WO2017082264A1 - Gas analysis cell, and gas analysis system - Google Patents

Gas analysis cell, and gas analysis system Download PDF

Info

Publication number
WO2017082264A1
WO2017082264A1 PCT/JP2016/083145 JP2016083145W WO2017082264A1 WO 2017082264 A1 WO2017082264 A1 WO 2017082264A1 JP 2016083145 W JP2016083145 W JP 2016083145W WO 2017082264 A1 WO2017082264 A1 WO 2017082264A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas analysis
cell
unit
analysis
Prior art date
Application number
PCT/JP2016/083145
Other languages
French (fr)
Japanese (ja)
Inventor
永佑 小林
昌司 藤田
統基 宮下
紀彦 槌谷
千恵 大野
Original Assignee
株式会社島津製作所
株式会社イーシーフロンティア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所, 株式会社イーシーフロンティア filed Critical 株式会社島津製作所
Priority to JP2017550339A priority Critical patent/JP6611819B2/en
Priority to CN201680064835.0A priority patent/CN108352556B/en
Publication of WO2017082264A1 publication Critical patent/WO2017082264A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a gas analysis cell and a gas analysis system in which a pair of electrodes composed of a positive electrode and a negative electrode and a diaphragm disposed between the pair of electrodes are provided inside.
  • the gas generated on the positive electrode side and the negative electrode side of the battery is composed of different components, and the amount of generated gas is also different between the positive electrode side and the negative electrode side.
  • the gases generated on the positive electrode side and the negative electrode side are sent to the gas chromatograph without being separated from each other for analysis. For this reason, it has been impossible to accurately analyze the gas component and amount generated on the positive electrode side and the gas component and amount generated on the negative electrode side.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a gas analysis cell and a gas analysis system that can perform analysis with higher accuracy.
  • a cell for gas analysis includes a cell body, a pair of electrodes, a diaphragm, and a pair of collection parts.
  • the cell body has a measurement chamber inside.
  • the pair of electrodes includes a positive electrode and a negative electrode disposed in the measurement chamber.
  • the diaphragm is disposed between the pair of electrodes. In the pair of collecting portions, the gas generated on the positive electrode side with respect to the diaphragm and the gas generated on the negative electrode side with respect to the diaphragm are separately collected.
  • the gas generated on the positive electrode side with respect to the diaphragm and the gas generated on the negative electrode side with respect to the diaphragm are separately collected in a pair of collection parts,
  • the gas collected by each collection part can be analyzed individually. Therefore, the analysis can be performed with higher accuracy compared to the case where the gases generated on the positive electrode side and the negative electrode side are analyzed without being separated from each other.
  • the gas analysis cell may further include a pair of septums that respectively close the pair of collection parts.
  • a syringe is inserted into each collection unit via a pair of septums, and the syringe separates and collects the collected gas into each collection unit for analysis. It can be carried out. Therefore, intermittent analysis can be performed with higher accuracy.
  • the gas analysis cell may further include a pair of septum holders that are attached by pressing the pair of septums.
  • shielding gas may be supplied to the space in the septum holder.
  • a syringe is inserted into each collection unit via a pair of septums, and the syringe separates and collects the collected gas separately into each collection unit, and then the syringe.
  • external air can be prevented from entering the syringe. That is, even when the inside of the syringe is depressurized, the shielding gas supplied to the space in the septum holder enters the syringe instead of the outside air, so that the outside air enters the syringe. Can be prevented.
  • the pair of collecting portions may each be formed with an inlet for allowing carrier gas to flow into the collecting portion and an outlet for allowing carrier gas to flow out from the collecting portion.
  • the gas collected in the collection unit flows out from the outflow port together with the carrier gas flowing into the collection unit from the inflow port, it is continuously analyzed with higher accuracy by analyzing this gas. Analysis can be performed.
  • the outlet may be arranged on an extension line in the inflow direction of the carrier gas flowing in from the inlet.
  • the flow path configuration can be simplified.
  • the gas analysis cell may generate a stirring flow in the carrier gas flowing in from the inlet.
  • the gas analysis cell may further include a resistance member that generates a stirring flow by becoming a resistance of the carrier gas passing through the collection portion.
  • the carrier gas flowing in from the inlet is agitated in the collection part by receiving resistance from the resistance member.
  • the gas analysis cell may further include a gas supply channel, a gas discharge channel, a bypass channel, and a bypass switching unit.
  • the gas supply channel supplies a carrier gas to the inflow port.
  • the gas discharge channel discharges carrier gas from the outlet.
  • the bypass flow path connects the gas supply flow path and the gas discharge flow path without going through the collection unit.
  • the bypass switching unit switches whether the gas supply channel communicates with the collection unit or the bypass channel.
  • the gas supply channel can be communicated with either the collection unit or the bypass channel by the bypass switching unit. Therefore, by connecting the gas supply flow path to the bypass flow path, after exhausting the air in the gas supply flow path through the bypass flow path, the gas supply flow path is connected to the collection section, and the collection section A carrier gas can be supplied. Thereby, since it can prevent that the air in a gas supply flow path flows into a collection part and has a bad influence on an analysis, it can analyze more accurately.
  • the gas analysis cell may further include a reference electrode immersed in an electrolytic solution filled in the measurement chamber.
  • the potential measured between the reference electrode 20 and the positive electrode 7 and between the reference electrode 20 and the negative electrode 8 can be analyzed using the voltage measured by the reference electrode as a reference voltage.
  • the gas analysis cell may further include an electrode guide that is housed in the measurement chamber and holds one of the pair of electrodes therein.
  • the electrode guide may be formed with an opening communicating with one of the pair of collecting portions.
  • one of the pair of electrodes is held by the electrode guide, and gas generated in the electrode guide is guided to one of the pair of collecting portions through the opening.
  • the other of the pair of electrodes may be disposed in the measurement chamber outside the electrode guide.
  • the cell main body may be formed with a guide path for guiding the gas generated on the other electrode side to the other of the pair of collecting portions.
  • the gas generated on the other electrode side outside the electrode guide is well collected in the other collecting part via the guide path formed in the cell body, and thus more accurate. You can analyze well.
  • the gas analysis system includes the gas analysis cell and a gas analysis unit that analyzes the gas collected in at least one of the pair of collection units.
  • the gas analysis system does not include a first supply state in which a gas generated in the gas analysis cell is supplied to the gas analysis unit together with a carrier gas, or a gas generated in the gas analysis cell.
  • a supply switching unit that switches to one of the second supply states in which the carrier gas is supplied to the gas analysis unit may be further provided.
  • continuous analysis can be performed by directly supplying the gas generated in the gas analysis cell together with the carrier gas to the gas analysis unit in the first supply state. Therefore, compared to a configuration in which the gas generated in the gas analysis cell is injected into the gas analysis unit using a syringe, external air is less likely to enter the gas flow path. Thereby, since mixing of air can prevent an analysis result from being influenced, continuous analysis can be performed more accurately.
  • the gas generated in the gas analysis cell can be supplied to the gas analysis unit for analysis every interval while the supply switching unit is switched, the quantitative analysis of the gas generated at each interval can be performed accurately. It can be carried out.
  • gas analysis cell is attached to the supply switching unit in the second supply state, piping can be connected in a state where the gas analysis cell does not communicate with the gas analysis unit. As a result, it is not necessary to connect the gas analysis cell via a pipe communicating with the gas analysis unit, so that the installation work is facilitated.
  • a carrier gas is supplied to the gas analysis unit through the gas analysis cell, and in the second supply state, the carrier gas is supplied to the gas analysis unit without going through the gas analysis cell.
  • a carrier gas may be supplied.
  • the gas generated in the gas analysis cell is directly supplied from the gas analysis cell to the gas analysis unit. Therefore, it is possible to perform analysis with higher accuracy with a simple configuration.
  • the gas analysis system may further include a trap unit that accommodates the gas generated in the gas analysis cell.
  • a trap unit that accommodates the gas generated in the gas analysis cell.
  • a carrier gas is supplied to the gas analysis unit through the trap unit
  • a carrier gas is supplied to the gas analysis unit without going through the trap unit.
  • the gas generated in the gas analysis cell may be accommodated in the trap unit.
  • the gas generated in the gas analysis cell is stored in the trap portion, and then switched from the second supply state to the first supply state, it is stored in the trap portion.
  • Gas can be supplied to the gas analyzer together with the carrier gas. Therefore, if the gas can be supplied from the trap unit to the gas analysis unit as long as the gas can be accommodated in the trap unit more gas than in the gas analysis cell, the gas analysis unit This improves the detection sensitivity and enables more accurate analysis.
  • Another gas analysis cell includes a cell body, a pair of electrodes, a diaphragm, a cover member, a plurality of seal members, and a first gas supply channel.
  • the cell body has a measurement chamber inside.
  • the pair of electrodes includes a positive electrode and a negative electrode disposed in the measurement chamber.
  • the diaphragm is disposed between the pair of electrodes.
  • the cover member is attached to the cell body and closes the measurement chamber.
  • the plurality of seal members are provided between the cell main body and the cover member, and seal the measurement chamber.
  • the first gas supply channel supplies gas to a space formed between the plurality of seal members.
  • the gas analysis cell may further include a second gas supply channel for supplying a carrier gas into the cell body.
  • the first gas supply channel may supply the carrier gas to a space formed between the plurality of seal members.
  • the carrier gas supplied into the cell body is also supplied to the space formed between the plurality of seal members. Therefore, even when the gas supplied into the space enters the cell body, the gas does not adversely affect the analysis, so that the analysis can be performed with high accuracy.
  • the apparatus configuration since it is not necessary to prepare a gas different from the carrier gas, the apparatus configuration can be simplified.
  • the cell body has a pair of collections in which a gas generated on the positive electrode side with respect to the diaphragm and a gas generated on the negative electrode side with respect to the diaphragm are separately collected. May be provided.
  • the second gas supply channel may supply a carrier gas to at least one of the pair of collection parts.
  • the gas generated on the positive electrode side with respect to the diaphragm and the gas generated on the negative electrode side with respect to the diaphragm are separately collected in a pair of collection parts,
  • the gas collected by each collection part can be analyzed individually. Therefore, the analysis can be performed with higher accuracy compared to the case where the gases generated on the positive electrode side and the negative electrode side are analyzed without being separated from each other.
  • Another gas analysis system includes the gas analysis cell and a gas analysis unit that analyzes a gas generated in the cell body.
  • the gas analysis system does not include a first supply state in which a gas generated in the gas analysis cell is supplied to the gas analysis unit together with a carrier gas, or a gas generated in the gas analysis cell.
  • a supply switching unit that switches to one of the second supply states in which the carrier gas is supplied to the gas analysis unit may be further provided.
  • continuous analysis can be performed by directly supplying the gas generated in the gas analysis cell together with the carrier gas to the gas analysis unit in the first supply state. Therefore, compared to a configuration in which the gas generated in the gas analysis cell is injected into the gas analysis unit using a syringe, external air is less likely to enter the gas flow path. Thereby, since mixing of air can prevent an analysis result from being influenced, continuous analysis can be performed more accurately.
  • the gas generated in the gas analysis cell can be supplied to the gas analysis unit for analysis every interval while the supply switching unit is switched, the quantitative analysis of the gas generated at each interval can be performed accurately. It can be carried out.
  • gas analysis cell is attached to the supply switching unit in the second supply state, piping can be connected in a state where the gas analysis cell does not communicate with the gas analysis unit. As a result, it is not necessary to connect the gas analysis cell via a pipe communicating with the gas analysis unit, so that the installation work is facilitated.
  • a carrier gas is supplied to the gas analysis unit through the gas analysis cell, and in the second supply state, the carrier gas is supplied to the gas analysis unit without going through the gas analysis cell.
  • a carrier gas may be supplied.
  • the gas generated in the gas analysis cell is directly supplied from the gas analysis cell to the gas analysis unit. Therefore, it is possible to perform analysis with higher accuracy with a simple configuration.
  • the gas analysis system may further include a trap unit that accommodates gas generated in the gas analysis cell.
  • a trap unit that accommodates gas generated in the gas analysis cell.
  • a carrier gas is supplied to the gas analysis unit through the trap unit
  • a carrier gas is supplied to the gas analysis unit without going through the trap unit.
  • the gas generated in the gas analysis cell may be accommodated in the trap unit.
  • the gas generated in the gas analysis cell is stored in the trap portion, and then switched from the second supply state to the first supply state, it is stored in the trap portion.
  • Gas can be supplied to the gas analyzer together with the carrier gas. Therefore, if the gas can be supplied from the trap unit to the gas analysis unit as long as the gas can be accommodated in the trap unit more gas than in the gas analysis cell, the gas analysis unit This improves the detection sensitivity and enables more accurate analysis.
  • the gas collected in each collection part can be analyzed individually, compared with the case where the gas generated on the positive electrode side and the negative electrode side is analyzed without being separated from each other, Analysis can be performed with high accuracy.
  • FIG. 5A It is the perspective view which showed the structural example of the cell for gas analysis which concerns on one Embodiment of this invention. It is the perspective view which looked at the cell for gas analysis of FIG. 1 from the opposite side. It is a disassembled perspective view of the cell for gas analysis of FIG. It is sectional drawing when the cell for gas analysis of FIG. 1 is cut
  • FIG. 1 is a perspective view showing a configuration example of a gas analysis cell 1 according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the gas analysis cell 1 of FIG. 1 viewed from the opposite side.
  • FIG. 3 is an exploded perspective view of the gas analysis cell 1 of FIG. 4 is a cross-sectional view of the gas analysis cell 1 of FIG. 1 when cut in the horizontal direction.
  • FIG. 5A is a cross-sectional view of the gas analysis cell 1 of FIG. 1 when cut in the vertical direction.
  • 5B is a cross-sectional view when the gas analysis cell 1 of FIG. 1 is cut in the vertical direction, and shows a cross-section at a position different from the case of FIG. 5A.
  • the gas analysis cell 1 is for analyzing gas generated from a lithium ion battery which is an example of a secondary battery.
  • the same structure as that of the lithium ion battery is reproduced inside, thereby generating the same gas as that of the lithium ion battery, and the gas can be analyzed by a gas chromatograph or the like.
  • the cell 1 for gas analysis includes a cell body 2 and a plurality of cover members 3, 4, 5 attached to the cell body 2.
  • the cell main body 2 and the cover members 3, 4, 5 form a measurement chamber 6 sealed in the cell main body 2.
  • the guide 10, the first current collector 11, the second current collector 12, the separator gasket 13, the spring 14 and the like are accommodated (see FIG. 3).
  • 4, 5 ⁇ / b> A, and 5 ⁇ / b> B, the positive electrode 7, the negative electrode 8, the separator 9, and the like are omitted.
  • the cell body 2 and the electrode guide 10 are made of, for example, a peak (PEEK: polyetheretherketone), polyphenylene sulfide resin (PPS), fluororesin, or polypropylene (PP).
  • the material of the cell main body 2 and the electrode guide 10 is preferably a material that hardly absorbs moisture and has low gas permeability from the viewpoint of preventing deterioration due to generation of moisture and deterioration in analysis accuracy due to gas permeation. .
  • Each cover member 3, 4, 5, the 1st current collection part 11, the 2nd current collection part 12, and the spring 14 are formed, for example by stainless steel (SUS).
  • the cell body 2 is provided with a plurality of screw shafts 16 on the surface on which the cover members 3, 4, 5 are attached. The screw shafts 16 are inserted into the cover members 3, 4, 5, and the screws Each cover member 3, 4, 5 is fixed to the cell body 2 by tightening the nut 17 on the shaft 16.
  • the first current collector 11 is pressed toward the second current collector 12 by the cover member 3 via the spring 14, and the second current collector 12 is pressed toward the first current collector 11 by the cover member 4. Pressed.
  • the positive electrode 7, the negative electrode 8, and the separator 9 are sandwiched between the first current collector 11 and the second current collector 12.
  • Current collecting rods 18 and 19 made of, for example, stainless steel (SUS) are fixed to the cover members 3 and 4. Thereby, the current collecting rod 18 is electrically connected to the positive electrode 7 via the cover member 3, the spring 14 and the first current collecting portion 11, and the current collecting rod 19 is arranged via the cover member 4 and the second current collecting portion 12. Thus, it is electrically connected to the negative electrode 8.
  • the positive electrode 7 is made of, for example, lithium cobalt oxide.
  • the negative electrode 8 is made of, for example, graphite.
  • the gas analysis cell 1 including the positive electrode 7 and the negative electrode 8 is called a “full cell”.
  • the positive electrode 7 and the negative electrode 8 have, for example, a disk shape with an outer diameter of 34 mm, and are formed larger than the outer diameter of an actual lithium ion battery.
  • the separator 9 is a porous thin film having an outer diameter of 41 mm made of, for example, polypropylene and has a thickness of, for example, 24 ⁇ m.
  • the diaphragm disposed between the pair of electrodes 7 and 8 is not limited to the separator 9.
  • the positive electrode 7 and the negative electrode 8 need to be close to each other, and the distance is defined by the thickness of the diaphragm.
  • the said thickness of the separator 9 is only an example, and is not limited to this value.
  • the thickness of the diaphragm is preferably, for example, several hundred ⁇ m or less.
  • the materials of the positive electrode 7 and the negative electrode 8 are not limited to the above materials.
  • the positive electrode 7 includes lithium manganate (spinel structure), lithium iron phosphate (olivine structure), ternary system (NMC).
  • the negative electrode 8 may be formed of other materials such as hard carbon, titanate, Si, and Ge.
  • a cell for gas analysis in which one of the positive electrode 7 and the negative electrode 8 is formed of lithium is called a “half cell”, and the present invention can be applied to such a gas analysis cell.
  • electrolytes in lithium ion batteries include aqueous electrolytes, inorganic solid electrolytes, organic solid electrolytes, organic electrolytes (EC-EMC), organic electrolytes (EC-PC), ionic liquid electrolytes, and gels.
  • EC-EMC organic solid electrolytes
  • EC-PC organic electrolytes
  • ionic liquid electrolytes ionic liquid electrolytes
  • gels ionic liquid electrolytes
  • gas analysis cells that analyze gas generated from lithium ion batteries, lead storage batteries, nickel metal hydride batteries, NAS batteries, redox flow batteries, sodium ion batteries, metal-air batteries, lithium sulfur batteries, metal anode batteries
  • the present invention can also be applied to a gas analysis cell for analyzing gas generated from (calcium, magnesium, aluminum, etc.).
  • the constituent member of the nickel metal hydride battery include nickel oxyhydroxide for the positive electrode, hydrogen storage alloy and hydrogen for the negative electrode, and potassium hydroxide for the electrolyte.
  • the measurement chamber 6 is filled with an electrolytic solution made of, for example, an organic solvent, and the positive electrode 7, the negative electrode 8, and the separator 9 are immersed in the electrolytic solution.
  • an electrolytic solution made of, for example, an organic solvent
  • the positive electrode 7, the negative electrode 8, and the separator 9 are immersed in the electrolytic solution.
  • lithium ions are generated from the positive electrode 7, and the lithium ions pass through the separator 9 and move to the negative electrode 8 side.
  • lithium ions on the negative electrode 8 side pass through the separator 9 and move to the positive electrode 7 side.
  • the gas When gas is generated from each of the electrodes 7 and 8 while the pair of electrodes 7 and 8 is energized, the gas is captured by the pair of collecting portions 21 and 22 formed in the cell body 2. Be collected. Specifically, the gas generated on the positive electrode 7 side with respect to the separator 9 is collected by the collection unit 21, and the gas generated on the negative electrode 8 side with respect to the separator 9 is collected by the collection unit 22. It has become. In the present embodiment, as described above, the generated gas can be separated into different collectors 21 and 22 while arranging the positive electrode 7 and the negative electrode 8 at a very short distance.
  • a reference electrode 20 may be provided in the cell body 2 as indicated by a broken line in FIG. 5B.
  • the reference electrode 20 is made of, for example, lithium, which is the same material as the positive electrode 7, and is immersed in the electrolytic solution filled in the measurement chamber 6 by being inserted into the collection unit 21.
  • the material of the reference electrode 20 is not limited to lithium, and may be other materials. If the reference electrode 20 is used, the potential measured between the reference electrode 20 and the positive electrode 7 and between the reference electrode 20 and the negative electrode 8 can be analyzed using the voltage measured by the reference electrode 20 as a reference voltage. .
  • the first current collector 11 is formed in a cylindrical shape.
  • the end surface on the positive electrode 7 side in the first current collector 11 is a flat surface, and the entire flat surface is in contact with the positive electrode 7.
  • a concave portion 111 for accommodating the spring 14 is formed on the end surface of the first current collector 11 opposite to the positive electrode 7 side, and the spring 14 is accommodated in the concave portion 111 in the state where the spring 14 is accommodated.
  • the first current collector 11 is pressed by the cover member 3 via the spring 14.
  • the electrode guide 10 is formed in a cylindrical shape.
  • the inner diameter of the electrode guide 10 is substantially the same as the outer diameter of the first current collector 11, and is arranged in the measurement chamber 6 with the first current collector 11 being inserted into the electrode guide 10.
  • the positive electrode 7 is held in a state of being disposed inside the electrode guide 10.
  • a plurality of openings 15 are formed in the peripheral surface of the electrode guide 10, and these openings 15 communicate with the collection portion 21. Therefore, the gas generated on the positive electrode 7 side with respect to the separator 9 is guided to the collection unit 21 through the opening 15. As a result, the gas generated on the positive electrode 7 side is well collected from the electrode guide 10 through the opening 15 to the collection unit 21.
  • the second current collecting part 12 is configured by integrally forming a small diameter part 121 and a large diameter part 122 formed in a columnar shape on the same axis.
  • the end surface of the small diameter portion 121 opposite to the large diameter portion 122 is a flat surface, and the entire flat surface is in contact with the negative electrode 8 disposed in the measurement chamber 6 outside the electrode guide 10.
  • an arc-shaped recess is formed in a portion facing the small diameter portion 121, and this recess provides a guide path 23 that guides the gas generated on the negative electrode 8 side to the collection portion 22. It is composed. That is, the gas generated on the negative electrode 8 side with respect to the separator 9 is guided to the collection unit 22 via the guide path 23. Thereby, the gas generated on the negative electrode 8 side outside the electrode guide 10 is favorably collected by the collection part 22 through the guide path 23 formed in the cell body 2.
  • the gas generated on the positive electrode 7 side with respect to the separator 9 and the gas generated on the negative electrode 8 side with respect to the separator 9 are separated into a pair of collecting portions 21, Therefore, the gas collected in each of the collection units 21 and 22 can be analyzed individually. Therefore, the analysis can be performed with higher accuracy compared to the case where the gas generated on the positive electrode 7 side and the negative electrode 8 side is analyzed without being separated from each other.
  • a pair of septum holders 31 and 32 made of, for example, stainless steel (SUS) are attached to the cover member 5.
  • Each of the septum holders 31 and 32 is formed in a cylindrical shape, and is attached to the cover member 5 so as to press the disc-shaped septums 33 and 34 at the lower end surfaces thereof (see FIGS. 5A and 5B).
  • One septum holder 31 is opposed to the collecting portion 21 that collects the gas generated on the positive electrode 7 side with a septum 33 interposed therebetween.
  • the other septum holder 32 is opposed to the collecting portion 22 that collects the gas generated on the negative electrode 8 side with the septum 34 interposed therebetween.
  • the pair of collection parts 21 and 22 are closed by the pair of septa 33 and 34, respectively.
  • the septums 33 and 34 are made of, for example, polytetrafluoroethylene (PTFE) or butyl rubber.
  • PTFE polytetrafluoroethylene
  • a syringe (not shown) was inserted into each collection part 21 and 22 via a pair of septums 33 and 34, and it was separated and collected by each collection part 21 and 22 with the syringe.
  • Analysis can be performed by individually sucking gas. Such intermittent analysis may be performed by manually operating the syringe, or may be performed by automatically controlling the syringe.
  • a carrier gas is supplied to each of the collection units 21 and 22, and the gas generated in the cell body 2 is collected together with the carrier gas to each of the collection units.
  • This gas can be analyzed (continuous analysis) by letting it flow out from 21 and 22. Therefore, in each collection part 21 and 22, the inflow ports 211 and 221 into which the carrier gas flows into the collection parts 21 and 22 and the outflow ports 212 and 222 through which the carrier gas flows out from the collection parts 21 and 22 Are formed (see FIG. 3).
  • the connectors 213 and 223 are attached to the inlets 211 and 221, respectively.
  • connectors 214 and 224 are attached to the outlets 212 and 222, respectively.
  • Three-way valves 215, 216, 225, and 226 are connected to the connectors 213, 214, 223, and 224 through pipes, respectively (see FIGS. 1 and 2).
  • FIG. 6 is a schematic plan view for explaining the operation of the three-way valves 215, 216, 225, and 226.
  • Gas supply passages (second gas supply passages) 217 and 227 for supplying a carrier gas to the respective inlets 211 and 221 are connected to the three-way valves 215 and 225 communicating with the respective inlets 211 and 221.
  • gas discharge passages 218 and 228 for discharging carrier gas from the respective outlets 212 and 222 are connected to the three-way valves 216 and 226 communicating with the respective outlets 212 and 222.
  • a bypass flow path 219 is connected to a pair of three-way valves 215 and 216 that communicate with one collection unit 21. Therefore, the gas supply channel 217 can be communicated with either the collection unit 21 or the bypass channel 219 by switching the three-way valves 215 and 216 constituting the bypass switching unit.
  • a bypass channel 229 is connected to a pair of three-way valves 225 and 226 that communicate with the other collection unit 22. Therefore, the gas supply channel 227 can be communicated with either the collection unit 22 or the bypass channel 229 by switching the three-way valves 225 and 226 constituting the bypass switching unit.
  • the air in the gas supply flow paths 217 and 227 is discharged through the bypass flow paths 219 and 229, and then the gas supply flow paths
  • the carrier gas can be supplied to the collecting units 21 and 22 by connecting the 217 and 227 to the collecting units 21 and 22.
  • the bypass switching unit is configured to be able to switch between the gas supply channels 217 and 227 and the collection units 21 and 22 or the bypass channels 219 and 229
  • the three-way valve 215 It is not limited to 216, 225, 226, and may be composed of other parts.
  • the outflow port 212 is arranged on the extended line in the inflow direction D of the carrier gas flowing in from the inflow port 211.
  • the inflow port 211 and the outflow port 212 are arrange
  • the outflow port 222 is disposed on an extension line in the inflow direction of the carrier gas flowing in from the inflow port 221.
  • a resistance member is provided in the middle of the extension line in the inflow direction D of the carrier gas from the inflow port 211.
  • the resistance member becomes the resistance of the carrier gas passing through the collection portion 21.
  • the carrier gas flowing in from the inflow port 211 is stirred in the collection unit 21 by receiving resistance from the resistance member.
  • FIGS. 7A and 7B are diagrams showing an example of a change in the detection voltage of the generated hydrogen gas when a continuous analysis is performed in a state where there is no resistance member in the collection unit 21.
  • FIG. 8A and 8B are diagrams showing an example of a change in the detection voltage of the generated hydrogen gas when a continuous analysis is performed in a state where there is a resistance member in the collection unit 21.
  • hydrogen gas is generated on the positive electrode 7 side, and the hydrogen gas is collected in the collecting unit 21 and flows out together with the carrier gas from the outlet 212, so that it is continuously detected by the detector. explain.
  • the flow rate of the carrier gas (helium) flowing into the collection unit 21 from the inlet 211 is 5 ml / min.
  • the flow velocity of the carrier gas (helium) flowing into the collection unit 21 from the inlet 211 is 10 ml / min.
  • the flow rate of the carrier gas (helium) flowing into the collection part 21 from the inlet 211 is 5 ml / min.
  • the flow rate of the carrier gas (helium) flowing into the collection unit 21 from the inflow port 211 is 10 ml / min.
  • the detection voltage is not stable when the flow rate of the carrier gas is relatively slow (for example, 5 ml / min) in the state where the collecting member 21 has a resistance member.
  • the detection voltage is stable.
  • the carrier gas can be brought into good contact with the resistance member to generate a stirring flow. Since the gas collected in the collection part 21 can be stirred uniformly by generating the stirring flow, a stable analysis result can be obtained.
  • the constant value is preferably 7.5 ml / min or more, for example, and more preferably 10 ml / min or more.
  • the flow rate of the carrier gas flowing into the collection unit 21 from the viewpoint of preventing the concentration of the gas collected in the collection unit 21 from becoming too low. Is preferably about 5 ml / min.
  • the resistance member is provided in the collection unit 21, and then the flow rate of the carrier gas flowing into the collection unit 21 is set to a higher flow rate than that at the time of normal analysis.
  • the collected gas can be stirred uniformly.
  • the resistance member can be substituted by the reference electrode 20, for example.
  • the resistance member may be composed of other members instead of the reference electrode 20.
  • the resistance member reference electrode 20
  • the resistance member is provided only in the middle of the extension line of the carrier gas inflow direction D from the inflow port 211, but the extension of the inflow direction of the carrier gas from the inflow port 221.
  • a resistance member may be provided in the middle of the line.
  • the central portion of the collecting part 21 is preferably arranged. However, as shown in FIG. 6, even when the reference electrode 20 is arranged at a position shifted from the central part of the collecting part 21, it is possible to perform sufficiently accurate analysis.
  • FIG. 9 is a diagram showing an example of changes in current when charging and discharging are performed by changing the potential of the positive electrode 7 with respect to the potential of the reference electrode 20 (that is, cyclic voltammetry).
  • 1M LiPF6 EC-DEC 1: 1
  • the reference electrode 20 is disposed at a position shifted from the central portion of the collection portion 21.
  • the peak potential during charging is preferably 4.0 to 4.1 V
  • during discharge (reduction side) Is preferably 3.8 to 3.9V.
  • the peak potential V1 during charging is 4.0 to 4.1 V. Since the peak potential at the time of discharge is in the range of 3.8 to 3.9 V, it can be understood that sufficiently accurate analysis can be performed. Note that, in this example, experimental results when the gas analysis cell is a half cell are shown, but it is considered that the same result can be obtained with a full cell gas analysis cell.
  • seal members 41 and 42 are provided between the cell body 2 and the cover members 3 and 4.
  • the seal member 41 is constituted by an annular O-ring formed by perflo, for example.
  • the seal member 42 is made of, for example, butyl rubber, and is formed of an annular O-ring whose outer periphery is longer than that of the seal member 41.
  • seal members 43, 44, and 45 are provided between the cell body 2 and the cover member 5.
  • the seal members 43 and 44 are annular O-rings formed by, for example, perfloation, and the outer periphery of the seal member 44 is longer than the seal member 43.
  • the seal member 45 is made of, for example, butyl rubber, and includes an annular O-ring having a longer outer periphery than the seal member 44.
  • the measurement chamber 6 is sealed by the seal members 41 to 45. Since a plurality of seal members 41 to 45 are provided between the cell main body 2 and the cover members 3, 4, 5, the air tightness of the measurement chamber 6 is improved and it is difficult for outside air to enter the cell main body 2. can do.
  • the number of seal members provided between the cell body 2 and the cover members 3 and 4 is not limited to two, and may be three or more.
  • the number of seal members provided between the cell main body 2 and the cover member 5 is not limited to three, and may be two or four or more.
  • the shape and material of the seal member are not limited to those described above, but may be other shapes and materials.
  • gas is supplied to the space formed between the plurality of seal members 41 to 45 in each cover member 3, 4, 5.
  • two connectors 46 and 47 are attached to the cover member 3, and gas flowing from one connector 46 via the pipe 61 is covered with the cover member 3. After passing through the annular space between the seal member 41 on the third side and the seal member 42, it flows out from the other connector 47.
  • Two connectors 48 and 49 are attached to the cover member 5, and the connector 48 is connected to the connector 47 via a pipe 62. Thereby, the gas flowing out from the connector 47 flows into the connector 48, passes through the annular space between the seal member 44 and the seal member 45, and then flows out from the other connector 49.
  • Two connectors 50 and 51 are attached to the cover member 4, and the connector 50 is connected to the connector 49 via a pipe 63. Thereby, the gas flowing out from the connector 49 flows into the connector 50, passes through the annular space between the sealing member 41 and the sealing member 42 on the cover member 4 side, and then flows out from the other connector 51.
  • the connector 51 is connected to a T-shaped tube 52 via a pipe 64, and this T-shaped tube 52 is further connected to connectors 53 and 54 via pipes 65 and 66.
  • the connectors 53 and 54 are attached to the septum holders 31 and 32, respectively.
  • the gas flowing out from the connector 51 flows into the septum holders 31 and 32 through the T-shaped tube 52 and the connectors 53 and 54, and is discharged to the outside through the space in the septum holders 31 and 32.
  • the gas flowing into the septum holders 31 and 32 via the connectors 53 and 54 is blocked by the septums 33 and 34, thereby being collected in the collection units 21 and 22. Without flowing in, it is discharged to the outside of the septum holders 31 and 32 through the insertion hole of the syringe.
  • the pipes 61, 62, and 63 constitute a gas supply channel (first gas supply channel) that supplies gas to the space formed between the plurality of seal members 41 to 45. Since gas is supplied from the pipes 61, 62, and 63 to the space formed between the plurality of seal members 41 to 45, even if external air flows in, it can be thinned and expelled to the outside. It is. Therefore, it is possible to effectively suppress external air from entering the cell body 2.
  • the gas supplied from the pipe 61 and flowing sequentially to the pipes 62, 63, 64, 65, 66 is the same carrier gas as the carrier gas supplied from the gas supply passages 217, 227 to the collection units 21, 22. Also good.
  • the carrier gas supplied from a gas supply unit (not shown) may be branched in the middle and guided to the pipe 61.
  • the carrier gas supplied into the cell body 2 is also supplied to the space formed between the plurality of seal members 41 to 45, the gas supplied into the space is used. Even when the gas enters the cell body 2, the gas does not adversely affect the analysis, so that the analysis can be performed with high accuracy.
  • the apparatus configuration can be simplified.
  • FIG. 10A is a diagram showing a change in charge / discharge capacity when charge / discharge is repeated without supplying gas to a space formed between the plurality of seal members 41 to 45.
  • 10B and 10C are diagrams showing changes in charge / discharge capacity when charge / discharge is repeated while supplying gas to a space formed between the plurality of seal members 41 to 45.
  • FIG. 10C shows the case where the gas flow rate is 50 ml / min.
  • the capacities at the second charge (S21) and the discharge (S22) are reduced with respect to the capacities at the first charge (S11) and discharge (S12), respectively.
  • the capacity at the time of the third charge (S31) and the discharge (S32) is further reduced, and the capacity at the time of the fourth charge (S41) and the discharge (S42) is further reduced.
  • the electrode (positive electrode 7 or negative electrode 8) deteriorates due to the influence of moisture contained in the external air that enters the cell body 2, so that the charging / discharging capacity gradually decreases.
  • the gas is supplied to the space formed between the plurality of seal members 41 to 45, as shown in FIG. 10B and FIG. 10C, the reduction amount of the charge / discharge capacity becomes small. It can be seen that the outside air can be effectively suppressed from entering.
  • FIG. 11 is a diagram showing a change with time of the oxygen concentration contained in the gas in the cell body 2.
  • the detection intensity of oxygen detected from the gas in the cell main body 2 when the cell main body 2 is sealed for one day is shown in association with the passage of time.
  • the change in the oxygen concentration indicated by the straight line L1 in FIG. 11 is a measurement result when gas is not supplied to the space formed between the plurality of seal members 41 to 45.
  • the change in oxygen concentration indicated by the straight lines L2 and L3 in FIG. 11 is a measurement result when gas is supplied to the space formed between the plurality of seal members 41 to 45, and the straight line L2 indicates the flow velocity of the gas. Is 10 ml / min, the straight line L3 indicates the case where the gas flow rate is 50 ml / min.
  • the oxygen concentration tends to increase when the gas is not supplied (straight line L1), whereas the oxygen concentration hardly increases when the gas is supplied (straight lines L2 and L3). It can be seen that external air can be effectively prevented from entering the main body 2. It can also be seen that the higher the gas flow rate, the more difficult it is for outside air to enter the cell body 2.
  • FIG. 12 is a diagram for explaining the difference in the amount of oxygen flowing into the syringe depending on whether or not the shielding gas is allowed to flow into the septum holders 31 and 32 via the connectors 53 and 54.
  • the shielding gas is, for example, a carrier gas or a purge gas, but is preferably a carrier gas from the viewpoint of piping routing.
  • the syringes are passed through the septums 33 and 34 through the septum holders 31 and 32 and the gas in the collection parts 21 and 22 is collected, the amount of collected gas and the oxygen concentration in the collected gas The relationship with the measurement result is shown.
  • a syringe is inserted into each of the collection units 21 and 22 via the septums 33 and 34, and the collected gas is separated into the collection units 21 and 22 individually by the syringe, and then the syringe is inserted into the septum.
  • the inside of a syringe will be in the pressure-reduced state. That is, with respect to a small amount (approximately several ⁇ l) of gas collected in each of the collection units 21 and 22, the amount of gas collected into the syringe is increased, thereby reducing the pressure inside the syringe.
  • the surrounding gas is sucked into the syringe from the tip of the syringe located in the septum holders 31 and 32.
  • the amount of gas sucked into the syringe increases as the amount of gas collected into the syringe increases.
  • shielding gas helium
  • the shielding gas supplied to the space inside the septum holders 31 and 32 enters the syringe instead of the outside air. Intrusion can be prevented.
  • FIGS. 13A and 13B are flow charts showing a configuration example of a gas analysis system according to the first embodiment of the present invention.
  • the gas analysis system includes the gas analysis cell 1 as described above and a gas analysis unit 100 that analyzes the gas generated in the cell body 2 of the gas analysis cell 1.
  • This gas analysis system is for performing continuous analysis using the gas analysis cell 1, and the gas collected in at least one of the pair of collection units 21 and 22 is guided to the gas analysis unit 100. . That is, at least one of the gas in the collection unit 21 discharged from the gas discharge channel 218 and the gas in the collection unit 22 discharged from the gas discharge channel 228 shown in FIG. It becomes the analysis object by.
  • the gas collected by the collection unit 21 and the gas collected by the collection unit 22 are guided to different gas analysis units 100 and analyzed. 13A and 13B, a case where the gas collected by one of the collection unit 21 or the collection unit 22 is analyzed by the gas analysis unit 100 will be described.
  • the gas analysis unit 100 includes a flow controller 101, a sample introduction unit 102, a column 103, a detector 104, and the like.
  • helium is used as the carrier gas.
  • a flow controller 101 controls the flow rate of the carrier gas supplied from a gas supply unit (not shown).
  • the carrier gas supplied from the flow controller 101 to the cell 1 for gas analysis is guided to the sample introduction unit 102 together with the gas generated in the cell body 2 and is introduced from the sample introduction unit 102 to the column 103.
  • Components contained in the gas introduced into the column 103 are separated in the process of passing through the column 103, and each separated component is detected by the detector 104.
  • the detector 104 for example, a barrier discharge ionization detector (BID) or a pulse discharge ionization detector (PDD) is used. Thereby, analysis can be performed with higher accuracy using a barrier discharge ionization detector or a pulse discharge ionization detector with high detection sensitivity.
  • the gas generated from the positive electrode 7 and the negative electrode 8 used in batteries includes hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide, methane, etc., and is used for barrier discharge ionization detectors and pulse discharges.
  • the ionization detector has high detection sensitivity for these gases, but cannot detect helium. Therefore, if helium is used as the carrier gas and the gas generated in the gas analysis cell 1 is detected by the barrier discharge ionization detector or the pulse discharge ionization detector, the gas analysis is not affected by the component of the carrier gas.
  • a wide variety of gases generated in the working cell 1 can be analyzed with high accuracy.
  • the detector 104 is not limited to these, and may be another detector such as a thermal conductivity detector (TCD) or a flame ionization detector (FID).
  • TCD thermal conductivity detector
  • FID flame ionization detector
  • Thermal conductivity detectors are insensitive to all components of hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide and methane
  • flame ionization detectors are sensitive to methane
  • Oxygen, nitrogen, carbon monoxide, and carbon dioxide are insensitive
  • barrier discharge ionization detectors and pulsed discharge ionization that are sensitive to all components of hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide, and methane
  • a detector is more suitable as the detector 104 in this embodiment.
  • the gas analysis cell 1 is connected between the flow controller 101 and the sample introduction unit 102 via a six-way valve 105 as a supply switching unit. Specifically, among the six ports 151 to 156 provided in the six-way valve 105, the flow controller 101 is connected to the first port 151, and the sample introduction unit 102 is connected to the second port 152. In the gas analysis cell 1, the gas supply channels 217 and 227 are connected to the third port 153, and the gas discharge channels 218 and 228 are connected to the fourth port 154. A flow controller 106 different from the flow controller 101 of the gas analyzer 100 is connected to the fifth port 155, and the sixth port 156 is an exhaust port. The same carrier gas (for example, helium) as the flow controller 101 is supplied from the flow controller 106.
  • the same carrier gas for example, helium
  • the first port 151 and the second port 152 are in communication. Therefore, the carrier gas supplied from the flow controller 101 is sent to the sample introduction unit 102 without passing through the gas analysis cell 1, and is supplied from the sample introduction unit 102 to the column 103. In this state, the gas generated in the gas analysis cell 1 is not introduced into the column 103 and only the carrier gas is supplied to the column 103.
  • the third port 153 and the fifth port 155 communicate with each other, and the fourth port 154 and the sixth port 156 communicate with each other. Therefore, the carrier gas supplied from the flow controller 106 is supplied into the gas analysis cell 1 through the fifth port 155 and the third port 153, and together with the gas generated in the cell body 2, the fourth port 154 and It is discharged to the outside through the sixth port 156.
  • the six-way valve 105 is rotated to a state as shown in FIG. 13B
  • the first port 151 and the third port 153 communicate with each other
  • the second port 152 and the fourth port 154 communicate with each other.
  • the carrier gas from the flow controller 101 is supplied into the gas analysis cell 1 and introduced into the column 103 from the sample introduction unit 102 together with the gas generated in the cell body 2.
  • the fifth port 155 and the sixth port 156 communicate with each other, and the carrier gas from the flow controller 106 is discharged to the outside as it is.
  • the state shown in FIG. 13B is a first supply state in which the carrier gas is supplied to the gas analysis unit 100 via the gas analysis cell 1.
  • the state shown in FIG. 13A is a second supply state in which the carrier gas is supplied to the gas analysis unit 100 without passing through the gas analysis cell 1.
  • the six-way valve 105 is alternately switched between the first supply state and the second supply state by rotating at a predetermined interval of, for example, about 5 to 40 minutes.
  • the gas generated in the gas analysis cell 1 is supplied together with the carrier gas to the gas analysis unit 100 by the six-way valve 105 (see FIG. 13B), or in the gas analysis cell 1 It is possible to switch to one of the second supply states (see FIG. 13A) in which the carrier gas not containing the generated gas is supplied to the gas analysis unit 100.
  • the first supply state continuous analysis can be performed by directly supplying the gas generated in the gas analysis cell 1 to the gas analysis unit 100 together with the carrier gas. Therefore, compared with a configuration in which the gas generated in the gas analysis cell 1 is injected into the gas analysis unit 100 using a syringe, external air is less likely to enter the gas flow path. Thereby, since mixing of air can prevent an analysis result from being influenced, continuous analysis can be performed more accurately.
  • the gas generated in the gas analysis cell 1 can be supplied to the gas analysis unit 100 for analysis every interval while the hexagonal valve 105 is switched, the quantitative analysis of the gas generated in each interval can be performed. Can be done accurately.
  • the piping can be connected in a state where the gas analysis cell 1 does not communicate with the gas analysis unit 100. This eliminates the need to connect the gas analysis cell 1 to the gas analysis cell 1 by connecting a pipe communicating with the gas analysis unit 100, thereby facilitating the installation work.
  • the gas generated in the gas analysis cell 1 is directly supplied from the gas analysis cell 1 to the gas analysis unit 100. Therefore, it is possible to perform analysis with higher accuracy with a simple configuration.
  • the supply switching unit is not limited to the six-way valve 105, and may be configured by other valves.
  • the gas analysis cell 1 and the hexagonal valve 105 can be adjusted to a relatively high temperature of, for example, room temperature to 90 ° C., more preferably about 80 ° C. Thereby, a strict durability check is possible.
  • the temperature control temperature is set to an appropriate value according to the boiling point of the electrolytic solution in the gas analysis cell 1.
  • FIGS. 14A and 14B are flow charts showing a configuration example of a gas analysis system according to a second embodiment of the present invention.
  • This gas analysis system is for performing continuous analysis using the gas analysis cell 1 as in the first embodiment, and in the gas analysis cell 1 and the cell body 2 of the gas analysis cell 1.
  • a gas analyzer 100 for analyzing the generated gas. Since the configuration of the gas analysis unit 100 is the same as that of the first embodiment, the same reference numerals are given to the same configurations, and detailed description thereof is omitted.
  • the gas collected in at least one of the pair of collection units 21 and 22 is guided to the gas analysis unit 100 as in the first embodiment. That is, at least one of the gas in the collection unit 21 discharged from the gas discharge channel 218 and the gas in the collection unit 22 discharged from the gas discharge channel 228 shown in FIG. It becomes the analysis object by.
  • the gas collected by the collection unit 21 and the gas collected by the collection unit 22 are guided to different gas analysis units 100 and analyzed. 14A and 14B, a case where the gas collected by one of the collection unit 21 or the collection unit 22 is analyzed by the gas analysis unit 100 will be described.
  • the gas analysis cell 1 and the trap unit (buffer unit) 107 are connected between the flow controller 101 and the sample introduction unit 102 via a six-way valve 105 as a supply switching unit.
  • the trap unit 107 is a so-called sample tube, and is a hollow member having a buffer region larger than the internal volume of the gas analysis cell 1 inside.
  • the flow controller 106 is connected to the first port 151 among the six ports 151 to 156 provided in the hexagonal valve 105, and the gas analysis cell 1 is interposed between the flow controller 106 and the first port 151.
  • the gas supply channels 217 and 227 of the gas analysis cell 1 are connected to the flow controller 106, and the gas discharge channels 218 and 228 are connected to the first port 151.
  • the second port 152 and the fifth port 155 are connected, and the trap unit 107 is interposed between the second port 152 and the fifth port 155.
  • the sixth port 156 is connected to the flow controller 101, and the fourth port 154 is connected to the sample introduction unit 102.
  • the third port 153 is an exhaust port.
  • the same carrier gas for example, helium
  • the fourth port 154 and the sixth port 156 are in communication. Therefore, the carrier gas supplied from the flow controller 101 is sent to the sample introduction unit 102 without passing through the trap unit 107, and is supplied from the sample introduction unit 102 to the column 103. In this state, the gas generated in the gas analysis cell 1 is not introduced into the column 103 and only the carrier gas is supplied to the column 103.
  • the first port 151 and the second port 152 communicate with each other, and the third port 153 and the fifth port 155 communicate with each other. Therefore, the carrier gas supplied from the flow controller 106 is supplied into the gas analysis cell 1 and passes through the trap unit 107 via the first port 151 and the second port 152 together with the gas generated in the cell body 2. After that, it is discharged to the outside through the fifth port 155 and the third port 153. Thereby, the gas generated in the cell body 2 is accommodated in the trap portion 107.
  • the carrier gas from the flow controller 101 is supplied into the trap unit 107 and introduced into the column 103 from the sample introduction unit 102 together with the gas in the trap unit 107.
  • the first port 151 and the third port 153 communicate with each other, and the carrier gas from the flow controller 106 is directly discharged to the outside through the gas analysis cell 1.
  • the state shown in FIG. 14B is a first supply state in which the carrier gas is supplied to the gas analysis unit 100 via the trap unit 107.
  • the state shown in FIG. 14A is a second supply state in which the carrier gas is supplied to the gas analysis unit 100 without using the trap unit 107.
  • the six-way valve 105 is alternately switched between the first supply state and the second supply state by rotating at a predetermined interval of, for example, about 5 to 40 minutes.
  • a first supply state in which the gas generated in the gas analysis cell 1 and accommodated in the trap unit 107 is supplied to the gas analysis unit 100 together with the carrier gas by the hexagonal valve 105 (see FIG. 14B), or It is possible to switch to any one of the second supply states (see FIG. 14A) in which the carrier gas not containing the gas generated in the gas analysis cell 1 is supplied to the gas analyzer 100.
  • continuous analysis can be performed by directly supplying the gas generated in the gas analysis cell 1 and accommodated in the trap unit 107 to the gas analysis unit 100 together with the carrier gas.
  • the gas generated in the gas analysis cell 1 and stored in the trap unit 107 can be supplied to the gas analysis unit 100 for analysis every interval during which the hexagonal valve 105 is switched, each interval can be analyzed. Quantitative analysis of gas generated in can be performed accurately.
  • the gas generated in the gas analysis cell 1 is stored in the trap unit 107 in the second supply state shown in FIG. 14A and then switched to the first supply state shown in FIG.
  • the gas stored in the unit 107 can be supplied to the gas analysis unit 100 together with the carrier gas. Therefore, as in the present embodiment, if the configuration is such that a larger amount of gas can be accommodated in the buffer region in the trap unit 107 than in the gas analysis cell 1, more gas can be transferred from the trap unit 107. Since it can supply to the gas analysis part 100, the detection sensitivity in the gas analysis part 100 improves, and it can analyze more accurately.
  • the gas analysis cell 1, the hexagonal valve 105, and the trap unit 107 can be adjusted to a relatively high temperature of, for example, room temperature to 90 ° C., more preferably about 80 ° C. Thereby, a strict durability check is possible.
  • the temperature control temperature is set to an appropriate value according to the boiling point of the electrolytic solution in the gas analysis cell 1.
  • the trap unit 107 is provided with a filter (not shown) that does not pass high-boiling substances, for example, so that the column 103 is prevented from being contaminated.
  • three-way valves 215 and 225 are connected to the gas supply channels 217 and 227 of the gas analysis cell 1, and three-way valves 216 are connected to the gas discharge channels 218 and 228. , 226 are connected (see FIG. 6).
  • the three-way valves 215 and 225 constitute supply side valves that open and close the gas supply passages 217 and 227, and the three-way valves 216 and 226 constitute discharge side valves that open and close the gas discharge passages 218 and 228. Yes.
  • the gas analysis cell 1 when the gas analysis cell 1 is manufactured, the gas analysis cell 1 is assembled in an environment without air (replaced with a specific gas such as argon or helium), and the supply side valves (three-way valves 215 and 225) are assembled. ) And the discharge side valves (three-way valves 216, 226) are closed, air is not mixed into the gas analysis cell 1 and internal components are not deteriorated.
  • a specific gas such as argon or helium
  • the supply-side valve three-way valves 215 and 225
  • the discharge-side valve If the three-way valves 216 and 226 are switched to the opened state, the attachment work can be easily performed while preventing air from being mixed.
  • the supply side valve and the discharge side valve are not limited to the three-way valves 215, 216, 225, and 226, and may be other valves such as a two-way valve.
  • the electrode guide 10 holds the positive electrode 7 inside.
  • the configuration is not limited to this, and the electrode guide 10 may hold the negative electrode 8 inside.
  • the gas generated on the negative electrode 8 side with respect to the separator 9 may be collected by the collection unit 22 through the opening 15.
  • the guide path 23 is not limited to the configuration in which the gas generated on the negative electrode 8 side with respect to the separator 9 is guided to the collection unit 22, and the gas generated on the positive electrode 7 side with respect to the separator 9 is collected. It may be configured to lead to
  • the gas generated on the positive electrode 7 side with respect to the separator 9 and the gas generated on the negative electrode 8 side with respect to the separator 9 are separated to form a pair of collecting units 21 and 22.
  • the configuration that is collected in the above is described.
  • a configuration that increases the pressure in the space by supplying gas to the space formed between the plurality of seal members 41 to 45 is separated into a pair of collecting portions 21 and 22.
  • the gas used at this time may be a gas other than the carrier gas.

