WO2017076120A1 - 发送信道状态信息参考信号的方法、装置、基站及终端 - Google Patents

发送信道状态信息参考信号的方法、装置、基站及终端 Download PDF

Info

Publication number
WO2017076120A1
WO2017076120A1 PCT/CN2016/097939 CN2016097939W WO2017076120A1 WO 2017076120 A1 WO2017076120 A1 WO 2017076120A1 CN 2016097939 W CN2016097939 W CN 2016097939W WO 2017076120 A1 WO2017076120 A1 WO 2017076120A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
group
port numbers
mapped
port
Prior art date
Application number
PCT/CN2016/097939
Other languages
English (en)
French (fr)
Inventor
金婧
童辉
吴丹
王飞
王启星
Original Assignee
***通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ***通信集团公司 filed Critical ***通信集团公司
Priority to EP16861389.1A priority Critical patent/EP3373492A4/en
Priority to US15/772,885 priority patent/US10498505B2/en
Publication of WO2017076120A1 publication Critical patent/WO2017076120A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/04Channels characterised by the type of signal the signals being represented by different amplitudes or polarities, e.g. quadriplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the present disclosure relates to the field of wireless technologies, and in particular, to a method, an apparatus, a base station, and a terminal for transmitting a channel state information reference signal.
  • LTE Long Term Evolution
  • WiMax Worldwide Interoperability for Microwave Access
  • 802.11n all use 2D multiple input multiple output (MIMO, Multiple- InPut Multiple-Output,) technology
  • MIMO Multiple- InPut Multiple-Output
  • the basic principle is to improve transmission quality and system capacity through two-dimensional spatial degrees of freedom on the horizontal plane.
  • MIMO Multiple- InPut Multiple-Output
  • the antenna design architecture in order to improve the transmission efficiency of the mobile communication system and improve the user experience, it is necessary to fully exploit the vertical space degree of freedom, extend the 2D MIMO technology to the 3D MIMO technology, and fully utilize the freedom of the three-dimensional space to improve the system performance.
  • the antenna architecture of 2DMIMO is achieved by using multiple elements in the vertical dimension to achieve higher antenna gain.
  • Each antenna element in the vertical dimension uses a fixed weight to ensure that the desired beam pattern is obtained in the vertical dimension. Therefore, there is no way for 2D MIMO technology to perform beamforming in the vertical dimension.
  • 3D MIMO can form different beams by controlling the weighting factors of different antenna elements in the vertical dimension.
  • Vertical dimension beams can be effectively distinguished to provide vertical dimension multi-user multiplexing to increase capacity.
  • the LTE system supports a design of up to 8 antennas.
  • 3D MIMO extends the number of channels of the antenna to support three-dimensional antenna configurations such as 16, 32, 64, and 128.
  • CSI-RS has various configurations, such as 2-port frequency division duplex (FDD) system.
  • FDD 2-port frequency division duplex
  • the CSI-RS is sent for each resource block with full bandwidth.
  • the FDD system of 8 ports (numbered 0, 1, 2, 3, 4, 5, 6, and 7, corresponding to CSI-RS port numbers 15 to 22) has five configurations, among which A collection of cells of the same tag (eg, " ⁇ ", "/”, etc.) represents a configuration.
  • the UE in the related art feeds back channel state information (CSI) according to CSI-RS channel estimation.
  • CSI channel state information
  • the codebook set defined in the standard is optimized in the form of a polarized 8-antenna. Eight dual-polarized antennas in the horizontal dimension are considered.
  • the general numbering rule is as follows: as shown in Figure 2, starting from the same polarization direction, another polarization direction is added, wherein the antennas indicated by the same symbol have the same polarization direction, and the numbers below the antenna represent the antennas. Number, 8 antennas are numbered 0, 1, 2, 3, 4, 5, 6, and 7.
  • the enhancement direction for CSI-RS pattern is mainly 16 ports, and 3D MIMO with more channels is implemented by beamforming CSI-RS, thereby avoiding excessive CSI-RS overhead.
  • Standardization is now being discussed to design a 16-port CSI-RSpattern.
  • the main consideration of the 16-channel antenna is 4H2V (4 horizontal dual-polarized antennas with 2 channels in the vertical direction).
  • the specific numbering rule is as follows: as shown in FIG.
  • the main direction of the CSI-RS pattern design is to use the existing 8-port CSI-RS combination to be a 16-port CSI-RS.
  • the base station transmits the 16-port CSI-RS
  • how the traditional UE (with the 8-port UE) feeds back the accurate CSI is a problem.
  • the base station sends two sets of CSI-RSs, that is, 16-port + 8-port (or 2, 4-port) CSI-RS.
  • the disadvantage of this is that the base station transmits two sets of CSI-RS, which increases the overhead of the resource unit.
  • the base station sends one set of 16-port CSI-RS, and the new UE (with 16-port UE) notifies the 16-port CSI-RS configuration, and the traditional UE notifies the 8-port (or 2, 4 ports) CSI-RS configuration. Then, the CSI-RS read by the legacy UE is sent by the antennas 0-7, but the existing 8-antenna codebook is designed according to the dual-polarized antenna form, and the scheme cannot be better.
  • CSI measurement of legacy UEs is sent by the antennas 0-7, but the existing 8-antenna codebook is designed according to the dual-polarized antenna form, and the scheme cannot be better.
  • the purpose of the embodiments of the present disclosure is to provide a method, an apparatus, a base station, and a terminal for transmitting a channel state information reference signal, which can reduce the CSI-RS repetition overhead and make the CSI measurement of the traditional terminal more accurate, and improve the base station system. performance.
  • an embodiment of the present disclosure provides a method for transmitting a channel state information reference signal, which is applied to a base station, and the method includes:
  • the CSI-RS is mapped into one resource unit RE set in the CSI-RS pilot pattern, and the RE set includes 2 groups of 8-port CSI-RSs
  • the mapped RE and the first group of CSI-RS port numbers and the second group of CSI-RS port numbers of the 16 CSI-RS ports are mapped to the first group of 8 ports of the 2 groups of 8-port CSI-RSs
  • the third group of CSI-RS port numbers and the fourth group of CSI-RS port numbers in the 16 CSI-RS ports are mapped to the second group of 8-port CSI-RSs of the two groups of 8-port CSI-RSs.
  • the mapped RE In the mapped RE,
  • the first group of CSI-RS port numbers, the second group of CSI-RS port numbers, the third group of CSI-RS port numbers, and the fourth group of CSI-RS port numbers all include four consecutive CSI-RS port numbers, and
  • the third group of CSI-RS port numbers are separated between the group of CSI-RS port numbers and the second group of CSI-RS port numbers, and the third group of CSI-RS port numbers and the fourth group of CSI-RS port numbers are separated by second.
  • the receiving terminal is based on CSI-RS measured channel state information.
  • the 16 CSI-RS port numbers are 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30, respectively.
  • the two consecutive CSI-RS port numbers in the first group of CSI-RS port numbers are mapped to two REs located on the first subcarrier, and the other two consecutive CSIs in the first group of CSI-RS port numbers.
  • the RS port number is mapped to two REs located on the second subcarrier, wherein the first subcarrier and the second subcarrier are separated by 5 subcarriers, and the first group of 8 ports of CSI-RS mapped REs are located Two of the four subcarriers.
  • two consecutive CSI-RS port numbers in the second group of CSI-RS port numbers are mapped to Among the two REs located on the third subcarrier, the other two consecutive CSI-RS port numbers in the second group of CSI-RS port numbers are mapped to the two REs located on the fourth subcarrier, where the third The subcarrier and the fourth subcarrier are separated by 5 subcarriers, and are the other two subcarriers of the 4 subcarriers of the first group of 8 port CSI-RS mapped REs.
  • the two consecutive CSI-RS port numbers in the third group of CSI-RS port numbers are mapped to two REs located on the fifth subcarrier, and the other two consecutive CSIs in the third group of CSI-RS port numbers -
  • the RS port number is mapped to two REs located on the sixth subcarrier, wherein the fifth subcarrier and the sixth subcarrier are separated by 5 subcarriers, and the RE of the second group of 8 ports is mapped by the CSI-RS Two of the four subcarriers.
  • the two consecutive CSI-RS port numbers in the fourth group of CSI-RS port numbers are mapped to two REs located on the seventh subcarrier, and the other two consecutive CSIs in the fourth group of CSI-RS port numbers -
  • the RS port number is mapped to two REs located on the eighth subcarrier, wherein the seventh subcarrier and the eighth subcarrier are separated by 5 subcarriers, and the RE of the second group of 8 ports is mapped by the CSI-RS Two of the four subcarriers.
  • the first group of CSI-RS port numbers and the third group of CSI-RS port numbers form consecutive 8 CSI-RS port numbers, corresponding to 8 antennas or radio frequency channels in the first polarization direction; the second group CSI- The RS port number together with the fourth group of CSI-RS port numbers constitutes consecutive 8 CSI-RS port numbers, corresponding to 8 antennas or RF channels in the second polarization direction.
  • the polarization direction corresponding to the first group of CSI-RS port numbers is four antennas or radio frequency channels in the first polarization direction
  • the polarization direction corresponding to the second group of CSI-RS port numbers is the second polarization direction.
  • the four antennas or the RF channel are located at the first vertical position
  • the polarization direction corresponding to the third group of CSI-RS port numbers is four antennas or radio frequency channels in the first polarization direction, and corresponding to the fourth group of CSI-RS port numbers.
  • the four antennas or the RF channels whose polarization directions are the second polarization direction are located at the second vertical position.
  • An embodiment of the present disclosure further provides an apparatus for transmitting a channel state information reference signal, which is applied to a base station, and the apparatus includes:
  • a first sending module configured to send a channel state information reference signal CSI-RS through a 16 channel state information reference signal CSI-RS port, where the CSI-RS is mapped into a resource unit RE set in the CSI-RS pilot pattern
  • the RE set includes two sets of 8-port CSI-RS mapped REs, and the first CSI-RS port sequence number and the second group CSI-RS port sequence number of the 16 CSI-RS ports are mapped.
  • the third group of CSI-RS port numbers and the fourth group of CSI-RS port numbers of the 16 CSI-RS ports are Mapping to the second set of 8-port CSI-RS mapped REs of the two groups of 8-port CSI-RSs,
  • the first group of CSI-RS port numbers, the second group of CSI-RS port numbers, the third group of CSI-RS port numbers, and the fourth group of CSI-RS port numbers all include four consecutive CSI-RS port numbers, and
  • the third group of CSI-RS port numbers are separated between the group of CSI-RS port numbers and the second group of CSI-RS port numbers, and the third group of CSI-RS port numbers and the fourth group of CSI-RS port numbers are separated by second.
  • the first receiving module is configured to receive channel state information measured by the terminal based on the CSI-RS.
  • the 16 CSI-RS port numbers are 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30, respectively.
  • the two consecutive CSI-RS port numbers in the first group of CSI-RS port numbers are mapped to two REs located on the first subcarrier, and the other two consecutive CSIs in the first group of CSI-RS port numbers.
  • the RS port number is mapped to two REs located on the second subcarrier, wherein the first subcarrier and the second subcarrier are separated by 5 subcarriers, and the first group of 8 ports of CSI-RS mapped REs are located Two of the four subcarriers.
  • the two consecutive CSI-RS port numbers in the second group of CSI-RS port numbers are mapped to two REs located on the third subcarrier, and the other two consecutive CSIs in the second group of CSI-RS port numbers -
  • the RS port number is mapped to two REs located on the fourth subcarrier, wherein the third subcarrier and the fourth subcarrier are separated by 5 subcarriers, and the first group of 8 ports of CSI-RS mapped REs are located Two of the four subcarriers.
  • the two consecutive CSI-RS port numbers in the third group of CSI-RS port numbers are mapped to two REs located on the fifth subcarrier, and the other two consecutive CSIs in the third group of CSI-RS port numbers -
  • the RS port number is mapped to two REs located on the sixth subcarrier, wherein the fifth subcarrier and the sixth subcarrier are separated by 5 subcarriers, and the RE of the second group of 8 ports is mapped by the CSI-RS Two of the four subcarriers.
