WO2017084604A1 - 轴向位移的检测方法、装置及*** - Google Patents

轴向位移的检测方法、装置及*** Download PDF

Info

Publication number
WO2017084604A1
WO2017084604A1 PCT/CN2016/106275 CN2016106275W WO2017084604A1 WO 2017084604 A1 WO2017084604 A1 WO 2017084604A1 CN 2016106275 W CN2016106275 W CN 2016106275W WO 2017084604 A1 WO2017084604 A1 WO 2017084604A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial displacement
axial
target
sensors
determining
Prior art date
Application number
PCT/CN2016/106275
Other languages
English (en)
French (fr)
Inventor
郭伟林
贺永玲
李雪
胡叨福
王凤双
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Publication of WO2017084604A1 publication Critical patent/WO2017084604A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/16Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring distance of clearance between spaced objects

Definitions

  • the present invention relates to the field of detection, and in particular to a method, device and system for detecting axial displacement.
  • the magnetic suspension bearing system uses a controllable electromagnetic force to suspend the shaft.
  • the magnetic suspension bearing system is mainly composed of a magnetic bearing, a rotating shaft, an axial displacement sensor, a controller and a power amplifier.
  • the axial displacement sensor is used for continuously detecting the position change of the rotating shaft (that is, for detecting the axial displacement of the rotating shaft), and when the axial displacement sensor detects that the axial displacement of the rotating shaft deviates from the reference displacement, the controller according to the above situation A control signal is generated, and then the power amplifier converts the control signal into a control current, and the control current generates a magnetic force in the magnetic bearing to stably suspend the rotating shaft at the reference displacement, so the axial displacement sensor controls the entire magnetic suspension bearing system until The important role of the axial displacement detection accuracy will directly determine the stability of the magnetic suspension bearing system operation.
  • a 5-DOF magnetic bearing system it consists of two radial magnetic bearings and one axial magnetic bearing.
  • the axial displacement sensor 25 is mounted perpendicular to the detecting surface, and the detecting surface is an outer surface of the fixed disc 21 which is sleeved on the rotating shaft, so when the disc is vertically rotated, The detection surface is also perpendicular to the axis of rotation.
  • the detection surface is not perpendicular to the axis of rotation.
  • the axial displacement sensor 25 obtains the axial displacement of the rotating shaft by detecting the axial displacement between it and the detecting surface, and the detection of the axial displacement in the prior art is realized by an axial displacement sensor, if the disc is When the rotation axis is vertical, the detection surface is also perpendicular to the rotation axis. At this time, the axial displacement detected by the axial displacement sensor is the reference displacement d ref .
  • the positional relationship between the disk 21, the rotating shaft 23 and the axial displacement sensor 25 can be seen in FIG.
  • the control process of the axial magnetic bearing is as follows:
  • the reference displacement in Fig. 1 is d ref
  • the axial displacement sensor 25 detects when the shaft 23 moves axially due to the external force f.
  • the axial magnetic bearing 27 generates a corresponding electromagnetic force on the thrust plate 29 through the control system, so that the rotating shaft generates a movement in the opposite direction to the external force f, and finally returns.
  • the detection surface Since the axial displacement is determined by measuring the detection surface, the detection surface should be able to truly reflect the position of the shaft. The movement must be such that the detection surface is completely perpendicular to the rotation axis. Inevitably, due to errors in processing and assembly, the disc and the shaft cannot be completely perpendicular, and there is a certain inclination. If the disc is tilted, the detecting surface will also tilt. When the rotating shaft rotates, the axial displacement measured by the detecting surface cannot truly reflect the axial movement of the rotating shaft.
  • the axial displacement detected by the axial displacement sensor is the reference displacement d ref . If the rotating shaft rotates to the first angle, the disc rotates with the rotating shaft, so that the disc is in the first position (that is, the B position in FIG. 4(a)), indicating that the disc is not perpendicular to the rotating shaft, and thus the detecting surface is not detected. Vertically to the rotation axis, the axial displacement sensor detects the axial displacement as d1, and d1 is greater than the reference displacement d ref . As shown in FIG.
  • the control of the axial magnetic bearing is the distance between the detection surface and the detection surface (ie, the axial displacement) detected by the axial displacement sensor as an input quantity, so when the rotation shaft rotates, the axial displacement is continuously Change, so the axial magnetic bearing will generate a corresponding force according to the detected axial displacement to control the movement of the rotating shaft in the opposite direction. Since the displacement fluctuation caused by the tilt of the detecting surface always exists during the rotation, the shaft The magnetic bearing will control the periodic axial movement of the rotating shaft, thus affecting the axial control. As the rotational speed increases, the influence will become more and more serious, and eventually the axial control instability of the rotating shaft will be caused.
  • the embodiment of the invention provides a method, a device and a system for detecting axial displacement, so as to at least solve the technical problem that the axial displacement detection result is inaccurate due to the inclination of the detection surface in the prior art.
  • a method for detecting an axial displacement comprising: acquiring an axial displacement detected by each of the plurality of axial displacement sensors, wherein each The detection direction of the axial displacement sensor is parallel to the rotor axis of the rotating component, and the plurality of the axial displacement sensors are all located on the same side of the detecting surface and are evenly arranged along the circumferential direction of the rotating component; The axial direction The displacement determines a target axial displacement of the rotating component.
  • determining the target axial displacement of the rotating component according to the plurality of the axial displacements obtained includes determining the target axial displacement according to an average of a sum of the plurality of axial displacements.
  • the plurality of axial displacement sensors include a first axial displacement sensor and a second axial displacement sensor, wherein: an axial displacement detected by each of the plurality of axial displacement sensors is acquired
  • the method includes: acquiring a first axial displacement detected by the first axial displacement sensor and acquiring a first axial displacement detected by the second axial displacement sensor; determining according to the obtained plurality of the axial displacements
  • the target axial displacement of the rotating component includes determining the target axial displacement based on the first axial displacement and the second axial displacement.
  • determining the target axial displacement of the rotating component according to the first axial displacement and the second axial displacement comprises: according to a sum of the first axial displacement and the second axial displacement The average determines the target axial displacement.
  • an axial displacement detecting apparatus comprising: an acquiring unit configured to acquire an axial displacement detected by each of the plurality of axial displacement sensors Wherein the detection direction of each of the axial displacement sensors is parallel to the rotor axis of the rotating member, and the plurality of the axial displacement sensors are located on the same side of the detecting surface and are uniformly disposed along the circumferential direction of the rotating member; And a determining unit, configured to determine a target axial displacement of the rotating component according to the plurality of the axial displacements obtained.
  • the acquiring unit includes: a first determining module, configured to determine the target axial displacement according to an average value of a sum of the plurality of axial displacements.
  • the plurality of axial displacement sensors include a first axial displacement sensor and a second axial displacement sensor