Abstract

Provided are a gas analysis cell and a gas analysis system which are capable of performing analysis with greater accuracy. A positive electrode 7 and a negative electrode 8 are disposed in a measurement chamber 6 inside a cell main body 2. A separator 9 is disposed between the pair of electrodes 7, 8. Gas generated at the positive electrode 7 side of the separator 9 and gas generated at the negative electrode 8 side of the separator 9 are separated and respectively collected in a pair of collection parts 21, 22. The gases collected in the respective collection parts 21, 22 can be separately analyzed, and thus analysis can be performed with greater accuracy in comparison to when the gases generated at the positive electrode 7 side and the negative electrode 8 side are analyzed without being separated from each other.

Description

ガス分析用セル及びガス分析システムGas analysis cell and gas analysis system
 本発明は、正極及び負極からなる1対の電極と、前記1対の電極間に配置された隔膜とが内部に設けられたガス分析用セル及びガス分析システムに関するものである。 The present invention relates to a gas analysis cell and a gas analysis system in which a pair of electrodes composed of a positive electrode and a negative electrode and a diaphragm disposed between the pair of electrodes are provided inside.
 リチウムイオン電池などの各種電池(二次電池)においては、放電時や充電時に正極及び負極からガスが発生し、そのガスが電極や電解液を劣化させたり、放電や充電の効率を低下させたりする場合がある。そのため、電池の研究又は開発においては、正極と負極との間の電圧の変化と、その変化に伴い正極及び負極から発生するガスの成分や量との関係を分析する場合がある。 In various batteries (secondary batteries) such as lithium ion batteries, gas is generated from the positive electrode and the negative electrode during discharging or charging, and the gas deteriorates the electrode or the electrolyte, or reduces the efficiency of discharging or charging. There is a case. Therefore, in the research or development of batteries, there are cases in which the relationship between the change in voltage between the positive electrode and the negative electrode and the component and amount of gas generated from the positive electrode and the negative electrode in accordance with the change may be analyzed.
 このような場合に、実際の電池に使用されている材料と同じ材料で形成された正極及び負極を使用し、それらの正極及び負極をガス分析用セル内に配置して放電や充電を行うことにより、当該ガス分析用セル内で発生したガスをガスクロマトグラフなどの分析装置で分析することが行われている(例えば、下記非特許文献1参照)。 In such a case, use a positive electrode and a negative electrode formed of the same material as that used in an actual battery, and place the positive electrode and the negative electrode in a cell for gas analysis to perform discharging or charging. Thus, the gas generated in the gas analysis cell is analyzed by an analyzer such as a gas chromatograph (for example, see Non-Patent Document 1 below).
 電池の正極側及び負極側で発生するガスは、それぞれ異なる成分からなり、発生するガスの量も正極側と負極側とで異なる。しかしながら、従来のガス分析用セルでは、正極側及び負極側で発生するガスが、互いに分離されることなくガスクロマトグラフに送られて分析が行われていた。そのため、正極側で発生するガスの成分及び量と、負極側で発生するガスの成分及び量とを区別して精度よく分析を行うことができなかった。 The gas generated on the positive electrode side and the negative electrode side of the battery is composed of different components, and the amount of generated gas is also different between the positive electrode side and the negative electrode side. However, in the conventional gas analysis cell, the gases generated on the positive electrode side and the negative electrode side are sent to the gas chromatograph without being separated from each other for analysis. For this reason, it has been impossible to accurately analyze the gas component and amount generated on the positive electrode side and the gas component and amount generated on the negative electrode side.
 本発明は、上記実情に鑑みてなされたものであり、より精度よく分析を行うことができるガス分析用セル及びガス分析システムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a gas analysis cell and a gas analysis system that can perform analysis with higher accuracy.
(1)本発明に係るガス分析用セルは、セル本体と、1対の電極と、隔膜と、1対の捕集部とを備える。前記セル本体は、内部に測定室を有する。前記1対の電極は、前記測定室に配置された正極及び負極からなる。前記隔膜は、前記1対の電極間に配置されている。前記1対の捕集部には、前記隔膜に対して前記正極側で発生したガス、及び、前記隔膜に対して前記負極側で発生したガスが、それぞれ分離して捕集される。 (1) A cell for gas analysis according to the present invention includes a cell body, a pair of electrodes, a diaphragm, and a pair of collection parts. The cell body has a measurement chamber inside. The pair of electrodes includes a positive electrode and a negative electrode disposed in the measurement chamber. The diaphragm is disposed between the pair of electrodes. In the pair of collecting portions, the gas generated on the positive electrode side with respect to the diaphragm and the gas generated on the negative electrode side with respect to the diaphragm are separately collected.
 このような構成によれば、隔膜に対して正極側で発生したガス、及び、隔膜に対して負極側で発生したガスが、1対の捕集部にそれぞれ分離して捕集されるため、各捕集部に捕集されたガスを個別に分析することができる。したがって、正極側及び負極側で発生するガスを互いに分離させることなく分析する場合と比較して、より精度よく分析を行うことができる。 According to such a configuration, the gas generated on the positive electrode side with respect to the diaphragm and the gas generated on the negative electrode side with respect to the diaphragm are separately collected in a pair of collection parts, The gas collected by each collection part can be analyzed individually. Therefore, the analysis can be performed with higher accuracy compared to the case where the gases generated on the positive electrode side and the negative electrode side are analyzed without being separated from each other.
(2)前記ガス分析用セルは、前記1対の捕集部をそれぞれ閉塞する1対のセプタムをさらに備えていてもよい。 (2) The gas analysis cell may further include a pair of septums that respectively close the pair of collection parts.
 このような構成によれば、1対のセプタムを介して各捕集部にシリンジを挿入させ、当該シリンジにより、各捕集部に分離して捕集されたガスを個別に吸引して分析を行うことができる。したがって、より精度よく間欠分析を行うことができる。 According to such a configuration, a syringe is inserted into each collection unit via a pair of septums, and the syringe separates and collects the collected gas into each collection unit for analysis. It can be carried out. Therefore, intermittent analysis can be performed with higher accuracy.
 前記ガス分析用セルは、前記1対のセプタムをそれぞれ押圧して取り付ける1対のセプタムホルダをさらに備えていてもよい。この場合、前記セプタムホルダ内の空間に遮蔽用ガスが供給されてもよい。 The gas analysis cell may further include a pair of septum holders that are attached by pressing the pair of septums. In this case, shielding gas may be supplied to the space in the septum holder.
 このような構成によれば、1対のセプタムを介して各捕集部にシリンジを挿入させ、当該シリンジにより、各捕集部に分離して捕集されたガスを個別に吸引した後、シリンジをセプタムから抜き取る際に、シリンジ内に外部の空気が入り込むのを防止することができる。すなわち、シリンジ内が減圧された状態であっても、外部の空気の代わりに、セプタムホルダ内の空間に供給される遮蔽用ガスがシリンジ内に入り込むため、シリンジ内に外部の空気が入り込むのを防止することができる。 According to such a configuration, a syringe is inserted into each collection unit via a pair of septums, and the syringe separates and collects the collected gas separately into each collection unit, and then the syringe. When extracting from the septum, external air can be prevented from entering the syringe. That is, even when the inside of the syringe is depressurized, the shielding gas supplied to the space in the septum holder enters the syringe instead of the outside air, so that the outside air enters the syringe. Can be prevented.
(3)前記1対の捕集部には、当該捕集部内にキャリアガスを流入させる流入口と、当該捕集部内からキャリアガスを流出させる流出口とがそれぞれ形成されていてもよい。 (3) The pair of collecting portions may each be formed with an inlet for allowing carrier gas to flow into the collecting portion and an outlet for allowing carrier gas to flow out from the collecting portion.
 このような構成によれば、捕集部内に捕集されたガスが、流入口から捕集部内に流入するキャリアガスとともに流出口から流出するため、このガスを分析することによって、より精度よく連続分析を行うことができる。 According to such a configuration, since the gas collected in the collection unit flows out from the outflow port together with the carrier gas flowing into the collection unit from the inflow port, it is continuously analyzed with higher accuracy by analyzing this gas. Analysis can be performed.
 前記流入口から流入するキャリアガスの流入方向の延長線上に、前記流出口が配置されていてもよい。 The outlet may be arranged on an extension line in the inflow direction of the carrier gas flowing in from the inlet.
 このような構成によれば、流入口と流出口とがキャリアガスの流入方向に沿って一直線上に配置されるため、流路構成を簡略化することができる。 According to such a configuration, since the inflow port and the outflow port are arranged in a straight line along the inflow direction of the carrier gas, the flow path configuration can be simplified.
(4)前記ガス分析用セルは、前記流入口から流入するキャリアガスに撹拌流を生じさせてもよい。 (4) The gas analysis cell may generate a stirring flow in the carrier gas flowing in from the inlet.
 このような構成によれば、流入口から流入するキャリアガスに撹拌流を生じさせることにより、捕集部に捕集されたガスを均一に撹拌することができるため、安定した分析結果を得ることができる。 According to such a configuration, by generating a stirring flow in the carrier gas flowing in from the inlet, it is possible to uniformly stir the gas collected in the collecting section, and thus obtain a stable analysis result. Can do.
 前記ガス分析用セルは、前記捕集部内を通過するキャリアガスの抵抗となることにより撹拌流を生じさせる抵抗部材をさらに備えていてもよい。 The gas analysis cell may further include a resistance member that generates a stirring flow by becoming a resistance of the carrier gas passing through the collection portion.
 このような構成によれば、流入口から流入するキャリアガスが、抵抗部材から抵抗を受けることにより捕集部内で撹拌される。これにより、捕集部に捕集されたガスを均一に撹拌して流出口から流出させ、このガスを分析することができるため、安定した分析結果を得ることができる。 According to such a configuration, the carrier gas flowing in from the inlet is agitated in the collection part by receiving resistance from the resistance member. Thereby, since the gas collected by the collection part can be stirred uniformly and made to flow out from an outflow port and this gas can be analyzed, the stable analysis result can be obtained.
(5)前記ガス分析用セルは、ガス供給流路と、ガス排出流路と、バイパス流路と、バイパス切替部とをさらに備えていてもよい。前記ガス供給流路は、前記流入口にキャリアガスを供給する。前記ガス排出流路は、前記流出口からキャリアガスを排出させる。前記バイパス流路は、前記捕集部を介さずに前記ガス供給流路及びガス排出流路を接続する。前記バイパス切替部は、前記ガス供給流路を前記捕集部又は前記バイパス流路のいずれに連通させるかを切り替える。 (5) The gas analysis cell may further include a gas supply channel, a gas discharge channel, a bypass channel, and a bypass switching unit. The gas supply channel supplies a carrier gas to the inflow port. The gas discharge channel discharges carrier gas from the outlet. The bypass flow path connects the gas supply flow path and the gas discharge flow path without going through the collection unit. The bypass switching unit switches whether the gas supply channel communicates with the collection unit or the bypass channel.
 このような構成によれば、バイパス切替部によって、ガス供給流路を捕集部又はバイパス流路のいずれかに連通させることができる。したがって、ガス供給流路をバイパス流路に連通させることにより、バイパス流路を介してガス供給流路内の空気を排出した後、ガス供給流路を捕集部に連通させて、捕集部にキャリアガスを供給することができる。これにより、ガス供給流路内の空気が捕集部に流入し、分析に悪影響を与えることを防止できるため、より精度よく分析を行うことができる。 According to such a configuration, the gas supply channel can be communicated with either the collection unit or the bypass channel by the bypass switching unit. Therefore, by connecting the gas supply flow path to the bypass flow path, after exhausting the air in the gas supply flow path through the bypass flow path, the gas supply flow path is connected to the collection section, and the collection section A carrier gas can be supplied. Thereby, since it can prevent that the air in a gas supply flow path flows into a collection part and has a bad influence on an analysis, it can analyze more accurately.
(6)前記ガス分析用セルは、前記測定室に充填された電解液に浸漬される参照電極をさらに備えていてもよい。 (6) The gas analysis cell may further include a reference electrode immersed in an electrolytic solution filled in the measurement chamber.
 このような構成によれば、参照電極により測定される電圧を参照電圧として、参照電極20と正極7との間、及び、参照電極20と負極8との間の電位の分析を行うことができる。 According to such a configuration, the potential measured between the reference electrode 20 and the positive electrode 7 and between the reference electrode 20 and the negative electrode 8 can be analyzed using the voltage measured by the reference electrode as a reference voltage. .
(7)前記ガス分析用セルは、前記測定室内に収容され、前記1対の電極の一方を内部に保持する電極ガイドをさらに備えていてもよい。この場合、前記電極ガイドには、前記1対の捕集部の一方に連通する開口が形成されていてもよい。 (7) The gas analysis cell may further include an electrode guide that is housed in the measurement chamber and holds one of the pair of electrodes therein. In this case, the electrode guide may be formed with an opening communicating with one of the pair of collecting portions.
 このような構成によれば、1対の電極の一方が電極ガイドにより保持されるとともに、当該電極ガイド内で発生するガスが開口を介して1対の捕集部の一方に導かれる。これにより、一方の電極側で発生したガスが電極ガイド内から開口を介して一方の捕集部に良好に捕集されるため、より精度よく分析を行うことができる。 According to such a configuration, one of the pair of electrodes is held by the electrode guide, and gas generated in the electrode guide is guided to one of the pair of collecting portions through the opening. Thereby, since the gas generated on the one electrode side is favorably collected in the one collecting part through the opening from the electrode guide, the analysis can be performed with higher accuracy.
(8)前記1対の電極の他方は、前記電極ガイドの外側で前記測定室内に配置されていてもよい。この場合、前記セル本体には、前記他方の電極側で発生したガスを前記1対の捕集部の他方に導く誘導路が形成されていてもよい。 (8) The other of the pair of electrodes may be disposed in the measurement chamber outside the electrode guide. In this case, the cell main body may be formed with a guide path for guiding the gas generated on the other electrode side to the other of the pair of collecting portions.
 このような構成によれば、電極ガイドの外側において他方の電極側で発生するガスが、セル本体に形成された誘導路を介して他方の捕集部に良好に捕集されるため、より精度よく分析を行うことができる。 According to such a configuration, the gas generated on the other electrode side outside the electrode guide is well collected in the other collecting part via the guide path formed in the cell body, and thus more accurate. You can analyze well.
(9)本発明に係るガス分析システムは、前記ガス分析用セルと、前記1対の捕集部の少なくとも一方に捕集されたガスを分析するガス分析部とを備える。 (9) The gas analysis system according to the present invention includes the gas analysis cell and a gas analysis unit that analyzes the gas collected in at least one of the pair of collection units.
 このような構成によれば、ガス分析用セル内で発生したガスをガス分析部で分析することにより、より精度よくガス中の成分を分析することができる。 According to such a configuration, it is possible to analyze the components in the gas with higher accuracy by analyzing the gas generated in the gas analysis cell by the gas analysis unit.
(10)前記ガス分析システムは、前記ガス分析用セル内で発生したガスをキャリアガスとともに前記ガス分析部に供給する第1供給状態、又は、前記ガス分析用セル内で発生したガスを含まないキャリアガスを前記ガス分析部に供給する第2供給状態のいずれかに切り替える供給切替部をさらに備えていてもよい。 (10) The gas analysis system does not include a first supply state in which a gas generated in the gas analysis cell is supplied to the gas analysis unit together with a carrier gas, or a gas generated in the gas analysis cell. A supply switching unit that switches to one of the second supply states in which the carrier gas is supplied to the gas analysis unit may be further provided.
 このような構成によれば、第1供給状態において、ガス分析用セル内で発生したガスをキャリアガスとともにガス分析部に直接供給することにより、連続分析を行うことができる。したがって、ガス分析用セル内で発生したガスがシリンジを用いてガス分析部に注入されるような構成と比較して、外部の空気がガスの流路内に混入しにくい。これにより、空気の混入が分析結果に影響を与えることを防止できるため、より精度よく連続分析を行うことができる。 According to such a configuration, continuous analysis can be performed by directly supplying the gas generated in the gas analysis cell together with the carrier gas to the gas analysis unit in the first supply state. Therefore, compared to a configuration in which the gas generated in the gas analysis cell is injected into the gas analysis unit using a syringe, external air is less likely to enter the gas flow path. Thereby, since mixing of air can prevent an analysis result from being influenced, continuous analysis can be performed more accurately.
 また、供給切替部が切り替えられる間のインターバルごとに、ガス分析用セル内で発生するガスをガス分析部に供給して分析することができるため、各インターバルで発生するガスの定量分析を正確に行うことができる。 In addition, since the gas generated in the gas analysis cell can be supplied to the gas analysis unit for analysis every interval while the supply switching unit is switched, the quantitative analysis of the gas generated at each interval can be performed accurately. It can be carried out.
 さらに、第2供給状態においてガス分析用セルを供給切替部に取り付ければ、当該ガス分析用セルがガス分析部に連通しない状態で配管の接続を行うことができる。これにより、ガス分析部に連通する配管を慌ててガス分析用セルに接続する必要がないため、取付作業が容易になる。 Furthermore, if the gas analysis cell is attached to the supply switching unit in the second supply state, piping can be connected in a state where the gas analysis cell does not communicate with the gas analysis unit. As a result, it is not necessary to connect the gas analysis cell via a pipe communicating with the gas analysis unit, so that the installation work is facilitated.
(11)前記第1供給状態では、前記ガス分析用セルを介して前記ガス分析部にキャリアガスが供給され、前記第2供給状態では、前記ガス分析用セルを介さずに前記ガス分析部にキャリアガスが供給されてもよい。 (11) In the first supply state, a carrier gas is supplied to the gas analysis unit through the gas analysis cell, and in the second supply state, the carrier gas is supplied to the gas analysis unit without going through the gas analysis cell. A carrier gas may be supplied.
 このような構成によれば、第1供給状態において、ガス分析用セル内で発生したガスが、当該ガス分析用セル内からガス分析部に直接供給される。したがって、簡単な構成で、より精度よく分析を行うことができる。 According to such a configuration, in the first supply state, the gas generated in the gas analysis cell is directly supplied from the gas analysis cell to the gas analysis unit. Therefore, it is possible to perform analysis with higher accuracy with a simple configuration.
(12)前記ガス分析システムは、前記ガス分析用セル内で発生したガスを収容するトラップ部をさらに備えていてもよい。この場合、前記第1供給状態では、前記トラップ部を介して前記ガス分析部にキャリアガスが供給され、前記第2供給状態では、前記トラップ部を介さずに前記ガス分析部にキャリアガスが供給され、前記ガス分析用セル内で発生したガスが前記トラップ部に収容されてもよい。 (12) The gas analysis system may further include a trap unit that accommodates the gas generated in the gas analysis cell. In this case, in the first supply state, a carrier gas is supplied to the gas analysis unit through the trap unit, and in the second supply state, a carrier gas is supplied to the gas analysis unit without going through the trap unit. The gas generated in the gas analysis cell may be accommodated in the trap unit.
 このような構成によれば、第2供給状態において、ガス分析用セル内で発生したガスをトラップ部に収容し、その後に第2供給状態から第1供給状態に切り替えれば、トラップ部に収容されているガスをキャリアガスとともにガス分析部に供給することができる。したがって、トラップ部内にガス分析用セル内よりも多くのガスを収容することができるような構成であれば、より多くのガスをトラップ部からガス分析部に供給することができるため、ガス分析部における検出感度が向上し、さらに精度よく分析を行うことができる。 According to such a configuration, in the second supply state, if the gas generated in the gas analysis cell is stored in the trap portion, and then switched from the second supply state to the first supply state, it is stored in the trap portion. Gas can be supplied to the gas analyzer together with the carrier gas. Therefore, if the gas can be supplied from the trap unit to the gas analysis unit as long as the gas can be accommodated in the trap unit more gas than in the gas analysis cell, the gas analysis unit This improves the detection sensitivity and enables more accurate analysis.
(13)本発明に係る別のガス分析用セルは、セル本体と、1対の電極と、隔膜と、カバー部材と、複数のシール部材と、第1ガス供給流路とを備える。前記セル本体は、内部に測定室を有する。前記1対の電極は、前記測定室に配置された正極及び負極からなる。前記隔膜は、前記1対の電極間に配置されている。前記カバー部材は、前記セル本体に取り付けられ、前記測定室を閉塞する。前記複数のシール部材は、前記セル本体と前記カバー部材との間に設けられ、前記測定室を密閉する。前記第1ガス供給流路は、前記複数のシール部材の間に形成された空間にガスを供給する。 (13) Another gas analysis cell according to the present invention includes a cell body, a pair of electrodes, a diaphragm, a cover member, a plurality of seal members, and a first gas supply channel. The cell body has a measurement chamber inside. The pair of electrodes includes a positive electrode and a negative electrode disposed in the measurement chamber. The diaphragm is disposed between the pair of electrodes. The cover member is attached to the cell body and closes the measurement chamber. The plurality of seal members are provided between the cell main body and the cover member, and seal the measurement chamber. The first gas supply channel supplies gas to a space formed between the plurality of seal members.
 このような構成によれば、セル本体とカバー部材との間に複数のシール部材が設けられるため、測定室の気密性を高め、セル本体内に外部の空気を入り込みにくくすることができる。さらに、複数のシール部材の間に形成された空間には、第1ガス供給流路からガスが供給されるため、外部の空気が流入したとしても、薄まる上に、外部に追い出すことが可能である。したがって、セル本体内に外部の空気が入り込むのを効果的に抑制することができる。 According to such a configuration, since a plurality of sealing members are provided between the cell main body and the cover member, it is possible to improve the airtightness of the measurement chamber and make it difficult for outside air to enter the cell main body. Furthermore, since the gas is supplied from the first gas supply flow path to the space formed between the plurality of seal members, even if external air flows in, it can be thinned and expelled to the outside. is there. Therefore, it is possible to effectively suppress external air from entering the cell body.
(14)前記ガス分析用セルは、前記セル本体内にキャリアガスを供給する第2ガス供給流路をさらに備えていてもよい。この場合、前記第1ガス供給流路は、前記複数のシール部材の間に形成された空間に前記キャリアガスを供給してもよい。 (14) The gas analysis cell may further include a second gas supply channel for supplying a carrier gas into the cell body. In this case, the first gas supply channel may supply the carrier gas to a space formed between the plurality of seal members.
 このような構成によれば、セル本体内に供給されるキャリアガスが、複数のシール部材の間に形成された空間にも供給される。したがって、上記空間内に供給されるガスがセル本体内に入り込んだ場合であっても、そのガスが分析に悪影響を与えることがないため、精度よく分析を行うことができる。また、キャリアガスとは異なるガスを準備する必要がないため、装置構成を簡略化することができる。 According to such a configuration, the carrier gas supplied into the cell body is also supplied to the space formed between the plurality of seal members. Therefore, even when the gas supplied into the space enters the cell body, the gas does not adversely affect the analysis, so that the analysis can be performed with high accuracy. In addition, since it is not necessary to prepare a gas different from the carrier gas, the apparatus configuration can be simplified.
(15)前記セル本体は、前記隔膜に対して前記正極側で発生したガス、及び、前記隔膜に対して前記負極側で発生したガスが、それぞれ分離して捕集される1対の捕集部を備えていてもよい。この場合、前記第2ガス供給流路は、前記1対の捕集部の少なくとも一方にキャリアガスを供給してもよい。 (15) The cell body has a pair of collections in which a gas generated on the positive electrode side with respect to the diaphragm and a gas generated on the negative electrode side with respect to the diaphragm are separately collected. May be provided. In this case, the second gas supply channel may supply a carrier gas to at least one of the pair of collection parts.
 このような構成によれば、隔膜に対して正極側で発生したガス、及び、隔膜に対して負極側で発生したガスが、1対の捕集部にそれぞれ分離して捕集されるため、各捕集部に捕集されたガスを個別に分析することができる。したがって、正極側及び負極側で発生するガスを互いに分離させることなく分析する場合と比較して、より精度よく分析を行うことができる。 According to such a configuration, the gas generated on the positive electrode side with respect to the diaphragm and the gas generated on the negative electrode side with respect to the diaphragm are separately collected in a pair of collection parts, The gas collected by each collection part can be analyzed individually. Therefore, the analysis can be performed with higher accuracy compared to the case where the gases generated on the positive electrode side and the negative electrode side are analyzed without being separated from each other.
