WO2017084822A1 - Agent de captation pour le traitement des fumees - Google Patents

Agent de captation pour le traitement des fumees Download PDF

Info

Publication number
WO2017084822A1
WO2017084822A1 PCT/EP2016/074961 EP2016074961W WO2017084822A1 WO 2017084822 A1 WO2017084822 A1 WO 2017084822A1 EP 2016074961 W EP2016074961 W EP 2016074961W WO 2017084822 A1 WO2017084822 A1 WO 2017084822A1
Authority
WO
WIPO (PCT)
Prior art keywords
agent
gases
capture agent
csh
capture
Prior art date
Application number
PCT/EP2016/074961
Other languages
English (en)
Inventor
Louis Masset
Bernard Somerhausen
Original Assignee
Carmeuse Research And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carmeuse Research And Technology filed Critical Carmeuse Research And Technology
Priority to US15/776,319 priority Critical patent/US20180326394A1/en
Priority to EP16782247.7A priority patent/EP3377215A1/fr
Priority to CA3002420A priority patent/CA3002420A1/fr
Publication of WO2017084822A1 publication Critical patent/WO2017084822A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/685Halogens or halogen compounds by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0288Halides of compounds other than those provided for in B01J20/046
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28095Shape or type of pores, voids, channels, ducts
    • B01J20/28097Shape or type of pores, voids, channels, ducts being coated, filled or plugged with specific compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/043Alkaline-earth metal silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/108Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2047Hydrofluoric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0078Sorbent materials

