the cutting step the laminated structure 40a is cut perpendicularly to the surface on which the reflective film 41b is formed (see FIG. 10).
  • a plurality of optical panels 40 can be obtained from one laminated structure 40a, so that the productivity of the optical panel 40 can be improved with certainty. Since the cut surface is rough after cutting, it is desirable to polish it (polishing step).
  • the mirror element 41 is produced. That is, as shown in FIG. 33, the molten material is molded into a substrate and cut to obtain a transparent substrate 41a.
  • the transparent substrate 41a can be produced by using a fusion method, and in the case of a resin material, the transparent substrate 41a can be produced by extrusion molding.
  • a metal material for example, aluminum
  • UV ink is ejected onto the reflective film 41 b by the inkjet head 51, and UV light is irradiated and cured by the UV light source 53 to form the spacer 41 c.
  • the spacer 41c is formed with a height that can correct the thickness variation of the transparent substrate 41a.
  • the mirror element 41 which integrated the transparent substrate 41a, the reflective film 41b, and the spacer 41c is obtained. By repeating this process, a plurality of mirror elements 41 are produced.
  • an adhesive 42 is applied to the mirror element 41 to laminate and bond the other mirror element 41, and this process is repeated to obtain a laminated structure 40a.
  • the reflective film 41b of each mirror element 41c appears periodically in the stacking direction (aligned in parallel at a predetermined interval in the stacking direction).
  • the laminated structure 40a is cut at regular intervals along a plane perpendicular to the reflection surface (reflection film 41b). After cutting, the cut surface is polished to obtain the optical panel 40 (see FIG. 10).
  • the two optical panels 40 are bonded together to obtain an aerial image display device.
  • the surface of the transparent substrate 41a of one optical panel 40 on which the reflective film 41b is formed and the surface of the transparent substrate 41a of the other optical panel 40 on which the reflective film 41b is formed are orthogonal to each other in plan view.
  • Two optical panels 40 are bonded together.
  • One optical panel 40 corresponds to the optical panel 20 of FIG. 2, and the reflective film 41b of the optical panel 40 corresponds to the reflective film 21b of FIG.
  • the other optical panel 40 corresponds to the optical panel 30 in FIG. 2, and the reflective film 41b of the optical panel 40 corresponds to the reflective film 31b in FIG. Therefore, the aerial video display device 1 shown in FIGS. 1 and 2 can be obtained by bonding the two optical panels 40 together as described above.
  • an aerial video display device was actually manufactured as follows. That is, a glass substrate having a length of 250 mm, a width of 400 mm, and a thickness of 0.5 mm is used as the transparent substrate 41a, and a reflective film 41b is formed on both surfaces thereof by an aluminum coat (thickness of 100 nm), and one surface of the transparent substrate 41a is formed. On the side, dots (spacer 41c) having a diameter of 0.1 mm and a height of 20 ⁇ m ⁇ 1 ⁇ m were printed at a pitch of 1 mm in the vertical and horizontal directions using UV ink, and the mirror element 41 was produced.
  • the adhesive 42 was prepared by mixing amorphous silica as a filler 42a in a two-component mixed epoxy adhesive. Each mirror element 41 is shifted in order of (0, 0), (0.5, 0), (0.5, 0.5), (0, 0.5). Then, the layers were sequentially laminated via the adhesive 42 and heated to 40 ° C. to cure the adhesive 42. As a result, it was possible to obtain a laminated structure 40a having a uniform bonding thickness of 20 ⁇ m ⁇ 1 ⁇ m.
  • the obtained laminated structure 40a was cut into a width of 2 mm with a wire slicer and then polished to a width of 1.5 mm. As a result, it was possible to obtain the optical panel 40 having a uniform bonding thickness of 20 ⁇ m ⁇ 1 ⁇ m.
  • each mirror element 41 has a dot (spacer 41c) shift amount (M, N) of (0, 0), (0.5, 0), (0.5, 0.5), (0, The layers were laminated in the order of 0.5). Then, the adhesive film 40c was affixed on 2 surfaces which a laminated body opposes so that the clearance gap G between adjacent transparent substrate 41a * 41a might be sealed, and the laminated body 40b was produced. This laminate 40b was placed in the vacuum chamber 71 of the fixing device 70 shown in FIG.
  • the on-off valve 72 After evacuating the vacuum chamber 71 and adjusting the degree of vacuum in the vacuum chamber 71 to 500 Pa, the on-off valve 72 is opened, and the adhesive 42 is evacuated from the storage tank 75 through the inlet pipe 76 and the outlet 77. It flowed into the chamber 71.
  • the adhesive 42 a two-component mixed epoxy adhesive mixed with amorphous silica as a filler 42a is used as the adhesive 42. The temperature of the adhesive 42 was adjusted to 30 to 35 ° C. lower than the curing temperature. And when the adhesive agent 42 flowed in between the outflow port 78 and the laminated body 40b, the on-off valve 72 was once closed and the adhesive agent 42 was degassed by vacuum.
  • the on-off valve 41 was opened again, the adhesive 42 was caused to flow into the gap G of the laminated body 40b, and the vacuum pump 73 was stopped when the gap G was completely filled with the adhesive 42. Then, the vacuum chamber 71 is disassembled, the laminated body 40b is taken out, and the excess adhesive 42 adhering to the peripheral surface is wiped off and removed, and then the adhesive 42 is heated to 40 ° C. to be cured, and the laminated structure 40a. Got.
  • the obtained laminated structure 40a was cut into a width of 2 mm with a wire slicer and then polished to a width of 1.5 mm. As a result, it was possible to obtain the optical panel 40 having a uniform bonding thickness of 20 ⁇ m ⁇ 1 ⁇ m.
  • optical panel manufacturing method and the aerial image display device manufacturing method described above may be expressed as follows.
  • the reflective film is formed on at least one of the two opposing surfaces of the transparent substrate, and the spacers are previously discrete on one of the two opposing surfaces.
  • the amount of the filler contained in the adhesive is desirably 5 to 50% in terms of a volume ratio with the adhesive before the filler is contained.
  • the filler may be amorphous silica.
  • the adhesive may be a two-component mixed adhesive that is used by mixing a main agent made of resin and a curing agent.
  • the two-component mixed adhesive may be an epoxy adhesive.
  • the adhesive may be a thermosetting adhesive.
  • the viscosity of the adhesive is desirably 1000 mPa ⁇ s or less.
  • the method for manufacturing an aerial image display device described above is a method for manufacturing an aerial image display device including the method for manufacturing an optical panel described above, and includes two optical panels manufactured by the method for manufacturing an optical panel. Among the two optical panels, the surface on which the reflective film of the transparent substrate of one optical panel is formed and the surface of the transparent substrate of the other optical panel on which the reflective film is formed are orthogonal to each other in plan view. It has a pasting process of pasting together.
  • the method for manufacturing an optical panel of the present invention can be used for manufacturing an optical panel constituting an aerial image display device, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

A method for manufacturing an optical panel comprises: a step for preparing a plurality of mirror elements (41) in each of which a reflective film (41b) is formed on at least one surface of two opposite surfaces of a transparent substrate (41a), and spacers (41c) are discretely preformed on one surface side of the two opposite surfaces; and a step for stacking the plurality of mirror elements (41) such that the spacers (41c) are located between the transparent substrates (41a) and bonding the mirror elements by a bonding agent (42) containing filler (42a).