  • the acquisition unit comprises: an acquisition module, configured to acquire the first axial displacement sensor to detect a first axial displacement and acquiring a first axial displacement detected by the second axial displacement sensor
  • the determining unit comprising: a second determining module for: according to the first axial displacement and the first The two axial displacement determines the target axial displacement.
  • the second determining module includes: a first determining submodule configured to determine the target axial displacement according to an average value of a sum of the first axial displacement and the second axial displacement.
  • an axial displacement detecting system comprising: a plurality of axial displacement sensors, wherein a detection direction of each of the axial displacement sensors is parallel to a rotor shaft of a rotating member a plurality of the axial displacement sensors are located on the same side of the detecting surface and are evenly arranged along the circumferential direction of the rotating component; the controller is respectively connected to the plurality of the axial displacement sensors for acquiring a plurality of An axial displacement detected by each of the axial displacement sensors of the axial displacement sensor, and determining a target axial displacement according to the plurality of the axial displacements obtained.
  • an axial displacement detected by each of the plurality of axial displacement sensors is obtained, wherein a detection direction of each of the axial displacement sensors is parallel to a rotor of the rotating component
  • An axis, a plurality of the axial displacement sensors are located on the same side of the detecting surface, and are uniformly disposed along a circumferential direction of the rotating member; and determining a target axial displacement according to the plurality of the axial displacements obtained.
  • the final axial displacement of the rotating member is determined by a plurality of axial displacements detected according to a plurality of axial sensors mounted on the same side of the detecting surface and uniformly disposed along the circumferential direction of the rotating member, with only the prior art
  • an axial displacement detected by an axial displacement sensor to determine the final axial displacement of the rotating component the axial displacement of the rotating component can be accurately determined, thereby eliminating the axial control of the detecting surface tilting.
  • the effect is to improve the operational stability of the magnetic suspension bearing system, and solve the technical problem that the axial displacement detection result is inaccurate due to the inclination of the detection surface in the prior art, and the effect of improving the axial displacement detection accuracy is achieved.
  • FIG. 1 is a schematic view showing the structure of a magnetic suspension bearing system in the prior art
  • FIG. 2 is a schematic view showing the axial structure of a rotating shaft assembly in the prior art
  • FIG. 3 is a schematic view showing the positional relationship between a disk, a rotating shaft and an axial displacement sensor in the prior art
  • FIG. 4(a) is a schematic view showing the axial displacement sensor detecting axial displacement when the disc is in the first position in the prior art
  • 4(b) is a schematic view showing the axial displacement sensor detecting the axial displacement when the disk is in the second position in the prior art
  • FIG. 6 is a flow chart of a method for detecting axial displacement according to an embodiment of the present invention.
  • FIG. 7(a) is a schematic view showing the axial displacement detecting method according to the embodiment of the present invention, wherein a plurality of axial displacement sensors detect axial displacement when the disk is in the first position;
  • FIG. 7(b) is a schematic view showing the axial displacement of the embodiment of the present invention, wherein the axial displacement sensor detects axial displacement when the disk is in the second position;
  • Figure 8 is a schematic view showing the positional relationship between a disk, a rotating shaft and a plurality of axial displacement sensors using the axial displacement detecting method of the embodiment of the present invention
  • Figure 9 is a schematic illustration of an axial displacement detecting device in accordance with an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for detecting an axial displacement according to an embodiment of the present invention. As shown in FIG. 6, the method includes steps S602 to S604, as follows:
  • Step S602 acquiring axial displacements detected by each of the plurality of axial displacement sensors, wherein the detection direction of each of the axial displacement sensors is parallel to the rotor axis of the rotating component, and the plurality of axial displacement sensors are It is located on the same side of the detection surface and is evenly arranged along the circumferential direction of the rotating member.
  • the number of axial sensors can be determined as desired, but at least two.
  • the number of the axial displacement sensors is two, the two axial displacement sensors are symmetrically mounted on the same side of the detecting surface 180° apart along the circumferential direction of the rotating member; when the number of the axial sensors is three Then, the three axial displacement sensors are sequentially mounted on the same side of the detecting surface at intervals of 120° in the circumferential direction of the rotating member.
  • an axial displacement sensor can only detect one axial displacement, so the number of detected axial displacements is equal to the number of axial displacement sensors, that is, one axial displacement detected corresponds to one axial direction.
  • Motion detector e.g.
  • the detection surface in the above step S602 is the same as the detection surface in the background art, that is, the outer surface of the disk fixed to the rotating member.
  • the rotating component may be a rotating shaft.
  • Step S604 determining a target axial displacement of the rotating component according to the acquired plurality of axial displacements.
  • the target axial displacement is an axial displacement of the rotating component
  • the bearing controller can use the axial displacement of the rotating component as a control input signal to control the floating position of the rotating component.
  • the final axial displacement of the rotating member is determined by a plurality of axial displacements detected by a plurality of axial sensors uniformly disposed on the same side of the detecting surface and disposed along the circumferential direction of the rotating member.
  • only one axial displacement detected by one axial displacement sensor is used to determine the final axial displacement of the rotating component, and the axial displacement of the rotating component can be accurately determined, thereby eliminating the detection.
  • the influence of the surface tilt on the axial displacement improves the operational stability of the magnetic suspension bearing system, and solves the technical problem that the axial displacement detection result is inaccurate due to the inclination of the detection surface in the prior art, and the axial displacement detection is improved. The effect of accuracy.
  • determining the target axial displacement of the rotating component according to the obtained plurality of axial displacements comprises: determining the target axial displacement according to an average value of the sum of the plurality of axial displacements .
  • the influence of the inclination of the detecting surface on the axial displacement and the influence of the axial control can be eliminated, thereby avoiding Due to the axial instability caused by the tilt of the detecting surface, the technical effect of improving the operational stability of the magnetic suspension bearing system is further achieved.
  • the plurality of axial displacement sensors include a first axial displacement sensor and a second axial displacement sensor, wherein an axial direction detected by each of the plurality of axial displacement sensors is acquired Displacement includes: acquiring a first axial displacement detected by the first axial displacement sensor and acquiring a first axial displacement detected by the second axial displacement sensor; determining the target axial displacement according to the obtained plurality of axial displacements, including : determining the target axial displacement based on the first axial displacement and the second axial displacement.