Definitions

  • the present invention relates to a solid capture agent for the treatment of flue gases and a method for preparing such an agent.
  • the present invention also relates to a process for treating flue gases by means of said capturing agent.
  • the gases are washed in an absorber using an aqueous suspension of a capturing agent.
  • the captured acidic compounds are recovered in the suspension at the outlet of the absorber in the form of reaction products, combined with the capturing agent.
  • the SO2 and SO3 captured are recovered in this suspension in the form of sulphites and / or sulphates.
  • aqueous suspension of a capture agent is injected into the absorber in the form of droplets.
  • the flow rate and the concentration of capturing agent in said suspension and the temperature of the gases to be treated are such that the water present in the suspension is evaporated and entrained by the gases.
  • the captured acidic compounds are recovered as reaction products in solid residues.
  • a third method of treatment called “dry process”
  • the gases are put in direct contact with a solid capturing agent, either by dry injection of said agent in the absorber or in a driven bed, or by maintenance of the agent in a fluidized bed. It is also possible to pass the gases through a fixed bed of a capturing agent.
  • the captured compounds are then present as reaction products in the solid residue.
  • calcium-containing compounds in a form capable of reacting with the acidic compounds are used as solid capturing agents.
  • SO2 is generally the most difficult to capture by chemical reaction because of its less pronounced acid character.
  • a basic capture agent that effectively captures SO2 captures a fortiori more acidic compounds such as HCI, H Br, H F and SO3. Therefore, the capturing agents can be evaluated by their ability to capture SO2 with the understanding that they also capture the other acidic compounds mentioned above. This approach is also adopted in the present description.
  • a first example of a known solid capturing agent is calcium hydroxide.
  • the reaction between Ca (OH) 2 and SO 2 present in the gases is favored by high humidity, such as that encountered, for example, in wet processes or in semi-wet processes.
  • high humidity such as that encountered, for example, in wet processes or in semi-wet processes.
  • Ca (OH) 2 An important disadvantage of Ca (OH) 2 is its pasty consistency in combination with a high relative humidity. This results in the formation of solid deposits in the installations and increases the risk of clogging, forcing the user to treat the gases under conditions of low relative humidity and therefore under non-optimal gas treatment conditions. The impasto of the grains of Ca (OH) 2 is all the more important as the porosity is lower.
  • Ca (OH) 2 agent present in the form of granules down to a very low level while it still contains a significant amount of Ca (OH) 2 which has not reacted with the compounds of the gas to be purified.
  • Ca (OH) 2 must be used in significant excess for the gas treatment, which also leads to a high amount of waste to be disposed of.
  • Other known solid capture agents are calcium silicate hydrates of formula (CaO) x (Si02) y (H20) z containing a variable quantity of free water.
  • DE-OS-3611769 it is proposed to use as a capturing agent a lime-rich hydrated calcium silicate granulate, as obtained from the concrete manufacturing process, this agent preferably having a high porosity. .
  • a calcium silicate hydrate or a calcium aluminate hydrate prepared by reacting an aqueous suspension containing an alkaline calcium compound (CaO or Ca (OH) 2) with a silica or an alumina.
  • WO 00/48710 discloses capturing agents comprising calcium silicates hydrated in a pre-tobermorite phase, having a Ca / Si molar ratio between 1 and 5, a molar ratio h O / Ca between 0, 1 and 2 and a particle size of between 0.5 and 30 mm.
  • the capturing agent is obtained from cristobalite and quartz. This type of product is manufactured in aqueous suspension and drying to obtain a dry product represents considerable costs. Goals of the invention
  • the object of the present invention is to overcome the disadvantages of capturing agents known from the state of the art and to provide a capture agent with improved efficiency comprising hydrated calcium silicate with molar ratios Ca / Si and Ca / h O in a narrow range and a particularly fine particle size.
  • the invention also proposes a method for producing the capture agent and a method for purifying fumes using the capture agent according to the invention. Summary of the invention
  • the present invention discloses a capture agent for the treatment of gases, having an active phase which comprises a hydrated calcium silicate of type (CaO) x (SiO 2 ) y (H 2 O) z with a Ca molar ratio. / If between 1.55 and 1.72, preferably between 1.65 and 1.72 and a molar ratio h 2 O / Ca of between 1 and 1.4, preferably between 1.1 and 1.3, "Z" being between 0.3 and 0.8, the capturing agent having a specific surface area greater than 120 m 2 / g, preferably greater than 150 m 2 / g and particularly preferably greater than 200 m 2 and a pore volume greater than 0.4 cm 3 / g, preferably greater than 0.6 cm 3 / g and particularly preferably greater than 0.8 cm 3 / g
  • the average particle size (D50) is less than 1000 ⁇ , preferably less than 500 ⁇ and particularly preferably less than 300 ⁇ ;
  • said agent further comprises sodium chloride, calcium chloride or iron chloride hydrated within its pores;
  • said agent further comprises a fluidizing agent selected from monoethanolamine, diethanolamine, triethanolamine, monoethylene glycol, diethylene glycol and triethylene glycol.
  • the invention also discloses a process for preparing a capture agent according to the invention characterized in that calcium silicate hydrate is obtained by: - preparation of an aqueous suspension of silica and lime, at the start colloidal silica of silica fume or diatomaceous earth;
  • the preparation of colloidal silica, silica fume or diatomaceous earth or a mixture of these ingredients comprises at least one of the following steps:
  • chlorine salt preferably sodium chloride, calcium chloride or iron chloride.
  • the invention also discloses a gas treatment process by contacting the capture agent according to the invention with the gases to be treated.
  • the gas treatment process consists of a dry process, in which the gases are brought into direct contact with the capture agent where the gas to be treated preferably passes through.
  • an electrostatic precipitator or bag filter containing this agent preferably contains this agent.
  • the effectiveness of the capture agent according to the invention is evaluated by measuring the concentration of SO 2 as an indicator compound, in the gases at the outlet of the electrostatic precipitator or bag filter, and replacing the capturing agent when the concentration exceeds a previously fixed limit value.
  • the object of the present invention is to provide a capture agent based on calcium silicate hydrate (CSH) or a composition containing hydrated calcium silicate in the form of powder for the treatment of fumes as well as a method of manufacturing this product.
  • CSH calcium silicate hydrate
  • the invention also discloses a method for purifying fumes using the capture agent of the present invention.
  • the hydrated calcium silicates are generally characterized by the CaO / SiC> 2 and H20 / CaO molar ratios and by its structural characteristics such as its microstructure ( ⁇ , ⁇ or ⁇ -type CSH), its Ca (OH) 2, the stability of molecular water, its pore volume (VP), pore size, specific surface area (BET) and CO2 content.
  • the low CO2 capture capacity is a much sought-after property since the gases to be purified are generally combustion gases that are much more loaded with CO2 than in SO2 or HCI, for example (10% of CO2 compared with 0.2% of CO2). SO2 for example).
  • Certain properties are also obtained in certain synthesis conditions involving T °, time, pressure and additives used.
  • the particle size of CSH according to the invention should not exceed on average (D50) and measured in volume, 1000 ⁇ , preferably 500 ⁇ and particularly preferably 200 ⁇ .
  • the particle size measurements are made by laser diffraction where all the particles are assimilated to spheres.
  • the device used is the Sympatec HELOS / K sensor according to the Fraunhofer method.
  • a particularly advantageous way of preparing the CSH is to replace 2 to 4%, preferably about 3% of the silica with freshly prepared colloidal silica. To do this, a dilute acid (H 2 SO 4, HCl, etc.) is reacted with a solution of sodium silicate. This procedure is referred to as the "amplified method" according to the present invention.
  • Fresh colloidal silica used in small amounts (1 to 5%) in the silica mixture increases the BET up to 200 m 2 / g and a pore volume VP> 0.5 cm 3 / g.
  • the pore volume is measured according to the BJH method (Barrett-Joyner-Halenda).
  • the "Ca” represents only the calcium content that can react with the silica. If one of the reagents (lime or silica) contains calcium carbonate which does not participate in the hydrothermal synthesis of HSC, this calcium is not taken into account for the calculation of the Ca / Si ratio. This calcium carbonate is determined by thermogravimetry.
  • the CSH gels comprise water in three different forms:
  • thermogravimetric analysis of such a product When a thermogravimetric analysis of such a product is carried out, four zones are distinguished:
  • the Ca ⁇ 3 is decarbonate, which can have three origins:
  • the water is supplied by the fumes and condenses preferentially by capillary effect in pores.
  • the water is already in the pores from the manufacture of the porous solid and the Ca (OH) 2 is already dissolved there ready to react with the acid gases.
  • a chloride salt during the synthesis of HSC for example sodium chloride, calcium chloride or iron chloride
  • chlorine forms hydrated calcium chlorides in the pores which gradually release water from the water. Crystallization when in contact with hot gases. They thus release water available for the dissolution of acid gases.
  • CaCl 2 .6H 2 O stable below 30 ° C.
  • CaCl 2 2.4 H 2 O stable from 30 to 45 ° C.
  • the following table compares the effectiveness of different capture agents tested incinerator.
  • the specific surface area (BET - Brunauer-Emmett-Teller) of the powders is measured according to the IS09277 standard, second edition of the 1st September 2010.
  • the calculation of the porous distribution is based on the stepwise analysis of the adsorption branch of the isotherm by the BJH method, by Barrett, Joyner and Halenda (1951), conventionally used with nitrogen at 77K as an adsorbent gas. The method is described in DIN66134.
  • CSH The reaction of capturing pollutants such as sulfur oxide with CSH releases the silica and the water of constitution of CSH. Only the lime present in the CSH molecule reacts with the pollutant. CSH therefore has the disadvantage of having a larger amount of material not participating in the pollutant catching reaction than calcium hydrate. However, this disadvantage is largely offset by the greater reactivity of the CSH with respect to the pollutant because of its large specific surface area and its high pore volume.
  • the CSH according to the invention contains more alkalinity accessible per 100 kg of product and therefore generates less waste per kg of SO2 captured; which is a great advantage because landfill costs are less important.
  • the synthesis of HSC can be at atmospheric pressure at about 95 ° C for about 3 hours, or at high pressure (between 5 and 10 bar, corresponding to saturated vapor temperatures between 150 and 180 ° C). As the synthesis times are shortened under these conditions (approximately 30 minutes), the synthesis can be done in "batch" mode, or continuously in a reactor of the coil type thermostatized or simply insulated against heat loss.
  • the synthesis of the colloidal silica is carried out by reacting dilute sulfuric acid with sodium silicate in solution. A few minutes are waited for the colloidal silica to precipitate to form a milky suspension. Then, the amorphous silica (diatomaceous earth, silica fume, ...) and the quicklime are introduced to carry out the synthesis of the CSH suspension.
  • the purpose of the drying is to reduce the moisture content of the capture agent from approximately 78% of free water to 5-20% of free water in order to obtain a powder capture agent having adequate flow properties.
  • the calories can be obtained by burning a fossil fuel or by recovering lost calories (lime rotary kilns without preheater, cement kilns, etc.) via a heat exchanger.
  • the calories can be transported by:
  • a "breakthrough time" is defined as the time for the concentration of bed exit pollutants to be equal to the concentration of pollutants entering the bed. This piercing time is the image of the performance of the capturing agent.
  • the bag filter makes 35 m 2 of filtering surface, ie 12 rows of 5 sleeves per row.
  • a sleeve thus makes 0.58 m 2 of lateral surface, 0.58 m of perimeter and 1 m of length.
  • the capturing agent is sent continuously on the sleeves and the twelve rows of sleeves are regularly beaten with compressed air, row after row, with an adjustable cycle time of 30 to 60 minutes.
  • the flue gas filtration rate is 1 m / minute and the recomposed flue gas flow can be adjusted according to the filtration temperature to respect this speed.
  • the CSH milk synthesis was carried out in a laboratory PA reactor. The synthesis of HSC was done for three hours at different temperatures. In the case of amplified CSH, 3% of fresh colloidal silica was added during the synthesis.
  • Cekesa diatomite (Spain) was used with a specific surface area of 103 m 2 / g and a pore volume of 0.29 cm 3 / g containing 72% SiO 2 ; 27.2% of CaCO 3 and 0.8% of (Al 2 O 3 + MgO).
  • Examples 1 to 6 are carried out with a Ca / Si ratio of 1.7; examples 7 to
  • the performance of CSH according to the invention was compared with Ca (OH) 2.
  • the synthesis conditions of CSH are those carried out at 150 ° C. and 5 bar for three hours.
  • the CSH milk was then dried in an atomizer without direct contact with the fumes of the hot air generator operating on natural gas. 15% residual water remained after drying.
  • the words "kg acid” means total weight of SO2 and HCI.
  • Type of capture agent 2 kg agent per 3 kg agent 4 kg agent kg acid per kg acid per kg acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Civil Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

