WO2017078154A1 - Ship - Google Patents

Ship Download PDF

Info

Publication number
WO2017078154A1
WO2017078154A1 PCT/JP2016/082843 JP2016082843W WO2017078154A1 WO 2017078154 A1 WO2017078154 A1 WO 2017078154A1 JP 2016082843 W JP2016082843 W JP 2016082843W WO 2017078154 A1 WO2017078154 A1 WO 2017078154A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat exchanger
supply line
tank
liquid separator
Prior art date
Application number
PCT/JP2016/082843
Other languages
French (fr)
Japanese (ja)
Inventor
安藤 明洋
宏之 武田
尚子 印藤
英和 岩▲崎▼
広崇 ▲高▼田
暢大 新村
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015247906A external-priority patent/JP6609176B2/en
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to KR1020187015138A priority Critical patent/KR102092313B1/en
Priority to CN201680063305.4A priority patent/CN108138700B/en
Publication of WO2017078154A1 publication Critical patent/WO2017078154A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/04Driving of auxiliaries from power plant other than propulsion power plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels

Definitions

  • the present invention relates to a ship including a gas engine for propulsion.
  • a ship including a tank for storing liquefied natural gas and a propulsion gas engine in which boil-off gas generated in the tank is supplied as fuel gas.
  • Such ships include a mechanical propulsion type in which a gas engine directly drives a propeller for propulsion and an electric propulsion type in which a gas engine rotates and drives a propeller for propulsion through a generator and a motor. is there.
  • Patent Document 1 discloses a mechanical propulsion-type ship 100 as shown in FIG.
  • the boil-off gas generated in the tank 110 is guided to the MEGI engine (two-stroke engine) by the supply line 120 as fuel gas.
  • the supply line 120 is provided with a multistage compressor 121 that compresses the boil-off gas to a high pressure of 15 to 40 MPa.
  • a branch line 130 branches from the supply line 120 inside the compressor 121, and this branch line 130 is connected to the DF engine.
  • the DF engine is used for propulsion and power generation.
  • a return line 140 branches from the supply line 120 on the downstream side of the compressor 121, and the return line 140 is connected to the tank 110.
  • the return line 140 is provided with an expansion valve 141 and a gas-liquid separator 142 in order from the upstream side.
  • the high-pressure and high-temperature boil-off gas returned to the tank 110 through the return line 140 is cooled and at least partially liquefied by the low-pressure and low-temperature boil-off gas flowing in the supply line 120 in the heat exchanger 160, and then the expansion valve 141. Is expanded into a low-pressure and low-temperature gas-liquid two-phase state.
  • the gas-liquid two-phase boil-off gas is separated into a gas component and a liquid component by the gas-liquid separator 142, and only the liquid component is returned to the tank 110.
  • the gas component is led from the gas-liquid separator 142 to the supply line 120 through the recirculation line 150 and merges with the boil-off gas flowing into the heat exchanger 160.
  • the boil-off gas cooled by the heat exchanger 160 is additionally cooled by the gas component flowing in the recirculation line 150 by the cooler 170.
  • the boil-off gas returned to the tank 110 through the return line 140 is cooled only by the cold heat of the boil-off gas flowing through the supply line 120 and the recirculation line 150. Therefore, the reliquefaction rate of the boil-off gas flowing through the return line 140 (ratio of the reliquefaction amount to the boil-off gas return amount) is not very good.
  • an object of the present invention is to provide a ship that can improve the reliquefaction rate of boil-off gas returned to the tank through the return line.
  • the ship of the present invention includes a main gas engine that rotationally drives a propeller for propulsion, a tank that stores liquefied natural gas, and a boil-off gas generated in the tank as a fuel gas.
  • Part of the liquefied natural gas by performing heat exchange between the first heat exchanger to be performed, the boil-off gas flowing out from the first heat exchanger in the return line, and the liquefied natural gas flowing in the second supply line Or the 2nd heat exchanger which vaporizes all is provided, It is characterized by the above-mentioned.
  • the high-pressure and high-temperature boil-off gas returned to the tank through the return line is cooled by the low-pressure and low-temperature boil-off gas flowing in the first supply line in the first heat exchanger, and then the second heat The exchanger is cooled by liquefied natural gas flowing to the second supply line.
  • the boil-off gas cooled in this way is expanded with an expansion
  • the second heat exchanger cools the boil-off gas using not only the sensible heat of the liquefied natural gas but also latent heat, the reliquefaction rate of the boil-off gas returned to the tank through the return line can be improved. it can.
  • the second heat exchanger may be formed integrally with the first heat exchanger. According to this structure, a 1st heat exchanger and a 2nd heat exchanger can be made into a single unit, and installation space can be reduced.
  • the second supply line may be provided with a forced vaporizer that forcibly vaporizes liquefied natural gas that has not been vaporized by the second heat exchanger. According to this configuration, even when the amount of boil-off gas returned to the tank through the return line is small, a sufficient amount of vaporized gas can be supplied to the auxiliary gas engine.
  • a gas-liquid separator is provided between the second heat exchanger and the forced vaporizer, and the ship has an upstream end connected to the gas-liquid separator, You may further provide the bypass line by which the gas component isolate
  • the gas-liquid separator is a first gas-liquid separator
  • the second supply line has a cooler, a second gas, in order from the upstream side to the downstream side of the connection point of the downstream end of the bypass line.
  • a liquid separator and a heater may be provided. According to this configuration, since the heavy components are removed from the vaporized gas by the action of the cooler and the second gas-liquid separator, the vaporized gas having a high methane number can be supplied to the sub-gas engine. Moreover, since the heater is provided in the downstream rather than the 2nd gas-liquid separator, the vaporization gas of suitable temperature can be supplied to a subgas engine.
  • the ship described above flows into or out of the first heat exchanger in the return gas and the vaporized gas flowing in the second supply line between the gas-liquid separator and the heater.
  • a third heat exchanger that performs heat exchange with the boil-off gas may be further provided.
  • the boil-off gas returned to the tank can be further cooled, and the reliquefaction rate of the boil-off gas can be further improved.
  • the boil-off gas flowing into the first heat exchanger is cooled by the third heat exchanger, more heat is taken from the boil-off gas than when the boil-off gas flowing out from the first heat exchanger is cooled. be able to.
  • the third heat exchanger may be formed integrally with at least the first heat exchanger. According to this configuration, the first heat exchanger and the third heat exchanger or the first to third heat exchangers can be made into a single unit, and the installation space can be reduced.
  • the reliquefaction rate of the boil-off gas returned to the tank through the return line can be improved.
  • 1 is a schematic configuration diagram of a ship according to a first embodiment of the present invention. It is a Mollier diagram of boil-off gas flowing through the first supply line and the return line. It is a schematic block diagram of the ship which concerns on 2nd Embodiment of this invention. It is a schematic block diagram of the ship which concerns on 3rd Embodiment of this invention. It is a schematic block diagram of the ship which concerns on 4th Embodiment of this invention. It is a schematic block diagram of the conventional ship.
  • FIG. 1 shows a ship 1A according to the first embodiment of the present invention.
  • the marine vessel 1A includes a main gas engine 11 for propulsion and a sub gas engine 13 for power generation (that is, for inboard power).
  • a main gas engine 11 and one sub gas engine 13 are provided, but a plurality of main gas engines 11 may be provided, or a plurality of sub gas engines 13 may be provided.
  • the ship 1A is a liquefied natural gas (hereinafter referred to as LNG) carrier, and a plurality of tanks 15 for storing LNG are installed in the ship 1A as cargo tanks.
  • the ship 1A may be an LNG fuel ship equipped with one or more tanks 15 for storing LNG as fuel tanks.
  • the temperature of the liquid phase (that is, LNG) in the tank 15 is about ⁇ 160 ° C.
  • the pressure of the gas phase (that is, boil-off gas) in the tank 15 is desirably a low pressure that is slightly higher than the atmospheric pressure (0.1 MPa).
  • BOG boil-off gas
  • VG Vaporized gas
  • the second supply line 4 and the first supply line 2 are connected by a supply line 7, and the VG vaporized by LNG while flowing through the second supply line 4 is also led to the main gas engine 11 through the supply line 7. .
  • the fuel gas supplied to the main gas engine 11 is BOG and / or VG.
  • the replenishment line 7 is provided with a pressure control valve 71 (which may be a flow control valve) and a check valve 72.
  • a pressure control valve 71 which may be a flow control valve
  • another supply line may be connected from the middle of the compressor 21 to the second supply line 4 so that not only VG but also BOG as fuel gas may be supplied to the auxiliary gas engine 13.
  • the ship 1A is a mechanical propulsion type, and the main gas engine 11 directly drives the propeller 12 for propulsion.
  • the ship 1A may be an electric propulsion type, and the main gas engine 11 may rotationally drive the propeller 12 for propulsion through a generator and a motor.
  • the main gas engine 11 is a diesel cycle type two-stroke engine having a high fuel gas injection pressure of about 20 to 35 MPa, for example.
  • the main gas engine 11 may be an Otto cycle type two-stroke engine having a medium pressure of fuel gas injection pressure of about 1 to 2 MPa, for example.
  • the main gas engine 11 may be an Otto cycle type four-stroke engine having a low fuel gas injection pressure of, for example, about 0.5 to 1 MPa.
  • the main gas engine 11 may be a gas-only combustion engine that burns only fuel gas, or may be a dual fuel engine that burns one or both of fuel gas and fuel oil (binary fuel engine). In this case, the fuel gas may be burned by the Otto cycle, and the fuel oil may be burned by the diesel cycle).
  • the auxiliary gas engine 13 is an Otto cycle type four-stroke engine having a low fuel gas injection pressure of about 0.5 to 1 MPa, for example, and is connected to the generator 14.
  • the auxiliary gas engine 13 may be a gas-only engine that burns only fuel gas, or may be a dual fuel engine that burns one or both of fuel gas and fuel oil.
  • the first supply line 2 guides BOG from all the tanks 15 to the main gas engine 11.
