WO2017075982A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2017075982A1
WO2017075982A1 PCT/CN2016/083960 CN2016083960W WO2017075982A1 WO 2017075982 A1 WO2017075982 A1 WO 2017075982A1 CN 2016083960 W CN2016083960 W CN 2016083960W WO 2017075982 A1 WO2017075982 A1 WO 2017075982A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
channel
scheduled
site
access point
Prior art date
Application number
PCT/CN2016/083960
Other languages
English (en)
French (fr)
Inventor
李云波
李彦淳
刘乐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017075982A1 publication Critical patent/WO2017075982A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of communications, and in particular, to a data transmission method and apparatus.
  • 802.11ax The Institute of Electrical and Electronics Engineers (English name: institute of electrical and electronics engineers, English abbreviation: IEEE) 802.11ax standard specifies the access point (English full name: access point, English abbreviation: AP) and the site (English full name: station, English abbreviation :STA) uses the transmission mode of orthogonal frequency division multiple access (English abbreviation: OFDMA) to transmit data, that is, a part of the basic bandwidth that each station may occupy. Data is transmitted on the transport channel. Before the data is transmitted between the access point and the site, the access point needs to send a multi-user request to send (English name: MU-RTS) frame to the site, and the station receives the MU-RTS.
  • OFDMA orthogonal frequency division multiple access
  • the station can use the legacy format to repeatedly send and clear the clear to send (clear to send, English abbreviation: CTS) frame to the access point on the transmission channel of each basic bandwidth of the occupied broadband bandwidth. Since each station may transmit data on a part of the basic bandwidth transmission channel of the occupied broadband bandwidth, sending a clear transmission frame on all basic bandwidth transmission channels of the broadband bandwidth occupied by the station may cause excessive protection of the transmission channel, and system resources. The utilization rate is low. In another embodiment, each station transmits a clear transmission frame only on a transmission channel of a basic bandwidth involved in transmitting data, although this can avoid overprotecting the transmission channel, but the transmission channel is divided into a primary channel and a secondary channel.
  • CTS clear to send
  • the current site in the process of receiving data usually first parsing the signaling field on the primary channel, obtaining the bandwidth information and resource allocation information, then parsing the data on the scheduled channel, and then through the resource allocation Information indication to the point
  • the data is parsed on the allocated time-frequency resource.
  • the primary channel is occupied by the overlapping basic service set (English full name: Overlapping basic service set, OBSS)
  • OBSS Overlapping basic service set
  • the resource allocation information cannot be parsed from the channel, so that the data transmitted by the access point on the primary channel cannot be correctly received.
  • Embodiments of the present invention provide a data transmission method and apparatus, which can effectively protect a primary channel while avoiding excessive protection of a transmission channel and improving resource utilization of the system.
  • a data transmission method including:
  • the first station receives a multi-user request sent by the access point to send a MU-RTS frame, the multi-user request sending frame includes an identifier of multiple sites, and a scheduled transmission channel of each of the stations; and then, the first The station determines, according to the identifiers of the multiple sites, that it is a scheduled site;
  • the first station When it is determined that the scheduled transmission channel of the first station includes a primary channel, the first station sends a clear transmission CTS frame to the access point on the scheduled channel of the first station;
  • the first station When it is determined that the scheduled transmission channel of the first station does not include a primary channel, the first station sends a CTS frame to the access point on the primary channel and the scheduled channel of the first station or includes The CTS is transmitted on the primary channel and the smallest continuous channel of the scheduled transmission channel.
  • the data transmission method provided by the foregoing first aspect, after the first station receives the multi-user request sent by the access point to send the MU-RTS frame, the first station determines that it is the scheduled station according to the identifiers of the multiple sites, where The multi-user request transmission frame includes an identifier of the plurality of stations, and a scheduled transmission channel of each of the stations; when it is determined that the scheduled transmission channel of the first station includes a primary channel, the first station Transmitting a CTS frame to the access point on the scheduled channel of the first station; when determining that the scheduled transmission channel of the first station does not include a primary channel, the first station is in the primary channel and the A CTS frame is transmitted to the access point on the scheduled channel of the first station. Therefore, regardless of whether the scheduled transmission channel of the station includes the primary channel, the primary channel can be effectively protected, and the transmission channel is prevented from being overprotected, thereby improving the resource utilization of the system.
  • the method further includes:
  • the first station transmits a CTS frame to the access point on a primary channel of the overlapping basic service set OBSS.
  • the method when it is determined that the scheduled transmission channel of the first station does not include a primary channel, the method further includes:
  • the first station transmits a CTS frame to the access point on a primary channel of the overlapping basic service set OBSS.
  • the method further includes:
  • the first station acquires an identifier of a primary channel of the OBSS.
  • the scheduled transmission channel of the first station determined by the first station, whether or not the primary channel is included, the first station is still in the primary channel of the OBSS
  • the access point sends a CTS frame; or, when it is determined that the scheduled transmission channel of the first station does not include a primary channel, the first station is not only on the scheduled channel of the primary channel and the first station
  • a CTS frame is sent to the access point, and a CTS frame is also sent to the access point on the primary channel of the OBSS.
  • the first station protects the primary channel of the OBSS, prohibits other stations from using the primary channel of the OBSS, prevents other stations from transmitting data to the first station, and can effectively protect the primary channel while avoiding excessive protection of the transmission channel. Improve system resource utilization.
  • a data transmission method including:
  • the first station acquires an identifier of a primary channel of the overlapping basic service set OBSS; the first station receives a multi-user request sent by the access point to send a MU-RTS frame; and then, the first station according to the multiple The identity of the site determines itself as the scheduled site;
  • the first station When it is determined that the scheduled transmission channel of the first station includes a primary channel, the first station sends a clear CTS frame to the access point on the scheduled channel of the first station;
  • the first station When it is determined that the scheduled transmission channel of the first station does not include a primary channel, the first station sends a CTS frame to the access point on a primary channel of the OBSS and a scheduled channel of the first station. .
  • the method when it is determined that the scheduled transmission channel of the first station includes a primary channel, the method further includes:
  • the first station transmits a CTS frame to the access point on a primary channel of the OBSS.
  • the data transmission method provided by the foregoing second aspect, after the first station receives the multi-user request sent by the access point to send the MU-RTS frame, the first station determines that it is the scheduled station according to the identifiers of the multiple sites, where The multi-user request transmission frame includes an identifier of the plurality of stations, and a scheduled transmission channel of each of the stations; when it is determined that the scheduled transmission channel of the first station includes a primary channel, the first station Transmitting a CTS frame to the access point on the scheduled channel of the first station; when determining that the scheduled transmission channel of the first station does not include a primary channel, the first station is in a primary channel of the OBSS Transmitting a CTS frame to the access point on a scheduled channel of the first station; further, when determining that the scheduled transmission channel of the first station includes a primary channel, the first station is also in a primary channel of the OBSS Sending a CTS frame to the access point.
  • the first station protects the primary channel of the OBSS, prohibits other stations from using the primary channel of the OBSS, prevents other stations from transmitting data to the first station, and can effectively protect the primary channel while avoiding excessive protection of the transmission channel. Improve system resource utilization.
  • a site comprising:
  • a receiving unit configured to receive a multi-user request sent by the access point to send a MU-RTS frame
  • a processing unit configured to determine, according to the identifiers of the multiple sites, that the site is a scheduled site
  • a sending unit configured to: when determining that the scheduled transmission channel of the first station includes a primary And the first station sends a clear transmission CTS frame to the access point on the scheduled channel of the first station;
  • the sending unit is further configured to: when it is determined that the scheduled transmission channel of the first station does not include a primary channel, the first station is on the scheduled channel of the primary channel and the first station
  • the access point transmits a CTS frame or transmits a CTS on a minimum contiguous channel containing the primary channel and the scheduled transmission channel.
  • the sending unit is further configured to send a CTS frame to the access point on a primary channel of the overlapping basic service set OBSS.
  • the sending unit is further configured to send a CTS frame to the access point on a primary channel of the overlapping basic service set OBSS.
  • the site further includes:
  • An obtaining unit configured to acquire an identifier of a primary channel of the OBSS.
  • a site comprising:
  • An obtaining unit configured to obtain an identifier of a primary channel of the overlapping basic service set OBSS;
  • a receiving unit configured to receive a multi-user request sent by the access point to send a MU-RTS frame, where the multi-user request sending frame includes an identifier of multiple sites, and a scheduled transmission channel of each of the stations;
  • a processing unit configured to determine, according to the identifiers of the multiple sites, that the site is a scheduled site
  • a sending unit configured to: when determining that the scheduled transmission channel of the first station includes a primary channel, the first station sends a clear sending CTS frame to the access point on the scheduled channel of the first station;
  • the sending unit is further configured to: when determining that the scheduled transmission channel of the first station does not include a primary channel, the first station is on a primary channel of the OBSS and a scheduled channel of the first station
  • the access point sends a CTS frame.
  • the sending unit is further configured to send a CTS frame to the access point on a primary channel of the OBSS.
  • a site comprising:
  • a receiver configured to receive a multi-user request sent by the access point to send a MU-RTS frame
  • a processor configured to determine, according to the identifiers of the multiple sites, a site that is scheduled
  • a transmitter configured to: when determining that the scheduled transmission channel of the first station includes a primary channel, the first station sends a clear CTS frame to the access point on a scheduled channel of the first station;
  • the transmitter is further configured to: when it is determined that the scheduled transmission channel of the first station does not include a primary channel, the first station is on the scheduled channel of the primary channel and the first station The access point sends a CTS frame.
  • the sending unit is further configured to send a CTS frame to the access point on a primary channel of the overlapping basic service set OBSS.
  • the sending unit is further configured to send a CTS frame to the access point on a primary channel of the overlapping basic service set OBSS.
  • the site further includes:
  • An obtaining unit configured to acquire an identifier of a primary channel of the OBSS.
  • a site comprising:
  • a processor configured to obtain an identifier of a primary channel of the overlapping basic service set OBSS;
  • a receiver configured to receive a multi-user request sent by the access point to send a MU-RTS frame, where the multi-user request transmission frame includes an identifier of multiple sites, and a scheduled transmission channel of each of the stations;
  • the processor is further configured to determine, according to the identifiers of the multiple sites, that the site is a scheduled site;
  • a transmitter configured to: when determining that the scheduled transmission channel of the first station includes a primary channel, the first station sends a clear transmission CTS frame to the access point on a scheduled channel of the first station;
  • the transmitter is further configured to: when determining that the scheduled transmission channel of the first station does not include a primary channel, the first station is on a primary channel of the OBSS and a scheduled channel of the first station
  • the access point sends a CTS frame.