La présente invention se rapporte à un agent de captation pour le traitement de gaz, ayant une phase active qui comporte un silicate de calcium hydraté de type (CaO)x(SiO2)y(H2O)z avec un rapport molaires Ca/Si compris entre 1,55 et 1,72, de préférence entre 1,65 et 1,72 et un rapport molaires H2O/Ca compris entre 1 et 1,4, de préférence entre 1,1 et 1,3, « z » étant compris entre 0,3 et 0,8, l'agent de captation ayant une surface spécifique supérieure à 120 m²/g, de préférence supérieure à 150 m²/g et de manière particulièrement préférée supérieure à 200m²/g et un volume poreux supérieur à 0,4 cm³/g, de préférence supérieur à 0,6 cm³/g et de manière particulièrement préférée supérieur à 0,8 cm³/g.

Description

AGENT DE CAPTATION POUR LE TRAITEMENT DES FUMEES
Objet de l'invention
[0001] La présente invention concerne un agent de captation solide pour le traitement des gaz de fumées ainsi qu'un procédé de préparation d'un tel agent. La présente invention concerne également un procédé de traitement de gaz de fumées au moyen dudit agent de captation.
Etat de la technique
[0002] De nombreux procédés industriels émettent des gaz contenant des composés acides tels que SO2, SO3, HCI, H Br et H F... Afin d'éviter au maximum que ces composés acides soient libérés dans l'atmosphère, des efforts considérables ont déjà été consentis pour le développement et l'amélioration de procédés de traitement des gaz de fumées.
[0003] Parmi les procédés de traitement connus, plusieurs font appel à un agent solide, dit agent de captation. Afin qu'il capte les composés acides présents dans les gaz, cet agent est mis en contact avec les gaz à purifier, soit sous forme de poudre soit sous forme de particules en suspension liquide.
[0004] Selon un premier procédé de traitement, dit « procédé humide », les gaz sont lavés dans un absorbeur à l'aide d'une suspension aqueuse d'un agent de captation. Les composés acides captés sont récupérés dans la suspension à la sortie de l'absorbeur sous forme de produits de réaction, combinés avec l'agent de captation. Par exemple, le SO2 et le SO3 captés sont récupérés dans cette suspension sous forme de sulfites et/ou sulfates.
[0005] Selon un second procédé de traitement, dit « procédé semi-humide », la suspension aqueuse d'un agent de captation est injectée dans l'absorbeur sous forme de gouttelettes. Le débit et la concentration d'agent de captation dans ladite suspension et la température des gaz à traiter sont tels que l'eau présente dans la suspension est évaporée et entraînée par les gaz. Les composés acides captés sont récupérés sous forme de produits de réaction dans des résidus solides. [0006] Dans un troisième procédé de traitement, dit « procédé sec », les gaz sont mis en contact direct avec un agent de captation solide, soit par injection sèche dudit agent dans l'absorbeur ou dans un lit entraîné, soit par maintien de l'agent dans un lit fluidisé. Il est également possible de faire passer les gaz à travers un lit fixe d'un agent de captation. Les composés captés sont alors présents sous forme de produits de réaction dans le résidu solide. Traditionnellement, on utilise, comme agents de captation solides, des composés contenant du calcium sous une forme susceptible de réagir avec les composés acides.
[0007] Parmi les composés acides, le SO2 est généralement le plus difficile à capter par réaction chimique à cause de son caractère acide moins prononcé. Ainsi, un agent de captation basique qui capte efficacement le SO2 capte a fortiori les composés plus acides tels que HCI, H Br, H F et SO3. Par conséquent, les agents de captation peuvent être évalués par leur capacité à capter le SO2 étant entendu qu'ils captent également les autres composés acides susmentionnés. Cette approche est également adoptée dans la présente description.
[0008] Un premier exemple d'un agent de captation solide connu est l'hydroxyde de calcium. La réaction entre le Ca(OH)2 et le SO2 présent dans les gaz est favorisée par une humidité élevée, telle que celle rencontrée, par exemple, dans des procédés humides ou dans des procédés semi-humides. Afin d'arriver à une captation de SO2 acceptable lors de la mise en œuvre d'un procédé dit « sec », il est généralement admis que l'injection d'eau dans les gaz en association avec le Ca(OH)2 améliore les performances du procédé.
[0009] Un désavantage important du Ca(OH)2 est sa consistance pâteuse en association avec une humidité relative élevée. Ceci entraîne la formation de dépôts solides dans les installations et augmente le risque de colmatage, ce qui oblige l'utilisateur à traiter les gaz dans des conditions de faible humidité relative et donc, dans des conditions non optimales de traitement de gaz. L'empâtement des grains de Ca(OH)2 est d'autant plus important que la porosité est plus faible.
[0010] Un autre désavantage du Ca(OH)2 utilisé en procédé sec est son manque de sélectivité (captation importante de CO2), sa réactivité limitée vis-à-vis du SO2 et sa tendance importante à la passivation.
[0011] On a d'autre part constaté que durant le traitement de gaz, la réactivité d'un agent à base de Ca(OH)2 présent sous forme de granules descend jusqu'à un niveau très bas alors qu'il contient toujours une quantité significative de Ca(OH)2 qui n'a pas réagi avec les composés du gaz à purifier. En pratique, on constate que le Ca(OH)2 doit être utilisé en excès important pour le traitement de gaz, ce qui entraîne en outre une quantité élevée de déchets à mettre en décharge. [0012] D'autres agents de captation solides connus sont les silicates de calcium hydratés de formule (CaO)x(Si02)y(H20)z contenant une quantité variable d'eau libre.
[0013] Dans DE-OS-3611769, il est proposé d'utiliser comme agent de captation un granulat de silicate de calcium hydraté riche en chaux, tel qu'issu du procédé de fabrication de béton, cet agent ayant de préférence une porosité élevée.
[0014] Dans le procédé semi-humide décrit dans US 4 804 521, on utilise comme agent de captation un silicate de calcium hydraté ou un aluminate de calcium hydraté, préparé par réaction d'une suspension aqueuse contenant un composé calcique alcalin (CaO ou Ca(OH)2) avec une silice ou une alumine.
[0015] Selon le procédé sec décrit dans US 5 100 643, on injecte dans le gaz une poudre fluide semi-sèche contenant un tel silicate de calcium. Un procédé de préparation d'une telle poudre semi-sèche est décrit dans US 5 401 481.
[0016] Avec les agents de captation connus à base de silicates de calcium hydratés, on observe que les résidus de ces agents après réaction peuvent contenir une fraction significative de calcium qui n'a pas réagi durant le traitement des gaz, de manière telle qu'on a généralement besoin d'un excès d'agent de captation, ce qui entraîne à nouveau un excès de déchets solides. Afin de remédier à ce problème, il est proposé dans US 4 804 521, US 5 100 643 et US 5 401 481 de recycler, au moins partiellement, les résidus solides du procédé de traitement, résidus qui peuvent encore comprendre des cendres volantes contenant de la silice. Ainsi ces résidus solides sont ajoutés à la suspension aqueuse dans laquelle le silicate de calcium hydraté est préparé.