  • the two consecutive CSI-RS port numbers in the fourth group of CSI-RS port numbers are mapped to two REs located on the seventh subcarrier, and the other two consecutive CSIs in the fourth group of CSI-RS port numbers - the RS port number is mapped to two REs located on the eighth subcarrier, wherein the seventh subcarrier
  • the wave and the eighth subcarrier are separated by 5 subcarriers, and are the other two subcarriers of the 4 subcarriers of the second group of 8 port CSI-RS mapped REs.
  • the first group of CSI-RS port numbers and the third group of CSI-RS port numbers form consecutive 8 CSI-RS port numbers, corresponding to 8 antennas or radio frequency channels in the first polarization direction; the second group CSI- The RS port number together with the fourth group of CSI-RS port numbers constitutes consecutive 8 CSI-RS port numbers, corresponding to 8 antennas or RF channels in the second polarization direction.
  • the polarization direction corresponding to the first group of CSI-RS port numbers is four antennas or radio frequency channels in the first polarization direction
  • the polarization direction corresponding to the second group of CSI-RS port numbers is the second polarization direction.
  • the four antennas or the RF channel are located at the first vertical position
  • the polarization direction corresponding to the third group of CSI-RS port numbers is four antennas or radio frequency channels in the first polarization direction, and corresponding to the fourth group of CSI-RS port numbers.
  • the four antennas or the RF channels whose polarization directions are the second polarization direction are located at the second vertical position.
  • Embodiments of the present disclosure also provide a base station including the above-described apparatus for transmitting a channel state information reference signal.
  • An embodiment of the present disclosure further provides a method for transmitting a channel state information reference signal, which is applied to a terminal, and the method includes:
  • the measured channel state information is transmitted to the base station.
  • An embodiment of the present disclosure further provides an apparatus for transmitting a channel state information reference signal, which is applied to a terminal, and the apparatus includes:
  • a second receiving module configured to receive a CSI-RS sent by the base station according to the channel state information reference signal CSI-RS configuration information
  • a measuring module configured to measure channel state information based on the received CSI-RS
  • the second sending module is configured to send the measured channel state information to the base station.
  • Embodiments of the present disclosure also provide a terminal including the above-described apparatus for transmitting a channel state information reference signal.
  • a CSI-RS transmitted through a 16 channel state information reference signal CSI-RS port is mapped into a resource element RE set in a CSI-RS pilot pattern, and
  • the RE set includes two sets of 8-port CSI-RS mapped REs, and the first set of CSI-RS port numbers and the second set of CSI-RS port numbers of the 16 CSI-RS ports are mapped to the 2 sets of 8 ports.
  • the third set of CSI-RS port numbers and the fourth set of CSI-RS port numbers are mapped to the second set of 8 ports of the 2 sets of 8 ports.
  • the first group of CSI-RS port numbers, the second group of CSI-RS port numbers, the third group of CSI-RS port numbers, and the fourth group of CSI-RS port numbers all include four consecutive CSI-RS port numbers.
  • the third group of CSI-RS port numbers are separated between the first group of CSI-RS port numbers and the second group of CSI-RS port numbers, and the interval between the third group of CSI-RS port numbers and the fourth group of CSI-RS port numbers.
  • the second group of CSI-RS port numbers solves the problem that the traditional UE cannot accurately perform CSI measurement when the base station sends the 16-port CSI-RS, which saves the CSI-RS repetition overhead and makes the CSI measurement of the traditional terminal more. To improve the performance of the base station system for accuracy.
  • 1 is a configuration diagram of an 8-port CSI-RS in the related art
  • FIG. 2 is a schematic diagram of antenna numbers of 8 antennas in the related art
  • 3 is a schematic diagram of antenna numbers of 16 antennas in the related art
  • FIG. 4 is a flowchart of a method for transmitting a channel state information reference signal according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of antenna numbers of 16 antennas according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a CSI-RS pilot pattern according to an embodiment of the present disclosure.
  • FIG. 7 is a second schematic diagram of a CSI-RS pilot pattern according to an embodiment of the present disclosure.
  • FIG. 8 is a third schematic diagram of a CSI-RS pilot pattern according to an embodiment of the present disclosure.
  • FIG. 9 is a fourth schematic diagram of a CSI-RS pilot pattern according to an embodiment of the present disclosure.
  • FIG. 10 is a configuration diagram of an 8-port CSI-RS in a time division duplex system according to an embodiment of the present disclosure
  • FIG. 11 is a fifth schematic diagram of a CSI-RS pilot pattern according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of an apparatus for transmitting a channel state information reference signal according to an embodiment of the present disclosure
  • FIG. 13 is a flowchart of a method of transmitting a channel state information reference signal in at least some embodiments of the present disclosure
  • an embodiment of the present disclosure provides a method for transmitting a channel state information reference signal, which is applied to a base station.
  • the method comprises:
  • step S401 the CSI-RS is transmitted through the 16 channel state information reference signal CSI-RS ports.
  • the base station transmits a 16-port CSI-RS to the terminal.
  • Step S402 Receive channel state information measured by the terminal based on the CSI-RS.
  • the CSI-RS is mapped into one or more resource element (RE) sets in a CSI-RS pilot pattern.
  • Each RE set includes two groups of 8-port CSI-RS mapped REs, and the first CSI-RS port sequence number and the second group CSI-RS port sequence number of the 16 CSI-RS ports are mapped to the group 2 In the first group of 8-port CSI-RS mapped REs in the port CSI-RS, the third group of CSI-RS port numbers and the fourth group of CSI-RS port numbers among the 16 CSI-RS ports are mapped to the group 2 A second set of 8-port CSI-RS mapped REs in the port CSI-RS.
  • the first group of CSI-RS port numbers, the second group of CSI-RS port numbers, the third group of CSI-RS port numbers, and the fourth group of CSI-RS port numbers all include four consecutive CSI-RS port numbers, and
  • the third group of CSI-RS port numbers are separated between the first group of CSI-RS port numbers and the second group of CSI-RS port numbers, and the third group of CSI-RS port numbers and the fourth group of CSI-RS port numbers are separated by Two sets of CSI-RS port numbers.
  • the arrangement and numbering manner of the 16 antennas corresponding to the 16 CSI-RS ports may be as shown in FIG. 3 or as shown in FIG. 5.
  • the numbering rule of the 16 antennas in FIG. 5 is: starting from the same polarization direction, and then coding another polarization direction, wherein the antennas indicated by the same symbol (for example, "/", etc.) have the same polarization direction, and below the antenna.
  • the number represents the number of the antenna, and the number of each antenna corresponds to a CSI-RS port number. Therefore, when the numbers of the 16 antennas in FIG.
  • the corresponding 16 CSI-RS port numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, respectively. 13, 14 and 15.
  • the number of the antenna and the specific number of the CSI-RS port number are not limited.
  • the sequence numbers of the above 16 CSI-RS ports may be X+0, X+1, X+2, X+3, X+4, X+5, X+6, X+7, X+8, X+9, X+10, X+1, X+12, X+13, X+14, and X+15, where X is a natural number.
  • the above X is 15, that is, the above 16 CSI-RS port numbers are 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30, respectively. .
  • the first group of CSI-RS port numbers and the third group of CSI-RS port numbers form consecutive 8 CSI-RS port numbers, corresponding to 8 antennas in the first polarization direction (as shown in FIG. 5).
  • the second group of CSI-RS port numbers together with the fourth group of CSI-RS port numbers form a continuous 8 CSIs - RS port number, corresponding to 8 antennas in the second polarization direction (8 antennas numbered 8, 9, 10, 11, 12, 13, 14, 15 in Fig. 5) or radio frequency channels.
  • the polarization direction corresponding to the first group of CSI-RS port numbers is four antennas in the first polarization direction (four antennas numbered as 0, 1, 2, and 3 in FIG. 5) or radio frequency channels.
  • the four antennas corresponding to the second group of CSI-RS port numbers are in the second polarization direction (four antennas numbered 8, 9, 10, and 11 in FIG. 5) or the radio frequency channel is located in the first vertical direction.
  • the third group of CSI-RS port numbers corresponding to the polarization direction of the four antennas in the first polarization direction (such as four antennas numbered 4, 5, 6, and 7 in Figure 5) or the radio frequency channel
  • the four groups of CSI-RS port numbers correspond to four antennas in the second polarization direction (four antennas numbered 12, 13, 14, 15 in FIG. 5) or the radio frequency channel is in the second vertical position.
  • two consecutive CSI-RSs in the first group of CSI-RS port numbers (CSI-RS port numbers corresponding to antennas numbered 0, 1, 2, and 3 in FIG. 5)
  • the port number (the CSI-RS port number corresponding to the antenna numbered 0 and 1 in FIG. 5) is mapped to the two REs located on the first subcarrier, and the other two of the first group of CSI-RS port numbers are consecutive.
  • the CSI-RS port numbers (CSI-RS port numbers corresponding to the antennas numbered 2 and 3 in FIG. 5) are mapped to the two REs located on the second subcarrier.
  • the first subcarrier and the second subcarrier are two subcarriers of the 4 subcarriers of the first group of 8 ports of the CSI-RS mapped RE.
  • the second group of CSI-RS port numbers (CSI-RSs corresponding to the antennas numbered 8, 9, 10, 11 in FIG. 5) Two consecutive CSI-RS port numbers in the port number) (CSI-RS port numbers corresponding to the antennas numbered 8 and 9 in FIG. 5) are mapped to two REs located on the third subcarrier, and second The other two consecutive CSI-RS port numbers in the group CSI-RS port number (the CSI-RS port numbers corresponding to the antennas numbered 10 and 11 in FIG. 5) are mapped to the two REs located on the fourth subcarrier.
  • the third subcarrier and the fourth subcarrier are the other two subcarriers of the 4 subcarriers of the first group of 8 ports of the CSI-RS mapped RE.
  • CSI-RS port numbers corresponding to the antennas numbered 4, 5, 6, and 7 in FIG. 5 are similar to FIG. 5
  • the CSI-RS port numbers corresponding to the antennas numbered 4 and 5 are mapped to the two REs located on the fifth subcarrier, and the other two consecutive CSI-RS port numbers in the third group of CSI-RS port numbers are serialized.
  • (CSI-RS port numbers corresponding to the antennas numbered 6, 7 in Fig. 5) are mapped to two REs located on the sixth subcarrier.
  • the fifth subcarrier and the sixth subcarrier are two subcarriers of the 4 subcarriers of the second group of 8 ports of CSI-RS mapped REs.
  • CSI-RS port numbers in the fourth group of CSI-RS port numbers are mapped to the two REs located on the seventh subcarrier, and the other two consecutive CSI-RS port numbers in the fourth group of CSI-RS port numbers are serialized.
  • CSI-RS port numbers corresponding to the antennas numbered 14, 15 in Fig. 5) are mapped to two REs located on the eighth subcarrier.
  • the seventh subcarrier and the eighth subcarrier are the other two subcarriers of the 4 subcarriers of the second group of 8-port CSI-RS mapped REs.
  • CSI-RS pilot patterns there are many types of CSI-RS pilot patterns.
  • two configurations can be selected from the configuration of the 8-port CSI-RS as shown in FIG. 1 (ie, the first group of 8-port CSI-RSs respectively)
  • the configuration and the second set of 8-port CSI-RS configurations can be combined into a 16-port CSI-RS configuration. It should be noted that after the combination, it is necessary to change the mapping position of the 16 CSI-RS port numbers.
  • numbers 0 to 7 in the first group of 8-port CSI-RS configurations may be sequentially changed to 0 to 3, 8 to 11 (or 4 to 7, 12 to 15), and the second group of 8-port CSI-RS configurations may be configured.
  • the numbers 0 to 7 in the middle are sequentially changed to 4 to 7, 12 to 15 (or 0 to 3, 8 to 11). Since there are five CSI-RS configurations in FIG. 1, correspondingly, there should be 10 (ie, C(5, 2)) CSI-RS pilot patterns in the FDD system (as shown in FIG. 6 to FIG. 9). , given by Two CSI-RS pilot patterns configured as 16-port CSI-RSs are selected from any of the 8-port CSI-RS configurations as shown in FIG.
  • each CSI-RS pilot is used.
  • the CSI-RS can be mapped into at least one group of 16 ports (ie, the above-mentioned RE set) in the CSI-RS pilot pattern.