  • the first supply line 2 may lead BOG from one or several of the tanks 15 to the main gas engine 11.
  • the first supply line 2 includes the same number of branch paths 2a as the tank 15 and one common path 2b.
  • Each branch path 2 a extends from the upstream end of the common path 2 b to the inside of the corresponding tank 15, and the downstream end of the common path 2 b is connected to the main gas engine 11.
  • a compressor 21 is provided in the common path 2b.
  • the compressor 21 compresses the BOG to the supercritical state, in other words, to a pressure higher than the supercritical pressure Ps (intersection of the saturated liquid line L1 and the saturated vapor line L2) in FIG.
  • the pressure of BOG discharged from the compressor 21 is about 20 to 35 MPa, and the temperature is about 35 to 55 ° C.
  • the return line 3 branches from the common path 2 b of the first supply line 2 on the downstream side of the compressor 21.
  • the return line 3 is connected to all the tanks 15 in this embodiment.
  • the return line 3 may be connected to one or several of the tanks 15.
  • the return line 3 includes the same number of branch paths 3a as the tank 15 and one common path 3b.
  • the upstream end of the common path 3b is connected to the common path 2b of the first supply line 2, and each branch path 3a extends from the downstream end of the common path 3b to the inside of the corresponding tank 15.
  • the tip of each branch path 3a may be located in the gas phase or in the liquid phase.
  • Each branch passage 3a is provided with an expansion device 32 (for example, an expansion valve such as a Joule-Thomson valve that realizes adiabatic expansion change, an expansion turbine, an ejector, or the like).
  • an expansion device 32 for example, an expansion valve such as a Joule-Thomson valve that realizes adiabatic expansion change, an expansion turbine, an ejector, or the like.
  • a flow control valve 31 is provided in the common path 3b.
  • a pressure control valve may be provided instead of the flow control valve 31, or neither the flow control valve nor the pressure control valve may be provided.
  • the return line 3 is a line for returning such surplus BOG (difference between the BOG generation amount and the BOG usage amount) to the tank 15.
  • the second supply line 4 takes out LNG from all the tanks 15 in this embodiment.
  • the second supply line 4 may take out LNG from one or several of the tanks 15.
  • the second supply line 4 includes the same number of branch paths 4a as the tank 15 and one common path 4b.
  • a pump 41 is disposed in each tank 15.
  • Each branch path 4 a extends from the upstream end of the common path 4 b to the corresponding pump 41 in the tank 15, and the downstream end of the common path 4 b is connected to the auxiliary gas engine 13.
  • a first heat exchanger 61 and a second heat exchanger 62 are provided to cool the BOG returned to the tank 15 through the return line 3.
  • the first heat exchanger 61 includes a BOG that flows in an upstream portion of the common path 2b of the first supply line 2 relative to the compressor 21 and a common path 3b of the return line 3 (that is, an upstream portion of the expansion device 32).
  • Heat exchange with the BOG flowing in The second heat exchanger 62 performs heat exchange between the BOG flowing out of the first heat exchanger 61 in the common path 3b of the return line 3 and the LNG flowing in the common path 4b of the second supply line 4 to perform LNG. Vaporize part or all of
  • a first gas-liquid separator 42, a forced vaporizer 43, a cooler 51, a second gas-liquid separator 52, and a heater 53 are provided in order from the upstream side in the common path 4b of the second supply line 4. .
  • a bypass line 5 is connected to the common path 4b so as to bypass the forced vaporizer 43.
  • the upstream end of the replenishment line 7 described above is connected to the second supply line 4 between the cooler 51 and the second gas-liquid separator 52.
  • the upstream end of the supply line 7 may be connected to the second supply line 4 between the second gas-liquid separator 52 and the heater 53.
  • the downstream end of the supply line 7 is connected to the first supply line 2 between the first heat exchanger 61 and the compressor 21.
  • the first gas-liquid separator 42 separates the gas-liquid two-phase LNG flowing out from the second heat exchanger 62 into a gas component and a liquid component.
  • the first gas-liquid separator 42 is connected to the upstream end of the bypass line 5, and the downstream end of the bypass line 5 is connected to the second supply line 4 between the forced vaporizer 43 and the cooler 51. Yes.
  • the cooler 51 is located downstream of the connection point of the downstream end of the bypass line 5 in the second supply line 4.
  • the gas component separated by the first gas-liquid separator 42 flows through the bypass line 5.
  • the forced vaporizer 43 forcibly vaporizes the liquid component separated by the first gas-liquid separator 42, that is, LNG that has not been vaporized by the second heat exchanger 62, and generates VG.
  • the VG flowing out from the forced vaporizer 43 merges with the gas component from the bypass line 5 and then flows into the cooler 51.
  • the cooler 51 cools the VG to generate a liquid component whose main component is other than methane.
  • the generated liquid component is collected by the second gas-liquid separator 52.
  • most of the heavy components for example, ethane, propane, butane, etc.
  • the liquid component collected by the second gas-liquid separator 52 is returned to the one or more tanks 15 through the drain line 54.
  • the VG that has passed through the second gas-liquid separator 52 is heated by the heater 53.
  • VG having an appropriate temperature can be supplied to the auxiliary gas engine 13.
  • the cooler 51 cools the VG to ⁇ 140 to ⁇ 100 ° C.
  • the heater 53 heats the VG so that the VG temperature at the inlet of the auxiliary gas engine 13 becomes 5 to 50 ° C.
  • the low pressure and low temperature saturated (point A) BOG flows from the tank 15 into the first heat exchanger 61 through the first supply line 2 and is cooled by cooling the high pressure and high temperature BOG flowing through the return line 3.
  • (Superheated) Point A ⁇ Point B
  • the BOG is compressed to a supercritical state by the compressor 21 (point B ⁇ point C).
  • the BOG flowing into the return line 3 from the first supply line 2 is cooled by the first heat exchanger 61 (point C ⁇ point D) and then cooled by the second heat exchanger 62 (point D ⁇ point E).
  • BOG is liquefied by cooling in the first heat exchanger 61 or cooling in the second heat exchanger 62.
  • the liquid BOG that has flowed out of the second heat exchanger 62 is expanded by the expansion device 32 to be in a low-pressure and low-temperature gas-liquid two-phase state (point E ⁇ point F). Thereby, BOG is partially reliquefied.
  • the BOG cooled by the first heat exchanger 61 and the second heat exchanger 62 is expanded by the expansion device 32, so that the BOG returned to the tank 15 is It can be partially liquefied. Moreover, since the second heat exchanger 62 cools the BOG using not only the sensible heat of LNG but also the latent heat, the reliquefaction rate of the BOG returned to the tank 15 through the return line 3 can be improved. .
  • the BOG when the main gas engine 11 is stopped, the BOG can be partially liquefied only by driving the compressor 21. This is because the secondary gas engine 13 for power generation is always operating, and LNG always flows through the second supply line 4. Therefore, the BOG can be partially reliquefied with a small amount of electric power by rationally using the second supply line 4 for power generation as a cold heat source.
  • the first heat exchanger 61 and the second heat exchanger 62 are provided separately.
  • the second heat exchanger 62 is integrated with the first heat exchanger 61. Is formed. For this reason, the 1st heat exchanger 61 and the 2nd heat exchanger 62 can be made into the single unit 6, and an installation space can be reduced.
  • a ship 1C according to a third embodiment of the present invention will be described with reference to FIG.
  • a third heat exchanger 63 is provided in addition to the first heat exchanger 61 and the second heat exchanger 62. Yes.
  • the third heat exchanger 63 is between the VG flowing into the second supply line 4 between the second gas-liquid separator 52 and the heater 53 and the BOG flowing into the first heat exchanger 61 in the return line 3. Perform heat exchange. According to this configuration, the BOG returned to the tank 15 can be further cooled, and the BOG reliquefaction rate can be further improved.
  • the 3rd heat exchanger 63 is VG which flows into the 2nd supply line 4 between the 2nd gas-liquid separator 52 and the heater 53, and BOG which flows out from the 1st heat exchanger 61 in the return line 3. Heat exchange may be performed between them. However, if the BOG is cooled on the upstream side of the first heat exchanger 61 by the third heat exchanger 63 as shown in FIG. 4, the BOG is compared to the case where it is cooled on the downstream side of the first heat exchanger 61. Can take away a lot of heat.
  • the third heat exchanger 63 is formed integrally with the first heat exchanger 61 and the second heat exchanger 62. According to this configuration, the first to third heat exchangers 61 to 63 can be formed as a single unit 6, and the installation space can be reduced. However, although illustration is omitted, the third heat exchanger 63 may be formed integrally with only the first heat exchanger 61. Even in this configuration, the first heat exchanger 61 and the third heat exchanger 63 can be formed as a single unit, and the installation space can be reduced.
  • the compressor 21 may compress the BOG to a pressure lower than the supercritical pressure Ps.
  • the BOG returned to the tank 15 through the return line 3 is cooled by the first heat exchanger 61 and becomes a gas-liquid two-phase state.
  • the BOG reliquefaction rate can be increased as compared with the case where the BOG is compressed to a pressure lower than the supercritical pressure Ps.
  • first gas-liquid separator 42 and the bypass line 5 may be omitted and only the forced vaporizer 43 may be provided on the upstream side of the cooler 51 of the second supply line 4.
  • the first gas-liquid separator 42 and the bypass line 5 are provided as in the first to fourth embodiments, the liquid component separated by the first gas-liquid separator 42 is included in the forced vaporizer 43. Therefore, the amount of heat used for forced vaporization by the forced vaporizer 43 can be suppressed.
  • the forced vaporizer 43 may also be omitted.
  • the forced vaporizer 43 is provided as in the first to fourth embodiments, even if the amount of BOG returned to the tank 15 through the return line 3 is small, a sufficient amount of VG is subsidized. It can be supplied to the engine 13.
  • the second supply line 4 does not necessarily need to be provided with the cooler 51, the second gas-liquid separator 52, and the heater 53.
  • main gas engine 11 and the auxiliary gas engine 13 are not necessarily a reciprocating engine, and may be a gas turbine engine.