  • determining the target axial displacement according to the first axial displacement and the second axial displacement comprises: determining the target axial displacement according to an average of a sum of the first axial displacement and the second axial displacement.
  • the first axial displacement detected by the first axial displacement sensor 25-1 is d1, wherein , d1>d ref
  • the second axial displacement detected by the second axial displacement sensor 25-2 is d2
  • the first axial displacement detected by the first axial displacement sensor 25-1 is d1, wherein , d1 ⁇ d ref
  • the second axial displacement detected by the second axial displacement sensor 25-2 is d2
  • a plurality of axial displacement sensors (only two axial displacement sensors are schematically illustrated in the figure, namely, the first axial displacement sensor 25-1 and the second axial displacement sensor 25-2), the disk 21
  • the positional relationship with the rotating shaft 23 can be seen in FIG.
  • the first axial displacement sensor and the second axial displacement sensor are symmetrically mounted 180 degrees apart, regardless of whether the detection surface is inclined to the first position or the second position, according to the first axial displacement and the second axial direction
  • the target axial displacement determined by the displacement is equal to d ref . Therefore, regardless of whether the detection surface is tilted or not, the average value of the axial displacement detected by the two axial displacement sensors is constant during the rotation of the rotating member. That is, the axial displacement of the rotating component is maintained at the reference displacement d ref , thereby eliminating the influence of the tilt of the detecting surface on the axial control, thereby achieving stable suspension of the rotating shaft, thereby improving the stability of the operation of the magnetic suspension bearing system.
  • an axial displacement detecting device which can be applied to a magnetic suspension bearing system for performing axial displacement provided by the above-described embodiments of the present invention.
  • the detection method of the axial displacement provided by the embodiment of the present invention is specifically described below:
  • the detecting device mainly includes an acquiring unit 91 and a determining unit 93, wherein:
  • the obtaining unit 91 is configured to acquire an axial displacement detected by each of the plurality of axial displacement sensors, wherein the detection direction of each of the axial displacement sensors is parallel to the rotor axis of the rotating component, and the plurality of axial displacements
  • the sensors are located on the same side of the detection surface and are evenly arranged along the circumference of the rotating member.
  • an axial displacement sensor can only detect one axial displacement, so the number of detected axial displacements is equal to the number of axial displacement sensors, that is, one axial displacement detected corresponds to one axis. To the displacement sensor.
  • the number of axial sensors can be determined according to requirements, but at least two.
  • the number of the axial displacement sensors is two, the two axial displacement sensors are symmetrically mounted on the same side of the detecting surface 180° apart along the circumferential direction of the rotating member; when the number of the axial sensors is three Then, the three axial displacement sensors are sequentially mounted on the same side of the detecting surface at intervals of 120° in the circumferential direction of the rotating member.
  • the detecting surface in the above-mentioned acquiring unit is the same as the detecting surface in the background art, that is, the outer surface of the disk fixed to the rotating member.
  • the rotating component may be a rotating shaft.
  • the determining unit 93 is configured to determine a target axial displacement of the rotating component according to the acquired plurality of axial displacements.
  • the target axial displacement is an axial displacement of the rotating component
  • the bearing controller can use the axial displacement of the rotating component as a control input signal to control the floating position of the rotating component.
  • the final axial displacement of the rotating member is determined by a plurality of axial displacements detected by a plurality of axial sensors uniformly disposed on the same side of the detecting surface and disposed along the circumferential direction of the rotating member.
  • only one axial displacement detected by one axial displacement sensor is used to determine the final axial displacement of the rotating component, and the axial displacement of the rotating component can be accurately determined, thereby eliminating the detection.
  • the influence of the surface tilt on the axial displacement improves the operational stability of the magnetic suspension bearing system, and solves the technical problem that the axial displacement detection result is inaccurate due to the inclination of the detection surface in the prior art, and the axial displacement detection is improved. The effect of accuracy.
  • the acquiring unit includes a first determining module.
  • the first determining module is configured to determine the target axial displacement according to an average of the sum of the plurality of axial displacements.
  • the influence of the inclination of the detecting surface on the axial displacement and the influence of the axial control can be eliminated, thereby avoiding Due to the axial instability caused by the tilt of the detecting surface, the technical effect of improving the operational stability of the magnetic suspension bearing system is further achieved.
  • the plurality of axial displacement sensors include a first axial displacement sensor and a second axial displacement sensor
  • the acquiring unit comprises: an acquiring module, configured to acquire the first a first axial displacement detected by the axial displacement sensor and acquiring a first axial displacement detected by the second axial displacement sensor
  • the determining unit comprising: a second determining module for the first axial displacement and the second axis The target axial displacement is determined for the displacement.
  • the second determining module includes: a first determining submodule, configured to determine a target axial direction according to an average value of a sum of the first axial displacement and the second axial displacement Displacement.
  • an axial displacement detection system includes: a plurality of axial displacement sensors, wherein a detection direction of each axial displacement sensor is parallel to a rotor axis of the rotating component, and a plurality of axial displacement sensors are located on the same side of the detection surface, and along the rotating component The circumferential direction is evenly arranged; the controller is respectively connected to the plurality of axial displacement sensors for acquiring the axial displacement detected by each of the plurality of axial displacement sensors, and according to the obtained plurality of axial directions The displacement determines the target axial displacement.
  • the final axial displacement of the rotating member is determined by a plurality of axial displacements detected by a plurality of axial sensors uniformly disposed on the same side of the detecting surface and disposed along the circumferential direction of the rotating member.
  • only one axial displacement detected by one axial displacement sensor is used to determine the final axial displacement of the rotating component, and the axial displacement of the rotating component can be accurately determined, thereby eliminating the detection.
  • the influence of the surface tilt on the axial displacement improves the operational stability of the magnetic suspension bearing system, and solves the technical problem that the axial displacement detection result is inaccurate due to the inclination of the detection surface in the prior art, and the axial displacement detection is improved. The effect of accuracy.
  • the disclosed technical contents may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit may be a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium. Based on such understanding, the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be produced by software.
  • the computer software product is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, server or network device, etc.) to perform all of the methods of the various embodiments of the present invention. Or part of the steps.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种轴向位移的检测方法,包括:获取多个轴向位移传感器(25-1,25-2)中每个轴向位移传感器(25-1,25-2)检测到的轴向位移(d1,d2),其中,每个轴向位移传感器(25-1,25-2)的检测方向平行于旋转部件(21)的转子轴线,多个轴向位移传感器(25-1,25-2)均位于检测面的同一侧,且沿旋转部件(21)的周向均匀设置;根据获取到的多个轴向位移(d1,d2)确定旋转部件(21)的目标轴向位移(d ref)。