  • the set of cells having the same mark for example, " ⁇ ", "/", etc.
  • each figure represents a set of 16-port mapping positions.
  • the main purpose is to facilitate the base station in some sort of In case of case, send 8 ports of CSI-RS. It should be noted that the numbers 0 to 15 in FIGS. 6 to 9 sequentially correspond to the above-described 16 CSI-RS port numbers 0 to 15.
  • the base station itself stores the foregoing CSI-RS pilot pattern (ie, one of a plurality of CSI-RS pilot patterns), and for the terminal, it is necessary to distinguish between a new UE and a legacy UE.
  • a new UE it also stores a CSI-RS pilot pattern consistent with the base station.
  • the above numbers are 0 to 3, 8 to 11 (or 4 to 7, 12 to 15).
  • the CSI-RS port number is considered to be the CSI-RS port number numbered 0-7.
  • the new UE refers to a UE with 16 ports
  • the legacy UE refers to a UE with 1, 2, 4 or 8 ports.
  • the CSI-RS port numbers 0 to 15 in the CSI-RS pilot pattern shown in FIG. 6 will become as shown in FIG. 11 . 15 to 30, as shown in the figure, the number of CSI-RS ports corresponding to a group of 8 ports without any mark will be changed from 0 to 7 to 15 to 22.
  • the CSI-RS port numbers 0 to 15 in the CSI-RS pilot pattern shown in FIG. 7 to FIG. 9 are also changed to 15 to 30, and the principle thereof is similar to that of FIG. 6, and therefore will not be described herein.
  • the CSI-RS is passed through 16 channel state information reference signals.
  • the CSI-RS sent by the port is mapped into a resource element RE set in the CSI-RS pilot pattern, and the RE set includes 2 groups of 8-port CSI-RS mapped REs, and the first group of 16 CSI-RS ports.
  • the CSI-RS port number and the second group of CSI-RS port numbers are mapped to the CSI-RS mapped REs of the first group of 8 ports of the 2 groups of 8 ports, the third group of CSI-RS port numbers and the fourth group of CSIs -
  • the RS port number is mapped to the CSI-RS mapped RE of the second group of 8 ports of the 2 groups of 8 ports, and the first group of CSI-RS port numbers, the second group of CSI-RS port numbers, and the third group of CSIs -
  • the RS port number and the fourth group of CSI-RS port numbers each include 4 consecutive CSI-RS port numbers, and the third group of CSI-RSs between the first group of CSI-RS port numbers and the second group of CSI-RS port numbers
  • the port number, the third group of CSI-RS port numbers, and the fourth group of CSI-RS port numbers are separated by a second group of CSI-RS port numbers.
  • some embodiments of the present disclosure provide an apparatus for transmitting a channel state information reference signal, which is applied to a base station, and the apparatus includes:
  • the first sending module 1201 is configured to send a channel state information reference signal CSI-RS through the 16 channel state information reference signal CSI-RS ports, where the CSI-RS is mapped to one resource unit RE set in the CSI-RS pilot pattern
  • the RE set includes two sets of 8-port CSI-RS mapped REs, and the first CSI-RS port sequence number and the second group CSI-RS port sequence number among the 16 CSI-RS ports are mapped to the two groups of 8-port CSIs.
  • the third group of CSI-RS port numbers and the fourth group of CSI-RS port numbers among the 16 CSI-RS ports are mapped to 2 groups of 8-port CSIs.
  • the second set of 8-port CSI-RS mapped REs in the RS
  • the first group of CSI-RS port numbers, the second group of CSI-RS port numbers, the third group of CSI-RS port numbers, and the fourth group of CSI-RS port numbers all include four consecutive CSI-RS port numbers, and
  • the third group of CSI-RS port numbers are separated between the group of CSI-RS port numbers and the second group of CSI-RS port numbers, and the third group of CSI-RS port numbers and the fourth group of CSI-RS port numbers are separated by second.
  • the first receiving module 1202 is configured to receive channel state information measured by the terminal based on the CSI-RS.
  • the 16 CSI-RS port numbers are 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30, respectively.
  • the two consecutive CSI-RS port numbers in the first group of CSI-RS port numbers are mapped to two REs located on the first subcarrier, and the other two consecutive CSIs in the first group of CSI-RS port numbers.
  • the RS port number is mapped to two REs located on the second subcarrier, wherein the first subcarrier and the second subcarrier are separated by 5 subcarriers, and the first group of 8 ports of CSI-RS mapped REs are located Two of the four subcarriers.
  • the two consecutive CSI-RS port numbers in the second group of CSI-RS port numbers are mapped to two REs located on the third subcarrier, and the other two consecutive CSIs in the second group of CSI-RS port numbers -
  • the RS port number is mapped to two REs located on the fourth subcarrier, wherein the third subcarrier and the fourth subcarrier are separated by 5 subcarriers, and the first group of 8 ports of CSI-RS mapped REs are located Two of the four subcarriers.
  • the two consecutive CSI-RS port numbers in the third group of CSI-RS port numbers are mapped to two REs located on the fifth subcarrier, and the other two consecutive CSIs in the third group of CSI-RS port numbers -
  • the RS port number is mapped to two REs located on the sixth subcarrier, wherein the fifth subcarrier and the sixth subcarrier are separated by 5 subcarriers, and the RE of the second group of 8 ports is mapped by the CSI-RS Two of the four subcarriers.
  • the two consecutive CSI-RS port numbers in the fourth group of CSI-RS port numbers are mapped to two REs located on the seventh subcarrier, and the other two consecutive CSIs in the fourth group of CSI-RS port numbers -
  • the RS port number is mapped to two REs located on the eighth subcarrier, wherein the seventh subcarrier and the eighth subcarrier are separated by 5 subcarriers, and the RE of the second group of 8 ports is mapped by the CSI-RS Two of the four subcarriers.
  • the first group of CSI-RS port numbers and the third group of CSI-RS port numbers form consecutive 8 CSI-RS port numbers, corresponding to 8 antennas or radio frequency channels in the first polarization direction; the second group CSI- The RS port number together with the fourth group of CSI-RS port numbers constitutes consecutive 8 CSI-RS port numbers, corresponding to 8 antennas or RF channels in the second polarization direction.
  • the polarization direction corresponding to the first group of CSI-RS port numbers is four antennas or radio frequency channels in the first polarization direction
  • the polarization direction corresponding to the second group of CSI-RS port numbers is the second polarization direction.
  • the four antennas or the RF channel are located at the first vertical position
  • the polarization direction corresponding to the third group of CSI-RS port numbers is four antennas or radio frequency channels in the first polarization direction, and corresponding to the fourth group of CSI-RS port numbers.
  • the four antennas or the RF channels whose polarization directions are the second polarization direction are located at the second vertical position.
  • the base station maps a CSI-RS transmitted through the 16 channel state information reference signal CSI-RS port into one resource element RE set in the CSI-RS pilot pattern, and the RE set includes 2 sets of 8-port CSI-RS mapped REs, the first set of CSI-RS port numbers and the second set of CSI-RS port numbers in the 16 CSI-RS ports are mapped to the first group 8 of the 2 sets of 8 ports In the CSI-RS mapped RE of the port, the third group of CSI-RS port numbers and the fourth group of CSI-RS port numbers are mapped to the CSI-RS mapped REs of the second group of 8 ports of the 2 groups of 8 ports.
  • the first group of CSI-RS port numbers, the second group of CSI-RS port numbers, the third group of CSI-RS port numbers, and the fourth group of CSI-RS port numbers all include four consecutive CSI-RS port numbers, and the first group
  • the third group of CSI-RS port numbers are separated between the CSI-RS port number and the second group of CSI-RS port numbers
  • the second group of CSIs are separated between the third group of CSI-RS port numbers and the fourth group of CSI-RS port numbers.
  • the transmit channel state information reference signal device provided by some embodiments of the present disclosure is a device that applies the foregoing method for transmitting a channel state information reference signal, that is, all embodiments of the foregoing method are applicable to the device, and both can be achieved. The same or similar benefits.
  • Some embodiments of the present disclosure provide a base station including the apparatus for transmitting a channel state information reference signal as described above.
  • the base station provided by some embodiments of the present disclosure is a base station that includes the foregoing apparatus for transmitting a channel state information reference signal, that is, all the embodiments of the apparatus for transmitting a channel state information reference signal are applicable to the base station, and both can be used. Achieve the same or similar benefits.
  • some embodiments of the present disclosure provide a method for transmitting a channel state information reference signal, which is applied to a terminal, and the method includes:
  • Step S1301 Receive a CSI-RS transmitted by the base station according to the channel state information reference signal CSI-RS configuration information.
  • the base station may notify the CSI-RSs that the CSI-RS ports should receive by the CSI-RS configuration information, so that the terminal accurately measures the channel state information.
  • the CSI-RS sent by the base station to notify the CSI-RS port that the terminal should receive through the CSI-RS configuration information can be implemented by using the prior art, and therefore is no longer Narration.
  • Step S1302 measuring channel state information based on the received CSI-RS.
  • Step S1303 Send the measured channel state information to the base station.
  • steps S1302 and S1303 may be implemented in the prior art, and thus are not described herein again.
  • the terminal receives the CSI-RS sent by the base station according to the CSI-RS configuration information according to the received CSI-RS configuration information, and is based on the received
  • the CSI-RS measures channel state information, and finally transmits the measured channel state information to the base station, which solves the problem that the traditional UE cannot accurately perform CSI measurement when the base station transmits the 16-port CSI-RS, and achieves the saving of CSI-RS.
  • the overhead is repeated, the CSI measurement of the legacy terminal is more accurate, and the performance of the base station system is improved.
  • some embodiments of the present disclosure provide an apparatus for transmitting a channel state information reference signal, which is applied to a terminal, and the apparatus includes:
  • the second receiving module 1401 is configured to receive a CSI-RS sent by the base station according to the channel state information reference signal CSI-RS configuration information;
  • the measuring module 1402 is configured to measure channel state information based on the received CSI-RS;
  • the second sending module 1403 is configured to send the measured channel state information to the base station.
  • the terminal receives the CSI-RS sent by the base station according to the CSI-RS configuration information according to the received CSI-RS configuration information, and is based on the received
  • the CSI-RS measures channel state information, and finally transmits the measured channel state information to the base station, which solves the problem that the traditional UE cannot accurately perform CSI measurement when the base station transmits the 16-port CSI-RS, and achieves the saving of CSI-RS.
  • the overhead is repeated, the CSI measurement of the legacy terminal is more accurate, and the performance of the base station system is improved.
  • the apparatus for transmitting a channel state information reference signal provided by some embodiments of the present disclosure is a device that applies the foregoing method for transmitting a channel state information reference signal, that is, all embodiments of the foregoing methods are applicable to the device, and both can be Achieve the same or similar benefits.
  • Some embodiments of the present disclosure provide a terminal comprising the apparatus for transmitting a channel state information reference signal as described above.
  • the terminal provided by some embodiments of the present disclosure includes the foregoing transmit channel status. All of the embodiments of the apparatus for information reference signals, i.e., the apparatus for transmitting channel state information reference signals described above, are applicable to the terminal and all achieve the same or similar benefits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种发送信道状态信息参考信号的方法、装置、基站及终端,其中该方法包括:通过16个信道状态信息参考信号CSI-RS端口发送CSI-RS,其中,CSI-RS被映射到CSI-RS导频图案中一个资源单元RE集合中,RE集合包括2组8端口的CSI-RS映射的RE,且16个CSI-RS端口中第一组CSI-RS端口序号和第二组CSI-RS端口序号被映射到2组8端口中的第一组8端口的CSI-RS映射的RE中,16个CSI-RS端口中第三组CSI-RS端口序号和第四组CSI-RS端口序号被映射到2组8端口中的第二组8端口的CSI-RS映射的RE中;接收终端基于CSI-RS测量的信道状态信息,本公开的实施例能在节约CSI-RS重复开销的同时,使传统终端的CSI测量更为准确,提升基站***的性能。