  • the transmitter is further configured to send a CTS frame to the access point on a primary channel of the OBSS.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a structure of an access point and a site according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a transmission channel according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a data transmission manner according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of another data transmission method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another data transmission manner according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of still another data transmission manner according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of still another data transmission manner according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another data transmission manner according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of still another data transmission manner according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of still another data transmission manner according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of still another data transmission manner according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a station according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of another station according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of another station according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of still another data transmission manner according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of another data transmission manner according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram of still another data transmission manner according to an embodiment of the present invention.
  • the basic principle of the present invention is that the station determines that the scheduled transmission channel of the station includes the primary channel, and the station sends a clear to send (English name: Clear to send, English abbreviation: CTS) frame to the access point on the scheduled channel of the station; The station judges that the scheduled transmission channel of the station does not include the primary channel, and the station transmits a CTS frame to the access point on the scheduled channel and the primary channel of the station.
  • a clear to send English name: Clear to send, English abbreviation: CTS
  • the embodiment of the present invention provides a schematic diagram of a communication system.
  • the communication system includes an access point (English name: access point, English abbreviation: AP), and a site (English full name: station, English abbreviation: STA). , Site 1, Site 2, and Site 3.
  • the access point can be the central node of the communication system, for example, the wireless router used in the home or office is the access point.
  • the site can be a laptop, a handheld computer (English full name: Personal Digital Assistant, English abbreviation: PDA) and other user equipment.
  • the communication system may further include a server and a communication network.
  • the access point is connected to the server through a communication network, and each station can establish a connection with the access point, and the station acquires information from the server through the communication network.
  • the server can be a Tencent server or a 360 server.
  • the communication network can be a conventional Internet Protocol (IP) network.
  • the Institute of Electrical and Electronics Engineers (English name: institute of electrical and electronics engineers, English abbreviation: IEEE) 802.11ac standard specifies the access point (English full name: access point, English abbreviation: AP) and the site (English full name: station, English abbreviation :STA) uses data transmission over a transmission channel with broadband bandwidth.
  • the broadband bandwidth is composed of a plurality of basic bandwidths, and the basic bandwidth may be a bandwidth of 20 MHz (English name: mega hertz, English abbreviation: MHz), and the broadband bandwidth may be a bandwidth of 40 MHz, 80 MHz, or 160 MHz.
  • the transmission mode of the orthogonal frequency division multiplexing (English abbreviation: OFDM) is used to transmit data between the access point and the station, that is, each basic bandwidth of each occupied broadband bandwidth. The same data is transmitted on the transport channel.
  • OFDM is a modulation method
  • OFDMA is a multiple access technology
  • users share frequency band resources through OFDMA to access the system.
  • Bandwidth refers to the amount of data that can be transferred at a fixed time, that is, the ability to pass data in the transmission pipeline. It is usually expressed in transmission cycles per second or Hertz (hertz: English, abbreviation: Hz).
  • the IEEE 802.11 protocol suite is a standard established by the IEEE for wireless local area networks.
  • the access point and the station may also transmit data by using a transmission mode of orthogonal frequency division multiple access (English abbreviation: OFDMA) specified by the IEEE802.11ax standard.
  • OFDMA orthogonal frequency division multiple access
  • the access point needs to send a multi-user request to send (English name: MU-RTS) frame to the site, and the station receives the MU-RTS. After the frame, the station repeatedly sends a CTS frame to the access point.
  • OFDMA orthogonal frequency division multiple access
  • the embodiment of the present invention provides a structure of an access point and a structure of a station.
  • the access point 11 includes a transmitter 111, a processor 112, and a receiver 113.
  • the station 12 includes a transmitter 121 and a processor. 122 and receiver 123.
  • the sending unit of the access point Before transmitting data between the access point and the site, the sending unit of the access point needs to send a multi-user request to send (multi-user request to send, English abbreviation: MU-RTS) frame to the site, and the receiving of the site
  • the processing unit of the station determines whether the scheduled transmission channel of the station includes the primary channel, and when the scheduled transmission channel of the station includes the primary channel, the sending unit of the station is scheduled at the station. Transmitting a CTS frame to a receiving unit of the access point on the channel; when the scheduled transmission channel of the station does not include the primary channel, the transmitting unit of the station sends the receiving channel of the primary channel and the station to the receiving unit of the access point CTS frame.
  • Site 12 also includes a memory for storing the identity of the primary channel.
  • the processor may also obtain the identifier of the primary channel of the overlapping basic service set (English full name: Overlapping basic service set, English abbreviation: OBSS).
  • the station also transmits a CTS frame to the access point on the primary channel of the OBSS.
  • the embodiment of the present invention provides a data transmission method, which is assumed to be based on the access point and the site in the communication system shown in FIG. 1, as shown in FIG.
  • Step 101 The access point sends a multi-user request to send a frame to the station.
  • a multi-user request to send (English name: MU-RTS) frame includes an identifier of a plurality of stations, and a scheduled transmission channel of each of the stations, the scheduled transmission channel of the station For the transmission channel allocated by the access point to the station, the station can occupy the transmission channel for which the access point allocates data.
  • the identifier of the site may be an association identifier (English full name: association identifier, English abbreviation: AID) or media intervention control (English full name: Media Access Control, English abbreviation: MAC) address.
  • the identification of the channel may be explicitly represented, for example, by using a bitmap, where each bit represents a basic channel, when set to 1 indicates that the station is scheduled to the basic channel, and setting to 0 indicates that the station is not scheduled to the basic channel. .
  • the identification of the channel may also be implicitly represented.
  • One possible way is to represent the basic channel location to which the station is scheduled by the order of the station identification, for example, the first station is scheduled to the first basic channel, the nth station. It is scheduled to the nth basic channel. This indication method has limitations on the data of the scheduling site, and the number of scheduled stations cannot exceed the number of basic channels.
  • the present invention does not limit the frame format and transmission mode of the MU-RTS frame.
  • the MU-RTS can multiplex the request to send (English full name: request to send, English abbreviation: RTS) frame, and modify the receiving address (English full name: receive address, English abbreviation: RA) in the RTS frame into multiple receiving The AID of the site, thereby enabling the access point to schedule multiple sites.
  • the MU-RTS may be transmitted only on the primary channel or repeatedly on all channels of the primary channel and the secondary channel in the transmission channel.
  • the present invention recommends repeating transmissions on all channels of the transport channel to better protect the primary channel and the secondary channel.
  • the transport channel includes one primary channel and a plurality of secondary channels.
  • the bandwidth of the primary channel may be 20 MHz bandwidth
  • the bandwidth of the secondary channel may be greater than or equal to 20 MHz, and may be a bandwidth of 40 MHz, 80 MHz, 80 MHz, or 160 MHz.
  • IEEE802.11ax introduces OFDMA
  • each station can be scheduled to transmit to any 20MHz, so the bandwidth of the slave channel with a bandwidth greater than 20MHz can be divided into multiple slave channels according to the bandwidth of the primary channel.
  • a total bandwidth of 80 MHz is taken as an example, which includes a 20 MHz primary channel, that is, CH0 in FIG. 5 and FIG. 7 to FIG. 9 and three 20 MHz slave channels, that is, FIG. 5 and FIG. To CH1, CH2 and CH3 in Fig. 9.
  • Step 102 Site 0 receives a multi-user request transmission frame sent by the access point.
  • the multi-user request to send frame includes an identification of a plurality of stations, and a scheduled transmission channel for each of the stations.
  • Step 103 Site 0 determines that the site 0 is the scheduled site according to the identifier of the site 0 and the identifiers of the multiple sites.
  • Site 0 first parses the multi-user request to send a frame, obtains an identifier of multiple sites from the multi-user request transmission frame, and a scheduled transmission channel of each of the stations; and then, station 0 identifies the identifier of the site 0 Determining the identifiers of the sites in the identifiers of the multiple sites one by one. If the identifiers of the sites include the same identifiers of the sites as the site 0, determine that the site 0 is the scheduled site. .
  • Step 104 Site 0 determines whether the scheduled transmission channel of Site 0 includes the primary channel.
  • step 105 is performed.
  • step 106 is performed.
  • the scheduled transmission channel included in the multi-user request transmission frame received by the station 0 may be an identifier of the scheduled transmission channel, and the station 0 may determine the scheduled transmission. Whether the identity of the channel contains the identity of the primary channel.
  • the access point may pre-store the identifier of the primary channel.
  • the identifier of the primary channel may be included in the multi-user request transmission frame sent by the access point. After receiving the multi-user request to send the frame, the station 0 can obtain the identifier of the primary channel from the multi-user request transmission frame. Site 0 can also pre-store the identity of the primary channel.
  • Step 105 Site 0 sends a CTS frame to the access point on the scheduled channel of Site 0.
  • Step 106 Site 0 sends a CTS frame to the access point on the primary channel and the scheduled channel of Site 0.
  • a specific method for simultaneously transmitting CTSs on multiple channels on the same channel may refer to the prior art. Since multiple CTSs are triggered by the same MU-RTS, the content sent by the site to the access point can be identical.
  • the scrambling seed that normally scrambles the CTS frame is randomly generated by the site, so even the exact same content will vary depending on the scrambling seed selection. All stations can use the scrambling seed of the MU-RTS frame or a field in the MU-RTS frame as the scrambling seed to achieve the same purpose of the scrambling seed of all stations.
  • Site 1, Site 2, and Site 3 can send clear clear transmission frames to the access point by referring to the specific method of Step 102 to Step 106.
  • the first station determines that it is the scheduled station according to the identifiers of the multiple sites, where the multi-user requests to send
  • the frame includes an identification of the plurality of stations, and a scheduled transmission channel of each of the stations; when it is determined that the scheduled transmission channel of the first station includes a primary channel, the first station is at the first station Transmitting a CTS frame to the access point on the scheduled channel; when determining that the scheduled transmission channel of the first station does not include a primary channel, the first station is at the primary channel and the first site A CTS frame is transmitted to the access point on the scheduling channel. Therefore, regardless of whether the scheduled transmission channel of the station includes the primary channel, the primary channel can be effectively protected, and the transmission channel is prevented from being overprotected, thereby improving the resource utilization of the system.
  • FIG. 5 a schematic diagram of a data transmission mode, assuming that CH0 is a main message.
  • the channels, CH1, CH2 and CH3 are all slave channels.
  • Site 0, Site 1, Site 2, and Site 3 store the identity of the primary channel, respectively.
  • Site 0 determines that the scheduled channel of Site 0 is CH0, and determines that the scheduled transmission channel of Site 0 contains the primary channel, and Site 0 is at CH0.
  • Site 1 determines that the scheduled channel of Site 1 is CH1, and determines that the scheduled transport channel of Site 1 does not contain the primary channel, and Site 1 sends a Clear Transmit frame to the access point on CH0 and CH1.
  • Site 2 determines that the scheduled channel of station 2 is CH2, and determines that the scheduled transmission channel of station 2 does not contain the primary channel, and station 2 sends a clear transmission frame to the access point on CH0 and CH2.