[0017] On connaît un grand nombre de silicates de calcium hydratés de différentes compositions et structures cristallines. Une étude détaillée de différents silicates de calcium hydratés, de leurs structures et de leurs procédés de préparation se trouve dans le chapitre 5 "The Calcium Silicate Hydrates" de l'ouvrage "The CHEMIST Y of CEMENTS" édité par H.F.W. Taylor et publié par Académie Press en 1964. Parmi les silicates de calcium hydratés, on trouve des composés cristallins tels que notamment la tobermorite, la xonotlite, la foshagite, l'afwillite, la hillebrandite, et des composés mal ou peu cristallisés, tels que notamment le CSH(I) et le CSH(II).
[0018] Le document WO 00/48710 divulgue des agents de captation comportant des silicates de calcium hydratés dans une phase pré-tobermoritique, présentant un rapport molaire Ca/Si compris entre 1 et 5, un rapport molaire h O/Ca entre 0,1 et 2 et une granulométrie entre 0,5 et 30 mm. L'agent de captation étant obtenu à partir de cristobalite et de quartz. Ce type de produit est fabriqué en suspension aqueuse et le séchage pour obtenir un produit sec représente des coûts considérables. Buts de l'invention
[0019] Le but de la présente invention est de remédier aux désavantages des agents de captation connus de l'état de la technique et de proposer un agent de captation avec une efficacité améliorée comportant du silicate de calcium hydraté avec des rapports molaires Ca/Si et Ca/h O dans une plage étroite et une granulométrie particulièrement fine.
[0020] L'invention propose également une méthode de fabrication de l'agent de captation et un procédé de purification de fumées utilisant l'agent de captation selon l'invention. Résumé de l'invention
[0021] La présente invention divulgue un agent de captation pour le traitement de gaz, ayant une phase active qui comporte un silicate de calcium hydraté de type (CaO)x(Si02)y(H20)z avec un rapport molaire Ca/Si compris entre 1,55 et 1,72, de préférence entre 1,65 et 1,72 et un rapport molaire h^O/Ca compris entre 1 et 1,4 , de préférence entre 1,1 et 1,3 , « z » étant compris entre 0,3 et 0,8, l'agent de captation ayant une surface spécifique supérieure à 120 m2/g, de préférence supérieure à 150 m2/g et de manière particulièrement préférée supérieure à 200 m2/g et un volume poreux supérieur à 0,4 cm3/g, de préférence supérieur à 0,6 cm3/g et de manière particulièrement préférée supérieur à 0,8 cm3/g-
[0022] Les modes d'exécution préférés de l'invention comportent au moins une, ou une combinaison quelconque appropriée des caractéristiques suivantes :
- la taille moyenne des particules (D50) est inférieure à 1000 μιτι, de préférence inférieure à 500 μιτι et de manière particulièrement préférée inférieure à 300 μιτι ;
- ledit agent comporte en outre du chlorure de sodium, du chlorure de calcium ou du chlorure de fer hydraté au sein de ses pores ;
- ledit agent comporte en outre un agent de fluidification sélectionné parmi la monoéthanol- amine, la diéthanol-amine, la triéthanol-amine, le monoéthylène-glycol, le diéthylène-glycol et le triéthylène-glycol.
[0023] L'invention divulgue également un procédé de préparation d'un agent de captation selon l'invention caractérisé en ce que du silicate de calcium hydraté est obtenue par: - préparation d'une suspension aqueuse de silice et de chaux, au départ de silice colloïdale de fumée de silice ou de terre à diatomée ;
- séchage à l'aide de la chaleur. [0024] Selon des modes préférés de l'invention la préparation de la silice colloïdale, de la fumée de silice ou la terre à diatomée ou un mélange de ces ingrédients comporte au moins une des étapes suivantes:
- broyage préalable jusqu'à obtenir des particules d'un diamètre d5o inférieur à 30 μιτι; - ajout de silice colloïdale fraîchement synthétisée dans une proportion de 1 à 5 % de préférence de 2 à 4 % avant la synthèse du CSH ;
- ajout de sel de chlore, de préférence du chlorure de sodium, du chlorure de calcium ou du chlorure de fer.
[0025] L'invention divulgue également un procédé de traitement de gaz par mise en contact de l'agent de captation selon l'invention avec les gaz à traiter.
[0026] Selon l'un des modes préférés de l'invention, le procédé de traitement de gaz consiste en un procédé sec, dans lequel les gaz sont mis en contact direct avec l'agent de captation où le gaz à traiter traverse de préférence un électrofiltre ou un filtre à manches contenant cet agent.
[0027] On évalue l'efficacité de l'agent de captation selon l'invention en mesurant la concentration de SO2 en tant que composé indicateur, dans les gaz à la sortie de l'électrofiltre ou du filtre à manches et on remplace l'agent de captation quand la concentration dépasse une valeur limite préalablement fixée. Description détaillée de l'invention
[0028] L'objet de la présente invention est de fournir un agent de captation à base de silicate de calcium hydraté (CSH) ou d'une composition contenant du silicate de calcium hydraté sous forme de poudre pour le traitement des fumées ainsi qu'une méthode de fabrication de ce produit. L'invention divulgue également un procédé de purification de fumées à l'aide de l'agent de captation de la présente invention.
[0029] Les silicates de calcium hydratés (CSH) sont généralement caractérisés par les ratios molaires CaO/SiC>2 et H20/CaO et par ses caractéristiques structurelles telles que sa microstructure (CSH de type α, β ou y), sa teneur en Ca(OH)2, la stabilité de l'eau moléculaire, son volume poreux (VP), la taille de ses pores, sa surface spécifique (BET) et la teneur en CO2. La faible capacité de captage du CO2 est une propriété très recherchée dans la mesure où les gaz à purifier sont généralement des gaz de combustion beaucoup plus chargés en CO2 qu'en SO2 ou HCI par exemple (10 % de CO2 contre 0,2 % de SO2 par exemple).
[0030] Certaines propriétés ne sont d'ailleurs obtenues que dans certaines conditions de synthèse faisant intervenir la T°, le temps, la pression et les additifs utilisés. [0031] Pour obtenir une efficacité maximale dans la captation du SO2, SO3, HCI, HF, voire certains métaux lourds, et une stabilité optimale du produit, on recherche aussi généralement des propriétés de résistance au gel malgré sa forte teneur en eau résiduelle (test de 3 jours à -20°C) et d'écoulement optimal (mesuré par l'indice de cohésion à vitesses croissante et décroissante dans le Granu-Drum de la société Aptis).
[0032] Pour atteindre ces caractéristiques, la granulométrie des CSH selon l'invention ne doit pas dépasser en moyenne (D50) et mesuré en volume, 1000 μιτι, de préférence 500 μιτι et de manière particulièrement préférée 200 μιτι. Les mesures de tailles de particules sont effectuées par diffraction laser où toutes les particules sont assimilées à des sphères. L'appareil utilisé est le senseur Sympatec HELOS/K selon la méthode de Fraunhofer.