Description

发送信道状态信息参考信号的方法、装置、基站及终端
相关申请的交叉引用
本申请主张在2015年11月4日在中国提交的中国专利申请号No.201510741920.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线技术领域,特别涉及一种发送信道状态信息参考信号的方法、装置、基站及终端。
背景技术
相关技术中的通信***,如长期演进(LTE,Long Term Evolution)、全球微波互联接入(WiMax,Worldwide Interoperability for Microwave Access)、802.11n,采用的都是2D多输入多输出(MIMO,Multiple-InPut Multiple-Output,)技术,其基本原理是通过水平面上的二维空间自由度来改善传输质量、提高***容量。随着天线设计架构的发展,为了改善移动通信***传输效率及提高用户体验,需要充分挖掘垂直空间自由度,把2DMIMO技术扩展到3DMIMO技术,充分利用三维空间的自由度来提高***性能。
2DMIMO的天线架构是通过在垂直维度采用多个阵元从而获得更高的天线增益。而垂直维度上的每个天线阵元采用固定的权值,以保证垂直维度上得到需要的波束样式。因此,2DMIMO技术没有办法进行垂直维度的波束赋形。
3DMIMO为了能够在垂直维度上充分的使用MIMO技术,可以通过控制垂直维度不同天线阵元的加权因子形成不同的波束。可以有效区分垂直维度波束,从而提供垂直维度的多用户复用,提升容量。LTE***支持最大8天线的设计,3D MIMO将天线的通道数进行扩展,支持如16、32、64、128等通道数的三维天线形态。
现有标准中,CSI-RS有多种配置,例如2端口的频分双工(FDD)*** 中,有20中配置,通过高层信令通知终端(UE)采用哪种CSI-RS配置。每种配置中,CSI-RS都是全带宽每个资源块都发送的。其中,如图1所示,8端口(编号分别为0、1、2、3、4、5、6和7,对应CSI-RS端口序号15~22)的FDD***有5种配置,其中具有相同标记(例如“\”、“/”等)的单元格的集合代表一种配置。
相关技术中的UE依据CSI-RS信道估计,反馈信道状态信息(CSI)。对于相关技术中的8天线***,标准中定义的码本集合是按照极化8天线的形态进行优化设计的。考虑了水平维度的8根双极化方式天线。通常的编号规则为:如图2所示,从同一极化方向开始,再编另外一个极化方向,其中用相同符号表示的天线的极化方向相同,而天线下方的数字代表的是天线的编号,8个天线的编号依次为0、1、2、3、4、5、6和7。
大规模天线3D MIMO标准化中,对于CSI-RS配置(pattern)的增强方向主要为16端口,更多通道数的3D MIMO则使用波束赋形CSI-RS实现,从而避免过多的CSI-RS开销。现在标准化正在讨论设计16端口的CSI-RSpattern。目前主要考虑的16通道天线形态为4H2V(4根水平双极化天线,垂直方向为2通道)。考虑到码本设计,具体的编号规则为:如图3所示,从同一极化方向开始,再编另外一个极化方向,其中用相同符号表示的天线的极化方向相同,而天线下方的数字代表的是天线的编号,16个天线的编号依次为0、1、2、3、4、5、6、7、8、9、10、11、12、13、14和15。
目前,CSI-RS pattern设计主要方向为利用现有的8端口CSI-RS组合为16端口的CSI-RS。这样当基站发送16端口的CSI-RS时,传统UE(具备8端口的UE)怎么反馈准确的CSI是个问题。
相关技术中存在两种解决方案。其中,在第一种方案中,基站发送两套CSI-RS,即16端口+8端口(或2、4端口)的CSI-RS。这样做的缺点在于基站发送两套CSI-RS,增加了资源单元的开销。
在第二种方案中,基站发送1套16端口的CSI-RS,对于新UE(具备16端口的UE)通知16端口的CSI-RS配置,对于传统UE通知8端口(或2、4端口)的CSI-RS配置。那么传统UE读取到的CSI-RS为天线0~7发送的,然而现有8天线的码本是按照双极化天线形态设计的,该方案无法较好的兼 容传统UE的CSI测量。
发明内容
本公开实施例的目的在于提供一种发送信道状态信息参考信号的方法、装置、基站及终端,能在节约CSI-RS重复开销的同时,使传统终端的CSI测量更为准确,提升基站***的性能。
为了达到上述目的,本公开的实施例提供了一种发送信道状态信息参考信号的方法,应用于基站,该方法包括:
通过16个信道状态信息参考信号CSI-RS端口发送CSI-RS,其中,CSI-RS被映射到CSI-RS导频图案中一个资源单元RE集合中,RE集合包括2组8端口的CSI-RS映射的RE,且16个CSI-RS端口中第一组CSI-RS端口序号和第二组CSI-RS端口序号被映射到2组8端口CSI-RS中的第一组8端口的CSI-RS映射的RE中,16个CSI-RS端口中第三组CSI-RS端口序号和第四组CSI-RS端口序号被映射到2组8端口CSI-RS中的第二组8端口的CSI-RS映射的RE中,
其中,第一组CSI-RS端口序号、第二组CSI-RS端口序号、第三组CSI-RS端口序号和第四组CSI-RS端口序号均包括4个连续CSI-RS端口序号,且第一组CSI-RS端口序号和第二组CSI-RS端口序号之间间隔第三组CSI-RS端口序号,第三组CSI-RS端口序号和第四组CSI-RS端口序号之间间隔第二组CSI-RS端口序号;
接收终端基于CSI-RS测量的信道状态信息。
其中,16个CSI-RS端口序号依次为15、16、17、18、19、20、21、22、23、24、25、26、27、28、29和30。
其中,第一组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第一子载波上的两个RE中,第一组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第二子载波上的两个RE中,其中,第一子载波和第二子载波间隔5个子载波,且为第一组8端口的CSI-RS映射的RE所在4个子载波中的两个子载波。
其中,第二组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到 位于第三子载波上的两个RE中,第二组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第四子载波上的两个RE中,其中,第三子载波和第四子载波间隔5个子载波,且为第一组8端口的CSI-RS映射的RE所在4个子载波中的另外两个子载波。
其中,第三组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第五子载波上的两个RE中,第三组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第六子载波上的两个RE中,其中,第五子载波和第六子载波间隔5个子载波,且为第二组8端口的CSI-RS映射的RE所在4个子载波中的两个子载波。
其中,第四组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第七子载波上的两个RE中,第四组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第八子载波上的两个RE中,其中,第七子载波和第八子载波间隔5个子载波,且为第二组8端口的CSI-RS映射的RE所在4个子载波中的另外两个子载波。
其中,第一组CSI-RS端口序号与第三组CSI-RS端口序号一起构成连续的8个CSI-RS端口序号,对应第一极化方向的8个天线或射频通道;第二组CSI-RS端口序号与第四组CSI-RS端口序号一起构成连续的8个CSI-RS端口序号,对应第二极化方向的8个天线或射频通道。
其中,第一组CSI-RS端口序号对应的极化方向为第一极化方向的4个天线或射频通道,和第二组CSI-RS端口序号对应的极化方向为第二极化方向的4个天线或射频通道位于第一垂直位置,第三组CSI-RS端口序号对应的极化方向为第一极化方向的4个天线或射频通道,和第四组CSI-RS端口序号对应的极化方向为第二极化方向的4个天线或射频通道位于第二垂直位置。
本公开的实施例还提供了一种发送信道状态信息参考信号的装置,应用于基站,该装置包括:
第一发送模块,用于通过16个信道状态信息参考信号CSI-RS端口发送信道状态信息参考信号CSI-RS,其中,CSI-RS被映射到CSI-RS导频图案中一个资源单元RE集合中,RE集合包括2组8端口的CSI-RS映射的RE,且16个CSI-RS端口中第一组CSI-RS端口序号和第二组CSI-RS端口序号被映 射到2组8端口CSI-RS中的第一组8端口的CSI-RS映射的RE中,16个CSI-RS端口中第三组CSI-RS端口序号和第四组CSI-RS端口序号被映射到2组8端口CSI-RS中的第二组8端口的CSI-RS映射的RE中,
其中,第一组CSI-RS端口序号、第二组CSI-RS端口序号、第三组CSI-RS端口序号和第四组CSI-RS端口序号均包括4个连续CSI-RS端口序号,且第一组CSI-RS端口序号和第二组CSI-RS端口序号之间间隔第三组CSI-RS端口序号,第三组CSI-RS端口序号和第四组CSI-RS端口序号之间间隔第二组CSI-RS端口序号;
第一接收模块,用于接收终端基于CSI-RS测量的信道状态信息。
其中,16个CSI-RS端口序号依次为15、16、17、18、19、20、21、22、23、24、25、26、27、28、29和30。
其中,第一组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第一子载波上的两个RE中,第一组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第二子载波上的两个RE中,其中,第一子载波和第二子载波间隔5个子载波,且为第一组8端口的CSI-RS映射的RE所在4个子载波中的两个子载波。
其中,第二组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第三子载波上的两个RE中,第二组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第四子载波上的两个RE中,其中,第三子载波和第四子载波间隔5个子载波,且为第一组8端口的CSI-RS映射的RE所在4个子载波中的另外两个子载波。
其中,第三组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第五子载波上的两个RE中,第三组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第六子载波上的两个RE中,其中,第五子载波和第六子载波间隔5个子载波,且为第二组8端口的CSI-RS映射的RE所在4个子载波中的两个子载波。
其中,第四组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第七子载波上的两个RE中,第四组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第八子载波上的两个RE中,其中,第七子载 波和第八子载波间隔5个子载波,且为第二组8端口的CSI-RS映射的RE所在4个子载波中的另外两个子载波。