  • the station 3 determines that the scheduled channel of the station 3 is CH3, and judges that the scheduled transmission channel of the station 3 does not include the primary channel, and the station 3 transmits the clear transmission frame to the access point on CH0 and CH3.
  • the access point may send data to multiple sites on the channel that successfully receives the CTS frame as shown in FIG. 5, and the station successfully receives the data and then accesses the data.
  • the point sends a block confirmation frame (English full name: block acknowledgment, English abbreviation: BA) to confirm the data.
  • BA block acknowledgment
  • the access point may also allocate multiple sites for uplink data transmission on the channel that successfully receives the CTS frame.
  • the uplink or downlink multi-user data transmission process after the CTS is not the focus of the present invention and will not be discussed in detail herein.
  • the embodiment of the present invention provides a data transmission method, which is assumed to be based on the access point and the site shown in FIG. 1. As shown in FIG. 6, the method includes:
  • Step 201 Site 0 acquires an identifier of a primary channel of the overlapping basic service set.
  • the site can listen to the location of the primary channel of the overlapping basic service set (English full name: Overlapping basic service set, English abbreviation: OBSS).
  • OBSS Overlapping basic service set
  • the specific listening mode is not limited in the present invention.
  • the OBSS is geographically adjacent to the base station subsystem (English full name: Base Station Subsystem, English abbreviation: BSS), so the coverage of the wireless transmission signals of both of them overlaps partially or completely. All or part of the channels of the OBSS and the BSS overlap.
  • the station may periodically listen to beacon frames on the primary channel and each secondary channel of the present BSS to determine if OBSS is present.
  • the main channel of this BSS is this BSS
  • the AP transmits the channel of the beacon frame. If other beacon frames are also detected on the primary channel or the secondary channel of the BSS, the OBSS is considered to exist, and the channel transmitting the other beacon frame is the primary channel of the OBSS; If no other beacon frames are detected on the primary channel and the secondary channel of the BSS, it is considered that there is no OBSS.
  • the station can notify the primary channel location of the OBSS around the access point by associating the access point.
  • Step 202 Site 0 receives a multi-user request transmission frame sent by the access point.
  • the access point sends a multi-user request to send the frame to the station, and the station 0 receives the multi-user request to send the frame sent by the access point.
  • Step 203 Site 0 determines that the site 0 is the scheduled site according to the identifier of the site 0 and the identifiers of the multiple sites.
  • step 202 to step 203 may refer to reference steps 101 to 103.
  • Step 204 Site 0 determines whether the scheduled transmission channel of Site 0 includes the primary channel.
  • step 205 is performed.
  • step 206 is performed.
  • Step 205 Site 0 sends a CTS frame to the access point on the primary channel of the OBSS and the scheduled channel of Site 0.
  • Step 206 Site 0 sends a CTS frame to the access point on the primary channel of the OBSS, the primary channel, and the scheduled channel of Site 0.
  • Site 1, Site 2, and Site 3 can send a clear send frame to the access point by referring to the specific method of Step 202 to Step 207.
  • FIG. 7 a schematic diagram of a data transmission mode, where Site 0, Site 1, Site 2, and Site 3 respectively obtain the identity of the primary channel of the overlapping basic service set, assuming that CH0 is the primary channel and CH1 is the basic of the overlap.
  • Site 0, Site 1, Site 2, and Site 3 store the identity of the primary channel, respectively.
  • Site 0 determines that Site 0 is tuned.
  • the degree channel is CH0, and it is judged that the scheduled transmission channel of station 0 contains the primary channel, and station 0 transmits the clear transmission frame to the access point on CH0 and CH1.
  • Site 1 determines that the scheduled channel of Site 1 is CH1, and determines that the scheduled transport channel of Site 1 does not contain the primary channel, and Site 1 sends a Clear Transmit frame to the access point on CH0 and CH1.
  • Site 2 determines that the scheduled channel of Site 2 is CH2, and determines that the scheduled transport channel of Site 2 does not contain the primary channel, and Site 2 sends a Clear Transmit Frame to the access point on CH0, CH1, and CH2.
  • Site 3 determines that the scheduled channel of station 3 is CH3, and determines that the scheduled transport channel of station 3 does not contain the primary channel, and station 3 transmits a clear transmit frame to the access point on CH0, CH1, and CH3.
  • station 0 when station 0 determines that the scheduled transmission channel of station 0 includes the primary channel, station 0 transmits a CTS frame to the access point on the scheduled channel of station 0.
  • station 0 determines that the scheduled transmission channel of station 0 does not contain the primary channel, station 0 transmits a CTS frame to the access point on the primary channel of the OBSS, the primary channel, and the scheduled channel of station 0.
  • FIG. 8 a schematic diagram of a data transmission mode, where Site 0, Site 1, Site 2, and Site 3 respectively obtain the identity of the primary channel of the overlapping basic service set, assuming that CH0 is the primary channel and CH1 is the basic of the overlap.
  • Site 0, Site 1, Site 2, and Site 3 store the identity of the primary channel, respectively.
  • Site 0 determines that the scheduled channel of Site 0 is CH0, and determines that the scheduled transmission channel of Site 0 contains the primary channel, and Site 0 is at CH0.
  • Site 1 determines that the scheduled channel of Site 1 is CH1, and determines that the scheduled transport channel of Site 1 does not contain the primary channel, and Site 1 sends a Clear Transmit frame to the access point on CH0 and CH1.
  • Site 2 determines that the scheduled channel of Site 2 is CH2, and determines that the scheduled transport channel of Site 2 does not contain the primary channel, and Site 2 sends a Clear Transmit Frame to the access point on CH0, CH1, and CH2.
  • Site 3 determines that the scheduled channel of station 3 is CH3, and determines that the scheduled transport channel of station 3 does not contain the primary channel, and station 3 transmits a clear transmit frame to the access point on CH0, CH1, and CH3.
  • station 0 when station 0 determines that the scheduled transmission channel of station 0 includes the primary channel, station 0 transmits a CTS frame to the access point on the scheduled channel of station 0.
  • site 0 The scheduled transport channel of the broken station 0 does not contain the primary channel, and the station 0 transmits the CTS frame to the access point on the primary channel of the OBSS and the scheduled channel of the station 0.
  • FIG. 9 a schematic diagram of a data transmission mode, where Site 0, Site 1, Site 2, and Site 3 respectively obtain the identity of the primary channel of the overlapping basic service set, assuming that CH0 is the primary channel and CH1 is the basic of the overlap.
  • Site 0, Site 1, Site 2, and Site 3 store the identity of the primary channel, respectively.
  • Site 0 determines that the scheduled channel of Site 0 is CH0, and determines that the scheduled transmission channel of Site 0 contains the primary channel, and Site 0 is at CH0.
  • Site 1 determines that the scheduled channel of Site 1 is CH1, and determines that the scheduled transport channel of Site 1 does not contain the primary channel, and Site 1 sends a Clear Transmit Frame to the access point on CH1.
  • Site 2 determines that the scheduled channel of Site 2 is CH2, and determines that the scheduled transport channel of Site 2 does not contain the primary channel, and Site 2 sends a Clear Transmit frame to the access point on CH1 and CH2.
  • Site 3 determines that the scheduled channel of station 3 is CH3, and determines that the scheduled transport channel of station 3 does not contain the primary channel, and station 3 sends a clear transmit frame to the access point on CH1 and CH3.
  • station 0 when station 0 determines that the scheduled transmission channel of station 0 includes the primary channel, station 0 sends a CTS frame to the access point on the primary channel of the OBSS and the scheduled channel of station 0.
  • station 0 determines that the scheduled transmission channel of station 0 does not contain the primary channel, station 0 transmits a CTS frame to the access point on the primary channel of the OBSS and the scheduled channel of station 0.
  • FIG. 10 a schematic diagram of a data transmission mode, where Site 0, Site 1, Site 2, and Site 3 respectively obtain the identity of the primary channel of the overlapping basic service set, assuming that CH0 is the primary channel and CH1 is the overlapping basic.
  • Site 0, Site 1, Site 2, and Site 3 store the identity of the primary channel, respectively.
  • Site 0 determines that the scheduled channel of Site 0 is CH0, and determines that the scheduled transmission channel of Site 0 contains the primary channel, and Site 0 is at CH0. And send a clear send frame to the access point on CH1.
  • Site 1 determines that the scheduled channel of Site 1 is CH1, and determines that the scheduled transport channel of Site 1 does not contain the primary channel, and Site 1 sends a Clear Transmit Frame to the access point on CH1.
  • Site 2 determines that the scheduled channel of Site 2 is CH2 and determines that the scheduled transport channel of Site 2 does not contain the primary Channel, station 2 sends a clear transmission frame to the access point on CH1 and CH2.
  • Site 3 determines that the scheduled channel of station 3 is CH3, and determines that the scheduled transport channel of station 3 does not contain the primary channel, and station 3 sends a clear transmit frame to the access point on CH1 and CH3.
  • the clearing of the sending frame is performed in a legacy format, that is, using the OFDM format on the transmission channel of the basic bandwidth, and transmitting in a repeated manner on the transmission channel of the broadband bandwidth.
  • the station may send an OFDMA CTS frame before or after sending a clear transmission frame to the access point, so that the station and the access point can identify which stations have successfully received the MU-RTS and replies to the OFDMA CTS and the legacy CTS.
  • the OFDMA CTS is transmitted before the CTS, so that the access point can know that those stations have replied as early as possible, so that there is sufficient time for downlink data scheduling after the CTS.
  • the OFDMA CTS is transmitted after the CTS, so that the legacy station can receive the CTS frame as early as possible to better perform channel protection. Both methods can be applied to the present invention.
  • the OFDMA CTS frame includes an OFDM part and an OFDMA part.
  • the OFDM part includes a non-high-throughput short training field (English name: non-HT Short Training Field, English abbreviation: L-STF), and a non-high-throughput long training field (English name: non-HT Long Training Field, English) Abbreviation: L-LTF), non-high-throughput signaling domain (English name: non-HT SIGNAL field, English abbreviation: L-SIG) and efficient signaling domain A (English full name: High Efficiency SIGNAL A, English abbreviation :HE-SIG A).
  • the OFDMA part includes an efficient short training field (English name: High Efficiency Short Training Field, English abbreviation: HE-STF) and HE-payload.
  • Each part of the OFDM part occupies a transmission channel occupying the entire basic bandwidth, and the content transmitted by multiple stations is the same, and overlaps in time and frequency, and the access point transmits the overlapping transmission of multiple stations as one transmission information. To resolve.
  • Each part of the OFDMA part occupies a part of the OFDMA subchannel for transmission.
  • the content sent by multiple stations is different and orthogonal in the frequency domain.
  • the access point can simultaneously parse the content of different sites.