Description

轴向位移的检测方法、装置及*** 技术领域
本发明涉及检测领域,具体而言,涉及一种轴向位移的检测方法、装置及***。
背景技术
磁悬浮轴承***利用可控电磁力将转轴悬浮起来。如图1所示,磁悬浮轴承***主要由磁力轴承、转轴、轴向位移传感器、控制器和功率放大器组成。其中,轴向位移传感器用于连续检测转轴的位置变化(也即,用于检测转轴的轴向位移),当轴向位移传感器检测到转轴的轴向位移偏离参考位移后,控制器根据上述情况生成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在磁力轴承中产生磁力使转轴能够稳定悬浮在参考位移处,所以轴向位移传感器对整个磁悬浮轴承***的控制起着至关重要的作用,轴向位移检测的准确性将直接决定磁悬浮轴承***运行的稳定性。
在一个5自由度磁悬浮轴承***中,由2个径向磁力轴承和1个轴向磁力轴承组成。如图2所示,在轴向磁力轴承控制中,轴向位移传感器25垂直于检测面安装,检测面是一个套在转轴上的固定圆盘21的外表面,所以当圆盘垂直转轴时,检测面也垂直于转轴,同样的,当圆盘不垂直于转轴时,检测面也不垂直于转轴。轴向位移传感器25通过检测其与检测面之间的轴向位移得到转轴的轴向位移,并且现有技术中轴向位移的检测都是通过一个轴向位移传感器来实现的,若圆盘与转轴垂直,则检测面与转轴也垂直,这时轴向位移传感器检测到的轴向位移即为参考位移dref。其中,圆盘21、转轴23和轴向位移传感器25之间的位置关系可以参见图3。
下面结合图1和图2,对轴向磁力轴承的控制过程说明如下:设图1中的参考位移为dref,由于外力f作用,当转轴23发生轴向移动时,轴向位移传感器25检测到其与检测面的距离发生变化,通过控制***,轴向磁力轴承27就会产生相应的电磁力作用在止推盘29上,使转轴产生一个与外力f相反方向的运动,并最终回到参考位移dref对应的位置处。
由于轴向位移是通过测量检测面来确定的,所以检测面要能真实地反映转轴的位 移,必须满足检测面与转轴是完全垂直的,不可避免,由于加工及装配上的误差,圆盘与转轴不可能完全垂直,会存在一定的倾斜。若圆盘倾斜,则检测面也就会倾斜,当转轴旋转时,通过检测面测量的轴向位移就不能真实反应转轴的轴向运动。
如图4(a)所示,若圆盘21处于A位置时,表明圆盘垂直于转轴,进而检测面也垂直于转轴23,则轴向位移传感器检测到的轴向位移为参考位移dref;若转轴旋转至第一角度,圆盘随转轴转动,使得圆盘位于第一位置(也即,图4(a)中的B位置),表明圆盘不垂直于转轴,进而检测面也不垂直于转轴,则轴向位移传感器检测到的轴向位移为d1,d1大于参考位移dref,如图4(b)所示,当转轴旋转至第二角度,圆盘随转轴转动,使得圆盘位于第二位置(也即,图4(b)中的C位置),表明圆盘不垂直于转轴,进而检测面也不垂直于转轴,则轴向位移传感器25检测到的轴向位移为d2,d2小于参考位移dref。上述轴向位移传感器检测到的轴向位移会以如图5所示的正弦趋势变化,其中,平均值d即为上述内容中的参考位移dref,并且可知d1-dref=dref-d2。
而实际上,轴向磁力轴承的控制是以轴向位移传感器检测到的其与检测面之间的距离(也即,轴向位移)作为输入量,故当转轴旋转时,轴向位移在不断变化,因此轴向磁力轴承就会根据检测到的轴向位移的大小产生相应的一个力来控制转轴向相反方向运动,由于旋转过程中因检测面倾斜带来的位移波动始终存在,故轴向磁力轴承将控制转轴周期性的轴向运动,从而影响轴向的控制,随着转速的升高,此影响会越来越严重,最终将导致转轴轴向控制失稳。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种轴向位移的检测方法、装置及***,以至少解决现有技术中由于检测面倾斜导致轴向位移检测结果不准确的技术问题。
根据本发明实施例的一个方面,提供了一种轴向位移的检测方法,包括:获取多个轴向位移传感器中每个所述轴向位移传感器检测到的轴向位移,其中,每个所述轴向位移传感器的检测方向平行于旋转部件的转子轴线,多个所述轴向位移传感器均位于检测面的同一侧,且沿所述旋转部件的周向均匀设置;根据获取到的多个所述轴向 位移确定所述旋转部件的目标轴向位移。
进一步地,根据获取到的多个所述轴向位移确定所述旋转部件的目标轴向位移包括:根据多个所述轴向位移之和的平均值确定所述目标轴向位移。
进一步地,多个所述轴向位移传感器包括第一轴向位移传感器和第二轴向位移传感器,其中:获取多个轴向位移传感器中每个所述轴向位移传感器检测到的轴向位移包括:获取所述第一轴向位移传感器检测到的第一轴向位移以及获取所述第二轴向位移传感器检测到的第一轴向位移;根据获取到的多个所述轴向位移确定所述旋转部件的目标轴向位移包括:根据所述第一轴向位移和所述第二轴向位移确定所述目标轴向位移。
进一步地,根据所述第一轴向位移和所述第二轴向位移确定所述旋转部件的目标轴向位移包括:根据所述第一轴向位移和所述第二轴向位移之和的平均值确定所述目标轴向位移。
进一步地,根据所述第一轴向位移和所述第二轴向位移确定所述旋转部件的目标轴向位移包括:根据公式dm=(d1+d2)/2确定所述目标轴向位移,其中,dm为所述目标轴向位移,d1为所述第一轴向位移,d2为所述第二轴向位移。
根据本发明实施例的另一方面,提供了一种轴向位移的检测装置,包括:获取单元,用于获取多个轴向位移传感器中每个所述轴向位移传感器检测到的轴向位移,其中,每个所述轴向位移传感器的检测方向平行于旋转部件的转子轴线,多个所述轴向位移传感器均位于检测面的同一侧,且沿所述旋转部件的周向均匀设置;确定单元,用于根据获取到的多个所述轴向位移确定所述旋转部件的目标轴向位移。