其中,第一组CSI-RS端口序号与第三组CSI-RS端口序号一起构成连续的8个CSI-RS端口序号,对应第一极化方向的8个天线或射频通道;第二组CSI-RS端口序号与第四组CSI-RS端口序号一起构成连续的8个CSI-RS端口序号,对应第二极化方向的8个天线或射频通道。
其中,第一组CSI-RS端口序号对应的极化方向为第一极化方向的4个天线或射频通道,和第二组CSI-RS端口序号对应的极化方向为第二极化方向的4个天线或射频通道位于第一垂直位置,第三组CSI-RS端口序号对应的极化方向为第一极化方向的4个天线或射频通道,和第四组CSI-RS端口序号对应的极化方向为第二极化方向的4个天线或射频通道位于第二垂直位置。
本公开的实施例还提供了一种基站,包括上述的发送信道状态信息参考信号的装置。
本公开的实施例还提供了一种发送信道状态信息参考信号的方法,应用于终端,该方法包括:
接收基站根据信道状态信息参考信号CSI-RS配置信息发送的CSI-RS;
基于所接收到的CSI-RS,测量信道状态信息;
将测量得到的信道状态信息发送给基站。
本公开的实施例还提供了一种发送信道状态信息参考信号的装置,应用于终端,该装置包括:
第二接收模块,用于接收基站根据信道状态信息参考信号CSI-RS配置信息发送的CSI-RS;
测量模块,用于基于所接收到的CSI-RS,测量信道状态信息;
第二发送模块,用于将测量得到的信道状态信息发送给基站。
本公开的实施例还提供了一种终端,包括上述的发送信道状态信息参考信号的装置。
本公开的上述方案至少包括以下有益效果:
在本公开的实施例中,通过将通过16个信道状态信息参考信号CSI-RS端口发送的CSI-RS映射到CSI-RS导频图案中一个资源单元RE集合中,且 该RE集合包括2组8端口的CSI-RS映射的RE,16个CSI-RS端口中的第一组CSI-RS端口序号和第二组CSI-RS端口序号被映射到2组8端口中的第一组8端口的CSI-RS映射的RE中,第三组CSI-RS端口序号和第四组CSI-RS端口序号被映射到2组8端口中的第二组8端口的CSI-RS映射的RE中,且第一组CSI-RS端口序号、第二组CSI-RS端口序号、第三组CSI-RS端口序号和第四组CSI-RS端口序号均包括4个连续CSI-RS端口序号,第一组CSI-RS端口序号和第二组CSI-RS端口序号之间间隔第三组CSI-RS端口序号,第三组CSI-RS端口序号和第四组CSI-RS端口序号之间间隔第二组CSI-RS端口序号,解决了基站发送16端口的CSI-RS时,传统UE不能准确进行CSI测量的问题,达到了在节约CSI-RS重复开销的同时,使传统终端的CSI测量更为准确,提升基站***的性能的效果。
附图说明
图1为相关技术中8端口的CSI-RS的配置图;
图2为相关技术中8天线的天线编号示意图;
图3为相关技术中16天线的天线编号示意图;
图4为本公开一实施例中发送信道状态信息参考信号的方法的流程图;
图5为本公开一实施例中16天线的天线编号示意图;
图6为本公开一实施例中CSI-RS导频图案示意图之一;
图7为本公开一实施例中CSI-RS导频图案示意图之二;
图8为本公开一实施例中CSI-RS导频图案示意图之三;
图9为本公开一实施例中CSI-RS导频图案示意图之四;
图10为本公开一实施例时分双工***中8端口的CSI-RS的配置图;
图11为本公开一实施例中CSI-RS导频图案示意图之五;
图12为本公开一实施例中发送信道状态信息参考信号的装置的结构示意图;
图13为本公开至少一些实施例中发送信道状态信息参考信号的方法的流程图;
图14为本公开至少一些实施例中发送信道状态信息参考信号的装置的 结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
如图4所示,本公开的一实施例提供了一种发送信道状态信息参考信号的方法,应用于基站。其中,该方法包括:
步骤S401,通过16个信道状态信息参考信号CSI-RS端口发送CSI-RS。
在本公开的一实施例中,基站会向终端发送16端口的CSI-RS。
步骤S402,接收终端基于CSI-RS测量的信道状态信息。
在本公开的一实施例中,上述CSI-RS被映射到CSI-RS导频图案中一个或多个资源单元(RE)集合中。其中,每个RE集合包括2组8端口的CSI-RS映射的RE,且16个CSI-RS端口中第一组CSI-RS端口序号和第二组CSI-RS端口序号被映射到2组8端口CSI-RS中的第一组8端口的CSI-RS映射的RE中,16个CSI-RS端口中第三组CSI-RS端口序号和第四组CSI-RS端口序号被映射到2组8端口CSI-RS中的第二组8端口的CSI-RS映射的RE中。其中,第一组CSI-RS端口序号、第二组CSI-RS端口序号、第三组CSI-RS端口序号和第四组CSI-RS端口序号均包括4个连续的CSI-RS端口序号,且第一组CSI-RS端口序号和第二组CSI-RS端口序号之间间隔第三组CSI-RS端口序号,第三组CSI-RS端口序号和第四组CSI-RS端口序号之间间隔第二组CSI-RS端口序号。
需要说明的是,在本公开的一实施例中,上述16个CSI-RS端口对应的16天线的排列以及编号方式可以如图3所示,也可以如图5所示。当然图5中的16天线的编号规则为:从同一极化方向开始,再编另外一个极化方向,其中用相同符号(例如“/”等)表示的天线的极化方向相同,而天线下方的数字代表的是天线的编号,且每个天线的编号即对应一个CSI-RS端口序号。因此,当图5中16个天线的编号分别为0、1、2、3、4、5、6、7、8、9、 10、11、12、13、14和15时,对应的16个CSI-RS端口序号分别为0、1、2、3、4、5、6、7、8、9、10、11、12、13、14和15。需要说明的是,在本公开的一实施例中,并不限定天线的编号和CSI-RS端口序号的具体数字。具体地,上述16个CSI-RS端口序号可以依次为X+0、X+1、X+2、X+3、X+4、X+5、X+6、X+7、X+8、X+9、X+10、X+11、X+12、X+13、X+14和X+15,其中,X为自然数。典型地,上述X为15,即上述16个CSI-RS端口序号依次为15、16、17、18、19、20、21、22、23、24、25、26、27、28、29和30。
需要说明的是,上述第一组CSI-RS端口序号与第三组CSI-RS端口序号一起构成连续的8个CSI-RS端口序号,对应第一极化方向的8个天线(如图5中编号为0、1、2、3、4、5、6、7的8个天线)或射频通道;第二组CSI-RS端口序号与第四组CSI-RS端口序号一起构成连续的8个CSI-RS端口序号,对应第二极化方向的8个天线(如图5中编号为8、9、10、11、12、13、14、15的8个天线)或射频通道。进一步地,上述第一组CSI-RS端口序号对应的极化方向为第一极化方向的4个天线(如图5中编号为0、1、2、3的4个天线)或射频通道,和第二组CSI-RS端口序号对应的极化方向为第二极化方向的4个天线(如图5中编号为8、9、10、11的4个天线)或射频通道位于第一垂直位置,第三组CSI-RS端口序号对应的极化方向为第一极化方向的4个天线(如图5中编号为4、5、6、7的4个天线)或射频通道,和第四组CSI-RS端口序号对应的极化方向为第二极化方向的4个天线(如图5中编号为12、13、14、15的4个天线)或射频通道位于第二垂直位置。
在本公开的一实施例中,上述第一组CSI-RS端口序号(与图5中编号为0、1、2、3的天线对应的CSI-RS端口序号)中两个连续的CSI-RS端口序号(与图5中编号为0、1的天线对应的CSI-RS端口序号)被映射到位于第一子载波上的两个RE中,第一组CSI-RS端口序号中另外两个连续的CSI-RS端口序号(与图5中编号为2、3的天线对应的CSI-RS端口序号)被映射到位于第二子载波上的两个RE中。其中,第一子载波和第二子载波为第一组8端口的CSI-RS映射的RE所在4个子载波中的两个子载波。进一步地,上述第二组CSI-RS端口序号(与图5中编号为8、9、10、11的天线对应的CSI-RS 端口序号)中两个连续的CSI-RS端口序号(与图5中编号为8、9的天线对应的CSI-RS端口序号)被映射到位于第三子载波上的两个RE中,第二组CSI-RS端口序号中另外两个连续的CSI-RS端口序号(与图5中编号为10、11的天线对应的CSI-RS端口序号)被映射到位于第四子载波上的两个RE中。其中,第三子载波和第四子载波为第一组8端口的CSI-RS映射的RE所在4个子载波中的另外两个子载波。
类似地,上述第三组CSI-RS端口序号(与图5中编号为4、5、6、7的天线对应的CSI-RS端口序号)中两个连续的CSI-RS端口序号(与图5中编号为4、5的天线对应的CSI-RS端口序号)被映射到位于第五子载波上的两个RE中,第三组CSI-RS端口序号中另外两个连续的CSI-RS端口序号(与图5中编号为6、7的天线对应的CSI-RS端口序号)被映射到位于第六子载波上的两个RE中。其中,第五子载波和第六子载波为第二组8端口的CSI-RS映射的RE所在4个子载波中的两个子载波。进一步地,上述第四组CSI-RS端口序号(与图5中编号为12、13、14、15的天线对应的CSI-RS端口序号)中两个连续的CSI-RS端口序号(与图5中编号为12、13的天线对应的CSI-RS端口序号)被映射到位于第七子载波上的两个RE中,第四组CSI-RS端口序号中另外两个连续的CSI-RS端口序号(与图5中编号为14、15的天线对应的CSI-RS端口序号)被映射到位于第八子载波上的两个RE中。其中,第七子载波和第八子载波为第二组8端口的CSI-RS映射的RE所在4个子载波中的另外两个子载波。
在本公开的一实施例中,上述CSI-RS导频图案有很多种。其中,当上述X为0时,对于FDD***而言,可以从如图1所示的8端口的CSI-RS的配置中任一选择两种配置(即分别为第一组8端口CSI-RS配置和第二组8端口CSI-RS配置)便可以组合成16端口的CSI-RS配置。需要说的是,在组合之后,需要变更16个CSI-RS端口序号的映射位置。具体地,可将第一组8端口CSI-RS配置中的编号0~7依次变更为0~3、8~11(或者4~7、12~15),第二组8端口CSI-RS配置中的编号0~7依次变更为4~7、12~15(或者0~3、8~11)。由于图1中存在5种CSI-RS配置,那么相对应地,FDD***中应该存在10种(即C(5,2))CSI-RS导频图案(在此如图6~图9所示,给出按 照上述从如图1所示的8端口的CSI-RS的配置中任一选择两种配置成16端口的CSI-RS的四种CSI-RS导频图案),且每个CSI-RS导频图案中会存在两组16端口的映射位置。这样当基站发送CSI-RS时,可以将CSI-RS映射到CSI-RS导频图案中的至少一组16端口(即上述RE集合)中。需要说明的是,为了便于清楚的表示16端口的CSI-RS配置,每个图中具有相同标记(例如“\”、“/”等)的单元格的集合代表一组16端口的映射位置,至于图中不带任何标记的一组8端口(编号分别为0、1、2、3、4、5、6和7,对应CSI-RS端口序号0~7)主要是为了便于基站在某种情况下发送8端口的CSI-RS。需要说明的是,图6~图9中的数字0~15依次对应上述16个CSI-RS端口序号0~15。