  • the transmission mode of the OFDMA CTS As shown in FIG. 12, based on the scenario of the site data transmission of FIG. 5, the transmission mode of the OFDMA CTS.
  • the station scheduled to the primary channel transmits the OFDMA CTS on the primary channel
  • the OFDM part and the OFDMA part; the OFDM part and the OFDMA part of the OFDMA CTS are repeatedly transmitted on the scheduled channel and the primary channel by the station scheduled to the slave channel.
  • the transmit channel of its OFDMA CTS is the same as the transmit channel of the CTS.
  • the station transmits an OFDMA CTS frame on the scheduled channel, including an OFDM part and an OFDMA part. Moreover, only the OFDM portion of the OFDMA CTS is repeatedly transmitted on the primary channel and/or the primary channel of the OBSS on which the CTS needs to be transmitted, and the OFDMA portion is not transmitted.
  • the transmission mode of the OFDMA CTS is based on the scenario of the site data transmission of FIG.
  • the station scheduled at the primary channel transmits the OFDM portion and the OFDMA portion of the OFDMA CTS on the primary channel; the station scheduled to the secondary channel transmits the OFDM portion and the OFDMA portion of the OFDMA CTS on the scheduled channel and repeats only on the primary channel
  • the OFDM portion of the OFDMA CTS is transmitted without transmitting the OFDMA portion.
  • the scenarios of the scenes of other embodiments are similar.
  • the transmit channel of its OFDMA CTS is the same as the transmit channel of the CTS.
  • An embodiment of the present invention provides a site 30, as shown in FIG. 14, including:
  • the receiving unit 301 is configured to receive, by the access point, a multi-user request to send a MU-RTS frame, where the multi-user request sending frame includes an identifier of multiple sites, and a scheduled transmission channel of each of the stations;
  • the processing unit 302 is configured to determine, according to the identifiers of the multiple sites, that the site is a scheduled site;
  • a sending unit 303 configured to: when determining that the scheduled transmission channel of the first station includes a primary channel, the first station sends a CTS frame to the access point on a scheduled channel of the first station;
  • the sending unit 303 is further configured to: when determining that the scheduled transmission channel of the first station does not include a primary channel, the first station is located on the scheduled channel of the primary channel and the first station The access point sends a CTS frame.
  • the data transmission method provided by the embodiment of the present invention after the first station receives the multi-user request sent by the access point to send the MU-RTS frame, the first station is based on multiple sites.
  • the identity identifies itself as a scheduled site, wherein the multi-user request transmission frame includes an identity of the plurality of sites, and a scheduled transmission channel for each of the sites; when determining the scheduled transmission of the first site
  • the first station sends a CTS frame to the access point on the scheduled channel of the first station; when it is determined that the scheduled transmission channel of the first station does not include the primary channel,
  • the first station transmits a CTS frame to the access point on the primary channel and the scheduled channel of the first station. Therefore, regardless of whether the scheduled transmission channel of the station includes the primary channel, the primary channel can be effectively protected, and the transmission channel is prevented from being overprotected, thereby improving the resource utilization of the system.
  • the site 30 further includes:
  • the obtaining unit 304 is configured to acquire an identifier of a primary channel of the overlapping basic service set OBSS.
  • the sending unit 303 is further configured to send a CTS frame to the access point on a primary channel of the OBSS.
  • the sending unit 303 is further configured to send a CTS frame to the access point on a primary channel of the OBSS.
  • the first station determines the scheduled transmission channel of the first station whether or not the primary channel is included, and the first station also sends a CTS frame to the access point on the primary channel of the OBSS; or, when determining the first
  • the first station not only sends a CTS frame to the access point on the scheduled channel of the primary channel and the first station, but also is a primary channel of the OBSS. Sending a CTS frame to the access point. Therefore, the first station protects the primary channel of the OBSS, prohibits other stations from using the primary channel of the OBSS, prevents other stations from transmitting data to the first station, and can effectively protect the primary channel while avoiding excessive protection of the transmission channel.
  • An embodiment of the present invention provides a site 40, as shown in FIG. 16, including:
  • An obtaining unit 401 configured to acquire an identifier of a primary channel of the overlapping basic service set OBSS;
  • the receiving unit 402 is configured to receive, by the access point, a multi-user request to send a MU-RTS frame, where the multi-user request sending frame includes an identifier of multiple sites, and a scheduled transmission channel of each of the stations;
  • the processing unit 403 is configured to determine, according to the identifiers of the multiple sites, that the site is a scheduled site;
  • a sending unit 404 configured to: when determining that the scheduled transmission channel of the first station includes a primary channel, the first station sends a CTS frame to the access point on a scheduled channel of the first station;
  • the sending unit 404 is further configured to: when determining that the scheduled transmission channel of the first station does not include a primary channel, the first station is on a primary channel of the OBSS and a scheduled channel of the first station Sending a CTS frame to the access point.
  • the sending unit 404 is further configured to send a CTS frame to the access point on a primary channel of the OBSS.
  • the data transmission method provided by the embodiment of the present invention, after the first station receives the multi-user request to send the MU-RTS frame sent by the access point, the first station determines that it is the scheduled station according to the identifiers of the multiple sites, where The multi-user request transmission frame includes an identifier of the plurality of stations, and a scheduled transmission channel of each of the stations; when it is determined that the scheduled transmission channel of the first station includes a primary channel, the first station Transmitting a CTS frame to the access point on the scheduled channel of the first station; when determining that the scheduled transmission channel of the first station does not include a primary channel, the first station is in a primary channel of the OBSS Transmitting a CTS frame to the access point on a scheduled channel of the first station; further, when determining that the scheduled transmission channel of the first station includes a primary channel, the first station is also in a primary channel of the OBSS Sending a CTS frame to the access point.
  • the first station protects the primary channel of the OBSS, prohibits other stations from using the primary channel of the OBSS, prevents other stations from transmitting data to the first station, and can effectively protect the primary channel while avoiding excessive protection of the transmission channel. Improve system resource utilization.
  • channels CH0 and CH1 are assumed.
  • CH2 and CH3 are sequentially adjacent and continuous in frequency, that is, CH0>CH1>CH2>CH3 or CH0 ⁇ CH1 ⁇ CH2 ⁇ CH3.
  • the transmission resource that STA3 is scheduled by the AP is channel 3 (CH3). Then STA3 transmits on the smallest continuous channel including its primary channel (CH0) and scheduled transmission channel (CH3), and the smallest continuous channel including its primary channel (CH0) and scheduled transmission channel (CH3) is CH0, CH1. CH2, CH3.
  • the advantage of this method of transmitting CTS using the minimum continuous channel is that since STA3 also transmits CTS on CH1 sandwiched between CH0 and CH2, 3, the signal power spectrum transmitted by STA3 is continuous in frequency, and signal generation difficulty is small. In addition, when STA3 receives the signal, STA3 will not be interfered on CH2 because STA3 performs channel protection on CH2.
  • the transmission key signaling channel in each of the examples of the present invention may be a single channel. It can also be a plurality of channels (such as CH0, CH1), and the primary channel included in the CTS transmission can be a multi-channel key signaling channel.
  • the STA2 transmits on the smallest continuous channel including its primary channel (CH0) and the scheduled transmission channel (CH2), That is, CH0, CH1, and CH2.
  • STA2 transmits on a channel including a minimum channel bonding mode combination of its primary channel (CH0) and a channel (CH2) in which the transmission resource is located (for example, a channel combination defined by 802.11ac), that is, CH0, CH1, CH2, CH3.
  • CH0 primary channel
  • CH2 channel in which the transmission resource is located
  • 802.11ac a channel combination defined by 802.11ac
  • the original 11ac system's CTS transmission combination is 20MHz, 40MHz (ie 20MHz + 20MHz), 80MHz (ie 20MHz + 20MHz + 20MHz + 20MHz), and 160MHz (ie 20MHz + 20MHz + 20MHz + 20MHz + 20MHz + 20MHz + 20MHz + 20MHz + 20MHz ).
  • the receiving unit in this embodiment may be a receiver of the station, and the sending unit may be a transmitter of the station; in addition, the receiving unit and the sending unit may be integrated to form a transceiver of the station.
  • the processing unit can be the processor of the site.
  • the processor described herein may be a central processing unit (English name: Central Processing Unit, English abbreviation: CPU), or a specific integrated circuit (English name: Application Specific Integrated Circuit, English abbreviation: ASIC), or One or more integrated circuits are configured to implement embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage medium includes: a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. The medium of the code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种数据传输方法及装置,涉及通信领域。所述方法包括以下步骤:第一站点接收接入点发送的多用户请求发送(MU-RTS)帧,MU-RTS帧包括多个站点的标识,以及每个站点的被调度传输信道;第一站点根据多个站点的标识确定自身为被调度的站点;当确定第一站点的被调度传输信道包含主信道时,第一站点在所述第一站点的被调度信道上向接入点发送清除发送(CTS)帧;当确定第一站点的被调度传输信道不包含主信道时,第一站点在所述主信道和第一站点的被调度信道上向接入点发送CTS帧或在包含主信道及被调度传输信道的最小连续信道上发送CTS,用于获取业务报文的路径信息。通过应用本发明,能够有效地保护主信道,又避免过度保护传输信道,提高***的资源利用率。

Description

一种数据传输方法及装置
本申请要求于2015年11月04日提交中国专利局、申请号为201510743011.3、发明名称为“一种数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种数据传输方法及装置。
背景技术
电气和电子工程师协会(英文全称:institute of electrical and electronics engineers,英文简称:IEEE)802.11ax标准规定接入点(英文全称:access point,英文简称:AP)与站点(英文全称:station,英文简称:STA)之间采用正交频分多址接入(英文全称:orthogonal frequency division multiple access,英文简称:OFDMA)的传输模式传输数据,即每个站点可能在占用的宽带带宽的一部分基本带宽的传输信道上传输数据。在接入点与站点之间传输数据前,接入点需要先向站点发送多用户请求发送(英文全称:multi-user request to send,英文简称:MU-RTS)帧,站点接收到MU-RTS帧后,站点可以采用传统格式(legacy)在占用的宽带带宽的每个基本带宽的传输信道上向接入点重复发送清除发送(英文全称:clear to send,英文简称:CTS)帧,但是,由于每个站点可能在占用的宽带带宽的一部分基本带宽的传输信道上传输数据,在站点占用的宽带带宽的所有基本带宽的传输信道上发送清除发送帧,会造成过度保护传输信道,***的资源利用率较低。在另一种实施方式中,每个站点只在传输数据时自身所涉及的基本带宽的传输信道上发送清除发送帧,虽然这样能够避免过度保护传输信道,但是,传输信道分为主信道和从信道,目前的站点在接收数据的过程中,通常是首先进行主信道上的信令字段的解析,获得带宽信息和资源分配信息后再到被调度的信道上进行数据的解析,然后通过资源分配信息的指示到所分 配的时频资源上进行数据的解析。当主信道被重叠的基本服务集(英文全称:Overlapping basic service set,英文简称:OBSS)站点占用后,虽然所述站点的数据是被调度在从信道上,但是由于无法获取主信道上的带宽和资源分配信息而无法到从信道上进行数据的解析,从而无法正确接收接入点在主信道上传输的数据。
发明内容
本发明的实施例提供一种数据传输方法及装置,能够有效地保护主信道,同时又避免过度保护传输信道,提高***的资源利用率。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种数据传输方法,包括:
首先,第一站点接收接入点发送的多用户请求发送MU-RTS帧,该多用户请求发送帧包括多个站点的标识,以及每个所述站点的被调度传输信道;然后,该第一站点根据所述多个站点的标识确定自身为被调度的站点;
当确定所述第一站点的被调度传输信道包含主信道时,该第一站点在所述第一站点的被调度信道上向所述接入点发送清除发送CTS帧;
当确定所述第一站点的被调度传输信道不包含主信道时,该第一站点在所述主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧或在包含所述主信道及被调度传输信道的最小连续信道上发送CTS。
上述第一方面提供的数据传输方法,在第一站点接收到接入点发送的多用户请求发送MU-RTS帧之后,该第一站点根据多个站点的标识确定自身为被调度的站点,其中,该多用户请求发送帧包括所述多个站点的标识,以及每个所述站点的被调度传输信道;当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点在该第一站点的被调度信道上向所述接入点发送CTS帧;当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点在所述主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧。 从而无论站点的被调度传输信道是否包括主信道,能够在有效地保护主信道,同时又避免过度保护传输信道,提高***的资源利用率。
结合第一方面,在第一方面的第一种可实现方式中,在所述第一站点根据所述多个站点的标识确定自身为被调度的站点之后,所述方法还包括:
所述第一站点在重叠的基本服务集OBSS的主信道上向所述接入点发送CTS帧。
结合第一方面,在第一方面的第二种可实现方式中,当确定所述第一站点的被调度传输信道不包含主信道时,所述方法还包括:
所述第一站点在重叠的基本服务集OBSS的主信道上向所述接入点发送CTS帧。
结合第一方面的第一种可实现方式或第一方面的第二种可实现方式,在第一方面的第三种可实现方式中,在所述第一站点接收接入点发送的多用户请求发送MU-RTS帧之前,所述方法还包括:
所述第一站点获取所述OBSS的主信道的标识。
上述第一方面的第一至第三种可实现方式提供的数据传输方法,第一站点确定的第一站点的被调度传输信道无论是否包含主信道,第一站点还在OBSS的主信道向所述接入点发送CTS帧;或,当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点不仅在所述主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧,还在OBSS的主信道上向所述接入点发送CTS帧。从而第一站点对OBSS的主信道进行保护,禁止其他站点使用该OBSS的主信道,避免其他站点发送数据对第一站点的干扰,也能够在有效地保护主信道,同时又避免过度保护传输信道,提高***的资源利用率。
第二方面,提供一种数据传输方法,包括:
首先,第一站点获取重叠的基本服务集OBSS的主信道的标识;所述第一站点接收接入点发送的多用户请求发送MU-RTS帧;然后,所述第一站点根据所述多个站点的标识确定自身为被调度的站点;
当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点在所述第一站点的被调度信道上向所述接入点发送清除CTS帧;
当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点在所述OBSS的主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧。
结合第二方面,在第二方面的第一种可实现方式中个,当确定所述第一站点的被调度传输信道包含主信道时,所述方法还包括:
所述第一站点在所述OBSS的主信道上向所述接入点发送CTS帧。
上述第二方面提供的数据传输方法,在第一站点接收到接入点发送的多用户请求发送MU-RTS帧之后,该第一站点根据多个站点的标识确定自身为被调度的站点,其中,该多用户请求发送帧包括所述多个站点的标识,以及每个所述站点的被调度传输信道;当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点在该第一站点的被调度信道上向所述接入点发送CTS帧;当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点在OBSS的主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧;进一步的,当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点还在OBSS的主信道上向所述接入点发送CTS帧。从而第一站点对OBSS的主信道进行保护,禁止其他站点使用该OBSS的主信道,避免其他站点发送数据对第一站点的干扰,也能够在有效地保护主信道,同时又避免过度保护传输信道,提高***的资源利用率。
第三方面,提供一种站点,包括:
接收单元,用于接收接入点发送的多用户请求发送MU-RTS帧;
处理单元,用于根据所述多个站点的标识确定自身为被调度的站点;
发送单元,用于当确定所述第一站点的被调度传输信道包含主 信道时,所述第一站点在所述第一站点的被调度信道上向所述接入点发送清除发送CTS帧;
所述发送单元,还用于当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点在所述主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧或在包含所述主信道及被调度传输信道的最小连续信道上发送CTS。
结合第三方面,在第三方面的第一种可实现方式中,所述发送单元,还用于在重叠的基本服务集OBSS的主信道上向所述接入点发送CTS帧。
结合第三方面的第一种可实现方式,在第三方面的第二种可实现方式中,当确定所述第一站点的被调度传输信道包含主信道时,
所述发送单元,还用于在重叠的基本服务集OBSS的主信道上向所述接入点发送CTS帧。
结合第三方面的第一种可实现方式或第三方面的第二种可实现方式,在第三方面的第三种可实现方式中,所述站点还包括:
获取单元,用于获取所述OBSS的主信道的标识。
第四方面,提供一种站点,包括:
获取单元,用于获取重叠的基本服务集OBSS的主信道的标识;
接收单元,用于接收接入点发送的多用户请求发送MU-RTS帧,所述多用户请求发送帧包括多个站点的标识,以及每个所述站点的被调度传输信道;
处理单元,用于根据所述多个站点的标识确定自身为被调度的站点;
发送单元,用于当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点在所述第一站点的被调度信道上向所述接入点发送清除发送CTS帧;
所述发送单元,还用于当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点在所述OBSS的主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧。
结合第四方面,在第四方面的第一种可实现方式中,当确定所述第一站点的被调度传输信道包含主信道时,
所述发送单元,还用于在所述OBSS的主信道上向所述接入点发送CTS帧。
第五方面,提供一种站点,包括:
接收机,用于接收接入点发送的多用户请求发送MU-RTS帧;
处理器,用于根据所述多个站点的标识确定自身为被调度的站点;
发射机,用于当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点在所述第一站点的被调度信道上向所述接入点发送清除CTS帧;
所述发射机,还用于当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点在所述主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧。
结合第五方面,在第五方面的第一种可实现方式中,所述发送单元,还用于在重叠的基本服务集OBSS的主信道上向所述接入点发送CTS帧。
结合第五方面的第一种可实现方式,在第五方面的第二种可实现方式中,当确定所述第一站点的被调度传输信道包含主信道时,
所述发送单元,还用于在重叠的基本服务集OBSS的主信道上向所述接入点发送CTS帧。
结合第五方面的第一种可实现方式或第五方面的第二种可实现方式,在第五方面的第三种可实现方式中,所述站点还包括:
获取单元,用于获取所述OBSS的主信道的标识。
第六方面,提供一种站点,包括:
处理器,用于获取重叠的基本服务集OBSS的主信道的标识;
接收机,用于接收接入点发送的多用户请求发送MU-RTS帧,所述多用户请求发送帧包括多个站点的标识,以及每个所述站点的被调度传输信道;
所述处理器,还用于根据所述多个站点的标识确定自身为被调度的站点;
发射机,用于当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点在所述第一站点的被调度信道上向所述接入点发送清除发送CTS帧;
所述发射机,还用于当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点在所述OBSS的主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧。
结合第六方面,在第六方面的第一种可实现方式中,当确定所述第一站点的被调度传输信道包含主信道时,