Description

光学パネルの製造方法および空中映像表示デバイスの製造方法Optical panel manufacturing method and aerial image display device manufacturing method
 本発明は、空中に映像を表示する空中映像表示デバイスに用いられる光学パネルの製造方法と、上記空中映像表示デバイスの製造方法とに関するものである。 The present invention relates to a method for manufacturing an optical panel used in an aerial image display device that displays an image in the air, and a method for manufacturing the aerial image display device.
 従来から、被観察物の実像(映像)を空中に表示する空中映像表示デバイスが種々提案されている。例えば特許文献1では、2枚の光学パネルを用いた空中映像表示デバイスが開示されている。各光学パネルは、片面に反射膜が形成された複数の透明基板を積層し接着して得られる積層体を、反射膜が形成された面(反射面)に垂直に、かつ、等間隔で切断することによって形成されている。各光学パネルの反射面が平面視で直交するように、各光学パネルを貼り合わせることで、上記空中映像表示デバイスが構成されている。このように2枚の光学パネルを貼り合わせた空中映像表示デバイスは、例えば特許文献2および3でも同様に開示されている。 Conventionally, various aerial video display devices for displaying a real image (video) of an observation object in the air have been proposed. For example, Patent Document 1 discloses an aerial video display device using two optical panels. Each optical panel cuts a laminated body obtained by laminating and bonding a plurality of transparent substrates having a reflective film on one side, perpendicular to the surface (reflective surface) on which the reflective film is formed, and at equal intervals. It is formed by doing. The aerial video display device is configured by bonding the optical panels so that the reflecting surfaces of the optical panels are orthogonal in a plan view. Such an aerial video display device in which two optical panels are bonded together is also disclosed in Patent Documents 2 and 3, for example.
 ここで、上記積層体を形成するにあたって、上記複数の透明基板は、接着剤によって接着される。一般に、接着剤は、硬化する過程の中で体積収縮(硬化収縮)を起こし、これによって接着厚みが変化する(均一にはならない)ことが知られている(例えば特許文献4、5参照)。 Here, in forming the laminate, the plurality of transparent substrates are bonded by an adhesive. In general, it is known that an adhesive undergoes volume shrinkage (curing shrinkage) during the curing process, whereby the adhesive thickness changes (not uniform) (see, for example, Patent Documents 4 and 5).
特許5318242号公報(請求項1、段落〔0017〕~〔0022〕、図5等参照)Japanese Patent No. 5318242 (refer to claim 1, paragraphs [0017] to [0022], FIG. 5 etc.) 特許5085767号公報(請求項1、段落〔0035〕、〔0036〕、図4、図5等参照)Japanese Patent No. 5085767 (see claim 1, paragraphs [0035] and [0036], FIG. 4 and FIG. 5) 特許5437436号公報(請求項1、段落〔0035〕、〔0036〕、図4、図5等参照)Japanese Patent No. 5437436 (see claim 1, paragraphs [0035] and [0036], FIG. 4 and FIG. 5) 特開2002-56582号公報(段落〔0006〕参照)JP 2002-56582 A (see paragraph [0006]) 特開平8-29610号公報(段落〔0015〕参照)JP-A-8-29610 (see paragraph [0015])
 ところで、各光学パネルにおいて、複数の透明基板の積層により、各透明基板の反射面は、積層方向に所定の間隔で並ぶ。このとき、積層方向に隣り合う反射面の歪みおよび角度ズレは、空中映像の歪みに直結するため、隣り合う反射面の平面度および平行度(配列精度)を良好に確保することが重要となる。例えば、厚さ0.5mmの透明基板を100枚以上積層する場合においては、反射面の平面度を確保しつつ、積層方向に隣り合う反射面の角度ズレを、0.025度以下に抑えることが必要である。反射面の平行度が悪いと、例えば空中像として格子状の物体を表示させた場合、図34に示すように格子像が歪んで表示されてしまう。さらに反射面の平面度が悪い場合は、格子が歪むだけでなく、図35に示すように、直線の乱れも発生してしまう。 By the way, in each optical panel, the reflective surfaces of each transparent substrate are arranged at predetermined intervals in the stacking direction by stacking a plurality of transparent substrates. At this time, since the distortion and angle deviation of the reflection surfaces adjacent in the stacking direction are directly related to the distortion of the aerial image, it is important to ensure the flatness and parallelism (alignment accuracy) of the adjacent reflection surfaces. . For example, when laminating 100 or more transparent substrates having a thickness of 0.5 mm, the angle deviation between the reflecting surfaces adjacent to each other in the laminating direction is suppressed to 0.025 degrees or less while ensuring the flatness of the reflecting surfaces. is required. If the parallelism of the reflecting surfaces is poor, for example, when a lattice-like object is displayed as an aerial image, the lattice image is distorted and displayed as shown in FIG. Further, when the flatness of the reflecting surface is poor, not only the lattice is distorted but also a straight line is disturbed as shown in FIG.
 また、反射面の平面度および平行度は、透明基板の平面度、透明基板の厚さ精度、および接着剤の厚さ精度(接着厚みの精度)で決まるため、これらを精度よく管理することも重要となる。例えば、数百枚の透明基板を積層し、接着するにあたって、透明基板の平面度が確保されており、透明基板の厚さを均一とした場合、反射面の角度ズレを上記範囲に抑えるためには、接着厚みのばらつきは、透明基板の厚さ方向に垂直な方向に1mmあたり、1.3μm以下とする必要がある。つまり、透明基板の作り込み精度が重要な一方で、均一な接着厚みで複数の透明基板を積層し、接着できる製造方法が求められる。 In addition, the flatness and parallelism of the reflecting surface are determined by the flatness of the transparent substrate, the thickness accuracy of the transparent substrate, and the thickness accuracy of the adhesive (adhesion thickness accuracy). It becomes important. For example, when laminating and bonding hundreds of transparent substrates, the flatness of the transparent substrate is ensured, and when the thickness of the transparent substrate is uniform, the angle deviation of the reflecting surface is suppressed to the above range. The variation in the adhesive thickness needs to be 1.3 μm or less per 1 mm in the direction perpendicular to the thickness direction of the transparent substrate. That is, while manufacturing accuracy of a transparent substrate is important, a manufacturing method that can laminate and bond a plurality of transparent substrates with a uniform bonding thickness is required.
 一方、上述したように、複数の透明基板の接着に用いる接着剤は、接着時に硬化収縮を起こす。接着剤が硬化収縮を起こすと、接着厚みが変化して各透明基板に歪みが生じ、これによって各透明基板の平面度が低下する。特に、大型の空中映像表示デバイスでは、用いる透明基板も大型となり、外力によって透明基板の平面度が低下しやすくなるため、接着剤の硬化収縮が起こると、透明基板の平面度の低下が容易に起こる。透明基板の平面度が低下すると、反射面の平面度が低下し、空中映像の品質が劣化する。 On the other hand, as described above, an adhesive used for bonding a plurality of transparent substrates causes curing shrinkage during bonding. When the adhesive undergoes curing shrinkage, the adhesive thickness changes and distortion occurs in each transparent substrate, thereby reducing the flatness of each transparent substrate. In particular, in a large aerial image display device, the transparent substrate to be used is also large, and the flatness of the transparent substrate is likely to be reduced by external force. Therefore, when the adhesive is cured and contracted, the flatness of the transparent substrate is easily reduced. Occur. When the flatness of the transparent substrate is lowered, the flatness of the reflecting surface is lowered and the quality of the aerial image is deteriorated.
 したがって、空中映像の品質劣化を回避するためには、複数の透明基板を積層して、接着剤で接着するにあたって、接着剤の硬化収縮に起因する各透明基板の歪みをできるだけ小さくして、各透明基板の平面度を確保するとともに、接着厚みを均一にして、各透明基板の平行度を確保することが必要であると言える。 Therefore, in order to avoid quality degradation of the aerial image, when laminating a plurality of transparent substrates and bonding them with an adhesive, the distortion of each transparent substrate due to the curing shrinkage of the adhesive is made as small as possible. It can be said that it is necessary to ensure the flatness of the transparent substrate and to make the adhesion thickness uniform so as to ensure the parallelism of each transparent substrate.
 この点、上述した特許文献1~3では、接着剤を用いて複数の透明基板を積層接着するにあたって、接着剤の硬化収縮に起因する各透明基板の歪みを小さくして、各透明基板の平面度を確保するとともに、接着厚みを均一にして、各透明基板の平行度を確保する手法については全く開示がない。 In this regard, in Patent Documents 1 to 3 described above, when laminating and bonding a plurality of transparent substrates using an adhesive, the distortion of each transparent substrate due to curing shrinkage of the adhesive is reduced, and the plane of each transparent substrate is reduced. There is no disclosure of a method for ensuring the degree of parallelism of each transparent substrate while ensuring the degree of adhesion and making the adhesive thickness uniform.
 なお、接着剤の硬化収縮に起因する透明基板の平面度の低下を回避するにあたって、例えば透明基板の厚みを厚くすることは、反射面間のピッチが広くなって、空中映像の品質を劣化させる要因となるため、妥当ではない。 In order to avoid a decrease in the flatness of the transparent substrate due to the curing shrinkage of the adhesive, for example, increasing the thickness of the transparent substrate widens the pitch between the reflecting surfaces and degrades the quality of the aerial image. It is not appropriate because it is a factor.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、接着剤を用いて複数の透明基板を積層接着するにあたって、各透明基板の厚みを増大させることなく、接着剤の硬化収縮に起因する各透明基板の歪みを小さくして、各透明基板の平面度を確保できるとともに、接着厚みを均一にして、各透明基板の平行度を確保することができる光学パネルの製造方法と、その光学パネルを備えた空中映像表示デバイスの製造方法とを提供することにある。 The present invention has been made in order to solve the above-described problems, and the purpose thereof is to increase the thickness of each transparent substrate without increasing the thickness of each transparent substrate when an adhesive is used to laminate and bond a plurality of transparent substrates. Of an optical panel that can reduce the distortion of each transparent substrate due to curing shrinkage of the substrate and ensure the flatness of each transparent substrate, uniform the adhesive thickness, and ensure the parallelism of each transparent substrate It is to provide a method and a method for manufacturing an aerial image display device including the optical panel.
 本発明の一側面に係る光学パネルの製造方法は、透明基板の対向する2面のうちの少なくとも一方の面に反射膜が形成され、前記対向する2面のうちの一方の面側にスペーサが予め離散的に形成された複数のミラー素子を準備する工程と、各透明基板の間に前記スペーサが位置するように、前記複数のミラー素子を積層してフィラーを含む接着剤で接着する工程とを有する。 In the method of manufacturing an optical panel according to one aspect of the present invention, a reflective film is formed on at least one of two opposing surfaces of a transparent substrate, and a spacer is provided on one surface of the two opposing surfaces. A step of preparing a plurality of discretely formed mirror elements, and a step of laminating the plurality of mirror elements and adhering them with an adhesive containing a filler so that the spacer is positioned between the transparent substrates. Have
 本発明の他の側面に係る空中映像表示デバイスの製造方法は、上述した光学パネルの製造方法を含む、空中映像表示デバイスの製造方法であって、前記光学パネルの製造方法によって作製された2枚の光学パネルのうち、一方の光学パネルの透明基板における反射膜が形成された面と、他方の光学パネルの透明基板における反射膜が形成された面とが平面視で直交するように、前記2枚の光学パネルを貼り合わせる貼合工程を有している。 An aerial image display device manufacturing method according to another aspect of the present invention is an aerial image display device manufacturing method including the optical panel manufacturing method described above, and is manufactured by the optical panel manufacturing method. Among the optical panels, the surface on which the reflective film is formed on the transparent substrate of one optical panel and the surface on which the reflective film is formed on the transparent substrate of the other optical panel are orthogonal to each other in plan view. It has the bonding process which bonds the optical panel of a sheet.
 透明基板と反射膜とスペーサとを予め一体的に形成したミラー素子を複数用い、各透明基板の間にスペーサが位置するように、複数のミラー素子を積層して接着剤で接着することにより、各透明基板間における接着厚みを均一にすることができる。これにより、各透明基板の平行度を確保することができる。また、フィラーを含む接着剤を用いて、複数の透明基板を接着するため、接着剤の硬化収縮がフィラーによって抑えられる。これにより、各透明基板の厚みを増大させることなく、接着剤の硬化収縮に起因する各透明基板の歪みを小さくすることができ、各透明基板の平面度を確保することができる。 By using a plurality of mirror elements in which a transparent substrate, a reflective film, and a spacer are integrally formed in advance, a plurality of mirror elements are stacked and bonded with an adhesive so that the spacer is positioned between the transparent substrates, The adhesion thickness between the transparent substrates can be made uniform. Thereby, the parallelism of each transparent substrate is securable. In addition, since a plurality of transparent substrates are bonded using an adhesive containing a filler, curing shrinkage of the adhesive is suppressed by the filler. Thereby, without increasing the thickness of each transparent substrate, the distortion of each transparent substrate resulting from curing shrinkage of the adhesive can be reduced, and the flatness of each transparent substrate can be ensured.
本発明の実施の一形態に係る空中映像表示デバイスの側面図である。1 is a side view of an aerial video display device according to an embodiment of the present invention. 上記空中映像表示デバイスの概略の構成を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the outline of the said aerial image display device. 上記空中映像表示デバイスを構成する2つの光学パネルのうち、一方の光学パネルに用いられる透明基板の斜視図である。It is a perspective view of the transparent substrate used for one optical panel among two optical panels which comprise the said aerial image display device. 上記2つの光学パネルのうち、他方の光学パネルに用いられる透明基板の斜視図である。It is a perspective view of the transparent substrate used for the other optical panel among the two optical panels. 2次元での実像の結像原理を示す説明図である。It is explanatory drawing which shows the imaging principle of the real image in two dimensions. 3次元空間での光線の反射を模式的に示す説明図である。It is explanatory drawing which shows typically reflection of the light ray in three-dimensional space. 3次元空間において、複数の光線が別々の反射面を介して1点に集光する様子を模式的に示す説明図である。It is explanatory drawing which shows typically a mode that a some light ray condenses to one point via a separate reflective surface in three-dimensional space. 上記空中映像表示デバイスの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the said aerial image display device. 複数のミラー素子を積層して接着剤で接着した積層構造体の斜視図である。It is a perspective view of the laminated structure which laminated | stacked the several mirror element and adhere | attached with the adhesive agent. 上記積層構造体を切断して得られる光学パネルの斜視図である。It is a perspective view of the optical panel obtained by cut | disconnecting the said laminated structure. 上記ミラー素子の構成を示す平面図である。It is a top view which shows the structure of the said mirror element. 図11AにおけるA-A’線矢視断面図である。FIG. 11B is a cross-sectional view taken along line A-A ′ in FIG. 11A. 上記ミラー素子の他の構成を示す断面図である。It is sectional drawing which shows the other structure of the said mirror element. 上記ミラー素子のさらに他の構成を示す断面図である。It is sectional drawing which shows other structure of the said mirror element. 図11Aおよび図11Bで示したミラー素子を積層した積層構造体の断面図である。It is sectional drawing of the laminated structure which laminated | stacked the mirror element shown to FIG. 11A and FIG. 11B. 図14のA部を拡大して示す断面図である。It is sectional drawing which expands and shows the A section of FIG. 1つのスペーサの近傍において、フィラーを含有していない接着剤の硬化収縮の前後での、複数の透明基板の状態を模式的に示す断面図である。It is sectional drawing which shows typically the state of a some transparent substrate in the vicinity of one spacer before and after hardening shrinkage | contraction of the adhesive agent which does not contain a filler. 図16で示した接着剤の硬化収縮の前後での複数の透明基板の状態を、複数のスペーサの配置領域にわたって模式的に示す断面図である。It is sectional drawing which shows typically the state of the some transparent substrate before and behind hardening shrinkage | contraction of the adhesive agent shown in FIG. 16 over the arrangement | positioning area | region of a some spacer. フィラーを含有していない接着剤を用いて複数の透明基板を積層接着した空中映像表示デバイスによって表示される空中像の一例を示す説明図である。It is explanatory drawing which shows an example of the aerial image displayed by the aerial image display device which laminated | stacked and bonded the some transparent substrate using the adhesive agent which does not contain a filler. 積層方向に並ぶ4つのミラー素子の各スペーサの配置位置を模式的に示す平面図である。It is a top view which shows typically the arrangement position of each spacer of the four mirror elements arranged in a lamination direction. 上記スペーサの他の配置例を示す平面図である。It is a top view which shows the other example of arrangement | positioning of the said spacer. 上記スペーサを、透明基板の表面の窪み量または上記透明基板の厚さに応じた高さで形成したときのミラー素子の断面図である。It is sectional drawing of a mirror element when the said spacer is formed in the height according to the amount of depressions of the surface of a transparent substrate, or the thickness of the said transparent substrate. 上記スペーサをインクジェット印刷によって形成する一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example which forms the said spacer by inkjet printing. ミラー素子の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of a mirror element. 上記ミラー素子の製造工程の他の例を示す断面図である。It is sectional drawing which shows the other example of the manufacturing process of the said mirror element. 上記ミラー素子の製造工程のさらに他の例を示す断面図である。It is sectional drawing which shows the further another example of the manufacturing process of the said mirror element. 複数のミラー素子を積層して接着する手法の一例を示す断面図である。It is sectional drawing which shows an example of the method of laminating | stacking and adhere | attaching a some mirror element. 上記手法の他の例を示す断面図である。It is sectional drawing which shows the other example of the said method. 複数のミラー素子を積層して配置した積層体のxy面に沿った断面図である。It is sectional drawing along xy plane of the laminated body which laminated | stacked and arrange | positioned the several mirror element. 上記積層体をx方向から見た側面図である。It is the side view which looked at the above-mentioned layered product from the x direction. 上記手法のさらに他の例を示すものであって、積層体の隙間に接着剤を充填する前の状態を示す断面図である。It is sectional drawing which shows the other example of the said method, Comprising: It is a state before filling the clearance gap between laminated bodies with an adhesive agent. 上記接着剤が真空チャンバ内で脱泡される様子を模式的に示す断面図である。It is sectional drawing which shows typically a mode that the said adhesive agent defoams in a vacuum chamber. 上記積層体の隙間に接着剤を充填した後の状態を示す断面図である。It is sectional drawing which shows the state after filling the clearance gap between the said laminated bodies with the adhesive agent. 上記光学パネルの製造方法の一例を具体的に示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the said optical panel concretely. 反射面の平行度が悪い場合に、表示される空中像の一例を示す説明図である。It is explanatory drawing which shows an example of the aerial image displayed when the parallelism of a reflective surface is bad. 反射面の平面度が悪い場合に、表示される空中像の一例を示す説明図である。It is explanatory drawing which shows an example of the aerial image displayed when the flatness of a reflective surface is bad.
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。なお、本明細書において、数値範囲をa~bと表記した場合、その数値範囲に下限aおよび上限bの値は含まれるものとする。また、本発明は、以下の内容に限定されるものではない。 An embodiment of the present invention will be described below with reference to the drawings. In this specification, when the numerical range is expressed as a to b, the numerical value range includes the values of the lower limit a and the upper limit b. The present invention is not limited to the following contents.
 〔空中映像表示デバイスについて〕
 図1は、本実施形態の空中映像表示デバイス1の側面図である。空中映像表示デバイス1は、被対象物OBからの光を反射させて、空中映像表示デバイス1に対して被対象物OBとは反対側の空中に集めて、上記空中に被対象物OBの実像R(映像)を結像させるものである。なお、被対象物OBは、2次元の画像であってもよいし、3次元の物体であってもよい。また、被対象物OBからの光とは、被対象物OBそのものが発光する光であってもよいし、被対象物OBに光が当たったときに周囲に散乱される光(散乱光)であってもよい。
[About aerial video display device]
FIG. 1 is a side view of the aerial video display device 1 of the present embodiment. The aerial image display device 1 reflects light from the object OB and collects it in the air on the side opposite to the object OB with respect to the aerial image display device 1, and the real image of the object OB in the air. R (image) is imaged. Note that the object OB may be a two-dimensional image or a three-dimensional object. The light from the object OB may be light emitted from the object OB itself, or light scattered to the surroundings when the object OB hits the light (scattered light). There may be.
 図2は、空中映像表示デバイス1の概略の構成を模式的に示す斜視図である。空中映像表示デバイス1は、2枚の光学パネル20・30を貼り合わせて構成されている。一方の光学パネル20は、光学パネル20・30の積層方向(例えばZ方向)に垂直な面内で互いに垂直な2方向のうちの一方向(例えばX方向)に、複数のミラー素子21を並べて接着剤で接着することによって形成されている。他方の光学パネル30は、上記2方向のうちの他の方向(例えばY方向)に、複数のミラー素子31を並べて接着剤で接着することによって形成されている。 FIG. 2 is a perspective view schematically showing a schematic configuration of the aerial video display device 1. The aerial video display device 1 is configured by bonding two optical panels 20 and 30 together. One optical panel 20 has a plurality of mirror elements 21 arranged in one direction (for example, the X direction) of two directions perpendicular to each other within a plane perpendicular to the stacking direction (for example, the Z direction) of the optical panels 20 and 30. It is formed by adhering with an adhesive. The other optical panel 30 is formed by arranging a plurality of mirror elements 31 in the other direction (for example, the Y direction) of the two directions and bonding them with an adhesive.
 図3は、1つのミラー素子21の斜視図である。ミラー素子21は、直方体状の透明基板21aを有している。透明基板21aは、Y方向に延びており、対向する2面(例えばYZ面に沿った2面)のうちの一方の面に、反射膜21bが蒸着によって形成されている。なお、反射膜21bは、透明基板21aの対向する2面の両面に形成されていてもよい。 FIG. 3 is a perspective view of one mirror element 21. The mirror element 21 has a rectangular parallelepiped transparent substrate 21a. The transparent substrate 21a extends in the Y direction, and a reflective film 21b is formed by vapor deposition on one of two opposing surfaces (for example, two surfaces along the YZ surface). The reflective film 21b may be formed on both opposing surfaces of the transparent substrate 21a.
 図4は、1つのミラー素子31の斜視図である。ミラー素子31は、直方体状の透明基板31aを有している。透明基板31aは、X方向に延びており、対向する2面(例えばZX面に沿った2面)のうちの一方の面に、反射膜31bが蒸着によって形成されている。なお、反射膜31bは、透明基板31aの対向する2面の両面に形成されていてもよい。 FIG. 4 is a perspective view of one mirror element 31. The mirror element 31 has a rectangular parallelepiped transparent substrate 31a. The transparent substrate 31a extends in the X direction, and a reflective film 31b is formed by vapor deposition on one of two opposing surfaces (for example, two surfaces along the ZX surface). Note that the reflective film 31b may be formed on both opposing surfaces of the transparent substrate 31a.
 Y方向に延びる複数のミラー素子21をX方向に隣接して並べることにより、複数の反射膜21bが、ミラー素子21のX方向の幅に応じた間隔でX方向に並んで位置する。同様に、X方向に延びる複数のミラー素子31をY方向に隣接して並べることにより、複数の反射膜31bが、ミラー素子31のY方向の幅に応じた間隔でY方向に並んで位置する。このような複数のミラー素子21・31の配置により、各ミラー素子21の反射膜21b(反射面)と各ミラー素子31の反射膜31b(反射面)とは、平面視で(Z軸方向から見て)互いに直交する位置関係となる。 By arranging a plurality of mirror elements 21 extending in the Y direction adjacent to each other in the X direction, the plurality of reflective films 21b are arranged side by side in the X direction at intervals corresponding to the width of the mirror element 21 in the X direction. Similarly, by arranging a plurality of mirror elements 31 extending in the X direction so as to be adjacent to each other in the Y direction, a plurality of reflection films 31b are arranged side by side in the Y direction at intervals corresponding to the width of the mirror element 31 in the Y direction. . With the arrangement of the plurality of mirror elements 21 and 31, the reflective film 21b (reflective surface) of each mirror element 21 and the reflective film 31b (reflective surface) of each mirror element 31 are viewed in plan view (from the Z-axis direction). (See) and the positional relationship is orthogonal to each other.
