WO2017080010A1 - 机电能量转换双边开关磁阻直线电机动子位置估测方法 - Google Patents

机电能量转换双边开关磁阻直线电机动子位置估测方法 Download PDF

Info

Publication number
WO2017080010A1
WO2017080010A1 PCT/CN2015/096784 CN2015096784W WO2017080010A1 WO 2017080010 A1 WO2017080010 A1 WO 2017080010A1 CN 2015096784 W CN2015096784 W CN 2015096784W WO 2017080010 A1 WO2017080010 A1 WO 2017080010A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
value
switched reluctance
mover
linear motor
Prior art date
Application number
PCT/CN2015/096784
Other languages
English (en)
French (fr)
Inventor
陈昊
王千龙
王星
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2015408849A priority Critical patent/AU2015408849B2/en
Publication of WO2017080010A1 publication Critical patent/WO2017080010A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the invention relates to an electromechanical energy conversion bilateral switch reluctance linear motor mover position estimation method, which is especially suitable for various phase-counting bilateral switched reluctance linear motors.
  • Switched reluctance motors must implement positional closed-loop control to follow the principle of minimum reluctance, but conventional position sensors are prone to failure and failure, which reduces the reliability of switched reluctance motor systems.
  • a series of methods have been proposed for the position sensorless control of switched reluctance rotary motors. The essence is the same, that is, by applying excitation to the windings, measuring the current and the end voltage, deriving the phase inductance or flux linkage, using the rotor position. The mapping relationship between the inductor and the flux linkage results in rotor position information.
  • the switched reluctance linear motor can directly convert the mechanical energy and electric energy of linear motion without intermediate conversion device or transmission mechanism, thereby reducing the volume, weight and cost of the linear motion system, and eliminating the intermediate conversion or transmission link. Force, speed and other errors. Due to the machining process of the motor and the wear of the track and the bearing caused by the long-term operation of the motor, the bilateral switched reluctance linear motor often has a certain eccentricity.
  • the conventional stator winding connection method similar to the switched reluctance rotary motor is used to realize the position sensorless Control, due to the influence of the eccentricity of the mover, the accuracy of the position estimation of the mover is not high, and it is difficult to implement an effective double-sided switched reluctance linear motor without position sensor control. Therefore, it is very important to provide a bilateral switched reluctance linear motor mover position estimation method that is not affected by the eccentricity of the mover. It is very important to implement an effective bilateral switched reluctance linear motor without position sensor control.
  • the object of the present invention is to provide a method for estimating the mover position of an electromechanical energy conversion bilateral switched reluctance linear motor suitable for various phase numbers, which is simple in method and not affected by the eccentricity of the mover, in view of the problems in the prior art.
  • the electromechanical energy conversion bilaterally switched reluctance linear motor mover position estimation method comprises the two-side switched reluctance linear motor, the two stators of a bilateral switched reluctance linear motor and one mover, two stators. They are respectively arranged on both sides of the mover, and the stator windings of each phase of the bilateral switched reluctance linear motor are composed of four concentrated coils, and two concentrated coils are arranged on the stators on both sides, and two concentrated coils on the stator on the one side are arranged.
  • stator windings u are formed in series, and the two concentrated coils on the other side stator are connected in series to form the stator winding d, the inductance value of the stator winding u is set to L u , the inductance value of the stator winding d is L d , and the inductance value L u is detected on-line .
  • the inductance value L d the overlap distance value d of the stator pole and the mover pole of the bilateral switched reluctance linear motor is calculated by the following formula:
  • ⁇ 0 is the vacuum permeability value
  • L is the double-switched reluctance linear motor stack thickness value
  • g 0 is the single-side air gap length value of the bilateral switched reluctance linear motor
  • N is the concentration of each concentrated coil on the stator ⁇ numerical value
  • Wsp is the stator tooth width value
  • Wms is the mover groove width value
  • the air gap length value on the mover side is the same as the air gap length value on the other side, and both are the one-side air gap length value g 0 .
  • the present invention is obtained by reciprocal of the inductance value of the stator windings on both sides of the bilateral switched reluctance linear motor and the overlapping distance value of the stator pole and the moving pole of the bilateral switched reluctance linear motor, and then by the bilateral switching magnetic
  • the overlap distance value of the stator pole and the mover pole of the linear motor, the stator pole width value and the mover slot width value are obtained, and the position value of the bilateral switched reluctance linear motor is obtained, which is not affected by the eccentricity of the mover, and the bilateral switched reluctance linear line
  • the position estimation of the maneuver sub-station is accurate, which lays a foundation for the position sensorless control of the bilateral switched reluctance linear motor. It is suitable for the electromechanical energy conversion of various phase numbers of bilateral switched reluctance linear motor mover position estimation.
  • the method is simple, the effect is good, and has broad application prospects.
  • FIG. 1 is a schematic view showing the connection of stator winding coils of a bilateral switched reluctance linear motor according to the present invention.
  • FIG. 2 is a schematic diagram of the equivalent magnetic circuit of one phase of the bilateral switched reluctance linear motor of the present invention.
  • Fig. 3 is a view showing the relationship between the position value of the mover and the distance between the stator pole and the mover pole of the present invention.
  • FIG. 4 is a schematic diagram showing the topology structure of a power circuit of a bilateral switched reluctance linear motor according to the present invention.
  • the electromechanical energy conversion bilaterally switched reluctance linear motor mover position estimation method of the present invention adopts a bilateral switched reluctance linear motor, two stators of a bilateral switched reluctance linear motor and one mover, two The stators are respectively arranged on both sides of the mover, and the stator windings of each phase of the bilateral switched reluctance linear motor are composed of four concentrated coils, and two concentrated coils are respectively arranged on the stators on both sides, and two of the stators on the one side are concentrated.
  • the coils are connected in series to form the stator winding u, and the two concentrated coils on the other side of the stator are connected in series to form the stator winding d, the inductance value of the stator winding u is set to L u , the inductance value of the stator winding d is L d , and the inductance value L is detected on line.
  • u and the inductance value L d the overlap distance value d of the stator pole and the mover pole of the bilateral switched reluctance linear motor is calculated by the following formula:
  • ⁇ 0 is the vacuum permeability value
  • L is the double-switched reluctance linear motor stack thickness value
  • g 0 is the one-side air gap length value of the bilateral switched reluctance linear motor, in the case where the motor mover is not eccentric
  • the air gap length value of the motor mover is the same as the air gap length value of the other side, and is a single-side air gap length value g 0 , where N is the value of each concentrated coil on the stator;
  • the estimated value of the moving position of the bilateral switched reluctance linear motor is obtained by the following formula:
  • Wsp is the stator tooth width value
  • Wms is the mover groove width value
  • phase A winding is composed of windings A 1 to A 4 , and the two windings A 1 and A 2 of one stator are connected in series to form one stator winding A u , and the other side stator A 3 and A 4 series connection constitutes the other side stator winding A d ;
  • the B-phase winding is composed of windings B 1 to B 4 , and the two stators B 1 and B 2 of one stator are connected in series to form one stator winding B u , and the other stator B 3 and B 4 connected in series to form the other side stator winding B d ;
  • the C-phase winding is composed of windings C 1 - C 4 , and the two stators C 1 and C 2 of one stator are connected in series to form one stator winding C u , and the other stator C 3 and C 4 connected in series to form the other side stator winding C d ;
  • R s is the stator core magnetoresistance value
  • R u is the one side air gap magnetoresistance value
  • R d is the other side air gap magnetoresistance value
  • R m is the magnetoresistance value of the mover core
  • ⁇ 0 is the vacuum permeability value
  • a g is the air gap equivalent flux area value
  • g u is the side air gap length value
  • g d is the other side air gap length value
  • the motor mover is not eccentric
  • the air gap length value on one side of the mover is the same as the air gap length value on the other side, both are g 0
  • L is the double-switched reluctance linear motor stack thickness value
  • d is the bilateral switched reluctance linear motor stator pole and dynamic The value of the overlap distance of the sub-poles, as shown in Figure 3, ⁇ is the eccentricity of the mover, ie
  • ⁇ g is the value of the eccentric displacement of the mover.
  • Ni u in Fig. 2 is the magnetic potential of one side stator winding coils B 1 and B 2
  • Ni d is the magnetic field of the other side stator winding coils B 3 and B 4 . Potential.
  • N is the value of the enthalpy of each concentrated coil on the stator.
  • the reciprocal inductance of the stator windings B u and B d on both sides of the bilateral switched reluctance linear motor is independent of the eccentricity of the bilateral switched reluctance linear motor.
  • the overlap distance between the stator pole and the moving pole of the bilateral switched reluctance linear motor is d.
  • the detection value of the inductance and the inductance value L u L d can be calculated by the formula (7) the value of overlap distance d.
  • the stator winding of the bilateral switched reluctance linear motor is powered by the power converter, the A-phase main switches S A1 , S A2 and S A0 are turned on, and the freewheeling diodes D A1 , D A2 and D A0 are turned off.
  • phase A winding is excited, the current path is as shown in the figure, A u and A d are the stator windings on both sides of phase A; the B phase main switches S B1 and S B2 are turned off, S B0 is turned on, and the freewheeling diode D B1 and D B2 is turned on, D B0 is turned off, phase B winding zero voltage freewheeling, current path is shown in the figure, B u and B d are stator windings on both sides of phase B; C phase main switches S C1 , S C2 and S C0 is turned off, freewheeling diodes D C1 , D C2 and D C0 are turned on, and the C phase winding negative voltage freewheeling current path is as shown in the figure, Cu and C d are respectively stator windings on both sides of the C phase.
  • the non-conducting phase is injected with a high-frequency pulse voltage, and the non-conducting phase winding is subjected to excitation, zero-voltage freewheeling, and negative voltage free-wheeling phases, which are in the stator windings on both sides of each phase.
  • the inductance values L u and L d of the stator windings on both sides are calculated, and then the two-way switched reluctance linear motor can be obtained by the equations (7) and (8).
  • the sub-location estimate x is not affected by the eccentricity of the mover.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)
  • Control Of Electric Motors In General (AREA)
  • Synchronous Machinery (AREA)

