WO2017080079A1 - 一种以纳米碳材料的热扩散为预处理的硬质涂层制备方法 - Google Patents

一种以纳米碳材料的热扩散为预处理的硬质涂层制备方法 Download PDF

Info

Publication number
WO2017080079A1
WO2017080079A1 PCT/CN2015/099330 CN2015099330W WO2017080079A1 WO 2017080079 A1 WO2017080079 A1 WO 2017080079A1 CN 2015099330 W CN2015099330 W CN 2015099330W WO 2017080079 A1 WO2017080079 A1 WO 2017080079A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coating
thermal diffusion
etching
solid
preparation
Prior art date
Application number
PCT/CN2015/099330
Other languages
English (en)
French (fr)
Inventor
陶庆
王健
赖伟
陈正
沈承金
刘建阳
刘伟
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2017080079A1 publication Critical patent/WO2017080079A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/64Carburising
    • C23C8/66Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/276Diamond only using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process

Definitions

  • the invention relates to a method for preparing a hard coating, in particular to a method for preparing a hard coating which is pretreated by thermal diffusion of a nano carbon material.
  • the preparation of hard coating on the surface of the material can improve the surface hardness, wear resistance and corrosion resistance of the material, and can be applied to many fields such as turning tools, drill bits, molds, precision instruments and the like.
  • various types of hard coatings such as diamond-like carbon film (DLC), diamond film, TiC/TiN film, BN/CBN film, and the like.
  • DLC diamond-like carbon film
  • TiC/TiN film TiC/TiN film
  • BN/CBN film BN/CBN film
  • a hard coating is prepared on the surface of the metal material or the non-metal material, and the main surface of the bonding force is a bond between the metal and the metal or a mechanical occlusion.
  • the roughness of the surface of the workpiece is also a key factor affecting the bonding force. The rougher the surface of the workpiece, the more stress concentration at the bonding interface, the worse the bonding force, but in order to increase the necessary mechanical bite force, it is necessary to ensure that the surface has a certain degree. Roughness. Therefore, the necessary cleaning, polishing and polishing of the surface of the workpiece can enhance the bonding force of the surface coating.
  • the activation process is used to activate the surface of the substrate, and the activation center of the surface adsorption can induce the preparation of the subsequent coating and enhance the bonding force of the surface hard coating.
  • transition layer The nature and size of the stress in the coating are also the main factors affecting the bonding force of the coating.
  • the internal stress is generally caused by the difference in thermal expansion coefficient between the coating and the substrate and the lattice matching degree of the crystal interface. .
  • the resulting surface tensile stress causes cracking, peeling and even peeling of the surface coating.
  • the introduction of one or more transition layers on the surface of the substrate buffers the internal stress caused by the difference in thermal expansion coefficient and lattice matching, thereby indirectly increasing the bonding force between the surface coating and the substrate.
  • Ion implantation technology introduces alloying elements on the surface of the substrate: before the preparation of the coating, under the action of high voltage, elements such as C, N, H are bombarded to the surface layer of the base material by ion implantation, and alloyed with the matrix material. effect.
  • the metallurgical bonding of the interface is achieved in the subsequent preparation of the coating process, and the adhesion of the coating to the matrix material can be significantly improved compared to the mechanical treatment.
  • the object of the present invention is to provide a coating nucleation density and enhance the bonding force between the hard coating and the matrix material.
  • the hard coating preparation method is to introduce a second phase particle at the interface from the viewpoint of solid heat diffusion, and to have a surface valence and a high surface energy of the nanoparticle as a hard film.
  • the preparation of the coating provides better surface nucleation conditions, increases the nucleation density, and enhances the bonding force between the hard coating and the matrix material;
  • the hard coating preparation method includes solid state thermal diffusion treatment of the nano carbon material, and the pretreatment matrix Cleaning and etching of materials, preparation of hard coatings;