进一步地,所述获取单元包括:第一确定模块,用于根据多个所述轴向位移之和的平均值确定所述目标轴向位移。
进一步地,多个所述轴向位移传感器包括第一轴向位移传感器和第二轴向位移传感器,其中:所述获取单元包括:获取模块,用于获取所述第一轴向位移传感器检测到的第一轴向位移以及获取所述第二轴向位移传感器检测到的第一轴向位移;所述确定单元包括:第二确定模块,用于根据所述第一轴向位移和所述第二轴向位移确定所述目标轴向位移。
进一步地,所述第二确定模块包括:第一确定子模块,用于根据所述第一轴向位移和所述第二轴向位移之和的平均值确定所述目标轴向位移。
根据本发明实施例的另一方面,提供了一种轴向位移的检测***,包括:多个轴向位移传感器,其中,每个所述轴向位移传感器的检测方向平行于旋转部件的转子轴 线,多个所述轴向位移传感器均位于检测面的同一侧,且沿所述旋转部件的周向均匀设置;控制器,与多个所述轴向位移传感器分别连接,用于获取多个所述轴向位移传感器中每个所述轴向位移传感器检测到的轴向位移,并根据获取到的多个所述轴向位移确定目标轴向位移。
在本发明实施例中,采用获取多个轴向位移传感器中每个所述轴向位移传感器检测到的轴向位移,其中,每个所述轴向位移传感器的检测方向平行于旋转部件的转子轴线,多个所述轴向位移传感器均位于检测面的同一侧,且沿所述旋转部件的周向均匀设置;根据获取到的多个所述轴向位移确定目标轴向位移。通过根据安装在检测面的同一侧,且沿旋转部件的周向均匀设置的多个轴向传感器检测到的多个轴向位移共同确定出旋转部件的最终轴向位移,与现有技术中只根据一个轴向位移传感器检测到的一个轴向位移来确定旋转部件的最终轴向位移相比,能够较为准确的确定出旋转部件的轴向位移,从而达到了消除检测面倾斜对轴向控制的影响,提高了磁悬浮轴承***的运行稳定性的目的,解决了现有技术中由于检测面倾斜导致轴向位移检测结果不准确的技术问题,实现了提高轴向位移检测准确性的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是现有技术中磁悬浮轴承***组成结构的示意图;
图2是现有技术中转轴组件的轴向结构示意图;
图3是现有技术中的圆盘、转轴和轴向位移传感器之间的位置关系示意图;
图4(a)是现有技术中圆盘位于第一位置时,轴向位移传感器检测轴向位移的示意图;
图4(b)是现有技术中圆盘位于第二位置时,轴向位移传感器检测轴向位移的示意图;
图5是现有技术中的轴向位移传感器检测到的轴向位移的趋势变化图;
图6是根据本发明实施例的一种轴向位移的检测方法的流程图;
图7(a)是采用本发明实施例的轴向位移的检测方法,圆盘位于第一位置时,多个轴向位移传感器检测轴向位移的示意图;
图7(b)是采用本发明实施例的轴向位移的检测方法,圆盘位于第二位置时,多个轴向位移传感器检测轴向位移的示意图;
图8是采用本发明实施例的轴向位移的检测方法,圆盘、转轴和多个轴向位移传感器之间的位置关系示意图;以及
图9是根据本发明实施例的一种轴向位移的检测装置的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
根据本发明实施例,提供了一种轴向位移的检测方法,该检测方法可以应用在磁悬浮轴承***。图6是根据本发明实施例的一种轴向位移的检测方法的流程图,如图6所示,该方法包括步骤S602至步骤S604,具体如下:
步骤S602,获取多个轴向位移传感器中每个轴向位移传感器检测到的轴向位移,其中,每个轴向位移传感器的检测方向平行于旋转部件的转子轴线,多个轴向位移传感器均位于检测面的同一侧,且沿旋转部件的周向均匀设置。
具体地,轴向传感器的数量可以根据需求确定,但至少为两个。当轴向位移传感器的数量为2个时,则将这2个轴向位移传感器在检测面的同一侧沿着旋转部件的周向相隔180°对称安装;当轴向传感器的数量为3个时,则将这3个轴向位移传感器在检测面的同一侧沿着旋转部件的周向每相隔120°依次安装。
另外,一个轴向位移传感器只能检测到一个轴向位移,所以检测到的轴向位移的数量与轴向位移传感器的数量的相等的,也即,检测到的一个轴向位移对应一个轴向 位移传感器。
需要说明的是,上述步骤S602中的检测面与背景技术中的检测面相同,也就是,固定安装在旋转部件上的圆盘的外表面。其中,旋转部件可以是转轴。
步骤S604,根据获取到的多个轴向位移确定旋转部件的目标轴向位移。
其中,目标轴向位移为旋转部件的轴向位移,轴承控制器可以将上述旋转部件的轴向位移作为控制的输入信号,以控制旋转部件的悬浮位置。
在本发明实施例中,通过根据安装在检测面的同一侧,且沿旋转部件的周向均匀设置的多个轴向传感器检测到的多个轴向位移共同确定出旋转部件的最终轴向位移,与现有技术中只根据一个轴向位移传感器检测到的一个轴向位移来确定旋转部件的最终轴向位移相比,能够较为准确的确定出旋转部件的轴向位移,从而达到了消除检测面倾斜对轴向位移的影响,提高了磁悬浮轴承***的运行稳定性的目的,解决了现有技术中由于检测面倾斜导致轴向位移检测结果不准确的技术问题,实现了提高轴向位移检测准确性的效果。
作为一种可选实施方式,在本发明实施例中,根据获取到的多个轴向位移确定旋转部件的目标轴向位移包括:根据多个轴向位移之和的平均值确定目标轴向位移。