(16)本発明に係る別のガス分析システムは、前記ガス分析用セルと、前記セル本体内で発生したガスを分析するガス分析部とを備える。 (16) Another gas analysis system according to the present invention includes the gas analysis cell and a gas analysis unit that analyzes a gas generated in the cell body.
 このような構成によれば、ガス分析用セル内で発生したガスをガス分析部で分析することにより、より精度よくガス中の成分を分析することができる。 According to such a configuration, it is possible to analyze the components in the gas with higher accuracy by analyzing the gas generated in the gas analysis cell by the gas analysis unit.
(17)前記ガス分析システムは、前記ガス分析用セル内で発生したガスをキャリアガスとともに前記ガス分析部に供給する第1供給状態、又は、前記ガス分析用セル内で発生したガスを含まないキャリアガスを前記ガス分析部に供給する第2供給状態のいずれかに切り替える供給切替部をさらに備えていてもよい。 (17) The gas analysis system does not include a first supply state in which a gas generated in the gas analysis cell is supplied to the gas analysis unit together with a carrier gas, or a gas generated in the gas analysis cell. A supply switching unit that switches to one of the second supply states in which the carrier gas is supplied to the gas analysis unit may be further provided.
 このような構成によれば、第1供給状態において、ガス分析用セル内で発生したガスをキャリアガスとともにガス分析部に直接供給することにより、連続分析を行うことができる。したがって、ガス分析用セル内で発生したガスがシリンジを用いてガス分析部に注入されるような構成と比較して、外部の空気がガスの流路内に混入しにくい。これにより、空気の混入が分析結果に影響を与えることを防止できるため、より精度よく連続分析を行うことができる。 According to such a configuration, continuous analysis can be performed by directly supplying the gas generated in the gas analysis cell together with the carrier gas to the gas analysis unit in the first supply state. Therefore, compared to a configuration in which the gas generated in the gas analysis cell is injected into the gas analysis unit using a syringe, external air is less likely to enter the gas flow path. Thereby, since mixing of air can prevent an analysis result from being influenced, continuous analysis can be performed more accurately.
 また、供給切替部が切り替えられる間のインターバルごとに、ガス分析用セル内で発生するガスをガス分析部に供給して分析することができるため、各インターバルで発生するガスの定量分析を正確に行うことができる。 In addition, since the gas generated in the gas analysis cell can be supplied to the gas analysis unit for analysis every interval while the supply switching unit is switched, the quantitative analysis of the gas generated at each interval can be performed accurately. It can be carried out.
 さらに、第2供給状態においてガス分析用セルを供給切替部に取り付ければ、当該ガス分析用セルがガス分析部に連通しない状態で配管の接続を行うことができる。これにより、ガス分析部に連通する配管を慌ててガス分析用セルに接続する必要がないため、取付作業が容易になる。 Furthermore, if the gas analysis cell is attached to the supply switching unit in the second supply state, piping can be connected in a state where the gas analysis cell does not communicate with the gas analysis unit. As a result, it is not necessary to connect the gas analysis cell via a pipe communicating with the gas analysis unit, so that the installation work is facilitated.
(18)前記第1供給状態では、前記ガス分析用セルを介して前記ガス分析部にキャリアガスが供給され、前記第2供給状態では、前記ガス分析用セルを介さずに前記ガス分析部にキャリアガスが供給されてもよい。 (18) In the first supply state, a carrier gas is supplied to the gas analysis unit through the gas analysis cell, and in the second supply state, the carrier gas is supplied to the gas analysis unit without going through the gas analysis cell. A carrier gas may be supplied.
 このような構成によれば、第1供給状態において、ガス分析用セル内で発生したガスが、当該ガス分析用セル内からガス分析部に直接供給される。したがって、簡単な構成で、より精度よく分析を行うことができる。 According to such a configuration, in the first supply state, the gas generated in the gas analysis cell is directly supplied from the gas analysis cell to the gas analysis unit. Therefore, it is possible to perform analysis with higher accuracy with a simple configuration.
(19)前記ガス分析システムは、前記ガス分析用セル内で発生したガスを収容するトラップ部をさらに備えていてもよい。この場合、前記第1供給状態では、前記トラップ部を介して前記ガス分析部にキャリアガスが供給され、前記第2供給状態では、前記トラップ部を介さずに前記ガス分析部にキャリアガスが供給され、前記ガス分析用セル内で発生したガスが前記トラップ部に収容されてもよい。 (19) The gas analysis system may further include a trap unit that accommodates gas generated in the gas analysis cell. In this case, in the first supply state, a carrier gas is supplied to the gas analysis unit through the trap unit, and in the second supply state, a carrier gas is supplied to the gas analysis unit without going through the trap unit. The gas generated in the gas analysis cell may be accommodated in the trap unit.
 このような構成によれば、第2供給状態において、ガス分析用セル内で発生したガスをトラップ部に収容し、その後に第2供給状態から第1供給状態に切り替えれば、トラップ部に収容されているガスをキャリアガスとともにガス分析部に供給することができる。したがって、トラップ部内にガス分析用セル内よりも多くのガスを収容することができるような構成であれば、より多くのガスをトラップ部からガス分析部に供給することができるため、ガス分析部における検出感度が向上し、さらに精度よく分析を行うことができる。 According to such a configuration, in the second supply state, if the gas generated in the gas analysis cell is stored in the trap portion, and then switched from the second supply state to the first supply state, it is stored in the trap portion. Gas can be supplied to the gas analyzer together with the carrier gas. Therefore, if the gas can be supplied from the trap unit to the gas analysis unit as long as the gas can be accommodated in the trap unit more gas than in the gas analysis cell, the gas analysis unit This improves the detection sensitivity and enables more accurate analysis.
 本発明によれば、各捕集部に捕集されたガスを個別に分析することができるため、正極側及び負極側で発生するガスを互いに分離させることなく分析する場合と比較して、より精度よく分析を行うことができる。 According to the present invention, since the gas collected in each collection part can be analyzed individually, compared with the case where the gas generated on the positive electrode side and the negative electrode side is analyzed without being separated from each other, Analysis can be performed with high accuracy.
本発明の一実施形態に係るガス分析用セルの構成例を示した斜視図である。It is the perspective view which showed the structural example of the cell for gas analysis which concerns on one Embodiment of this invention. 図1のガス分析用セルを反対側から見た斜視図である。It is the perspective view which looked at the cell for gas analysis of FIG. 1 from the opposite side. 図1のガス分析用セルの分解斜視図である。It is a disassembled perspective view of the cell for gas analysis of FIG. 図1のガス分析用セルを水平方向に切断したときの断面図である。It is sectional drawing when the cell for gas analysis of FIG. 1 is cut | disconnected in the horizontal direction. 図1のガス分析用セルを鉛直方向に切断したときの断面図である。It is sectional drawing when the cell for gas analysis of FIG. 1 is cut | disconnected in the perpendicular direction. 図1のガス分析用セルを鉛直方向に切断したときの断面図であり、図5Aの場合とは異なる位置における断面を示している。It is sectional drawing when the cell for gas analysis of FIG. 1 is cut | disconnected in the perpendicular direction, The cross section in the position different from the case of FIG. 5A is shown. 三方バルブの動作について説明するための概略平面図である。It is a schematic plan view for demonstrating operation | movement of a three-way valve | bulb. 捕集部内に抵抗部材がない状態で連続分析を行ったときの発生水素ガスの検出電圧の変化の一例を示した図であり、流入口から捕集部内に流入するキャリアガスの流速が5ml/minの場合を示している。It is the figure which showed an example of the change of the detection voltage of the generated hydrogen gas when performing a continuous analysis in the state without a resistance member in a collection part, and the flow velocity of the carrier gas which flows in in a collection part from an inflow port is 5 ml / The case of min is shown. 捕集部内に抵抗部材がない状態で連続分析を行ったときの発生水素ガスの検出電圧の変化の一例を示した図であり、流入口から捕集部内に流入するキャリアガスの流速が10ml/minの場合を示している。It is the figure which showed an example of the change of the detection voltage of the generated hydrogen gas when performing a continuous analysis in the state without a resistance member in a collection part, and the flow velocity of the carrier gas which flows in in a collection part from an inflow port is 10 ml / The case of min is shown. 捕集部内に抵抗部材がある状態で連続分析を行ったときの発生水素ガスの検出電圧の変化の一例を示した図であり、流入口から捕集部内に流入するキャリアガスの流速が5ml/minの場合を示している。It is the figure which showed an example of the change of the detection voltage of the generated hydrogen gas when performing a continuous analysis in the state where there is a resistance member in the collection part, and the flow velocity of the carrier gas flowing into the collection part from the inlet is 5 ml / The case of min is shown. 捕集部内に抵抗部材がある状態で連続分析を行ったときの発生水素ガスの検出電圧の変化の一例を示した図であり、流入口から捕集部内に流入するキャリアガスの流速が10ml/minの場合を示している。It is the figure which showed an example of the change of the detection voltage of the generated hydrogen gas when performing a continuous analysis in the state where there is a resistance member in the collection part, and the flow velocity of the carrier gas flowing into the collection part from the inlet is 10 ml / The case of min is shown. 参照電極の電位に対して正極の電位を変化させて(すなわち、サイクリックボルタンメトリー)、充電及び放電を行ったときの電流の変化の一例を示した図である。It is the figure which showed an example of the change of an electric current when changing the electric potential of a positive electrode with respect to the electric potential of a reference electrode (namely, cyclic voltammetry), and charging and discharging. 複数のシール部材の間に形成された空間にガスを供給することなく充放電を繰り返した場合の充放電容量の変化を示した図である。It is the figure which showed the change of charging / discharging capacity | capacitance at the time of repeating charging / discharging, without supplying gas to the space formed between several sealing members. 複数のシール部材の間に形成された空間にガスを供給しながら充放電を繰り返した場合の充放電容量の変化を示した図であり、ガスの流速が10ml/minの場合を示している。It is the figure which showed the change of the charging / discharging capacity | capacitance at the time of charging / discharging repeating supplying gas to the space formed between several sealing members, and has shown the case where the flow rate of gas is 10 ml / min. 複数のシール部材の間に形成された空間にガスを供給しながら充放電を繰り返した場合の充放電容量の変化を示した図であり、ガスの流速が50ml/minの場合を示している。It is the figure which showed the change of the charging / discharging capacity | capacitance at the time of charging / discharging repeating supplying gas to the space formed between several sealing members, and has shown the case where the flow rate of gas is 50 ml / min. セル本体内のガスに含まれる酸素濃度の経時変化を示した図である。It is the figure which showed the time-dependent change of the oxygen concentration contained in the gas in a cell main body. コネクタを介してセプタムホルダに遮蔽用ガスを流入させるか否かに応じたシリンジ内への酸素の流入量の違いについて説明するための図である。It is a figure for demonstrating the difference in the inflow amount of oxygen into the syringe according to whether the gas for shielding is made to flow into the septum holder via the connector. 本発明の第1実施形態に係るガス分析システムの構成例を示した流路図である。It is a channel figure showing the example of composition of the gas analysis system concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係るガス分析システムの構成例を示した流路図である。It is a channel figure showing the example of composition of the gas analysis system concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係るガス分析システムの構成例を示した流路図である。It is a channel figure showing the example of composition of the gas analysis system concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係るガス分析システムの構成例を示した流路図である。It is a channel figure showing the example of composition of the gas analysis system concerning a 2nd embodiment of the present invention.
1.ガス分析用セルの構成
 図1は、本発明の一実施形態に係るガス分析用セル1の構成例を示した斜視図である。図2は、図1のガス分析用セル1を反対側から見た斜視図である。図3は、図1のガス分析用セル1の分解斜視図である。図4は、図1のガス分析用セル1を水平方向に切断したときの断面図である。図5Aは、図1のガス分析用セル1を鉛直方向に切断したときの断面図である。図5Bは、図1のガス分析用セル1を鉛直方向に切断したときの断面図であり、図5Aの場合とは異なる位置における断面を示している。
1. Configuration of Gas Analysis Cell FIG. 1 is a perspective view showing a configuration example of a gas analysis cell 1 according to an embodiment of the present invention. FIG. 2 is a perspective view of the gas analysis cell 1 of FIG. 1 viewed from the opposite side. FIG. 3 is an exploded perspective view of the gas analysis cell 1 of FIG. 4 is a cross-sectional view of the gas analysis cell 1 of FIG. 1 when cut in the horizontal direction. FIG. 5A is a cross-sectional view of the gas analysis cell 1 of FIG. 1 when cut in the vertical direction. 5B is a cross-sectional view when the gas analysis cell 1 of FIG. 1 is cut in the vertical direction, and shows a cross-section at a position different from the case of FIG. 5A.
 ガス分析用セル1は、二次電池の一例であるリチウムイオン電池から発生するガスを分析するためのものである。このガス分析用セル1では、内部にリチウムイオン電池と同様の構造が再現されることにより、リチウムイオン電池と同様のガスを発生させ、そのガスをガスクロマトグラフなどで分析することができる。 The gas analysis cell 1 is for analyzing gas generated from a lithium ion battery which is an example of a secondary battery. In the gas analysis cell 1, the same structure as that of the lithium ion battery is reproduced inside, thereby generating the same gas as that of the lithium ion battery, and the gas can be analyzed by a gas chromatograph or the like.
 このガス分析用セル1は、セル本体2と、当該セル本体2に取り付けられた複数のカバー部材3,4,5とを備えている。これらのセル本体2及びカバー部材3,4,5により、セル本体2内に密閉された測定室6が形成され、当該測定室6内に、正極7、負極8、セパレータ(隔膜)9、電極ガイド10、第1集電部11、第2集電部12、セパレータ用ガスケット13及びスプリング14などが収容される(図3参照)。なお、図4、図5A及び図5Bでは、正極7、負極8及びセパレータ9などを省略して示している。 The cell 1 for gas analysis includes a cell body 2 and a plurality of cover members 3, 4, 5 attached to the cell body 2. The cell main body 2 and the cover members 3, 4, 5 form a measurement chamber 6 sealed in the cell main body 2. In the measurement chamber 6, a positive electrode 7, a negative electrode 8, a separator (diaphragm) 9, an electrode The guide 10, the first current collector 11, the second current collector 12, the separator gasket 13, the spring 14 and the like are accommodated (see FIG. 3). 4, 5 </ b> A, and 5 </ b> B, the positive electrode 7, the negative electrode 8, the separator 9, and the like are omitted.
 セル本体2及び電極ガイド10は、例えばピーク(PEEK:ポリエーテルエーテルケトン)、ポリフェニレンサルファイド樹脂(PPS)、フッ素樹脂又はポリプロピレン(PP)により形成されている。セル本体2及び電極ガイド10の材料としては、水分の発生による劣化やガスの透過による分析精度の低下などを防止する観点から、水分を吸収しにくく、ガス透過性が低い材料であることが好ましい。各カバー部材3,4,5、第1集電部11、第2集電部12及びスプリング14は、例えばステンレス鋼(SUS)により形成されている。セル本体2には、各カバー部材3,4,5が取り付けられる面に複数のネジ軸16が立設されており、各カバー部材3,4,5にネジ軸16を挿通させ、それらのネジ軸16にナット17を締め付けることにより、セル本体2に各カバー部材3,4,5が固定される。 The cell body 2 and the electrode guide 10 are made of, for example, a peak (PEEK: polyetheretherketone), polyphenylene sulfide resin (PPS), fluororesin, or polypropylene (PP). The material of the cell main body 2 and the electrode guide 10 is preferably a material that hardly absorbs moisture and has low gas permeability from the viewpoint of preventing deterioration due to generation of moisture and deterioration in analysis accuracy due to gas permeation. . Each cover member 3, 4, 5, the 1st current collection part 11, the 2nd current collection part 12, and the spring 14 are formed, for example by stainless steel (SUS). The cell body 2 is provided with a plurality of screw shafts 16 on the surface on which the cover members 3, 4, 5 are attached. The screw shafts 16 are inserted into the cover members 3, 4, 5, and the screws Each cover member 3, 4, 5 is fixed to the cell body 2 by tightening the nut 17 on the shaft 16.
 このとき、第1集電部11は、スプリング14を介してカバー部材3により第2集電部12側に押圧され、第2集電部12は、カバー部材4により第1集電部11側に押圧される。これにより、正極7,負極8及びセパレータ9が、第1集電部11と第2集電部12との間に挟持される。カバー部材3,4には、例えばステンレス鋼(SUS)により形成された集電棒18,19が固定されている。これにより、集電棒18がカバー部材3、スプリング14及び第1集電部11を介して正極7に電気的に接続されるとともに、集電棒19がカバー部材4及び第2集電部12を介して負極8に電気的に接続されるようになっている。 At this time, the first current collector 11 is pressed toward the second current collector 12 by the cover member 3 via the spring 14, and the second current collector 12 is pressed toward the first current collector 11 by the cover member 4. Pressed. As a result, the positive electrode 7, the negative electrode 8, and the separator 9 are sandwiched between the first current collector 11 and the second current collector 12. Current collecting rods 18 and 19 made of, for example, stainless steel (SUS) are fixed to the cover members 3 and 4. Thereby, the current collecting rod 18 is electrically connected to the positive electrode 7 via the cover member 3, the spring 14 and the first current collecting portion 11, and the current collecting rod 19 is arranged via the cover member 4 and the second current collecting portion 12. Thus, it is electrically connected to the negative electrode 8.
 正極7は、例えばコバルト酸リチウムにより形成されている。負極8は、例えばグラファイトにより形成されている。このような正極7及び負極8を備えたガス分析用セル1は、「フルセル」と呼ばれている。正極7及び負極8は、例えば外径34mmの円板状であり、実際のリチウムイオン電池の外径よりも大きく形成されている。セパレータ9は、例えばポリプロピレンにより形成された外径41mmの多孔質で薄いフィルムであり、厚みは例えば24μmである。ただし、1対の電極7,8の間に配置される隔膜は、セパレータ9に限られるものではない。正極7及び負極8は近接している必要があり、その距離は隔膜の厚みで規定される。セパレータ9の上記厚みは一例に過ぎず、この値に限定されるものではない。隔膜の厚みは、例えば数100μm以下であることが好ましい。ただし、正極7及び負極8の材料は、上記のような材料に限られるものではなく、例えば正極7は、マンガン酸リチウム(スピネル構造)、リン酸鉄リチウム(オリビン構造)、三元系(NMC系)、ニッケル系(NCA系)などの他の材料により形成されていてもよいし、負極8は、ハードカーボン、チタネイト、Si、Geなどの他の材料により形成されていてもよい。正極7又は負極8の一方がリチウムにより形成されたガス分析用セルは、「ハーフセル」と呼ばれており、このようなガス分析用セルにも本発明を適用することができる。リチウムイオン電池における電解液としては、水系電解液、無機固体電解質、有機固体電解質、有機系電解液(EC-EMC系)、有機系電解液(EC-PC系)、イオン液体系電解液、ゲルポリマー電解質などを例示することができる。また、リチウムイオン電池から発生するガスを分析するガス分析用セルに限らず、鉛蓄電池、ニッケル水素電池、NAS電池、レドックスフロー電池、ナトリウムイオン電池、金属-空気電池、リチウム硫黄電池、金属負極電池(カルシウム、マグネシウム、アルミニウム等)などから発生するガスを分析するガス分析用セルにも本発明を適用することができる。ニッケル水素電池の構成部材としては、例えば正極にオキシ水酸化ニッケル、負極に水素吸蔵合金及び水素、電解液に水酸化カリウムを例示することができる。 The positive electrode 7 is made of, for example, lithium cobalt oxide. The negative electrode 8 is made of, for example, graphite. The gas analysis cell 1 including the positive electrode 7 and the negative electrode 8 is called a “full cell”. The positive electrode 7 and the negative electrode 8 have, for example, a disk shape with an outer diameter of 34 mm, and are formed larger than the outer diameter of an actual lithium ion battery. The separator 9 is a porous thin film having an outer diameter of 41 mm made of, for example, polypropylene and has a thickness of, for example, 24 μm. However, the diaphragm disposed between the pair of electrodes 7 and 8 is not limited to the separator 9. The positive electrode 7 and the negative electrode 8 need to be close to each other, and the distance is defined by the thickness of the diaphragm. The said thickness of the separator 9 is only an example, and is not limited to this value. The thickness of the diaphragm is preferably, for example, several hundred μm or less. However, the materials of the positive electrode 7 and the negative electrode 8 are not limited to the above materials. For example, the positive electrode 7 includes lithium manganate (spinel structure), lithium iron phosphate (olivine structure), ternary system (NMC). The negative electrode 8 may be formed of other materials such as hard carbon, titanate, Si, and Ge. A cell for gas analysis in which one of the positive electrode 7 and the negative electrode 8 is formed of lithium is called a “half cell”, and the present invention can be applied to such a gas analysis cell. Examples of electrolytes in lithium ion batteries include aqueous electrolytes, inorganic solid electrolytes, organic solid electrolytes, organic electrolytes (EC-EMC), organic electrolytes (EC-PC), ionic liquid electrolytes, and gels. A polymer electrolyte etc. can be illustrated. In addition to gas analysis cells that analyze gas generated from lithium ion batteries, lead storage batteries, nickel metal hydride batteries, NAS batteries, redox flow batteries, sodium ion batteries, metal-air batteries, lithium sulfur batteries, metal anode batteries The present invention can also be applied to a gas analysis cell for analyzing gas generated from (calcium, magnesium, aluminum, etc.). Examples of the constituent member of the nickel metal hydride battery include nickel oxyhydroxide for the positive electrode, hydrogen storage alloy and hydrogen for the negative electrode, and potassium hydroxide for the electrolyte.
 測定室6内には、例えば有機溶媒からなる電解液が充填されており、この電解液内に正極7、負極8及びセパレータ9が浸漬されている。充電時には、正極7からリチウムイオンが発生し、このリチウムイオンがセパレータ9を透過して負極8側に移動する。一方、放電時には、負極8側にあるリチウムイオンがセパレータ9を透過して正極7側に移動する。 The measurement chamber 6 is filled with an electrolytic solution made of, for example, an organic solvent, and the positive electrode 7, the negative electrode 8, and the separator 9 are immersed in the electrolytic solution. During charging, lithium ions are generated from the positive electrode 7, and the lithium ions pass through the separator 9 and move to the negative electrode 8 side. On the other hand, during discharge, lithium ions on the negative electrode 8 side pass through the separator 9 and move to the positive electrode 7 side.
 1対の電極7,8に通電された状態で、各電極7,8からガスが発生した場合には、それらのガスがセル本体2に形成された1対の捕集部21,22に捕集される。具体的には、セパレータ9に対して正極7側で発生したガスは捕集部21に捕集され、セパレータ9に対して負極8側で発生したガスは捕集部22に捕集されるようになっている。本実施形態では、上述の通り正極7及び負極8を非常に短い距離で配置しながら、発生したガスをそれぞれ異なる捕集部21,22に分離することができる。 When gas is generated from each of the electrodes 7 and 8 while the pair of electrodes 7 and 8 is energized, the gas is captured by the pair of collecting portions 21 and 22 formed in the cell body 2. Be collected. Specifically, the gas generated on the positive electrode 7 side with respect to the separator 9 is collected by the collection unit 21, and the gas generated on the negative electrode 8 side with respect to the separator 9 is collected by the collection unit 22. It has become. In the present embodiment, as described above, the generated gas can be separated into different collectors 21 and 22 while arranging the positive electrode 7 and the negative electrode 8 at a very short distance.
 正極7及び負極8への印加電圧は、充放電装置(図示せず)により制御される。セル本体2内には、図5Bに破線で示すように参照電極20が設けられていてもよい。参照電極20は、例えば正極7と同じ材料であるリチウムにより形成されており、捕集部21に挿入されることにより、測定室6に充填された電解液に浸漬される。ただし、参照電極20の材料は、リチウムに限られるものではなく、他の材料であってもよい。参照電極20を用いれば、参照電極20により測定される電圧を参照電圧として、参照電極20と正極7との間、及び、参照電極20と負極8との間の電位の分析を行うことができる。 The applied voltage to the positive electrode 7 and the negative electrode 8 is controlled by a charge / discharge device (not shown). A reference electrode 20 may be provided in the cell body 2 as indicated by a broken line in FIG. 5B. The reference electrode 20 is made of, for example, lithium, which is the same material as the positive electrode 7, and is immersed in the electrolytic solution filled in the measurement chamber 6 by being inserted into the collection unit 21. However, the material of the reference electrode 20 is not limited to lithium, and may be other materials. If the reference electrode 20 is used, the potential measured between the reference electrode 20 and the positive electrode 7 and between the reference electrode 20 and the negative electrode 8 can be analyzed using the voltage measured by the reference electrode 20 as a reference voltage. .