 なお、本実施形態では、各ミラー素子21・31に、接着厚みを均一にするためのスペーサが一体的に形成されているが、この点については後述する。 In the present embodiment, spacers for making the adhesive thickness uniform are integrally formed on the mirror elements 21 and 31, which will be described later.
 上記構成の空中映像表示デバイス1を用いることにより、空中に映像を結像させることができる。以下、その結像原理について説明する。 By using the aerial image display device 1 having the above configuration, an image can be formed in the air. Hereinafter, the imaging principle will be described.
 図5は、2次元(ZX平面内)での実像の結像原理を示している。点光源Pから発せられた複数の光線は、Z軸に平行な反射面(反射膜21b)でそれぞれ反射され、X軸に対して点光源Pとは反対側の位置P’(点光源PとX軸に対して対称な位置)に集光する。これにより、位置P’にて、点光源Pの実像が結像される。 FIG. 5 shows the imaging principle of a real image in two dimensions (in the ZX plane). A plurality of light rays emitted from the point light source P are respectively reflected by a reflecting surface (reflective film 21b) parallel to the Z axis, and a position P ′ opposite to the point light source P with respect to the X axis (point light source P and Condensed at a position symmetrical to the X axis). Thereby, a real image of the point light source P is formed at the position P ′.
 図6は、3次元空間(XYZ座標系)での光線の反射を模式的に示している。3次元空間では、点光源Oから発せられた光線Aを、ZX平面内の光線a1と、YZ平面内の光線a2とに分解し、図5に倣って、それぞれの光線a1・a2のZX平面内またはYZ平面内での反射を考えることで、光線AのZ軸との交点を求めることができる。つまり、ZX平面内の光線a1は、YZ面に平行な反射面(反射膜21b)で反射された後、Z軸に向かい、YZ平面内の光線a2は、ZX面に平行な反射面(反射膜31b)で反射された後、Z軸に向かう。これらの光線a1・a2は、Z軸上の1点、つまり、点O’で交わる。したがって、光線Aは、反射膜21bおよび反射膜31bにて計2回反射した後、Z軸上の点O’に向かうことになる。 FIG. 6 schematically shows the reflection of light rays in a three-dimensional space (XYZ coordinate system). In the three-dimensional space, the light beam A emitted from the point light source O is decomposed into a light beam a1 in the ZX plane and a light beam a2 in the YZ plane, and the ZX plane of the respective light beams a1 and a2 according to FIG. By considering the reflection in the inner or YZ plane, the intersection of the ray A with the Z axis can be obtained. That is, the light ray a1 in the ZX plane is reflected by the reflective surface (reflective film 21b) parallel to the YZ plane and then goes to the Z axis, and the light ray a2 in the YZ plane is reflective surface (reflective) parallel to the ZX plane. After being reflected by the film 31b), it goes to the Z axis. These light rays a1 and a2 intersect at one point on the Z axis, that is, at the point O '. Therefore, the light ray A is reflected twice by the reflective film 21b and the reflective film 31b, and then travels toward the point O 'on the Z axis.
 図7は、3次元空間において、点光源Oから発せられた複数の光線が、別々の反射面を介して1点に集光する様子を模式的に示している。点光源Oから発せられた複数の光線は、図6と同様にして、YZ面に平行な反射面(反射膜21b)およびZX面に平行な反射面(反射膜31b)で反射され、Z軸上の同じ点O’に集光する。これにより、点O’にて、点光源Oの実像が結像される。 FIG. 7 schematically shows a state in which a plurality of light beams emitted from the point light source O are condensed at one point via different reflecting surfaces in a three-dimensional space. A plurality of light rays emitted from the point light source O are reflected by the reflective surface (reflective film 21b) parallel to the YZ plane and the reflective surface (reflective film 31b) parallel to the ZX plane in the same manner as in FIG. Focus on the same point O ′ above. Thereby, a real image of the point light source O is formed at the point O ′.
 なお、実際には、各反射面の高さ方向(Z軸方向)における光線の入射位置のずれや、各反射面の配置精度などにより、集光状態にずれが生じるが、このずれは実像の観察において無視できるほど小さいものとする。また、光線の中には、各反射面で3回以上反射するような複雑な経路を辿る光線も存在するが、そのような光線も無視できるものとする。 Actually, there is a deviation in the light collection state due to the deviation of the incident position of the light beam in the height direction (Z-axis direction) of each reflection surface, the arrangement accuracy of each reflection surface, and the like. It should be small enough to be ignored in observation. In addition, some of the light rays follow a complicated path that is reflected three times or more on each reflecting surface, but such light rays can be ignored.
 〔空中映像表示デバイスの製造方法について〕
 次に、上述した光学パネル20・30の製造方法を含む、空中映像表示デバイス1の製造方法について説明する。なお、以下では、光学パネル20・30を総称して、光学パネル40と記載する場合がある。
[About manufacturing method of aerial video display device]
Next, a method for manufacturing the aerial image display device 1 including the method for manufacturing the optical panels 20 and 30 described above will be described. Hereinafter, the optical panels 20 and 30 may be collectively referred to as the optical panel 40 in some cases.
 図8は、空中映像表示デバイス1の製造工程を示すフローチャートである。空中映像表示デバイス1は、2枚の光学パネル20・30を製造する作製工程(S1)と、2枚の光学パネル20・30を貼り合わせる貼合工程(S2)とを有している。S2の貼合工程では、S1で作製した一方の光学パネル20の透明基板21aの反射面(反射膜21bが形成された面)と、他方の光学パネル30の透明基板31aの反射面(反射膜31bが形成された面)とが平面視で直交するように、2枚の光学パネル20・30を貼り合わせる(図2~図4参照)。 FIG. 8 is a flowchart showing the manufacturing process of the aerial video display device 1. The aerial video display device 1 includes a manufacturing process (S1) for manufacturing the two optical panels 20 and 30 and a bonding process (S2) for bonding the two optical panels 20 and 30 together. In the bonding step of S2, the reflective surface of the transparent substrate 21a of one optical panel 20 produced in S1 (the surface on which the reflective film 21b is formed) and the reflective surface of the transparent substrate 31a of the other optical panel 30 (reflective film) The two optical panels 20 and 30 are bonded together so that the surface on which 31b is formed is orthogonal to the plane view (see FIGS. 2 to 4).
 S1の作製工程は、さらに、積層接着工程(S11)と、切断工程(S12)と、研磨工程(S13)とを含む。 The production process of S1 further includes a lamination adhesion process (S11), a cutting process (S12), and a polishing process (S13).
 S11の積層接着工程では、光学パネル40の作製に必要な、後述のミラー素子41(図9参照)を予め複数用意する。このとき、事前に製造したミラー素子41を用意してもよいし、その場でミラー素子41を製造して用意してもよい。そして、図9に示すように、予め用意した複数のミラー素子41を積層して接着剤42で接着し、積層構造体40aを得る。S12の切断工程では、図10に示すように、上記の積層構造体40aをワイヤーソーなどによって等間隔で切断する。なお、図10では、切断線を破線で示している。S13の研磨工程では、切断して得られる各構造体の切断面を研磨する。これにより、複数の光学パネル40が得られる。 In the step S11 of laminating and bonding, a plurality of later-described mirror elements 41 (see FIG. 9) necessary for manufacturing the optical panel 40 are prepared in advance. At this time, the mirror element 41 manufactured in advance may be prepared, or the mirror element 41 may be manufactured and prepared on the spot. Then, as shown in FIG. 9, a plurality of mirror elements 41 prepared in advance are laminated and bonded with an adhesive 42 to obtain a laminated structure 40a. In the cutting step of S12, as shown in FIG. 10, the laminated structure 40a is cut at equal intervals with a wire saw or the like. In addition, in FIG. 10, the cutting line is shown with the broken line. In the polishing step of S13, the cut surface of each structure obtained by cutting is polished. Thereby, the some optical panel 40 is obtained.
 なお、図10で示した光学パネル40の形状と一致する形状で、積層構造体40aを形成してもよい。この場合は、積層構造体40aを形成した時点で同時に光学パネル40が完成するため、上記の切断工程や研磨工程は不要となる。 The laminated structure 40a may be formed in a shape that matches the shape of the optical panel 40 shown in FIG. In this case, since the optical panel 40 is completed at the same time when the laminated structure 40a is formed, the above-described cutting process and polishing process become unnecessary.
 (ミラー素子について)
 以下、上記のミラー素子41について、まず説明する。図11Aは、1つのミラー素子41の平面図であり、図11Bは、図11AにおけるA-A’線矢視断面図である。ミラー素子41は、透明基板41aと、反射膜41bと、スペーサ41cとが一体的に形成された構造体である。
(About mirror elements)
Hereinafter, the mirror element 41 will be described first. 11A is a plan view of one mirror element 41, and FIG. 11B is a cross-sectional view taken along line AA ′ in FIG. 11A. The mirror element 41 is a structure in which a transparent substrate 41a, a reflective film 41b, and a spacer 41c are integrally formed.
 透明基板41aは、透明なガラスまたは樹脂からなる。透明基板41aの厚みは、解像力を考慮して通常、0.1mmから1mmとされる。例えば、透明基板41aをガラスで構成した場合、その厚さは0.5mm程度であり、透明基板41aを樹脂で構成した場合、その厚さは0.2mm程度である。 The transparent substrate 41a is made of transparent glass or resin. The thickness of the transparent substrate 41a is usually set to 0.1 mm to 1 mm in consideration of resolution. For example, when the transparent substrate 41a is made of glass, the thickness is about 0.5 mm, and when the transparent substrate 41a is made of resin, the thickness is about 0.2 mm.
 反射膜41bは、アルミニウムのような単体の金属からなる単層膜や、金属や誘電体を含む多層膜で構成されており、入射光が全て反射するように膜厚が適切に制御されている。この反射膜41bは、透明基板41aの対向する2面のうちの少なくとも一方の面に形成されている。つまり、反射膜41bは、図11Bのように、透明基板41aの両面に形成されていてもよいし、図12および図13に示すように、透明基板41aの片面にのみ形成されていてもよい。反射膜41bをアルミニウムのスパッタ膜で形成した場合、その厚みは例えば100nm程度である。 The reflection film 41b is composed of a single layer film made of a single metal such as aluminum, or a multilayer film containing a metal or a dielectric, and the film thickness is appropriately controlled so that all incident light is reflected. . The reflective film 41b is formed on at least one of the two opposing surfaces of the transparent substrate 41a. That is, the reflective film 41b may be formed on both surfaces of the transparent substrate 41a as shown in FIG. 11B, or may be formed only on one surface of the transparent substrate 41a as shown in FIGS. . When the reflective film 41b is formed of an aluminum sputtered film, the thickness is, for example, about 100 nm.
 スペーサ41cは、透明基板41aからその厚み方向に突出する突出部(突起部)であり、独立した島形状に形成されている。ここで言う「スペーサ」とは、突出高さを有する部分(形状、構造)を指し、スペーサとスペーサとの間の平坦な部分を含まない。スペーサ41cは、図10で示した接着剤42の厚み(接着厚み、接着ギャップ)を均一にしたり、透明基板41aの厚みと接着厚みとの和を均一にするために、透明基板41aの上記対向する2面のうちの一方の面側に予め離散的に形成されている。スペーサ41cは、図11Bおよび図13のように、透明基板41a上に反射膜41bを介して形成されていてもよいし、図12のように、透明基板41a上に直接形成されていてもよい。 The spacer 41c is a projecting portion (projecting portion) projecting in the thickness direction from the transparent substrate 41a, and is formed in an independent island shape. The “spacer” here refers to a portion (shape, structure) having a protruding height, and does not include a flat portion between the spacers. The spacer 41c is arranged so that the thickness of the adhesive 42 shown in FIG. 10 (adhesion thickness, adhesion gap) is uniform or the transparent substrate 41a is opposed to the transparent substrate 41a in order to make the sum of the thickness and the adhesion thickness uniform. It is discretely formed in advance on one of the two surfaces. The spacer 41c may be formed on the transparent substrate 41a via the reflective film 41b as shown in FIG. 11B and FIG. 13, or may be directly formed on the transparent substrate 41a as shown in FIG. .
 スペーサ41cは、平面視でマトリクス状に配置されており、行方向の配列ピッチP1および列方向の配列ピッチP2は、例えば1mmに設定されている。また、全てのスペーサ41cについて、その高さTは、例えば20μm±1μmの範囲内に設定されている。このように、スペーサ41cは、透明基板41aに対して所定の位置に、予め決められた高さで形成されている。 The spacers 41c are arranged in a matrix in a plan view, and the arrangement pitch P1 in the row direction and the arrangement pitch P2 in the column direction are set to 1 mm, for example. Further, the height T of all the spacers 41c is set within a range of 20 μm ± 1 μm, for example. As described above, the spacer 41c is formed at a predetermined height at a predetermined position with respect to the transparent substrate 41a.
 (複数のミラー素子の積層接着について)
 S11の積層接着工程では、例えば図11Aおよび図11Bで示したミラー素子41を複数用意し、図14に示すように、各透明基板41aの間にスペーサ41cが位置するように、複数のミラー素子41を積層して接着剤42で接着する。すなわち、積層接着工程は、複数のミラー素子41を予め用意する準備工程と、用意した複数のミラー素子41を積層して接着剤42で接着する接着工程とを含む。なお、接着剤42の詳細については後述する。
(About laminated adhesion of multiple mirror elements)
In the stacking and bonding step of S11, for example, a plurality of mirror elements 41 shown in FIGS. 11A and 11B are prepared, and as shown in FIG. 14, a plurality of mirror elements are arranged so that the spacers 41c are positioned between the transparent substrates 41a. 41 are laminated and bonded with an adhesive 42. That is, the lamination bonding step includes a preparation step of preparing a plurality of mirror elements 41 in advance and a bonding step of stacking the prepared plurality of mirror elements 41 and bonding them with the adhesive 42. Details of the adhesive 42 will be described later.
 上記のように、透明基板41aと、反射膜41bと、スペーサ41cとが一体的に形成されたミラー素子41を予め複数用意し、各透明基板41a・41aの間にスペーサ41cが位置するように、複数のミラー素子41を積層して接着剤42で接着することにより、積層方向に隣り合う一方のミラー素子41のスペーサ41cを、他方のミラー素子41(透明基板41aまたは反射膜41b)に当接させて、各ミラー素子41を接着することができる。この場合、接着剤42の厚みは、スペーサ41cの高さで規定されることになり、接着剤42の厚みのばらつきが生じにくくなる。したがって、各透明基板41a・41a間における接着厚みを均一にして、各透明基板41a・41aの平行度を確保することができる。その結果、各透明基板41aの反射面(反射膜41bが形成された面)の平行度を確保することができる。例えば、各反射面の角度ズレを0.025度以下に抑えることができる。よって、空中映像表示デバイス1においては、品質の良好な空中映像を観察者に観察させることができる。 As described above, a plurality of mirror elements 41 in which the transparent substrate 41a, the reflective film 41b, and the spacer 41c are integrally formed are prepared in advance, and the spacer 41c is positioned between the transparent substrates 41a and 41a. By stacking a plurality of mirror elements 41 and bonding them with an adhesive 42, the spacer 41c of one mirror element 41 adjacent in the stacking direction is brought into contact with the other mirror element 41 (transparent substrate 41a or reflective film 41b). The mirror elements 41 can be bonded in contact with each other. In this case, the thickness of the adhesive 42 is defined by the height of the spacer 41c, and variations in the thickness of the adhesive 42 are less likely to occur. Therefore, the adhesive thickness between the transparent substrates 41a and 41a can be made uniform, and the parallelism of the transparent substrates 41a and 41a can be ensured. As a result, the parallelism of the reflective surface (surface on which the reflective film 41b is formed) of each transparent substrate 41a can be ensured. For example, the angle shift of each reflecting surface can be suppressed to 0.025 degrees or less. Therefore, in the aerial video display device 1, it is possible to cause the observer to observe a high-quality aerial video.
 また、複数のミラー素子41を用いることにより、これらのミラー素子41を積層して接着剤42で接着するという簡単な手法で光学パネル40を生産できる。したがって、本実施形態の製法によれば、各反射面の配置精度の確保と光学パネル40の生産性向上とを両立させることができる。 Further, by using a plurality of mirror elements 41, the optical panel 40 can be produced by a simple method in which these mirror elements 41 are stacked and bonded with an adhesive 42. Therefore, according to the manufacturing method of the present embodiment, it is possible to achieve both the securing of the arrangement accuracy of each reflecting surface and the improvement of the productivity of the optical panel 40.
 また、空中映像表示デバイス1を大型化すべく、大型の光学パネル40を製造する場合でも、上記したスペーサ構造を採用することによって、接着剤42の厚みのばらつきを低減して、各反射面の平行度を確保することができる。したがって、光学パネル40ひいては空中映像表示装置1の大型化が可能となる。しかも、各反射面の平行度の確保によって高精細な映像(歪みを低減した映像)を空中に表示することも可能となり、大型で、かつ、高精細な映像を表示する空中映像表示デバイス1を実現することが可能となる。 Further, even when a large optical panel 40 is manufactured in order to increase the size of the aerial image display device 1, by adopting the above-described spacer structure, variation in the thickness of the adhesive 42 is reduced, and each reflecting surface is parallel. The degree can be secured. Therefore, the size of the optical panel 40 and thus the aerial image display device 1 can be increased. Moreover, it is possible to display a high-definition image (an image with reduced distortion) in the air by ensuring the parallelism of each reflecting surface, and the aerial image display device 1 that displays a large-sized and high-definition image can be provided. It can be realized.
 (接着剤の詳細について)
 図15は、図14のA部を拡大して示している。同図に示すように、各透明基板41a・41aを接着する接着剤42は、フィラー42aを含んでいる。フィラー42aは、接着剤42の硬化収縮を抑えるために、接着剤42に混入されている。フィラー42aの混入により、接着剤42の硬化収縮を抑えることができるのは、以下の理由による。すなわち、(1)フィラー42aの混入により、接着剤42の使用量(体積)が混入前よりも減り、これによって、接着剤42の硬化収縮量(絶対量)が下がる、(2)フィラー42aの混入により、接着剤42の硬化収縮の力がフィラー42aによって分断され、これによって、接着剤42の硬化収縮量(絶対量)が下がる、の2点の理由による。
(Details of adhesive)
FIG. 15 is an enlarged view of part A of FIG. As shown in the figure, the adhesive 42 for bonding the transparent substrates 41a and 41a includes a filler 42a. The filler 42 a is mixed in the adhesive 42 in order to suppress curing shrinkage of the adhesive 42. The reason why the shrinkage of the adhesive 42 can be suppressed by mixing the filler 42a is as follows. That is, (1) the amount of use (volume) of the adhesive 42 is reduced by the mixing of the filler 42a as compared to before mixing, thereby reducing the cure shrinkage amount (absolute amount) of the adhesive 42. (2) of the filler 42a Due to the mixing, the curing shrinkage force of the adhesive 42 is divided by the filler 42a, thereby reducing the cure shrinkage amount (absolute amount) of the adhesive 42.
 フィラー42aは、例えば有機材料または無機材料の微粒子で構成することが可能である。有機材料としては、例えばアクリル系ポリマー(真比重:1.1~1.2)を用いることができる。無機材料としては、例えば中空ガラスビーズ(真比重:0.2~0.8)、非晶質シリカ(真比重:2.2)、結晶性シリカ(真比重:2.6)、タルク(真比重:2.6~2.8)、マイカ(真比重:2.7~2.9)、アルミナ(真比重:4.0)などを用いることができる。なお、真比重は、比重と同義であるが、例えば中空ガラスビーズのように物体が空間を含んでいる場合は、その物体における上記空間を除く部分の比重を指す。また、上記比重とは、ある物質の密度と、基準となる水の密度(1.0g/cm3)との比を指す。タルク(滑石)およびマイカ(雲母)は、ケイ酸塩鉱物の一種である。 The filler 42a can be composed of fine particles of an organic material or an inorganic material, for example. As the organic material, for example, an acrylic polymer (true specific gravity: 1.1 to 1.2) can be used. Examples of inorganic materials include hollow glass beads (true specific gravity: 0.2 to 0.8), amorphous silica (true specific gravity: 2.2), crystalline silica (true specific gravity: 2.6), and talc (true Specific gravity: 2.6 to 2.8), mica (true specific gravity: 2.7 to 2.9), alumina (true specific gravity: 4.0), and the like can be used. In addition, although true specific gravity is synonymous with specific gravity, when an object contains space like a hollow glass bead, for example, it points out specific gravity of the part except the said space in the object. The specific gravity refers to the ratio between the density of a certain substance and the standard water density (1.0 g / cm 3 ). Talc (talc) and mica (mica) are types of silicate minerals.
 ここで、図16は、1つのスペーサ41cの近傍において、フィラー42aを含有していない接着剤42の硬化収縮の前後での、複数の透明基板41aの状態を模式的に示している。また、図17は、上記接着剤42の硬化収縮の前後での複数の透明基板41aの状態を、複数のスペーサ41cの配置領域にわたって模式的に示している。なお、これらの図面では、便宜的に、透明基板41aの両面の反射膜41bの図示を省略している。接着剤42にフィラー42aが含有されていない場合、接着剤42aが硬化収縮を起こすと、透明基板41aにおいてスペーサ41cとの接触部以外の部分が、接着剤42側に引っ張られる(図16参照)。その結果、各透明基板41aに歪みが生じ、各透明基板41aの平面度を確保することが困難となる(図17参照)。その結果、空中像として格子像を表示した場合、図18に示すように、スペーサ41cによって平行度が確保されているため格子全体の歪みは発生しないが、平面度が悪化した領域に対応して直線にうねりが生じる。 Here, FIG. 16 schematically shows the state of the plurality of transparent substrates 41a in the vicinity of one spacer 41c before and after curing shrinkage of the adhesive 42 not containing the filler 42a. FIG. 17 schematically shows the state of the plurality of transparent substrates 41a before and after the curing shrinkage of the adhesive 42 over the arrangement region of the plurality of spacers 41c. In these drawings, illustration of the reflective films 41b on both surfaces of the transparent substrate 41a is omitted for convenience. When the adhesive 42 does not contain the filler 42a and the adhesive 42a undergoes curing shrinkage, the transparent substrate 41a pulls the portion other than the contact portion with the spacer 41c toward the adhesive 42 (see FIG. 16). . As a result, each transparent substrate 41a is distorted, making it difficult to ensure the flatness of each transparent substrate 41a (see FIG. 17). As a result, when the lattice image is displayed as an aerial image, as shown in FIG. 18, since the parallelism is ensured by the spacer 41c, distortion of the entire lattice does not occur, but it corresponds to the region where the flatness is deteriorated. Waviness occurs in the straight line.
 これに対して、本実施形態では、フィラー42aを含有した接着剤42を用いて、複数の透明基板41aを接着している。接着剤42がフィラー42aを含有しているため、上記(1)(2)の理由によって、接着剤42の硬化収縮自体がフィラー42aの非含有時よりも抑えられる。これにより、各透明基板41aの厚みを増大させることなく(基板を厚みの増大によって変形しにくくしなくても)、接着剤42の硬化収縮に起因して各透明基板41aに歪みが生じるのを抑えることができる(図15参照)。その結果、各透明基板41aの平面度ひいては反射面の平面度を良好に確保して、空中映像に歪みが生じるのを抑えることができる。また、各透明基板41aの厚みを増大させることなく、上記の効果を得ることができるので、反射面間のピッチが広がることもなく、これによって空中映像の品質の劣化を回避することができる。 In contrast, in the present embodiment, the plurality of transparent substrates 41a are bonded using the adhesive 42 containing the filler 42a. Since the adhesive 42 contains the filler 42a, the curing shrinkage itself of the adhesive 42 is suppressed more than when the filler 42a is not contained for the reasons (1) and (2). Thereby, without increasing the thickness of each transparent substrate 41a (even if the substrate is not easily deformed by increasing the thickness), the distortion occurs in each transparent substrate 41a due to curing shrinkage of the adhesive 42. It can be suppressed (see FIG. 15). As a result, the flatness of each transparent substrate 41a and thus the flatness of the reflecting surface can be ensured satisfactorily, and distortion in the aerial image can be suppressed. In addition, since the above-described effect can be obtained without increasing the thickness of each transparent substrate 41a, the pitch between the reflecting surfaces does not widen, thereby avoiding the deterioration of the quality of the aerial image.
 以上のことから、上述したS11の積層接着工程では、フィラー42aにより、接着剤42の硬化収縮を、フィラー42aの非含有時よりも抑えながら、複数のミラー素子41を接着剤42で接着すればよいと言える。 From the above, in the above-described step of laminating and bonding in S11, if the plurality of mirror elements 41 are bonded with the adhesive 42 while suppressing the curing shrinkage of the adhesive 42 with the filler 42a compared to when the filler 42a is not included. It ’s good.