在本发明实施例中,通过将检测到的多个轴向位移之和的平均值作为旋转部件的轴向位移,能够消除检测面倾斜对轴向位移的影响以及轴向控制的影响,避免了由于检测面倾斜造成轴向失稳,进一步达到提高了磁悬浮轴承***的运行稳定性的技术效果。
作为一种可选实施方式,多个轴向位移传感器包括第一轴向位移传感器和第二轴向位移传感器,其中,获取多个轴向位移传感器中每个轴向位移传感器检测到的轴向位移包括:获取第一轴向位移传感器检测到的第一轴向位移以及获取第二轴向位移传感器检测到的第一轴向位移;根据获取到的多个轴向位移确定目标轴向位移包括:根据第一轴向位移和第二轴向位移确定目标轴向位移。
作为一种可选实施方式,根据第一轴向位移和第二轴向位移确定目标轴向位移包括:根据第一轴向位移和第二轴向位移之和的平均值确定目标轴向位移。
作为一种可选实施方式,根据第一轴向位移和第二轴向位移确定目标轴向位移包括:根据公式dm=(d1+d2)/2确定目标轴向位移,其中,dm为目标轴向位移,d1为第一轴向位移,d2为第二轴向位移。
当多个轴向位移传感器包括第一轴向位移传感器25-1和第二轴向位移传感器25-2 时,结合图7(a)和图7(b),说明如下:
参见图7(a),当圆盘处于第一位置(即,图7(a)中的B位置)时,第一轴向位移传感器25-1检测到的第一轴向位移为d1,其中,d1>dref,第二轴向位移传感器25-2检测到的第二轴向位移为d2,其中,d2<dref,则根据d1和d2确定出旋转部件的目标轴向位移dm=(d1+d2)/2=dref,其中,dref为检测面垂直时检测到的轴向位移,也即,背景技术中描述的参考位移。
参见图7(b),当圆盘处于第二位置(即,图7(b)中的C位置)时,第一轴向位移传感器25-1检测到的第一轴向位移为d1,其中,d1<dref,第二轴向位移传感器25-2检测到的第二轴向位移为d2,其中,d2>dref,则根据d1和d2确定出旋转部件的目标轴向位移dm=(d1+d2)/2=dref
其中,多个轴向位移传感器(图中只示意性的出了两个轴向位移传感器,即,第一轴向位移传感器25-1和第二轴向位移传感器25-2)、圆盘21和转轴23之间的位置关系可以参见图8。
由于第一轴向位移传感器和第二轴向位移传感器之间是相隔180°对称安装的,所以不论检测面倾斜至第一位置还是第二位置时,根据第一轴向位移和第二轴向位移确定出的目标轴向位移均等于dref,因此,不论检测面倾斜与否,在旋转部件旋转的一周内,两个轴向位移传感器检测到的轴向位移的平均值是不变的,即旋转部件的轴向位移保持在参考位移dref处,从而消除了因检测面倾斜对轴向控制造成的影响,从而实现转轴的稳定悬浮,也就提高了磁悬浮轴承***运行的稳定性。
根据本发明实施例,还提供了一种轴向位移的检测装置,该检测装置可以应用在磁悬浮轴承***,该轴向位移的检测装置用于执行本发明实施例上述内容所提供的轴向位移的检测方法,以下对本发明实施例所提供的轴向位移的检测装置做具体介绍:
图9是根据本发明实施例的一种轴向位移的检测装置的示意图,如图9所示,该检测装置主要包括获取单元91和确定单元93,其中:
获取单元91用于获取多个轴向位移传感器中每个轴向位移传感器检测到的轴向位移,其中,每个轴向位移传感器的检测方向平行于旋转部件的转子轴线,多个轴向位移传感器均位于检测面的同一侧,且沿旋转部件的周向均匀设置。
具体地,一个轴向位移传感器只能检测到一个轴向位移,所以检测到的轴向位移的数量与轴向位移传感器的数量的相等的,也即,检测到的一个轴向位移对应一个轴向位移传感器。
其中,轴向传感器的数量可以根据需求确定,但至少为两个。当轴向位移传感器的数量为2个时,则将这2个轴向位移传感器在检测面的同一侧沿着旋转部件的周向相隔180°对称安装;当轴向传感器的数量为3个时,则将这3个轴向位移传感器在检测面的同一侧沿着旋转部件的周向每相隔120°依次安装。
需要说明的是,上述获取单元中的检测面与背景技术中的检测面相同,也就是,固定安装在旋转部件上的圆盘的外表面。其中,旋转部件可以是转轴。
确定单元93用于根据获取到的多个轴向位移确定旋转部件的目标轴向位移。
其中,目标轴向位移为旋转部件的轴向位移,轴承控制器可以将上述旋转部件的轴向位移作为控制的输入信号,以控制旋转部件的悬浮位置。
在本发明实施例中,通过根据安装在检测面的同一侧,且沿旋转部件的周向均匀设置的多个轴向传感器检测到的多个轴向位移共同确定出旋转部件的最终轴向位移,与现有技术中只根据一个轴向位移传感器检测到的一个轴向位移来确定旋转部件的最终轴向位移相比,能够较为准确的确定出旋转部件的轴向位移,从而达到了消除检测面倾斜对轴向位移的影响,提高了磁悬浮轴承***的运行稳定性的目的,解决了现有技术中由于检测面倾斜导致轴向位移检测结果不准确的技术问题,实现了提高轴向位移检测准确性的效果。
作为一种可选实施方式,在本发明实施例中,获取单元包括第一确定模块。其中,第一确定模块用于根据多个轴向位移之和的平均值确定目标轴向位移。
在本发明实施例中,通过将检测到的多个轴向位移之和的平均值作为旋转部件的轴向位移,能够消除检测面倾斜对轴向位移的影响以及轴向控制的影响,避免了由于检测面倾斜造成轴向失稳,进一步达到提高了磁悬浮轴承***的运行稳定性的技术效果。
作为一种可选实施方式,在本发明实施例中,多个轴向位移传感器包括第一轴向位移传感器和第二轴向位移传感器,其中,获取单元包括:获取模块,用于获取第一轴向位移传感器检测到的第一轴向位移以及获取第二轴向位移传感器检测到的第一轴向位移;确定单元包括:第二确定模块,用于根据第一轴向位移和第二轴向位移确定目标轴向位移。