  • the metal or non-metal block base material is initially cleaned and polished, and the surface is smooth, ensuring no large scratches, no oil stains, no rust; using nano diamond, carbon nanotubes, carbon microfibers, graphene, carbon spheres, One or more combinations of nano-graphite, as a carbon source of solid thermal diffusion, adding one or more combinations of cryolite, rare earth, carbonate, nano-graphite, and deagglomeration dispersant as a penetration enhancer, Solid-state thermal diffusion treatment at a temperature higher than the metal austenitizing temperature of 30 to 350 ° C; air is to be isolated during the treatment, and infiltration and diffusion treatment are carried out in a furnace chamber in which Ar, N 2 inert gas is used as a protective atmosphere; The depth of the layer, the diffusion rate in the thickness direction is 0.1 to 0.5 mm/hour, and the heating diffusion time is selected; after the treatment is completed, the carbon source enters the matrix material, exists in the form of the second phase particles on the surface layer of the substrate, and from the
  • the gas, solid or liquid in different states is used as the raw material source of the hard coating.
  • the hard coating of various materials prepared by physical/chemical vapor deposition, solid state thermal diffusion, high energy spraying process, the low pressure is 30-500 Pa.
  • the method introduces second phase particles at the interface from the viewpoint of solid heat diffusion, and prepares the hard film/coating with the active surface valence of the nanoparticles and the higher surface energy. Provide better surface nucleation conditions, increase nucleation density, and improve the adhesion of the coating to the substrate. Its advantages are;
  • the present invention adopts solid-state thermal diffusion of nano-carbon materials to pre-treat the matrix material, so that the solid-state heat-diffusing nano-scale carbon source enters the matrix material and exists in the form of second phase particles on the surface of the base material. And the gradient from the surface to the core of the base material is gradually decreasing. Due to the high surface energy of the nanoparticles and the active surface valence, it can provide a higher nucleation density for the physical/chemical vapor deposition process, and enhance the coating and matrix materials by the coupling of nanoscale carbon source particle strengthening and chemical bond strengthening. The combination of strength.
  • the gradient of the volume concentration of the nano-scale second phase particles changes from the surface to the core of the base material, so that the strength and hardness of the whole material also changes in a gradient, preventing the strength of the base material and the surface hard coating, Hard coating peeling due to sudden change in hardness;
  • the present invention performs cleaning and etching treatment on the pretreatment substrate, so that the second phase particles pinned in the base material are exposed on the surface of the substrate, thereby making the subsequently prepared hard coating easier to expose on the surface of the substrate.
  • the surface of the second phase particles nucleates, increasing the nucleation density while enhancing the bonding between the hard coating and the matrix material.
  • Figure 1 is a process flow diagram of the present invention.
  • FIG. 2 is a schematic diagram of a solid state thermal diffusion process using a carbon nanomaterial as a carbon source.
  • FIG. 3 is a schematic view showing a reaction process for preparing a diamond/diamond-like carbon film by a chemical vapor deposition technique according to the present invention.
  • FIG. 4 is a schematic view showing the structure of a diamond/diamond-like carbon film prepared by the process of the present invention.
  • a is a coating layer of nano carbon material
  • b is a mixed layer of nano carbon material and a penetration enhancer
  • c is a base material
  • d is a diamond/diamond like film.
  • the hard coat preparation method of the present invention is to introduce second phase particles at the interface from the viewpoint of solid heat diffusion, and provide the preparation of the hard film/coating with the active surface valence of the nanoparticles and the high surface energy.
  • Better surface nucleation conditions increase nucleation density, and enhance the bonding force between hard coating and matrix material;
  • hard coating preparation methods include solid state thermal diffusion treatment of nano-carbon materials, cleaning and etching of pre-treated substrate materials , preparation of a hard coat;
  • the metal or non-metal block base material is initially cleaned and polished, and the surface is smooth, ensuring no large scratches, no oil stains, no rust; using nano diamond, carbon nanotubes, carbon microfibers, graphene, carbon spheres, One or more combinations of nano-graphite, as a carbon source of solid thermal diffusion, adding one or more combinations of cryolite, rare earth, carbonate, nano-graphite, and deagglomeration dispersant as a penetration enhancer, Solid-state thermal diffusion treatment is carried out at a temperature higher than the metal austenitizing temperature of 30-350 ° C; air is to be isolated during the treatment, and infiltration and diffusion treatment are carried out in a furnace chamber in which Ar, N 2 inert gas is used as a protective atmosphere; The required depth of the layer is determined by referring to the diffusion rate in the thickness direction of 0.1 to 0.5 mm/hour, and the heating diffusion time is selected; after the treatment is completed, the carbon source enters the matrix material and exists in the surface layer of the base material in the form