 第1集電部11は、円柱状に形成されている。第1集電部11における正極7側の端面は平坦面となっており、この平坦面全体が正極7に当接する。一方、第1集電部11における正極7側とは反対側の端面には、スプリング14を収容するための凹部111が形成されており、この凹部111内にスプリング14を収容した状態で、当該スプリング14を介して第1集電部11がカバー部材3により押圧される。 The first current collector 11 is formed in a cylindrical shape. The end surface on the positive electrode 7 side in the first current collector 11 is a flat surface, and the entire flat surface is in contact with the positive electrode 7. On the other hand, a concave portion 111 for accommodating the spring 14 is formed on the end surface of the first current collector 11 opposite to the positive electrode 7 side, and the spring 14 is accommodated in the concave portion 111 in the state where the spring 14 is accommodated. The first current collector 11 is pressed by the cover member 3 via the spring 14.
 電極ガイド10は、円筒状に形成されている。電極ガイド10の内径は、第1集電部11の外径と略一致しており、第1集電部11が電極ガイド10内に挿入された状態で測定室6内に配置される。正極7は、電極ガイド10の内部に配置された状態で保持される。電極ガイド10の周面には複数の開口15が形成されており、これらの開口15が捕集部21に連通している。したがって、セパレータ9に対して正極7側で発生したガスは、開口15を介して捕集部21に導かれる。これにより、正極7側で発生したガスが電極ガイド10内から開口15を介して捕集部21に良好に捕集される。 The electrode guide 10 is formed in a cylindrical shape. The inner diameter of the electrode guide 10 is substantially the same as the outer diameter of the first current collector 11, and is arranged in the measurement chamber 6 with the first current collector 11 being inserted into the electrode guide 10. The positive electrode 7 is held in a state of being disposed inside the electrode guide 10. A plurality of openings 15 are formed in the peripheral surface of the electrode guide 10, and these openings 15 communicate with the collection portion 21. Therefore, the gas generated on the positive electrode 7 side with respect to the separator 9 is guided to the collection unit 21 through the opening 15. As a result, the gas generated on the positive electrode 7 side is well collected from the electrode guide 10 through the opening 15 to the collection unit 21.
 第2集電部12は、それぞれ円柱状に形成された小径部121及び大径部122が、同一軸線上で一体的に形成されることにより構成されている。小径部121における大径部122側とは反対側の端面は平坦面となっており、この平坦面全体が、電極ガイド10の外側で測定室6内に配置された負極8に当接する。 The second current collecting part 12 is configured by integrally forming a small diameter part 121 and a large diameter part 122 formed in a columnar shape on the same axis. The end surface of the small diameter portion 121 opposite to the large diameter portion 122 is a flat surface, and the entire flat surface is in contact with the negative electrode 8 disposed in the measurement chamber 6 outside the electrode guide 10.
 セル本体2の内周面には、小径部121に対向する部分に円弧状の凹部が形成されており、この凹部が、負極8側で発生したガスを捕集部22に導く誘導路23を構成している。すなわち、セパレータ9に対して負極8側で発生したガスは、誘導路23を介して捕集部22に導かれるようになっている。これにより、電極ガイド10の外側において負極8側で発生するガスが、セル本体2に形成された誘導路23を介して捕集部22に良好に捕集される。 On the inner peripheral surface of the cell main body 2, an arc-shaped recess is formed in a portion facing the small diameter portion 121, and this recess provides a guide path 23 that guides the gas generated on the negative electrode 8 side to the collection portion 22. It is composed. That is, the gas generated on the negative electrode 8 side with respect to the separator 9 is guided to the collection unit 22 via the guide path 23. Thereby, the gas generated on the negative electrode 8 side outside the electrode guide 10 is favorably collected by the collection part 22 through the guide path 23 formed in the cell body 2.
 このように、本実施形態では、セパレータ9に対して正極7側で発生したガス、及び、セパレータ9に対して負極8側で発生したガスが、それぞれ分離して1対の捕集部21,22に捕集されるため、各捕集部21,22に捕集されたガスを個別に分析することができる。したがって、正極7側及び負極8側で発生するガスを互いに分離させることなく分析する場合と比較して、より精度よく分析を行うことができる。 Thus, in this embodiment, the gas generated on the positive electrode 7 side with respect to the separator 9 and the gas generated on the negative electrode 8 side with respect to the separator 9 are separated into a pair of collecting portions 21, Therefore, the gas collected in each of the collection units 21 and 22 can be analyzed individually. Therefore, the analysis can be performed with higher accuracy compared to the case where the gas generated on the positive electrode 7 side and the negative electrode 8 side is analyzed without being separated from each other.
 カバー部材5には、例えばステンレス鋼(SUS)により形成された1対のセプタムホルダ31,32が取り付けられる。各セプタムホルダ31,32は、円筒状に形成されており、その下端面で円板状のセプタム33,34をそれぞれ押圧するようにしてカバー部材5に取り付けられる(図5A及び図5B参照)。一方のセプタムホルダ31は、正極7側で発生したガスを捕集する捕集部21に対して、セプタム33を挟んで対向している。他方のセプタムホルダ32は、負極8側で発生したガスを捕集する捕集部22に対して、セプタム34を挟んで対向している。 A pair of septum holders 31 and 32 made of, for example, stainless steel (SUS) are attached to the cover member 5. Each of the septum holders 31 and 32 is formed in a cylindrical shape, and is attached to the cover member 5 so as to press the disc-shaped septums 33 and 34 at the lower end surfaces thereof (see FIGS. 5A and 5B). One septum holder 31 is opposed to the collecting portion 21 that collects the gas generated on the positive electrode 7 side with a septum 33 interposed therebetween. The other septum holder 32 is opposed to the collecting portion 22 that collects the gas generated on the negative electrode 8 side with the septum 34 interposed therebetween.
 このように、1対の捕集部21,22は、それぞれ1対のセプタム33,34により閉塞されている。セプタム33,34は、例えばポリテトラフルオロエチレン(PTFE)又はブチルゴムにより形成されている。これにより、1対のセプタム33,34を介して各捕集部21,22にシリンジ(図示せず)を挿入させ、当該シリンジにより、各捕集部21,22に分離して捕集されたガスを個別に吸引して分析(間欠分析)を行うことができる。このような間欠分析は、シリンジを手動で操作することにより行われてもよいし、シリンジを自動で制御することにより行われてもよい。 Thus, the pair of collection parts 21 and 22 are closed by the pair of septa 33 and 34, respectively. The septums 33 and 34 are made of, for example, polytetrafluoroethylene (PTFE) or butyl rubber. Thereby, a syringe (not shown) was inserted into each collection part 21 and 22 via a pair of septums 33 and 34, and it was separated and collected by each collection part 21 and 22 with the syringe. Analysis (intermittent analysis) can be performed by individually sucking gas. Such intermittent analysis may be performed by manually operating the syringe, or may be performed by automatically controlling the syringe.
 本実施形態では、上記のようなシリンジを用いた間欠分析だけでなく、各捕集部21,22にキャリアガスを供給して、セル本体2内で発生したガスをキャリアガスとともに各捕集部21,22から流出させることにより、このガスを分析(連続分析)することができるようになっている。そのために、各捕集部21,22には、捕集部21,22内にキャリアガスを流入させる流入口211,221と、捕集部21,22からキャリアガスを流出させる流出口212,222とが形成されている(図3参照)。 In the present embodiment, not only the intermittent analysis using the syringe as described above, but also a carrier gas is supplied to each of the collection units 21 and 22, and the gas generated in the cell body 2 is collected together with the carrier gas to each of the collection units. This gas can be analyzed (continuous analysis) by letting it flow out from 21 and 22. Therefore, in each collection part 21 and 22, the inflow ports 211 and 221 into which the carrier gas flows into the collection parts 21 and 22 and the outflow ports 212 and 222 through which the carrier gas flows out from the collection parts 21 and 22 Are formed (see FIG. 3).
 各流入口211,221には、コネクタ213,223が取り付けられる。一方、各流出口212,222には、コネクタ214,224が取り付けられる。各コネクタ213,214,223,224には、それぞれ配管を介して三方バルブ215,216,225,226が接続されている(図1及び図2参照)。 The connectors 213 and 223 are attached to the inlets 211 and 221, respectively. On the other hand, connectors 214 and 224 are attached to the outlets 212 and 222, respectively. Three- way valves 215, 216, 225, and 226 are connected to the connectors 213, 214, 223, and 224 through pipes, respectively (see FIGS. 1 and 2).
 図6は、三方バルブ215,216,225,226の動作について説明するための概略平面図である。各流入口211,221に連通する三方バルブ215,225には、各流入口211,221にキャリアガスを供給するガス供給流路(第2ガス供給流路)217,227が接続されている。一方、各流出口212,222に連通する三方バルブ216,226には、各流出口212,222からキャリアガスを排出させるガス排出流路218,228が接続されている。 FIG. 6 is a schematic plan view for explaining the operation of the three- way valves 215, 216, 225, and 226. Gas supply passages (second gas supply passages) 217 and 227 for supplying a carrier gas to the respective inlets 211 and 221 are connected to the three- way valves 215 and 225 communicating with the respective inlets 211 and 221. On the other hand, gas discharge passages 218 and 228 for discharging carrier gas from the respective outlets 212 and 222 are connected to the three- way valves 216 and 226 communicating with the respective outlets 212 and 222.
 一方の捕集部21に連通する1対の三方バルブ215,216には、バイパス流路219が接続されている。したがって、バイパス切替部を構成する三方バルブ215,216を切り替えることによって、ガス供給流路217を捕集部21又はバイパス流路219のいずれか一方に連通させることができる。同様に、他方の捕集部22に連通する1対の三方バルブ225,226には、バイパス流路229が接続されている。したがって、バイパス切替部を構成する三方バルブ225,226を切り替えることによって、ガス供給流路227を捕集部22又はバイパス流路229のいずれか一方に連通させることができる。 A bypass flow path 219 is connected to a pair of three- way valves 215 and 216 that communicate with one collection unit 21. Therefore, the gas supply channel 217 can be communicated with either the collection unit 21 or the bypass channel 219 by switching the three- way valves 215 and 216 constituting the bypass switching unit. Similarly, a bypass channel 229 is connected to a pair of three- way valves 225 and 226 that communicate with the other collection unit 22. Therefore, the gas supply channel 227 can be communicated with either the collection unit 22 or the bypass channel 229 by switching the three- way valves 225 and 226 constituting the bypass switching unit.
 ガス供給流路217,227を捕集部21,22に連通させた状態では、ガス供給流路217,227及びガス排出流路218,228が捕集部21,22を介して接続され、ガス供給流路217,227から供給されるキャリアガスが、図6に矢印Aで示すように捕集部21,22に導かれる。これに対して、ガス供給流路217,227をバイパス流路219,229に連通させた状態では、ガス供給流路217,227及びガス排出流路218,228が捕集部21,22を介さずに接続され、ガス供給流路217,227から供給されるキャリアガスが、図6に矢印Bで示すようにバイパス流路219,229を介してガス排出流路218,228に導かれる。 In a state where the gas supply flow paths 217 and 227 are communicated with the collection parts 21 and 22, the gas supply flow paths 217 and 227 and the gas discharge flow paths 218 and 228 are connected via the collection parts 21 and 22, The carrier gas supplied from the supply flow paths 217 and 227 is guided to the collection units 21 and 22 as indicated by an arrow A in FIG. On the other hand, in a state where the gas supply passages 217 and 227 are communicated with the bypass passages 219 and 229, the gas supply passages 217 and 227 and the gas discharge passages 218 and 228 are connected via the collection parts 21 and 22, respectively. Without being connected, and the carrier gas supplied from the gas supply passages 217 and 227 is guided to the gas discharge passages 218 and 228 via the bypass passages 219 and 229 as indicated by an arrow B in FIG.
 したがって、ガス供給流路217,227をバイパス流路219,229に連通させることにより、バイパス流路219,229を介してガス供給流路217,227内の空気を排出した後、ガス供給流路217,227を捕集部21,22に連通させて、捕集部21,22にキャリアガスを供給することができる。これにより、ガス供給流路217,227内の空気が捕集部21,22に流入し、分析に悪影響を与えることを防止できるため、より精度よく分析を行うことができる。ただし、バイパス切替部は、ガス供給流路217,227を捕集部21,22又はバイパス流路219,229のいずれに連通させるかを切り替えることができるような構成であれば、三方バルブ215,216,225,226に限らず、他の部品により構成されていてもよい。 Therefore, after the gas supply flow paths 217 and 227 are communicated with the bypass flow paths 219 and 229, the air in the gas supply flow paths 217 and 227 is discharged through the bypass flow paths 219 and 229, and then the gas supply flow paths The carrier gas can be supplied to the collecting units 21 and 22 by connecting the 217 and 227 to the collecting units 21 and 22. Thereby, since it can prevent that the air in the gas supply flow paths 217 and 227 flows into the collection parts 21 and 22 and exerts a bad influence on an analysis, it can analyze more accurately. However, if the bypass switching unit is configured to be able to switch between the gas supply channels 217 and 227 and the collection units 21 and 22 or the bypass channels 219 and 229, the three-way valve 215 It is not limited to 216, 225, 226, and may be composed of other parts.
 図6に示すように、本実施形態では、流入口211から流入するキャリアガスの流入方向Dの延長線上に、流出口212が配置されている。このように、流入口211と流出口212とがキャリアガスの流入方D向に沿って一直線上に配置されるため、流路構成を簡略化することができる。流出口222についても同様に、流入口221から流入するキャリアガスの流入方向の延長線上に配置されている。 As shown in FIG. 6, in this embodiment, the outflow port 212 is arranged on the extended line in the inflow direction D of the carrier gas flowing in from the inflow port 211. Thus, since the inflow port 211 and the outflow port 212 are arrange | positioned on the straight line along the inflow direction D of carrier gas, a flow-path structure can be simplified. Similarly, the outflow port 222 is disposed on an extension line in the inflow direction of the carrier gas flowing in from the inflow port 221.
 また、流入口211からのキャリアガスの流入方向Dの延長線上の途中には、抵抗部材が設けられている。このように、キャリアガスの流路上に抵抗部材が設けられることにより、当該抵抗部材は、捕集部21内を通過するキャリアガスの抵抗となる。この場合、流入口211から流入するキャリアガスが、抵抗部材から抵抗を受けることにより捕集部21内で撹拌される。これにより、捕集部21に捕集されたガスを均一に撹拌して流出口212から流出させ、このガスを分析することができるため、安定した分析結果を得ることができる。 Further, a resistance member is provided in the middle of the extension line in the inflow direction D of the carrier gas from the inflow port 211. Thus, by providing the resistance member on the carrier gas flow path, the resistance member becomes the resistance of the carrier gas passing through the collection portion 21. In this case, the carrier gas flowing in from the inflow port 211 is stirred in the collection unit 21 by receiving resistance from the resistance member. Thereby, since the gas collected by the collection part 21 can be stirred uniformly and made to flow out from the outflow port 212, and this gas can be analyzed, the stable analysis result can be obtained.
 図7A及び図7Bは、捕集部21内に抵抗部材がない状態で連続分析を行ったときの発生水素ガスの検出電圧の変化の一例を示した図である。また、図8A及び図8Bは、捕集部21内に抵抗部材がある状態で連続分析を行ったときの発生水素ガスの検出電圧の変化の一例を示した図である。この例では、正極7側で水素ガスが発生し、その水素ガスが捕集部21に捕集されて流出口212からキャリアガスとともに流出することにより、検出器で連続的に検出される場合について説明する。 FIGS. 7A and 7B are diagrams showing an example of a change in the detection voltage of the generated hydrogen gas when a continuous analysis is performed in a state where there is no resistance member in the collection unit 21. FIG. 8A and 8B are diagrams showing an example of a change in the detection voltage of the generated hydrogen gas when a continuous analysis is performed in a state where there is a resistance member in the collection unit 21. FIG. In this example, hydrogen gas is generated on the positive electrode 7 side, and the hydrogen gas is collected in the collecting unit 21 and flows out together with the carrier gas from the outlet 212, so that it is continuously detected by the detector. explain.
 図7Aでは、流入口211から捕集部21内に流入するキャリアガス(ヘリウム)の流速が、5ml/minである。一方、図7Bでは、流入口211から捕集部21内に流入するキャリアガス(ヘリウム)の流速が、10ml/minである。これらの図7A及び図7Bから明らかなように、捕集部21内に抵抗部材がない状態では、キャリアガスの流速を増加させても検出電圧が安定しておらず、捕集部21に捕集されたガスが均一に撹拌されていないことが分かる。 In FIG. 7A, the flow rate of the carrier gas (helium) flowing into the collection unit 21 from the inlet 211 is 5 ml / min. On the other hand, in FIG. 7B, the flow velocity of the carrier gas (helium) flowing into the collection unit 21 from the inlet 211 is 10 ml / min. As apparent from FIGS. 7A and 7B, in the state where there is no resistance member in the collection unit 21, the detection voltage is not stable even if the flow velocity of the carrier gas is increased, and the collection unit 21 captures the detected voltage. It can be seen that the collected gas is not uniformly stirred.
 図8Aでは、流入口211から捕集部21内に流入するキャリアガス(ヘリウム)の流速が、5ml/minである。一方、図8Bでは、流入口211から捕集部21内に流入するキャリアガス(ヘリウム)の流速が、10ml/minである。これらの図8A及び図8Bから明らかなように、捕集部21内に抵抗部材がある状態で、キャリアガスの流速が比較的遅い場合(例えば5ml/min)には検出電圧が安定していないが、キャリアガスの流速が比較的速い場合(例えば10ml/min)には検出電圧が安定している。このことから、キャリアガスの流速が一定値以上となり、抵抗部材に接触して撹拌流(撹拌されたキャリアガスの流れ)が生じる流速で流入した場合には、捕集部21に捕集されたガスが均一に撹拌されていることが分かる。 In FIG. 8A, the flow rate of the carrier gas (helium) flowing into the collection part 21 from the inlet 211 is 5 ml / min. On the other hand, in FIG. 8B, the flow rate of the carrier gas (helium) flowing into the collection unit 21 from the inflow port 211 is 10 ml / min. As is clear from FIGS. 8A and 8B, the detection voltage is not stable when the flow rate of the carrier gas is relatively slow (for example, 5 ml / min) in the state where the collecting member 21 has a resistance member. However, when the flow rate of the carrier gas is relatively fast (for example, 10 ml / min), the detection voltage is stable. From this, when the flow rate of the carrier gas becomes equal to or higher than a certain value and flows in at a flow rate at which a stirring flow (flow of the stirred carrier gas) comes into contact with the resistance member, the carrier gas is collected in the collection unit 21. It can be seen that the gas is uniformly stirred.
 このように、流入口211から一定値以上の流速でキャリアガスを流入させることにより、抵抗部材に対してキャリアガスを良好に接触させて撹拌流を生じさせることができる。撹拌流を生じさせることにより、捕集部21に捕集されたガスを均一に撹拌することができるため、安定した分析結果を得ることができる。上記一定値は、例えば7.5ml/min以上であることが好ましく、10ml/min以上であればより好ましい。 Thus, by flowing the carrier gas from the inflow port 211 at a flow rate equal to or higher than a certain value, the carrier gas can be brought into good contact with the resistance member to generate a stirring flow. Since the gas collected in the collection part 21 can be stirred uniformly by generating the stirring flow, a stable analysis result can be obtained. The constant value is preferably 7.5 ml / min or more, for example, and more preferably 10 ml / min or more.
 なお、捕集部21内に抵抗部材がない状態では、捕集部21に捕集されたガスの濃度が低くなりすぎるのを防止する観点から、捕集部21内に流入するキャリアガスの流速は5ml/min程度であることが好ましい。本実施形態では、抵抗部材を捕集部21内に設けた上で、捕集部21内に流入するキャリアガスの流速を通常の分析時よりも高い流速とすることにより、捕集部21に捕集されたガスを均一に撹拌することができる。 In the state where there is no resistance member in the collection unit 21, the flow rate of the carrier gas flowing into the collection unit 21 from the viewpoint of preventing the concentration of the gas collected in the collection unit 21 from becoming too low. Is preferably about 5 ml / min. In the present embodiment, the resistance member is provided in the collection unit 21, and then the flow rate of the carrier gas flowing into the collection unit 21 is set to a higher flow rate than that at the time of normal analysis. The collected gas can be stirred uniformly.
 抵抗部材は、例えば参照電極20により代用することができる。ただし、抵抗部材は参照電極20ではなく、他の部材により構成されていてもよい。また、図6では、流入口211からのキャリアガスの流入方向Dの延長線上の途中にのみ抵抗部材(参照電極20)が設けられているが、流入口221からのキャリアガスの流入方向の延長線上の途中にも抵抗部材が設けられていてもよい。 The resistance member can be substituted by the reference electrode 20, for example. However, the resistance member may be composed of other members instead of the reference electrode 20. In FIG. 6, the resistance member (reference electrode 20) is provided only in the middle of the extension line of the carrier gas inflow direction D from the inflow port 211, but the extension of the inflow direction of the carrier gas from the inflow port 221. A resistance member may be provided in the middle of the line.
 参照電極20により測定される電圧を参照電圧として、参照電極20と正極7との間、又は、参照電極20と負極8との間の電位の分析をより精度よく行う上で、参照電極20は、捕集部21の中央部に配置されることが好ましい。しかし、図6に示すように、参照電極20が捕集部21の中央部からずれた位置に配置された場合であっても、十分に精度のよい分析を行うことが可能である。 In order to analyze the potential between the reference electrode 20 and the positive electrode 7 or between the reference electrode 20 and the negative electrode 8 with higher accuracy using the voltage measured by the reference electrode 20 as a reference voltage, The central portion of the collecting part 21 is preferably arranged. However, as shown in FIG. 6, even when the reference electrode 20 is arranged at a position shifted from the central part of the collecting part 21, it is possible to perform sufficiently accurate analysis.
 図9は、参照電極20の電位に対して正極7の電位を変化させて(すなわち、サイクリックボルタンメトリー)、充電及び放電を行ったときの電流の変化の一例を示した図である。この例では、正極7としてコバルト酸リチウムを使用し、負極8としてリチウムを使用したハーフセルのガス分析用セルについて、電解液として1M LiPF6(EC-DEC 1:1)を使用した実験結果を示している。参照電極20は、図6に示すように、捕集部21の中央部からずれた位置に配置されている。 FIG. 9 is a diagram showing an example of changes in current when charging and discharging are performed by changing the potential of the positive electrode 7 with respect to the potential of the reference electrode 20 (that is, cyclic voltammetry). In this example, the results of an experiment using 1M LiPF6 (EC-DEC 1: 1) as an electrolyte for a half-cell gas analysis cell using lithium cobaltate as the positive electrode 7 and lithium as the negative electrode 8 are shown. Yes. As shown in FIG. 6, the reference electrode 20 is disposed at a position shifted from the central portion of the collection portion 21.
 このような材料からなる正極7、負極8及び電解液を用いた場合には、充電時(酸化側)のピーク電位が4.0~4.1Vであることが好ましく、放電時(還元側)のピーク電位が3.8~3.9Vであることが好ましい。図9に示した結果によれば、参照電極20が捕集部21の中央部からずれた位置に配置された場合であっても、充電時のピーク電位V1が、4.0~4.1Vの範囲内にあり、放電時のピーク電位が3.8~3.9Vの範囲内にあるため、十分に精度のよい分析を行うことが可能であることが分かる。なお、この例では、ガス分析用セルがハーフセルである場合の実験結果が示されているが、フルセルのガス分析用セルにおいても同様の結果が得られると考えられる。 When the positive electrode 7, the negative electrode 8, and the electrolytic solution made of such materials are used, the peak potential during charging (oxidation side) is preferably 4.0 to 4.1 V, and during discharge (reduction side) Is preferably 3.8 to 3.9V. According to the result shown in FIG. 9, even when the reference electrode 20 is arranged at a position shifted from the central portion of the collecting portion 21, the peak potential V1 during charging is 4.0 to 4.1 V. Since the peak potential at the time of discharge is in the range of 3.8 to 3.9 V, it can be understood that sufficiently accurate analysis can be performed. Note that, in this example, experimental results when the gas analysis cell is a half cell are shown, but it is considered that the same result can be obtained with a full cell gas analysis cell.