作为一种可选实施方式,在本发明实施例中,第二确定模块包括:第一确定子模块,用于根据第一轴向位移和第二轴向位移之和的平均值确定目标轴向位移。
作为一种可选实施方式,在本发明实施例中,第二确定模块包括:第二确定子模块,用于根据公式dm=(d1+d2)/2确定目标轴向位移,其中,dm为目标轴向位移,d1 为第一轴向位移,d2为第二轴向位移。
根据本发明实施例,还提供了一种轴向位移的检测***。该检测***包括:多个轴向位移传感器,其中,每个轴向位移传感器的检测方向平行于旋转部件的转子轴线,多个轴向位移传感器均位于检测面的同一侧,且沿旋转部件的周向均匀设置;控制器,与多个轴向位移传感器分别连接,用于获取多个轴向位移传感器中每个轴向位移传感器检测到的轴向位移,并根据获取到的多个轴向位移确定目标轴向位移。
在本发明实施例中,通过根据安装在检测面的同一侧,且沿旋转部件的周向均匀设置的多个轴向传感器检测到的多个轴向位移共同确定出旋转部件的最终轴向位移,与现有技术中只根据一个轴向位移传感器检测到的一个轴向位移来确定旋转部件的最终轴向位移相比,能够较为准确的确定出旋转部件的轴向位移,从而达到了消除检测面倾斜对轴向位移的影响,提高了磁悬浮轴承***的运行稳定性的目的,解决了现有技术中由于检测面倾斜导致轴向位移检测结果不准确的技术问题,实现了提高轴向位移检测准确性的效果。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本发明所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产 品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种轴向位移的检测方法,其中,包括:
    获取多个轴向位移传感器中每个所述轴向位移传感器检测到的轴向位移,其中,每个所述轴向位移传感器的检测方向平行于旋转部件的转子轴线,多个所述轴向位移传感器均位于检测面的同一侧,且沿所述旋转部件的周向均匀设置;
    根据获取到的多个所述轴向位移确定所述旋转部件的目标轴向位移。
  2. 根据权利要求1所述的方法,其中,根据获取到的多个所述轴向位移确定所述旋转部件的目标轴向位移包括:
    根据多个所述轴向位移之和的平均值确定所述目标轴向位移。
  3. 根据权利要求1所述的方法,其中,多个所述轴向位移传感器包括第一轴向位移传感器和第二轴向位移传感器,其中:
    获取多个轴向位移传感器中每个所述轴向位移传感器检测到的轴向位移包括:
    获取所述第一轴向位移传感器检测到的第一轴向位移以及获取所述第二轴向位移传感器检测到的第一轴向位移;
    根据获取到的多个所述轴向位移确定所述旋转部件的目标轴向位移包括:
    根据所述第一轴向位移和所述第二轴向位移确定所述目标轴向位移。
  4. 根据权利要求3所述的方法,其中,根据所述第一轴向位移和所述第二轴向位移确定所述旋转部件的目标轴向位移包括:
    根据所述第一轴向位移和所述第二轴向位移之和的平均值确定所述目标轴向位移。
  5. 根据权利要求3所述的方法,其中,根据所述第一轴向位移和所述第二轴向位移确定所述旋转部件的目标轴向位移包括:
    根据公式dm=(d1+d2)/2确定所述目标轴向位移,其中,dm为所述目标轴向位移,d1为所述第一轴向位移,d2为所述第二轴向位移。
  6. 一种轴向位移的检测装置,其中,包括:
    获取单元,用于获取多个轴向位移传感器中每个所述轴向位移传感器检测到的轴向位移,其中,每个所述轴向位移传感器的检测方向平行于旋转部件的转子轴线,多个所述轴向位移传感器均位于检测面的同一侧,且沿所述旋转部件的周 向均匀设置;
    确定单元,用于根据获取到的多个所述轴向位移确定所述旋转部件的目标轴向位移。
  7. 根据权利要求6所述的装置,其中,所述获取单元包括:
    第一确定模块,用于根据多个所述轴向位移之和的平均值确定所述目标轴向位移。
  8. 根据权利要求6所述的装置,其中,多个所述轴向位移传感器包括第一轴向位移传感器和第二轴向位移传感器,其中:
    所述获取单元包括:
    获取模块,用于获取所述第一轴向位移传感器检测到的第一轴向位移以及获取所述第二轴向位移传感器检测到的第一轴向位移;
    所述确定单元包括:
    第二确定模块,用于根据所述第一轴向位移和所述第二轴向位移确定所述目标轴向位移。
  9. 根据权利要求8所述的装置,其中,所述第二确定模块包括:
    第一确定子模块,用于根据所述第一轴向位移和所述第二轴向位移之和的平均值确定所述目标轴向位移。
  10. 一种轴向位移的检测***,其中,包括:
    多个轴向位移传感器,其中,每个所述轴向位移传感器的检测方向平行于旋转部件的转子轴线,多个所述轴向位移传感器均位于检测面的同一侧,且沿所述旋转部件的周向均匀设置;
    控制器,与多个所述轴向位移传感器分别连接,用于获取多个所述轴向位移传感器中每个所述轴向位移传感器检测到的轴向位移,并根据获取到的多个所述轴向位移确定目标轴向位移。
PCT/CN2016/106275 2015-11-18 2016-11-17 轴向位移的检测方法、装置及*** WO2017084604A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510801227.0 2015-11-18
CN201510801227 2015-11-18