[0033] Une manière particulièrement avantageuse de préparer le CSH est de remplacer de 2 à 4 %, de préférence environ 3 % de la silice par de la silice colloïdale fraîchement préparée. Pour ce faire, on fait réagir un acide dilué (H2SO4, HCI, ...) avec une solution de silicate de soude. Cette façon de procéder est appelée « procédé amplifié » selon la présente invention.
[0034] Un tableau comparatif entre le CSH divulgué dans WO 00/48710 et celui de la présente invention montre les principales différences suivantes :
Figure imgf000007_0001
[0035] La silice colloïdale fraîche utilisée en petite quantité (1 à 5 %) dans le mélange de silice permet d'augmenter la BET jusqu'à 200 m2/g et un volume poreux VP > 0,5 cm3/g. Le volume poreux est mesuré selon la méthode BJH (Barrett-Joyner-Halenda).
[0036] Le « Ca » représente uniquement la teneur en calcium pouvant réagir avec la silice. Si un des réactifs (chaux ou silice) contient du carbonate de calcium qui ne participe pas à la synthèse hydrothermale du CSH, ce calcium n'entre pas en ligne de compte pour le calcul du ratio Ca/Si. Ce carbonate de calcium est dosé par thermogravimétrie.
[0037] Les ratio Ca/Si très spécifiques dans les gels de CSH selon la présente invention présentent l'avantage qu'ils libèrent du Ca(OH)2 qui en milieu aqueux s'ionise en ions Ca ++ et hydroxyles (OH ) neutralisant les gaz acides. [0038] On a pu démontrer que pour des ratios molaires Ca/Si < ou = 1.72, seul du CSH est formé. Pour des ratios supérieurs, on obtient un mélange de CSH et d'hydrate de calcium. Pour un ratio Ca/Si >1,72 le CSH est donc dilué avec de l'hydrate de calcium et ses performances diminuent.
[0039] Les gels de CSH comportent de l'eau sous trois formes différentes :
1) eau de contact capillaire entre grains de CSH : Ec.
2) eau contenue dans les pores du CSH : Ep.
3) eau de constitution du gel de silicate de calcium : Eg.
L'eau totale = Et = Ec + Ep + Eg.
[0040] Lorsqu'on réalise une analyse thermogravimétrique d'un tel produit, on distingue quatre zones :
1) De 25 à 150°C, on évapore l'eau de contact capillaire et l'eau contenue dans les pores.
2) De 350 à 500 °C, on déshydrate Ca(OH)2 en CaO et H20.
3) De 550 à 800 °C, on libère l'eau de constitution du CSH.
4) De 800 à 1000°C, on décarbonate le Ca∞3, qui peut avoir trois origines :
a. Impureté provenant de la silice amorphe.
b. Impureté de la chaux vive.
c. Carbonatation du CSH et décalcification de celui-ci.
[0041] La capture des gaz acides (SO2, SO3, HCI, HF) par un solide poreux n'est véritablement performante que lorsque les pores de ce solide sont partiellement ou totalement remplis d'eau et de sels dissous. Ces gaz se dissolvent dans l'eau des pores où de l'hydrate de calcium s'est lui aussi dissous. La réaction acide-base entre Ca(OH)2 et les gaz acides se fait en milieu dissous dans les pores et ensuite le gypse et/ou le chlorure de calcium formés se déposent à la surface interne des pores.
[0042] Dans les hydrates de calcium secs ayant des volumes poreux entre 0.08 et 0.2 cm3/g, l'eau est apportée par les fumées et se condense préférentiellement par effet capillaire dans des pores. Dans le cas de figure de la présente invention, l'eau se trouve déjà dans les pores dès la fabrication du solide poreux et du Ca(OH)2 y est déjà dissous prêt à réagir avec les gaz acides.
[0043] En ajoutant un sel de chlorure lors de la synthèse du CSH (par exemple chlorure de sodium, chlorure de calcium ou chlorure de fer), le chlore forme des chlorures de calcium hydratés dans les pores qui relâchent progressivement de l'eau de cristallisation lors du contact avec les gaz chauds. Ils libèrent ainsi de l'eau disponible pour la dissolution des gaz acides. : - CaCI2.6H20 stable en-dessous de 30°C - CaCI2.4H2O stable de 30 à 45°C
- CaCI2.2H2O stable de 45 à 87°C
Les essais de performance ont montré un effet très bénéfique du chlore dans le réactif pour traiter des gaz pauvres en HCI.
[0044] Le tableau suivant compare l'efficacité de différents agents de capture testés en incinérateur. La surface spécifique (BET - Brunauer-Emmett-Teller) des poudres est mesurée selon la norme IS09277, seconde édition du premier septembre 2010. Le calcul de la répartition poreuse est basé sur l'analyse pas à pas de la branche d'adsorption de l'isotherme par la méthode BJH, de Barrett, Joyner et Halenda (1951), classiquement utilisée avec l'azote à 77K comme gaz adsorbant. La méthode est décrite dans la norme DIN66134.
[0045] Réactions chimiques relatives aux agents de captation
1) Ca(OH)2 + S02 +l/2 02 => CaS04 + H20.
2) (CaO)x(.Si02)y. (H20)z + x S02 + x/2 02 => x CaS04 + y Si02 + z H20
1,6 < X/Y < 1,72
0,25 < Z/X < 1
La réaction de captation des polluants tels que l'oxyde de soufre par le CSH libère la silice et l'eau de constitution du CSH. Seule la chaux présente dans la molécule du CSH réagit avec le polluant. Le CSH présente donc l'inconvénient d'avoir une plus grande quantité de matière ne participant pas à la réaction de capture du polluant que l'hydrate de calcium. Néanmoins cet inconvénient est largement compensé par la plus grande réactivité du CSH vis-à-vis du polluant du fait de sa grande surface spécifique et de son haut volume poreux.
Figure imgf000009_0001
« * » L'accès à l'alcalinité est obtenu par l'analyse du sorbent après son exposition à des fumées synthétiques contenant O2, N2, SO2, HCI et CO2. Le % de Ca(OH)2 provenant d'un hydrate ou d'un CSH combiné à du SO2 et ou du HCI par rapport à l'hydrate total disponible exprime l'accès des gaz polluants SO2 et HCI à l'alcalinité du Ca(OH)2 mis en œuvre.
Le CSH selon l'invention contient d'avantage d'alcalinité accessible par 100 kg de produit et de ce fait génère moins de déchets par kg de SO2 capté ; ce qui est un grand avantage parce que les frais de mise en décharge sont moins importants. Modes de synthèse des laits de CSH
[0046] La synthèse du CSH peut se faire à pression atmosphérique à environ 95°C pendant environ 3 heures, ou à haute pression (entre 5 et 10 bars, correspondant à des températures de vapeur saturante entre 150 et 180°C). Comme les temps de synthèse sont raccourcis dans ces conditions (environ 30 minutes), la synthèse peut se faire en mode « batch », ou en continu dans un réacteur de type serpentin thermostatisé ou simplement isolé contre les déperditions de chaleur.
[0047] De nombreuses synthèses réalisées en laboratoire et à l'échelle semi- industrielle (de 0.5 m3 à 25 m3), montrent que les propriétés de surface du CSH ne dépendent pas des propriétés de surface des silices amorphes utilisées pour leur fabrication ; par contre, l'ajout d'une faible quantité (environ3 % de la silice totale) de silice colloïdale fraîchement synthétisée, influence considérablement les qualités de surface.
[0048] La synthèse de la silice colloïdale est réalisée en faisant réagir de l'acide sulfurique dilué avec du silicate de soude en solution. On attend quelques minutes afin que la silice colloïdale précipite en formant une suspension laiteuse. Ensuite, on introduit la silice amorphe (terre de diatomée, fumée de silice, ...) et la chaux vive pour réaliser la synthèse de la suspension de CSH.