  • a substance of a different state such as a gas, a solid, or a liquid is used as a raw material source of the hard coating layer, and a protective atmosphere such as Ar, N 2 or the like is introduced in a temperature range of 300 to 1100 ° C under a pressure of a low pressure or a standard atmospheric pressure.
  • a protective atmosphere such as Ar, N 2 or the like is introduced in a temperature range of 300 to 1100 ° C under a pressure of a low pressure or a standard atmospheric pressure.
  • Conditions, hard coating of various materials prepared by physical/chemical vapor deposition, solid state thermal diffusion, high energy spraying process, the low pressure is 30-500 Pa.
  • the solid-state thermal diffusion treatment of nano-carbon materials was carried out with 20# steel as the matrix material and nano-scale diamond powder as the carbon source. After cleaning and polishing, the diamond/diamond-like diamond film was prepared on the steel surface by PECVD-plasma enhanced chemical meteorological deposition technique.
  • the specific method steps are as follows:
  • Solid-state thermal diffusion is performed on the surface of the substrate using nano-diamond powder as a carbon source.
  • the nano-diamond powder with a particle size of 50-500 nm is placed in an organic dispersant, and the agglomeration-dispersion treatment is performed under the action of ultrasonic, centrifugation and other mechanical external forces, and the dispersed nano-diamond is partially removed from the solvent, and an appropriate amount of other cryolite and nanometer is added.
  • a penetration aid such as graphite, rare earth or carbonate is prepared into a paste infiltrant.
  • the prepared creamy osmotic agent both Uniformly coated on the surface of the 20# steel base material, the thickness is 3 ⁇ 10mm, as shown in Figure 2, b.
  • a layer of nano-diamond powder after deagglomeration and dispersion is uniformly applied on the surface of the paste, and the thickness is about 5 mm, as shown in FIG. 2 and a.
  • the coated workpiece is placed in a crucible and then placed in a heat treatment furnace for heating. When heating below 300 °C, vacuum the furnace chamber with a mechanical vacuum pump to remove the oxygen in the furnace chamber. When the gas pressure in the furnace chamber reaches 1 to 10 Pa, argon/nitrogen can be introduced into the furnace chamber as a protective atmosphere.
  • the 20# steel matrix material is cleaned and etched after solid state thermal diffusion pretreatment.
  • the pre-treated workpiece in the first step remove the surface osmotic residue and oil stain, and use deionized water/alcohol + ultrasonic cleaning. If the surface of the workpiece is not smooth enough, or the surface has impurities or corroded dents, it can be properly carried out. Grind or polish to obtain a smooth, smooth surface of the fresh substrate.
  • the surface of the pretreated substrate was etched with a 4% nitric acid solution and observed under a high power microscope or electron microscope. The second phase of the substrate surface was exposed on the surface. Wash the surface with alcohol, place the workpiece in a constant temperature vacuum oven, and dry it at 100 ° C for about 20 minutes.
  • the deposition reaction process is shown in Figure 3.
  • the workpiece in the above drying box is taken out and placed in the reaction chamber of the PECVD apparatus.
  • hydrogen and methane are continuously introduced.
  • the flow rate of methane and hydrogen is adjusted to ensure that the hydrogen flow rate is about 50 to 100 sccm, and the methane flow rate is about 30 to 50 sccm.
  • the vacuum pump and the intake air flow rate By controlling the vacuum pump and the intake air flow rate, the pressure of the mixed gas in the reaction chamber is always maintained at about 80 to 100 Pa.
  • the reaction chamber is heated, and when the temperature reaches about 400 ° C, after 10 minutes of heat preservation, the plasma RF power source is turned on.
  • the reaction gas is ionized, and the deposition starts. After 2 to 5 hours, the reaction device was turned off, the deposition reaction was terminated, and the deposition was completed.
  • the sample was taken out after the furnace was cooled to room temperature, and a diamond/diamond-like diamond film of 5 to 10 ⁇ m thick was obtained on the surface of 20# steel, as shown in Fig. 4, d.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种以纳米碳材料的热扩散为预处理的硬质涂层制备方法,包括纳米碳材料的固态热扩散处理,预处理基体材料的清洁与刻蚀,硬质涂层的制备。纳米碳材料的固态热扩散采用纳米级金刚石、碳纳米管、石墨烯、石墨、碳纤维作为碳源,在一定温度下进行固态热扩散处理,使纳米碳源浓度在基体材料的深度方向呈梯度分布;预处理基体材料的清洁与刻蚀包括去污处理、打磨抛光、清洗、腐蚀液刻蚀、干燥使基体材料表面平整、清洁,并且通过特定腐蚀液的刻蚀将纳米级第二相粒子裸露在基体表面;硬质涂层的制备包括以气/液/固体不同形式的物质作为碳源,通过物理/化学气相沉积、固态热扩散、高能喷涂工艺制备的金刚石/类金刚石硬质涂层。