 再び図3を参照すると、セル本体2と各カバー部材3,4との間には、それぞれのシール部材41,42が設けられている。シール部材41は、例えばパーフロにより形成された環状のOリングにより構成されている。一方、シール部材42は、例えばブチルゴムにより形成され、シール部材41よりも外周が長い環状のOリングにより構成されている。 Referring again to FIG. 3, seal members 41 and 42 are provided between the cell body 2 and the cover members 3 and 4. The seal member 41 is constituted by an annular O-ring formed by perflo, for example. On the other hand, the seal member 42 is made of, for example, butyl rubber, and is formed of an annular O-ring whose outer periphery is longer than that of the seal member 41.
 セル本体2とカバー部材5との間には、シール部材43,44,45が設けられている。シール部材43,44は、例えばパーフロにより形成された環状のOリングであり、シール部材44の方がシール部材43よりも外周が長い。一方、シール部材45は、例えばブチルゴムにより形成され、シール部材44よりも外周が長い環状のOリングにより構成されている。 Between the cell body 2 and the cover member 5, seal members 43, 44, and 45 are provided. The seal members 43 and 44 are annular O-rings formed by, for example, perfloation, and the outer periphery of the seal member 44 is longer than the seal member 43. On the other hand, the seal member 45 is made of, for example, butyl rubber, and includes an annular O-ring having a longer outer periphery than the seal member 44.
 このように、測定室6は、シール部材41~45により密閉されている。セル本体2と各カバー部材3,4,5との間に、それぞれ複数のシール部材41~45が設けられるため、測定室6の気密性を高め、セル本体2内に外部の空気を入り込みにくくすることができる。ただし、セル本体2と各カバー部材3,4との間に設けられるシール部材の数は、2つに限らず、3つ以上であってもよい。同様に、セル本体2とカバー部材5との間に設けられるシール部材の数は、3つに限らず、2つであってもよいし、4つ以上であってもよい。また、シール部材の形状や材質は、上記のようなものに限らず、他の形状や材質であってもよい。 Thus, the measurement chamber 6 is sealed by the seal members 41 to 45. Since a plurality of seal members 41 to 45 are provided between the cell main body 2 and the cover members 3, 4, 5, the air tightness of the measurement chamber 6 is improved and it is difficult for outside air to enter the cell main body 2. can do. However, the number of seal members provided between the cell body 2 and the cover members 3 and 4 is not limited to two, and may be three or more. Similarly, the number of seal members provided between the cell main body 2 and the cover member 5 is not limited to three, and may be two or four or more. Further, the shape and material of the seal member are not limited to those described above, but may be other shapes and materials.
 さらに、本実施形態では、各カバー部材3,4,5における複数のシール部材41~45の間に形成された空間に、ガスが供給されるようになっている。具体的には、図1及び図2に示すように、カバー部材3には、2つのコネクタ46,47が取り付けられており、配管61を介して一方のコネクタ46から流入するガスが、カバー部材3側のシール部材41とシール部材42との間の環状の空間を通過した後、他方のコネクタ47から流出する。カバー部材5には、2つのコネクタ48,49が取り付けられており、コネクタ48が配管62を介してコネクタ47に接続されている。これにより、コネクタ47から流出するガスがコネクタ48に流入し、シール部材44とシール部材45との間の環状の空間を通過した後、他方のコネクタ49から流出する。カバー部材4には、2つのコネクタ50,51が取り付けられており、コネクタ50が配管63を介してコネクタ49に接続されている。これにより、コネクタ49から流出するガスがコネクタ50に流入し、カバー部材4側のシール部材41とシール部材42との間の環状の空間を通過した後、他方のコネクタ51から流出する。 Furthermore, in this embodiment, gas is supplied to the space formed between the plurality of seal members 41 to 45 in each cover member 3, 4, 5. Specifically, as shown in FIGS. 1 and 2, two connectors 46 and 47 are attached to the cover member 3, and gas flowing from one connector 46 via the pipe 61 is covered with the cover member 3. After passing through the annular space between the seal member 41 on the third side and the seal member 42, it flows out from the other connector 47. Two connectors 48 and 49 are attached to the cover member 5, and the connector 48 is connected to the connector 47 via a pipe 62. Thereby, the gas flowing out from the connector 47 flows into the connector 48, passes through the annular space between the seal member 44 and the seal member 45, and then flows out from the other connector 49. Two connectors 50 and 51 are attached to the cover member 4, and the connector 50 is connected to the connector 49 via a pipe 63. Thereby, the gas flowing out from the connector 49 flows into the connector 50, passes through the annular space between the sealing member 41 and the sealing member 42 on the cover member 4 side, and then flows out from the other connector 51.
 コネクタ51は、配管64を介してT字管52に接続されており、このT字管52がさらに配管65,66を介してコネクタ53,54に接続されている。コネクタ53,54は、それぞれセプタムホルダ31,32に取り付けられている。これにより、コネクタ51から流出するガスは、T字管52及びコネクタ53,54を介してセプタムホルダ31,32に流入し、当該セプタムホルダ31,32内の空間を介して外部に放出される。具体的には、図5Aに矢印Cで示すように、コネクタ53,54を介してセプタムホルダ31,32に流入したガスは、セプタム33,34に遮られることにより、捕集部21,22に流入することなく、シリンジの挿入孔を介してセプタムホルダ31,32の外部に放出される。 The connector 51 is connected to a T-shaped tube 52 via a pipe 64, and this T-shaped tube 52 is further connected to connectors 53 and 54 via pipes 65 and 66. The connectors 53 and 54 are attached to the septum holders 31 and 32, respectively. Thereby, the gas flowing out from the connector 51 flows into the septum holders 31 and 32 through the T-shaped tube 52 and the connectors 53 and 54, and is discharged to the outside through the space in the septum holders 31 and 32. Specifically, as indicated by an arrow C in FIG. 5A, the gas flowing into the septum holders 31 and 32 via the connectors 53 and 54 is blocked by the septums 33 and 34, thereby being collected in the collection units 21 and 22. Without flowing in, it is discharged to the outside of the septum holders 31 and 32 through the insertion hole of the syringe.
 このように、配管61,62,63は、複数のシール部材41~45の間に形成された空間にガスを供給するガス供給流路(第1ガス供給流路)を構成している。複数のシール部材41~45の間に形成された空間には、配管61,62,63からガスが供給されるため、外部の空気が流入したとしても、薄まる上に、外部に追い出すことが可能である。したがって、セル本体2内に外部の空気が入り込むのを効果的に抑制することができる。 Thus, the pipes 61, 62, and 63 constitute a gas supply channel (first gas supply channel) that supplies gas to the space formed between the plurality of seal members 41 to 45. Since gas is supplied from the pipes 61, 62, and 63 to the space formed between the plurality of seal members 41 to 45, even if external air flows in, it can be thinned and expelled to the outside. It is. Therefore, it is possible to effectively suppress external air from entering the cell body 2.
 配管61から供給され、配管62,63,64,65,66へと順次流れるガスは、ガス供給流路217,227から捕集部21,22に供給されるキャリアガスと同じキャリアガスであってもよい。この場合、ガス供給部(図示せず)から供給されるキャリアガスが、途中で分岐して配管61に導かれるようになっていてもよい。このように、セル本体2内に供給されるキャリアガスが、複数のシール部材41~45の間に形成された空間にも供給されるような構成であれば、上記空間内に供給されるガスがセル本体2内に入り込んだ場合であっても、そのガスが分析に悪影響を与えることがないため、精度よく分析を行うことができる。また、キャリアガスとは異なるガスを準備する必要がないため、装置構成を簡略化することができる。 The gas supplied from the pipe 61 and flowing sequentially to the pipes 62, 63, 64, 65, 66 is the same carrier gas as the carrier gas supplied from the gas supply passages 217, 227 to the collection units 21, 22. Also good. In this case, the carrier gas supplied from a gas supply unit (not shown) may be branched in the middle and guided to the pipe 61. As described above, if the carrier gas supplied into the cell body 2 is also supplied to the space formed between the plurality of seal members 41 to 45, the gas supplied into the space is used. Even when the gas enters the cell body 2, the gas does not adversely affect the analysis, so that the analysis can be performed with high accuracy. In addition, since it is not necessary to prepare a gas different from the carrier gas, the apparatus configuration can be simplified.
 図10Aは、複数のシール部材41~45の間に形成された空間にガスを供給することなく充放電を繰り返した場合の充放電容量の変化を示した図である。図10B及び図10Cは、複数のシール部材41~45の間に形成された空間にガスを供給しながら充放電を繰り返した場合の充放電容量の変化を示した図であり、図10Bはガスの流速が10ml/minの場合、図10Cはガスの流速が50ml/minの場合をそれぞれ示している。 FIG. 10A is a diagram showing a change in charge / discharge capacity when charge / discharge is repeated without supplying gas to a space formed between the plurality of seal members 41 to 45. 10B and 10C are diagrams showing changes in charge / discharge capacity when charge / discharge is repeated while supplying gas to a space formed between the plurality of seal members 41 to 45. FIG. FIG. 10C shows the case where the gas flow rate is 50 ml / min.
 図10Aに示すように、1回目の充電時(S11)及び放電時(S12)の容量に対して、2回目の充電時(S21)及び放電時(S22)の容量はそれぞれ減少している。同様に、3回目の充電時(S31)及び放電時(S32)の容量はさらに減少し、4回目の充電時(S41)及び放電時(S42)の容量はさらに減少している。 As shown in FIG. 10A, the capacities at the second charge (S21) and the discharge (S22) are reduced with respect to the capacities at the first charge (S11) and discharge (S12), respectively. Similarly, the capacity at the time of the third charge (S31) and the discharge (S32) is further reduced, and the capacity at the time of the fourth charge (S41) and the discharge (S42) is further reduced.
 複数のシール部材41~45の間に形成された空間に10ml/minの流速でガスを供給しながら充放電を繰り返した場合であっても、図10Bに示すように、充放電を繰り返すたびに容量が減少しているが、その減少量が小さいことが分かる。また、ガスの流速を50ml/minに増加させた場合には、図10Cに示すように、充放電を繰り返すことによる容量の減少量がさらに小さくなる。 Even when charging / discharging is repeated while supplying gas at a flow rate of 10 ml / min to the space formed between the plurality of sealing members 41 to 45, as shown in FIG. 10B, each time charging / discharging is repeated. It can be seen that the capacity is reduced, but the amount of reduction is small. Further, when the gas flow rate is increased to 50 ml / min, as shown in FIG. 10C, the amount of decrease in capacity due to repeated charge and discharge is further reduced.
 充放電を繰り返した場合、セル本体2内に入り込む外部の空気に含まれる水分の影響により、電極(正極7又は負極8)が劣化するため、充放電容量は徐々に減少することとなる。しかし、複数のシール部材41~45の間に形成された空間にガスを供給すれば、図10B及び図10Cに示すように、充放電容量の減少量が小さくなっていることから、セル本体2内に外部の空気が入り込むのを効果的に抑制できていることが分かる。 When charging / discharging is repeated, the electrode (positive electrode 7 or negative electrode 8) deteriorates due to the influence of moisture contained in the external air that enters the cell body 2, so that the charging / discharging capacity gradually decreases. However, if the gas is supplied to the space formed between the plurality of seal members 41 to 45, as shown in FIG. 10B and FIG. 10C, the reduction amount of the charge / discharge capacity becomes small. It can be seen that the outside air can be effectively suppressed from entering.
 図11は、セル本体2内のガスに含まれる酸素濃度の経時変化を示した図である。この例では、セル本体2内を密閉した状態で1日置いた場合にセル本体2内のガスから検出される酸素の検出強度が時間経過に対応付けて示されている。 FIG. 11 is a diagram showing a change with time of the oxygen concentration contained in the gas in the cell body 2. In this example, the detection intensity of oxygen detected from the gas in the cell main body 2 when the cell main body 2 is sealed for one day is shown in association with the passage of time.
 図11に直線L1で示した酸素濃度の変化は、複数のシール部材41~45の間に形成された空間にガスを供給しなかった場合の測定結果である。一方、図11に直線L2,L3で示した酸素濃度の変化は、複数のシール部材41~45の間に形成された空間にガスを供給した場合の測定結果であり、直線L2はガスの流速が10ml/minの場合、直線L3はガスの流速が50ml/minの場合を示している。 The change in the oxygen concentration indicated by the straight line L1 in FIG. 11 is a measurement result when gas is not supplied to the space formed between the plurality of seal members 41 to 45. On the other hand, the change in oxygen concentration indicated by the straight lines L2 and L3 in FIG. 11 is a measurement result when gas is supplied to the space formed between the plurality of seal members 41 to 45, and the straight line L2 indicates the flow velocity of the gas. Is 10 ml / min, the straight line L3 indicates the case where the gas flow rate is 50 ml / min.
 これらを比較すると、ガスを供給しなかった場合(直線L1)には酸素濃度が上昇しやすいのに対して、ガスを供給した場合(直線L2,L3)には酸素濃度が上昇しにくく、セル本体2内に外部の空気が入り込むのを効果的に抑制できていることが分かる。また、ガスの流速が速いほどセル本体2内に外部の空気が入り込みにくいことが分かる。 When these are compared, the oxygen concentration tends to increase when the gas is not supplied (straight line L1), whereas the oxygen concentration hardly increases when the gas is supplied (straight lines L2 and L3). It can be seen that external air can be effectively prevented from entering the main body 2. It can also be seen that the higher the gas flow rate, the more difficult it is for outside air to enter the cell body 2.
 図12は、コネクタ53,54を介してセプタムホルダ31,32に遮蔽用ガスを流入させるか否かに応じたシリンジ内への酸素の流入量の違いについて説明するための図である。遮蔽用ガスは、例えばキャリアガス又はパージガスであるが、配管の引き回し等の観点からはキャリアガスであることが好ましい。この例では、セプタムホルダ31,32を介してセプタム33,34にシリンジを貫通させ、捕集部21,22内のガスを採取した場合に、ガスの採取量と、採取したガス中の酸素濃度を測定した結果との関係が示されている。 FIG. 12 is a diagram for explaining the difference in the amount of oxygen flowing into the syringe depending on whether or not the shielding gas is allowed to flow into the septum holders 31 and 32 via the connectors 53 and 54. The shielding gas is, for example, a carrier gas or a purge gas, but is preferably a carrier gas from the viewpoint of piping routing. In this example, when the syringes are passed through the septums 33 and 34 through the septum holders 31 and 32 and the gas in the collection parts 21 and 22 is collected, the amount of collected gas and the oxygen concentration in the collected gas The relationship with the measurement result is shown.
 セプタム33,34を介して各捕集部21,22にシリンジを挿入させ、当該シリンジにより、各捕集部21,22に分離して捕集されたガスを個別に吸引した後、シリンジをセプタム33,34から抜き取る際には、シリンジ内が減圧された状態となる。すなわち、各捕集部21,22に捕集される少量(数μl程度)のガスに対して、シリンジへのガスの採取量の方が多くなることにより、シリンジ内が減圧された状態となる。そのため、シリンジがセプタム33,34から抜き取られた瞬間には、セプタムホルダ31,32内に位置するシリンジの先端から周囲のガスがシリンジ内に吸い込まれることとなる。このときシリンジ内に吸い込まれるガスの量は、シリンジ内へのガスの採取量が多いほど多くなる。 A syringe is inserted into each of the collection units 21 and 22 via the septums 33 and 34, and the collected gas is separated into the collection units 21 and 22 individually by the syringe, and then the syringe is inserted into the septum. When extracting from 33 and 34, the inside of a syringe will be in the pressure-reduced state. That is, with respect to a small amount (approximately several μl) of gas collected in each of the collection units 21 and 22, the amount of gas collected into the syringe is increased, thereby reducing the pressure inside the syringe. . Therefore, at the moment when the syringe is extracted from the septums 33 and 34, the surrounding gas is sucked into the syringe from the tip of the syringe located in the septum holders 31 and 32. At this time, the amount of gas sucked into the syringe increases as the amount of gas collected into the syringe increases.
 図12に示すように、コネクタ53,54を介してセプタムホルダ31,32に遮蔽用ガス(ヘリウム)を流入させなかった場合(Heなし)には、シリンジ内へのガスの採取量が多くなると、採取したガス中の酸素濃度が非常に高くなることから、シリンジ内に外部の空気が多量に吸い込まれていることが分かる。これに対して、コネクタ53,54を介してセプタムホルダ31,32に遮蔽用ガス(ヘリウム)を流入させた場合(Heあり)には、シリンジ内へのガスの採取量が多くなっても、採取したガス中の酸素濃度が比較的低い。 As shown in FIG. 12, when the shielding gas (helium) is not flowed into the septum holders 31 and 32 via the connectors 53 and 54 (without He), the amount of gas collected into the syringe increases. Since the oxygen concentration in the collected gas becomes very high, it can be seen that a large amount of external air is sucked into the syringe. On the other hand, when the shielding gas (helium) is introduced into the septum holders 31 and 32 via the connectors 53 and 54 (with He), even if the amount of collected gas into the syringe increases, The oxygen concentration in the collected gas is relatively low.
 これは、シリンジの先端部が位置するセプタムホルダ31,32内に遮蔽用ガス(ヘリウム)が供給されていることによるものである。すなわち、シリンジ内が減圧された状態であっても、外部の空気の代わりに、セプタムホルダ31,32内の空間に供給される遮蔽用ガスがシリンジ内に入り込むため、シリンジ内に外部の空気が入り込むのを防止することができる。 This is due to the fact that shielding gas (helium) is supplied into the septum holders 31 and 32 where the tip of the syringe is located. That is, even when the inside of the syringe is depressurized, the shielding gas supplied to the space inside the septum holders 31 and 32 enters the syringe instead of the outside air. Intrusion can be prevented.
2.ガス分析システムの第1実施形態
 図13A及び図13Bは、本発明の第1実施形態に係るガス分析システムの構成例を示した流路図である。このガス分析システムは、上述のようなガス分析用セル1と、当該ガス分析用セル1のセル本体2内で発生したガスを分析するガス分析部100とを備えている。
2. First Embodiment of Gas Analysis System FIGS. 13A and 13B are flow charts showing a configuration example of a gas analysis system according to the first embodiment of the present invention. The gas analysis system includes the gas analysis cell 1 as described above and a gas analysis unit 100 that analyzes the gas generated in the cell body 2 of the gas analysis cell 1.
 このガス分析システムは、ガス分析用セル1を用いて連続分析を行うためのものであり、1対の捕集部21,22の少なくとも一方に捕集されたガスがガス分析部100に導かれる。すなわち、図6に示すガス排出流路218から排出される捕集部21内のガス、及び、ガス排出流路228から排出される捕集部22内のガスの少なくとも一方が、ガス分析部100による分析対象となる。捕集部21で捕集されたガス、及び、捕集部22で捕集されたガスは、それぞれ異なるガス分析部100に導かれて分析される。図13A及び図13Bでは、捕集部21又は捕集部22の一方で捕集されたガスをガス分析部100で分析する場合について説明する。 This gas analysis system is for performing continuous analysis using the gas analysis cell 1, and the gas collected in at least one of the pair of collection units 21 and 22 is guided to the gas analysis unit 100. . That is, at least one of the gas in the collection unit 21 discharged from the gas discharge channel 218 and the gas in the collection unit 22 discharged from the gas discharge channel 228 shown in FIG. It becomes the analysis object by. The gas collected by the collection unit 21 and the gas collected by the collection unit 22 are guided to different gas analysis units 100 and analyzed. 13A and 13B, a case where the gas collected by one of the collection unit 21 or the collection unit 22 is analyzed by the gas analysis unit 100 will be described.
 ガス分析部100には、フローコントローラ101、試料導入部102、カラム103及び検出器104などが備えられている。キャリアガスとしては、例えばヘリウムが用いられる。ただし、ヘリウムに限らず、アルゴンなどの他のガスがキャリアガスとして用いられてもよい。ガス供給部(図示せず)から供給されるキャリアガスの流量は、フローコントローラ101により制御される。フローコントローラ101からガス分析用セル1に供給されるキャリアガスは、セル本体2内で発生したガスとともに試料導入部102に導かれ、この試料導入部102からカラム103に導入される。 The gas analysis unit 100 includes a flow controller 101, a sample introduction unit 102, a column 103, a detector 104, and the like. For example, helium is used as the carrier gas. However, not only helium but also other gases such as argon may be used as the carrier gas. A flow controller 101 controls the flow rate of the carrier gas supplied from a gas supply unit (not shown). The carrier gas supplied from the flow controller 101 to the cell 1 for gas analysis is guided to the sample introduction unit 102 together with the gas generated in the cell body 2 and is introduced from the sample introduction unit 102 to the column 103.
 カラム103に導入されたガスに含まれる成分は、カラム103を通過する過程で分離され、分離された各成分が検出器104により検出される。検出器104としては、例えばバリア放電イオン化検出器(BID)又はパルス放電イオン化検出器(PDD)が用いられる。これにより、検出感度が高いバリア放電イオン化検出器又はパルス放電イオン化検出器を用いて、より精度よく分析を行うことができる。 Components contained in the gas introduced into the column 103 are separated in the process of passing through the column 103, and each separated component is detected by the detector 104. As the detector 104, for example, a barrier discharge ionization detector (BID) or a pulse discharge ionization detector (PDD) is used. Thereby, analysis can be performed with higher accuracy using a barrier discharge ionization detector or a pulse discharge ionization detector with high detection sensitivity.
 特に、電池に使用されるような正極7及び負極8から発生するガスには、水素、酸素、窒素、一酸化炭素、二酸化炭素又はメタンなどが含まれており、バリア放電イオン化検出器やパルス放電イオン化検出器は、これらのガスに対する検出感度は高いものの、ヘリウムは検出できない。したがって、キャリアガスとしてヘリウムを使用し、ガス分析用セル1内で発生するガスをバリア放電イオン化検出器又はパルス放電イオン化検出器で検出すれば、キャリアガスの成分の影響を受けることなく、ガス分析用セル1内で発生する幅広い種類のガスを精度よく分析することができる。ただし、検出器104は、これらに限られるものではなく、例えば熱伝導度型検出器(TCD)又は水素炎イオン化型検出器(FID)などの他の検出器であってもよい。熱伝導度型検出器は、水素、酸素、窒素、一酸化炭素、二酸化炭素及びメタンの全ての成分に対して感度が悪く、水素炎イオン化型検出器は、メタンに感度があるものの、水素、酸素、窒素、一酸化炭素及び二酸化炭素には感度がないため、水素、酸素、窒素、一酸化炭素、二酸化炭素及びメタンの全ての成分に対して感度がよいバリア放電イオン化検出器やパルス放電イオン化検出器は、本実施形態における検出器104としてより適切である。 In particular, the gas generated from the positive electrode 7 and the negative electrode 8 used in batteries includes hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide, methane, etc., and is used for barrier discharge ionization detectors and pulse discharges. The ionization detector has high detection sensitivity for these gases, but cannot detect helium. Therefore, if helium is used as the carrier gas and the gas generated in the gas analysis cell 1 is detected by the barrier discharge ionization detector or the pulse discharge ionization detector, the gas analysis is not affected by the component of the carrier gas. A wide variety of gases generated in the working cell 1 can be analyzed with high accuracy. However, the detector 104 is not limited to these, and may be another detector such as a thermal conductivity detector (TCD) or a flame ionization detector (FID). Thermal conductivity detectors are insensitive to all components of hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide and methane, while flame ionization detectors are sensitive to methane, Oxygen, nitrogen, carbon monoxide, and carbon dioxide are insensitive, so barrier discharge ionization detectors and pulsed discharge ionization that are sensitive to all components of hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide, and methane A detector is more suitable as the detector 104 in this embodiment.
 図13A及び図13Bの例では、フローコントローラ101と試料導入部102との間に、供給切替部としての六方バルブ105を介してガス分析用セル1が接続されている。具体的には、六方バルブ105に備えられた6つのポート151~156のうち、第1ポート151にフローコントローラ101が接続されており、第2ポート152に試料導入部102が接続されている。また、ガス分析用セル1は、ガス供給流路217,227が第3ポート153に接続され、ガス排出流路218,228が第4ポート154に接続されている。第5ポート155には、ガス分析部100のフローコントローラ101とは異なるフローコントローラ106が接続されており、第6ポート156は排気ポートとなっている。フローコントローラ106からは、フローコントローラ101と同じキャリアガス(例えばヘリウム)が供給される。 13A and 13B, the gas analysis cell 1 is connected between the flow controller 101 and the sample introduction unit 102 via a six-way valve 105 as a supply switching unit. Specifically, among the six ports 151 to 156 provided in the six-way valve 105, the flow controller 101 is connected to the first port 151, and the sample introduction unit 102 is connected to the second port 152. In the gas analysis cell 1, the gas supply channels 217 and 227 are connected to the third port 153, and the gas discharge channels 218 and 228 are connected to the fourth port 154. A flow controller 106 different from the flow controller 101 of the gas analyzer 100 is connected to the fifth port 155, and the sixth port 156 is an exhaust port. The same carrier gas (for example, helium) as the flow controller 101 is supplied from the flow controller 106.
 図13Aの状態では、第1ポート151と第2ポート152が連通している。したがって、フローコントローラ101から供給されるキャリアガスは、ガス分析用セル1を介さずに試料導入部102へと送られ、当該試料導入部102からカラム103に供給されることとなる。この状態では、ガス分析用セル1において発生したガスはカラム103に導入されず、キャリアガスのみがカラム103に供給される。 In the state of FIG. 13A, the first port 151 and the second port 152 are in communication. Therefore, the carrier gas supplied from the flow controller 101 is sent to the sample introduction unit 102 without passing through the gas analysis cell 1, and is supplied from the sample introduction unit 102 to the column 103. In this state, the gas generated in the gas analysis cell 1 is not introduced into the column 103 and only the carrier gas is supplied to the column 103.