Publications (1)

Publication Number Publication Date
WO2017084604A1 true WO2017084604A1 (zh) 2017-05-26

Family

ID=58717364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106275 WO2017084604A1 (zh) 2015-11-18 2016-11-17 轴向位移的检测方法、装置及***

Country Status (1)

Country Link
WO (1) WO2017084604A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110307789A (zh) * 2019-07-19 2019-10-08 哈尔滨工业大学 一种基于磁悬浮的浮子周向角位移可控装置
CN110411391A (zh) * 2019-07-05 2019-11-05 中国石油天然气股份有限公司 管道轴向位移检测装置和方法
CN109681749B (zh) * 2018-12-19 2020-04-24 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种转子位置检测安装组件及磁悬轴承
CN116576764A (zh) * 2023-07-06 2023-08-11 瑞纳智能设备股份有限公司 转轴的轴向位移检测装置、方法及磁轴承***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2261288B (en) * 1991-11-05 1995-02-08 Skf Svenska Kullagerfab Ab Device for determining the axial internal clearance and preload in rolling bearing assemblies
CN102829748A (zh) * 2012-08-22 2012-12-19 清华大学 一种立式转子磁力轴承间隙自动检测方法
CN102997885A (zh) * 2012-11-27 2013-03-27 安徽工业大学 大型回转支承间隙检测装置
CN103063179A (zh) * 2013-01-01 2013-04-24 中船重工电机科技股份有限公司 双滑轴承发电机主轴轴向位移测试装置
CN103245276A (zh) * 2013-04-16 2013-08-14 洛阳轴承研究所有限公司 一种轴承轴向游隙的测量方法
CN105509684A (zh) * 2015-11-24 2016-04-20 珠海格力节能环保制冷技术研究中心有限公司 轴向位移的检测方法、装置及***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2261288B (en) * 1991-11-05 1995-02-08 Skf Svenska Kullagerfab Ab Device for determining the axial internal clearance and preload in rolling bearing assemblies
CN102829748A (zh) * 2012-08-22 2012-12-19 清华大学 一种立式转子磁力轴承间隙自动检测方法
CN102997885A (zh) * 2012-11-27 2013-03-27 安徽工业大学 大型回转支承间隙检测装置
CN103063179A (zh) * 2013-01-01 2013-04-24 中船重工电机科技股份有限公司 双滑轴承发电机主轴轴向位移测试装置
CN103245276A (zh) * 2013-04-16 2013-08-14 洛阳轴承研究所有限公司 一种轴承轴向游隙的测量方法
CN105509684A (zh) * 2015-11-24 2016-04-20 珠海格力节能环保制冷技术研究中心有限公司 轴向位移的检测方法、装置及***

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109681749B (zh) * 2018-12-19 2020-04-24 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种转子位置检测安装组件及磁悬轴承
CN110411391A (zh) * 2019-07-05 2019-11-05 中国石油天然气股份有限公司 管道轴向位移检测装置和方法
CN110411391B (zh) * 2019-07-05 2022-03-01 中国石油天然气股份有限公司 管道轴向位移检测装置和方法
CN110307789A (zh) * 2019-07-19 2019-10-08 哈尔滨工业大学 一种基于磁悬浮的浮子周向角位移可控装置
CN110307789B (zh) * 2019-07-19 2021-09-07 哈尔滨工业大学 一种基于磁悬浮的浮子周向角位移可控装置
CN116576764A (zh) * 2023-07-06 2023-08-11 瑞纳智能设备股份有限公司 转轴的轴向位移检测装置、方法及磁轴承***
CN116576764B (zh) * 2023-07-06 2023-09-29 瑞纳智能设备股份有限公司 转轴的轴向位移检测装置、方法及磁轴承***

Similar Documents

Publication Publication Date Title
WO2017084604A1 (zh) 轴向位移的检测方法、装置及***
CN105509684A (zh) 轴向位移的检测方法、装置及***
Zhang et al. Simulation on measurement of five-DOF motion errors of high precision spindle with cylindrical capacitive sensor
JP2016503495A (ja) モバイルデバイス内の加速度計を使用したワールド座標系における重力ベクトルの推定
JP2013250266A5 (zh)
CN105423889B (zh) 转轴的轴向位移检测方法和装置及磁悬浮轴承***
JP5235679B2 (ja) 角度測定器具
CN105352466A (zh) 一种轴向位移检测装置、方法和磁悬浮轴承
US20040011149A1 (en) Integrated angular and radial position sensor
CN103115726A (zh) 一种基于应变的旋转零部件动平衡方法
US11407146B2 (en) Centrifugal field-flow fractionation device
JP2008267907A (ja) 高速回転体の回転バランス計測装置及び方法
JP5237042B2 (ja) 振動速度センサ校正方法及び装置
CN102809464A (zh) 动平衡测量方法及装置及装有该装置的ct机
CN107869949B (zh) 轴向位移检测方法、装置和轴向位移传感器
CN112701983B (zh) 基于线性霍尔传感器的转子角度校准方法和装置
JP5816900B2 (ja) 2軸直交ダブルターンテーブルを用いたジャイロ特性測定方法
CN107677243B (zh) 激光隧道断面检测仪
CN106123809A (zh) 一种亚角秒级测角装置
CN108196092A (zh) 离心机工作半径标定方法、***以及加速度计校准方法
KR20180114743A (ko) 앱솔루트 엔코더, 앱솔루트 엔코더의 직교 정현파의 룩업테이블 생성 방법 및 이를 이용한 절대각도 검출방법
JP2015094686A (ja) 回転軸のたわみ量測定方法および測定装置
US20140208834A1 (en) Rotary Rheometer With Dual Read Head Optical Encoder
JP6554515B2 (ja) 工作機械の振動検出方法
JP6107212B2 (ja) 物品の形状測定方法及び測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865781

Country of ref document: EP

Kind code of ref document: A1