Description

一种以纳米碳材料的热扩散为预处理的硬质涂层制备方法 技术领域
本发明涉及一种硬质涂层制备方法,特别是一种以纳米碳材料的热扩散为预处理的硬质涂层制备方法。
背景技术
在材料表面制备硬质涂层,可以提高材料的表面强度硬度,耐磨耐腐蚀等性能,可应用在车刀、钻头、模具、精密器械等众多领域。当前硬质涂层的种类多种多样,例如类金刚石薄膜(DLC)、金刚石薄膜、TiC/TiN薄膜、BN/CBN薄膜等。然而,由于基体材料与硬质涂层之间内应力和界面能的存在,在获得优良表面性能同时,硬质涂层与基体材料的结合力问题成为了普遍认为难以解决的技术瓶颈,限制了硬质涂层领域的发展与应用。
现有的几种提高表面涂层结合力的方法主要包括以下几种方式:
(1)基体材料表面进行物理或化学预处理:在金属材料或非金属材料表面制备硬质涂层,结合力主要表面为金属和金属间的键合或者为机械咬合的方式。工件表面的粗糙度也是影响结合力的关键因素,工件表面越粗糙,结合界面就会有更多的应力集中,结合力也就越差,但是为了增加必要的机械咬合力,需要保证表面具有一定的粗糙度。所以,对工件表面进行必要的清洁、打磨及抛光处理,可以增强表面涂层的结合力。采用活化工艺,对基体材料表面进行活化处理,表面吸附的活化中心,可以诱发后续的涂层的制备,也能增强表面硬质涂层的结合力。
(2)引入过渡层:涂层内应力的性质和大小也是影响涂层结合力的主要因素,内应力一般是由涂层和基体的热膨胀系数不同,晶体界面晶格匹配度的差异而产生的。由此引起的表面张应力会使表面涂层产生开裂、起皮甚至剥落。在基体表面引入一层或多层的过渡层,使由热膨胀系数,晶格匹配度的差异所造成的内应力得到缓冲,从而间接提高了表面涂层与基体的结合力。
(3)离子注入技术在基体表面引入合金化元素:在制备涂层之前,在高电压作用下,通过离子注入,将C、N、H等元素轰击到基体材料表层,与基体材料发生合金化作用。在后续制备涂层工艺中实现界面的冶金结合,与机械处理方式相比,能显著提高涂层与基体材料的结合力。
发明内容
本发明的目的是要提供一种提高涂层成核密度,增强硬质涂层和基体材料结合力的 以纳米碳材料的热扩散为预处理的硬质涂层制备方法。
本发明的目的是这样实现的:硬质涂层制备方法是从固态热扩散的角度,在界面处引入第二相粒子,以纳米粒子活泼的表面价健和较高的表面能为硬质薄膜/涂层的制备提供更好的表面成核条件,提高成核密度,同时增强硬质涂层和基体材料结合力;硬质涂层制备方法包括纳米碳材料的固态热扩散处理,预处理基体材料的清洁与刻蚀,硬质涂层的制备;
所述的纳米碳材料的固态热扩散处理:
将金属或者非金属块状基体材料做初步清洁抛光处理,表面平整,保证无较大划痕,无油污,无锈迹;采用纳米金刚石,碳纳米管,碳微纤维,石墨烯,碳球,纳米石墨中的一种或多种组合,作为固态热扩散的碳源,加入冰晶石、稀土、碳酸盐、纳米石墨、解团聚分散剂中的一种或多种组合,作为助渗剂,在高于金属奥氏体化温度30~350℃下进行固态热扩散处理;处理过程中需隔绝空气,在Ar、N2惰性气体作为保护气氛的炉腔中进行渗入和扩散处理;根据所需的渗层深度,参照厚度方向扩散速率0.1~0.5mm/小时,选择加热扩散时间;处理完成后,上述碳源进入到基体材料,以第二相粒子的形式存在于基体材料表层,并且从表面到基体材料心部呈梯度递减分布;经过真空/气氛热处理后,从表面到基体材料心部,强度硬度呈递减变化,防止因基体材料强度硬度不够造成的脱落;
所述的预处理基体材料的清洁与刻蚀:
将预处理后的基体材料表面在室温下进行去污,打磨抛光,酒精/去离子水清洗,超声波清洗,酸洗/碱洗,腐蚀液刻蚀,和干燥表面处理,使基体材料表面平整、清洁,并且通过4%硝酸酒精等特定腐蚀液的刻蚀将第二相粒子裸露在基体材料的表面;清洗干燥完成后以备后续硬质涂层的制备;预处理基体材料的清洁与刻蚀工艺使所制备的硬质涂层更容易在基体中的第二相粒子的表面成核,以纳米粒子活泼的表面价健和较高的表面能为硬质薄膜/涂层的制备提供更好的表面成核条件,提高了成核密度,同时增强硬质涂层和基体材料结合力;
所述的硬质涂层的制备:
以气体,固体或者液体不同状态的物质作为硬质涂层的原料来源,在300~1100℃温度范围内,低压,或标准大气压的压强作用下,通入Ar、N2等保护性气氛条件,通过物理/化学气相沉积、固态热扩散、高能喷涂工艺制备的各种材质的硬质涂层,所述的低压为30~500Pa。
有益效果,由于采用了上述方案,该方法从固态热扩散的角度,在界面处引入第二相粒子,以纳米粒子活泼的表面价健和较高的表面能为硬质薄膜/涂层的制备提供更好的表面成核条件,提高成核密度,提高涂层与基体的结合力。其优点有;
第一,本发明采用纳米碳材料的固态热扩散,对基体材料进行预渗处理,使固态热扩散的纳米尺度的碳源进入到基体材料,以第二相粒子的形式存在于基体材料表面,并且从表面到基体材料心部呈梯度递减分布。由于纳米粒子较高的表面能和活泼的表面价健,能为物理/化学气相沉积过程提供更高的形核密度,以纳米尺度碳源粒子强化和化学键强化的耦合作用提高涂层和基体材料的结合力。同时经过真空/气氛热处理,从表面到基体材料心部,纳米级第二相粒子体积浓度的梯度变化使整体材料的强度硬度也呈梯度变化,防止因基体材料和表层硬质涂层的强度、硬度的突变造成的硬质涂层脱落;
第二,本发明对上述预处理基体进行清洁与刻蚀处理,使钉扎在基体材料中的第二相粒子裸露在基体表面,进而使后续所制备的硬质涂层更容易在基体表面裸露的第二相粒子的表面成核,提高了成核密度,同时增强硬质涂层和基体材料结合力。
附图说明
图1为本发明的工艺流程图。
图2为以纳米碳材料为碳源的固态热扩散过程示意图。
图3为本发明采用化学气相沉积技术制备金刚石/类金刚石薄膜反应过程示意图。
图4为采用本发明工艺所制备的金刚石/类金刚石薄膜结构示意图。
图中a为纳米碳材料涂覆层;b为纳米碳材料和助渗剂的混合层;c为基体材料;d为金刚石/类金刚石薄膜。
具体实施方式
下面结合附图中的实施例对本发明作进一步的说明:
本发明的硬质涂层制备方法是从固态热扩散的角度,在界面处引入第二相粒子,以纳米粒子活泼的表面价健和较高的表面能为硬质薄膜/涂层的制备提供更好的表面成核条件,提高成核密度,同时增强硬质涂层和基体材料结合力;硬质涂层制备方法包括纳米碳材料的固态热扩散处理,预处理基体材料的清洁与刻蚀,硬质涂层的制备;
所述的纳米碳材料的固态热扩散处理:
将金属或者非金属块状基体材料做初步清洁抛光处理,表面平整,保证无较大划痕,无油污,无锈迹;采用纳米金刚石,碳纳米管,碳微纤维,石墨烯,碳球,纳米石墨中的一种或多种组合,作为固态热扩散的碳源,加入冰晶石、稀土、碳酸盐、纳米石墨、 解团聚分散剂中的一种或多种组合,作为助渗剂,在一定温度高于金属奥氏体化温度30~350℃下进行固态热扩散处理;处理过程中需隔绝空气,在Ar、N2惰性气体作为保护气氛的炉腔中进行渗入和扩散处理;根据所需的渗层深度,参照厚度方向扩散速率0.1~0.5mm/小时,选择加热扩散时间;处理完成后,上述碳源进入到基体材料,以第二相粒子的形式存在于基体材料表层,并且从表面到基体材料心部呈梯度递减分布;经过真空/气氛热处理后,从表面到基体材料心部,强度硬度呈递减变化,防止因基体材料强度硬度不够造成的脱落;
所述的预处理基体材料的清洁与刻蚀:
将预处理后的基体材料表面在室温下进行去污,打磨抛光,酒精/去离子水清洗,超声波清洗,酸洗/碱洗,腐蚀液刻蚀,和干燥表面处理,使基体材料表面平整、清洁,并且通过4%硝酸酒精等特定腐蚀液的刻蚀将第二相粒子裸露在基体材料的表面;清洗干燥完成后以备后续硬质涂层的制备;预处理基体材料的清洁与刻蚀工艺使所制备的硬质涂层更容易在基体中的第二相粒子的表面成核,以纳米粒子活泼的表面价健和较高的表面能为硬质薄膜/涂层的制备提供更好的表面成核条件,提高了成核密度,同时增强硬质涂层和基体材料结合力;
所述的硬质涂层的制备:
以气体,固体,或者液体等不同状态的物质作为硬质涂层的原料来源,在300~1100℃温度范围内,低压,或标准大气压的压强作用下,通入Ar、N2等保护性气氛条件,通过物理/化学气相沉积、固态热扩散、高能喷涂工艺制备的各种材质的硬质涂层,所述的低压为30~500Pa。
实施例1:
以20#钢为基体材料,以纳米级金刚石粉作为碳源进行纳米碳材料的固态热扩散处理,清洁抛光后,采用PECVD-等离子体增强化学气象沉积技术在钢材表面制备金刚石/类金刚石薄膜。具体的方法步骤如下:
第一,以纳米金刚石粉作为碳源在基体表面进行固态热扩散。
对基体材料20#钢的表面打磨处理,清除表面的污垢、毛刺以及锈迹,为保证固态热扩散的均匀性和表面光洁度,对基体材料热扩散处理前,抛光处理,去离子水/酒精清洗。将50~500nm粒度的纳米金刚石粉放置在有机分散剂中,在超声、离心以及其他机械外力作用下进行解团聚分散处理,将分散好的纳米金刚石去除部分溶剂,另外加入适量其他冰晶石、纳米石墨、稀土、碳酸盐等助渗剂调制成膏状渗剂。将调制好的膏状渗剂,均 匀的涂敷在20#钢基体材料的表面,厚度为3~10mm,如图2,b所示。涂覆完成后在膏剂表层均匀的敷上一层经过解团聚分散后的纳米金刚石粉,厚度为5mm左右,如图2,a所示。将涂覆完成的工件放置在坩埚中,然后一并放到热处理炉中,进行加热。在加热300℃以下时,用机械真空泵对炉腔抽真空处理,除尽炉腔内的氧气,炉腔内气压到达1~10Pa级别时即可向炉腔内通入氩气/氮气作为保护气氛,炉内气压到达正常大气压时,打开出气阀,防止炉内因温度升高气压过大,造成伤害或危险。保持气体畅通,继续加热到800~1200℃温度区间左右,保温2~5小时,进行渗入扩散,完成后,随炉冷却。取出工件后,将工件放置到热处理炉中加热到900~950℃,保温0.5h,后进行淬火处理。
第二,固态热扩散预处理后对20#钢基体材料清洁与刻蚀。
取出步骤一炉中预处理后的工件,去除表面渗剂残渣及油污,用去离子水/酒精+超声清洗处理,若工件表面不够平整光滑,或者表面有杂质或腐蚀的凹痕,可适当进行打磨或抛光,获得平整光滑的新鲜基体表面。用体积分数为4%的硝酸酒精溶液对预处理后的基体表面进行刻蚀,在高倍显微镜或电子显微镜下观察,基体表面的第二相裸露在表面即可。用酒精清洗表面,将工件放在恒温真空干燥箱中,100℃以下干燥20min左右。
第三,在以上两步处理后的20#钢表层,采用PECVD-等离子体增强化学气相沉积技术制备金刚石/类金刚石薄膜。
如图3所示的沉积反应过程。将上述干燥箱中的工件取出放置到PECVD装置的反应腔中,密封装置后,依次用机械真空泵和扩散真空泵进行抽真空处理,真空达到10-2Pa级别后,开始通入氢气和甲烷,不断调节甲烷和氢气的流量,保证氢气流量在50~100sccm左右,甲烷流量在30~50sccm左右。通过控制真空泵和进气流量,使反应腔内的混合气体的压力始终保持在80~100Pa左右。加热反应腔,温度达到400℃左右时,保温10min后,开启等离子射频电源,在400W左右的功率下,反应气体离子化,进行起辉,沉积开始。2~5h后关闭反应装置,终止沉积反应,沉积结束。随炉冷到室温后取出样品,在20#钢的表层得到5~10微米厚的金刚石/类金刚石薄膜,如图4,d所示。

Claims (1)

  1. 一种以纳米碳材料的热扩散为预处理的硬质涂层制备方法,其特征是:硬质涂层制备方法是从固态热扩散的角度,在界面处引入第二相粒子,以纳米粒子活泼的表面价健和较高的表面能为硬质薄膜/涂层的制备提供更好的表面成核条件,提高成核密度,同时增强硬质涂层和基体材料结合力;硬质涂层制备方法包括纳米碳材料的固态热扩散处理,预处理基体材料的清洁与刻蚀,硬质涂层的制备;
    所述的纳米碳材料的固态热扩散处理:
    将金属或者非金属块状基体材料做初步清洁抛光处理,表面平整,保证无较大划痕,无油污,无锈迹;采用纳米级金刚石,碳纳米管,碳微纤维,石墨烯,碳球,纳米石墨中的一种或多种组合,作为固态热扩散的碳源,加入冰晶石、稀土、碳酸盐、纳米石墨、解团聚分散剂中的一种或多种组合,作为助渗剂,在高于金属奥氏体化温度30~350℃下进行固态热扩散处理;处理过程中需隔绝空气,在Ar、N2惰性气体作为保护气氛的炉腔中进行渗入和扩散处理;根据所需的渗层深度,参照厚度方向扩散速率0.1~0.5mm/小时,选择加热扩散时间;处理完成后,上述碳源进入到基体材料,以第二相粒子的形式存在于基体材料表层,并且从表面到基体材料心部呈梯度递减分布;经过真空/气氛热处理后,从表面到基体材料心部,强度硬度呈递减变化,防止因基体材料强度硬度不够造成的脱落;
    所述的预处理基体材料的清洁与刻蚀:
    将预处理后的基体材料表面在室温下进行去污,打磨抛光,酒精/去离子水清洗,超声波清洗,酸洗/碱洗,腐蚀液刻蚀和干燥表面处理,使基体材料表面平整、清洁,并且通过4%硝酸酒精等特定腐蚀液的刻蚀将第二相粒子裸露在基体材料的表面;清洗干燥完成后以备后续硬质涂层的制备;预处理基体材料的清洁与刻蚀工艺使所制备的硬质涂层更容易在基体中的第二相粒子的表面成核,以纳米粒子活泼的表面价健和较高的表面能为硬质薄膜/涂层的制备提供更好的表面成核条件,提高了成核密度,同时增强硬质涂层和基体材料结合力;
    所述的硬质涂层的制备:
    以气体,固体,或者液体等不同状态的物质作为硬质涂层的原料来源,在300~1100℃温度范围内,低压,或标准大气压的压强作用下,通入Ar、N2等保护性气氛条件,通过物理/化学气相沉积、固态热扩散、高能喷涂工艺制备的各种材质的硬质涂层,所述的低压为30~500Pa。
PCT/CN2015/099330 2015-11-09 2015-12-29 一种以纳米碳材料的热扩散为预处理的硬质涂层制备方法 WO2017080079A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510758066.1 2015-11-09
CN201510758066.1A CN105385983B (zh) 2015-11-09 2015-11-09 一种以纳米碳材料的热扩散为预处理的硬质涂层制备方法

Publications (1)

Publication Number Publication Date
WO2017080079A1 true WO2017080079A1 (zh) 2017-05-18

Family

ID=55418748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099330 WO2017080079A1 (zh) 2015-11-09 2015-12-29 一种以纳米碳材料的热扩散为预处理的硬质涂层制备方法

Country Status (2)

Country Link
CN (1) CN105385983B (zh)
WO (1) WO2017080079A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111058011A (zh) * 2019-12-25 2020-04-24 浙江工业大学 一种纳米金刚石-石墨烯复合薄膜电极及其制备方法
CN111777335A (zh) * 2020-05-22 2020-10-16 广东日禾电器有限公司 一种玻璃基底用发热涂层材料及其制备方法
CN113755815A (zh) * 2021-09-10 2021-12-07 安徽光智科技有限公司 衬底的预处理方法、及金刚石膜的制备方法
CN114622201A (zh) * 2020-12-10 2022-06-14 张国徽 一种石墨烯纳米复合金属型材及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435460B (zh) * 2016-10-18 2018-10-12 中国矿业大学 一种铌合金表面高温耐磨涂层及其制备方法
CN106676463B (zh) * 2017-03-03 2020-03-31 中国矿业大学 一种以石墨化微纳米碳材料为扩散源的表面深层强化方法
EP3375811A1 (en) * 2017-03-17 2018-09-19 Airbus Operations S.L. Multifunctional diffusion barrier
CN109023360B (zh) * 2018-06-29 2020-07-28 三联泵业股份有限公司 一种耐磨的双吸泵叶轮表面处理工艺
CN110983300B (zh) * 2019-12-04 2023-06-20 江苏菲沃泰纳米科技股份有限公司 镀膜设备及其应用
CN112301324B (zh) * 2020-09-21 2023-04-14 贾春德 一种在钢铁基体上镀金刚石膜的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224666A (ja) * 1986-03-27 1987-10-02 Yukichi Asakawa 低炭素鋼の浸炭処理方法
CN1177937A (zh) * 1995-03-09 1998-04-01 时至准钟表股份有限公司 导筒以及在其内周面上形成硬质碳膜的方法
CN1321203A (zh) * 1999-09-07 2001-11-07 西铁城钟表股份有限公司 装饰品及其制造方法
CN1819885A (zh) * 2003-07-31 2006-08-16 联合材料公司 金刚石膜被覆工具及其制造方法
CN102061441A (zh) * 2011-01-28 2011-05-18 哈尔滨工业大学 一种基于热扩渗技术实现钢表面层纳米化的方法
CN102644046A (zh) * 2012-01-06 2012-08-22 中国科学院合肥物质科学研究院 一种抗腐蚀碳化物涂层及其制备方法
CN102753725A (zh) * 2010-05-31 2012-10-24 株式会社捷太格特 被覆部件及其制造方法
TW201504463A (zh) * 2013-07-16 2015-02-01 Univ Ming Chi Technology 細化合金晶粒之方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920760A (en) * 1994-05-31 1999-07-06 Mitsubishi Materials Corporation Coated hard alloy blade member
CN103089479B (zh) * 2013-01-21 2015-09-30 南京理工大学 带有硬软复合涂层与织构化表面的耐磨活塞环及制备方法
JP2014152345A (ja) * 2013-02-05 2014-08-25 Hitachi Tool Engineering Ltd 硬質皮膜被覆wc基超硬合金部材及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224666A (ja) * 1986-03-27 1987-10-02 Yukichi Asakawa 低炭素鋼の浸炭処理方法
CN1177937A (zh) * 1995-03-09 1998-04-01 时至准钟表股份有限公司 导筒以及在其内周面上形成硬质碳膜的方法
CN1321203A (zh) * 1999-09-07 2001-11-07 西铁城钟表股份有限公司 装饰品及其制造方法
CN1819885A (zh) * 2003-07-31 2006-08-16 联合材料公司 金刚石膜被覆工具及其制造方法
CN102753725A (zh) * 2010-05-31 2012-10-24 株式会社捷太格特 被覆部件及其制造方法
CN102061441A (zh) * 2011-01-28 2011-05-18 哈尔滨工业大学 一种基于热扩渗技术实现钢表面层纳米化的方法
CN102644046A (zh) * 2012-01-06 2012-08-22 中国科学院合肥物质科学研究院 一种抗腐蚀碳化物涂层及其制备方法
TW201504463A (zh) * 2013-07-16 2015-02-01 Univ Ming Chi Technology 細化合金晶粒之方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111058011A (zh) * 2019-12-25 2020-04-24 浙江工业大学 一种纳米金刚石-石墨烯复合薄膜电极及其制备方法
CN111777335A (zh) * 2020-05-22 2020-10-16 广东日禾电器有限公司 一种玻璃基底用发热涂层材料及其制备方法
CN111777335B (zh) * 2020-05-22 2022-11-11 碳中(广东)科技有限公司 一种玻璃基底用发热涂层材料及其制备方法
CN114622201A (zh) * 2020-12-10 2022-06-14 张国徽 一种石墨烯纳米复合金属型材及其制备方法
CN114622201B (zh) * 2020-12-10 2023-09-08 张国徽 一种石墨烯纳米复合金属型材及其制备方法
CN113755815A (zh) * 2021-09-10 2021-12-07 安徽光智科技有限公司 衬底的预处理方法、及金刚石膜的制备方法

Also Published As

Publication number Publication date
CN105385983A (zh) 2016-03-09
CN105385983B (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
WO2017080079A1 (zh) 一种以纳米碳材料的热扩散为预处理的硬质涂层制备方法
TWI321337B (en) Methods of making silicon carbide articles capable of reducing wafer contamination
WO2016088466A1 (ja) 複合基板の製造方法及び複合基板
TWI327761B (en) Method for making semiconductor wafer and wafer holding article
TWI360529B (en) Methods of finishing quartz glass surfaces and com
Wang et al. Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO3 and KNO3
Xiao et al. Polishing of polycrystalline diamond using synergies between chemical and mechanical inputs: A review of mechanisms and processes
Luo et al. Atomic-scale and damage-free polishing of single crystal diamond enhanced by atmospheric pressure inductively coupled plasma
Buijnsters et al. Substrate pre-treatment by ultrasonication with diamond powder mixtures for nucleation enhancement in diamond film growth
WO2008047728A1 (fr) Stratifié, matériaux de meulage et abrasif réalisés à l'aide de celui-ci, et procédé pour la formation du stratifié
Yuan et al. Chemical kinetics mechanism for chemical mechanical polishing diamond and its related hard-inert materials
CN103938182B (zh) 硼氮共掺纳米基定向金刚石薄膜的制备方法
US6500488B1 (en) Method of forming fluorine-bearing diamond layer on substrates, including tool substrates
Zhou et al. Efficient grinding diamond film using chromium-coated diamond grinding wheel based on mechanochemical effect
Khun et al. Effects of platinum content on tribological properties of platinum/nitrogen doped diamond-like carbon thin films deposited via magnetron sputtering
Zhang et al. Controllability and mechanism investigation on the subsurface damage of CVD diamond film by Fe-containing vitrified bond wheel
JP2011200987A (ja) ダイヤモンド被覆切削工具
Shekhtman et al. Influence of ion bombardment of a substrate on the quality of vacuum-plasma Ti-TiN coatings
McKay et al. Chemical mechanical polishing and direct bonding of YAG
JP4366169B2 (ja) アルミニウムの表面処理方法
Arnault et al. Surface characterisation of silicon substrates seeded with diamond nanoparticles under UHV annealing
Ju et al. Interface Modification of Substrate for enhancing adhesive strength of CVD diamond coating by solid particles
CN113106413B (zh) 一种cvd金刚石涂层前基体预处理工艺
JP2008007861A (ja) アルミニウムの表面処理方法
CN115992352A (zh) 一种全固态下硬质纳米颗粒自驱动进入钢铁基底中的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908209

Country of ref document: EP

Kind code of ref document: A1