 (フィラーの含有量について)
 ところで、接着剤42に含まれるフィラー42aの量は、フィラー42aを含有させる前の接着剤42との体積比で5~50%である、つまり、フィラー42aを含有させる前の接着剤42に対して5~50vol%であることが望ましい。この場合、フィラー42aによって接着剤42の硬化収縮を抑える効果と、接着剤42の接着力を向上させる効果とをバランスよく得ることができ、さらに、透明基板41aの平面度を確実に確保することも可能となる。
(About filler content)
By the way, the amount of the filler 42a contained in the adhesive 42 is 5 to 50% by volume ratio with respect to the adhesive 42 before containing the filler 42a, that is, with respect to the adhesive 42 before containing the filler 42a. It is desirable to be 5 to 50 vol%. In this case, the effect of suppressing the curing shrinkage of the adhesive 42 by the filler 42a and the effect of improving the adhesive force of the adhesive 42 can be obtained in a balanced manner, and furthermore, the flatness of the transparent substrate 41a can be reliably ensured. Is also possible.
 ちなみに、フィラー42aの含有量が5vol%未満であると、フィラー42aの含有量が少なすぎて、フィラー42aによって接着剤42の硬化収縮を抑える効果を十分に得ることができなくなる。一方、フィラー42aの含有量が50vol%を超えると、接着剤42中に占めるフィラー42aの量が多すぎて、接着剤42の接着力が低下する。また、例えば、後述する具体例1のように、一方の透明基板41a上に接着剤42を塗布して他方の透明基板41aを積層する工程を繰り返して、積層体40aを得る場合、フィラー42aの量が多すぎると、透明基板41aの押し付けによって、スペーサ41c上に付いた接着剤42を側方へ移動させても、接着剤42中に含まれるフィラー42aの一部がスペーサ41c上に残りやすくなる。この場合、スペーサ41c上に残ったフィラー42aが異物となり、スペーサ41cおよび上記異物を介して透明基板41aが積層されるため、透明基板41aの平面度が低下することが懸念される。 Incidentally, when the content of the filler 42a is less than 5 vol%, the content of the filler 42a is too small, and the effect of suppressing the curing shrinkage of the adhesive 42 by the filler 42a cannot be sufficiently obtained. On the other hand, when the content of the filler 42 a exceeds 50 vol%, the amount of the filler 42 a in the adhesive 42 is too large, and the adhesive force of the adhesive 42 is reduced. In addition, for example, when the laminated body 40a is obtained by repeating the step of applying the adhesive 42 on one transparent substrate 41a and laminating the other transparent substrate 41a as in Specific Example 1 described later, If the amount is too large, part of the filler 42a contained in the adhesive 42 is likely to remain on the spacer 41c even if the adhesive 42 on the spacer 41c is moved to the side by pressing the transparent substrate 41a. Become. In this case, since the filler 42a remaining on the spacer 41c becomes a foreign substance, and the transparent substrate 41a is laminated via the spacer 41c and the foreign substance, there is a concern that the flatness of the transparent substrate 41a is lowered.
 (フィラーの粒径について)
 上記したフィラー42aの平均粒径をR(μm)とし、スペーサ41cの高さをh(μm)としたとき、
   0.1h≦R≦0.8h
であることが望ましい。上記の条件式を満足することにより、フィラー42aによって接着剤42の硬化収縮を抑える効果と、透明基板41aの平面度を確保する効果とをバランスよく得ることができる。
(Regarding the particle size of the filler)
When the average particle diameter of the filler 42a is R (μm) and the height of the spacer 41c is h (μm),
0.1h ≦ R ≦ 0.8h
It is desirable that By satisfying the above conditional expression, the effect of suppressing the curing shrinkage of the adhesive 42 by the filler 42a and the effect of ensuring the flatness of the transparent substrate 41a can be obtained in a balanced manner.
 ちなみに、フィラー42aの平均粒径Rが0.1hよりも小さいと、フィラー42aが小さすぎるために、フィラー42aによって接着剤42の使用量を減らして硬化収縮量を減らす効果、およびフィラー42aによって硬化収縮の力を分断する効果が十分に得られなくなり、結果として、接着剤42の硬化収縮を抑える効果を十分に得ることができなくなる。一方、フィラー42aの平均粒径Rが0.8hよりも大きいと、フィラー42aが大きすぎて異物として働き、透明基板41aの平面度を低下させる場合がある。例えば、異物同士が凝集し、その凝集物がスペーサ41cの高さhを超えることで、透明基板41aの平面度が低下する場合がある。 By the way, if the average particle size R of the filler 42a is smaller than 0.1h, the filler 42a is too small. Therefore, the filler 42a reduces the amount of the adhesive 42 used and reduces the curing shrinkage, and the filler 42a cures The effect of dividing the shrinkage force cannot be sufficiently obtained, and as a result, the effect of suppressing the curing shrinkage of the adhesive 42 cannot be obtained sufficiently. On the other hand, if the average particle size R of the filler 42a is larger than 0.8h, the filler 42a may be too large to act as a foreign substance, thereby reducing the flatness of the transparent substrate 41a. For example, foreign matters may aggregate and the aggregate may exceed the height h of the spacer 41c, so that the flatness of the transparent substrate 41a may decrease.
 なお、フィラー42aの粒径にばらつきがあると、一定の割合で混入している大きな粒径のフィラー42aが透明基板41aと局所的に接触して、平面度を著しく低下させる要因となる。このため、フィラー42aの粒径のばらつきは、小さいほうが望ましい(粒度分布の分散は小さいほうが望ましい)。 Note that if the particle size of the filler 42a varies, the filler 42a having a large particle size mixed in at a constant ratio locally contacts the transparent substrate 41a, which causes a significant decrease in flatness. For this reason, it is desirable that the variation in the particle size of the filler 42a is small (the dispersion of the particle size distribution is desirably small).
 (フィラーの比重について)
 フィラー42aの比重をAとし、フィラー42aを含有させる前の接着剤42の比重をBとしたとき、
   0.9B≦A≦1.1B
であることが望ましい。上記の条件式を満足することで、フィラー42aを接着剤42に容易に混ぜることが可能となり、また、接着剤42に混ぜた後のフィラー42aの分散状態を良好に保ち、接着剤42中でフィラー42aの分布にばらつきが生じるのを低減することが可能となる。
(About the specific gravity of the filler)
When the specific gravity of the filler 42a is A and the specific gravity of the adhesive 42 before containing the filler 42a is B,
0.9B ≦ A ≦ 1.1B
It is desirable that By satisfying the above conditional expression, the filler 42a can be easily mixed with the adhesive 42, and the dispersion state of the filler 42a after being mixed with the adhesive 42 is kept in a good state. It is possible to reduce the variation in the distribution of the filler 42a.
 ちなみに、フィラー42aの比重Aが0.9Bよりも小さいと、フィラー42aを含有させる前の接着剤42に対してフィラー42aが軽すぎるため、フィラー42aが接着剤42に均一に混ざりにくくなる。一方、フィラー42aの比重Aが1.1Bよりも大きいと、フィラー42aを含有させる前の接着剤42に対してフィラー42aが重すぎて、フィラー42aを接着剤42に混入しても、フィラー42aが沈降し、分散状態を良好に保ちにくくなる。その結果、接着剤42中でフィラー42aの分布ムラが生じやすくなる。フィラー42aに分布ムラが生じると、接着位置によって接着剤42の硬化収縮を抑える効果にばらつきが生じることになり、透明基板41aの平面度の低下を招くことが懸念される。 Incidentally, when the specific gravity A of the filler 42a is smaller than 0.9B, the filler 42a is too light with respect to the adhesive 42 before containing the filler 42a, and therefore the filler 42a is not easily mixed with the adhesive 42 uniformly. On the other hand, if the specific gravity A of the filler 42a is larger than 1.1B, the filler 42a is too heavy with respect to the adhesive 42 before containing the filler 42a, and even if the filler 42a is mixed into the adhesive 42, the filler 42a Settles and it becomes difficult to maintain a good dispersion state. As a result, uneven distribution of the filler 42a is likely to occur in the adhesive 42. When distribution unevenness occurs in the filler 42a, the effect of suppressing the curing shrinkage of the adhesive 42 varies depending on the bonding position, and there is a concern that the flatness of the transparent substrate 41a may be reduced.
 (フィラーの望ましい例について)
 接着剤42として、2液混合型のエポキシ系接着剤を用いる場合、上記接着剤の比重は、1.0~1.5程度である。したがって、例えば比重が1.3の2液混合型のエポキシ系接着剤を用いる場合、上記した比重に関する条件式からは、比重が1.2~1.4程度のフィラー42a(例えば上述したアクリル系ポリマー)を用いることが望ましいと言える。
(About desirable examples of fillers)
When a two-component mixed epoxy adhesive is used as the adhesive 42, the specific gravity of the adhesive is about 1.0 to 1.5. Therefore, for example, when a two-component mixed epoxy adhesive having a specific gravity of 1.3 is used, the filler 42a having a specific gravity of about 1.2 to 1.4 (for example, the above-described acrylic type) is obtained from the above-described conditional expression regarding the specific gravity. It can be said that it is desirable to use a polymer.
 また、上述したように、非晶質シリカは、比重が2.2であり、比重が1.0~1.5程度の2液混合型のエポキシ系接着剤とは比重差が大きい。しかし、非晶質シリカの配合率を高めることで、接着剤42の硬化収縮を抑える効果が高いことがわかっている。したがって、接着剤42の硬化収縮を抑える効果を重視する場合は、フィラー42aとして、非晶質シリカを用いることが望ましいと言える。 As described above, the amorphous silica has a specific gravity of 2.2, and has a large specific gravity difference from the two-component mixed epoxy adhesive having a specific gravity of about 1.0 to 1.5. However, it has been found that increasing the blending ratio of amorphous silica has a high effect of suppressing curing shrinkage of the adhesive 42. Therefore, when emphasizing the effect of suppressing curing shrinkage of the adhesive 42, it can be said that it is desirable to use amorphous silica as the filler 42a.
 (接着剤の望ましい例について)
 接着剤の一般的な硬化収縮率は、光硬化性の接着剤で5~10%であり、熱硬化性の接着剤で3~5%であり、2液混合型の接着剤(樹脂からなる主剤と硬化剤とを混ぜて使用する接着剤)で数%以下である。ここで、上記の硬化収縮率は、以下の式で算出される。
  硬化収縮率(%)={(硬化物比重-硬化前比重)/硬化物比重}×100
(About desirable examples of adhesives)
The general cure shrinkage of the adhesive is 5 to 10% for the photo-curable adhesive, 3 to 5% for the thermosetting adhesive, and a two-component mixed adhesive (made of resin). Adhesive used by mixing the main agent and curing agent) is less than a few percent. Here, the curing shrinkage rate is calculated by the following equation.
Curing shrinkage rate (%) = {(cured product specific gravity-specific gravity before curing) / cured product specific gravity} × 100
 本実施形態では、接着剤42の硬化収縮を抑える観点から、硬化収縮率の小さい接着剤42を用いることが望ましい。この点では、接着剤42として、熱硬化性の接着剤または2液混合型の接着剤を用いることが望ましい。中でも特に、2液混合型の接着剤の一種であるエポキシ系の接着剤(エポキシ系樹脂からなる主剤と硬化剤とを混ぜて使用する接着剤)は、硬化後の硬度が高いため(硬いため)、その後の透明基板や構造体の切断等の加工がしやすいといった利点がある。また、熱硬化性の接着剤は、反射膜41bを備えた透明基板41aを、1~100μmの接着厚で精度よく積層接着するために好適である。 In the present embodiment, it is desirable to use the adhesive 42 having a small curing shrinkage rate from the viewpoint of suppressing the curing shrinkage of the adhesive 42. In this respect, it is desirable to use a thermosetting adhesive or a two-component mixed adhesive as the adhesive 42. In particular, epoxy adhesives (adhesives that are used by mixing a main agent composed of an epoxy resin and a curing agent), which is a kind of two-component mixed adhesive, have high hardness after curing (because it is hard) ), And has an advantage that subsequent processing such as cutting of the transparent substrate or structure is easy. Further, the thermosetting adhesive is suitable for accurately laminating and bonding the transparent substrate 41a provided with the reflective film 41b with an adhesive thickness of 1 to 100 μm.
 (接着剤の粘度について)
 本実施形態で用いる接着剤42の粘度は、1000mPa・s以下であることが望ましい。この場合、接着剤42の厚さをスペーサ41cの高さに容易に揃えることができる。ちなみに、接着剤42が高粘度であると、一方の透明基板41a上に接着剤42を塗布して他方の透明基板41aを積層する際に、一方の透明基板41aを押し付けても、接着剤42が広がりにくく、接着層が厚くなる傾向がある。また、接着剤42の粘度が1000mPa・s以下であると、例えば複数の透明基板41aを積層した状態で、各透明基板41aの隙間に側方から接着剤42を同時に注入する場合でも、接着剤42を円滑に注入することができる。上記の効果を確実に得る観点では、接着剤42の粘度は、200mPa・s以下であることがより望ましい。
(Adhesive viscosity)
The viscosity of the adhesive 42 used in the present embodiment is desirably 1000 mPa · s or less. In this case, the thickness of the adhesive 42 can be easily aligned with the height of the spacer 41c. Incidentally, if the adhesive 42 has a high viscosity, the adhesive 42 can be applied even when the one transparent substrate 41a is pressed when the adhesive 42 is applied onto the one transparent substrate 41a and the other transparent substrate 41a is laminated. Is difficult to spread and the adhesive layer tends to be thick. Further, when the viscosity of the adhesive 42 is 1000 mPa · s or less, for example, even when the adhesive 42 is simultaneously injected from the side into the gap between the transparent substrates 41a in a state where a plurality of transparent substrates 41a are stacked, the adhesive 42 can be injected smoothly. From the viewpoint of reliably obtaining the above effect, the viscosity of the adhesive 42 is more desirably 200 mPa · s or less.
 (接着剤の他の例)
 接着剤42は、嫌気性の接着剤であってもよい。嫌気性の接着剤とは、空気(酸素)の遮断によってはじめて硬化する接着剤のことである。このように、接着剤42として、嫌気性の接着剤を用い、この接着剤にフィラー42aを含有させても、反射膜41bを備えた透明基板41aを、1~100μmの均一な接着厚みで精度よく積層接着することができる。
(Other examples of adhesives)
The adhesive 42 may be an anaerobic adhesive. An anaerobic adhesive is an adhesive that hardens only when the air (oxygen) is blocked. As described above, even if an anaerobic adhesive is used as the adhesive 42 and the filler 42a is included in the adhesive 42, the transparent substrate 41a including the reflective film 41b can be accurately obtained with a uniform adhesive thickness of 1 to 100 μm. Can be laminated and bonded well.
 嫌気性の接着剤42を用いる場合、反射膜41bの最表層は、金属であることが望ましい。例えば、反射膜41bは、単層膜の場合はアルミニウムなどの金属であればよく、多層膜の場合は、その最表層がアルミニウムなどの金属であればよい。嫌気性の接着剤42は、空気を遮断するとともに金属と反応して硬化するため、反射膜41bの最表層が金属であれば、嫌気性の接着剤42を使用して、反射膜41b付きの透明基板41aを積層接着することができる。 When the anaerobic adhesive 42 is used, it is desirable that the outermost layer of the reflective film 41b be a metal. For example, the reflective film 41b may be a metal such as aluminum in the case of a single layer film, and the outermost layer may be a metal such as aluminum in the case of a multilayer film. Since the anaerobic adhesive 42 blocks air and cures by reacting with the metal, if the outermost layer of the reflective film 41b is a metal, the anaerobic adhesive 42 is used to attach the reflective film 41b. The transparent substrate 41a can be laminated and bonded.
 接着剤の硬化時間は24時間以上であることが好ましい。硬化時間の長い接着剤を用いることで、硬化収縮による歪みが小さくなり、精度の高い接着ができる。なお、ここでの接着剤の硬化時間は、23℃においてシングルオーバーラップの引張せん断接着強度(接着面:12.5mm×25mm)が10N/mm2以上に達する時間である。 The curing time of the adhesive is preferably 24 hours or longer. By using an adhesive having a long curing time, distortion due to curing shrinkage is reduced, and high-accuracy bonding can be performed. Here, the curing time of the adhesive is a time required for the tensile shear adhesive strength (adhesive surface: 12.5 mm × 25 mm) of the single overlap to reach 10 N / mm 2 or more at 23 ° C.
 (スペーサのマトリクス配置について)
 上述のように、スペーサ41cが平面視でマトリクス状に配置されていることにより、各透明基板41aの間に接着剤42を充填する際に、隣り合うスペーサ41c・41cの間を接着剤42が均一に広がる。また、隣り合うスペーサ41c・41cの間では、接着剤42が透明基板41aまたは反射膜41bと直接接触する。したがって、スペーサ41cのマトリクス配置は、接着剤42の流路と接着面積とを確保するのに適している。
(About spacer matrix arrangement)
As described above, since the spacers 41c are arranged in a matrix in a plan view, when the adhesive 42 is filled between the transparent substrates 41a, the adhesive 42 is interposed between the adjacent spacers 41c and 41c. Spread evenly. Further, between the adjacent spacers 41c and 41c, the adhesive 42 is in direct contact with the transparent substrate 41a or the reflective film 41b. Therefore, the matrix arrangement of the spacers 41c is suitable for securing the flow path and the bonding area of the adhesive 42.
 スペーサ41cのマトリクス配置において、積層方向に隣り合う一方のミラー素子41のスペーサ41cは、他方のミラー素子41のスペーサ41cに対して、積層方向と垂直な方向にずれて位置していることが望ましい。図19は、積層方向に並ぶ4つのミラー素子41の各スペーサ41cの配置位置を示したものである。ここで、積層方向の一方の側から1枚目(1層目)、2枚目(2層目)、3枚目(3層目)、4枚目(4層目)のミラー素子41の各スペーサ41cを、それぞれ、スペーサ41c1、41c2、41c3、41c4とする。スペーサ41c2は、スペーサ41c1に対して行方向に半ピッチ(例えば0.5mm)ずれて配置されており、スペーサ41c3は、スペーサ41c2に対して列方向に半ピッチ(例えば0.5mm)ずれて配置されており、スペーサ41c4は、スペーサ41c3に対して行方向に半ピッチ(例えば0.5mm)ずれ、かつ、スペーサ41c1に対して列方向に半ピッチ(例えば0.5mm)ずれて配置されている。 In the matrix arrangement of the spacers 41c, it is desirable that the spacer 41c of one mirror element 41 adjacent in the stacking direction is shifted from the spacer 41c of the other mirror element 41 in a direction perpendicular to the stacking direction. . FIG. 19 shows the arrangement positions of the spacers 41c of the four mirror elements 41 arranged in the stacking direction. Here, the first (first layer), second (second layer), third (third layer), and fourth (fourth layer) mirror elements 41 from one side in the stacking direction each spacer 41c, respectively, and spacers 41c 1, 41c 2, 41c 3 , 41c 4. The spacer 41c 2 is disposed with a half pitch (for example, 0.5 mm) in the row direction with respect to the spacer 41c 1 , and the spacer 41c 3 is a half pitch (for example, 0.5 mm) with respect to the spacer 41c 2 in the column direction. ) The spacer 41c 4 is displaced by a half pitch (for example, 0.5 mm) in the row direction with respect to the spacer 41c 3 and is a half pitch (for example, 0.5 mm) in the column direction with respect to the spacer 41c 1 . ) It is shifted.
 スペーサ41c(41c1~41c4)が平面視で(積層方向から見て)同じ位置に配置されていると、スペーサ41cが存在しない位置、つまり、接着剤42が充填される位置も平面視で同じ位置となる。この場合、各透明基板41aにおいて、接着剤42の硬化収縮の影響を受ける領域が積層方向に揃うため、その影響によって各透明基板41aに凹凸が生じやすくなる。しかし、上記のように積層方向に隣り合う一方のミラー素子41のスペーサ41cを、他方のミラー素子41のスペーサ41cに対して、積層方向と垂直な方向(上記の行方向および列方向に対応)にずらして配置することにより、各透明基板41aにおいて、接着剤42の硬化収縮の影響を、積層方向と垂直な方向に分散させることができる。これにより、接着剤42の硬化収縮の影響によって各透明基板41aに凹凸が生じるのを低減することができ、各透明基板41aの反射面の平行度を確実に確保することが可能となる。 When the spacers 41c (41c 1 to 41c 4 ) are arranged at the same position in plan view (viewed from the stacking direction), the position where the spacer 41c does not exist, that is, the position where the adhesive 42 is filled is also shown in plan view. It becomes the same position. In this case, in each transparent substrate 41a, since the region affected by the curing shrinkage of the adhesive 42 is aligned in the stacking direction, unevenness is likely to occur in each transparent substrate 41a due to the influence. However, as described above, the spacer 41c of one mirror element 41 adjacent in the stacking direction is perpendicular to the stacking direction with respect to the spacer 41c of the other mirror element 41 (corresponding to the above row direction and column direction). By displacing them, the influence of curing shrinkage of the adhesive 42 can be dispersed in the direction perpendicular to the stacking direction in each transparent substrate 41a. Thereby, it is possible to reduce the occurrence of unevenness on each transparent substrate 41a due to the effect of curing shrinkage of the adhesive 42, and it is possible to ensure the parallelism of the reflecting surfaces of each transparent substrate 41a.
 (スペーサの他の配置例について)
 図20は、スペーサ41cの他の配置例を示している。スペーサ41cは、透明基板41aの一方の面側に千鳥状に配置されていてもよい。千鳥状の配置とは、隣接する行同士で、スペーサ41cが列方向に半ピッチずれて配置されたり、隣接する列同士で、スペーサ41cが行方向に半ピッチずれて配置される形態を指す。この場合でも、接着剤42の流路と接着面積とを確保することができる。また、千鳥配置の場合でも、積層方向に隣り合う一方のミラー素子41のスペーサ41cを、他方のミラー素子41のスペーサ41cに対して、積層方向と垂直な方向にずらして配置して、接着剤42の硬化収縮に起因する各透明基板41aの凹凸を低減するようにしてもよい。その他、スペーサ41cの配置は、ランダムな配置であってもよい。
(Other spacer arrangement examples)
FIG. 20 shows another arrangement example of the spacer 41c. The spacers 41c may be arranged in a staggered pattern on one surface side of the transparent substrate 41a. The staggered arrangement refers to a mode in which the spacers 41c are arranged with a half pitch shift in the column direction between adjacent rows, or the spacers 41c are arranged with a half pitch shift in the row direction between adjacent columns. Even in this case, the flow path and the bonding area of the adhesive 42 can be secured. Even in the zigzag arrangement, the spacer 41c of one mirror element 41 adjacent in the stacking direction is shifted from the spacer 41c of the other mirror element 41 in a direction perpendicular to the stacking direction, and the adhesive is used. You may make it reduce the unevenness | corrugation of each transparent substrate 41a resulting from the cure shrinkage of 42. FIG. In addition, the arrangement of the spacers 41c may be a random arrangement.
 (スペーサによる反射膜の保護について)
 図11Bおよび図13のように、スペーサ41cが反射膜41b上に形成されている場合、ミラー素子41の輸送時や積層作業時に、反射膜41bに他の部材が直接接触しにくくなる(他の部材が先にスペーサ41cに接触するため)。したがって、スペーサ41cが反射膜41b上に形成される構成は、スペーサ41cが透明基板41a上に直接形成される構成(図12参照)に比べて、反射膜41bが損傷しにくくなる点で有利である。
(Protecting the reflective film with spacers)
When the spacer 41c is formed on the reflective film 41b as shown in FIG. 11B and FIG. 13, other members are less likely to come into direct contact with the reflective film 41b when the mirror element 41 is transported or laminated. (Because the member first contacts the spacer 41c). Therefore, the configuration in which the spacer 41c is formed on the reflective film 41b is advantageous in that the reflective film 41b is less likely to be damaged than the configuration in which the spacer 41c is directly formed on the transparent substrate 41a (see FIG. 12). is there.
 (スペーサを構成する樹脂等について)
 スペーサ41cは、エネルギー硬化性樹脂、顔料系の樹脂(樹脂、顔料、溶剤を含むもの)、室温での化学反応によって硬化する樹脂(例えばエポキシ系樹脂)などで形成可能であるが、特にエネルギー硬化性樹脂で形成されていることが望ましい。エネルギー硬化性樹脂は、熱硬化性樹脂や光硬化性樹脂など、外部から熱や光などのエネルギーを与えることによって硬化する樹脂である。エネルギー硬化性樹脂は、硬化時に体積変化がほとんどなく、化学的に安定しているため、所定の位置に所定の高さでスペーサ41cを効率よく形成することができ、スペーサ形成用の樹脂として好適である。
(About the resin etc. constituting the spacer)
The spacer 41c can be formed of an energy curable resin, a pigment-based resin (including a resin, a pigment, and a solvent), a resin that is cured by a chemical reaction at room temperature (for example, an epoxy-based resin), and the like. It is desirable that it is made of a functional resin. The energy curable resin is a resin that is cured by applying energy such as heat or light from the outside, such as a thermosetting resin or a photocurable resin. Since the energy curable resin has little volume change at the time of curing and is chemically stable, the spacer 41c can be efficiently formed at a predetermined height at a predetermined position, and is suitable as a resin for spacer formation. It is.
 スペーサ41cおよび接着剤42は、透明であり、かつ、透明基板41aと屈折率が略同じであることが望ましい。この場合、スペーサ41c、接着剤42、透明基板41aのいずれか2者の界面での光の散乱や迷光の反射を低減することができ、散乱光や迷光による空中映像の劣化を防止することができる。例えば、透明基板41aとして、屈折率1.52~1.53のガラスを用いる場合、スペーサ41cとして、屈折率1.53の透明な紫外線(UV)硬化性樹脂を用い、接着剤42として、屈折率1.528の透明なエポキシ系接着剤を用いることにより、上記の効果を得ることができる。なお、透明基板41a、スペーサ41c、接着剤42の間での屈折率差は、±0.01の範囲内であることが望ましい。 The spacer 41c and the adhesive 42 are preferably transparent and have substantially the same refractive index as that of the transparent substrate 41a. In this case, scattering of light and reflection of stray light at the interface between any two of the spacer 41c, the adhesive 42, and the transparent substrate 41a can be reduced, and deterioration of the aerial image due to scattered light and stray light can be prevented. it can. For example, when a glass having a refractive index of 1.52 to 1.53 is used as the transparent substrate 41a, a transparent ultraviolet (UV) curable resin having a refractive index of 1.53 is used as the spacer 41c, and the adhesive 42 is refracted. The above effect can be obtained by using a transparent epoxy adhesive having a rate of 1.528. The refractive index difference among the transparent substrate 41a, the spacer 41c, and the adhesive 42 is preferably within a range of ± 0.01.