Abstract

A ship comprising: a main gas engine for propulsion; a tank storing LNG; a first supply line having a compressor provided therein and which guides BOG generated inside the tank to the main gas engine, as fuel gas; a return line having an expansion device provided therein, said return line branching off from the first supply line further downstream than the compressor and connecting to the tank; an auxiliary gas engine for power generation; a second supply line that takes LNG from inside the tank and guides VG, being said LNG that has been vaporized, towards the auxiliary gas engine; a first heat exchanger that exchanges heat between BOG that flows through a section in the first supply line that is further on the upstream side than the compressor and BOG that flows through a section in the return line that is further on the upstream side than the expansion device; and a second heat exchanger that exchanges heat between BOG discharged from the first heat exchanger in the return line and LNG that flows through the second supply line, said second heat exchanger vaporizing some or all of the LNG.

Description

船舶Ship
 本発明は、推進用のガスエンジンを含む船舶に関する。 The present invention relates to a ship including a gas engine for propulsion.
 従来から、液化天然ガスを貯留するタンクと、タンク内で発生したボイルオフガスが燃料ガスとして供給される推進用のガスエンジンを含む船舶が知られている。このような船舶には、ガスエンジンが推進用プロペラを直接的に回転駆動する機械推進式のものと、ガスエンジンが推進用プロペラを発電機およびモータを介して回転駆動する電気推進式のものがある。 Conventionally, a ship including a tank for storing liquefied natural gas and a propulsion gas engine in which boil-off gas generated in the tank is supplied as fuel gas is known. Such ships include a mechanical propulsion type in which a gas engine directly drives a propeller for propulsion and an electric propulsion type in which a gas engine rotates and drives a propeller for propulsion through a generator and a motor. is there.
 例えば、特許文献1には、図6に示すような機械推進式の船舶100が開示されている。この船舶100では、供給ライン120により、タンク110内で発生したボイルオフガスが燃料ガスとしてMEGIエンジン(2ストロークエンジン)へ導かれる。供給ライン120には、ボイルオフガスを15~40MPaと高圧に圧縮する多段式の圧縮機121が設けられている。また、供給ライン120からは圧縮機121の内部で分岐ライン130が分岐しており、この分岐ライン130がDFエンジンへつながっている。DFエンジンは、推進用や発電用として使用される。 For example, Patent Document 1 discloses a mechanical propulsion-type ship 100 as shown in FIG. In this ship 100, the boil-off gas generated in the tank 110 is guided to the MEGI engine (two-stroke engine) by the supply line 120 as fuel gas. The supply line 120 is provided with a multistage compressor 121 that compresses the boil-off gas to a high pressure of 15 to 40 MPa. A branch line 130 branches from the supply line 120 inside the compressor 121, and this branch line 130 is connected to the DF engine. The DF engine is used for propulsion and power generation.
 さらに、供給ライン120からは、圧縮機121よりも下流側で返送ライン140が分岐しており、この返送ライン140がタンク110へつながっている。返送ライン140には、上流側から順に、膨張弁141および気液分離器142が設けられている。返送ライン140を通じてタンク110へ返送される高圧かつ高温のボイルオフガスは、熱交換器160で供給ライン120に流れる低圧かつ低温のボイルオフガスによって冷却されて少なくとも部分的に液化され、その後に膨張弁141で膨張されて低圧かつ低温の気液二相状態となる。気液二相状態のボイルオフガスは、気液分離器142でガス成分と液成分に分離され、液成分のみがタンク110へ返送される。一方、ガス成分は、気液分離器142から再循環ライン150を通じて供給ライン120へ導かれ、熱交換器160へ流入するボイルオフガスと合流する。 Furthermore, a return line 140 branches from the supply line 120 on the downstream side of the compressor 121, and the return line 140 is connected to the tank 110. The return line 140 is provided with an expansion valve 141 and a gas-liquid separator 142 in order from the upstream side. The high-pressure and high-temperature boil-off gas returned to the tank 110 through the return line 140 is cooled and at least partially liquefied by the low-pressure and low-temperature boil-off gas flowing in the supply line 120 in the heat exchanger 160, and then the expansion valve 141. Is expanded into a low-pressure and low-temperature gas-liquid two-phase state. The gas-liquid two-phase boil-off gas is separated into a gas component and a liquid component by the gas-liquid separator 142, and only the liquid component is returned to the tank 110. On the other hand, the gas component is led from the gas-liquid separator 142 to the supply line 120 through the recirculation line 150 and merges with the boil-off gas flowing into the heat exchanger 160.
 さらに、図6に示す船舶100では、熱交換器160で冷却されたボイルオフガスが、冷却器170で再循環ライン150に流れるガス成分によって追加的に冷却される。 Furthermore, in the ship 100 shown in FIG. 6, the boil-off gas cooled by the heat exchanger 160 is additionally cooled by the gas component flowing in the recirculation line 150 by the cooler 170.
特表2015-505941号公報JP-T-2015-505941
 ところで、図6に示す船舶100では、返送ライン140を通じてタンク110へ返送されるボイルオフガスが、供給ライン120および再循環ライン150に流れるボイルオフガスの冷熱によってのみしか冷却されない。従って、返送ライン140に流れるボイルオフガスの再液化率(ボイルオフガスの返送量に対する再液化量の割合)があまりよくない。 Incidentally, in the ship 100 shown in FIG. 6, the boil-off gas returned to the tank 110 through the return line 140 is cooled only by the cold heat of the boil-off gas flowing through the supply line 120 and the recirculation line 150. Therefore, the reliquefaction rate of the boil-off gas flowing through the return line 140 (ratio of the reliquefaction amount to the boil-off gas return amount) is not very good.
 そこで、本発明は、返送ラインを通じてタンクへ返送されるボイルオフガスの再液化率を向上させることができる船舶を提供することを目的とする。 Therefore, an object of the present invention is to provide a ship that can improve the reliquefaction rate of boil-off gas returned to the tank through the return line.
 前記課題を解決するために、本発明の船舶は、推進用プロペラを回転駆動する主ガスエンジンと、液化天然ガスを貯留するタンクと、前記タンク内で発生したボイルオフガスを燃料ガスとして前記主ガスエンジンへ導く、圧縮機が設けられた第1供給ラインと、前記圧縮機よりも下流側で前記第1供給ラインから分岐して前記タンクへつながる、膨張装置が設けられた返送ラインと、発電用の副ガスエンジンと、前記タンク内から液化天然ガスを取り出し、その液化天然ガスが気化した気化ガスを燃料ガスとして前記副ガスエンジンへ導く第2供給ラインと、前記第1供給ラインにおける前記圧縮機よりも上流側部分に流れるボイルオフガスと前記返送ラインにおける前記膨張装置よりも上流側部分に流れるボイルオフガスとの間で熱交換を行う第1熱交換器と、前記返送ラインにおいて前記第1熱交換器から流出するボイルオフガスと前記第2供給ラインに流れる液化天然ガスとの間で熱交換を行って前記液化天然ガスの一部または全部を気化する第2熱交換器と、を備える、ことを特徴とする。 In order to solve the above-described problems, the ship of the present invention includes a main gas engine that rotationally drives a propeller for propulsion, a tank that stores liquefied natural gas, and a boil-off gas generated in the tank as a fuel gas. A first supply line provided with a compressor, leading to the engine, a return line provided with an expansion device branched from the first supply line downstream of the compressor and connected to the tank, and for power generation An auxiliary gas engine, a second supply line for taking out the liquefied natural gas from the tank and leading the vaporized gas obtained by vaporizing the liquefied natural gas to the auxiliary gas engine as a fuel gas, and the compressor in the first supply line Heat exchange between the boil-off gas that flows to the upstream side of the boil-off gas and the boil-off gas that flows to the upstream side of the expansion device in the return line Part of the liquefied natural gas by performing heat exchange between the first heat exchanger to be performed, the boil-off gas flowing out from the first heat exchanger in the return line, and the liquefied natural gas flowing in the second supply line Or the 2nd heat exchanger which vaporizes all is provided, It is characterized by the above-mentioned.