Modes de séchage des laits de CSH selon l'invention
[0049] Le séchage a pour but de ramener le pourcentage d'humidité de l'agent de captation d'environ 78 % d'eau libre à 5-20 % d'eau libre afin d'obtenir un agent de captation en poudre ayant des propriétés d'écoulement adéquates. Séchage du lait de CSH à pression atmosphérique et température inférieure à 500 °C (pour ne pas altérer l'hydratation du CSH)
[0050] Les calories peuvent être obtenues en brûlant un combustible fossile ou en récupérant des calories perdues (fours rotatifs à chaux sans préchauffeur, fours de cimenterie, etc.) via un échangeur de chaleur.
[0051] Les calories peuvent être transportées par :
1) de l'air appauvri en CO2 (pour éviter la carbonatation du gel de CSH),
2) de l'azote (solution coûteuse),
3) de la vapeur d'eau qui a l'avantage d'avoir une chaleur spécifique double de celle de l'air et ainsi de transporter deux fois plus de calories pour la même température.
Séchage du lait de CSH sous pression
[0052] Lors que le CSH est réalisé sous pression, par exemple à 150 °C et une pression supérieure à 5 bar, par détente à pression atmosphérique, l'eau libre du CSH s'évapore lors de l'atomisation de la pâte.
Mesure des performances du CSH selon l'invention
[0053] On distingue essentiellement trois systèmes pour mesurer les performances d'un agent de captation:
1) La méthode du point de percée sur 10 g de poudre granulée ou sur 250 mg de poudre fine. Cette méthode se pratique sur une poudre sèche et ne représente donc pas la réalité industrielle. Dans cette méthode, on définit un « temps de percement » qui est le temps pour que la concentration des polluants de sortie du lit soit égale à la concentration des polluants en entrée de celui-ci. Ce temps de percement est l'image de la performance de l'agent de captation.
2) La méthode de captation en vol
Dans une tour verticale de quelques mètres de haut, on saupoudre l'agent de captation. Des fumées recomposées traversent le cylindre et rencontrent l'agent de captation à contre- courant. L'agent de captation qui a réagi se dépose dans le fond du cylindre. Un filtre récolte les fines particules de poudre qui ont été entraînées par les fumées. Cette méthode présente l'inconvénient de l'incertitude sur la répartition uniforme de la poudre dans toute la section du cylindre. 3) La simulation à l'échelle réduite du fonctionnement d'un filtre à manches industriel utilisé en dépollution de fumées
C'est ce système qui a été choisi pour tester la performance des agents de captation de la présente invention car il s'approche le plus des conditions réelles d'utilisation.
Le filtre à manches fait 35 m2 de surface filtrante, soient 12 rangées de 5 manches par rangée. Une manche fait donc 0.58 m2 de surface latérale, 0.58 m de périmètre et 1 m de longueur. Comme dans tout filtre industriel, l'agent de captation est envoyé en continu sur les manches et les douze rangés de manches sont régulièrement battues à l'air comprimé, rangée après rangée, avec un temps de cycle réglable de 30 à 60 minutes. La vitesse de filtration des fumées est de lm/minute et le flux de fumées recomposées peut être ajusté en fonction de la température de filtration pour respecter cette vitesse.
EXEMPLES
[0054] La synthèse de lait de CSH a été réalisée dans un réacteur PA de laboratoire. La synthèse du CSH a été faite durant trois heures à différentes températures. Dans le cas du CSH amplifié, 3 % de silice colloïdale fraîche a été ajoutée lors de la synthèse.
La variation des caractéristiques structurelles en fonction de la température de synthèse du CSH accéléré et non-accéléré sont repris dans le tableau ci-dessous.
On utilise de la diatomite de Cekesa (Espagne) avec une surface spécifique de 103 m2/g et un volume poreux de 0,29 cm3/g contenant 72 % de Si02 ; 27,2 % de CaC03 et 0,8% de (Al203 + MgO).
[0055] Les exemple 1 à 6 sont effectués avec un rapport Ca/Si de 1,7 ; les exemples 7 à
9 avec un rapport Ca/Si de 1,55 et les exemples 10 à 12 avec un rapport Ca/Si de 1,72. Les essais 7 à 12 ont été effectués autour des températures qui ont été considérées comme les plus favorables dans les essais 1 à 6.
Exemple T (°C) Ca/Si BET (m2/g) VP (cc/g) BET (m2/g) VP (cc/g)
Non amplifié à la silice Amplifié à la silice colloïdale colloïdale fraîche fraîche
1 95 1,7 120 0,42 180 0,6
2 120 1,7 130 0,40 185 0,6
3 140 1,7 160 0,50 200 0,9
4 150 1,7 198 0,64 220 1.1
5 160 1,7 170 0,52 200 0,9
6 180 1,7 130 0,40 180 0,6
7 140 1,55 142 0,48 190 0,9
8 150 1,55 150 0,59 210 1,0
9 160 1,55 138 0,50 185 0,8
10 140 1,72 160 0,45 192 0,7
11 150 1,72 195 0,51 212 0,9
12 160 1,72 165 0,47 205 0,8
On remarque qu'aux alentours de 150 °C les surfaces spécifiques et le volume poreux sont les plus grands et donc les plus favorables pour la dépollution des fumées.
Comparaison des performances
Comparaison des performances de capture des polluants selon la simulation à l'échelle réduite du fonctionnement d'un filtre à manches industriel utilisé en dépollution de fumées.
[0056] Les performances du CSH selon l'invention ont été comparées avec des Ca(OH)2. Les conditions de synthèse du CSH sont celles réalisée à 150 °C et 5 bar durant trois heures. Le lait de CSH a été séché ensuite dans un atomiseur sans contact direct avec les fumées du générateur à air chaud fonctionnant au gaz naturel. Il restait 15 % d'eau résiduelle après séchage. La mention « kg d'acide », signifie poids total de SO2 et HCI.
Différentes compositions de fumées ont été testées et les résultats sont repris dans le ta bleau suivant. [0057] Composition des fumées n° 1:
Figure imgf000014_0001
[0058] Composition des fumées n° 2 :
250 mg/Nm3 S02 et 1000 mg/Nm3 HCI à 160°C, 10% H20, 5% C02
% de captation de l'acide dans les fumées
Type d'agent de 2 kg agent par kg acide 3 kg agent par kg acide 4 kg agent par kg acide captation
CSH selon S02 = 86% / HCI = 91% S02 = 92% / HCI = 96% S02 = 99% / HCI = 99% l'invention
CSH amplifié à S02 = 90% / HCI = 94% S02 = 94% / HCI = 98% S02 = 100% / HCI = 100% la silice fraîche
Ca(OH)2 S02 = 74% / HCI = 83% S02 = 83% / HCI = 94% S02 = 94% / HCI = 98%
BET=40 m2/g &
VP=0.2 cm3/g
Ca(OH)2 S02 = 64% / HCI = 60% S02 = 68% / HCI = 65% S02 = 69% / HCI = 69%
BET=22 m2/g &
VP=0.1 cm3/g
[0059] Composition des fumées n° 3 :
1000 mg/Nm3 S02 et 0 mg/Nm3 HCI à 160°C, 10% H20, 5% C02
% de captation de l'acide dans les fumées
Type d'agent de captation 2 kg agent par 3 kg agent 4 kg agent kg acide par kg acide par kg acide
CSH selon l'invention S02 = 50% S02 = 52% S02 = 60%
CSH amplifié à la silice fraîche S02 = 55% S02 = 60% S02 = 65%
Ca(OH)2 BET=40 m2/g & VP=0.2 cm3/g S02 = 42% S02 = 50% S02 = 55% [0060] La comparaison des tests de performance permet de voir l'avantage du CSH selon l'invention, en particulier lorsque celui-ci est amplifié à la silice fraiche par rapport aux deux versions de Ca(OH)2 auquel il a été comparé durant les essais comparatifs.