 また、図13Aの状態では、第3ポート153と第5ポート155が連通し、第4ポート154と第6ポート156が連通している。したがって、フローコントローラ106から供給されるキャリアガスは、第5ポート155及び第3ポート153を介してガス分析用セル1内に供給され、セル本体2内で発生するガスとともに、第4ポート154及び第6ポート156を介して外部に排出される。 In the state of FIG. 13A, the third port 153 and the fifth port 155 communicate with each other, and the fourth port 154 and the sixth port 156 communicate with each other. Therefore, the carrier gas supplied from the flow controller 106 is supplied into the gas analysis cell 1 through the fifth port 155 and the third port 153, and together with the gas generated in the cell body 2, the fourth port 154 and It is discharged to the outside through the sixth port 156.
 この状態から六方バルブ105が回転され、図13Bのような状態になると、第1ポート151と第3ポート153が連通し、第2ポート152と第4ポート154が連通する。この図13Bの状態では、フローコントローラ101からのキャリアガスがガス分析用セル1内に供給され、セル本体2内で発生するガスとともに試料導入部102からカラム103に導入される。また、第5ポート155と第6ポート156が連通し、フローコントローラ106からのキャリアガスは、そのまま外部に排出される。 From this state, when the six-way valve 105 is rotated to a state as shown in FIG. 13B, the first port 151 and the third port 153 communicate with each other, and the second port 152 and the fourth port 154 communicate with each other. In the state of FIG. 13B, the carrier gas from the flow controller 101 is supplied into the gas analysis cell 1 and introduced into the column 103 from the sample introduction unit 102 together with the gas generated in the cell body 2. Further, the fifth port 155 and the sixth port 156 communicate with each other, and the carrier gas from the flow controller 106 is discharged to the outside as it is.
 図13Bに示した状態は、ガス分析用セル1を介してガス分析部100にキャリアガスが供給される第1供給状態である。一方、図13Aに示した状態は、ガス分析用セル1を介さずにガス分析部100にキャリアガスが供給される第2供給状態である。六方バルブ105は、例えば5~40分程度の所定のインターバルで回転されることにより、第1供給状態と第2供給状態とが交互に切り替えられる。 The state shown in FIG. 13B is a first supply state in which the carrier gas is supplied to the gas analysis unit 100 via the gas analysis cell 1. On the other hand, the state shown in FIG. 13A is a second supply state in which the carrier gas is supplied to the gas analysis unit 100 without passing through the gas analysis cell 1. The six-way valve 105 is alternately switched between the first supply state and the second supply state by rotating at a predetermined interval of, for example, about 5 to 40 minutes.
 本実施形態では、六方バルブ105により、ガス分析用セル1内で発生したガスをキャリアガスとともにガス分析部100に供給する第1供給状態(図13B参照)、又は、ガス分析用セル1内で発生したガスを含まないキャリアガスをガス分析部100に供給する第2供給状態(図13A参照)のいずれかに切り替えることができる。そして、第1供給状態では、ガス分析用セル1内で発生したガスをキャリアガスとともにガス分析部100に直接供給することにより、連続分析を行うことができる。したがって、ガス分析用セル1内で発生したガスがシリンジを用いてガス分析部100に注入されるような構成と比較して、外部の空気がガスの流路内に混入しにくい。これにより、空気の混入が分析結果に影響を与えることを防止できるため、より精度よく連続分析を行うことができる。 In the present embodiment, the gas generated in the gas analysis cell 1 is supplied together with the carrier gas to the gas analysis unit 100 by the six-way valve 105 (see FIG. 13B), or in the gas analysis cell 1 It is possible to switch to one of the second supply states (see FIG. 13A) in which the carrier gas not containing the generated gas is supplied to the gas analysis unit 100. In the first supply state, continuous analysis can be performed by directly supplying the gas generated in the gas analysis cell 1 to the gas analysis unit 100 together with the carrier gas. Therefore, compared with a configuration in which the gas generated in the gas analysis cell 1 is injected into the gas analysis unit 100 using a syringe, external air is less likely to enter the gas flow path. Thereby, since mixing of air can prevent an analysis result from being influenced, continuous analysis can be performed more accurately.
 また、六方バルブ105が切り替えられる間のインターバルごとに、ガス分析用セル1内で発生するガスをガス分析部100に供給して分析することができるため、各インターバルで発生するガスの定量分析を正確に行うことができる。 Further, since the gas generated in the gas analysis cell 1 can be supplied to the gas analysis unit 100 for analysis every interval while the hexagonal valve 105 is switched, the quantitative analysis of the gas generated in each interval can be performed. Can be done accurately.
 さらに、図13Aに示す第2供給状態においてガス分析用セル1を六方バルブ105に取り付ければ、当該ガス分析用セル1がガス分析部100に連通しない状態で配管の接続を行うことができる。これにより、ガス分析部100に連通する配管を慌ててガス分析用セル1に接続する必要がないため、取付作業が容易になる。 Furthermore, if the gas analysis cell 1 is attached to the six-way valve 105 in the second supply state shown in FIG. 13A, the piping can be connected in a state where the gas analysis cell 1 does not communicate with the gas analysis unit 100. This eliminates the need to connect the gas analysis cell 1 to the gas analysis cell 1 by connecting a pipe communicating with the gas analysis unit 100, thereby facilitating the installation work.
 特に、本実施形態では、図13Bに示す第1供給状態において、ガス分析用セル1内で発生したガスが、当該ガス分析用セル1内からガス分析部100に直接供給される。したがって、簡単な構成で、より精度よく分析を行うことができる。ただし、供給切替部は、六方バルブ105に限らず、他のバルブにより構成されていてもよい。 In particular, in the present embodiment, in the first supply state shown in FIG. 13B, the gas generated in the gas analysis cell 1 is directly supplied from the gas analysis cell 1 to the gas analysis unit 100. Therefore, it is possible to perform analysis with higher accuracy with a simple configuration. However, the supply switching unit is not limited to the six-way valve 105, and may be configured by other valves.
 なお、ガス分析用セル1及び六方バルブ105は、例えば室温~90℃、より好ましくは80℃程度の比較的高い温度に温調することもできる。これにより、厳密な耐久性チェックが可能となる。温調温度は、ガス分析用セル1内の電解液の沸点に応じて、適切な値に設定される。 Note that the gas analysis cell 1 and the hexagonal valve 105 can be adjusted to a relatively high temperature of, for example, room temperature to 90 ° C., more preferably about 80 ° C. Thereby, a strict durability check is possible. The temperature control temperature is set to an appropriate value according to the boiling point of the electrolytic solution in the gas analysis cell 1.
3.ガス分析システムの第2実施形態
 図14A及び図14Bは、本発明の第2実施形態に係るガス分析システムの構成例を示した流路図である。このガス分析システムは、第1実施形態と同様にガス分析用セル1を用いて連続分析を行うためのものであり、ガス分析用セル1と、当該ガス分析用セル1のセル本体2内で発生したガスを分析するガス分析部100とを備えている。ガス分析部100の構成は第1実施形態と同様であるため、同様の構成については図に同一符号を付して詳細な説明を省略する。
3. Second Embodiment of Gas Analysis System FIGS. 14A and 14B are flow charts showing a configuration example of a gas analysis system according to a second embodiment of the present invention. This gas analysis system is for performing continuous analysis using the gas analysis cell 1 as in the first embodiment, and in the gas analysis cell 1 and the cell body 2 of the gas analysis cell 1. And a gas analyzer 100 for analyzing the generated gas. Since the configuration of the gas analysis unit 100 is the same as that of the first embodiment, the same reference numerals are given to the same configurations, and detailed description thereof is omitted.
 このガス分析システムでは、第1実施形態と同様に、1対の捕集部21,22の少なくとも一方に捕集されたガスがガス分析部100に導かれる。すなわち、図6に示すガス排出流路218から排出される捕集部21内のガス、及び、ガス排出流路228から排出される捕集部22内のガスの少なくとも一方が、ガス分析部100による分析対象となる。捕集部21で捕集されたガス、及び、捕集部22で捕集されたガスは、それぞれ異なるガス分析部100に導かれて分析される。図14A及び図14Bでは、捕集部21又は捕集部22の一方で捕集されたガスをガス分析部100で分析する場合について説明する。 In this gas analysis system, the gas collected in at least one of the pair of collection units 21 and 22 is guided to the gas analysis unit 100 as in the first embodiment. That is, at least one of the gas in the collection unit 21 discharged from the gas discharge channel 218 and the gas in the collection unit 22 discharged from the gas discharge channel 228 shown in FIG. It becomes the analysis object by. The gas collected by the collection unit 21 and the gas collected by the collection unit 22 are guided to different gas analysis units 100 and analyzed. 14A and 14B, a case where the gas collected by one of the collection unit 21 or the collection unit 22 is analyzed by the gas analysis unit 100 will be described.
 図14A及び図14Bの例では、フローコントローラ101と試料導入部102との間に、供給切替部としての六方バルブ105を介してガス分析用セル1及びトラップ部(バッファ部)107が接続されている。トラップ部107は、いわゆるサンプルチューブであり、ガス分析用セル1の内容積よりも大きいバッファ領域を内部に有する中空状の部材である。 In the example of FIGS. 14A and 14B, the gas analysis cell 1 and the trap unit (buffer unit) 107 are connected between the flow controller 101 and the sample introduction unit 102 via a six-way valve 105 as a supply switching unit. Yes. The trap unit 107 is a so-called sample tube, and is a hollow member having a buffer region larger than the internal volume of the gas analysis cell 1 inside.
 六方バルブ105に備えられた6つのポート151~156のうち、第1ポート151にフローコントローラ106が接続されており、フローコントローラ106と第1ポート151との間にガス分析用セル1が介装されている。すなわち、ガス分析用セル1のガス供給流路217,227がフローコントローラ106に接続され、ガス排出流路218,228が第1ポート151に接続されている。また、第2ポート152と第5ポート155が接続されており、これらの第2ポート152と第5ポート155との間にトラップ部107が介装されている。第6ポート156はフローコントローラ101に接続されており、第4ポート154は試料導入部102に接続されている。第3ポート153は排気ポートとなっている。フローコントローラ106からは、フローコントローラ101と同じキャリアガス(例えばヘリウム)が供給される。 The flow controller 106 is connected to the first port 151 among the six ports 151 to 156 provided in the hexagonal valve 105, and the gas analysis cell 1 is interposed between the flow controller 106 and the first port 151. Has been. That is, the gas supply channels 217 and 227 of the gas analysis cell 1 are connected to the flow controller 106, and the gas discharge channels 218 and 228 are connected to the first port 151. Further, the second port 152 and the fifth port 155 are connected, and the trap unit 107 is interposed between the second port 152 and the fifth port 155. The sixth port 156 is connected to the flow controller 101, and the fourth port 154 is connected to the sample introduction unit 102. The third port 153 is an exhaust port. The same carrier gas (for example, helium) as the flow controller 101 is supplied from the flow controller 106.
 図14Aの状態では、第4ポート154と第6ポート156が連通している。したがって、フローコントローラ101から供給されるキャリアガスは、トラップ部107を介さずに試料導入部102へと送られ、当該試料導入部102からカラム103に供給されることとなる。この状態では、ガス分析用セル1において発生したガスはカラム103に導入されず、キャリアガスのみがカラム103に供給される。 In the state of FIG. 14A, the fourth port 154 and the sixth port 156 are in communication. Therefore, the carrier gas supplied from the flow controller 101 is sent to the sample introduction unit 102 without passing through the trap unit 107, and is supplied from the sample introduction unit 102 to the column 103. In this state, the gas generated in the gas analysis cell 1 is not introduced into the column 103 and only the carrier gas is supplied to the column 103.
 また、図14Aの状態では、第1ポート151と第2ポート152が連通し、第3ポート153と第5ポート155が連通している。したがって、フローコントローラ106から供給されるキャリアガスは、ガス分析用セル1内に供給され、セル本体2内で発生するガスとともに、第1ポート151及び第2ポート152を介してトラップ部107を通過した後、第5ポート155及び第3ポート153を介して外部に排出される。これにより、セル本体2内で発生したガスがトラップ部107に収容される。 14A, the first port 151 and the second port 152 communicate with each other, and the third port 153 and the fifth port 155 communicate with each other. Therefore, the carrier gas supplied from the flow controller 106 is supplied into the gas analysis cell 1 and passes through the trap unit 107 via the first port 151 and the second port 152 together with the gas generated in the cell body 2. After that, it is discharged to the outside through the fifth port 155 and the third port 153. Thereby, the gas generated in the cell body 2 is accommodated in the trap portion 107.
 この状態から六方バルブ105が回転され、図14Bのような状態になると、第2ポート152と第4ポート154が連通し、第5ポート155と第6ポート156が連通する。この図14Bの状態では、フローコントローラ101からのキャリアガスがトラップ部107内に供給され、当該トラップ部107内のガスとともに試料導入部102からカラム103に導入される。また、第1ポート151と第3ポート153が連通し、フローコントローラ106からのキャリアガスは、ガス分析用セル1を介して、そのまま外部に排出される。 In this state, when the six-way valve 105 is rotated to reach the state as shown in FIG. 14B, the second port 152 and the fourth port 154 communicate with each other, and the fifth port 155 and the sixth port 156 communicate with each other. In the state of FIG. 14B, the carrier gas from the flow controller 101 is supplied into the trap unit 107 and introduced into the column 103 from the sample introduction unit 102 together with the gas in the trap unit 107. In addition, the first port 151 and the third port 153 communicate with each other, and the carrier gas from the flow controller 106 is directly discharged to the outside through the gas analysis cell 1.
 図14Bに示した状態は、トラップ部107を介してガス分析部100にキャリアガスが供給される第1供給状態である。一方、図14Aに示した状態は、トラップ部107を介さずにガス分析部100にキャリアガスが供給される第2供給状態である。六方バルブ105は、例えば5~40分程度の所定のインターバルで回転されることにより、第1供給状態と第2供給状態とが交互に切り替えられる。 The state shown in FIG. 14B is a first supply state in which the carrier gas is supplied to the gas analysis unit 100 via the trap unit 107. On the other hand, the state shown in FIG. 14A is a second supply state in which the carrier gas is supplied to the gas analysis unit 100 without using the trap unit 107. The six-way valve 105 is alternately switched between the first supply state and the second supply state by rotating at a predetermined interval of, for example, about 5 to 40 minutes.
 本実施形態では、六方バルブ105により、ガス分析用セル1内で発生してトラップ部107に収容されたガスをキャリアガスとともにガス分析部100に供給する第1供給状態(図14B参照)、又は、ガス分析用セル1内で発生したガスを含まないキャリアガスをガス分析部100に供給する第2供給状態(図14A参照)のいずれかに切り替えることができる。そして、第1供給状態では、ガス分析用セル1内で発生してトラップ部107に収容されたガスをキャリアガスとともにガス分析部100に直接供給することにより、連続分析を行うことができる。したがって、ガス分析用セル1内で発生したガスがシリンジを用いてガス分析部100に注入されるような構成と比較して、外部の空気がガスの流路内に混入しにくい。これにより、空気の混入が分析結果に影響を与えることを防止できるため、より精度よく連続分析を行うことができる。 In the present embodiment, a first supply state in which the gas generated in the gas analysis cell 1 and accommodated in the trap unit 107 is supplied to the gas analysis unit 100 together with the carrier gas by the hexagonal valve 105 (see FIG. 14B), or It is possible to switch to any one of the second supply states (see FIG. 14A) in which the carrier gas not containing the gas generated in the gas analysis cell 1 is supplied to the gas analyzer 100. In the first supply state, continuous analysis can be performed by directly supplying the gas generated in the gas analysis cell 1 and accommodated in the trap unit 107 to the gas analysis unit 100 together with the carrier gas. Therefore, compared with a configuration in which the gas generated in the gas analysis cell 1 is injected into the gas analysis unit 100 using a syringe, external air is less likely to enter the gas flow path. Thereby, since mixing of air can prevent an analysis result from being influenced, continuous analysis can be performed more accurately.
 また、六方バルブ105が切り替えられる間のインターバルごとに、ガス分析用セル1内で発生してトラップ部107に収容されたガスをガス分析部100に供給して分析することができるため、各インターバルで発生するガスの定量分析を正確に行うことができる。 Further, since the gas generated in the gas analysis cell 1 and stored in the trap unit 107 can be supplied to the gas analysis unit 100 for analysis every interval during which the hexagonal valve 105 is switched, each interval can be analyzed. Quantitative analysis of gas generated in can be performed accurately.
 特に、本実施形態では、図14Aに示す第2供給状態において、ガス分析用セル1内で発生したガスをトラップ部107に収容し、その後に図14Bに示す第1供給状態に切り替えれば、トラップ部107に収容されているガスをキャリアガスとともにガス分析部100に供給することができる。したがって、本実施形態のように、トラップ部107内のバッファ領域にガス分析用セル1内よりも多くのガスを収容することができるような構成であれば、より多くのガスをトラップ部107からガス分析部100に供給することができるため、ガス分析部100における検出感度が向上し、さらに精度よく分析を行うことができる。 In particular, in this embodiment, if the gas generated in the gas analysis cell 1 is stored in the trap unit 107 in the second supply state shown in FIG. 14A and then switched to the first supply state shown in FIG. The gas stored in the unit 107 can be supplied to the gas analysis unit 100 together with the carrier gas. Therefore, as in the present embodiment, if the configuration is such that a larger amount of gas can be accommodated in the buffer region in the trap unit 107 than in the gas analysis cell 1, more gas can be transferred from the trap unit 107. Since it can supply to the gas analysis part 100, the detection sensitivity in the gas analysis part 100 improves, and it can analyze more accurately.
 なお、ガス分析用セル1、六方バルブ105及びトラップ部107は、例えば室温~90℃、より好ましくは80℃程度の比較的高い温度に温調することもできる。これにより、厳密な耐久性チェックが可能となる。温調温度は、ガス分析用セル1内の電解液の沸点に応じて、適切な値に設定される。また、トラップ部107には、例えば高沸点物を通さないフィルタ(図示せず)が設けられることにより、カラム103の汚染が防止される。 Note that the gas analysis cell 1, the hexagonal valve 105, and the trap unit 107 can be adjusted to a relatively high temperature of, for example, room temperature to 90 ° C., more preferably about 80 ° C. Thereby, a strict durability check is possible. The temperature control temperature is set to an appropriate value according to the boiling point of the electrolytic solution in the gas analysis cell 1. In addition, the trap unit 107 is provided with a filter (not shown) that does not pass high-boiling substances, for example, so that the column 103 is prevented from being contaminated.
 第1実施形態及び第2実施形態のいずれにおいても、ガス分析用セル1のガス供給流路217,227には三方バルブ215,225が接続され、ガス排出流路218,228には三方バルブ216,226が接続されている(図6参照)。三方バルブ215,225は、ガス供給流路217,227を開閉させる供給側バルブを構成しており、三方バルブ216,226は、ガス排出流路218,228を開閉させる排出側バルブを構成している。 In both the first embodiment and the second embodiment, three- way valves 215 and 225 are connected to the gas supply channels 217 and 227 of the gas analysis cell 1, and three-way valves 216 are connected to the gas discharge channels 218 and 228. , 226 are connected (see FIG. 6). The three- way valves 215 and 225 constitute supply side valves that open and close the gas supply passages 217 and 227, and the three- way valves 216 and 226 constitute discharge side valves that open and close the gas discharge passages 218 and 228. Yes.
 これにより、ガス分析用セル1の製造時に、空気がない(アルゴン又はヘリウムなどの特定のガスで置換された)環境下でガス分析用セル1を組み立てて、供給側バルブ(三方バルブ215,225)及び排出側バルブ(三方バルブ216,226)を閉じた状態とすれば、ガス分析用セル1内に空気が混入して内部の部品が劣化することがない。そして、ガス分析用セル1のガス供給流路217,227及びガス排出流路218,228を六方バルブ105に接続する作業を行った後、供給側バルブ(三方バルブ215,225)及び排出側バルブ(三方バルブ216,226)を開いた状態に切り替えれば、空気の混入を防止しつつ、容易に取付作業を行うことができる。ただし、供給側バルブ及び排出側バルブは、三方バルブ215,216,225,226に限らず、二方バルブなどの他のバルブであってもよい。 Thus, when the gas analysis cell 1 is manufactured, the gas analysis cell 1 is assembled in an environment without air (replaced with a specific gas such as argon or helium), and the supply side valves (three-way valves 215 and 225) are assembled. ) And the discharge side valves (three-way valves 216, 226) are closed, air is not mixed into the gas analysis cell 1 and internal components are not deteriorated. Then, after the work of connecting the gas supply channels 217 and 227 and the gas discharge channels 218 and 228 of the gas analysis cell 1 to the six-way valve 105 is performed, the supply-side valve (three-way valves 215 and 225) and the discharge-side valve If the three- way valves 216 and 226 are switched to the opened state, the attachment work can be easily performed while preventing air from being mixed. However, the supply side valve and the discharge side valve are not limited to the three- way valves 215, 216, 225, and 226, and may be other valves such as a two-way valve.
 以上の実施形態では、電極ガイド10が、内部に正極7を保持するような構成について説明したが、これに限らず、内部に負極8を保持するような構成であってもよい。この場合、セパレータ9に対して負極8側で発生したガスが、開口15を介して捕集部22に捕集されるようになっていてもよい。また、誘導路23は、セパレータ9に対して負極8側で発生したガスを捕集部22に導くような構成に限らず、セパレータ9に対して正極7側で発生したガスを捕集部21に導くような構成であってもよい。 In the above embodiment, the electrode guide 10 holds the positive electrode 7 inside. However, the configuration is not limited to this, and the electrode guide 10 may hold the negative electrode 8 inside. In this case, the gas generated on the negative electrode 8 side with respect to the separator 9 may be collected by the collection unit 22 through the opening 15. Further, the guide path 23 is not limited to the configuration in which the gas generated on the negative electrode 8 side with respect to the separator 9 is guided to the collection unit 22, and the gas generated on the positive electrode 7 side with respect to the separator 9 is collected. It may be configured to lead to
 また、以上の実施形態では、セパレータ9に対して正極7側で発生したガス、及び、セパレータ9に対して負極8側で発生したガスが、それぞれ分離して1対の捕集部21,22に捕集されるような構成について説明した。しかし、複数のシール部材41~45の間に形成された空間にガスを供給することにより、当該空間内の圧力を高くするような構成は、1対の捕集部21,22に分離されていないような構成、すなわち、セパレータ9に対して正極7側で発生したガス、及び、セパレータ9に対して負極8側で発生したガスが、1つの捕集部に捕集されるような構成にも適用可能である。また、このとき使用されるガスは、キャリアガス以外のガスであってもよい。 Moreover, in the above embodiment, the gas generated on the positive electrode 7 side with respect to the separator 9 and the gas generated on the negative electrode 8 side with respect to the separator 9 are separated to form a pair of collecting units 21 and 22. The configuration that is collected in the above is described. However, a configuration that increases the pressure in the space by supplying gas to the space formed between the plurality of seal members 41 to 45 is separated into a pair of collecting portions 21 and 22. In such a configuration that the gas generated on the positive electrode 7 side with respect to the separator 9 and the gas generated on the negative electrode 8 side with respect to the separator 9 are collected in one collecting part. Is also applicable. Further, the gas used at this time may be a gas other than the carrier gas.
1 ガス分析用セル
2 セル本体
3,4,5 カバー部材
6 測定室
7 正極
8 負極
9 セパレータ
10 電極ガイド
11,12 集電部
13 セパレータ用ガスケット
14 スプリング
15 開口
16 ネジ軸
17 ナット
18,19 集電棒
20 参照電極
21,22 捕集部
23 誘導路
31,32 セプタムホルダ
33,34 セプタム
41~45 シール部材
46~51 コネクタ
52 T字管
53 コネクタ
61~65 配管
100 ガス分析部
101 フローコントローラ
102 試料導入部
103 カラム
104 検出器
105 六方バルブ
106 フローコントローラ
107 トラップ部
211 流入口
212 流出口
213,214 コネクタ
215,216 三方バルブ
217 ガス供給流路
218 ガス排出流路
219 バイパス流路
225,226 三方バルブ
227 ガス供給流路
228 ガス排出流路
229 バイパス流路
1 Gas Analysis Cell 2 Cell Body 3, 4, 5 Cover Member 6 Measurement Chamber 7 Positive Electrode 8 Negative Electrode 9 Separator 10 Electrode Guide 11, 12 Current Collector 13 Separator Gasket 14 Spring 15 Opening 16 Screw Shaft 17 Nuts 18, 19 Electrode 20 Reference electrodes 21, 22 Collection unit 23 Guide path 31, 32 Septum holders 33, 34 Septum 41-45 Seal member 46-51 Connector 52 T-tube 53 Connector 61-65 Piping 100 Gas analysis unit 101 Flow controller 102 Sample Introduction part 103 Column 104 Detector 105 Six-way valve 106 Flow controller 107 Trap part 211 Inlet 212 Outlet 213, 214 Connector 215, 216 Three-way valve 217 Gas supply passage 218 Gas discharge passage 219 Bypass passage 225, 226 Three-way valve 227 Ga Supply channel 228 gas discharge channel 229 bypass passage