 上記の構成によれば、返送ラインを通じてタンクへ返送される高圧かつ高温のボイルオフガスは、第1熱交換器で第1供給ラインに流れる低圧かつ低温のボイルオフガスにより冷却された後、第2熱交換器で第2供給ラインに流れる液化天然ガスにより冷却される。そして、このように冷却されたボイルオフガスが膨張装置で膨張されるため、タンクへ返送されるボイルオフガスを部分的に再液化することができる。しかも、第2熱交換器は、液化天然ガスの顕熱だけでなく潜熱をも利用してボイルオフガスを冷却するので、返送ラインを通じてタンクへ返送されるボイルオフガスの再液化率を向上させることができる。 According to the above configuration, the high-pressure and high-temperature boil-off gas returned to the tank through the return line is cooled by the low-pressure and low-temperature boil-off gas flowing in the first supply line in the first heat exchanger, and then the second heat The exchanger is cooled by liquefied natural gas flowing to the second supply line. And since the boil-off gas cooled in this way is expanded with an expansion | swelling apparatus, the boil-off gas returned to a tank can be partially reliquefied. In addition, since the second heat exchanger cools the boil-off gas using not only the sensible heat of the liquefied natural gas but also latent heat, the reliquefaction rate of the boil-off gas returned to the tank through the return line can be improved. it can.
 前記第2熱交換器は、前記第1熱交換器と一体的に形成されていてもよい。この構成によれば、第1熱交換器および第2熱交換器を単一のユニットとすることができ、設置スペースを縮小することができる。 The second heat exchanger may be formed integrally with the first heat exchanger. According to this structure, a 1st heat exchanger and a 2nd heat exchanger can be made into a single unit, and installation space can be reduced.
 前記第2供給ラインには、前記第2熱交換器で気化されなかった液化天然ガスを強制的に気化する強制気化器が設けられてもよい。この構成によれば、返送ラインを通じてタンクへ返送されるボイルオフガスの量が少ない場合でも、十分な量の気化ガスを副ガスエンジンへ供給することができる。 The second supply line may be provided with a forced vaporizer that forcibly vaporizes liquefied natural gas that has not been vaporized by the second heat exchanger. According to this configuration, even when the amount of boil-off gas returned to the tank through the return line is small, a sufficient amount of vaporized gas can be supplied to the auxiliary gas engine.
 前記第2供給ラインには、前記第2熱交換器と前記強制気化器との間に気液分離器が設けられており、上記の船舶は、上流端が前記気液分離器に接続され、下流端が前記強制気化器よりも下流側で前記第2供給ラインに接続された、前記気液分離器で分離されたガス成分が流れるバイパスラインをさらに備えてもよい。この構成によれば、強制気化器には気液分離器で分離された液成分のみが導かれるため、強制気化器で強制気化に使用する熱量を抑制することができる。 In the second supply line, a gas-liquid separator is provided between the second heat exchanger and the forced vaporizer, and the ship has an upstream end connected to the gas-liquid separator, You may further provide the bypass line by which the gas component isolate | separated by the said gas-liquid separator which a downstream end was connected to the said 2nd supply line in the downstream rather than the said forced vaporizer flows. According to this configuration, since only the liquid component separated by the gas-liquid separator is guided to the forced vaporizer, the amount of heat used for forced vaporization by the forced vaporizer can be suppressed.
 前記気液分離器は、第1気液分離器であり、前記第2供給ラインには、前記バイパスラインの下流端の接続点よりも下流側に、上流側から順に、冷却器、第2気液分離器および加熱器が設けられてもよい。この構成によれば、冷却器および第2気液分離器の作用により気化ガスから重質分の多くが除去されるので、メタン価の高い気化ガスを副ガスエンジンへ供給することができる。また、第2気液分離器よりも下流側に加熱器が設けられているので、副ガスエンジンへ適切な温度の気化ガスを供給することができる。 The gas-liquid separator is a first gas-liquid separator, and the second supply line has a cooler, a second gas, in order from the upstream side to the downstream side of the connection point of the downstream end of the bypass line. A liquid separator and a heater may be provided. According to this configuration, since the heavy components are removed from the vaporized gas by the action of the cooler and the second gas-liquid separator, the vaporized gas having a high methane number can be supplied to the sub-gas engine. Moreover, since the heater is provided in the downstream rather than the 2nd gas-liquid separator, the vaporization gas of suitable temperature can be supplied to a subgas engine.
 上記の船舶は、前記気液分離器と前記加熱器の間で前記第2供給ラインに流れる気化ガスと前記返送ラインにおいて前記第1熱交換器に流入するまたは前記第1熱交換器から流出するボイルオフガスとの間で熱交換を行う第3熱交換器をさらに備えてもよい。この構成によれば、タンクへ返送されるボイルオフガスをさらに冷却することができ、ボイルオフガスの再液化率をさらに向上させることができる。特に、第3熱交換器によって第1熱交換器に流入するボイルオフガスが冷却されれば、第1熱交換器から流出するボイルオフガスが冷却される場合に比べ、ボイルオフガスから多くの熱量を奪うことができる。 The ship described above flows into or out of the first heat exchanger in the return gas and the vaporized gas flowing in the second supply line between the gas-liquid separator and the heater. A third heat exchanger that performs heat exchange with the boil-off gas may be further provided. According to this configuration, the boil-off gas returned to the tank can be further cooled, and the reliquefaction rate of the boil-off gas can be further improved. In particular, if the boil-off gas flowing into the first heat exchanger is cooled by the third heat exchanger, more heat is taken from the boil-off gas than when the boil-off gas flowing out from the first heat exchanger is cooled. be able to.
 前記第3熱交換器は、少なくとも前記第1熱交換器と一体的に形成されていてもよい。この構成によれば、第1熱交換器および第3熱交換器または第1~第3熱交換器を単一のユニットとすることができ、設置スペースを縮小することができる。 The third heat exchanger may be formed integrally with at least the first heat exchanger. According to this configuration, the first heat exchanger and the third heat exchanger or the first to third heat exchangers can be made into a single unit, and the installation space can be reduced.
 本発明によれば、返送ラインを通じてタンクへ返送されるボイルオフガスの再液化率を向上させることができる。 According to the present invention, the reliquefaction rate of the boil-off gas returned to the tank through the return line can be improved.
本発明の第1実施形態に係る船舶の概略構成図である。1 is a schematic configuration diagram of a ship according to a first embodiment of the present invention. 第1供給ラインおよび返送ラインに流れるボイルオフガスのモリエル線図である。It is a Mollier diagram of boil-off gas flowing through the first supply line and the return line. 本発明の第2実施形態に係る船舶の概略構成図である。It is a schematic block diagram of the ship which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る船舶の概略構成図である。It is a schematic block diagram of the ship which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る船舶の概略構成図である。It is a schematic block diagram of the ship which concerns on 4th Embodiment of this invention. 従来の船舶の概略構成図である。It is a schematic block diagram of the conventional ship.
 (第1実施形態)
 図1に、本発明の第1実施形態に係る船舶1Aを示す。この船舶1Aは、推進用の主ガスエンジン11と、発電用(すなわち、船内電源用)の副ガスエンジン13を含む。図例では、主ガスエンジン11および副ガスエンジン13が1つずつ設けられているが、主ガスエンジン11が複数設けられていてもよいし、副ガスエンジン13が複数設けられていてもよい。
(First embodiment)
FIG. 1 shows a ship 1A according to the first embodiment of the present invention. The marine vessel 1A includes a main gas engine 11 for propulsion and a sub gas engine 13 for power generation (that is, for inboard power). In the illustrated example, one main gas engine 11 and one sub gas engine 13 are provided, but a plurality of main gas engines 11 may be provided, or a plurality of sub gas engines 13 may be provided.
 本実施形態では、船舶1Aが液化天然ガス(以下、LNGという)運搬船であり、LNGを貯留する複数のタンク15がカーゴタンクとして船舶1Aに装備されている。ただし、船舶1Aは、LNGを貯留する1つまたは複数のタンク15が燃料タンクとして装備されたLNG燃料船であってもよい。 In the present embodiment, the ship 1A is a liquefied natural gas (hereinafter referred to as LNG) carrier, and a plurality of tanks 15 for storing LNG are installed in the ship 1A as cargo tanks. However, the ship 1A may be an LNG fuel ship equipped with one or more tanks 15 for storing LNG as fuel tanks.
 タンク15内の液相(すなわち、LNG)の温度は、約-160℃である。タンク15内の気相(すなわち、ボイルオフガス)の圧力は、大気圧(0.1MPa)よりも僅かに高い程度の低圧であることが望ましい。 The temperature of the liquid phase (that is, LNG) in the tank 15 is about −160 ° C. The pressure of the gas phase (that is, boil-off gas) in the tank 15 is desirably a low pressure that is slightly higher than the atmospheric pressure (0.1 MPa).
 タンク15内では、自然入熱によりLNGが気化し、ボイルオフガス(以下、BOGという)が発生する。主ガスエンジン11へは、第1供給ライン2により、全てまたは一部のタンク15から当該タンク15内で発生したBOGが燃料ガスとして導かれる。一方、全てまたは一部のタンク15内のLNGは、第2供給ライン4によりタンク15内から取り出され、第2供給ライン4を流れる途中で気化される。LNGが気化した気化ガス(以下、VGという)は、第2供給ライン4により副ガスエンジン13へ燃料ガスとして導かれる。 In the tank 15, LNG is vaporized by natural heat input, and boil-off gas (hereinafter referred to as BOG) is generated. BOG generated in the tank 15 from all or a part of the tank 15 is guided to the main gas engine 11 as fuel gas by the first supply line 2. On the other hand, LNG in all or part of the tank 15 is taken out from the tank 15 by the second supply line 4 and is vaporized while flowing through the second supply line 4. Vaporized gas (hereinafter referred to as VG) vaporized by LNG is guided as a fuel gas to the secondary gas engine 13 through the second supply line 4.