所述发射机,还用于在所述OBSS的主信道上向所述接入点发送CTS帧。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供一种通信***示意图;
图2为本发明实施例提供一种接入点的结构和站点的结构示意图;
图3为本发明实施例提供一种数据传输方法流程图;
图4为本发明实施例提供一种传输信道示意图;
图5为本发明实施例提供一种数据传输方式示意图;
图6为本发明实施例提供另一种数据传输方法流程图;
图7为本发明实施例提供另一种数据传输方式示意图;
图8为本发明实施例提供又一种数据传输方式示意图;
图9为本发明实施例提供再一种数据传输方式示意图;
图10为本发明实施例提供另再一种数据传输方式示意图;
图11为本发明实施例提供又再一种数据传输方式示意图;
图12为本发明实施例提供再另一种数据传输方式示意图;
图13为本发明实施例提供再又一种数据传输方式示意图;
图14为本发明实施例提供一种站点结构示意图;
图15为本发明实施例提供另一种站点结构示意图;
图16为本发明实施例提供又一种站点结构示意图;
图17为本发明实施例提供再又一种数据传输方式示意图;
图18为本发明实施例提供另又一种数据传输方式示意图;
图19为本发明实施例提供又另一种数据传输方式示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述。
本发明的基本原理在于:站点判断站点的被调度传输信道包括主信道,站点就在站点的被调度信道上向接入点发送清除发送(英文全称:Clear to send,英文简称:CTS)帧;站点判断站点的被调度传输信道不包括主信道,站点就在站点的被调度信道和主信道上向接入点发送CTS帧。
下面将参考附图详细描述本发明的实施方式。
本发明实施例提供一种通信***示意图,如图1所示,该通信***包括接入点(英文全称:access point,英文简称:AP)、站点(英文全称:station,英文简称:STA)0、站点1、站点2和站点3。接入点可以是通信***的中心节点,例如,家庭或办公室中使用的无线路由器就是接入点。站点可以是笔记本电脑、掌上电脑(英文全称:Personal Digital Assistant,英文简称:PDA)及其他用户设备。
进一步的,该通信***还可以包括服务器和通信网络。接入点通过通信网络与服务器相连,每个站点可以与接入点建立连接,站点通过通信网络从服务器获取信息。服务器可以是腾讯的服务器或360的服务器等。通信网络可以是传统的网际互连协议(Internet Protocol,IP)网络。
电气和电子工程师协会(英文全称:institute of electrical and electronics engineers,英文简称:IEEE)802.11ac标准规定接入点(英文全称:access point,英文简称:AP)与站点(英文全称:station,英文简称:STA)之间采用由具有宽带带宽的传输信道传输数据。其中,宽带带宽由多个基本带宽组成,基本带宽可以是20兆赫(英文全称:mega hertz,英文简称:MHz)的带宽,宽带带宽可以是40MHz、80MHZ或160MHZ的带宽。接入点与站点之间还采用正交频分复用(英文全称:orthogonal frequency division multiplexing,英文简称:OFDM)的传输模式传输数据,即每个站点在占用的宽带带宽的每个基本带宽的传输信道上传输相同的数据。其中,OFDM是一种调制方式;OFDMA是一种多址接入技术,用户通过OFDMA共享频带资源,接入***。带宽是指在固定的时间可传输的资料数量,亦即在传输管道中可以传递数据的能力。通常以每秒传送周期或赫兹(英文全称:hertz,英文简称:Hz)来表示。IEEE 802.11协议簇是IEEE为无线局域网络制定的标准。
进一步的,接入点与站点之间还可以采用IEEE802.11ax标准规定的正交频分多址接入(英文全称:orthogonal frequency division multiple access,英文简称:OFDMA)的传输模式进行传输数据。在接入点与站点之间传输数据前,接入点需要先向站点发送多用户请求发送(英文全称:multi-user request to send,英文简称:MU-RTS)帧,站点接收到MU-RTS帧后,站点向接入点重复发送CTS帧。
本发明实施例提供一种接入点的结构和站点的结构示意图,如图2所示,接入点11包括发射机111、处理器112和接收机113,站点12包括发射机121、处理器122和接收机123。
在接入点与站点之间传输数据前,接入点的发送单元需要先向站点发送多用户请求发送(英文全称:multi-user request to send,英文简称:MU-RTS)帧,站点的接收单元接收到MU-RTS帧后,站点的处理单元判断站点的被调度传输信道是否包含主信道,当站点的被调度传输信道包含主信道时,站点的发送单元在站点的被调度 信道上向接入点的接收单元发送CTS帧;当站点的被调度传输信道不包含主信道时,站点的发送单元在所述主信道和站点的被调度信道上向接入点的接收单元发送CTS帧。站点12还包括存储器,用于存储主信道的标识。
进一步的,处理器还可以获取到重叠的基本服务集(英文全称:Overlapping basic service set,英文简称:OBSS)的主信道的标识。站点还在所述OBSS的主信道上向所述接入点发送CTS帧。
本发明实施例提供一种数据传输方法,假设基于图1所示的通信***中的接入点和站点,如图3所示,包括:
步骤101、接入点向站点发送多用户请求发送帧。
多用户请求发送(英文全称:multi-user request to send,英文简称:MU-RTS)帧包括多个站点的标识,以及每个所述站点的被调度传输信道,所述站点的被调度传输信道为接入点为站点分配的传输信道,该站点可以占用接入点为其分配的传输信道传输数据。站点的标识可以是关联标识符(英文全称:association identifier,英文简称:AID)或媒体介入控制(英文全称:Media Access Control,英文简称:MAC)地址。信道的标识可以采用显式表示,例如采用bitmap来表示,其中的每一个比特代表一个基本信道,当设置为1表示将站点调度到该基本信道,设置为0表示站点未被调度到该基本信道。信道的标识也可以采用隐式表示,一种可能的方式是通过站点标识的顺序来代表站点被调度到的基本信道位置,例如第一个站点被调度到第一个基本信道,第n个站点被调度到第n个基本信道。这种指示方式对于调度站点的数据有所限制,被调度站点的数目不能够超过基本信道的数目。
需要说明的是,本发明不限定MU-RTS帧的帧格式和发送方式。例如,MU-RTS可以复用请求发送(英文全称:request to send,英文简称:RTS)帧,通过将RTS帧中的接收地址(英文全称:receive address,英文简称:RA)修改成多个接收站点的AID,从而来实现接入点对多个站点的调度。也可以重新定义一个新的帧格式。 MU-RTS可以只在主信道上发送,也可以在传输信道中主信道和从信道的所有信道上重复发送。优选的,本发明中推荐在传输信道的所有的信道上重复发送,以更好地保护主信道和从信道。
如图4所示,传输信道包括一个主信道和多个从信道。主信道的带宽可以是20MHz带宽,从信道的带宽可以大于等于20MHz,可以是40MHz、80MHZ80MHz或160MHz的带宽。在IEEE802.11ax引入OFDMA之后,每个站点可以调度到任意一个20MHz进行传输,因此可以将大于20MHz带宽的从信道的带宽按照主信道的带宽划分为多个从信道。在本发明的实施例中以总带宽80MHz为例进行介绍,其包含一个20MHz的主信道,即图5和图7至图9中的CH0和3个20MHz的从信道,即图5和图7至图9中的CH1,CH2和CH3。
步骤102、站点0接收接入点发送的多用户请求发送帧。
多用户请求发送帧包括多个站点的标识,以及每个所述站点的被调度传输信道。
步骤103、站点0根据该站点0的标识和多个站点的标识确定该站点0为被调度的站点。
站点0先解析该多用户请求发送帧,从该多用户请求发送帧中获取多个站点的标识,以及每个所述站点的被调度传输信道;然后,站点0将该站点0的标识与所述多个站点的标识中每个所述站点的标识进行一一比较,若多个站点的标识中包括与所述站点0的标识相同的站点的标识,确定所述站点0为被调度的站点。
步骤104、站点0判断站点0的被调度传输信道是否包含主信道。
当站点0判断站点0的被调度传输信道包含主信道,执行步骤105。
当站点0判断站点0的被调度传输信道不包含主信道,执行步骤106。
具体的,站点0接收到的多用户请求发送帧中包括的被调度传输信道可以是被调度传输信道的标识,站点0可以判断被调度传输 信道的标识是否包含主信道的标识。
需要说明的是,接入点可以预先存储主信道的标识。接入点发送的多用户请求发送帧中可以包括主信道的标识。站点0接收到多用户请求发送帧后,可以从多用户请求发送帧中获取主信道的标识。站点0也可以预先存储主信道的标识。
步骤105、站点0在站点0的被调度信道上向接入点发送CTS帧。
步骤106、站点0在主信道和站点0的被调度信道上向接入点发送CTS帧。
需要说明的是,多个站点在同一个信道上同时发送CTS的具体方法可以参考现有技术。由于多个CTS是被同一个MU-RTS触发,因此,站点向接入点发送的内容可以做到完全相同。通常情况下对CTS帧进行加扰的扰码种子是由站点随机生成的,因此即使是完全相同的内容也会因为扰码种子选取的不同而不同。所有站点可以选用MU-RTS帧的扰码种子或者MU-RTS帧中的某个字段来作为扰码种子,从而达到所有站点的扰码种子相同的目的。
同理,站点1、站点2和站点3可以参考步骤102至步骤106的具体方法向接入点发送清除发送帧。
这样一来,在第一站点接收到接入点发送的多用户请求发送MU-RTS帧之后,该第一站点根据多个站点的标识确定自身为被调度的站点,其中,该多用户请求发送帧包括所述多个站点的标识,以及每个所述站点的被调度传输信道;当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点在该第一站点的被调度信道上向所述接入点发送CTS帧;当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点在所述主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧。从而无论站点的被调度传输信道是否包括主信道,能够在有效地保护主信道,同时又避免过度保护传输信道,提高***的资源利用率。
示例的,如图5所示,数据传输方式示意图,假设CH0为主信 道,CH1,CH2和CH3均为从信道。站点0、站点1、站点2和站点3分别存储主信道的标识。站点0、站点1、站点2和站点3分别接收到MU-RTS帧后,站点0确定站点0的被调度信道为CH0,并判断站点0的被调度传输信道包含主信道,站点0则在CH0上向接入点发送清除发送帧。站点1确定站点1的被调度信道为CH1,并判断站点1的被调度传输信道不包含主信道,站点1则在CH0和CH1上向接入点发送清除发送帧。站点2确定站点2的被调度信道为CH2,并判断站点2的被调度传输信道不包含主信道,站点2则在CH0和CH2上向接入点发送清除发送帧。站点3确定站点3的被调度信道为CH3,并判断站点3的被调度传输信道不包含主信道,站点3则在CH0和CH3上向接入点发送清除发送帧。
接入点在接收到站点向接入点发送的清除发送帧后,可以在如图5所示,在成功接收CTS帧的信道上给多个站点下行发送数据,站点成功接收数据后向接入点发送块确认帧(英文全称:block acknowledgment,英文简称:BA)对数据进行确认。当然,接入点也可以在成功接收CTS帧的信道上分配多个站点进行上行数据发送。CTS之后的上行或者下行多用户数据发送流程不是本发明的重点,这里就不做详细讨论。
本发明实施例提供一种数据传输方法,假设基于图1所示的接入点和站点,如图6所示,所述方法包括:
步骤201、站点0获取重叠的基本服务集的主信道的标识。
站点可以侦听重叠的基本服务集(英文全称:Overlapping basic service set,英文简称:OBSS)的主信道的位置,具体的侦听方式本发明不做限定。OBSS是由于地理位置上与本基站子***(英文全称:Base Station Subsystem,英文简称:BSS)相临近,因此两者的无线发送信号的覆盖范围有部分或全部重叠。OBSS和本BSS的全部或部分信道是重叠的。
例如,站点可以周期性地到在本BSS的主信道和每个从信道上侦听信标帧,以确定是否有OBSS存在。本BSS的主信道是本BSS 的AP发送信标帧的信道,如果在本BSS的主信道或从信道上还侦听到其它信标帧,则认为存在OBSS,发送其它信标帧的信道为该OBSS的主信道;如果在本BSS的主信道及从信道上均未侦听到其它信标帧,则认为不存在OBSS。可选的,站点可以通过关联接入点告知接入点周围OBSS的主信道位置。
步骤202、站点0接收接入点发送的多用户请求发送帧。
接入点向站点发送多用户请求发送帧,站点0接收接入点发送的多用户请求发送帧。
步骤203、站点0根据该站点0的标识和多个站点的标识确定该站点0为被调度的站点。
步骤202至步骤203的具体的步骤可以参考参考步骤101至步骤103。
步骤204、站点0判断站点0的被调度传输信道是否包含主信道。
当站点0判断站点0的被调度传输信道包含主信道,执行步骤205。
当站点0判断站点0的被调度传输信道不包含主信道,执行步骤206。
步骤205、站点0在OBSS的主信道和站点0的被调度信道上向接入点发送CTS帧。
步骤206、站点0在OBSS的主信道、主信道和站点0的被调度信道上向接入点发送CTS帧。
同理,站点1、站点2和站点3可以参考步骤202至步骤207的具体方法向接入点发送清除发送帧。
示例的,如图7所示,数据传输方式示意图,站点0、站点1、站点2和站点3分别获取到重叠的基本服务集的主信道的标识,假设CH0为主信道,CH1为重叠的基本服务集的主信道。站点0、站点1、站点2和站点3分别存储主信道的标识。站点0、站点1、站点2和站点3分别接收到MU-RTS帧后,站点0确定站点0的被调 度信道为CH0,并判断站点0的被调度传输信道包含主信道,站点0则在CH0和CH1上向接入点发送清除发送帧。站点1确定站点1的被调度信道为CH1,并判断站点1的被调度传输信道不包含主信道,站点1则在CH0和CH1上向接入点发送清除发送帧。站点2确定站点2的被调度信道为CH2,并判断站点2的被调度传输信道不包含主信道,站点2则在CH0、CH1和CH2上向接入点发送清除发送帧。站点3确定站点3的被调度信道为CH3,并判断站点3的被调度传输信道不包含主信道,站点3则在CH0、CH1和CH3上向接入点发送清除发送帧。
可选的,当站点0判断站点0的被调度传输信道包含主信道,站点0在站点0的被调度信道上向接入点发送CTS帧。当站点0判断站点0的被调度传输信道不包含主信道,站点0在OBSS的主信道、主信道和站点0的被调度信道上向接入点发送CTS帧。
示例的,如图8所示,数据传输方式示意图,站点0、站点1、站点2和站点3分别获取到重叠的基本服务集的主信道的标识,假设CH0为主信道,CH1为重叠的基本服务集的主信道。站点0、站点1、站点2和站点3分别存储主信道的标识。站点0、站点1、站点2和站点3分别接收到MU-RTS帧后,站点0确定站点0的被调度信道为CH0,并判断站点0的被调度传输信道包含主信道,站点0则在CH0上向接入点发送清除发送帧。站点1确定站点1的被调度信道为CH1,并判断站点1的被调度传输信道不包含主信道,站点1则在CH0和CH1上向接入点发送清除发送帧。站点2确定站点2的被调度信道为CH2,并判断站点2的被调度传输信道不包含主信道,站点2则在CH0、CH1和CH2上向接入点发送清除发送帧。站点3确定站点3的被调度信道为CH3,并判断站点3的被调度传输信道不包含主信道,站点3则在CH0、CH1和CH3上向接入点发送清除发送帧。
可选的,当站点0判断站点0的被调度传输信道包含主信道,站点0在站点0的被调度信道上向接入点发送CTS帧。当站点0判 断站点0的被调度传输信道不包含主信道,站点0在OBSS的主信道和站点0的被调度信道上向接入点发送CTS帧。
示例的,如图9所示,数据传输方式示意图,站点0、站点1、站点2和站点3分别获取到重叠的基本服务集的主信道的标识,假设CH0为主信道,CH1为重叠的基本服务集的主信道。站点0、站点1、站点2和站点3分别存储主信道的标识。站点0、站点1、站点2和站点3分别接收到MU-RTS帧后,站点0确定站点0的被调度信道为CH0,并判断站点0的被调度传输信道包含主信道,站点0则在CH0上向接入点发送清除发送帧。站点1确定站点1的被调度信道为CH1,并判断站点1的被调度传输信道不包含主信道,站点1则在CH1上向接入点发送清除发送帧。站点2确定站点2的被调度信道为CH2,并判断站点2的被调度传输信道不包含主信道,站点2则在CH1和CH2上向接入点发送清除发送帧。站点3确定站点3的被调度信道为CH3,并判断站点3的被调度传输信道不包含主信道,站点3则在CH1和CH3上向接入点发送清除发送帧。
可选的,当站点0判断站点0的被调度传输信道包含主信道,站点0在OBSS的主信道和站点0的被调度信道上向接入点发送CTS帧。当站点0判断站点0的被调度传输信道不包含主信道,站点0在OBSS的主信道和站点0的被调度信道上向接入点发送CTS帧。
示例的,如图10所示,数据传输方式示意图,站点0、站点1、站点2和站点3分别获取到重叠的基本服务集的主信道的标识,假设CH0为主信道,CH1为重叠的基本服务集的主信道。站点0、站点1、站点2和站点3分别存储主信道的标识。站点0、站点1、站点2和站点3分别接收到MU-RTS帧后,站点0确定站点0的被调度信道为CH0,并判断站点0的被调度传输信道包含主信道,站点0则在CH0和CH1上向接入点发送清除发送帧。站点1确定站点1的被调度信道为CH1,并判断站点1的被调度传输信道不包含主信道,站点1则在CH1上向接入点发送清除发送帧。站点2确定站点2的被调度信道为CH2,并判断站点2的被调度传输信道不包含主 信道,站点2则在CH1和CH2上向接入点发送清除发送帧。站点3确定站点3的被调度信道为CH3,并判断站点3的被调度传输信道不包含主信道,站点3则在CH1和CH3上向接入点发送清除发送帧。
需要说明的是,清除发送帧采用传统格式(legacy)发送,即在基本带宽的传输信道上使用OFDM格式发送,在宽带带宽的传输信道上采用重复的方式进行发送。站点可在向接入点发送清除发送帧之前或之后发送一个OFDMA CTS帧,以使得站点和接入点可以识别有哪些站点成功接收到了MU-RTS并进行OFDMA CTS和legacy CTS的回复。
如图11所示,OFDMA CTS在CTS之前发送,可以使得接入点尽早知道有那些站点进行了回复,从而有充分的时间进行CTS之后的下行数据调度。或者,OFDMA CTS在CTS之后发送,可以使传统(legacy)站点尽早接收到CTS帧,更好地进行信道保护。两种方法均可以应用于本发明。
其中,OFDMA CTS帧包括OFDM部分和OFDMA部分。OFDM部分包括非高吞吐量的短训练域(英文全称:non-HT Short Training Field,英文简称:L-STF)、非高吞吐量的长训练域(英文全称:non-HT Long Training Field,英文简称:L-LTF)、非高吞吐量的信令域(英文全称:non-HT SIGNAL field,英文简称:L-SIG)和高效的信令域A(英文全称:High Efficiency SIGNAL A,英文简称:HE-SIG A)。OFDMA部分包括高效的短训练域(英文全称:High Efficiency Short Training Field,英文简称:HE-STF)以及HE-payload。OFDM部分每个站点占用整个基本带宽的传输信道进行发送,多个站点的发送的内容相同,并且在时间和频率上都是重叠的,接入点把多个站点的重叠发送当作一个发送信息来解析。OFDMA部分每个站点占用一部分OFDMA子信道进行发送,多个站点发送的内容是不同的,并且在频域上是正交的,接入点可以同时解析出不同站点的内容。
如图12所示,基于图5的站点数据传输的场景,OFDMA CTS的发送方式。被调度在主信道的站点在主信道上发送OFDMA CTS 的OFDM部分和OFDMA部分;被调度到从信道的站点在被调度信道和主信道上分别发别重复发送OFDMA CTS的OFDM部分和OFDMA部分。对于每个站点,其OFDMA CTS的发送信道与CTS的发送信道相同。
可选的,站点在被调度的信道发送OFDMA CTS帧,包括OFDM部分和OFDMA部分。而且在需要发送CTS的主信道和/或OBSS的主信道上只重复发送OFDMA CTS的OFDM部分,不发送OFDMA部分。
如图13所示,基于图5的站点数据传输的场景,OFDMA CTS的发送方式。被调度在主信道的站点在主信道上发送OFDMA CTS的OFDM部分和OFDMA部分;被调度到从信道的站点在被调度信道上发送OFDMA CTS的OFDM部分和OFDMA部分,并且在主信道上只重复发送OFDMA CTS的OFDM部分,不发送OFDMA部分。其它实施例的场景的发送方式类似。对于每个站点,其OFDMA CTS的发送信道与CTS的发送信道相同。
本发明实施例提供一种站点30,如图14所示,包括:
接收单元301,用于接收接入点发送的多用户请求发送MU-RTS帧,所述多用户请求发送帧包括多个站点的标识,以及每个所述站点的被调度传输信道;
处理单元302,用于根据所述多个站点的标识确定自身为被调度的站点;
发送单元303,用于当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点在所述第一站点的被调度信道上向所述接入点发送CTS帧;
所述发送单元303,还用于当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点在所述主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧。
本发明实施例提供的数据传输方法,在第一站点接收到接入点发送的多用户请求发送MU-RTS帧之后,该第一站点根据多个站点 的标识确定自身为被调度的站点,其中,该多用户请求发送帧包括所述多个站点的标识,以及每个所述站点的被调度传输信道;当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点在该第一站点的被调度信道上向所述接入点发送CTS帧;当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点在所述主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧。从而无论站点的被调度传输信道是否包括主信道,能够在有效地保护主信道,同时又避免过度保护传输信道,提高***的资源利用率。
如图15所示,所述站点30还包括:
获取单元304,用于获取重叠的基本服务集OBSS的主信道的标识。
当确定所述第一站点的被调度传输信道不包含主信道时,所述发送单元303,还用于在所述OBSS的主信道上向所述接入点发送CTS帧。
当确定所述第一站点的被调度传输信道包含主信道时,所述发送单元303,还用于在所述OBSS的主信道上向所述接入点发送CTS帧。
这样一来,第一站点确定的第一站点的被调度传输信道无论是否包含主信道,第一站点还在OBSS的主信道向所述接入点发送CTS帧;或,当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点不仅在所述主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧,还在OBSS的主信道上向所述接入点发送CTS帧。从而第一站点对OBSS的主信道进行保护,禁止其他站点使用该OBSS的主信道,避免其他站点发送数据对第一站点的干扰,也能够在有效地保护主信道,同时又避免过度保护传输信道,提高***的资源利用率。
本发明实施例提供一种站点40,如图16所示,包括:
获取单元401,用于获取重叠的基本服务集OBSS的主信道的标识;
接收单元402,用于接收接入点发送的多用户请求发送MU-RTS帧,所述多用户请求发送帧包括多个站点的标识,以及每个所述站点的被调度传输信道;
处理单元403,用于根据所述多个站点的标识确定自身为被调度的站点;
发送单元404,用于当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点在所述第一站点的被调度信道上向所述接入点发送CTS帧;
所述发送单元404,还用于当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点在所述OBSS的主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧。
当确定所述第一站点的被调度传输信道包含主信道时,所述发送单元404,还用于在所述OBSS的主信道上向所述接入点发送CTS帧。
本发明实施例提供的数据传输方法,在第一站点接收到接入点发送的多用户请求发送MU-RTS帧之后,该第一站点根据多个站点的标识确定自身为被调度的站点,其中,该多用户请求发送帧包括所述多个站点的标识,以及每个所述站点的被调度传输信道;当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点在该第一站点的被调度信道上向所述接入点发送CTS帧;当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点在OBSS的主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧;进一步的,当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点还在OBSS的主信道上向所述接入点发送CTS帧。从而第一站点对OBSS的主信道进行保护,禁止其他站点使用该OBSS的主信道,避免其他站点发送数据对第一站点的干扰,也能够在有效地保护主信道,同时又避免过度保护传输信道,提高***的资源利用率。
请参阅图17,在本发明又一实施例中,假设信道CH0、CH1、 CH2、CH3在频率上依次相邻且连续,即CH0>CH1>CH2>CH3或CH0<CH1<CH2<CH3。STA3被AP调度的传输资源为信道3(CH3)。则STA3在包含其主信道(CH0)和被调度传输信道(CH3)的最小连续信道上传输,包含其主信道(CH0)和被调度传输信道(CH3)的最小连续信道即为CH0、CH1、CH2、CH3。采用最小连续信道发CTS的这种方式优点在于由于STA3还在夹在CH0和CH2,3间的CH1上发送了CTS,STA3发送的信号功率谱在频率上连续,信号生成难度小。此外,当STA3接收信号时,由于STA3在CH2上作了信道保护,STA3不会在CH2上受到干扰。本发明各例中传输关键信令信道可以为单个信道。也可以为多个信道(如CH0、CH1),此时CTS传输所包含的主信道可为多信道的关键信令信道。
在图18所示的实施例中,如果STA3被AP调度的传输资源为信道2(CH2),则STA2在包含其主信道(CH0)和被调度传输信道(CH2)的最小连续信道上传输,即CH0、CH1、CH2。
在图19所示的实施例中,STA2在包含其主信道(CH0)和传输资源所在信道(CH2)的最小信道绑定模式组合中(例如802.11ac定义的信道组合)的信道上传输,即CH0、CH1、CH2、CH3。采用最小信道绑定模式组合发送CTS的这种方式的优点在于采用本发明的站点(STA)可使用小组合数量的CTS发送方式或沿用原有11ac***的CTS发送方式,实现简单。原有11ac***的CTS发送组合为20MHz,40MHz(即20MHz+20MHz),80MHz(即20MHz+20MHz+20MHz+20MHz),和160MHz(即20MHz+20MHz+20MHz+20MHz+20MHz+20MHz+20MHz+20MHz)。
需要说明的是,本实施例中的接收单元可以为站点的接收机,发送单元可以为站点的发射机;另外,也可以将接收单元和发送单元集成在一起构成站点的收发机。处理单元可以为站点的处理器。这里所述的处理器可以是一个中央处理器(英文全称:Central Processing Unit,英文简称:CPU),或者是特定集成电路(英文全称:Application Specific Integrated Circuit,英文简称:ASIC),或 者是被配置成实施本发明实施例的一个或多个集成电路。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random-Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种数据传输方法,其特征在于,包括:
    第一站点接收接入点发送的多用户请求发送MU-RTS帧,所述多用户请求发送帧包括多个站点的标识,以及每个所述站点的被调度传输信道;
    所述第一站点根据所述多个站点的标识确定自身为被调度的站点;
    当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点在所述第一站点的被调度信道上向所述接入点发送清除发送CTS帧;
    当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点在所述主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧或在包含所述主信道及被调度传输信道的最小连续信道上发送CTS。
  2. 根据权利要求1所述的方法,其特征在于,在所述第一站点根据所述多个站点的标识确定自身为被调度的站点之后,所述方法还包括:
    所述第一站点在重叠的基本服务集OBSS的主信道上向所述接入点发送CTS帧。
  3. 根据权利要求1所述的方法,其特征在于,当确定所述第一站点的被调度传输信道不包含主信道时,所述方法还包括:
    所述第一站点在重叠的基本服务集OBSS的主信道上向所述接入点发送CTS帧。
  4. 根据权利要求2或3所述的方法,其特征在于,在所述第一站点接收接入点发送的多用户请求发送MU-RTS帧之前,所述方法还包括:
    所述第一站点获取所述OBSS的主信道的标识。
  5. 一种数据传输方法,其特征在于,包括:
    第一站点获取重叠的基本服务集OBSS的主信道的标识;
    所述第一站点接收接入点发送的多用户请求发送MU-RTS帧,所述多用户请求发送帧包括多个站点的标识,以及每个所述站点的被调度传输信道;
    所述第一站点根据所述多个站点的标识确定自身为被调度的站点;
    当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点在所述第一站点的被调度信道上向所述接入点发送清除发送CTS帧;
    当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点在所述OBSS的主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧。
  6. 根据权利要求5所述的方法,其特征在于,当确定所述第一站点的被调度传输信道包含主信道时,所述方法还包括:
    所述第一站点在所述OBSS的主信道上向所述接入点发送CTS帧。
  7. 一种站点,其特征在于,包括:
    接收单元,用于接收接入点发送的多用户请求发送MU-RTS帧,所述多用户请求发送帧包括多个站点的标识,以及每个所述站点的被调度传输信道;
    处理单元,用于根据所述多个站点的标识确定自身为被调度的站点;
    发送单元,用于当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点在所述第一站点的被调度信道上向所述接入点发送清除发送CTS帧;
    所述发送单元,还用于当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点在所述主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧或在包含所述主信道及被调度传输信道的最小连续信道上发送CTS。
  8. 根据权利要求7所述的站点,其特征在于,所述发送单元, 还用于在重叠的基本服务集OBSS的主信道上向所述接入点发送CTS帧。
  9. 根据权利要求7所述的站点,其特征在于,当确定所述第一站点的被调度传输信道包含主信道时,
    所述发送单元,还用于在重叠的基本服务集OBSS的主信道上向所述接入点发送CTS帧。
  10. 根据权利要求8或9所述的站点,其特征在于,所述站点还包括:
    获取单元,用于获取所述OBSS的主信道的标识。
  11. 一种站点,其特征在于,包括:
    获取单元,用于获取重叠的基本服务集OBSS的主信道的标识;
    接收单元,用于接收接入点发送的多用户请求发送MU-RTS帧,所述多用户请求发送帧包括多个站点的标识,以及每个所述站点的被调度传输信道;
    处理单元,用于根据所述多个站点的标识确定自身为被调度的站点;
    发送单元,用于当确定所述第一站点的被调度传输信道包含主信道时,所述第一站点在所述第一站点的被调度信道上向所述接入点发送清除发送CTS帧;
    所述发送单元,还用于当确定所述第一站点的被调度传输信道不包含主信道时,所述第一站点在所述OBSS的主信道和所述第一站点的被调度信道上向所述接入点发送CTS帧。
  12. 根据权利要求11所述的站点,其特征在于,当确定所述第一站点的被调度传输信道包含主信道时,
    所述发送单元,还用于在所述OBSS的主信道上向所述接入点发送CTS帧。
PCT/CN2016/083960 2015-11-04 2016-05-30 一种数据传输方法及装置 WO2017075982A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510743011.3 2015-11-04
CN201510743011.3A CN106658725B (zh) 2015-11-04 2015-11-04 一种数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2017075982A1 true WO2017075982A1 (zh) 2017-05-11

Family

ID=58661535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083960 WO2017075982A1 (zh) 2015-11-04 2016-05-30 一种数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN106658725B (zh)
WO (1) WO2017075982A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127505A1 (zh) * 2020-12-18 2022-06-23 华为技术有限公司 一种协议数据单元ppdu的传输方法和装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831215B (zh) 2018-08-10 2023-12-12 华为技术有限公司 数据调度的方法和装置
CN113972960A (zh) * 2020-07-22 2022-01-25 华为技术有限公司 一种数据加扰方法、数据解扰方法及相关设备
WO2022110130A1 (en) * 2020-11-30 2022-06-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Access point, station, and wireless communication method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355739A (zh) * 2011-06-30 2012-02-15 华中科技大学 一种基于声波通信的无线传感器网络信道接入方法
CN102595623A (zh) * 2011-01-13 2012-07-18 中兴通讯股份有限公司 一种多帧传输方法及***
CN103974447A (zh) * 2013-02-06 2014-08-06 华为技术有限公司 数据传输方法、装置和***
WO2014123358A1 (ko) * 2013-02-06 2014-08-14 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송 방법 및 장치
CN104125046A (zh) * 2013-04-28 2014-10-29 华为技术有限公司 一种数据传输方法、装置及***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011120333A1 (en) * 2010-03-31 2011-10-06 The Hong Kong University Of Science And Technology Transmitting and/or receiving data in side channel
KR101713096B1 (ko) * 2010-11-16 2017-03-07 인터디지탈 패튼 홀딩스, 인크 무선 다이렉트 링크 동작을 위한 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595623A (zh) * 2011-01-13 2012-07-18 中兴通讯股份有限公司 一种多帧传输方法及***
CN102355739A (zh) * 2011-06-30 2012-02-15 华中科技大学 一种基于声波通信的无线传感器网络信道接入方法
CN103974447A (zh) * 2013-02-06 2014-08-06 华为技术有限公司 数据传输方法、装置和***
WO2014123358A1 (ko) * 2013-02-06 2014-08-14 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송 방법 및 장치
CN104125046A (zh) * 2013-04-28 2014-10-29 华为技术有限公司 一种数据传输方法、装置及***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127505A1 (zh) * 2020-12-18 2022-06-23 华为技术有限公司 一种协议数据单元ppdu的传输方法和装置

Also Published As

Publication number Publication date
CN106658725B (zh) 2019-12-17
CN106658725A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
JP7090799B2 (ja) Nruにおける受信機支援送信
CN111587550B (zh) 与非授权频谱相关联的数据传输和harq-ack
US10979194B2 (en) Resource indication method, user equipment, and network device
JP6849793B2 (ja) ミリメートル波(mmW)システムのためのマルチチャネルセットアップメカニズムおよび波形設計
JP6622305B2 (ja) マルチユーザアップリンクアクセスのための方法および装置
JP6573290B2 (ja) アソシエーション確立方法および装置
TWI549460B (zh) 用於密集無線環境中的頻率多工通訊的方法和系統(二)
JP2021503221A (ja) 物理ダウンリンク制御チャネル(pdcch)候補決定のための方法
WO2015169025A1 (zh) 并行数据传输处理方法、装置及计算机存储介质
WO2016049890A1 (zh) 数据传输方法和设备
US20160353357A1 (en) Methods and systems for multiplexed communication in dense wireless environments
JP6440126B2 (ja) データ送信方法、装置、及びシステム
JP7382917B2 (ja) 無線通信装置及び無線通信方法
US20220408409A1 (en) Method and apparatus for choosing transmission parameters values in a multi-user transmission
WO2012097696A1 (zh) 随机接入方法、用户设备及网络设备
CN108028735A (zh) 无线网络中的复用消息传送
WO2017075982A1 (zh) 一种数据传输方法及装置
WO2016026087A1 (zh) 数据传输方法和装置
CN113950866A (zh) Wlan***中的有效上行链路资源请求
WO2022022257A1 (zh) 通信方法及装置
JP2017510140A (ja) データ送信方法および端末
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
WO2017031731A1 (zh) 一种数据传输方法及接入点、站点
US20220191929A1 (en) Non-primary channel transmissions in wireless network
WO2016078041A1 (zh) 数据传输方法、接入点和站点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861253

Country of ref document: EP

Kind code of ref document: A1