Claims (12)

  1.  内部に測定室を有するセル本体と、
     前記測定室に配置された正極及び負極からなる1対の電極と、
     前記1対の電極間に配置された隔膜と、
     前記隔膜に対して前記正極側で発生したガス、及び、前記隔膜に対して前記負極側で発生したガスが、それぞれ分離して捕集される1対の捕集部とを備えることを特徴とするガス分析用セル。
    A cell body having a measurement chamber therein;
    A pair of electrodes consisting of a positive electrode and a negative electrode disposed in the measurement chamber;
    A diaphragm disposed between the pair of electrodes;
    A gas generated on the positive electrode side with respect to the diaphragm and a gas generated on the negative electrode side with respect to the diaphragm are provided with a pair of collecting portions that are separately collected. Gas analysis cell.
  2.  前記1対の捕集部をそれぞれ閉塞する1対のセプタムをさらに備えることを特徴とする請求項1に記載のガス分析用セル。 The gas analysis cell according to claim 1, further comprising a pair of septums that respectively close the pair of collection parts.
  3.  前記1対の捕集部には、当該捕集部内にキャリアガスを流入させる流入口と、当該捕集部内からキャリアガスを流出させる流出口とがそれぞれ形成されていることを特徴とする請求項1に記載のガス分析用セル。 The pair of collecting portions are each formed with an inlet for allowing carrier gas to flow into the collecting portion and an outlet for allowing carrier gas to flow out from the collecting portion. The gas analysis cell according to 1.
  4.  前記流入口から流入するキャリアガスに撹拌流を生じさせることを特徴とする請求項3に記載のガス分析用セル。 The gas analysis cell according to claim 3, wherein a stirring flow is generated in the carrier gas flowing in from the inlet.
  5.  前記流入口にキャリアガスを供給するガス供給流路と、
     前記流出口からキャリアガスを排出させるガス排出流路と、
     前記捕集部を介さずに前記ガス供給流路及びガス排出流路を接続するバイパス流路と、
     前記ガス供給流路を前記捕集部又は前記バイパス流路のいずれに連通させるかを切り替えるバイパス切替部とをさらに備えることを特徴とする請求項3に記載のガス分析用セル。
    A gas supply channel for supplying a carrier gas to the inflow port;
    A gas discharge passage for discharging carrier gas from the outlet,
    A bypass flow path for connecting the gas supply flow path and the gas discharge flow path without going through the collection section;
    The gas analysis cell according to claim 3, further comprising a bypass switching unit that switches whether the gas supply channel communicates with the collection unit or the bypass channel.
  6.  前記測定室に充填された電解液に浸漬される参照電極をさらに備えることを特徴とする請求項1に記載のガス分析用セル。 The gas analysis cell according to claim 1, further comprising a reference electrode immersed in an electrolytic solution filled in the measurement chamber.
  7.  前記測定室内に収容され、前記1対の電極の一方を内部に保持する電極ガイドをさらに備え、
     前記電極ガイドには、前記1対の捕集部の一方に連通する開口が形成されていることを特徴とする請求項1に記載のガス分析用セル。
    An electrode guide that is housed in the measurement chamber and holds one of the pair of electrodes inside;
    2. The gas analysis cell according to claim 1, wherein the electrode guide has an opening communicating with one of the pair of collecting portions.
  8.  前記1対の電極の他方は、前記電極ガイドの外側で前記測定室内に配置されており、
     前記セル本体には、前記他方の電極側で発生したガスを前記1対の捕集部の他方に導く誘導路が形成されていることを特徴とする請求項7に記載のガス分析用セル。
    The other of the pair of electrodes is disposed in the measurement chamber outside the electrode guide,
    8. The cell for gas analysis according to claim 7, wherein a guiding path for guiding the gas generated on the other electrode side to the other of the pair of collecting portions is formed in the cell main body.
  9.  請求項1~8のいずれかに記載のガス分析用セルと、
     前記1対の捕集部の少なくとも一方に捕集されたガスを分析するガス分析部とを備えることを特徴とするガス分析システム。
    A gas analysis cell according to any one of claims 1 to 8,
    A gas analysis system comprising: a gas analysis unit that analyzes gas collected in at least one of the pair of collection units.
  10.  前記ガス分析用セル内で発生したガスをキャリアガスとともに前記ガス分析部に供給する第1供給状態、又は、前記ガス分析用セル内で発生したガスを含まないキャリアガスを前記ガス分析部に供給する第2供給状態のいずれかに切り替える供給切替部をさらに備えることを特徴とする請求項9に記載のガス分析システム。 A first supply state in which gas generated in the gas analysis cell is supplied to the gas analysis unit together with a carrier gas, or a carrier gas not containing gas generated in the gas analysis cell is supplied to the gas analysis unit The gas analysis system according to claim 9, further comprising a supply switching unit that switches to any one of the second supply states.
  11.  前記第1供給状態では、前記ガス分析用セルを介して前記ガス分析部にキャリアガスが供給され、
     前記第2供給状態では、前記ガス分析用セルを介さずに前記ガス分析部にキャリアガスが供給されることを特徴とする請求項10に記載のガス分析システム。
    In the first supply state, a carrier gas is supplied to the gas analysis unit via the gas analysis cell,
    11. The gas analysis system according to claim 10, wherein in the second supply state, a carrier gas is supplied to the gas analysis unit without passing through the gas analysis cell.
  12.  前記ガス分析用セル内で発生したガスを収容するトラップ部をさらに備え、
     前記第1供給状態では、前記トラップ部を介して前記ガス分析部にキャリアガスが供給され、
     前記第2供給状態では、前記トラップ部を介さずに前記ガス分析部にキャリアガスが供給され、前記ガス分析用セル内で発生したガスが前記トラップ部に収容されることを特徴とする請求項10に記載のガス分析システム。
    Further comprising a trap portion for storing gas generated in the gas analysis cell;
    In the first supply state, a carrier gas is supplied to the gas analysis unit through the trap unit,
    The carrier gas is supplied to the gas analysis unit without going through the trap unit in the second supply state, and the gas generated in the gas analysis cell is stored in the trap unit. 10. The gas analysis system according to 10.
PCT/JP2016/083145 2015-11-09 2016-11-08 Gas analysis cell, and gas analysis system WO2017082264A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017550339A JP6611819B2 (en) 2015-11-09 2016-11-08 Gas analysis cell and gas analysis system
CN201680064835.0A CN108352556B (en) 2015-11-09 2016-11-08 Gas analysis cell and gas analysis system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-219954 2015-11-09
JP2015219954 2015-11-09
JP2016136088 2016-07-08
JP2016-136088 2016-07-08