 さらに、第2供給ライン4と第1供給ライン2は補給ライン7により接続されており、第2供給ライン4を流れる途中でLNGが気化したVGは補給ライン7を通じて主ガスエンジン11にも導かれる。つまり、主ガスエンジン11へ供給される燃料ガスは、BOGおよび/またはVGである。補給ライン7には、圧力制御弁71(流量制御弁であってもよい)および逆止弁72が設けられている。なお、図示は省略するが、圧縮機21の中間から第2供給ライン4へ別の補給ラインがつながり、燃料ガスとしてVGだけでなくBOGも副ガスエンジン13へ供給されてもよい。 Further, the second supply line 4 and the first supply line 2 are connected by a supply line 7, and the VG vaporized by LNG while flowing through the second supply line 4 is also led to the main gas engine 11 through the supply line 7. . That is, the fuel gas supplied to the main gas engine 11 is BOG and / or VG. The replenishment line 7 is provided with a pressure control valve 71 (which may be a flow control valve) and a check valve 72. Although not shown, another supply line may be connected from the middle of the compressor 21 to the second supply line 4 so that not only VG but also BOG as fuel gas may be supplied to the auxiliary gas engine 13.
 本実施形態では、船舶1Aが機械推進式であり、主ガスエンジン11が推進用プロペラ12を直接的に回転駆動する。ただし、船舶1Aが電気推進式であり、主ガスエンジン11が推進用プロペラ12を発電機およびモータを介して回転駆動してもよい。 In this embodiment, the ship 1A is a mechanical propulsion type, and the main gas engine 11 directly drives the propeller 12 for propulsion. However, the ship 1A may be an electric propulsion type, and the main gas engine 11 may rotationally drive the propeller 12 for propulsion through a generator and a motor.
 主ガスエンジン11は、燃料ガス噴射圧が例えば20~35MPa程度と高圧なディーゼルサイクル方式の2ストロークエンジンである。ただし、主ガスエンジン11は、燃料ガス噴射圧が例えば1~2MPa程度と中圧なオットーサイクル方式の2ストロークエンジンであってもよい。あるいは、電気推進の場合は、主ガスエンジン11が、燃料ガス噴射圧が例えば0.5~1MPa程度と低圧なオットーサイクル方式の4ストロークエンジンであってもよい。また、主ガスエンジン11は、燃料ガスのみを燃焼させるガス専焼エンジンであってもよいし、燃料ガスと燃料油の一方または双方を燃焼させる二元燃料エンジンであってもよい(二元燃料エンジンの場合、燃料ガスを燃焼させるときがオットーサイクル、燃料油を燃焼させるときがディーゼルサイクルであってもよい)。 The main gas engine 11 is a diesel cycle type two-stroke engine having a high fuel gas injection pressure of about 20 to 35 MPa, for example. However, the main gas engine 11 may be an Otto cycle type two-stroke engine having a medium pressure of fuel gas injection pressure of about 1 to 2 MPa, for example. Alternatively, in the case of electric propulsion, the main gas engine 11 may be an Otto cycle type four-stroke engine having a low fuel gas injection pressure of, for example, about 0.5 to 1 MPa. The main gas engine 11 may be a gas-only combustion engine that burns only fuel gas, or may be a dual fuel engine that burns one or both of fuel gas and fuel oil (binary fuel engine). In this case, the fuel gas may be burned by the Otto cycle, and the fuel oil may be burned by the diesel cycle).
 副ガスエンジン13は、燃料ガス噴射圧が例えば0.5~1MPa程度と低圧なオットーサイクル方式の4ストロークエンジンであり、発電機14と連結されている。副ガスエンジン13は、燃料ガスのみを燃焼させるガス専焼エンジンであってもよいし、燃料ガスと燃料油の一方または双方を燃焼させる二元燃料エンジンであってもよい。 The auxiliary gas engine 13 is an Otto cycle type four-stroke engine having a low fuel gas injection pressure of about 0.5 to 1 MPa, for example, and is connected to the generator 14. The auxiliary gas engine 13 may be a gas-only engine that burns only fuel gas, or may be a dual fuel engine that burns one or both of fuel gas and fuel oil.
 本実施形態では、第1供給ライン2が全てのタンク15から主ガスエンジン11へBOGを導く。ただし、第1供給ライン2は、タンク15のうちの1つまたはいくつかから主ガスエンジン11へBOGを導いてもよい。具体的に、第1供給ライン2は、タンク15と同数の分岐路2aと、1本の共通路2bを含む。各分岐路2aは、共通路2bの上流端から対応するタンク15の内部まで延びており、共通路2bの下流端は主ガスエンジン11と接続されている。共通路2bには、圧縮機21が設けられている。 In the present embodiment, the first supply line 2 guides BOG from all the tanks 15 to the main gas engine 11. However, the first supply line 2 may lead BOG from one or several of the tanks 15 to the main gas engine 11. Specifically, the first supply line 2 includes the same number of branch paths 2a as the tank 15 and one common path 2b. Each branch path 2 a extends from the upstream end of the common path 2 b to the inside of the corresponding tank 15, and the downstream end of the common path 2 b is connected to the main gas engine 11. A compressor 21 is provided in the common path 2b.
 本実施形態では、圧縮機21がBOGを超臨界状態まで、換言すれば図2中の超臨界圧Ps(飽和液体線L1と飽和蒸気線L2の交点)よりも高い圧力まで圧縮する。例えば、圧縮機21から吐出されるBOGの圧力は20~35MPa程度であり、温度は35~55℃程度である。 In this embodiment, the compressor 21 compresses the BOG to the supercritical state, in other words, to a pressure higher than the supercritical pressure Ps (intersection of the saturated liquid line L1 and the saturated vapor line L2) in FIG. For example, the pressure of BOG discharged from the compressor 21 is about 20 to 35 MPa, and the temperature is about 35 to 55 ° C.
 第1供給ライン2の共通路2bからは、圧縮機21よりも下流側で返送ライン3が分岐している。返送ライン3は、本実施形態では全てのタンク15へつながっている。ただし、返送ライン3は、タンク15のうちの1つまたはいくつかとつながっていてもよい。具体的に、返送ライン3は、タンク15と同数の分岐路3aと、1本の共通路3bを含む。共通路3bの上流端は第1供給ライン2の共通路2bと接続されており、各分岐路3aは、共通路3bの下流端から対応するタンク15の内部まで延びている。各分岐路3aの先端は、気相に位置していてもよいし液相に位置していてもよい。各分岐路3aには、膨張装置32(例えば、断熱膨張変化を実現するジュールトムソン弁のような膨張弁、膨張タービン、エゼクターなど)が設けられている。一方、共通路3bには、流量制御弁31が設けられている。ただし、共通路3bには、流量制御弁31の代わりに圧力制御弁が設けられていてもよいし、流量制御弁および圧力制御弁のどちらも設けられていなくてもよい。 The return line 3 branches from the common path 2 b of the first supply line 2 on the downstream side of the compressor 21. The return line 3 is connected to all the tanks 15 in this embodiment. However, the return line 3 may be connected to one or several of the tanks 15. Specifically, the return line 3 includes the same number of branch paths 3a as the tank 15 and one common path 3b. The upstream end of the common path 3b is connected to the common path 2b of the first supply line 2, and each branch path 3a extends from the downstream end of the common path 3b to the inside of the corresponding tank 15. The tip of each branch path 3a may be located in the gas phase or in the liquid phase. Each branch passage 3a is provided with an expansion device 32 (for example, an expansion valve such as a Joule-Thomson valve that realizes adiabatic expansion change, an expansion turbine, an ejector, or the like). On the other hand, a flow control valve 31 is provided in the common path 3b. However, in the common path 3b, a pressure control valve may be provided instead of the flow control valve 31, or neither the flow control valve nor the pressure control valve may be provided.
 主ガスエンジン11の負荷によっては、主ガスエンジン11で使用されるBOGの量がタンク15内で発生するBOGの量よりも少なくなることがある。返送ライン3は、そのような余剰のBOG(BOG発生量とBOG使用量との差分)をタンク15へ返送するためのラインである。 Depending on the load of the main gas engine 11, the amount of BOG used in the main gas engine 11 may be smaller than the amount of BOG generated in the tank 15. The return line 3 is a line for returning such surplus BOG (difference between the BOG generation amount and the BOG usage amount) to the tank 15.
 第2供給ライン4は、本実施形態では、全てのタンク15からLNGを取り出す。ただし、第2供給ライン4は、タンク15のうちの1つまたはいくつかからLNGを取り出してもよい。具体的に、第2供給ライン4は、タンク15と同数の分岐路4aと、1本の共通路4bを含む。各タンク15内には、ポンプ41が配置されている。各分岐路4aは、共通路4bの上流端から対応するタンク15内のポンプ41まで延びており、共通路4bの下流端は副ガスエンジン13と接続されている。 The second supply line 4 takes out LNG from all the tanks 15 in this embodiment. However, the second supply line 4 may take out LNG from one or several of the tanks 15. Specifically, the second supply line 4 includes the same number of branch paths 4a as the tank 15 and one common path 4b. A pump 41 is disposed in each tank 15. Each branch path 4 a extends from the upstream end of the common path 4 b to the corresponding pump 41 in the tank 15, and the downstream end of the common path 4 b is connected to the auxiliary gas engine 13.