 (インクジェット印刷について)
 上記したスペーサ41cは、インクジェット印刷によって形成されていることが望ましい。インクジェット印刷では、インク滴を所望の位置に精度よく着弾させることができ、また、同じ位置に着弾させるインク滴の数を制御することによって、着弾したインクの高さを調整することが容易である。このため、インクジェット印刷によってスペーサ41cを形成することにより、スペーサ41cを所定の位置に所定の高さで高精度に、かつ、効率よく形成することができる。
(Inkjet printing)
The spacer 41c is preferably formed by ink jet printing. In inkjet printing, ink droplets can be landed accurately at a desired position, and the height of the landed ink can be easily adjusted by controlling the number of ink droplets landed at the same position. . For this reason, by forming the spacer 41c by inkjet printing, the spacer 41c can be formed at a predetermined position at a predetermined height with high accuracy and efficiency.
 なお、インクジェット印刷に用いるインクとしては、上述したスペーサ41cを形成する材料を含むインクを用いることができる。このうち、スペーサ41cを高く形成する場合は、揮発成分を含まないインク(例えばエネルギー硬化性樹脂からなるインク)が適しており、スペーサ41cを低く形成する場合は、揮発成分を含むインク(例えば顔料系インク)が適している。顔料系インクを用いた場合、インクを着弾後に乾燥させることにより、インクに含まれる溶剤が揮発する分、インクの高さが乾燥前に比べて低くなる。 In addition, as an ink used for inkjet printing, the ink containing the material which forms the spacer 41c mentioned above can be used. Among these, when the spacer 41c is formed high, an ink containing no volatile component (for example, an ink made of an energy curable resin) is suitable, and when the spacer 41c is formed low, an ink containing a volatile component (for example, a pigment) Ink) is suitable. When pigment-based ink is used, drying the ink after landing makes the ink height lower than before drying because the solvent contained in the ink volatilizes.
 インクジェット印刷でスペーサ41cを形成する場合、スペーサ41cは、透明基板41aの表面の窪み量または透明基板41aの厚さに応じた高さで形成されていることが望ましい。なお、上記窪み量および上記厚さは、インクを吐出する直前の測定によって得られるものであってもよいし、予め取得された値(例えば透明基板41aの製造時に測定された値)であってもよい。なお、上記窪み量は、透明基板41aの表面の元々の窪み量であって、接着剤42の硬化収縮によって生じた窪みの量ではない。 When the spacer 41c is formed by inkjet printing, the spacer 41c is desirably formed at a height corresponding to the amount of depression on the surface of the transparent substrate 41a or the thickness of the transparent substrate 41a. The amount of depression and the thickness may be obtained by measurement immediately before ink is ejected, or may be a value acquired in advance (for example, a value measured when the transparent substrate 41a is manufactured). Also good. Note that the amount of depression is the original amount of depression on the surface of the transparent substrate 41 a and not the amount of depression caused by the curing shrinkage of the adhesive 42.
 上記のようにスペーサ41cを形成することにより、透明基板41aの表面の窪み量や厚さのばらつきを、スペーサ41cで補正することができる。具体的には、図21に示すように、1つの透明基板41aにおいて表面の窪み量(図中Cで示す量)や厚さ(図中Dで示す量)にばらつきがあっても、透明基板41aの厚さとスペーサ41cの高さとの和Wを、透明基板41aの厚み方向に垂直な方向に略一定にすることができる。また、複数の透明基板41a間で表面の窪み量や厚さがばらついている場合でも、透明基板41aの厚みとスペーサ41cの高さとの和を、複数のミラー素子41間で略一定にすることができる。なお、図21の構成では、透明基板41aの裏面側(スペーサ形成側とは反対側)に反射膜41b(図示せず)が形成されているとする。 By forming the spacer 41c as described above, variations in the amount of depression and thickness of the surface of the transparent substrate 41a can be corrected by the spacer 41c. Specifically, as shown in FIG. 21, even if there is variation in the amount of depressions (amount indicated by C in the figure) and the thickness (amount indicated by D in the figure) of one transparent substrate 41a, the transparent substrate The sum W of the thickness of 41a and the height of the spacer 41c can be made substantially constant in a direction perpendicular to the thickness direction of the transparent substrate 41a. In addition, even when the amount of depressions and thickness of the surface varies between the plurality of transparent substrates 41a, the sum of the thickness of the transparent substrate 41a and the height of the spacer 41c is made substantially constant between the plurality of mirror elements 41. Can do. In the configuration of FIG. 21, it is assumed that a reflective film 41b (not shown) is formed on the back surface side (the side opposite to the spacer forming side) of the transparent substrate 41a.
 このように、透明基板41aの表面の窪み量や厚さのばらつきを、スペーサ41cで補正することができるので、各透明基板41aの反射面の平行度を確実に良好にすることができる。その結果、光学パネル40を用いて構成される空中映像表示デバイス1において、歪みの小さい高品質の映像を空中に表示させることができる。 Thus, since the spacer 41c can correct variations in the dent amount and thickness of the surface of the transparent substrate 41a, the parallelism of the reflecting surfaces of the transparent substrates 41a can be reliably improved. As a result, the aerial video display device 1 configured using the optical panel 40 can display a high-quality video with little distortion in the air.
 図22は、スペーサ41cをインクジェット印刷によって形成する一例を模式的に示している。まず、インクジェットヘッド51によるインクの吐出前に、透明基板41aの表面の窪み量を、変位計52を用いて測定する。変位計52は、例えば、透明基板41aの表面までの距離を測定する測距センサで構成される。測定開始位置(例えば基板端部)での変位計-透明基板間の距離を基準とし、この距離と、基板厚み方向に垂直な方向の各位置で測定した変位計-透明基板間の距離との差を求めることにより、各測定位置ごとに透明基板41aの表面の窪み量を求めることができる。なお、インク吐出前に透明基板41aの表面の窪み量が予めわかっている場合には、変位計52による測定は不要である(変位計52は設置されていなくてもよい)。また、上記窪み量を測定する代わりに、透明基板41aの各位置ごとに厚さを測定するようにしてもよい。 FIG. 22 schematically shows an example of forming the spacer 41c by ink jet printing. First, before the ink is ejected by the inkjet head 51, the amount of depression on the surface of the transparent substrate 41 a is measured using a displacement meter 52. The displacement meter 52 is composed of a distance measuring sensor that measures the distance to the surface of the transparent substrate 41a, for example. Using the distance between the displacement meter and the transparent substrate at the measurement start position (for example, the edge of the substrate) as a reference, this distance and the distance between the displacement meter and the transparent substrate measured at each position in the direction perpendicular to the substrate thickness direction. By obtaining the difference, the amount of depression on the surface of the transparent substrate 41a can be obtained for each measurement position. Note that when the amount of depression on the surface of the transparent substrate 41a is known in advance before ink ejection, measurement by the displacement meter 52 is unnecessary (the displacement meter 52 may not be installed). Further, instead of measuring the amount of depression, the thickness may be measured for each position of the transparent substrate 41a.
 次に、透明基板41aの表面の窪み量に応じた高さでスペーサ41cが形成されるように、インクジェットヘッド51からインク(例えばUV硬化性樹脂)を透明基板41a上の所定位置に吐出させる。なお、同一位置でのインク滴の吐出回数は、スペーサ41cが所望の高さで形成される回数であればよく、1回であってもよいし、複数回であってもよい。そして、インク吐出後は、UV光源53からのUV照射によってインクを硬化させる。これによって、スペーサ41cが所定の位置に所望の高さで形成される。 Next, ink (for example, UV curable resin) is ejected from the inkjet head 51 to a predetermined position on the transparent substrate 41a so that the spacer 41c is formed at a height corresponding to the amount of depression on the surface of the transparent substrate 41a. Note that the number of ink droplet ejections at the same position is not limited as long as the spacer 41c is formed at a desired height, and may be once or a plurality of times. Then, after ink discharge, the ink is cured by UV irradiation from the UV light source 53. Thus, the spacer 41c is formed at a desired height at a predetermined position.
 インクジェット印刷において、スペーサ41cは、1滴のインクの吐出によって形成されていることが望ましい(同一位置での吐出回数は1回であることが望ましい)。これは、スペーサ41cを複数回のインク吐出によって形成すると、吐出ずれ(印刷位置ずれ)が生じたときに高さにばらつきが生じるおそれがあるためである。つまり、スペーサ41cが1滴のインクの吐出によって形成されることにより、高さ精度に優れたスペーサ41cを形成することができる。 In inkjet printing, the spacer 41c is preferably formed by ejecting one drop of ink (the number of ejections at the same position is desirably one). This is because if the spacer 41c is formed by a plurality of ink ejections, the height may vary when ejection misalignment (printing position misalignment) occurs. In other words, the spacer 41c is formed by discharging one drop of ink, whereby the spacer 41c having excellent height accuracy can be formed.
 なお、インクジェットヘッド51では、例えば、圧電体(圧電薄膜でもよい)を挟む上部電極および下部電極に電位差(駆動信号)を与えて圧電体を伸縮させ、圧力室内のインクに圧力を付与することによってインク吐出を行う。この構成では、上記駆動信号の駆動波形(駆動電圧、電圧印加時間など)を調整することにより、1回のインク吐出量を変えることができる。したがって、上記駆動波形を調整することにより、1滴のインク吐出によって形成されるスペーサ41cの高さを調整することができる。 In the inkjet head 51, for example, by applying a potential difference (drive signal) to the upper electrode and the lower electrode sandwiching the piezoelectric body (which may be a piezoelectric thin film), the piezoelectric body is expanded and contracted, and pressure is applied to the ink in the pressure chamber. Ink discharge is performed. In this configuration, the amount of ink discharged at one time can be changed by adjusting the drive waveform (drive voltage, voltage application time, etc.) of the drive signal. Therefore, the height of the spacer 41c formed by ejecting one drop of ink can be adjusted by adjusting the drive waveform.
 (スペーサの他の形成方法等について)
 スペーサ41cは、スクリーン印刷によって形成されていてもよい。スクリーン印刷を用いる場合でも、スペーサ41cを所定の位置に所定の高さで高精度に、かつ、効率よく形成することができる。
(Other methods for forming spacers, etc.)
The spacer 41c may be formed by screen printing. Even when screen printing is used, the spacer 41c can be formed at a predetermined position at a predetermined height with high accuracy and efficiency.
 また、スペーサ41cは、黒色であってもよい。例えばスペーサ41cを構成する樹脂に、黒色顔料やカーボンブラックを含有させることにより、黒色のスペーサ41cを実現することができる。スペーサ41cが黒色であると、スペーサ41cに入射する光がそこで吸収されるため、スペーサ41cの表面での光の散乱や迷光の反射が生じない。したがって、散乱光や迷光に起因する空中映像の劣化を低減することができる。 Further, the spacer 41c may be black. For example, the black spacer 41c can be realized by adding a black pigment or carbon black to the resin constituting the spacer 41c. If the spacer 41c is black, light incident on the spacer 41c is absorbed there, and therefore no light scattering or stray light reflection occurs on the surface of the spacer 41c. Accordingly, it is possible to reduce the deterioration of the aerial image due to scattered light or stray light.
 また、スペーサ41cは、透明基板41aと同一材料で形成されていてもよい。例えば、スペーサ41cおよび透明基板41aは、両方ともガラスで形成されていてもよく、樹脂で形成されていてもよい。この場合、透明基板41aに対して型を押し当ててスペーサ41cを形成したり、射出成形によってスペーサ41cと透明基板41aとを一体的に形成したり、透明基板41aの表面をエッチングしてスペーサ41cを形成するなど、種々の方法でスペーサ41cを形成することが可能となる。 The spacer 41c may be formed of the same material as the transparent substrate 41a. For example, both the spacer 41c and the transparent substrate 41a may be formed of glass or may be formed of resin. In this case, the spacer 41c is formed by pressing the mold against the transparent substrate 41a, the spacer 41c and the transparent substrate 41a are integrally formed by injection molding, or the surface of the transparent substrate 41a is etched to form the spacer 41c. It is possible to form the spacer 41c by various methods such as forming.
 図23は、ミラー素子41の製造工程の一例を示す断面図である。スペーサ41cおよび透明基板41aが両方ともガラスで形成されたり、両方とも樹脂で形成される場合、スペーサ41cは、スペーサ41cの形状を反転したネガ型54を、(硬化前の)透明基板41aに押し当て、上記形状を透明基板41aに転写することによって透明基板41aと一体的に形成されてもよい。この場合、透明基板41aの所定位置に、高さ精度に優れたスペーサ41cを形成することができる。また、スペーサ41cおよび透明基板41aが両方とも樹脂で形成される場合は、これらを射出成形によって一体的に形成してもよく、この場合でも、上記と同様の効果を得ることができる。スペーサ41cの形成後は、例えば透明基板41aの裏面(スペーサ41cの形成側とは反対側の面)に反射膜41bを形成することで、ミラー素子41が完成する。 FIG. 23 is a cross-sectional view showing an example of the manufacturing process of the mirror element 41. When both the spacer 41c and the transparent substrate 41a are formed of glass or both are formed of resin, the spacer 41c pushes the negative mold 54 in which the shape of the spacer 41c is inverted against the transparent substrate 41a (before curing). The shape may be integrally formed with the transparent substrate 41a by transferring the shape to the transparent substrate 41a. In this case, the spacer 41c excellent in height accuracy can be formed at a predetermined position of the transparent substrate 41a. Moreover, when both the spacer 41c and the transparent substrate 41a are formed of resin, they may be integrally formed by injection molding, and even in this case, the same effect as described above can be obtained. After the formation of the spacer 41c, the mirror element 41 is completed, for example, by forming the reflective film 41b on the back surface of the transparent substrate 41a (the surface opposite to the side on which the spacer 41c is formed).
 図24は、ミラー素子41の製造工程の他の例を示す断面図である。透明基板41aは、ガラスからなり、スペーサ41cは、透明基板41aをエッチングすることによって形成されていてもよい。例えば、透明基板41a上に、レジストやフィルムからなるマスク55を形成し、透明基板41aにおいてマスクされていない部分をエッチングで掘り下げることにより、エッチングされていない部分がスペーサ41cとして残る。したがって、この場合でも、透明基板41aの所定位置にスペーサ41cを形成できるとともに、エッチング量を管理することによって、高さ精度に優れたスペーサ41cを形成することができる。また、この方法では、反射面の平行度が、元の透明基板41aの厚さ精度のみで決まるため、透明基板41aの厚さを精度よく管理することで、反射面の平行度を確保することができる。 FIG. 24 is a cross-sectional view showing another example of the manufacturing process of the mirror element 41. The transparent substrate 41a is made of glass, and the spacer 41c may be formed by etching the transparent substrate 41a. For example, a mask 55 made of a resist or a film is formed on the transparent substrate 41a, and an unmasked portion of the transparent substrate 41a is dug by etching, so that the unetched portion remains as the spacer 41c. Accordingly, even in this case, the spacer 41c can be formed at a predetermined position of the transparent substrate 41a, and the spacer 41c having excellent height accuracy can be formed by managing the etching amount. Further, in this method, since the parallelism of the reflecting surface is determined only by the thickness accuracy of the original transparent substrate 41a, the parallelism of the reflecting surface is ensured by managing the thickness of the transparent substrate 41a with high accuracy. Can do.
 図25は、ミラー素子41の製造工程のさらに他の例を示す断面図である。スペーサ41cは、例えばガラスからなる透明基板41a上にエネルギー硬化性樹脂56aを塗布し、スペーサ41cの形状を反転したネガ型57を押し当てた状態でエネルギー硬化性樹脂56aを硬化させて硬化膜56を形成し、離型することによって形成されていてもよい。この場合、硬化膜56において突出高さを有する部分がスペーサ41cとなる。このように、透明基板41aとスペーサ41cとで材質が異なる場合でも、その透明基板41a上の所定位置に、スペーサ41cを高さ精度よく形成することができる。 FIG. 25 is a cross-sectional view showing still another example of the manufacturing process of the mirror element 41. The spacer 41c is formed by applying an energy curable resin 56a on a transparent substrate 41a made of glass, for example, and curing the energy curable resin 56a while pressing the negative mold 57 in which the shape of the spacer 41c is reversed. It may be formed by forming and releasing. In this case, a portion having a protruding height in the cured film 56 becomes the spacer 41c. Thus, even when the transparent substrate 41a and the spacer 41c are made of different materials, the spacer 41c can be formed at a predetermined position on the transparent substrate 41a with high accuracy.
 スペーサ41cの高さは、1μm~100μmであることが望ましい。スペーサ41cの高さが1μm以上であることにより、接着剤42の厚さを1μm以上確保することができる。これにより、積層方向に並ぶ透明基板41a・41a間で接着剤42を十分に行き渡らせることができ、接着強度を十分に確保することができる。また、複数のミラー素子41cの積層時に、スペーサ41cを透明基板41aに確実に当接させて、各反射面の平行度を確実に確保することができる。一方、スペーサ41cの高さが100μm以下であることにより、接着剤42の充填時に泡を巻き込みにくくなり、接着剤42における光の散乱も生じにくくなる。また、接着剤42の硬化収縮による透明基板41aの歪みや反りも生じにくくなり、各反射面の平行度の確保に寄与できる。 The height of the spacer 41c is desirably 1 μm to 100 μm. When the height of the spacer 41c is 1 μm or more, the thickness of the adhesive 42 can be ensured by 1 μm or more. As a result, the adhesive 42 can be sufficiently spread between the transparent substrates 41a and 41a arranged in the stacking direction, and sufficient adhesive strength can be ensured. In addition, when the plurality of mirror elements 41c are stacked, the spacer 41c can be surely brought into contact with the transparent substrate 41a to ensure the parallelism of each reflecting surface. On the other hand, when the height of the spacer 41c is 100 μm or less, it is difficult for bubbles to be involved when the adhesive 42 is filled, and light scattering in the adhesive 42 is less likely to occur. Further, distortion and warpage of the transparent substrate 41a due to curing shrinkage of the adhesive 42 are less likely to occur, which can contribute to ensuring the parallelism of each reflecting surface.
 なお、図11Aおよび図11Bにおいて、スペーサ41cの直径をL(μm)、高さをT(μm)としたとき、直径Lは1~1000μmであることが望ましく、アスペクト比(T/L)は、1~1/300であることが望ましい。また、スペーサ41cの総面積は、透明基板41aにおける反射面(反射膜41bが形成される面)の面積の10%以下であることが望ましい。なお、スペーサ41cの総面積は、π(L/2)2×(1個のミラー素子に含まれるスペーサ数)で表される。 11A and 11B, when the diameter of the spacer 41c is L (μm) and the height is T (μm), the diameter L is preferably 1 to 1000 μm, and the aspect ratio (T / L) is 1 to 1/300 is desirable. The total area of the spacers 41c is desirably 10% or less of the area of the reflective surface (surface on which the reflective film 41b is formed) in the transparent substrate 41a. The total area of the spacers 41c is represented by π (L / 2) 2 × (number of spacers included in one mirror element).
 (積層接着の手法について)
 図26は、複数のミラー素子41を積層して接着する手法の一例を示している。この工程では、(1)ミラー素子41上に接着剤42を塗布する工程と、(2)上記のミラー素子41上に他のミラー素子41を、上記の接着剤42を介して積層する工程と、を繰り返してもよい。つまり、ミラー素子41上に接着剤42を供給し、ミラー素子41(透明基板41a)を順次積層して接着してもよい。
(About the method of lamination adhesion)
FIG. 26 shows an example of a method of laminating and bonding a plurality of mirror elements 41. In this step, (1) a step of applying an adhesive 42 on the mirror element 41, and (2) a step of laminating another mirror element 41 on the mirror element 41 via the adhesive 42. , May be repeated. That is, the adhesive 42 may be supplied onto the mirror element 41, and the mirror element 41 (transparent substrate 41a) may be sequentially stacked and bonded.
 このようにすることで、積層方向に隣り合う一方のミラー素子41のスペーサ41cを他方のミラー素子41に当接させて、各ミラー素子41を積層し、接着することができる。この場合、接着剤42の厚みを、スペーサ41cの高さによって規定することができ、接着剤42の厚みのばらつきの少ない積層構造体40aを得ることができる。 By doing in this way, each mirror element 41 can be laminated | stacked and adhere | attached by making the spacer 41c of one mirror element 41 adjacent to the lamination direction contact | abut to the other mirror element 41. FIG. In this case, the thickness of the adhesive 42 can be defined by the height of the spacer 41c, and the laminated structure 40a with little variation in the thickness of the adhesive 42 can be obtained.
 また、図27は、積層接着の手法の他の例を示しており、図28のB-B’線矢視断面図に相当している。複数のミラー素子41を積層して接着する工程では、複数のミラー素子41を積層配置し、積層方向に隣り合う透明基板41aの全ての隙間に接着剤42を同時に注入して接着してもよい。 FIG. 27 shows another example of the lamination adhesion method, and corresponds to a cross-sectional view taken along the line B-B ′ of FIG. In the step of laminating and bonding the plurality of mirror elements 41, the plurality of mirror elements 41 may be arranged in a stacked manner, and the adhesive 42 may be simultaneously injected into all the gaps between the transparent substrates 41a adjacent to each other in the stacking direction. .
 例えば、複数のミラー素子41の積層方向をz方向とし、z方向に垂直な面内で互いに垂直な2方向をx方向およびy方向とする。なお、xyzの各方向は、図2等で示したXYZの各方向とは異なるものとする。図28および図29に示すように、各透明基板41aの間にスペーサ41cが位置するように複数のミラー素子41を積層配置した積層体40bにおいて、x方向において対向する2面に、各面を覆うように粘着性フィルム40cを貼り付ける。これにより、積層体40bの各透明基板41a・41a間の隙間は、y方向以外において封止されることになる。そして、図27に示すように、この積層体40bのy方向の一端側を、パッキン61を介して吸込ノズル62に固定し、他端側が、容器63に入れた接着剤42につかるように、積層体40bを配置する。 For example, the stacking direction of the plurality of mirror elements 41 is the z direction, and two directions perpendicular to each other in the plane perpendicular to the z direction are the x direction and the y direction. The xyz directions are different from the XYZ directions shown in FIG. As shown in FIG. 28 and FIG. 29, in a laminated body 40b in which a plurality of mirror elements 41 are arranged so that spacers 41c are positioned between the transparent substrates 41a, each surface is arranged on two surfaces opposed in the x direction. Adhesive film 40c is affixed so that it may cover. Thereby, the clearance gap between each transparent substrate 41a * 41a of the laminated body 40b is sealed except a y direction. And as shown in FIG. 27, the one end side of this laminated body 40b in the y direction is fixed to the suction nozzle 62 through the packing 61, and the other end side is used by the adhesive 42 put in the container 63. The stacked body 40b is disposed.
 この状態で、吸込ノズル62と接続された真空ポンプ(図示せず)により、吸引(排気)を開始すると、各透明基板41a・41a間において、y方向に圧力差が生じ、容器63内の接着剤42が吸込ノズル62側に移動し(吸い上げられ)、隣り合う透明基板41aの全ての隙間に接着剤42が同時に注入される。注入後に(例えば加熱によって)接着剤42を硬化させることにより、積層構造体40aが得られる。 In this state, when suction (exhaust) is started by a vacuum pump (not shown) connected to the suction nozzle 62, a pressure difference is generated in the y direction between the transparent substrates 41a and 41a, and adhesion within the container 63 is performed. The agent 42 moves (sucks up) toward the suction nozzle 62, and the adhesive 42 is simultaneously injected into all the gaps between the adjacent transparent substrates 41a. The laminated structure 40a is obtained by curing the adhesive 42 after injection (for example, by heating).
 真空ポンプによる吸引時における隙間内の真空度は、0.05MPa以下であることが好ましく、0.01MPaであることがより好ましい。これにより、各透明基板41a・41a間の隙間に接着剤42を円滑に充填することができる。 The vacuum degree in the gap during suction by the vacuum pump is preferably 0.05 MPa or less, and more preferably 0.01 MPa. As a result, the adhesive 42 can be smoothly filled in the gaps between the transparent substrates 41a and 41a.
 このように、差圧によって接着剤42を注入し、複数のミラー素子41を接着することによっても、積層方向に隣り合う一方のミラー素子41のスペーサ41cを他方のミラー素子41に当接させた状態で、各ミラー素子41を接着することができる。したがって、接着剤42の厚みを、スペーサ41cの高さによって規定することができ、接着剤42の厚みのばらつきの少ない積層構造体40aを得ることができる。 As described above, the spacer 42c of one mirror element 41 adjacent in the stacking direction is also brought into contact with the other mirror element 41 by injecting the adhesive 42 by differential pressure and bonding the plurality of mirror elements 41. In the state, each mirror element 41 can be adhered. Therefore, the thickness of the adhesive 42 can be defined by the height of the spacer 41c, and the laminated structure 40a with little variation in the thickness of the adhesive 42 can be obtained.