Claims

REVENDICATIONS
1. Agent de captation pour le traitement de gaz, ayant une phase active qui comporte un silicate de calcium hydraté de type (CaO)x(Si02)y(H20)z avec un rapport molaires Ca/Si compris entre 1,55 et 1,72, de préférence entre 1,65 et 1,72 et un rapport molaires h O/Ca compris entre 1 et 1,4 , de préférence entre 1,1 et 1,3 , « z » étant compris entre 0,3 et 0,8, l'agent de captation ayant une surface spécifique supérieure à 120 m2/g, de préférence supérieure à 150 m2/g et de manière particulièrement préférée supérieure à 200 m2/g, et un volume poreux supérieur à 0,4 cm3/g, de préférence supérieur à 0,6 cm3/g et de manière particulièrement préférée supérieur à 0,8 cm3/g.
2. Agent de captation selon la revendication 1, caractérisé en ce que la taille moyenne des particules (d5o) est inférieure à 1000 μιτι, de préférence inférieure à 500 μιτι et de manière particulièrement préférée inférieure à 300 μιτι.
3. Agent de captation selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit agent comporte en outre du chlorure de sodium, du chlorure de calcium ou du chlorure de fer hydraté au sein de ses pores.
4. Agent de captation selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit agent comporte en outre un agent de fluidification sélectionné parmi la monoéthanol-amine, la diéthanol-amine, la triéthanol-amine, le monoéthylène-glycol, le diéthylène-glycol et le triéthylène-glycol.
5. Procédé de préparation d'un agent de captation selon l'une quelconque des revendications précédentes, caractérisé en ce que du silicate de calcium hydraté est obtenu par :
- préparation d'une suspension aqueuse de silice et de chaux, au départ de silice colloïdale de fumée de silice ou de terre à diatomée ;
- séchage à l'aide de la chaleur.
6. Procédé de préparation selon la revendication 5, caractérisé en ce que la silice colloïdale, la fumée de silice ou la terre à diatomée ou un mélange de ces ingrédients est broyée préalablement jusqu'à obtenir des particules d'un diamètre d50 inférieur à 30 μιτι.
7. Procédé de préparation selon la revendication 5 ou 6, caractérisé en ce que de la silice colloïdale est fraîchement synthétisée et est ajoutée dans une proportion de 1 à 5 %, de préférence de 2 à 4 % avant la synthèse du CSH.
8. Procédé de préparation selon l'une quelconque des revendications 5 à 7, caractérisé en ce qu'il comporte en outre une étape d'ajout de sel de chlore, de préférence du chlorure de sodium, du chlorure de calcium ou du chlorure de fer.
9. Procédé de traitement de gaz au moyen d'un agent de captation, caractérisé en ce que l'on met un agent de captation suivant l'une quelconque des revendications 1 à 4 en contact avec les gaz à traiter.
10. Procédé de traitement suivant la revendication 9, caractérisé en ce qu'il consiste en un procédé sec, dans lequel les gaz sont mis en contact direct avec l'agent de captation.
11. Procédé de traitement suivant la revendication 10, caractérisé en ce que les gaz à traiter traversent un électrofiltre ou un filtre à manches contenant l'agent de captation.
12. Procédé de traitement suivant l'une quelconque des revendications 9 à 11, caractérisé en ce qu'on mesure la concentration de SO2 en tant que composé indicateur, dans les gaz à la sortie de l'électrofiltre ou du filtre à manches et qu'on remplace l'agent de captation quand la concentration dépasse une valeur limite préalablement fixée.
PCT/EP2016/074961 2015-11-16 2016-10-18 Agent de captation pour le traitement des fumees WO2017084822A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/776,319 US20180326394A1 (en) 2015-11-16 2016-10-18 Capture agent for the treatment of flue gases
EP16782247.7A EP3377215A1 (fr) 2015-11-16 2016-10-18 Agent de captation pour le traitement des fumees
CA3002420A CA3002420A1 (fr) 2015-11-16 2016-10-18 Agent de captation pour le traitement des fumees

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2015/5744A BE1023623B1 (fr) 2015-11-16 2015-11-16 Agent de captation pour le traitement des fumées
BE2015/5744 2015-11-16

Publications (1)

Publication Number Publication Date
WO2017084822A1 true WO2017084822A1 (fr) 2017-05-26

Family

ID=55236089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/074961 WO2017084822A1 (fr) 2015-11-16 2016-10-18 Agent de captation pour le traitement des fumees