 さらに、本実施形態では、返送ライン3を通じてタンク15へ返送されるBOGを冷却するために、第1熱交換器61および第2熱交換器62が設けられている。第1熱交換器61は、第1供給ライン2の共通路2bにおける圧縮機21よりも上流側部分に流れるBOGと、返送ライン3の共通路3b(すなわち、膨張装置32よりも上流側部分)に流れるBOGとの間で熱交換を行う。第2熱交換器62は、返送ライン3の共通路3bにおいて第1熱交換器61から流出するBOGと、第2供給ライン4の共通路4bに流れるLNGとの間で熱交換を行ってLNGの一部または全部を気化する。 Further, in the present embodiment, a first heat exchanger 61 and a second heat exchanger 62 are provided to cool the BOG returned to the tank 15 through the return line 3. The first heat exchanger 61 includes a BOG that flows in an upstream portion of the common path 2b of the first supply line 2 relative to the compressor 21 and a common path 3b of the return line 3 (that is, an upstream portion of the expansion device 32). Heat exchange with the BOG flowing in The second heat exchanger 62 performs heat exchange between the BOG flowing out of the first heat exchanger 61 in the common path 3b of the return line 3 and the LNG flowing in the common path 4b of the second supply line 4 to perform LNG. Vaporize part or all of
 換言すれば、返送ライン3を通じてタンク15へ返送される高圧かつ高温のBOGは、第1熱交換器61で第1供給ライン2の共通路2bに流れる低圧かつ低温のBOGにより冷却された後に、第2熱交換器62で第2供給ライン4の共通路4bに流れるLNGにより冷却される。 In other words, after the high-pressure and high-temperature BOG returned to the tank 15 through the return line 3 is cooled by the low-pressure and low-temperature BOG flowing in the common path 2b of the first supply line 2 in the first heat exchanger 61, The second heat exchanger 62 cools the LNG flowing through the common path 4b of the second supply line 4.
 第2供給ライン4の共通路4bには、上流側から順に、第1気液分離器42、強制気化器43、冷却器51、第2気液分離器52および加熱器53が設けられている。さらに、共通路4bには、強制気化器43をバイパスするようにバイパスライン5が接続されている。上述した補給ライン7の上流端は、冷却器51と第2気液分離器52の間で第2供給ライン4に接続されている。ただし、補給ライン7の上流端は、第2気液分離器52と加熱器53の間で第2供給ライン4に接続されていてもよい。一方、補給ライン7の下流端は、第1熱交換器61と圧縮機21の間で第1供給ライン2に接続されている。 A first gas-liquid separator 42, a forced vaporizer 43, a cooler 51, a second gas-liquid separator 52, and a heater 53 are provided in order from the upstream side in the common path 4b of the second supply line 4. . Further, a bypass line 5 is connected to the common path 4b so as to bypass the forced vaporizer 43. The upstream end of the replenishment line 7 described above is connected to the second supply line 4 between the cooler 51 and the second gas-liquid separator 52. However, the upstream end of the supply line 7 may be connected to the second supply line 4 between the second gas-liquid separator 52 and the heater 53. On the other hand, the downstream end of the supply line 7 is connected to the first supply line 2 between the first heat exchanger 61 and the compressor 21.
 第1気液分離器42は、第2熱交換器62から流出する気液二相状態のLNGをガス成分と液成分とに分離する。第1気液分離器42には、バイパスライン5の上流端が接続されており、バイパスライン5の下流端は、強制気化器43と冷却器51の間で第2供給ライン4に接続されている。換言すれば、冷却器51は、第2供給ライン4において、バイパスライン5の下流端の接続点よりも下流側に位置している。バイパスライン5には、第1気液分離器42で分離されたガス成分が流れる。 The first gas-liquid separator 42 separates the gas-liquid two-phase LNG flowing out from the second heat exchanger 62 into a gas component and a liquid component. The first gas-liquid separator 42 is connected to the upstream end of the bypass line 5, and the downstream end of the bypass line 5 is connected to the second supply line 4 between the forced vaporizer 43 and the cooler 51. Yes. In other words, the cooler 51 is located downstream of the connection point of the downstream end of the bypass line 5 in the second supply line 4. The gas component separated by the first gas-liquid separator 42 flows through the bypass line 5.
 強制気化器43は、第1気液分離器42で分離された液成分、すなわち第2熱交換器62で気化されなかったLNGを強制的に気化し、VGを生成する。強制気化器43から流出するVGは、バイパスライン5からのガス成分と合流した後に、冷却器51に流入する。 The forced vaporizer 43 forcibly vaporizes the liquid component separated by the first gas-liquid separator 42, that is, LNG that has not been vaporized by the second heat exchanger 62, and generates VG. The VG flowing out from the forced vaporizer 43 merges with the gas component from the bypass line 5 and then flows into the cooler 51.
 冷却器51は、VGを冷却することで、メタン以外の成分を主成分とする液成分を生成する。生成された液成分は、第2気液分離器52によって収集される。これにより、VGから重質分の多く(例えば、エタン、プロパン、ブタンなど)が除去されるので、メタン価の高いVGを副ガスエンジン13へ供給することができる。第2気液分離器52で収集された液成分は、ドレンライン54を通じて1つまたは複数のタンク15へ返送される。さらに、第2気液分離器52を通過したVGは、加熱器53により加熱される。これにより、副ガスエンジン13へ適切な温度のVGを供給することができる。例えば、冷却器51は、VGを-140~-100℃に冷却し、加熱器53は、副ガスエンジン13入口でのVG温度が5~50℃となるようにVGを加熱する。 The cooler 51 cools the VG to generate a liquid component whose main component is other than methane. The generated liquid component is collected by the second gas-liquid separator 52. As a result, most of the heavy components (for example, ethane, propane, butane, etc.) are removed from VG, so that VG having a high methane number can be supplied to sub-gas engine 13. The liquid component collected by the second gas-liquid separator 52 is returned to the one or more tanks 15 through the drain line 54. Further, the VG that has passed through the second gas-liquid separator 52 is heated by the heater 53. As a result, VG having an appropriate temperature can be supplied to the auxiliary gas engine 13. For example, the cooler 51 cools the VG to −140 to −100 ° C., and the heater 53 heats the VG so that the VG temperature at the inlet of the auxiliary gas engine 13 becomes 5 to 50 ° C.
 次に、図1および図2を参照しながら、第1供給ライン2および返送ライン3に流れるBOGの状態変化について説明する。 Next, the state change of the BOG flowing through the first supply line 2 and the return line 3 will be described with reference to FIGS.
 まず、低圧かつ低温の飽和状態(点A)のBOGが第1供給ライン2を通じてタンク15から第1熱交換器61に流入し、返送ライン3に流れる高圧かつ高温のBOGを冷却することによって過熱(スーパーヒート)される(点A→点B)。その後、BOGは圧縮機21によって超臨界状態まで圧縮される(点B→点C)。第1供給ライン2から返送ライン3に流入したBOGは、第1熱交換器61で冷却され(点C→点D)、その後に第2熱交換器62で冷却される(点D→点E)。なお、BOGは、第1熱交換器61での冷却または第2熱交換器62での冷却によって液化される。第2熱交換器62から流出した液体状態のBOGは、膨張装置32で膨張されることによって低圧かつ低温の気液二相状態となる(点E→点F)。これにより、BOGが部分的に再液化される。 First, the low pressure and low temperature saturated (point A) BOG flows from the tank 15 into the first heat exchanger 61 through the first supply line 2 and is cooled by cooling the high pressure and high temperature BOG flowing through the return line 3. (Superheated) (Point A → Point B). Thereafter, the BOG is compressed to a supercritical state by the compressor 21 (point B → point C). The BOG flowing into the return line 3 from the first supply line 2 is cooled by the first heat exchanger 61 (point C → point D) and then cooled by the second heat exchanger 62 (point D → point E). ). BOG is liquefied by cooling in the first heat exchanger 61 or cooling in the second heat exchanger 62. The liquid BOG that has flowed out of the second heat exchanger 62 is expanded by the expansion device 32 to be in a low-pressure and low-temperature gas-liquid two-phase state (point E → point F). Thereby, BOG is partially reliquefied.
 以上説明したように、本実施形態の船舶1Aでは、第1熱交換器61および第2熱交換器62で冷却されたBOGが膨張装置32で膨張されるため、タンク15へ返送されるBOGを部分的に再液化することができる。しかも、第2熱交換器62は、LNGの顕熱だけでなく潜熱をも利用してBOGを冷却するので、返送ライン3を通じてタンク15へ返送されるBOGの再液化率を向上させることができる。 As described above, in the ship 1A of the present embodiment, the BOG cooled by the first heat exchanger 61 and the second heat exchanger 62 is expanded by the expansion device 32, so that the BOG returned to the tank 15 is It can be partially liquefied. Moreover, since the second heat exchanger 62 cools the BOG using not only the sensible heat of LNG but also the latent heat, the reliquefaction rate of the BOG returned to the tank 15 through the return line 3 can be improved. .
 さらに、本実施形態では、主ガスエンジン11が停止中である場合には、圧縮機21を駆動するだけでBOGを部分的に再液化することができる。発電用の副ガスエンジン13は常時稼働しており、第2供給ライン4には常にLNGが流れているからである。従って、発電用の第2供給ライン4を冷熱源として合理的に利用して、少ない電力でBOGを部分的に再液化することができる。 Furthermore, in this embodiment, when the main gas engine 11 is stopped, the BOG can be partially liquefied only by driving the compressor 21. This is because the secondary gas engine 13 for power generation is always operating, and LNG always flows through the second supply line 4. Therefore, the BOG can be partially reliquefied with a small amount of electric power by rationally using the second supply line 4 for power generation as a cold heat source.
 (第2実施形態)
 次に、図3を参照して、本発明の第2実施形態に係る船舶1Bを説明する。なお、本実施形態ならびに後述する第3および第4実施形態において、第1実施形態と同一構成要素には同一符号を付し、重複した説明は省略する。
(Second Embodiment)
Next, with reference to FIG. 3, the ship 1B which concerns on 2nd Embodiment of this invention is demonstrated. In the present embodiment and third and fourth embodiments to be described later, the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
 第1実施形態では、第1熱交換器61と第2熱交換器62が別々に設けられていたが、本実施形態では、第2熱交換器62が第1熱交換器61と一体的に形成されている。このため、第1熱交換器61および第2熱交換器62を単一のユニット6とすることができ、設置スペースを縮小することができる。 In the first embodiment, the first heat exchanger 61 and the second heat exchanger 62 are provided separately. However, in the present embodiment, the second heat exchanger 62 is integrated with the first heat exchanger 61. Is formed. For this reason, the 1st heat exchanger 61 and the 2nd heat exchanger 62 can be made into the single unit 6, and an installation space can be reduced.
 (第3実施形態)
 次に、図4を参照して、本発明の第3実施形態に係る船舶1Cを説明する。本実施形態では、返送ライン3を通じてタンク15へ返送されるBOGを冷却するための構成として、第1熱交換器61および第2熱交換器62に加え、第3熱交換器63が設けられている。
(Third embodiment)
Next, a ship 1C according to a third embodiment of the present invention will be described with reference to FIG. In the present embodiment, as a configuration for cooling the BOG returned to the tank 15 through the return line 3, a third heat exchanger 63 is provided in addition to the first heat exchanger 61 and the second heat exchanger 62. Yes.
 第3熱交換器63は、第2気液分離器52と加熱器53の間で第2供給ライン4に流れるVGと、返送ライン3において第1熱交換器61に流入するBOGとの間で熱交換を行う。この構成によれば、タンク15へ返送されるBOGをさらに冷却することができ、BOGの再液化率をさらに向上させることができる。 The third heat exchanger 63 is between the VG flowing into the second supply line 4 between the second gas-liquid separator 52 and the heater 53 and the BOG flowing into the first heat exchanger 61 in the return line 3. Perform heat exchange. According to this configuration, the BOG returned to the tank 15 can be further cooled, and the BOG reliquefaction rate can be further improved.
 ところで、第3熱交換器63は、第2気液分離器52と加熱器53の間で第2供給ライン4に流れるVGと、返送ライン3において第1熱交換器61から流出するBOGとの間で熱交換を行ってもよい。ただし、図4に示すように第3熱交換器63によってBOGが第1熱交換器61の上流側で冷却されれば、第1熱交換器61の下流側で冷却される場合に比べ、BOGから多くの熱量を奪うことができる。 By the way, the 3rd heat exchanger 63 is VG which flows into the 2nd supply line 4 between the 2nd gas-liquid separator 52 and the heater 53, and BOG which flows out from the 1st heat exchanger 61 in the return line 3. Heat exchange may be performed between them. However, if the BOG is cooled on the upstream side of the first heat exchanger 61 by the third heat exchanger 63 as shown in FIG. 4, the BOG is compared to the case where it is cooled on the downstream side of the first heat exchanger 61. Can take away a lot of heat.
 なお、図示は省略するが、第3熱交換器63の上流側で、返送ライン3に流れるボイルオフガスを清水や海水で予備的に冷却してもよい。 In addition, although illustration is abbreviate | omitted, you may precool the boil off gas which flows into the return line 3 upstream with the 3rd heat exchanger 63 with fresh water or seawater.
 (第4実施形態)
 次に、図5を参照して、本発明の第4実施形態に係る船舶1Dを説明する。本実施形態では、第3熱交換器63が第1熱交換器61および第2熱交換器62と一体的に形成されている。この構成によれば、第1~第3熱交換器61~63を単一のユニット6とすることができ、設置スペースを縮小することができる。ただし、図示は省略するが、第3熱交換器63は、第1熱交換器61のみと一体的に形成されていてもよい。この構成でも、第1熱交換器61および第3熱交換器63を単一のユニットとすることができ、設置スペースを縮小することができる。
(Fourth embodiment)
Next, with reference to FIG. 5, the ship 1D which concerns on 4th Embodiment of this invention is demonstrated. In the present embodiment, the third heat exchanger 63 is formed integrally with the first heat exchanger 61 and the second heat exchanger 62. According to this configuration, the first to third heat exchangers 61 to 63 can be formed as a single unit 6, and the installation space can be reduced. However, although illustration is omitted, the third heat exchanger 63 may be formed integrally with only the first heat exchanger 61. Even in this configuration, the first heat exchanger 61 and the third heat exchanger 63 can be formed as a single unit, and the installation space can be reduced.
 (その他の実施形態)
 本発明は上述した第1~第4実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
(Other embodiments)
The present invention is not limited to the first to fourth embodiments described above, and various modifications can be made without departing from the scope of the present invention.
 例えば、圧縮機21は、BOGを超臨界圧Psよりも低い圧力まで圧縮してもよい。この場合、返送ライン3を通じてタンク15へ返送されるBOGは、第1熱交換器61で冷却されて気液二相状態となる。ただし、前記実施形態のように、BOGを超臨界状態まで圧縮すれば、BOGを超臨界圧Psよりも低い圧力まで圧縮する場合よりも、BOGの再液化率を高くすることができる。 For example, the compressor 21 may compress the BOG to a pressure lower than the supercritical pressure Ps. In this case, the BOG returned to the tank 15 through the return line 3 is cooled by the first heat exchanger 61 and becomes a gas-liquid two-phase state. However, if the BOG is compressed to a supercritical state as in the above embodiment, the BOG reliquefaction rate can be increased as compared with the case where the BOG is compressed to a pressure lower than the supercritical pressure Ps.
 また、第2供給ライン4の冷却器51よりも上流側では、第1気液分離器42およびバイパスライン5が省略され、強制気化器43のみが設けられていてもよい。ただし、前記第1~第4実施形態のように第1気液分離器42およびバイパスライン5が設けられていれば、強制気化器43には第1気液分離器42で分離された液成分のみが導かれるため、強制気化器43で強制気化に使用する熱量を抑制することができる。 Also, the first gas-liquid separator 42 and the bypass line 5 may be omitted and only the forced vaporizer 43 may be provided on the upstream side of the cooler 51 of the second supply line 4. However, if the first gas-liquid separator 42 and the bypass line 5 are provided as in the first to fourth embodiments, the liquid component separated by the first gas-liquid separator 42 is included in the forced vaporizer 43. Therefore, the amount of heat used for forced vaporization by the forced vaporizer 43 can be suppressed.
 さらに、第1気液分離器42およびバイパスライン5が省略される場合は、強制気化器43も省略されてもよい。ただし、前記第1~第4実施形態のように強制気化器43が設けられていれば、返送ライン3を通じてタンク15へ返送されるBOGの量が少ない場合でも、十分な量のVGを副ガスエンジン13へ供給することができる。 Furthermore, when the first gas-liquid separator 42 and the bypass line 5 are omitted, the forced vaporizer 43 may also be omitted. However, if the forced vaporizer 43 is provided as in the first to fourth embodiments, even if the amount of BOG returned to the tank 15 through the return line 3 is small, a sufficient amount of VG is subsidized. It can be supplied to the engine 13.
 また、第2供給ライン4には、必ずしも冷却器51、第2気液分離器52および加熱器53が設けられている必要はない。 Further, the second supply line 4 does not necessarily need to be provided with the cooler 51, the second gas-liquid separator 52, and the heater 53.
 また、主ガスエンジン11および副ガスエンジン13の一方または双方は、必ずしもレシプロエンジンである必要はなく、ガスタービンエンジンであってもよい。 Further, one or both of the main gas engine 11 and the auxiliary gas engine 13 are not necessarily a reciprocating engine, and may be a gas turbine engine.
 1A,1B 船舶
 11 主ガスエンジン
 12 推進用プロペラ
 13 副ガスエンジン
 15 タンク
 2  第1供給ライン
 21 圧縮機
 3  返送ライン
 32 膨張装置
 4  第2供給ライン
 42 第1気液分離器
 43 強制気化器
 5  バイパスライン
 51 冷却器
 52 第2気液分離器
 53 加熱器
 61 第1熱交換器
 62 第2熱交換器
 63 第3熱交換器
 
1A, 1B Ship 11 Main gas engine 12 Propeller for propulsion 13 Sub gas engine 15 Tank 2 First supply line 21 Compressor 3 Return line 32 Expansion device 4 Second supply line 42 First gas-liquid separator 43 Forced vaporizer 5 Bypass Line 51 Cooler 52 Second gas-liquid separator 53 Heater 61 First heat exchanger 62 Second heat exchanger 63 Third heat exchanger

Claims (7)

  1.  推進用プロペラを回転駆動する主ガスエンジンと、
     液化天然ガスを貯留するタンクと、
     前記タンク内で発生したボイルオフガスを燃料ガスとして前記主ガスエンジンへ導く、圧縮機が設けられた第1供給ラインと、
     前記圧縮機よりも下流側で前記第1供給ラインから分岐して前記タンクへつながる、膨張装置が設けられた返送ラインと、
     発電用の副ガスエンジンと、
     前記タンク内から液化天然ガスを取り出し、その液化天然ガスが気化した気化ガスを燃料ガスとして前記副ガスエンジンへ導く第2供給ラインと、
     前記第1供給ラインにおける前記圧縮機よりも上流側部分に流れるボイルオフガスと前記返送ラインにおける前記膨張装置よりも上流側部分に流れるボイルオフガスとの間で熱交換を行う第1熱交換器と、
     前記返送ラインにおいて前記第1熱交換器から流出するボイルオフガスと前記第2供給ラインに流れる液化天然ガスとの間で熱交換を行って前記液化天然ガスの一部または全部を気化する第2熱交換器と、
    を備える、船舶。
    A main gas engine that rotationally drives the propeller for propulsion,
    A tank for storing liquefied natural gas;
    A first supply line provided with a compressor for guiding boil-off gas generated in the tank to the main gas engine as fuel gas;
    A return line provided with an expansion device, branched from the first supply line downstream of the compressor and connected to the tank;
    A sub-gas engine for power generation,
    A second supply line that takes out liquefied natural gas from the tank and guides the vaporized gas obtained by vaporizing the liquefied natural gas to the sub-gas engine as a fuel gas;
    A first heat exchanger that exchanges heat between the boil-off gas that flows to the upstream side of the compressor in the first supply line and the boil-off gas that flows to the upstream side of the expansion device in the return line;
    Second heat that vaporizes a part or all of the liquefied natural gas by exchanging heat between the boil-off gas flowing out of the first heat exchanger and the liquefied natural gas flowing in the second supply line in the return line. An exchange,
    A ship equipped with.
  2.  前記第2熱交換器は、前記第1熱交換器と一体的に形成されている、請求項1に記載の船舶。 The ship according to claim 1, wherein the second heat exchanger is formed integrally with the first heat exchanger.
  3.  前記第2供給ラインには、前記第2熱交換器で気化されなかった液化天然ガスを強制的に気化する強制気化器が設けられている、請求項1または2に記載の船舶。 The ship according to claim 1 or 2, wherein the second supply line is provided with a forced vaporizer that forcibly vaporizes liquefied natural gas that has not been vaporized by the second heat exchanger.
  4.  前記第2供給ラインには、前記第2熱交換器と前記強制気化器との間に気液分離器が設けられており、
     上流端が前記気液分離器に接続され、下流端が前記強制気化器よりも下流側で前記第2供給ラインに接続された、前記気液分離器で分離されたガス成分が流れるバイパスラインをさらに備える、請求項1または2に記載の船舶。
    In the second supply line, a gas-liquid separator is provided between the second heat exchanger and the forced vaporizer,
    A bypass line in which an upstream end is connected to the gas-liquid separator and a downstream end is connected to the second supply line on the downstream side of the forced vaporizer and the gas component separated in the gas-liquid separator flows. The ship according to claim 1, further comprising:
  5.  前記気液分離器は、第1気液分離器であり、
     前記第2供給ラインには、前記バイパスラインの下流端の接続点よりも下流側に、上流側から順に、冷却器、第2気液分離器および加熱器が設けられている、請求項4に記載の船舶。
    The gas-liquid separator is a first gas-liquid separator,
    The second supply line is provided with a cooler, a second gas-liquid separator, and a heater in order from the upstream side, downstream from the connection point of the downstream end of the bypass line. The listed ship.
  6.  前記第2気液分離器と前記加熱器の間で前記第2供給ラインに流れる気化ガスと前記返送ラインにおいて前記第1熱交換器に流入するまたは前記第1熱交換器から流出するボイルオフガスとの間で熱交換を行う第3熱交換器をさらに備える、請求項5に記載の船舶。 A vaporized gas flowing into the second supply line between the second gas-liquid separator and the heater, and a boil-off gas flowing into the first heat exchanger or flowing out of the first heat exchanger in the return line; The ship according to claim 5, further comprising a third heat exchanger that performs heat exchange between the two.
  7.  前記第3熱交換器は、少なくとも前記第1熱交換器と一体的に形成されている、請求項6に記載の船舶。
     
    The ship according to claim 6, wherein the third heat exchanger is formed integrally with at least the first heat exchanger.
PCT/JP2016/082843 2015-11-06 2016-11-04 Ship WO2017078154A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187015138A KR102092313B1 (en) 2015-11-06 2016-11-04 Ship
CN201680063305.4A CN108138700B (en) 2015-11-06 2016-11-04 Ship with a detachable cover

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015218109 2015-11-06
JP2015-218109 2015-11-06
JP2015-247906 2015-12-18
JP2015247906A JP6609176B2 (en) 2015-11-06 2015-12-18 Ship

Publications (1)

Publication Number Publication Date
WO2017078154A1 true WO2017078154A1 (en) 2017-05-11

Family

ID=58661982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082843 WO2017078154A1 (en) 2015-11-06 2016-11-04 Ship

Country Status (1)

Country Link
WO (1) WO2017078154A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108751299A (en) * 2018-05-30 2018-11-06 江苏科技大学 LNG cold energy generations and seawater desalination system and its method of comprehensive utilization on a kind of FSRU
CN110748439A (en) * 2019-10-16 2020-02-04 大连船舶重工集团有限公司 Low-pressure gas supply system capable of efficiently utilizing cold energy of LNG (liquefied natural gas) fuel
CN110939531A (en) * 2018-09-21 2020-03-31 罗伯特·博世有限公司 Fuel delivery device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142980A (en) * 1985-12-18 1987-06-26 大阪瓦斯株式会社 Boiling offgas reliquefaction system of liquefied natural-gas storage tank
US20110056238A1 (en) * 2008-04-11 2011-03-10 Fluor Technologies Corporation Methods and Configurations of Boil-off Gas Handling in LNG Regasification Terminals
WO2014095877A1 (en) * 2012-12-20 2014-06-26 Cryostar Sas Method and apparatus for reliquefying natural gas
JP2014517230A (en) * 2011-05-31 2014-07-17 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Cold-heat recovery device using LNG fuel and liquefied gas carrier having the same
WO2015036708A2 (en) * 2013-09-12 2015-03-19 Cryostar Sas Device for recovering vapours from a cryogenic tank

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142980A (en) * 1985-12-18 1987-06-26 大阪瓦斯株式会社 Boiling offgas reliquefaction system of liquefied natural-gas storage tank
US20110056238A1 (en) * 2008-04-11 2011-03-10 Fluor Technologies Corporation Methods and Configurations of Boil-off Gas Handling in LNG Regasification Terminals
JP2014517230A (en) * 2011-05-31 2014-07-17 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Cold-heat recovery device using LNG fuel and liquefied gas carrier having the same
WO2014095877A1 (en) * 2012-12-20 2014-06-26 Cryostar Sas Method and apparatus for reliquefying natural gas
WO2015036708A2 (en) * 2013-09-12 2015-03-19 Cryostar Sas Device for recovering vapours from a cryogenic tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108751299A (en) * 2018-05-30 2018-11-06 江苏科技大学 LNG cold energy generations and seawater desalination system and its method of comprehensive utilization on a kind of FSRU
CN108751299B (en) * 2018-05-30 2021-04-30 江苏科技大学 LNG cold energy power generation and seawater desalination system on FSRU and comprehensive utilization method thereof
CN110939531A (en) * 2018-09-21 2020-03-31 罗伯特·博世有限公司 Fuel delivery device for internal combustion engine
CN110748439A (en) * 2019-10-16 2020-02-04 大连船舶重工集团有限公司 Low-pressure gas supply system capable of efficiently utilizing cold energy of LNG (liquefied natural gas) fuel

Similar Documents

Publication Publication Date Title
JP6609176B2 (en) Ship
US10767921B2 (en) Liquefied gas treatment system
KR101459962B1 (en) A Treatment System of Liquefied Gas
KR101258934B1 (en) Vessel
CN102084114A (en) Gas supply systems for gas engines
JP2014517849A (en) Non-explosive mixed refrigerant used in reliquefaction equipment of fuel supply system for high pressure natural gas injection engine
KR102572399B1 (en) Floating equipment and manufacturing method of floating equipment
KR101525686B1 (en) A Treatment System of Liquefied Gas
WO2017078154A1 (en) Ship
CN108367800A (en) Steamer including engine
KR20170055397A (en) A LNG Carrier
KR102136748B1 (en) Process and system for reliquefying boil-off gas (bog)
KR101904416B1 (en) A Liquefied Gas Treatment System
KR102016030B1 (en) Treatment system of liquefied gas
JP6670088B2 (en) Ship
KR101480253B1 (en) A Treatment System of Liquefied Gas
KR102160838B1 (en) A Treatment System and Method of Liquefied Gas
WO2017077718A1 (en) Ship
KR101496576B1 (en) A Treatment System of Liquefied Gas
KR102200370B1 (en) Gas Treatment System and Vessel having the same
KR20120053812A (en) System for supplying fuel gas and generating power using waste heat in ship and ship comprising the same
KR20200048095A (en) Driving System And Method For Regasification Ship
KR101557555B1 (en) A Treatment System and Method of Liquefied Gas
KR101498388B1 (en) A Liquefied Gas Treatment System
KR101831178B1 (en) Vessel Operating System and Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187015138

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16862213

Country of ref document: EP

Kind code of ref document: A1