Abstract

一种机电能量转换双边开关磁阻直线电机动子位置估测方法。该电机包括两个定子和一个动子,两个定子分别设在动子的两侧。每相定子绕组由4个集中线圈组成,每侧定子上各有2个集中线圈。一侧定子上的2个集中线圈串联构成定子绕组u,另一侧定子上的2个集中线圈串联构成定子绕组d,在线检测定子绕组u的电感值和定子绕组d的电感值,计算得到定子极和动子极的重叠距离值d,由此获得动子位置。该估测方法的精度不受动子偏心程度的影响,并适用于各种相数的双边开关磁阻直线电机。

Description

机电能量转换双边开关磁阻直线电机动子位置估测方法 技术领域
本发明涉及一种机电能量转换双边开关磁阻直线电机动子位置估测方法,尤其适用于各种相数双边开关磁阻直线电机。
背景技术
开关磁阻电机要实施位置闭环控制才能遵循最小磁阻原理运行,但传统的位置传感器易发生故障而失效,这降低了开关磁阻电机***的可靠性。对开关磁阻旋转式电机无位置传感器控制已提出了一系列方法,其本质是相同的,即通过对绕组施加激励,测量其电流和端部电压,推导出相电感或磁链,利用转子位置对电感、磁链的映射关系得出转子位置信息。开关磁阻直线电机可实现直线运动的机械能和电能直接转,无需中间转换装置或传动机构,从而减小了直线运动***的体积、重量和成本,并且可以消除中间转换或传动环节所带来的力、速度等多种误差。由于电机加工工艺以及电机长期运行造成的轨道和轴承磨损,双边型开关磁阻直线电机往往存在一定的偏心,采用与开关磁阻旋转式电机相似的传统定子绕组连接方式,若要实现无位置传感器控制,由于受动子偏心影响,动子位置估测精度不高,难以实施有效的双边型开关磁阻直线电机无位置传感器控制。因此,提供一种不受动子偏心影响的双边开关磁阻直线电机动子位置估测方法,对实施有效的双边型开关磁阻直线电机无位置传感器控制十分重要。
发明内容
本发明的目的是针对已有技术中存在问题,提供一种方法简单、不受动子偏心影响的、适用于各种相数的机电能量转换双边开关磁阻直线电机动子位置估测方法。
为实现上述目的,本发明机电能量转换双边开关磁阻直线电机动子位置估测方法,包括采用双边开关磁阻直线电机,双边开关磁阻直线电机的两个定子和一个动子,两个定子分别设在动子的两侧,双边开关磁阻直线电机的每相定子绕组由4个集中线圈组成,两侧定子上各有2个集中线圈,将所述一侧定子上的两个集中线圈串联构成定子绕组u,另一侧定子上的两个集中线圈串联构成定子绕组d,设定定子绕组u的电感值为Lu、定子绕组d的电感值为Ld,在线检测电感值Lu和电感值Ld,由下式计算得到双边开关磁阻直线电机定子极和动子极的重叠距离值d:
Figure PCTCN2015096784-appb-000001
式中:μ0为真空磁导率值,L为双边开关磁阻直线电机叠厚值,g0为双边开关磁阻直线电机的单侧气隙长度值,N为定子上每个集中线圈的匝数值;
根据得到的双边开关磁阻直线电机定子极和动子极的重叠距离值d,由下式得到双 边开关磁阻直线电机动子位置估测值x:
x=d+0.5Wms-0.5Wsp
式中:Wsp为定子齿宽值,Wms为动子槽宽值,x=0表示定子极中心线与动子槽中心线对齐时的动子位置。
所述的电机动子在不偏心的情况下,其动子一侧气隙长度值与另一侧气隙长度值相同,均为单侧气隙长度值g0
有益效果:由于采用了上述技术方案,本发明由双边开关磁阻直线电机两侧定子绕组电感值倒数和得到双边开关磁阻直线电机定子极和动子极的重叠距离值,再由双边开关磁阻直线电机定子极和动子极的重叠距离值、定子极宽值和动子槽宽值,得到双边开关磁阻直线电机动子位置值,不受动子偏心影响,双边开关磁阻直线电机动子位置估测准确,为双边开关磁阻直线电机无位置传感器控制打下了基础,适用于各种相数的机电能量转换双边开关磁阻直线电机动子位置估测。其方法简单,效果好,具有广阔的应用前景。
附图说明
图1是本发明的双边开关磁阻直线电机定子绕组线圈连接示意图。
图2是本发明的双边开关磁阻直线电机一相通电等效磁路示意图。
图3是本发明的动子位置值与定子极和动子极重叠距离值关系示意图。
图4是本发明的双边开关磁阻直线电机功率变换器电路拓扑结构示意图。
具体实施方式
下面结合附图对本发明的一个实施例作进一步的描述:
如图1所示,本发明的机电能量转换双边开关磁阻直线电机动子位置估测方法,采用双边开关磁阻直线电机,双边开关磁阻直线电机的两个定子和一个动子,两个定子分别设在动子的两侧,双边开关磁阻直线电机的每相定子绕组由4个集中线圈组成,两侧定子上各有2个集中线圈,将所述一侧定子上的两个集中线圈串联构成定子绕组u,另一侧定子上的两个集中线圈串联构成定子绕组d,设定定子绕组u的电感值为Lu、定子绕组d的电感值为Ld,在线检测电感值Lu和电感值Ld,由下式计算得到双边开关磁阻直线电机定子极和动子极的重叠距离值d:
Figure PCTCN2015096784-appb-000002
式中:μ0为真空磁导率值,L为双边开关磁阻直线电机叠厚值,g0为双边开关磁阻直线电机的单侧气隙长度值,在电机动子不偏心的情况下,电机动子一侧气隙长度值与 另一侧气隙长度值相同,均为单侧气隙长度值g0,N为定子上每个集中线圈的匝数值;
根据得到的双边开关磁阻直线电机定子极和动子极的重叠距离值d,由下式得到双边开关磁阻直线电机动子位置估测值x:
x=d+0.5Wms-0.5Wsp
式中:Wsp为定子齿宽值,Wms为动子槽宽值,x=0表示定子极中心线与动子槽中心线对齐时的动子位置。
以电机的A相为例,A相绕组由绕组A1~A4组成,一侧定子两个绕组A1和A2串联连接构成一侧定子绕组Au,同样,另一侧定子A3和A4串联连接构成另一侧侧定子绕组Ad
以电机的B相为例,B相绕组由绕组B1~B4组成,一侧定子两个绕组B1和B2串联连接构成一侧定子绕组Bu,同样,另一侧定子B3和B4串联连接构成另一侧侧定子绕组Bd
以电机的C相为例,C相绕组由绕组C1~C4组成,一侧定子两个绕组C1和C2串联连接构成一侧定子绕组Cu,同样,另一侧定子C3和C4串联连接构成另一侧侧定子绕组Cd
以电机的B相为例,其等效磁路如图2所示,Rs为定子铁心磁阻值,Ru为一侧气隙磁阻值,Rd为另一侧气隙磁阻值,Rm为动子铁心磁阻值,且
Figure PCTCN2015096784-appb-000003
Figure PCTCN2015096784-appb-000004
式中:μ0是真空磁导率值,Ag是气隙等效磁通面积值,gu为一侧气隙长度值,gd为另一侧气隙长度值,电机动子不偏心情况下动子一侧的气隙长度值与另一侧气隙长度值相同,均为g0,L为双边开关磁阻直线电机叠厚值,d为双边开关磁阻直线电机定子极和动子极的重叠距离值,如图3所示,ε为动子偏心率,即
Figure PCTCN2015096784-appb-000005
式中:Δg为动子偏心位移值。
由于气隙磁阻值远大于定子、动子铁心磁阻值,因此磁路中忽略Rm和Rs的影响,如图2所示;测点a和测点b之间近似“短路”,整个磁路分成两个独立的磁路进行分析, 图2中的Niu是一侧定子绕组线圈B1和B2的磁势,Nid是另一侧定子绕组线圈B3和B4的磁势。
在图2回路1中,总磁阻
Figure PCTCN2015096784-appb-000006
由下式得出:
Figure PCTCN2015096784-appb-000007
将线圈B1和线圈B2串联,所连接成的一侧定子绕组Bu的电感值Lu近似计算为
Figure PCTCN2015096784-appb-000008
式中:N为定子上每个集中线圈的匝数值。
同理,在图2回路2中,另一侧定子绕组Bd的电感值Ld近似计算为:
Figure PCTCN2015096784-appb-000009
由式(5)和式(6)得出:
Figure PCTCN2015096784-appb-000010
双边开关磁阻直线电机两侧定子绕组Bu和Bd的电感倒数和与双边开关磁阻直线电机动子偏心率无关,与双边开关磁阻直线电机定子极和动子极的重叠距离值d有一一对应关系;
只要检测电感值Lu和电感值Ld就能由式(7)计算出重叠距离值d。
当x=0,则表示定子极中心线与动子槽中心线对齐时的动子位置,双边开关磁阻直线电机动子位置值x、Wsp为定子极宽值、Wms为动子槽宽值、定子极和动子极的重叠距离值d,由下式即可得到双边开关磁阻直线电机动子位置估测值x:
x=d+0.5Wms-0.5Wsp  (8)
如图4所示,用功率变换器对双边开关磁阻直线电机定子绕组供电,A相主开关SA1、SA2和SA0导通,续流二极管DA1、DA2和DA0关断,A相绕组励磁,电流路径如图中所示,Au和Ad分别是A相两侧定子绕组;B相主开关SB1和SB2关断、SB0导通,续流二极管DB1和DB2导通、DB0关断,B相绕组零电压续流,电流路径如图中所示,Bu和Bd分别是B相两侧定子绕组;C相主开关SC1、SC2和SC0关断,续流二极管DC1、DC2和DC0导通,C相绕组负电压续流电流路径如图中所示,Cu和Cd分别是C相两侧定子绕组。
通过控制主开关导通和关断,给非导通相注入高频脉冲电压,让非导通相绕组经历励磁、零电压续流、负电压续流阶段,由各相两侧定子绕组中所响应脉冲电流幅值及脉冲电流上升和下降时间,计算出两侧定子绕组的电感值Lu和Ld,再由式(7)和式(8)计算即 可得到双边开关磁阻直线电机动子位置估测值x,不受动子偏心影响。

Claims (2)

  1. 一种机电能量转换双边开关磁阻直线电机动子位置估测方法,包括采用双边开关磁阻直线电机,双边开关磁阻直线电机的两个定子和一个动子,两个定子分别设在动子的两侧,双边开关磁阻直线电机的每相定子绕组由4个集中线圈组成,两侧定子上各有2个集中线圈,其特征在于:将所述一侧定子上的两个集中线圈串联构成定子绕组u,另一侧定子上的两个集中线圈串联构成定子绕组d,设定定子绕组u的电感值为Lu、定子绕组d的电感值为Ld,在线检测电感值Lu和电感值Ld,由下式计算得到双边开关磁阻直线电机定子极和动子极的重叠距离值d:
    Figure PCTCN2015096784-appb-100001
    式中:μ0为真空磁导率值,L为双边开关磁阻直线电机叠厚值,g0为双边开关磁阻直线电机的单侧气隙长度值,N为定子上每个集中线圈的匝数值;
    根据得到的双边开关磁阻直线电机定子极和动子极的重叠距离值d,由下式得到双边开关磁阻直线电机动子位置估测值x:
    x=d+0.5Wms-0.5Wsp
    式中:Wsp为定子齿宽值,Wms为动子槽宽值,x=0表示定子极中心线与动子槽中心线对齐时的动子位置。
  2. 根据权利要求1所述的一种机电能量转换双边开关磁阻直线电机动子位置估测方法,其特征在于:所述的电机动子在不偏心的情况下,其动子一侧气隙长度值与另一侧气隙长度值相同,均为单侧气隙长度值g0
PCT/CN2015/096784 2015-11-09 2015-12-09 机电能量转换双边开关磁阻直线电机动子位置估测方法 WO2017080010A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2015408849A AU2015408849B2 (en) 2015-11-09 2015-12-09 Rotor position estimation method for electromechanical energy conversion bilateral switched reluctance linear motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510757816.3A CN105375716B (zh) 2015-11-09 2015-11-09 机电能量转换双边开关磁阻直线电机动子位置估测方法
CN201510757816.3 2015-11-09

Publications (1)

Publication Number Publication Date
WO2017080010A1 true WO2017080010A1 (zh) 2017-05-18

Family

ID=55377612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096784 WO2017080010A1 (zh) 2015-11-09 2015-12-09 机电能量转换双边开关磁阻直线电机动子位置估测方法

Country Status (3)

Country Link
CN (1) CN105375716B (zh)
AU (1) AU2015408849B2 (zh)
WO (1) WO2017080010A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282073A (zh) * 2018-01-18 2018-07-13 扬州大学 一种直线步进电动机
CN108494220A (zh) * 2018-03-15 2018-09-04 鲁东大学 一种圆筒直线电机
KR102326970B1 (ko) 2019-01-30 2021-11-16 명남수 전자기 기계용 권선 배열과 이를 이용한 이동 전자기 기계
CN110429894B (zh) * 2019-08-29 2021-03-05 扬州大学 一种基于耦合电压的分块式直线开关磁阻电机控制方法
CN113507240B (zh) * 2021-07-19 2023-02-21 扬州大学 动子偏移情况下直线开关磁阻电机在线校正控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101882819A (zh) * 2010-07-08 2010-11-10 东南大学 直线圆筒型开关磁通永磁发电机
TW201334398A (zh) * 2011-11-25 2013-08-16 Thk Co Ltd 線性馬達控制裝置、及線性馬達之控制方法
JP2014196940A (ja) * 2013-03-29 2014-10-16 日立オートモティブシステムズ株式会社 電磁サスペンション装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2823616B1 (fr) * 2001-04-17 2008-07-04 Leroy Somer Moteurs Machine electrique comportant au moins un detecteur de champ magnetique
JP2005348522A (ja) * 2004-06-03 2005-12-15 Hitachi Ltd 電動パワーステアリング用モータおよびその製造方法
JP4879249B2 (ja) * 2008-11-19 2012-02-22 三菱電機株式会社 電動機及び空気調和機
CN101771298A (zh) * 2008-12-26 2010-07-07 三洋电机株式会社 模制电动机及电动车辆
JP5592848B2 (ja) * 2011-03-30 2014-09-17 株式会社東芝 横方向磁束型回転電機及び車輌
JP2013005563A (ja) * 2011-06-15 2013-01-07 Asmo Co Ltd ブラシレスモータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101882819A (zh) * 2010-07-08 2010-11-10 东南大学 直线圆筒型开关磁通永磁发电机
TW201334398A (zh) * 2011-11-25 2013-08-16 Thk Co Ltd 線性馬達控制裝置、及線性馬達之控制方法
JP2014196940A (ja) * 2013-03-29 2014-10-16 日立オートモティブシステムズ株式会社 電磁サスペンション装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUAI, SONGYAN ET AL.: "The Global Position Sensor-Less Technology of Switched Reluctance Motor Based on the Simple Inductance Model", ELECTRIC MACHINES AND CONTROL, vol. 17, no. 10, 31 October 2013 (2013-10-31), ISSN: 1007-449X *

Also Published As

Publication number Publication date
CN105375716B (zh) 2017-11-28
AU2015408849A1 (en) 2017-05-25
CN105375716A (zh) 2016-03-02
AU2015408849B2 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
WO2017080010A1 (zh) 机电能量转换双边开关磁阻直线电机动子位置估测方法
JP7267398B2 (ja) 電気機械のための位置監視
Smadi et al. Development, analysis, and experimental realization of a direct-drive helical motor
CN107154716B (zh) 双定子周向错位角电励磁直流电机的控制方法
CN103560722B (zh) 一种永磁直线同步电机控制装置及方法
CN107070014A (zh) 一种混合励磁伺服电机
CN103825418A (zh) 单绕组无轴承磁通切换永磁电机
CN112953343A (zh) 一种开关磁阻电机的新型无位置传感器初始定位方法
CN106685281A (zh) 一种开关磁阻电机控制方法
CN103580561A (zh) 高压断路器线圈激磁直流电机机构的控制装置及控制方法
CN106887988B (zh) 三相电励磁双凸极电机中高速位置检测误差的补偿方法
CN102780373A (zh) 一种转子位置特征显著的永磁电机
Zhou et al. A segmented rotor type switched reluctance machine for BSGs of hybrid electric vehicles: Concept, design and analysis
CN207150384U (zh) 一种双定子周向错位角电励磁直流电机
CN103337993B (zh) 一种正弦波电感的开关磁阻电机控制方法
KR101311377B1 (ko) 단순 쇄교자속 기법-기반의 스위치드 릴럭턴스 센서리스 구동 시스템
Yu et al. Hysteresis control of torque and levitation force for dual-winding bearingless switched reluctance motor
Li et al. Design and modeling of tubular double excitation windings linear switched reluctance motor
Hofer et al. Current slope measurement strategies for sensorless control of a three phase radial active magnetic bearing
Sun et al. Bipolar-voltage-injection-based position estimation method of planar switched reluctance motors using improved flux linkage model
Yang et al. Position sensorless control of hybrid excitation axial field flux-switching permanent magnet machine based on model reference adaptive system
Shang et al. The analysis for new axial variable reluctance resolver with air-gap complementary structure
CN105656379B (zh) 一种基于磁阻特性坐标变换的开关磁阻电机位置预估方法
Uma et al. Sensorless control in switched reluctance motor drives for four quadrant operation
Yang et al. Sensorless Control of a Single-Phase Switched Reluctance Motor Using Residual Flux

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015408849

Country of ref document: AU

Date of ref document: 20151209

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908140

Country of ref document: EP

Kind code of ref document: A1