而对于时分双工***而言,其除了具备如图1所示的5种8端口的CSI-RS配置外,还具备如图10所示的3种8端口的CSI-RS配置,因此其除了上述10种CSI-RS导频图案之外,还存在其它3种CSI-RS导频图案,至于其具体的配置的方式与上述FDD***中的配置方式一致,因此,在此不再赘述。需要说明的是,图10中具有相同标记(例如“\”、“/”等)的单元格的集合代表一种8端口(编号分别为0、1、2、3、4、5、6和7,对应CSI-RS端口序号0~7)的CSI-RS配置。
在本公开的一实施例中,基站自身存储有上述CSI-RS导频图案(即多种CSI-RS导频图案中的一种),而对于终端而言,需要区分新UE和传统UE,对于新UE而言,其自身也会存储有与基站一致的CSI-RS导频图案,对于传统UE而言,会将上述编号为0~3、8~11(或者4~7、12~15)的CSI-RS端口序号认为是编号为0~7的CSI-RS端口序号。其中,新UE是指具备16端口的UE,传统UE是指具备1、2、4或8端口的UE。
需要进一步说明的是,在本公开的一实施例中,当上述X为15时,上述图6所示的CSI-RS导频图案中的CSI-RS端口序号0~15将变为如图11所示15~30,至于图中不带任何标记的一组8端口对应的CSI-RS端口序号会由0~7变为15~22。当然图7~图9所示的CSI-RS导频图案中的CSI-RS端口序号0~15也会变为15~30,其原理与图6类似,因此在此不再赘述。
在本公开的一实施例中,通过将通过16个信道状态信息参考信号CSI-RS 端口发送的CSI-RS映射到CSI-RS导频图案中一个资源单元RE集合中,且该RE集合包括2组8端口的CSI-RS映射的RE,16个CSI-RS端口中的第一组CSI-RS端口序号和第二组CSI-RS端口序号被映射到2组8端口中的第一组8端口的CSI-RS映射的RE中,第三组CSI-RS端口序号和第四组CSI-RS端口序号被映射到2组8端口中的第二组8端口的CSI-RS映射的RE中,且第一组CSI-RS端口序号、第二组CSI-RS端口序号、第三组CSI-RS端口序号和第四组CSI-RS端口序号均包括4个连续CSI-RS端口序号,第一组CSI-RS端口序号和第二组CSI-RS端口序号之间间隔第三组CSI-RS端口序号,第三组CSI-RS端口序号和第四组CSI-RS端口序号之间间隔第二组CSI-RS端口序号,解决了基站发送16端口的CSI-RS时,传统UE不能准确进行CSI测量的问题,达到了在节约CSI-RS重复开销的同时,使传统终端的CSI测量更为准确,提升基站***的性能的效果。
如图12所示,本公开的一些实施例提供了一种发送信道状态信息参考信号的装置,应用于基站,该装置包括:
第一发送模块1201,用于通过16个信道状态信息参考信号CSI-RS端口发送信道状态信息参考信号CSI-RS,其中,CSI-RS被映射到CSI-RS导频图案中一个资源单元RE集合中,RE集合包括2组8端口的CSI-RS映射的RE,且16个CSI-RS端口中第一组CSI-RS端口序号和第二组CSI-RS端口序号被映射到2组8端口CSI-RS中的第一组8端口的CSI-RS映射的RE中,16个CSI-RS端口中第三组CSI-RS端口序号和第四组CSI-RS端口序号被映射到2组8端口CSI-RS中的第二组8端口的CSI-RS映射的RE中,
其中,第一组CSI-RS端口序号、第二组CSI-RS端口序号、第三组CSI-RS端口序号和第四组CSI-RS端口序号均包括4个连续CSI-RS端口序号,且第一组CSI-RS端口序号和第二组CSI-RS端口序号之间间隔第三组CSI-RS端口序号,第三组CSI-RS端口序号和第四组CSI-RS端口序号之间间隔第二组CSI-RS端口序号;
第一接收模块1202,用于接收终端基于CSI-RS测量的信道状态信息。
其中,16个CSI-RS端口序号依次为15、16、17、18、19、20、21、22、23、24、25、26、27、28、29和30。
其中,第一组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第一子载波上的两个RE中,第一组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第二子载波上的两个RE中,其中,第一子载波和第二子载波间隔5个子载波,且为第一组8端口的CSI-RS映射的RE所在4个子载波中的两个子载波。
其中,第二组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第三子载波上的两个RE中,第二组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第四子载波上的两个RE中,其中,第三子载波和第四子载波间隔5个子载波,且为第一组8端口的CSI-RS映射的RE所在4个子载波中的另外两个子载波。
其中,第三组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第五子载波上的两个RE中,第三组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第六子载波上的两个RE中,其中,第五子载波和第六子载波间隔5个子载波,且为第二组8端口的CSI-RS映射的RE所在4个子载波中的两个子载波。
其中,第四组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第七子载波上的两个RE中,第四组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第八子载波上的两个RE中,其中,第七子载波和第八子载波间隔5个子载波,且为第二组8端口的CSI-RS映射的RE所在4个子载波中的另外两个子载波。
其中,第一组CSI-RS端口序号与第三组CSI-RS端口序号一起构成连续的8个CSI-RS端口序号,对应第一极化方向的8个天线或射频通道;第二组CSI-RS端口序号与第四组CSI-RS端口序号一起构成连续的8个CSI-RS端口序号,对应第二极化方向的8个天线或射频通道。
其中,第一组CSI-RS端口序号对应的极化方向为第一极化方向的4个天线或射频通道,和第二组CSI-RS端口序号对应的极化方向为第二极化方向的4个天线或射频通道位于第一垂直位置,第三组CSI-RS端口序号对应的极化方向为第一极化方向的4个天线或射频通道,和第四组CSI-RS端口序号对应的极化方向为第二极化方向的4个天线或射频通道位于第二垂直位置。
在本公开的一些实施例中,基站通过将通过16个信道状态信息参考信号CSI-RS端口发送的CSI-RS映射到CSI-RS导频图案中一个资源单元RE集合中,且该RE集合包括2组8端口的CSI-RS映射的RE,16个CSI-RS端口中的第一组CSI-RS端口序号和第二组CSI-RS端口序号被映射到2组8端口中的第一组8端口的CSI-RS映射的RE中,第三组CSI-RS端口序号和第四组CSI-RS端口序号被映射到2组8端口中的第二组8端口的CSI-RS映射的RE中,且第一组CSI-RS端口序号、第二组CSI-RS端口序号、第三组CSI-RS端口序号和第四组CSI-RS端口序号均包括4个连续CSI-RS端口序号,第一组CSI-RS端口序号和第二组CSI-RS端口序号之间间隔第三组CSI-RS端口序号,第三组CSI-RS端口序号和第四组CSI-RS端口序号之间间隔第二组CSI-RS端口序号,解决了基站发送16端口的CSI-RS时,传统UE不能准确进行CSI测量的问题,达到了在节约CSI-RS重复开销的同时,使传统终端的CSI测量更为准确,提升基站***的性能的效果。
需要说明的是,本公开一些实施例提供的发送信道状态信息参考信号装置是应用上述发送信道状态信息参考信号的方法的装置,即上述方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
本公开的一些实施例提供了一种基站,包括上述的发送信道状态信息参考信号的装置。
需要说明的是,本公开一些实施例提供的基站是包括上述发送信道状态信息参考信号的装置的基站,即上述发送信道状态信息参考信号的装置的所有实施例均适用于该基站,且均能达到相同或相似的有益效果。
如图13所示,本公开的一些实施例提供了一种发送信道状态信息参考信号的方法,应用于终端,该方法包括:
步骤S1301,接收基站根据信道状态信息参考信号CSI-RS配置信息发送的CSI-RS。
在本公开的一些实施例中,在执行上述步骤S1301之前,基站会通过CSI-RS配置信息通知终端应该接收哪些CSI-RS端口发送的CSI-RS,以使终端准确地测量信道状态信息。其中,基站通过CSI-RS配置信息通知终端应该接收哪些CSI-RS端口发送的CSI-RS可以通过现有技术实现,因此在此不再 赘述。
步骤S1302,基于所接收到的CSI-RS,测量信道状态信息。
步骤S1303,将测量得到的信道状态信息发送给基站。
在本公开的一些实施例中,上述步骤S1302和步骤S1303可采用现有技术实现,因此在此不再赘述。
在本公开的一些实施例中,终端(新UE或传统UE)会根据自身接收到的CSI-RS配置信息,接收基站根据CSI-RS配置信息发送的CSI-RS,并会基于所接收到的CSI-RS,测量信道状态信息,最后将测量得到的信道状态信息发送给基站,解决了基站发送16端口的CSI-RS时,传统UE不能准确进行CSI测量的问题,达到了在节约CSI-RS重复开销的同时,使传统终端的CSI测量更为准确,提升基站***的性能的效果。
如图14所示,本公开的一些实施例提供了一种发送信道状态信息参考信号的装置,应用于终端,该装置包括:
第二接收模块1401,用于接收基站根据信道状态信息参考信号CSI-RS配置信息发送的CSI-RS;
测量模块1402,用于基于所接收到的CSI-RS,测量信道状态信息;
第二发送模块1403,用于将测量得到的信道状态信息发送给基站。
在本公开的一些实施例中,终端(新UE或传统UE)会根据自身接收到的CSI-RS配置信息,接收基站根据CSI-RS配置信息发送的CSI-RS,并会基于所接收到的CSI-RS,测量信道状态信息,最后将测量得到的信道状态信息发送给基站,解决了基站发送16端口的CSI-RS时,传统UE不能准确进行CSI测量的问题,达到了在节约CSI-RS重复开销的同时,使传统终端的CSI测量更为准确,提升基站***的性能的效果。
需要说明的是,本公开一些实施例提供的发送信道状态信息参考信号的装置是应用上述发送信道状态信息参考信号的方法的装置,即上述方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
本公开的一些实施例提供了一种终端,包括上述的发送信道状态信息参考信号的装置。
需要说明的是,本公开一些实施例提供的终端是包括上述发送信道状态 信息参考信号的装置的终端,即上述发送信道状态信息参考信号的装置的所有实施例均适用于该终端,且均能达到相同或相似的有益效果。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (20)

  1. 一种发送信道状态信息参考信号的方法,应用于基站,其中,所述方法包括:
    通过16个信道状态信息参考信号CSI-RS端口发送CSI-RS,其中,所述CSI-RS被映射到CSI-RS导频图案中一个资源单元RE集合中,所述RE集合包括2组8端口的CSI-RS映射的RE,且所述16个CSI-RS端口中第一组CSI-RS端口序号和第二组CSI-RS端口序号被映射到所述2组8端口CSI-RS中的第一组8端口的CSI-RS映射的RE中,所述16个CSI-RS端口中第三组CSI-RS端口序号和第四组CSI-RS端口序号被映射到所述2组8端口CSI-RS中的第二组8端口的CSI-RS映射的RE中,
    其中,所述第一组CSI-RS端口序号、第二组CSI-RS端口序号、第三组CSI-RS端口序号和第四组CSI-RS端口序号均包括4个连续CSI-RS端口序号,且第一组CSI-RS端口序号和第二组CSI-RS端口序号之间间隔所述第三组CSI-RS端口序号,第三组CSI-RS端口序号和第四组CSI-RS端口序号之间间隔所述第二组CSI-RS端口序号;
    接收所述终端基于所述CSI-RS测量的信道状态信息。
  2. 如权利要求1所述的方法,其中,所述16个CSI-RS端口序号依次为15、16、17、18、19、20、21、22、23、24、25、26、27、28、29和30。
  3. 如权利要求1所述的方法,其中,所述第一组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第一子载波上的两个RE中,所述第一组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第二子载波上的两个RE中,其中,所述第一子载波和所述第二子载波间隔5个子载波,且为所述第一组8端口的CSI-RS映射的RE所在4个子载波中的两个子载波。
  4. 如权利要求3所述的方法,其中,所述第二组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第三子载波上的两个RE中,所述第二组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第四子载波上的两个RE中,其中,所述第三子载波和所述第四子载波间隔5个 子载波,且为所述第一组8端口的CSI-RS映射的RE所在4个子载波中的另外两个子载波。
  5. 如权利要求1所述的方法,其中,所述第三组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第五子载波上的两个RE中,所述第三组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第六子载波上的两个RE中,其中,所述第五子载波和所述第六子载波间隔5个子载波,且为所述第二组8端口的CSI-RS映射的RE所在4个子载波中的两个子载波。
  6. 如权利要求5所述的方法,其中,所述第四组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第七子载波上的两个RE中,所述第四组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第八子载波上的两个RE中,其中,所述第七子载波和所述第八子载波间隔5个子载波,且为所述第二组8端口的CSI-RS映射的RE所在4个子载波中的另外两个子载波。
  7. 如权利要求1所述的方法,其中,所述第一组CSI-RS端口序号与所述第三组CSI-RS端口序号一起构成连续的8个CSI-RS端口序号,对应第一极化方向的8个天线或射频通道;所述第二组CSI-RS端口序号与所述第四组CSI-RS端口序号一起构成连续的8个CSI-RS端口序号,对应第二极化方向的8个天线或射频通道。
  8. 如权利要求7所述的方法,其中,所述第一组CSI-RS端口序号对应的极化方向为第一极化方向的4个天线或射频通道,和所述第二组CSI-RS端口序号对应的极化方向为第二极化方向的4个天线或射频通道位于第一垂直位置,所述第三组CSI-RS端口序号对应的极化方向为第一极化方向的4个天线或射频通道,和所述第四组CSI-RS端口序号对应的极化方向为第二极化方向的4个天线或射频通道位于第二垂直位置。
  9. 一种发送信道状态信息参考信号的装置,应用于基站,其中,所述装置包括:
    第一发送模块,用于通过16个信道状态信息参考信号CSI-RS端口发送信道状态信息参考信号CSI-RS,其中,所述CSI-RS被映射到CSI-RS导频图 案中一个资源单元RE集合中,所述RE集合包括2组8端口的CSI-RS映射的RE,且所述16个CSI-RS端口中第一组CSI-RS端口序号和第二组CSI-RS端口序号被映射到所述2组8端口CSI-RS中的第一组8端口的CSI-RS映射的RE中,所述16个CSI-RS端口中第三组CSI-RS端口序号和第四组CSI-RS端口序号被映射到所述2组8端口CSI-RS中的第二组8端口的CSI-RS映射的RE中,
    其中,所述第一组CSI-RS端口序号、第二组CSI-RS端口序号、第三组CSI-RS端口序号和第四组CSI-RS端口序号均包括4个连续CSI-RS端口序号,且第一组CSI-RS端口序号和第二组CSI-RS端口序号之间间隔所述第三组CSI-RS端口序号,第三组CSI-RS端口序号和第四组CSI-RS端口序号之间间隔所述第二组CSI-RS端口序号;
    第一接收模块,用于接收所述终端基于所述CSI-RS测量的信道状态信息。
  10. 如权利要求9所述的装置,其中,所述16个CSI-RS端口序号依次为15、16、17、18、19、20、21、22、23、24、25、26、27、28、29和30。
  11. 如权利要求9所述的装置,其中,所述第一组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第一子载波上的两个RE中,所述第一组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第二子载波上的两个RE中,其中,所述第一子载波和所述第二子载波间隔5个子载波,且为所述第一组8端口的CSI-RS映射的RE所在4个子载波中的两个子载波。
  12. 如权利要求11所述的装置,其中,所述第二组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第三子载波上的两个RE中,所述第二组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第四子载波上的两个RE中,其中,所述第三子载波和所述第四子载波间隔5个子载波,且为所述第一组8端口的CSI-RS映射的RE所在4个子载波中的另外两个子载波。
  13. 如权利要求9所述的装置,其中,所述第三组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第五子载波上的两个RE中,所述第三组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第六 子载波上的两个RE中,其中,所述第五子载波和所述第六子载波间隔5个子载波,且为所述第二组8端口的CSI-RS映射的RE所在4个子载波中的两个子载波。
  14. 如权利要求13所述的装置,其中,所述第四组CSI-RS端口序号中两个连续的CSI-RS端口序号被映射到位于第七子载波上的两个RE中,所述第四组CSI-RS端口序号中另外两个连续的CSI-RS端口序号被映射到位于第八子载波上的两个RE中,其中,所述第七子载波和所述第八子载波间隔5个子载波,且为所述第二组8端口的CSI-RS映射的RE所在4个子载波中的另外两个子载波。
  15. 如权利要求9所述的装置,其中,所述第一组CSI-RS端口序号与所述第三组CSI-RS端口序号一起构成连续的8个CSI-RS端口序号,对应第一极化方向的8个天线或射频通道;所述第二组CSI-RS端口序号与所述第四组CSI-RS端口序号一起构成连续的8个CSI-RS端口序号,对应第二极化方向的8个天线或射频通道。
  16. 如权利要求15所述的装置,其中,所述第一组CSI-RS端口序号对应的极化方向为第一极化方向的4个天线或射频通道,和所述第二组CSI-RS端口序号对应的极化方向为第二极化方向的4个天线或射频通道位于第一垂直位置,所述第三组CSI-RS端口序号对应的极化方向为第一极化方向的4个天线或射频通道,和所述第四组CSI-RS端口序号对应的极化方向为第二极化方向的4个天线或射频通道位于第二垂直位置。
  17. 一种基站,包括如权利要求9~16任一项所述的发送信道状态信息参考信号的装置。
  18. 一种发送信道状态信息参考信号的方法,应用于终端,其中,所述方法包括:
    接收基站根据信道状态信息参考信号CSI-RS配置信息发送的CSI-RS;
    基于所接收到的CSI-RS,测量所述信道状态信息;
    将测量得到的信道状态信息发送给所述基站。
  19. 一种发送信道状态信息参考信号的装置,应用于终端,其中,所述装置包括:
    第二接收模块,用于接收基站根据信道状态信息参考信号CSI-RS配置信息发送的CSI-RS;
    测量模块,用于基于所接收到的CSI-RS,测量所述信道状态信息;
    第二发送模块,用于将测量得到的信道状态信息发送给所述基站。
  20. 一种终端,包括如权利要求19所述的发送信道状态信息参考信号的装置。
PCT/CN2016/097939 2015-11-04 2016-09-02 发送信道状态信息参考信号的方法、装置、基站及终端 WO2017076120A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16861389.1A EP3373492A4 (en) 2015-11-04 2016-09-02 METHOD FOR TRANSMITTING TRANSMISSION CHANNEL STATUS INFORMATION AND DEVICE, BASE STATION AND TERMINAL DEVICE USING THEREOF
US15/772,885 US10498505B2 (en) 2015-11-04 2016-09-02 Method of transmitting transmission channel state information, and device, base station and terminal utilizing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510741920.3A CN106656445B (zh) 2015-11-04 2015-11-04 发送信道状态信息参考信号的方法、装置、基站及终端
CN201510741920.3 2015-11-04

Publications (1)

Publication Number Publication Date
WO2017076120A1 true WO2017076120A1 (zh) 2017-05-11

Family

ID=58661694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097939 WO2017076120A1 (zh) 2015-11-04 2016-09-02 发送信道状态信息参考信号的方法、装置、基站及终端

Country Status (4)

Country Link
US (1) US10498505B2 (zh)
EP (1) EP3373492A4 (zh)
CN (1) CN106656445B (zh)
WO (1) WO2017076120A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842470A (zh) * 2017-11-24 2019-06-04 华为技术有限公司 数据传输方法、终端设备和网络设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018201284A1 (en) * 2017-05-02 2018-11-08 Qualcomm Incorporated Port group indication and port subsets in a csi-rs resource for new radio (nr)
WO2020033620A1 (en) * 2018-08-10 2020-02-13 Intel Corporation Method for improvement of non-bandwidth reduced low complexity (non-bl) user equipment (ue) in coverage enhancement (ce) mode
CN111435846B (zh) * 2019-01-11 2022-04-15 大唐移动通信设备有限公司 一种信道状态信息上报方法、终端和网络侧设备
CN118075845A (zh) * 2022-11-22 2024-05-24 华为技术有限公司 一种通信方法和通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103391153A (zh) * 2012-05-10 2013-11-13 电信科学技术研究院 一种csi-rs资源的接收方法和设备
US20130308714A1 (en) * 2012-05-17 2013-11-21 Qualcomm Incorporated Codebook and feedback design for high order mimo
CN103944685A (zh) * 2013-01-18 2014-07-23 华为技术有限公司 扩展参考信号的方法、设备和通信***
CN104641572A (zh) * 2012-09-18 2015-05-20 三星电子株式会社 用于在无线通信***中发送和接收信道状态信息的方法及装置
CN104767592A (zh) * 2014-01-02 2015-07-08 ***通信集团公司 一种csi-rs的端口配置、csi-rs传输的方法和设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562504B (zh) * 2008-04-18 2012-06-06 ***通信集团公司 基于双极化阵列天线的自适应数据发送方法及其***
US9647810B2 (en) * 2009-03-17 2017-05-09 Samsung Electronics Co., Ltd. Method and system for mapping pilot signals in multi-stream transmissions
WO2010110576A2 (en) * 2009-03-24 2010-09-30 Lg Electronics Inc. Method and apparatus for transmitting reference signal in wireless communication system
WO2011019229A2 (ko) 2009-08-14 2011-02-17 엘지전자 주식회사 다중 안테나를 지원하는 무선 통신 시스템에서 하향링크 참조신호를 전송하는 방법 및 장치
US8599708B2 (en) * 2010-01-14 2013-12-03 Qualcomm Incorporated Channel feedback based on reference signal
KR101241916B1 (ko) * 2010-02-07 2013-03-11 엘지전자 주식회사 다중 안테나를 지원하는 무선 통신 시스템에서 하향링크 참조신호를 전송하는 방법 및 장치
US9136997B2 (en) * 2010-05-04 2015-09-15 Qualcomm Incorporated Methods and apparatuses for using channel state information reference signals
US9185570B2 (en) * 2010-05-18 2015-11-10 Lg Electronics Inc. Method and apparatus for performing channel measurement in a distributed multi-node system
CN102263723B (zh) 2010-05-31 2013-09-25 ***通信集团公司 下行信道测量参考信号发送方法、装置和接收方法、装置
US8654734B2 (en) * 2010-06-01 2014-02-18 Texas Instruments Incorporated Multi-cell channel state information-reference symbol patterns for long term evolution extended cyclic prefix and code division multiplexing-time multiplexing
CN101924610B (zh) * 2010-08-02 2012-12-26 西安电子科技大学 Lte-a***中信道状态信息参考信号csi-rs的设计与分配方法
CN102378114B (zh) * 2010-08-16 2014-06-11 ***通信集团公司 信道状态信息参考信号发送方法及装置、接收方法及装置
US9252930B2 (en) * 2011-01-07 2016-02-02 Futurewei Technologies, Inc. Reference signal transmission and reception method and equipment
CN103391179B (zh) * 2012-05-10 2017-11-24 中兴通讯股份有限公司 新载波参考信号发送方法及装置
US9814030B2 (en) * 2012-09-27 2017-11-07 Lg Electronics Inc. Method and apparatus for transmitting or receiving reference signal in wireless communication system
KR101740413B1 (ko) * 2012-11-01 2017-06-08 후아웨이 테크놀러지 컴퍼니 리미티드 제어 채널 검출 방법, 사용자 기기, 및 기지국

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103391153A (zh) * 2012-05-10 2013-11-13 电信科学技术研究院 一种csi-rs资源的接收方法和设备
US20130308714A1 (en) * 2012-05-17 2013-11-21 Qualcomm Incorporated Codebook and feedback design for high order mimo
CN104641572A (zh) * 2012-09-18 2015-05-20 三星电子株式会社 用于在无线通信***中发送和接收信道状态信息的方法及装置
CN103944685A (zh) * 2013-01-18 2014-07-23 华为技术有限公司 扩展参考信号的方法、设备和通信***
CN104767592A (zh) * 2014-01-02 2015-07-08 ***通信集团公司 一种csi-rs的端口配置、csi-rs传输的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3373492A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842470A (zh) * 2017-11-24 2019-06-04 华为技术有限公司 数据传输方法、终端设备和网络设备

Also Published As

Publication number Publication date
US10498505B2 (en) 2019-12-03
EP3373492A1 (en) 2018-09-12
EP3373492A4 (en) 2019-10-30
CN106656445A (zh) 2017-05-10
CN106656445B (zh) 2019-10-22
US20180323924A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
CN107666341B (zh) 用大规模阵列天线的移动通信***中csi-rs端口共享的参考信号配置的方法和装置
KR102064939B1 (ko) 다수의 이차원 배열 안테나를 사용하는 이동통신 시스템에서의 피드백 송수신 방법 및 장치
CN110401472B (zh) 一种3d mimo传输方法和装置
KR102231078B1 (ko) 이동 통신 시스템에서 피드백 송수신 방법 및 장치
TWI566541B (zh) Channel state information measurement method and apparatus, and signal transmission method and apparatus
WO2017076120A1 (zh) 发送信道状态信息参考信号的方法、装置、基站及终端
CN106160952B (zh) 一种信道信息反馈方法及装置
CN108141267A (zh) 无线通信***中发送和接收信道状态信息的方法及其设备
WO2015101150A1 (zh) 一种csi-rs的端口配置、csi-rs传输的方法和设备
CN103746779A (zh) 一种信道状态信息测量、参考信号的发送方法和装置
WO2017188693A1 (ko) 다중 안테나 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
CN102231661B (zh) 一种信息传输方法、***及装置
WO2017049644A1 (zh) 一种资源选择的方法及装置和一种电子设备
JP7335932B2 (ja) Mimo用のcdm8ベースのcsi-rs設計
CN109964414A (zh) 针对混合类a/b操作的高级csi报告
WO2017167156A1 (zh) Dmrs的发送方法及装置
CN104348575A (zh) 一种预编码矩阵反馈方法和终端
CN106899522B (zh) 一种信道状态信息参考信号csi-rs的发送方法、装置及基站
WO2016045527A1 (zh) 一种ue、基站中的3d mimo通信方法和设备
WO2017133688A1 (zh) 信息的传输、接收方法及装置
CN103001742B (zh) 基于解调参考信号的开环mimo传输方法及装置
CN115836479A (zh) 用于预编码信道状态信息参考信号(csi-rs)配置的动态信道状态信息参考信号(csi-rs)资源映射配置
US20150201340A1 (en) Methods and apparatuses for measuring pilot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15772885

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016861389

Country of ref document: EP