Publications (1)

Publication Number Publication Date
WO2017082264A1 true WO2017082264A1 (en) 2017-05-18

Family

ID=58696131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083145 WO2017082264A1 (en) 2015-11-09 2016-11-08 Gas analysis cell, and gas analysis system

Country Status (3)

Country Link
JP (1) JP6611819B2 (en)
CN (1) CN108352556B (en)
WO (1) WO2017082264A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960230A (en) * 2021-11-26 2022-01-21 天目湖先进储能技术研究院有限公司 In-situ chromatographic analysis system for battery gas production analysis
WO2023218694A1 (en) * 2022-05-12 2023-11-16 株式会社島津製作所 Greenhouse gas measuring method and measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165322B (en) * 2019-05-22 2021-04-20 江苏集萃华科智能装备科技有限公司 Method for introducing quantitative gas into lithium ion battery and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026504A (en) * 2013-07-26 2015-02-05 レーザーテック株式会社 Observation cell and gas sampling method
JP2015056308A (en) * 2013-09-12 2015-03-23 住友金属鉱山株式会社 Non-aqueous electrolyte secondary battery laminate cell for evaluation of produced gas, laminate cell holder, and method of evaluating produced gas of non-aqueous electrolyte secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101059525B (en) * 2007-05-16 2010-09-22 西南交通大学 Self-adaptive monitoring method for gas dissolved in oil of traction transformer, and the device thereof
MX2011008712A (en) * 2009-02-17 2011-11-29 Mcalister Technologies Llc Apparatus and method for gas capture during electrolysis.
CN203037828U (en) * 2013-01-10 2013-07-03 宁德新能源科技有限公司 Detection device for lithium ion battery
CN103512795A (en) * 2013-08-01 2014-01-15 浙江工商大学 Intelligent electronic nose system based device and method for analyzing quality of Tie Guanyin beverage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026504A (en) * 2013-07-26 2015-02-05 レーザーテック株式会社 Observation cell and gas sampling method
JP2015056308A (en) * 2013-09-12 2015-03-23 住友金属鉱山株式会社 Non-aqueous electrolyte secondary battery laminate cell for evaluation of produced gas, laminate cell holder, and method of evaluating produced gas of non-aqueous electrolyte secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SANKO SEIHIN: "Gas Bunseki-yo H-gata Cell", 18 December 2014 (2014-12-18), Retrieved from the Internet <URL:http://web.archive.org/web/20141218140827> [retrieved on 20170202] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960230A (en) * 2021-11-26 2022-01-21 天目湖先进储能技术研究院有限公司 In-situ chromatographic analysis system for battery gas production analysis
CN113960230B (en) * 2021-11-26 2023-05-30 天目湖先进储能技术研究院有限公司 In-situ chromatographic analysis system for gas production analysis of battery
WO2023218694A1 (en) * 2022-05-12 2023-11-16 株式会社島津製作所 Greenhouse gas measuring method and measuring device

Also Published As

Publication number Publication date
CN108352556B (en) 2021-03-09
CN108352556A (en) 2018-07-31
JPWO2017082264A1 (en) 2018-09-20
JP6611819B2 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
Berkes et al. Online continuous flow differential electrochemical mass spectrometry with a realistic battery setup for high-precision, long-term cycling tests
JP6611819B2 (en) Gas analysis cell and gas analysis system
CN110320476B (en) Simulated battery device for in-situ detection of gas production of liquid battery
CN205985250U (en) Inside online composition analysis device of gas of producing of square aluminum hull lithium cell
JP2017090225A (en) Gas analysis system
JP6245468B2 (en) Nonaqueous electrolyte secondary battery laminate cell and laminate cell holder for evolved gas evaluation
CN111562500B (en) Battery test box and battery mass spectrum sampling system
JP2018165723A (en) Improved suppressor device
CN111304675B (en) Multipurpose electrochemical carbon dioxide reduction electrolytic cell
KR102397294B1 (en) Apparatus for collecting secondary cell internal gas
MX2011009115A (en) Modular device to measure ionic, electronic and mixed conductivity in polymeric and ceramic membranes.
Weng et al. High-voltage pH differential vanadium-hydrogen flow battery
CN109802159A (en) Fuel cell gas sampling system and the method for sampling
CN115598108A (en) Real-time analysis device and system under electric core working condition
JP6652815B2 (en) Gas analysis cell and gas analysis system
KR101836336B1 (en) Cell for measuring ion conductivity of ion exchange membrane and method for measuring ion conductivity using the same
JP6504026B2 (en) Gas analysis system
JP6409940B2 (en) Evaluating gas generated from non-aqueous electrolyte secondary batteries
JP2006078226A (en) Ion quantitative analyzing method and fluorine ion quantitative analyzing method
US10490833B1 (en) Hydrogen fuel quality analyzer with self-humidifying electrochemical cell and methods of testing fuel quality
CN113960230B (en) In-situ chromatographic analysis system for gas production analysis of battery
RU2650825C1 (en) Cell for the spectral study of materials
JP2016207574A (en) Storage container of nonaqueous electrolyte secondary battery for evolved gas evaluation, and evolved gas evaluation method for nonaqueous electrolyte secondary battery
CN101261243B (en) Turnbuckle type edge leakage proof hydrogen sensor outer housing structure
WO2023041935A1 (en) Electrochemical cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017550339

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864225

Country of ref document: EP

Kind code of ref document: A1