 図30は、積層接着の手法のさらに他の例を示している。同図に示すように、複数のミラー素子41を積層して接着する工程では、上記の積層体40bを、固着装置70の真空チャンバ71内に入れて密閉し、真空チャンバ71内を真空排気した後、積層方向に隣り合う透明基板41aの全ての隙間Gに接着剤42を同時に注入して接着してもよい。以下、このような積層接着の詳細について説明する。なお、積層体40bの構成は、図28および図29で示した構成と同様であり、図30における積層体40bの断面は、図28のB-B’線での断面に対応している。 FIG. 30 shows still another example of the lamination adhesion method. As shown in the figure, in the step of laminating and adhering a plurality of mirror elements 41, the laminated body 40b is sealed in the vacuum chamber 71 of the fixing device 70, and the vacuum chamber 71 is evacuated. Thereafter, the adhesive 42 may be simultaneously injected and bonded to all the gaps G of the transparent substrates 41a adjacent in the stacking direction. Hereinafter, details of such lamination adhesion will be described. The configuration of the stacked body 40b is the same as the configuration shown in FIGS. 28 and 29, and the cross section of the stacked body 40b in FIG. 30 corresponds to the cross section taken along the line B-B 'of FIG.
 まず、真空チャンバ71内に積層体40bを配置し、開閉弁72を閉じた状態で真空ポンプ73を所定時間駆動させる。これにより、真空チャンバ71の空気および積層体40bの隙間G内の空気は、積層体40bの排気側の端部40b1から、矢印Sで示す方向に排気され、真空チャンバ71内が真空状態に減圧される。 First, the laminated body 40b is disposed in the vacuum chamber 71, and the vacuum pump 73 is driven for a predetermined time with the on-off valve 72 closed. Thus, air in the gap G of air and stack 40b of the vacuum chamber 71, from the end 40b 1 of the exhaust side of the laminate 40b, is evacuated in the direction indicated by the arrow S, the vacuum chamber 71 is evacuated Depressurized.
 次に、真空ポンプ73を継続して駆動しながら、開閉弁72を開く。このとき、真空レギュレーター74により、真空チャンバ71内の真空度を、例えば500Paに調整する。これにより、貯留槽75内の液状の接着剤42が、流入管76およびその流入管76の出口である流出口77を介して、真空チャンバ71内に流入する。なお、上記の流入管76および流出口77は、真空チャンバ71において真空ポンプ73による排気側とは反対側に位置しており、それゆえ、貯留槽75内の接着剤42は、真空チャンバ71の排気側とは反対側から、流入管76および流出口77を介して真空チャンバ71内に流入する。 Next, the open / close valve 72 is opened while the vacuum pump 73 is continuously driven. At this time, the degree of vacuum in the vacuum chamber 71 is adjusted to, for example, 500 Pa by the vacuum regulator 74. As a result, the liquid adhesive 42 in the storage tank 75 flows into the vacuum chamber 71 via the inflow pipe 76 and the outflow port 77 that is the outlet of the inflow pipe 76. Note that the inflow pipe 76 and the outflow port 77 are located on the opposite side of the vacuum chamber 71 from the exhaust side of the vacuum pump 73, so that the adhesive 42 in the storage tank 75 is contained in the vacuum chamber 71. It flows into the vacuum chamber 71 from the side opposite to the exhaust side through the inlet pipe 76 and the outlet 77.
 ここで、貯留槽75および真空チャンバ71には、温度調整装置78・79がそれぞれ設けられている。例えば、接着剤42が40℃に到達したときに粘度が高くなり、硬化が急激に進む場合、温度調整装置78・79によって接着剤42の温度を、硬化温度よりも低い所定範囲(例えば30℃~35℃)に調節する。これにより、接着剤42を未硬化で、かつ、低粘度の状態に保つことができるので、積層体40bの隙間Gへの接着剤42の充填途中における、接着剤42の硬化を防止しながら、接着剤42を円滑に隙間Gに充填することができる。 Here, the storage tank 75 and the vacuum chamber 71 are provided with temperature adjusting devices 78 and 79, respectively. For example, when the adhesive 42 reaches 40 ° C., the viscosity increases and the curing proceeds rapidly, and the temperature of the adhesive 42 is set to a predetermined range lower than the curing temperature (for example, 30 ° C.) by the temperature adjusting devices 78 and 79. To 35 ° C). Thereby, since the adhesive 42 can be kept uncured and in a low viscosity state, while preventing the adhesive 42 from being cured during the filling of the adhesive 42 into the gap G of the laminate 40b, The adhesive 42 can be smoothly filled into the gap G.
 真空ポンプ73が所定時間駆動されると、図31に示すように、接着剤42は、流入管76の流出口77と、積層体40bの吸気側の端部40b2との間まで流入する。この状態で、開閉弁72を一旦閉じる。開閉弁72を閉じることで、接着剤42の液面に接着剤42内部の気泡Mが集まり、破裂する。すなわち、開閉弁72および流入管76を通過した接着剤42が真空チャンバ71内で脱泡される。したがって、積層体40bの隙間Gに、気泡Mを含む接着剤42が充填されるのを防止することができる。 When the vacuum pump 73 is driven for a predetermined time, as shown in FIG. 31, the adhesive 42 flows between the outlet 77 of the inlet pipe 76 and the end 40b 2 on the intake side of the stacked body 40b. In this state, the on-off valve 72 is once closed. By closing the on-off valve 72, the bubbles M inside the adhesive 42 gather on the liquid surface of the adhesive 42 and burst. That is, the adhesive 42 that has passed through the on-off valve 72 and the inflow pipe 76 is defoamed in the vacuum chamber 71. Accordingly, it is possible to prevent the adhesive 42 including the bubbles M from being filled in the gap G of the stacked body 40b.
 開閉弁72を閉じてから所定時間経過後(例えば10分後)、開閉弁41を再度開く。これにより、真空チャンバ71内の接着剤42の液面が上昇し、積層体40bの吸気側の端部40b1から隙間G内に接着剤42が進入する。開閉弁72を再度開いてから所定時間(例えば30分間)が経過すると、図32に示すように、接着剤42は、積層体40bの排気側の端部40b1に到達する。 After a predetermined time has elapsed since the on-off valve 72 was closed (for example, 10 minutes later), the on-off valve 41 is opened again. Thus, the liquid level of the adhesive 42 in the vacuum chamber 71 is raised, the adhesive 42 enters into the gap G from the end 40b 1 on the intake side of the laminate 40b. When a predetermined time (for example, 30 minutes) elapses after the opening / closing valve 72 is opened again, as shown in FIG. 32, the adhesive 42 reaches the end 40b 1 on the exhaust side of the stacked body 40b.
 その後、真空ポンプ73を停止し、接着剤42の硬化前に真空チャンバ71を分解する。これにより、積層体40bが取り出される。積層体40bの周面に付着した余分な接着剤42を拭き取って除去した後、隙間Gに充填された接着剤42を例えば40℃に加熱して硬化させることにより、図9等で示した積層構造体40aが得られる。 Thereafter, the vacuum pump 73 is stopped, and the vacuum chamber 71 is disassembled before the adhesive 42 is cured. Thereby, the laminated body 40b is taken out. After the excess adhesive 42 adhered to the peripheral surface of the laminate 40b is wiped off and removed, the adhesive 42 filled in the gap G is cured by heating to 40 ° C., for example, to obtain the laminate shown in FIG. The structure 40a is obtained.
 このように、積層体40bの隙間G内の空気を排気して、隙間Gを真空状態にした後に、隙間Gに接着剤42を充填することにより、接着剤42の流動による隙間G内への空気の巻き込みを防止し、隣り合う透明基板41a・41aの間にボイド(空洞)を生じさせることなく接着剤42を充填することができる。 Thus, after exhausting the air in the gap G of the laminated body 40b and making the gap G in a vacuum state, the gap G is filled with the adhesive 42, whereby the adhesive 42 flows into the gap G due to the flow of the adhesive 42. It is possible to prevent the air from being entrained and to fill the adhesive 42 without generating a void (cavity) between the adjacent transparent substrates 41a and 41a.
 なお、隙間G内を流動する接着剤42による空気の巻き込みをより防止する観点から、接着剤42の流入時の真空チャンバ71内の真空度は、500Pa以下であることが望ましい。また、隙間Gが大きくなると、接着剤42の厚みが大きくなるため、空中映像表示デバイスを構成したときに観察される空中映像が粗くなる。このため、隙間Gは、50μm以下であることが望ましい。また、隙間Gが小さすぎると、液状の接着剤42の隙間Gへの充填が困難になるため、隙間Gは10μm以上であることが望ましい。 It should be noted that the degree of vacuum in the vacuum chamber 71 when the adhesive 42 flows in is preferably 500 Pa or less from the viewpoint of further preventing air from being entrained by the adhesive 42 flowing in the gap G. Further, when the gap G increases, the thickness of the adhesive 42 increases, so that the aerial image observed when the aerial image display device is configured becomes rough. For this reason, the gap G is desirably 50 μm or less. In addition, if the gap G is too small, it becomes difficult to fill the gap G with the liquid adhesive 42, and therefore the gap G is desirably 10 μm or more.
 (切断工程、研磨工程について)
 積層構造体40aが、平板状の透明基板41aを有するミラー素子41を積層して接着されたものである場合、本実施形態の光学パネル40の製造方法は、切断工程を有してもよい。切断工程では、積層構造体40aを、反射膜41bが形成された面に垂直に切断する(図10参照)。このような切断工程により、1つの積層構造体40aから、複数の光学パネル40が得られるため、光学パネル40の生産性を確実に向上させることができる。切断後は、切断面が粗れているため、研磨しておくことが望ましい(研磨工程)。
(About cutting process and polishing process)
When the laminated structure 40a is obtained by laminating and bonding the mirror element 41 having the flat transparent substrate 41a, the method for manufacturing the optical panel 40 of the present embodiment may include a cutting step. In the cutting step, the laminated structure 40a is cut perpendicularly to the surface on which the reflective film 41b is formed (see FIG. 10). By such a cutting step, a plurality of optical panels 40 can be obtained from one laminated structure 40a, so that the productivity of the optical panel 40 can be improved with certainty. Since the cut surface is rough after cutting, it is desirable to polish it (polishing step).
 〔製造方法の具体例について〕
 次に、本実施形態の光学パネル40の製造方法の具体例について説明する。
[Specific examples of production methods]
Next, a specific example of the method for manufacturing the optical panel 40 of the present embodiment will be described.
 (具体例1)
 まず、ミラー素子41を作製する。すなわち、図33に示すように、溶融させた材料を基板に成形し、切断して、透明基板41aを得る。ガラス材料の場合は、フュージョン法を用いることにより、また、樹脂材料の場合は、押出し成形により、透明基板41aを作製できる。続いて、透明基板41aの両面に金属材料(例えばアルミニウム)をスパッタ成膜し、反射膜41bを形成する。その後、インクジェットヘッド51により、UVインクを反射膜41b上に吐出し、UV光源53により、UV光を照射して硬化させ、スペーサ41cを形成する。このとき、スペーサ41cは、透明基板41aの厚さばらつきを補正できる高さで形成される。これにより、透明基板41a、反射膜41b、スペーサ41cを一体化したミラー素子41が得られる。この工程を繰り返すことにより、複数のミラー素子41を作製する。
(Specific example 1)
First, the mirror element 41 is produced. That is, as shown in FIG. 33, the molten material is molded into a substrate and cut to obtain a transparent substrate 41a. In the case of a glass material, the transparent substrate 41a can be produced by using a fusion method, and in the case of a resin material, the transparent substrate 41a can be produced by extrusion molding. Subsequently, a metal material (for example, aluminum) is formed by sputtering on both surfaces of the transparent substrate 41a to form the reflective film 41b. Thereafter, UV ink is ejected onto the reflective film 41 b by the inkjet head 51, and UV light is irradiated and cured by the UV light source 53 to form the spacer 41 c. At this time, the spacer 41c is formed with a height that can correct the thickness variation of the transparent substrate 41a. Thereby, the mirror element 41 which integrated the transparent substrate 41a, the reflective film 41b, and the spacer 41c is obtained. By repeating this process, a plurality of mirror elements 41 are produced.
 次に、図26で示したように、ミラー素子41に接着剤42を塗布して他のミラー素子41を積層接着し、この工程を繰り返して積層構造体40aを得る。これにより、各ミラー素子41cの反射膜41bは、積層方向において周期的に現れる(積層方向に所定間隔で並列に並ぶ)。その後、積層構造体40aを反射面(反射膜41b)に垂直な面で等間隔に切断する。切断後は、切断面を研磨して光学パネル40(図10参照)を得る。 Next, as shown in FIG. 26, an adhesive 42 is applied to the mirror element 41 to laminate and bond the other mirror element 41, and this process is repeated to obtain a laminated structure 40a. Thereby, the reflective film 41b of each mirror element 41c appears periodically in the stacking direction (aligned in parallel at a predetermined interval in the stacking direction). Thereafter, the laminated structure 40a is cut at regular intervals along a plane perpendicular to the reflection surface (reflection film 41b). After cutting, the cut surface is polished to obtain the optical panel 40 (see FIG. 10).
 最後に、2枚の光学パネル40を貼り合わせて、空中映像表示デバイスを得る。このとき、一方の光学パネル40の透明基板41aにおける反射膜41bが形成された面と、他方の光学パネル40の透明基板41aにおける反射膜41bが形成された面とが平面視で直交するように、2枚の光学パネル40を貼り合わせる。一方の光学パネル40は、図2の光学パネル20に対応し、その光学パネル40の反射膜41bは、図3の反射膜21bに対応する。また、他方の光学パネル40は、図2の光学パネル30に対応し、その光学パネル40の反射膜41bは、図4の反射膜31bに対応する。このため、上記のようにして2枚の光学パネル40を貼り合わせることにより、図1および図2で示した空中映像表示デバイス1を得ることができる。 Finally, the two optical panels 40 are bonded together to obtain an aerial image display device. At this time, the surface of the transparent substrate 41a of one optical panel 40 on which the reflective film 41b is formed and the surface of the transparent substrate 41a of the other optical panel 40 on which the reflective film 41b is formed are orthogonal to each other in plan view. Two optical panels 40 are bonded together. One optical panel 40 corresponds to the optical panel 20 of FIG. 2, and the reflective film 41b of the optical panel 40 corresponds to the reflective film 21b of FIG. The other optical panel 40 corresponds to the optical panel 30 in FIG. 2, and the reflective film 41b of the optical panel 40 corresponds to the reflective film 31b in FIG. Therefore, the aerial video display device 1 shown in FIGS. 1 and 2 can be obtained by bonding the two optical panels 40 together as described above.
 具体例1に沿って、実際に、以下のようにして空中映像表示デバイスを作製した。すなわち、透明基板41aとして、縦250mm、横400mm、厚さ0.5mmのガラス基板を用い、その両面にアルミコート(厚さ100nm)によって反射膜41bを形成し、上記透明基板41aの一方の面側に、UVインクを用いて直径0.1mm、高さ20μm±1μmのドット(スペーサ41c)を縦横1mmピッチで印刷し、ミラー素子41を作製した。このとき、ドットの位置を基板面内で縦方向および横方向に0.5mmずつずらしたもの4種類を準備した。つまり、ドットの縦方向のずらし量をM(mm)とし、横方向のずらし量をN(mm)としたとき、ドットのずらし量(M,N)は、(0,0)、(0.5,0)、(0.5,0.5)、(0,0.5)の4通りである。このような4通りのずらし量でドットを形成したミラー素子41を、合計500枚準備した。 In accordance with Example 1, an aerial video display device was actually manufactured as follows. That is, a glass substrate having a length of 250 mm, a width of 400 mm, and a thickness of 0.5 mm is used as the transparent substrate 41a, and a reflective film 41b is formed on both surfaces thereof by an aluminum coat (thickness of 100 nm), and one surface of the transparent substrate 41a is formed. On the side, dots (spacer 41c) having a diameter of 0.1 mm and a height of 20 μm ± 1 μm were printed at a pitch of 1 mm in the vertical and horizontal directions using UV ink, and the mirror element 41 was produced. At this time, four types were prepared in which the positions of the dots were shifted by 0.5 mm in the vertical and horizontal directions within the substrate surface. That is, when the vertical shift amount of dots is M (mm) and the horizontal shift amount is N (mm), the dot shift amounts (M, N) are (0, 0), (0. 5, 0), (0.5, 0.5), and (0, 0.5). A total of 500 mirror elements 41 in which dots were formed with such four shift amounts were prepared.
 次に、接着剤42として、2液混合型のエポキシ系の接着剤に、非晶質シリカをフィラー42aとして混入させたものを用意した。そして、各ミラー素子41を、ずらし量(M,N)が、(0,0)、(0.5,0)、(0.5,0.5)、(0,0.5)の順番となるように、接着剤42を介して順番に積層し、40℃に加熱して接着剤42を硬化させた。これにより、接着厚みが20μm±1μmに均一にそろった積層構造体40aを得ることができた。 Next, the adhesive 42 was prepared by mixing amorphous silica as a filler 42a in a two-component mixed epoxy adhesive. Each mirror element 41 is shifted in order of (0, 0), (0.5, 0), (0.5, 0.5), (0, 0.5). Then, the layers were sequentially laminated via the adhesive 42 and heated to 40 ° C. to cure the adhesive 42. As a result, it was possible to obtain a laminated structure 40a having a uniform bonding thickness of 20 μm ± 1 μm.
 そして、得られた積層構造体40aをワイヤスライサーで幅2mmに切断した後、幅1.5mmまで研磨加工を行った。これにより、接着厚みが20μm±1μmに均一にそろった光学パネル40を得ることができた。 Then, the obtained laminated structure 40a was cut into a width of 2 mm with a wire slicer and then polished to a width of 1.5 mm. As a result, it was possible to obtain the optical panel 40 having a uniform bonding thickness of 20 μm ± 1 μm.
 その後、得られた光学パネル40を2枚用い、各光学パネル40の反射面が互いに直交するように2枚の光学パネル40を貼り合わせた。その結果、結像品質に優れた空中映像表示デバイス1を得ることができた。 Thereafter, two optical panels 40 obtained were used, and the two optical panels 40 were bonded so that the reflective surfaces of the optical panels 40 were orthogonal to each other. As a result, an aerial image display device 1 having excellent imaging quality can be obtained.
 (具体例2)
 まず、具体例1と同じ手順で、500枚のミラー素子41を用意した。そして、各ミラー素子41を、ドット(スペーサ41c)のずらし量(M,N)が、(0,0)、(0.5,0)、(0.5,0.5)、(0,0.5)の順番となるように積層した。その後、積層体の対向する2面に、隣り合う透明基板41a・41a間の隙間Gを封止するように粘着性フィルム40cを貼り付けて、積層体40bを作製した。この積層体40bを、図30で示した固着装置70の真空チャンバ71内に配置した。
(Specific example 2)
First, 500 mirror elements 41 were prepared in the same procedure as in the first specific example. Each mirror element 41 has a dot (spacer 41c) shift amount (M, N) of (0, 0), (0.5, 0), (0.5, 0.5), (0, The layers were laminated in the order of 0.5). Then, the adhesive film 40c was affixed on 2 surfaces which a laminated body opposes so that the clearance gap G between adjacent transparent substrate 41a * 41a might be sealed, and the laminated body 40b was produced. This laminate 40b was placed in the vacuum chamber 71 of the fixing device 70 shown in FIG.
 真空チャンバ71内を真空排気し、真空チャンバ71内の真空度を500Paに調整した後、開閉弁72を開き、貯留槽75内から流入管76および流出口77を介して、接着剤42を真空チャンバ71内に流入させた。なお、接着剤42としては、具体例1と同様に、2液混合型のエポキシ系の接着剤に、非晶質シリカをフィラー42aとして混入させたものを用い、温度調整装置78・79により、接着剤42の温度を、硬化温度よりも低い30~35℃に調節した。そして、接着剤42が流出口78と積層体40bとの間まで流入した時点で、開閉弁72を一旦閉じ、接着剤42を真空脱泡した。 After evacuating the vacuum chamber 71 and adjusting the degree of vacuum in the vacuum chamber 71 to 500 Pa, the on-off valve 72 is opened, and the adhesive 42 is evacuated from the storage tank 75 through the inlet pipe 76 and the outlet 77. It flowed into the chamber 71. As in the case of the specific example 1, as the adhesive 42, a two-component mixed epoxy adhesive mixed with amorphous silica as a filler 42a is used. The temperature of the adhesive 42 was adjusted to 30 to 35 ° C. lower than the curing temperature. And when the adhesive agent 42 flowed in between the outflow port 78 and the laminated body 40b, the on-off valve 72 was once closed and the adhesive agent 42 was degassed by vacuum.
 その後、開閉弁41を再度開いて、接着剤42を積層体40bの隙間Gに流入させ、隙間Gが全て接着剤42で充填された時点で真空ポンプ73を停止した。そして、真空チャンバ71を分解し、積層体40bを取り出して、周面に付着した余分な接着剤42を拭き取って除去した後、接着剤42を40℃に加熱して硬化させ、積層構造体40aを得た。 Thereafter, the on-off valve 41 was opened again, the adhesive 42 was caused to flow into the gap G of the laminated body 40b, and the vacuum pump 73 was stopped when the gap G was completely filled with the adhesive 42. Then, the vacuum chamber 71 is disassembled, the laminated body 40b is taken out, and the excess adhesive 42 adhering to the peripheral surface is wiped off and removed, and then the adhesive 42 is heated to 40 ° C. to be cured, and the laminated structure 40a. Got.
 そして、得られた積層構造体40aをワイヤスライサーで幅2mmに切断した後、幅1.5mmまで研磨加工を行った。これにより、接着厚みが20μm±1μmに均一にそろった光学パネル40を得ることができた。 Then, the obtained laminated structure 40a was cut into a width of 2 mm with a wire slicer and then polished to a width of 1.5 mm. As a result, it was possible to obtain the optical panel 40 having a uniform bonding thickness of 20 μm ± 1 μm.
 その後、得られた光学パネル40を2枚用い、各光学パネル40の反射面が互いに直交するように2枚の光学パネル40を貼り合わせた。その結果、結像品質に優れた空中映像表示デバイス1を得ることができた。 Thereafter, two optical panels 40 obtained were used, and the two optical panels 40 were bonded so that the reflective surfaces of the optical panels 40 were orthogonal to each other. As a result, an aerial image display device 1 having excellent imaging quality can be obtained.
 〔その他〕
 以上で説明した光学パネルの製造方法および空中映像表示デバイスの製造方法は、以下のように表現されてもよい。
[Others]
The optical panel manufacturing method and the aerial image display device manufacturing method described above may be expressed as follows.
 以上で説明した光学パネルの製造方法は、透明基板の対向する2面のうちの少なくとも一方の面に反射膜が形成され、前記対向する2面のうちの一方の面側にスペーサが予め離散的に形成された複数のミラー素子を準備する工程と、各透明基板の間に前記スペーサが位置するように、前記複数のミラー素子を積層してフィラーを含む接着剤で接着する工程とを有する。 In the optical panel manufacturing method described above, the reflective film is formed on at least one of the two opposing surfaces of the transparent substrate, and the spacers are previously discrete on one of the two opposing surfaces. Preparing a plurality of mirror elements formed on the substrate, and stacking the plurality of mirror elements and bonding them with an adhesive containing a filler so that the spacer is positioned between the transparent substrates.
 前記接着剤に含まれる前記フィラーの量は、前記フィラーを含有させる前の接着剤との体積比で、5~50%であることが望ましい。 The amount of the filler contained in the adhesive is desirably 5 to 50% in terms of a volume ratio with the adhesive before the filler is contained.
 前記フィラーの平均粒径をR(μm)とし、前記スペーサの高さをh(μm)としたとき、
   0.1h≦R≦0.8h
であることが望ましい。
When the average particle diameter of the filler is R (μm) and the height of the spacer is h (μm),
0.1h ≦ R ≦ 0.8h
It is desirable that
 前記フィラーの比重をAとし、前記フィラーを含有させる前の接着剤の比重をBとしたとき、
   0.9B≦A≦1.1B
であることが望ましい。
When the specific gravity of the filler is A and the specific gravity of the adhesive before containing the filler is B,
0.9B ≦ A ≦ 1.1B
It is desirable that
 前記フィラーは、非晶質シリカであってもよい。 The filler may be amorphous silica.
 前記接着剤は、樹脂からなる主剤と硬化剤とを混ぜて使用する2液混合型の接着剤であってもよい。 The adhesive may be a two-component mixed adhesive that is used by mixing a main agent made of resin and a curing agent.
 前記2液混合型の接着剤は、エポキシ系の接着剤であってもよい。 The two-component mixed adhesive may be an epoxy adhesive.
 前記接着剤は、熱硬化性の接着剤であってもよい。 The adhesive may be a thermosetting adhesive.
 前記接着剤の粘度は、1000mPa・s以下であることが望ましい。 The viscosity of the adhesive is desirably 1000 mPa · s or less.
 以上で説明した空中映像表示デバイスの製造方法は、上述した光学パネルの製造方法を含む、空中映像表示デバイスの製造方法であって、前記光学パネルの製造方法によって作製された2枚の光学パネルのうち、一方の光学パネルの透明基板における反射膜が形成された面と、他方の光学パネルの透明基板における反射膜が形成された面とが平面視で直交するように、前記2枚の光学パネルを貼り合わせる貼合工程を有している。 The method for manufacturing an aerial image display device described above is a method for manufacturing an aerial image display device including the method for manufacturing an optical panel described above, and includes two optical panels manufactured by the method for manufacturing an optical panel. Among the two optical panels, the surface on which the reflective film of the transparent substrate of one optical panel is formed and the surface of the transparent substrate of the other optical panel on which the reflective film is formed are orthogonal to each other in plan view. It has a pasting process of pasting together.
 本発明の光学パネルの製造方法は、例えば空中映像表示デバイスを構成する光学パネルの製造に利用可能である。 The method for manufacturing an optical panel of the present invention can be used for manufacturing an optical panel constituting an aerial image display device, for example.
   1   空中映像表示デバイス
  20   光学パネル
  30   光学パネル
  40   光学パネル
  40a  積層構造体
  41   ミラー素子
  41a  透明基板
  41b  反射膜
  41c  スペーサ
  42   接着剤
  42a  フィラー
DESCRIPTION OF SYMBOLS 1 Aerial video display device 20 Optical panel 30 Optical panel 40 Optical panel 40a Laminated structure 41 Mirror element 41a Transparent substrate 41b Reflective film 41c Spacer 42 Adhesive 42a Filler

Claims (10)

  1.  透明基板の対向する2面のうちの少なくとも一方の面に反射膜が形成され、前記対向する2面のうちの一方の面側にスペーサが予め離散的に形成された複数のミラー素子を準備する工程と、
     各透明基板の間に前記スペーサが位置するように、前記複数のミラー素子を積層してフィラーを含む接着剤で接着する工程とを有する、光学パネルの製造方法。
    Prepare a plurality of mirror elements in which a reflective film is formed on at least one of two opposing surfaces of a transparent substrate, and spacers are discretely formed in advance on one of the two opposing surfaces. Process,
    And a step of laminating the plurality of mirror elements and bonding them with an adhesive containing a filler so that the spacer is positioned between the transparent substrates.
  2.  前記接着剤に含まれる前記フィラーの量は、前記フィラーを含有させる前の接着剤との体積比で、5~50%である、請求項1に記載の光学パネルの製造方法。 The method for producing an optical panel according to claim 1, wherein the amount of the filler contained in the adhesive is 5 to 50% by volume ratio with respect to the adhesive before the filler is contained.
  3.  前記フィラーの平均粒径をR(μm)とし、前記スペーサの高さをh(μm)としたとき、
       0.1h≦R≦0.8h
    である、請求項1または2に記載の光学パネルの製造方法。
    When the average particle diameter of the filler is R (μm) and the height of the spacer is h (μm),
    0.1h ≦ R ≦ 0.8h
    The manufacturing method of the optical panel of Claim 1 or 2 which is these.
  4.  前記フィラーの比重をAとし、前記フィラーを含有させる前の接着剤の比重をBとしたとき、
       0.9B≦A≦1.1B
    である、請求項1から3のいずれかに記載の光学パネルの製造方法。
    When the specific gravity of the filler is A and the specific gravity of the adhesive before containing the filler is B,
    0.9B ≦ A ≦ 1.1B
    The manufacturing method of the optical panel in any one of Claim 1 to 3 which is these.
  5.  前記フィラーは、非晶質シリカである、請求項1から4のいずれかに記載の光学パネルの製造方法。 The method for producing an optical panel according to any one of claims 1 to 4, wherein the filler is amorphous silica.
  6.  前記接着剤は、樹脂からなる主剤と硬化剤とを混ぜて使用する2液混合型の接着剤である、請求項1から5のいずれかに記載の光学パネルの製造方法。 The method for manufacturing an optical panel according to any one of claims 1 to 5, wherein the adhesive is a two-component mixed adhesive that is used by mixing a resin main agent and a curing agent.
  7.  前記2液混合型の接着剤は、エポキシ系の接着剤である、請求項6に記載の光学パネルの製造方法。 The method for manufacturing an optical panel according to claim 6, wherein the two-component mixed adhesive is an epoxy adhesive.
  8.  前記接着剤は、熱硬化性の接着剤である、請求項1から5のいずれかに記載の光学パネルの製造方法。 The method for manufacturing an optical panel according to any one of claims 1 to 5, wherein the adhesive is a thermosetting adhesive.
  9.  前記接着剤の粘度は、1000mPa・s以下である、請求項1から8のいずれかに記載の光学パネルの製造方法。 The method for producing an optical panel according to any one of claims 1 to 8, wherein the adhesive has a viscosity of 1000 mPa · s or less.
  10.  請求項1から9のいずれかに記載の光学パネルの製造方法を含む、空中映像表示デバイスの製造方法であって、
     前記光学パネルの製造方法によって作製された2枚の光学パネルのうち、一方の光学パネルの透明基板における反射膜が形成された面と、他方の光学パネルの透明基板における反射膜が形成された面とが平面視で直交するように、前記2枚の光学パネルを貼り合わせる貼合工程を有している、空中映像表示デバイスの製造方法。
    An aerial image display device manufacturing method comprising the optical panel manufacturing method according to claim 1,
    Of the two optical panels produced by the manufacturing method of the optical panel, the surface on which the reflective film is formed on the transparent substrate of one optical panel and the surface on which the reflective film is formed on the transparent substrate of the other optical panel The manufacturing method of the aerial image display device which has the bonding process which bonds together the said 2 optical panel so that and may orthogonally cross in planar view.
PCT/JP2016/083403 2015-11-20 2016-11-10 Method for manufacturing optical panel and method for manufacturing aerial image display device WO2017086233A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017551844A JPWO2017086233A1 (en) 2015-11-20 2016-11-10 Optical panel manufacturing method and aerial image display device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-227177 2015-11-20
JP2015227177 2015-11-20

Publications (1)

Publication Number Publication Date
WO2017086233A1 true WO2017086233A1 (en) 2017-05-26

Family

ID=58718946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083403 WO2017086233A1 (en) 2015-11-20 2016-11-10 Method for manufacturing optical panel and method for manufacturing aerial image display device

Country Status (2)

Country Link
JP (1) JPWO2017086233A1 (en)
WO (1) WO2017086233A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110058334A (en) * 2019-04-25 2019-07-26 像航(上海)科技有限公司 Optical imaging element and its manufacturing method
WO2021070400A1 (en) * 2019-10-11 2021-04-15 株式会社アスカネット Optical image forming device and method for manufacturing same
CN113646281A (en) * 2019-04-03 2021-11-12 株式会社德山 Photochromic optical article and method of making same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157928A (en) * 1984-08-28 1986-03-25 Toyota Motor Corp Manufacture of liquid crystal glare preventing glass
JPH05273405A (en) * 1992-03-25 1993-10-22 Hitachi Ltd Reflection mirror
JP2005234088A (en) * 2004-02-18 2005-09-02 Sony Corp Light diffusion film, its manufacturing method, and screen
JP2009229507A (en) * 2008-03-19 2009-10-08 Hitachi Chem Co Ltd Sealing film
WO2012133403A1 (en) * 2011-03-31 2012-10-04 シャープ株式会社 Reflective imaging element, method of manufacturing reflective imaging element and optical system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157928A (en) * 1984-08-28 1986-03-25 Toyota Motor Corp Manufacture of liquid crystal glare preventing glass
JPH05273405A (en) * 1992-03-25 1993-10-22 Hitachi Ltd Reflection mirror
JP2005234088A (en) * 2004-02-18 2005-09-02 Sony Corp Light diffusion film, its manufacturing method, and screen
JP2009229507A (en) * 2008-03-19 2009-10-08 Hitachi Chem Co Ltd Sealing film
WO2012133403A1 (en) * 2011-03-31 2012-10-04 シャープ株式会社 Reflective imaging element, method of manufacturing reflective imaging element and optical system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113646281A (en) * 2019-04-03 2021-11-12 株式会社德山 Photochromic optical article and method of making same
CN110058334A (en) * 2019-04-25 2019-07-26 像航(上海)科技有限公司 Optical imaging element and its manufacturing method
WO2021070400A1 (en) * 2019-10-11 2021-04-15 株式会社アスカネット Optical image forming device and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2017086233A1 (en) 2018-09-06

Similar Documents

Publication Publication Date Title
WO2017014221A1 (en) Optical panel, method for manufacturing optical panel, in-air video display device, and method for manufacturing in-air video display device
WO2017086233A1 (en) Method for manufacturing optical panel and method for manufacturing aerial image display device
KR102234051B1 (en) Discrete coating process of liquid on a liquid-coated substrate
US20110032618A1 (en) Lamination of optical substrates
US11167539B2 (en) Inkjet print apparatus, inkjet printing method using the same, and lamination method using the same
WO2014092148A1 (en) Method for manufacturing lens array structure, and lens array structure
US9097822B2 (en) Lenticular lens sheet and process for production thereof, and optical element
US9216576B2 (en) Inkjet head with damper member in common ink chamber, and method for driving inkjet head
WO2011125671A1 (en) Liquid-crystal display element, manufacturing method therefor, and liquid-crystal display device
KR101735963B1 (en) Method for bonding substrates and substrate for displays manufactured by same
JP6201083B2 (en) Optical element manufacturing method and reflective aerial imaging element manufacturing method
JP2017097013A (en) Manufacturing method of optical element, manufacturing method of reflection type aerial image formation element, and adhesive filling device
JP2010204411A (en) Liquid drop discharge device, liquid drop discharge method, and method of manufacturing color filter
JP4023092B2 (en) Manufacturing method of liquid crystal display device
KR101937892B1 (en) Method for bonding substrates and substrate for displays manufactured by same
JP4587242B2 (en) Manufacturing method of liquid crystal device
TWI790660B (en) Method for fabricating a dam-free glued structure
CN114815013B (en) Processing method of flat lens
JP2007199548A (en) Liquid crystal display panel, method for manufacturing same and electronic apparatus
JP2011189267A (en) Method for manufacturing pattern film forming member
JP2017219558A (en) Method of manufacturing optical element and method of manufacturing reflective aerial image forming element
JP2011081230A (en) Method for manufacturing liquid crystal display device, liquid crystal display device, and electronic equipment
JP2002311441A (en) Fluid material sealing element and its manufacturing method
JP2010279914A (en) Method and apparatus for ejecting liquid
JP2010276982A (en) Method for manufacturing transparent substrate with color filter and information display panel with color filter, and information display panel with color filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551844

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866235

Country of ref document: EP

Kind code of ref document: A1