Country Status (5)

Country Link
US (1) US20180326394A1 (fr)
EP (1) EP3377215A1 (fr)
BE (1) BE1023623B1 (fr)
CA (1) CA3002420A1 (fr)
WO (1) WO2017084822A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111330424A (zh) * 2020-01-20 2020-06-26 北京宝聚能源科技有限公司 一种烟气脱硫剂及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113134295A (zh) * 2020-01-20 2021-07-20 北京宝聚能源科技有限公司 一种烟气处理装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3611769A1 (de) 1986-04-08 1987-10-15 Ytong Ag Verfahren und vorrichtung zur reinigung von abgasen
US4804521A (en) 1986-11-07 1989-02-14 Board Of Regents, The University Of Texas System Process for removing sulfur from sulfur-containing gases
US5100643A (en) 1988-03-02 1992-03-31 Board Of Regents, The University Of Texas System Processes for removing acid components from gas streams
US5401481A (en) 1986-11-10 1995-03-28 Board Of Regents, The University Of Texas System Processes for removing acid components from gas streams
WO2000048710A1 (fr) 1999-02-17 2000-08-24 Carmeuse S.A. Agent de traitement de gaz, procede de preparation de cet agent, et procede de traitement de gaz au moyen de cet agent
GB2356194A (en) * 1999-11-12 2001-05-16 Univ Greenwich Silicate/aluminate materials
US20030051841A1 (en) * 2001-01-31 2003-03-20 Mathur Vijay K. Method and apparatus for production of precipitated calcium carbonate and silicate compounds in common process equipment
US6726807B1 (en) * 1999-08-26 2004-04-27 G.R. International, Inc. (A Washington Corporation) Multi-phase calcium silicate hydrates, methods for their preparation, and improved paper and pigment products produced therewith
EP1235758B1 (fr) * 1999-08-26 2005-11-30 Vijay Mathur Hydrates de silicate de calcium a phases multiples, leurs procedes de preparation et produits ameliores a base de papier et de pigments fabriques a partir de ces hydrates

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2902108C2 (de) * 1979-01-19 1983-11-24 Mars Inc., 22102 McLean, Va. Verwendung von Calciumsilikatgranulaten beziehungsweise -pulvern
US4707270A (en) * 1985-01-31 1987-11-17 Ube Industries, Ltd. Process for treating waste water containing phosphorus compounds and/or organic cod substances
US6676911B1 (en) * 1998-07-23 2004-01-13 Sumitomo Osaka Cement Co., Ltd. Exhaust gas treating agent, process for producing the same, and method of treating exhaust gas
WO2004041720A1 (fr) * 2002-11-05 2004-05-21 James Hardie International Finance B.V. Procede et appareil de production d'hydrate de silicate de calcium
EP2463317A1 (fr) * 2010-12-09 2012-06-13 BASF Construction Polymers GmbH Additif pour des mélanges de matièriaux de construction comprenant une phase fluide
WO2015171745A1 (fr) * 2014-05-06 2015-11-12 William Marsh Rice University Synthèse et auto-assemblage d'hydrates de ciment à forme contrôlée

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3611769A1 (de) 1986-04-08 1987-10-15 Ytong Ag Verfahren und vorrichtung zur reinigung von abgasen
US4804521A (en) 1986-11-07 1989-02-14 Board Of Regents, The University Of Texas System Process for removing sulfur from sulfur-containing gases
US5401481A (en) 1986-11-10 1995-03-28 Board Of Regents, The University Of Texas System Processes for removing acid components from gas streams
US5100643A (en) 1988-03-02 1992-03-31 Board Of Regents, The University Of Texas System Processes for removing acid components from gas streams
WO2000048710A1 (fr) 1999-02-17 2000-08-24 Carmeuse S.A. Agent de traitement de gaz, procede de preparation de cet agent, et procede de traitement de gaz au moyen de cet agent
US6726807B1 (en) * 1999-08-26 2004-04-27 G.R. International, Inc. (A Washington Corporation) Multi-phase calcium silicate hydrates, methods for their preparation, and improved paper and pigment products produced therewith
EP1235758B1 (fr) * 1999-08-26 2005-11-30 Vijay Mathur Hydrates de silicate de calcium a phases multiples, leurs procedes de preparation et produits ameliores a base de papier et de pigments fabriques a partir de ces hydrates
GB2356194A (en) * 1999-11-12 2001-05-16 Univ Greenwich Silicate/aluminate materials
US20030051841A1 (en) * 2001-01-31 2003-03-20 Mathur Vijay K. Method and apparatus for production of precipitated calcium carbonate and silicate compounds in common process equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"The CHEMISTRY of CEMENTS", 1964, ACADÉMIE PRESS, article "The Calcium Silicate Hydrates"

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111330424A (zh) * 2020-01-20 2020-06-26 北京宝聚能源科技有限公司 一种烟气脱硫剂及其制备方法和应用
CN111330424B (zh) * 2020-01-20 2020-11-27 北京宝聚能源科技有限公司 一种烟气脱硫剂及其制备方法和应用

Also Published As

Publication number Publication date
BE1023623B1 (fr) 2017-05-18
CA3002420A1 (fr) 2017-05-26
US20180326394A1 (en) 2018-11-15
BE1023623A1 (fr) 2017-05-18
EP3377215A1 (fr) 2018-09-26

Similar Documents

Publication Publication Date Title
BE1016661A3 (fr) Composition de chaux pulverulente, son procede de fabrication et son utilisation.
US11819821B2 (en) Methods for the treatment of flue gas streams using sorbent compositions with reduced auto-ignition properties
EP3104961B1 (fr) Composition réactive à base de bicarbonate de sodium et son procédé de production
JP6454734B2 (ja) 重炭酸ナトリウムをベースとする反応性組成物およびその製造方法
BE1025779B1 (fr) Procédé de fabrication d’un sorbant pour un procédé de traitement des gaz de fumée, sorbant et utilisation dudit sorbant dans un tel procédé de traitement des gaz de fumée
BE1023623B1 (fr) Agent de captation pour le traitement des fumées
BE1023883B1 (fr) Composition pour la purification de gaz de fumée
FR3053039A1 (fr) Procede de preparation d&#39;une composition de chaux eteinte pulverulente fine et tres poreuse et produit obtenu a partir de celui-ci
WO2017220775A9 (fr) Composition de chaux éteinte pulvérulente très poreuse
FR2993267A1 (fr) Compose mixte calcique et magnesien et son procede de fabrication
FR3046364A1 (fr)
WO1999037388A9 (fr) Agent de traitement de gaz, procede de preparation de cet agent, et procede de traitement de gaz au moyen de cet agent
WO2000048710A1 (fr) Agent de traitement de gaz, procede de preparation de cet agent, et procede de traitement de gaz au moyen de cet agent
BE1023799B1 (fr) Composition de chaux eteinte pulverulente tres poreuse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3002420

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15776319

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE