WO2017084566A1 - Coil spring - Google Patents

Coil spring Download PDF

Info

Publication number
WO2017084566A1
WO2017084566A1 PCT/CN2016/106002 CN2016106002W WO2017084566A1 WO 2017084566 A1 WO2017084566 A1 WO 2017084566A1 CN 2016106002 W CN2016106002 W CN 2016106002W WO 2017084566 A1 WO2017084566 A1 WO 2017084566A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil spring
view
coil
seen
height
Prior art date
Application number
PCT/CN2016/106002
Other languages
French (fr)
Inventor
Kevin Chan
Luciano Gurgel VALENTE
Brandon Boon Soon NG
Wai Kee Ricky CHENG
Original Assignee
Ampd Electrosprings Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ampd Electrosprings Limited filed Critical Ampd Electrosprings Limited
Priority to CN201680064782.2A priority Critical patent/CN108370003A/en
Priority to EP16865743.5A priority patent/EP3378110A4/en
Priority to US15/776,076 priority patent/US20200256415A1/en
Publication of WO2017084566A1 publication Critical patent/WO2017084566A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/08Wound springs with turns lying in mainly conical surfaces, i.e. characterised by varying diameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/06Wound springs with turns lying in cylindrical surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2421Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means using coil springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to springs, and in particular electrically conductive coil springs.
  • the batteries are arranged in parallel or in series in an assembly or pack to obtain a desired capacity or voltage.
  • Springs as battery contacts, electrically connect to the battery terminals so that failed or damaged battery cells of the battery pack can be replaced with new battery cells.
  • One example embodiment is a coil spring that includes a top portion and a bottom portion.
  • the top portion includes three coils that are vertically stacked on top of each other to have a straight cylindrical shape in a side-view of the top portion. The three coils connect together such that no gap exists between the three coils in the side-view.
  • the top portion includes a top coil that extends one and one-half turns along a flat plane as seen from a top-view of the top portion.
  • the bottom portion includes multiple coils that form a truncated-cone shape in the side-view and that in a compressed state extends one and one-half turns along a flat plane as seen from a bottom-view of the bottom portion.
  • Figure 1A shows a coil spring in an uncompressed state from a side-view in accordance with an example embodiment.
  • Figure 1B shows a coil spring in an uncompressed state from a top-view in accordance with an example embodiment.
  • Figure 2A shows a coil spring in a collapsed state from a side-view in accordance with an example embodiment.
  • Figure 2B shows a coil spring in a collapsed state from a top-view in accordance with an example embodiment.
  • Figure 3A shows a cross sectional view of a bottom portion of a coil spring in an uncompressed state in accordance with an example embodiment.
  • Figure 3B shows a cross sectional view of a bottom portion of a coil spring in a collapsed state in accordance with an example embodiment.
  • Figure 4 shows a top coil of a coil spring from a top-view in accordance with an example embodiment.
  • Figure 5 shows a side-view of two coil springs connected with batteries in accordance with an example embodiment.
  • a battery contact spring (such as a coil spring) provides pressure to hold batteries in place as well as to conduct electrical current from the batteries to a desired circuit or electronic component. Battery contact springs with low resistance and long lifetime are desired.
  • Example embodiments relate to coil springs or conical compression springs that connect to batteries as battery contacts.
  • the coil spring contacts the battery to hold the battery in place as well as to conduct electric current from the battery to a desired circuit, terminal, or electrical component.
  • the coil spring is desired to have a large contact area with the battery in order to minimize the contact resistance.
  • An example embodiment includes a coil spring with a top portion and a bottom portion.
  • the top portion includes at least two coils that are vertically stacked on top of each other to have a straight cylindrical shape in a side-view of the top portion.
  • a top coil in the top portion extends one and one-half turns along a flat plane as seen from a top-view of the top portion.
  • the bottom portion includes multiple coils that form a truncated-cone shape in the side-view.
  • the bottom portion in a compressed state, extends one and one-half turns along a flat plane as seen from a bottom-view of the bottom portion.
  • the coils in the top portion are vertically stacked such that no gap exists between the coils in the side-view.
  • a circumference of a bottom surface of one coil engages a circumference of a top surface of another coil.
  • the coils are in contact to each other such that the height of the top portion remains unchanged with the coil spring is fully compressed versus when the spring is fully uncompressed.
  • the top portion of the coil spring has a top coil that contacts the battery and includes three coils.
  • the top coil of these three coils extends one and one-half turns to form in a spiral shape in which an entirety of the one and one-half turns resides in a flat plane.
  • the coil spring is made by winding a conductive wire.
  • the diameter of the conductive wire is one millimeter (mm) from a cross-sectional view of the conductive wire.
  • the height of the coil spring in an uncompressed state is at least 5.0 mm in which the top portion is at least 2.0mm.
  • the height of the coil spring in an uncompressed state is between 6.5 mm –7.0 mm (e.g., 6.7 mm) .
  • the top portion is 2.8 mm –3.2 mm (e.g., 3 mm) high, and the bottom portion is 3.5 mm –4.0 mm (e.g., 3.7 mm) high.
  • the height of the coil spring reduces, for example, by about 1.8 mm –2.2 mm.
  • the coil spring when the coil spring has a height of 6.7 mm in an uncompressed state, the coil spring reduces to 4.7 mm in a compressed state with a total reduction in height of 2.0 mm when measured from a side-view.
  • the coil spring compresses and pushes against a battery to electrically connect the battery with a base carrier and hold the battery in place.
  • the coil spring is sandwiched between the battery and the base carrier and is compressed to a collapsed state, in which the top portion of the coil spring collapses inside the bottom portion and contacts the base carrier.
  • the electrical path from the battery to the base carrier through the coil spring is shortened.
  • the effective resistance of the coil spring which is the path resistance from the battery to the base carrier through the coil spring, is decreased.
  • Figure 1A shows a coil spring 100 in an uncompressed state from a side-view in accordance with an example embodiment.
  • Figure 1B shows the coil spring 100 as shown in Fig. 1A from a top-view in accordance with an example embodiment.
  • the coil spring or conical compression spring 100 includes a top portion 110 and a bottom portion 120.
  • the top portion 110 includes three coils and a top coil 115.
  • the three coils are vertically stacked on top of each other and such that each of the three coils has a same or similar circular diameter.
  • the bottom portion 120 includes multiple coils that form a truncated-cone shape in the side-view.
  • a bottom coil or base coil 125 in the bottom portion functions as a base for the coil spring.
  • the top portion is inelastic and has a straight cylindrical shape in a side-view of the top portion.
  • the top portion has three concentric coils forming three circles with equal diameters.
  • the three coils are vertically stacked and connected together such that no gap exists between the coils in the side-view.
  • a circumference of a bottom surface of one coil engages a circumference of a top surface of another coil.
  • a height of the top portion remains unchanged when the coil spring is fully compressed versus when the coil spring is fully uncompressed.
  • This configuration of stacked coils shortens the electrical and thermal conduction path from the top coil to the base coil through the coil spring.
  • the electrical resistance of the coil spring is 8.04 milliohm when coils in the top portion are not in contact with each other.
  • the resistance reduces from 8.04 milliohm to 7.40 milliohm when the coils in the top portion contact each other.
  • the top portion 120 of the coil spring includes a top coil 115 that contacts the battery.
  • the top coil extends more than one turn in a spiral shape in which an entirety of the more than one turn resides in a horizontal plane as seen from a top-view of the top portion as shown in Fig. 1B.
  • the horizontal plane is a plane that is vertical to the central axis of the coil spring.
  • the top coil winds around a center point in the horizontal plane at a decreasing distance from the center point to form an arc of at least 360 degrees, for example, 540 degrees.
  • the bottom portion has a truncated-cone shape and a diameter larger than the top potion.
  • the bottom portion is elastic and contributes to the motive force of the coil spring.
  • the bottom portion has less than two turns, in which the bottom coil in the bottom portion extends less than one turn along a flat plane and functions as a base of the coil spring.
  • the coil spring is made by winding a conductive wire.
  • the diameter of the conductive wire is one millimeter (mm) from a cross-sectional view of the conductive wire.
  • the height of the coil spring in an uncompressed state is 6.0 mm to 7 mm.
  • the height of the coil spring is 6.7 mm in which the top portion is 3 mm high and the bottom portion is 3.7 mm high.
  • the height of the top portion is 2.8 mm –3.2 mm (hereinafter about 3 mm) and the height of the bottom portion is 3.5 mm –3.9 mm (hereinafter about 3.7mm) .
  • the top portion of the coil spring is mounted into a carrying cap, allowing the coil spring to be picked and positioned by industry standard SMT component placement systems or “pick-and-place machines” to automate and robotize the coil springs onto a base carrier.
  • Figure 2A shows a coil spring 200 in a collapsed state from a side-view in accordance with an example embodiment.
  • Figure 2B shows the coil spring 200 as shown in Fig. 2A from a top-view in accordance with an example embodiment.
  • the coil spring or conical compression spring 200 includes a top portion 210 and a bottom portion 220.
  • the top portion 210 includes three coils that are vertically stacked on top of each other and a top coil 215.
  • the bottom portion 220 includes multiple coils that are enclosed in a bottom coil or base coil 225.
  • the top portion is inelastic and has a straight cylindrical shape in a side-view of the top portion.
  • a height of the top portion does not change or remains constant when the coil spring transitions between the compressed state and uncompressed state.
  • the top portion has at least two concentric coils forming two circles with equal diameters in which the two coils are vertically stacked and connected together such that no gap exists between the coils in the side-view.
  • a circumference of a bottom surface of one coil engages a circumference of a top surface of another coil. In the collapsed state, the top portion collapses inside the bottom portion.
  • the top portion 220 of the coil spring includes a top coil 215 that contacts the battery.
  • the top coil extends more than one turn in a spiral shape in which an entirety of the more than one turn resides in a flat plane as seen from a top-view of the top portion as shown in Fig. 2B.
  • the flat plane is vertical to the central axis of the coil spring.
  • the top coil winds along the flat plane for at least 360 degrees, for example, 500 degrees.
  • the bottom portion has less than two turns in total and the bottom coil extends less than one turn along a surface on a base carrier.
  • the bottom coil is soldered to the base carrier and functions as the base of the coil spring.
  • the bottom portion has a diameter larger than the top potion such that the top portion collapses inside the bottom portion to contact the base carrier when the coil spring is compressed to a collapsed state. In this configuration, the contact area between the coil spring and the base carrier is larger in the collapsed state than in the uncompressed state.
  • each of the batteries is in electrical contact with a base carrier via a coil spring at a first terminal end and with a top cover at a second terminal end.
  • the bottom coil of the coil spring is soldered to the base carrier to stabilize the coil spring.
  • the top coil of the coil spring is in contact with the first terminal end of one of the battery cells.
  • the upper part of the bottom portion of the coil spring, which extends from the bottom coil, is an elastic half-turn coil.
  • the elastic half-turn coil does not contact the base carrier when the coil spring is in the uncompressed state, and contacts the base carrier when the coil spring is compressed to the collapsed state.
  • the elastic half-turn coil which has an flexible height, ensures an even connection across the battery cells, as battery cells may each have minor differences in height due to manufacturing tolerances.
  • the coil spring has a height in an uncompressed state as seen from the side-view that is at least 5.0 mm, and the height decreases, for example, by at least 1.8 mm in a compressed state.
  • the height of the coil spring in an uncompressed state is 6.0 mm to 7 mm.
  • the height of the coil spring is 6.7 mm in which the top portion is 3 mm high and the bottom portion is 3.7 mm high.
  • the height of the bottom portion decreases to 1.7 mm when the coil spring is compressed to the collapsed state.
  • the height of the top portion is 2.8 mm –3.2 mm (hereinafter about 3 mm) .
  • the height of the bottom portion is 3.5 mm –3.9 mm (hereinafter about 3.7mm) .
  • the height of the bottom portion decreased to 1.5 mm –1.9 mm (hereinafter about 1.7mm) when the coil spring is compressed to the collapsed state.
  • the height of the bottom portion as seen from the side-view reduces by 2.0 mm from an uncompressed state to the compressed state.
  • Figure 3A shows a cross sectional view 320A of a bottom portion of a coil spring in an uncompressed state in accordance with an example embodiment.
  • Figure 3B shows a cross sectional view 320B of a bottom portion of a coil spring in a collapsed state in accordance with an example embodiment.
  • FIG. 3A A cross sectional view 320A of the bottom portion of an uncompressed coil spring long the base carrier is shown in Fig. 3A, which is less than one turn. The less than one turn is the lower part of the bottom portion which contacts the base carrier no matter the coil spring is in an uncompressed state or a collapsed state.
  • the height of the bottom portion of the coil spring decreases such that the upper part of the bottom portion contacts the base carrier.
  • the height of the bottom portion decreases from about 3.7 mm to about 1.7 mm.
  • a cross sectional view 320B of the bottom portion of a collapsed coil spring along the base carrier is shown in Fig. 3B.
  • the bottom portion which is more than one turn and less than two turns, collapses onto the base carrier.
  • the bottom portion of the coil spring has a flexible height and allows an even connection across the battery cells.
  • Figure 4 shows a top coil 415 of a coil spring from a top-view in accordance with an example embodiment.
  • the top coil 415 extends one and one-half turns along a flat plane as seen from a top-view of the top portion.
  • the top coil contacts a battery terminal.
  • the top coil extends more than one turn to form in a spiral shape in which an entirety of the more than one turn resides in a flat plane and contacts the battery terminal.
  • the top coil winds around a center point in the horizontal plane at a decreasing distance from the center point to form an arc of at least 360 degrees, for example, 540 degrees. This configuration of the top coil maximizes the contact area between the coil spring and the battery terminal such that the contact resistance is decreased.
  • FIG. 5 shows a side-view of two coil springs 530A and 530B connected with batteries 510A and 510B, respectively.
  • the coil springs are positioned between the batteries and a base carrier 520.
  • Each coil spring includes a top coil (shown as 532A and 532B) and a bottom coil or a base coil (shown as 534A and 534B) .
  • the top coil contacts the battery and the bottom coil contacts the base carrier.
  • the coil spring compresses and pushes against the battery to electrically connect the battery with the base carrier and hold the battery in place.
  • the coil spring is sandwiched between the battery and the base carrier and is compressed to a collapsed state, in which the top portion of the coil spring collapses inside the bottom portion and contacts the base carrier.
  • the electrical path from the battery to the base carrier through the coil spring is shortened.
  • the effective resistance of the coil spring which is the path resistance from the battery to the base carrier through the coil spring, is decreased.
  • the effective resistance of the coil spring decreases by at least 8 percent when the coil spring is compressed from an uncompressed state, in which the coil spring is not compressed and has a free height, to a collapsed state, in which the top portion of the coil spring collapses inside the bottom portion and contacts the base carrier.
  • the contact area between the coil spring and the base carrier is larger in the collapsed state compared with the uncompressed state. In the collapsed state, the top portion of the coil spring collapses inside the bottom portion and contacts the base carrier. The larger contact area leads to a smaller contact resistance between the coil spring and the base carrier.
  • each of the batteries is in electrical contact with a base carrier via the coil spring at a first terminal end and with a top cover at a second terminal end.
  • the coil springs compress and assist in supporting the batteries in the battery assembly and providing electrical contact between the batteries and the base carrier.
  • a “battery assembly” is an assembly of two or more batteries or batteries cells that are configured in series, parallel, or a mixture of both to deliver a desired voltage, capacity, or power density.
  • a “path resistance” is the resistance of a path from the beginning of the path to the end of the path.
  • an “effective resistance” of the coil spring is an electrical path resistance through the coil spring.
  • a “free height” is a height of an object when no external force is applied to the object.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

A coil spring (100) includes a top portion (110) and a bottom portion (120). The top portion (110) includes three coils that are vertically stacked on top of each other to have a straight cylindrical shape in a side-view of the top portion (110). The three coils connect together such that no gap exists between the three coils in the side-view. The top portion (110) includes a top coil (115) that extends one and one-half turns along a flat plane as seen from a top-view of the top portion (110). The bottom portion (120) includes multiple coils that form a truncated-cone shape in the side-view and that in a compressed state extends one and one-half turns along a flat plane as seen from a bottom-view of the bottom portion (120).

Description

COIL SPRING Field of the Invention
The present invention relates to springs, and in particular electrically conductive coil springs.
Background Art
Electronic devices often require portable power from batteries. The batteries are arranged in parallel or in series in an assembly or pack to obtain a desired capacity or voltage. Springs, as battery contacts, electrically connect to the battery terminals so that failed or damaged battery cells of the battery pack can be replaced with new battery cells.
In view of the demand for portable power, improvements in battery contacts are desired.
Summary of the Invention
One example embodiment is a coil spring that includes a top portion and a bottom portion. The top portion includes three coils that are vertically stacked on top of each other to have a straight cylindrical shape in a side-view of the top portion. The three coils connect together such that no gap exists between the three coils in the side-view. The top portion includes a top coil that extends one and one-half turns along a flat plane as seen from a top-view of the top portion. The bottom portion includes multiple coils that form a truncated-cone shape in the side-view and that in a compressed state extends one and one-half turns along a flat plane as seen from a bottom-view of the bottom portion.
Other example embodiments are discussed herein.
Brief Description of the Drawings
Figure 1A shows a coil spring in an uncompressed state from a side-view in accordance with an example embodiment.
Figure 1B shows a coil spring in an uncompressed state from a top-view in accordance with an example embodiment.
Figure 2A shows a coil spring in a collapsed state from a side-view in accordance with an example embodiment.
Figure 2B shows a coil spring in a collapsed state from a top-view in accordance with an example embodiment.
Figure 3A shows a cross sectional view of a bottom portion of a coil spring in an uncompressed state in accordance with an example embodiment.
Figure 3B shows a cross sectional view of a bottom portion of a coil spring in a collapsed state in accordance with an example embodiment.
Figure 4 shows a top coil of a coil spring from a top-view in accordance with an example embodiment.
Figure 5 shows a side-view of two coil springs connected with batteries in accordance with an example embodiment.
Detailed Description of Embodiments
A battery contact spring (such as a coil spring) provides pressure to hold batteries in place as well as to conduct electrical current from the batteries to a desired circuit or electronic component. Battery contact springs with low resistance and long lifetime are desired.
Example embodiments relate to coil springs or conical compression  springs that connect to batteries as battery contacts. The coil spring contacts the battery to hold the battery in place as well as to conduct electric current from the battery to a desired circuit, terminal, or electrical component. The coil spring is desired to have a large contact area with the battery in order to minimize the contact resistance.
An example embodiment includes a coil spring with a top portion and a bottom portion. The top portion includes at least two coils that are vertically stacked on top of each other to have a straight cylindrical shape in a side-view of the top portion. A top coil in the top portion extends one and one-half turns along a flat plane as seen from a top-view of the top portion. The bottom portion includes multiple coils that form a truncated-cone shape in the side-view. The bottom portion, in a compressed state, extends one and one-half turns along a flat plane as seen from a bottom-view of the bottom portion.
In one embodiment for example, the coils in the top portion are vertically stacked such that no gap exists between the coils in the side-view. A circumference of a bottom surface of one coil engages a circumference of a top surface of another coil. The coils are in contact to each other such that the height of the top portion remains unchanged with the coil spring is fully compressed versus when the spring is fully uncompressed.
In one embodiment for example, the top portion of the coil spring has a top coil that contacts the battery and includes three coils. The top coil of these three coils extends one and one-half turns to form in a spiral shape in which an entirety of the one and one-half turns resides in a flat plane.
In an example embodiment, the coil spring is made by winding a conductive wire. The diameter of the conductive wire is one millimeter  (mm) from a cross-sectional view of the conductive wire. The height of the coil spring in an uncompressed state is at least 5.0 mm in which the top portion is at least 2.0mm. For example, the height of the coil spring in an uncompressed state is between 6.5 mm –7.0 mm (e.g., 6.7 mm) . The top portion is 2.8 mm –3.2 mm (e.g., 3 mm) high, and the bottom portion is 3.5 mm –4.0 mm (e.g., 3.7 mm) high. The height of the coil spring reduces, for example, by about 1.8 mm –2.2 mm. For example, when the coil spring has a height of 6.7 mm in an uncompressed state, the coil spring reduces to 4.7 mm in a compressed state with a total reduction in height of 2.0 mm when measured from a side-view.
In an example embodiment, the coil spring compresses and pushes against a battery to electrically connect the battery with a base carrier and hold the battery in place. The coil spring is sandwiched between the battery and the base carrier and is compressed to a collapsed state, in which the top portion of the coil spring collapses inside the bottom portion and contacts the base carrier. In this configuration, the electrical path from the battery to the base carrier through the coil spring is shortened. The effective resistance of the coil spring, which is the path resistance from the battery to the base carrier through the coil spring, is decreased.
Figure 1A shows a coil spring 100 in an uncompressed state from a side-view in accordance with an example embodiment.
Figure 1B shows the coil spring 100 as shown in Fig. 1A from a top-view in accordance with an example embodiment.
The coil spring or conical compression spring 100 includes a top portion 110 and a bottom portion 120. The top portion 110 includes three coils  and a top coil 115. The three coils are vertically stacked on top of each other and such that each of the three coils has a same or similar circular diameter. The bottom portion 120 includes multiple coils that form a truncated-cone shape in the side-view. A bottom coil or base coil 125 in the bottom portion functions as a base for the coil spring.
By way of example, the top portion is inelastic and has a straight cylindrical shape in a side-view of the top portion. The top portion has three concentric coils forming three circles with equal diameters. The three coils are vertically stacked and connected together such that no gap exists between the coils in the side-view. A circumference of a bottom surface of one coil engages a circumference of a top surface of another coil. In this configuration, a height of the top portion remains unchanged when the coil spring is fully compressed versus when the coil spring is fully uncompressed. This configuration of stacked coils shortens the electrical and thermal conduction path from the top coil to the base coil through the coil spring. For example, the electrical resistance of the coil spring is 8.04 milliohm when coils in the top portion are not in contact with each other. The resistance reduces from 8.04 milliohm to 7.40 milliohm when the coils in the top portion contact each other.
In one embodiment for example, the top portion 120 of the coil spring includes a top coil 115 that contacts the battery. The top coil extends more than one turn in a spiral shape in which an entirety of the more than one turn resides in a horizontal plane as seen from a top-view of the top portion as shown in Fig. 1B. The horizontal plane is a plane that is vertical to the central axis of the coil spring. As one example, the top coil winds around a center point in the horizontal plane at a decreasing distance from the center point to form an arc of at least 360 degrees, for  example, 540 degrees.
In an example embodiment, the bottom portion has a truncated-cone shape and a diameter larger than the top potion. The bottom portion is elastic and contributes to the motive force of the coil spring. The bottom portion has less than two turns, in which the bottom coil in the bottom portion extends less than one turn along a flat plane and functions as a base of the coil spring.
In an example embodiment, the coil spring is made by winding a conductive wire. The diameter of the conductive wire is one millimeter (mm) from a cross-sectional view of the conductive wire. The height of the coil spring in an uncompressed state is 6.0 mm to 7 mm. In an example embodiment, the height of the coil spring is 6.7 mm in which the top portion is 3 mm high and the bottom portion is 3.7 mm high. In another example, the height of the top portion is 2.8 mm –3.2 mm (hereinafter about 3 mm) and the height of the bottom portion is 3.5 mm –3.9 mm (hereinafter about 3.7mm) .
In one example embodiment, the top portion of the coil spring is mounted into a carrying cap, allowing the coil spring to be picked and positioned by industry standard SMT component placement systems or “pick-and-place machines” to automate and robotize the coil springs onto a base carrier.
Figure 2A shows a coil spring 200 in a collapsed state from a side-view in accordance with an example embodiment.
Figure 2B shows the coil spring 200 as shown in Fig. 2A from a top-view in accordance with an example embodiment.
The coil spring or conical compression spring 200 includes a top portion 210 and a bottom portion 220. The top portion 210 includes three coils that are vertically stacked on top of each other and a top coil 215. The bottom portion 220 includes multiple coils that are enclosed in a bottom coil or base coil 225.
By way of example, the top portion is inelastic and has a straight cylindrical shape in a side-view of the top portion. As such, a height of the top portion does not change or remains constant when the coil spring transitions between the compressed state and uncompressed state. The top portion has at least two concentric coils forming two circles with equal diameters in which the two coils are vertically stacked and connected together such that no gap exists between the coils in the side-view. A circumference of a bottom surface of one coil engages a circumference of a top surface of another coil. In the collapsed state, the top portion collapses inside the bottom portion.
In one embodiment for example, the top portion 220 of the coil spring includes a top coil 215 that contacts the battery. The top coil extends more than one turn in a spiral shape in which an entirety of the more than one turn resides in a flat plane as seen from a top-view of the top portion as shown in Fig. 2B. The flat plane is vertical to the central axis of the coil spring. As one example, the top coil winds along the flat plane for at least 360 degrees, for example, 500 degrees.
In an example embodiment, the bottom portion has less than two turns in total and the bottom coil extends less than one turn along a surface on a base carrier. The bottom coil is soldered to the base carrier and functions as the base of the coil spring. The bottom portion has a diameter larger  than the top potion such that the top portion collapses inside the bottom portion to contact the base carrier when the coil spring is compressed to a collapsed state. In this configuration, the contact area between the coil spring and the base carrier is larger in the collapsed state than in the uncompressed state.
Consider an example embodiment in which a plurality of battery cells are positioned in a side-by-side relationship such that each of the batteries is in electrical contact with a base carrier via a coil spring at a first terminal end and with a top cover at a second terminal end. The bottom coil of the coil spring is soldered to the base carrier to stabilize the coil spring. The top coil of the coil spring is in contact with the first terminal end of one of the battery cells. The upper part of the bottom portion of the coil spring, which extends from the bottom coil, is an elastic half-turn coil. The elastic half-turn coil does not contact the base carrier when the coil spring is in the uncompressed state, and contacts the base carrier when the coil spring is compressed to the collapsed state. The elastic half-turn coil, which has an flexible height, ensures an even connection across the battery cells, as battery cells may each have minor differences in height due to manufacturing tolerances.
In an example embodiment, the coil spring has a height in an uncompressed state as seen from the side-view that is at least 5.0 mm, and the height decreases, for example, by at least 1.8 mm in a compressed state.
By way of example, the height of the coil spring in an uncompressed state is 6.0 mm to 7 mm. In an example embodiment, the height of the coil spring is 6.7 mm in which the top portion is 3 mm high and the bottom  portion is 3.7 mm high. The height of the bottom portion decreases to 1.7 mm when the coil spring is compressed to the collapsed state. In another example, the height of the top portion is 2.8 mm –3.2 mm (hereinafter about 3 mm) . The height of the bottom portion is 3.5 mm –3.9 mm (hereinafter about 3.7mm) . The height of the bottom portion decreased to 1.5 mm –1.9 mm (hereinafter about 1.7mm) when the coil spring is compressed to the collapsed state. As one example, the height of the bottom portion as seen from the side-view reduces by 2.0 mm from an uncompressed state to the compressed state.
Figure 3A shows a cross sectional view 320A of a bottom portion of a coil spring in an uncompressed state in accordance with an example embodiment.
Figure 3B shows a cross sectional view 320B of a bottom portion of a coil spring in a collapsed state in accordance with an example embodiment.
Consider an example embodiment in which a coil spring is disposed on a base carrier. The bottom portion of the coil spring has more than one turn and less than two turns. The upper part of the bottom portion does not contact the base carrier when the coil spring is in an uncompressed state. A cross sectional view 320A of the bottom portion of an uncompressed coil spring long the base carrier is shown in Fig. 3A, which is less than one turn. The less than one turn is the lower part of the bottom portion which contacts the base carrier no matter the coil spring is in an uncompressed state or a collapsed state.
When the coil spring is compressed to the collapsed state, the height of the bottom portion of the coil spring decreases such that the upper part of  the bottom portion contacts the base carrier. For example, the height of the bottom portion decreases from about 3.7 mm to about 1.7 mm. A cross sectional view 320B of the bottom portion of a collapsed coil spring along the base carrier is shown in Fig. 3B. In the collapsed state, the bottom portion, which is more than one turn and less than two turns, collapses onto the base carrier. The bottom portion of the coil spring has a flexible height and allows an even connection across the battery cells.
Figure 4 shows a top coil 415 of a coil spring from a top-view in accordance with an example embodiment. The top coil 415 extends one and one-half turns along a flat plane as seen from a top-view of the top portion.
In one embodiment for example, the top coil contacts a battery terminal. The top coil extends more than one turn to form in a spiral shape in which an entirety of the more than one turn resides in a flat plane and contacts the battery terminal. As one example, the top coil winds around a center point in the horizontal plane at a decreasing distance from the center point to form an arc of at least 360 degrees, for example, 540 degrees. This configuration of the top coil maximizes the contact area between the coil spring and the battery terminal such that the contact resistance is decreased.
Figure 5 shows a side-view of two coil springs 530A and 530B connected with  batteries  510A and 510B, respectively. The coil springs are positioned between the batteries and a base carrier 520. Each coil spring includes a top coil (shown as 532A and 532B) and a bottom coil or a base coil (shown as 534A and 534B) . The top coil contacts the battery and the bottom coil contacts the base carrier.
By way of example, the coil spring compresses and pushes against the battery to electrically connect the battery with the base carrier and hold the battery in place. The coil spring is sandwiched between the battery and the base carrier and is compressed to a collapsed state, in which the top portion of the coil spring collapses inside the bottom portion and contacts the base carrier. In this configuration, the electrical path from the battery to the base carrier through the coil spring is shortened. The effective resistance of the coil spring, which is the path resistance from the battery to the base carrier through the coil spring, is decreased. For example, the effective resistance of the coil spring decreases by at least 8 percent when the coil spring is compressed from an uncompressed state, in which the coil spring is not compressed and has a free height, to a collapsed state, in which the top portion of the coil spring collapses inside the bottom portion and contacts the base carrier.
In one example embodiment, the contact area between the coil spring and the base carrier is larger in the collapsed state compared with the uncompressed state. In the collapsed state, the top portion of the coil spring collapses inside the bottom portion and contacts the base carrier. The larger contact area leads to a smaller contact resistance between the coil spring and the base carrier.
Consider an example embodiment in which a plurality of batteries are positioned in a side-by-side relationship in a battery assembly such that each of the batteries is in electrical contact with a base carrier via the coil spring at a first terminal end and with a top cover at a second terminal end. In this configuration, the coil springs compress and assist in supporting the batteries in the battery assembly and providing electrical contact between the batteries and the base carrier.
As used herein, a “battery assembly” is an assembly of two or more batteries or batteries cells that are configured in series, parallel, or a mixture of both to deliver a desired voltage, capacity, or power density.
As used herein, a “path resistance” is the resistance of a path from the beginning of the path to the end of the path.
As used herein, an “effective resistance” of the coil spring is an electrical path resistance through the coil spring.
As used herein, a “free height” is a height of an object when no external force is applied to the object.

Claims (20)

  1. A coil spring, comprising:
    a top portion with three coils that are vertically stacked on top of each other to have a straight cylindrical shape in a side-view of the top portion, connect together such that no gap exists between the three coils in the side-view, include a top coil that extends one and one-half turns along a flat plane as seen from a top-view of the top portion; and
    a bottom portion with multiple coils that form a truncated-cone shape in the side-view and that in a compressed state extends one and one-half turns along a flat plane as seen from a bottom-view of the bottom portion.
  2. The coil spring of claim 1, wherein the coil spring has a height in an uncompressed state as seen from the side-view that is from 6.0 millimeters (mm) to 7.0 mm, and the height decreases by 1.8 mm to 2.2 mm in the compressed state.
  3. The coil spring of claim 1, wherein a height of the bottom portion as seen from the side-view reduces by 2.0 millimeters from an uncompressed state to the compressed state.
  4. The coil spring of claim 1, wherein a height of the top portion as seen from the side-view is about 3.0 millimeters (mm) , and a height of the bottom portion as seen from the side-view is about 3.7 mm in an uncompressed state.
  5. The coil spring of claim 1, wherein a diameter of the three coils in the top portion is one millimeter (mm) as seen from a cross-sectional view of a coil, and a height of the three coils is 3.0 mm as seen from the  side-view.
  6. The coil spring of claim 1, wherein one of the three coils from the top portion resides in the flat plane as seen from the bottom-view of the bottom portion when the bottom portion is in the compressed state.
  7. The coil spring of claim 1, wherein an effective resistance of the coil spring decreases when the coil spring is compressed from an uncompressed state to the compressed state.
  8. A conical compression spring made by winding a conductive wire, comprising:
    a top portion having at least two coils forming two circles with equal diameters in which the two coils are vertically stacked such that a circumference of a bottom surface of one coil engages a circumference of a top surface of another coil, having a shape of a straight cylinder as seen from a side-view of the top portion, and having a top coil that extends more than one turn in a spiral shape in which an entirety of the more than one turn resides in a horizontal plane as seen from a top-view of the top portion; and
    a bottom portion having a shape of a truncated-cone in an uncompressed state as seen from the side-view, having a diameter larger than the top portion, having less than two turns, and collapsing into a horizontal plane when the bottom portion is compressed to a collapsed state.
  9. The conical compression spring of claim 8, wherein the top coil winds along the horizontal plane as seen from the top-view of the top portion for at least 500 degrees.
  10. The conical compression spring of claim 8, wherein the top portion is inelastic and includes three stacked coils that are concentric and contact each other such that a height of the top portion remains unchanged when the conical compression spring is fully compressed.
  11. The conical compression spring of claim 8, wherein a height of the top portion is at least 2.0 mm from the side-view.
  12. The conical compression spring of claim 8, wherein the bottom portion is elastic with a free height being at least two times greater than a height of the bottom portion when the bottom portion is compressed to the collapsed state.
  13. The conical compression spring of claim 8, wherein the conical compression spring has a height in the uncompressed state as seen from the side-view of at least 5.0 millimeters (mm) , and the height decreases from the uncompressed state to the collapsed state.
  14. The conical compression spring of claim 8, wherein a height of the bottom portion as seen from the side-view is at least 2.7 mm in the uncompressed state, and the height of the bottom portion decreases when the conical compression spring is compressed to the collapsed state.
  15. A coil spring, comprising:
    a bottom portion having a base coil that resides in a flat surface, having an active portion that extends less than one turn from the base coil, having a shape of a truncated-cone in an uncompressed state as seen from a side-view of the bottom portion, and collapsing into the flat surface when the bottom portion is compressed to a collapsed state; and
    an top portion having a diameter smaller than the bottom portion, having three coils that are vertically stacked on top of each other to have a straight cylindrical shape in a side-view of the top portion and that are connected together such that no gap exists between the three coils in the side-view, and having a top coil that extends more than one turn in a spiral shape in which an entirety of the more than one turn resides in a flat plane as seen from a top-view of the coil spring.
  16. The coil spring of claim 15, wherein the top coil winds along the flat plane as seen from the top-view of the coil spring for at least 360 degrees.
  17. The coil spring of claim 15, wherein the top portion includes three concentric coils vertically in contact with each other such that a height of the top portion remains at 3 millimeters when the coil spring is fully compressed.
  18. The coil spring of claim 15, wherein the active portion is elastic and extends less than one turn from the base coil to the top portion and has a free height of at least two times greater than a height of the bottom portion when the coil spring is compressed to the collapsed state.
  19. The coil spring of claim 15, wherein the active portion and the base coil reside in the flat surface to form a spiral shape on the flat plane with one and one-half turns as seen from a bottom view of the coil spring when the coil spring is compressed to the collapsed state.
  20. The coil spring of claim 15, wherein an effective resistance of the coil spring reduces by at least 8 percent when the coil spring is compressed from the uncompressed state to the collapsed state.
PCT/CN2016/106002 2015-11-17 2016-11-16 Coil spring WO2017084566A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680064782.2A CN108370003A (en) 2015-11-17 2016-11-16 Helical spring
EP16865743.5A EP3378110A4 (en) 2015-11-17 2016-11-16 Coil spring
US15/776,076 US20200256415A1 (en) 2015-11-17 2016-11-16 Coil spring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562256679P 2015-11-17 2015-11-17
US62/256,679 2015-11-17

Publications (1)

Publication Number Publication Date
WO2017084566A1 true WO2017084566A1 (en) 2017-05-26

Family

ID=58717360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106002 WO2017084566A1 (en) 2015-11-17 2016-11-16 Coil spring

Country Status (4)

Country Link
US (1) US20200256415A1 (en)
EP (1) EP3378110A4 (en)
CN (1) CN108370003A (en)
WO (1) WO2017084566A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113330228B (en) * 2019-02-04 2022-08-09 日东工器株式会社 Pipe joint with valve core and spiral spring used by same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458293A (en) * 1981-11-05 1984-07-03 Cherry Electrical Products Corporation Capacitive keyboard
CN1251219A (en) * 1997-03-26 2000-04-19 柯克音响有限公司 Cantact device,and tool for handling it
JP2004199957A (en) * 2002-12-17 2004-07-15 Sharp Corp Battery container
JP2012059533A (en) * 2010-09-08 2012-03-22 Sanyo Electric Co Ltd Portable type power supply device, in which cylindrical battery can be built
CN103022573A (en) * 2012-12-18 2013-04-03 河南创力新能源科技有限公司 Button battery

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US380651A (en) * 1888-04-03 waldoef
FR1512436A (en) * 1966-12-23 1968-02-09 Pressure tank
US4120489A (en) * 1970-06-22 1978-10-17 Bebrueder Ahle Double truncoconical spring of wire with circular cross section
US4111407A (en) * 1976-09-30 1978-09-05 Litton Industrial Products, Inc. Conical compression spring
US4733036A (en) * 1984-04-19 1988-03-22 Omron Tateisi Electronics Co. Coil spring for key switch
US4765365A (en) * 1987-08-10 1988-08-23 Masco Corporation Of Indiana Faucet spring
USD336600S (en) * 1990-11-20 1993-06-22 Aktiebolaget Electroulux Vibration isolator
US5507476A (en) * 1995-02-27 1996-04-16 Lin; Attain Shock-absorbing assembly for bicycle saddle
AUPN783596A0 (en) * 1996-02-02 1996-02-22 Di Stefano, Carmelo Joseph Licciardi Spring clutch
ATE273465T1 (en) * 1999-12-28 2004-08-15 Bosch Gmbh Robert ELASTIC RECOVERY WITH A FLUSH LAYER AND AN ELONGATED BODY WITH SUCH A
US20050023119A1 (en) * 2003-07-29 2005-02-03 Lu Yao Tsun Restorable conductive elastic connector
KR101098635B1 (en) * 2004-02-13 2011-12-23 큐알쥐 리미티드 Capacitive Sensor
US7090374B2 (en) * 2004-06-04 2006-08-15 James David Arthur Switch for portable light
DE102005008758A1 (en) * 2004-09-29 2006-04-13 BSH Bosch und Siemens Hausgeräte GmbH Capacitive proximity and / or touch switch
US20110148018A1 (en) * 2007-10-29 2011-06-23 Dreamwell, Ltd. Asymmetrical combined cylindrical and conical springs
US9161634B2 (en) * 2007-10-29 2015-10-20 Dreamwell, Ltd. Asymmetrical combined cylindrical and conical springs
US8919656B2 (en) * 2011-06-02 2014-12-30 Key Systems, Inc. Memory button mount
JP2014017142A (en) * 2012-07-10 2014-01-30 Toshiba Toko Meter Systems Co Ltd Spring terminal
USD802371S1 (en) * 2015-11-03 2017-11-14 VENCHI S.p.A. Display stand

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458293A (en) * 1981-11-05 1984-07-03 Cherry Electrical Products Corporation Capacitive keyboard
CN1251219A (en) * 1997-03-26 2000-04-19 柯克音响有限公司 Cantact device,and tool for handling it
JP2004199957A (en) * 2002-12-17 2004-07-15 Sharp Corp Battery container
JP2012059533A (en) * 2010-09-08 2012-03-22 Sanyo Electric Co Ltd Portable type power supply device, in which cylindrical battery can be built
CN103022573A (en) * 2012-12-18 2013-04-03 河南创力新能源科技有限公司 Button battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3378110A4 *

Also Published As

Publication number Publication date
US20200256415A1 (en) 2020-08-13
EP3378110A4 (en) 2019-06-19
EP3378110A1 (en) 2018-09-26
CN108370003A (en) 2018-08-03

Similar Documents

Publication Publication Date Title
US7201613B2 (en) Pressure contact holding-type connector
CN110352356B (en) Shunt resistor and current detection device using same
US20200136314A1 (en) Board to board connector
EP3836300A2 (en) Battery
CN105814712B (en) Secondary battery module
KR102434896B1 (en) Battery connector for series connection of batteries and battery pack including the same
US9476912B2 (en) Kelvin contact probe structure and a Kelvin inspection fixture provided with the same
US20210036475A1 (en) Lamp cap and lamp holder thereof
WO2017084566A1 (en) Coil spring
US10431782B2 (en) Battery pack
CN114374108B (en) Contact terminal, electric connector and electronic equipment
JP4659370B2 (en) Active part of the arrester
US9017859B2 (en) Secondary battery structure
CN115995722A (en) Floating electric connector and circuit connection structure
US11398664B2 (en) Battery and battery system
KR102695009B1 (en) Ultra capacitor and assembly for connecting the same
KR101111038B1 (en) Power semiconductor module with auxiliary connection
JP6055269B2 (en) Electrical equipment connection device
CN220731315U (en) Inductance structure and integrated circuit
CN109193222A (en) Electric connector
CN216213413U (en) Auxiliary contact assembly, ice ball thyristor and power semiconductor module
JP2012092723A (en) Ignition device for internal combustion engine
KR200332954Y1 (en) electrics Codenser Micro Phone Connector
KR101819230B1 (en) Connection Structure with High Voltage layer and Conductor in Solid Insulated Busbar Connection Part
CN103700492A (en) Quickly-mounted thin-film capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE