WO2017075936A1 - Method, apparatus and system for sponsored data connectivity related information control and transmission in a wireless network - Google Patents

Method, apparatus and system for sponsored data connectivity related information control and transmission in a wireless network Download PDF

Info

Publication number
WO2017075936A1
WO2017075936A1 PCT/CN2016/078272 CN2016078272W WO2017075936A1 WO 2017075936 A1 WO2017075936 A1 WO 2017075936A1 CN 2016078272 W CN2016078272 W CN 2016078272W WO 2017075936 A1 WO2017075936 A1 WO 2017075936A1
Authority
WO
WIPO (PCT)
Prior art keywords
sdcri
request
response
sdcf
policy
Prior art date
Application number
PCT/CN2016/078272
Other languages
French (fr)
Inventor
Changhong Shan
Original Assignee
Intel IP Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel IP Corporation filed Critical Intel IP Corporation
Priority to TW105132428A priority Critical patent/TWI737633B/en
Publication of WO2017075936A1 publication Critical patent/WO2017075936A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1403Architecture for metering, charging or billing
    • H04L12/1407Policy-and-charging control [PCC] architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/09Third party charged communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/66Policy and charging system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/80Rating or billing plans; Tariff determination aspects
    • H04M15/8083Rating or billing plans; Tariff determination aspects involving reduced rates or discounts, e.g. time-of-day reductions or volume discounts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/24Accounting or billing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2215/00Metering arrangements; Time controlling arrangements; Time indicating arrangements
    • H04M2215/01Details of billing arrangements
    • H04M2215/0192Sponsored, subsidised calls via advertising, e.g. calling cards with ads or connecting to special ads, free calling time by purchasing goods

Definitions

  • Embodiments of the present application relate generally to the field of wireless communications, and more particularly, to methods, apparatuses and systems for sponsored data connectivity related information (SDCRI) control and transmission in a wireless network.
  • SDCRI sponsored data connectivity related information
  • a policy and charging rules function may configure sponsored data connectivity related information (SDCRI) and send the SDCRI to a policy and charging enforcement function (PCEF) on per user and/or per internet protocol-connectivity access network (IP-CAN) session basis, during IP-CAN session establishment or modification procedure.
  • SDCRI sponsored data connectivity related information
  • PCEF policy and charging enforcement function
  • FIG. 1 schematically illustrates a wireless system for sponsored data connectivity related information (SDCRI) control, in accordance with various embodiments.
  • SDCRI sponsored data connectivity related information
  • FIG. 2 schematically illustrates an example of an initial provisioning procedure for SDCRI control in the wireless network, in accordance with various embodiments.
  • Figure 3 schematically illustrates an example of a modification procedure for SDCRI control in the wireless network, in accordance with various embodiments.
  • Figure 4 schematically illustrates an example of a removal procedure for SDCRI control in the wireless network, in accordance with various embodiments.
  • FIG. 5 schematically illustrates a method of SDCRI control implemented by a sponsored data connectivity function (SDCF) in the wireless system, in accordance with various embodiments.
  • SDCF sponsored data connectivity function
  • FIG. 6 schematically illustrates a method of SDCRI control implemented by a policy and charging enforcement function (PCEF) in the wireless system, in accordance with various embodiments.
  • PCEF policy and charging enforcement function
  • FIG. 7 schematically illustrates an example system in accordance with various embodiments.
  • Figure 8 schematically illustrates an example of the UE device, in accordance with various embodiments.
  • Illustrative embodiments of the present disclosure include, but are not limited to, methods, systems, and apparatuses for sponsored data connectivity related information control and transmission in a wireless network, e.g., in compliance with the Long Term Evolution (LTE) standards of 3rd Generation Partnership Project along with any amendments, updates and/or revisions.
  • LTE Long Term Evolution
  • the phrase “in one embodiment” is used repeatedly. The phrase generally does not refer to the same embodiment; however, it may.
  • the terms “comprising, ” “having, ” and “including” are synonymous, unless the context dictates otherwise.
  • the phrase “A/B” means “Aor B” .
  • the phrase “A and/or B” means “ (A) , (B) , or (A and B) ” .
  • the phrase “at least one of A, B and C” means “ (A) , (B) , (C) , (A and B) , (A and C) , (B and C) or (A, B and C) ” .
  • the phrase “ (A) B” means “ (B) or (A B) ” , that is, A is optional.
  • module may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
  • ASIC Application Specific Integrated Circuit
  • FIG. 1 schematically illustrates a wireless system 100 for sponsored data connectivity related information (SDCRI) control and transmission, in accordance with various embodiments.
  • wireless system 100 may comprise an application service 101, a sponsored data connectivity function (SDCF) 102, a policy and charging rules function (PCRF) 103, a packet data network gateway (PDW) /policy and charging enforcement function (PCEF) 104, a traffic detection function (TDF) 105, other gateway 106 such as a serving gateway (SGW) , a radio access network (RAN) 107, a user equipment (UE) 108, and/or others, which may operate in a wireless network using a variety of wireless access technologies such as Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , Orthogonal Frequency Division Multiple Access (OFDMA) , Single Carrier Frequency Division Multiple Access (SC-FDMA) , and/or others in compliance with an Institute of Electrical and Electronics Engineers (
  • AS 101 may be owned by a wireless network operator and/or a third party application service provider, and provide application services to the UE 108.
  • the sponsor may reimburse an operator of the wireless network, which the sponsor may be associated with, for UE’s network connectivity in order to allow the UE 108 access to an associated application services.
  • SDCF 102 may comprise a control module 110, an interface module 112, and/or other modules.
  • Control module 110 may configure the SDCRI based at least in part on the operator’s policy, if the operator decides that it may be unsecure to open interface to the third party application service provider, or in response to a request from other function entity, such as AS 101.
  • configure may include, but are not limited to, add, modify and remove.
  • SDCRI may include, but are not limited to, an identification of the sponsor, an identification of the application service provider and its applications, a sponsored data rule such as a usage threshold to limit the amount of data or time the user connectivity may be sponsored, a charging key, and/or others.
  • Interface module 112 may receive the request from AS 101 and transmit a response to the request to AS 101 via interface Sr3.
  • the request may comprise an add SDCRI request, a modify SDCRI request, a remove SDCRI request, and/or others.
  • the response may comprise an add SDCRI response, a modify SDCRI response, a remove SDCRI response, and/or others.
  • Interface module 112 may further transmit a request associated with the SDCRI to the PCEF 104 via an interface Sr1 or a traffic detection function (TDF) 105 via an interface Sr2, based at least in part on an operator’s policy. For example, interface module 112 may transmit the request associated with the SDCRI to PCEF 104/TDF 105 periodically and/or in response to a request from other function entity, such as AS 101, PDRF 103, a service capability exposure function (SCEF) (not shown in Figure 1) , etc. In addition, the interface module 112 may receive a response to the request from PCEF 104 via interface Sr1 or TDF 105 via the interface Sr2.
  • SCEF service capability exposure function
  • the request may comprise an add SDCRI request, a modify SDCRI request, a remove SDCRI request, and/or others.
  • the response may comprise an add SDCRI response, a modify SDCRI response, a remove SDCRI response, and/or others.
  • PCEF 104 may comprise a control module 113, an interface module 114, and/or others.
  • Control module 113 may configure the SDCRI, at least in part in response to the request received from SDCF 102 via an interface Sr1. Examples of “configure” may include, but are not limited to, add, modify and remove.
  • Control module 113 may further count and record UE 108 used service units on the sponsored data connectivity for charging, based at least in part on the SDCF provisioned SDCRI.
  • Interface module 114 may receive the request from SDCF 102 and transmit a response to the request to SDCF 102 via interface Sr1.
  • the request may comprise an add SDCRI request, a modify SDCRI request, a remove SDCRI request, and/or others.
  • the response may comprise an add SDCRI response, a modify SDCRI response, a remove SDCRI response, and/or others.
  • TDF 105 may comprise a control module 115, an interface module 116, and/or others.
  • Control module 115 may configure the SDCRI, at least in part in response to the request received from SDCF 102 via an interface Sr2. Examples of “configure” may include, but are not limited to, add, modify and remove.
  • Control module 115 may further count and record used service units on the sponsored data connectivity for charging, at least in part or optionally based on the SDCF provisioned SDCRI.
  • Interface module 116 may receive the request from SDCF 102 and transmit a response to the request to SDCF 102 via interface Sr2.
  • the request may comprise an add SDCRI request, a modify SDCRI request, a remove SDCRI request, and/or others.
  • the response may comprise an add SDCRI response, a modify SDCRI response, a remove SDCRI response, and/or others.
  • PCRF 103 may configure SDCRI based at least in part on internet protocol-connectivity access network (IP-CAN) session related information received from AS 101 via an interface Rx, and provide the SDCRI to PCEF 104 on per user and/or per IP-CAN session basis via an interface Gx.
  • IP-CAN internet protocol-connectivity access network
  • configure may include, but are not limited to, add, modify and remove.
  • SDCRI may include, but are not limited to, an identification of the sponsor, an identification of the application service provider and its applications, optionally a usage threshold and whether the PCRF 103 reports events related to sponsored data connectivity, a charging key, and/or others.
  • PCRF 103 may further send an indication to PCEF 104 or TDF 105 an indication of enabling PCRF provisioned SDCRI or SDCF provisioned SDCRI, for this IP-CAN session.
  • SDCF 102 may perform as a central node to maintain all SDCRI with interfacing third party applications for PCEFs/TDFs in its coverage. Moreover, the communications between AS 101 and SDCF 102 may happen beyond data layer 3.
  • SDCF 102 may collocate with PCRF 103, which may result in the request and response associated with the SDCRI between AS 101 and PCRF 103 to be communicated via interface Rx, and the request and response associated with the SDCRI between PCRF 103 and PCEF 104 to be communicated via interface Gx.
  • SDCF 102 may collocate with the SCEF (not shown in Figure 1) , which may result in the request and response associated with the SDCRI between the SCEF and PCEF 104 to be communicated via PCRF 103, for example, through interface Rx between the SCEF and PCRF 103, and through interface Gx between PCRF 103 and PCEF 104.
  • FIG. 2 schematically illustrates an example of an initial provisioning procedure for SDCRI control in the wireless network, in accordance with various embodiments.
  • the procedure as illustrated in the upper part of Figure 2 may correspond to a situation that SDCF 102 receives the SDCRI from AS 101.
  • AS 101 may transmit an add SDCRI request to SDCF 102 (S201) , wherein the SDCRI request may comprise the SDCRI.
  • SDCRI may include, but are not limited to, sponsored data connectivity information (SDCI) having an identification of the sponsor, an identification of the application service provider and its applications, a sponsored data rule such as a usage threshold to limit the amount of data or time the user connectivity may be sponsored, and/or others.
  • SDCF 102 may store the SDCRI and transmit an add SDCRI response to AS 101 (S202) .
  • SDCI sponsored data connectivity information
  • SDCF 102 may transmit an add SDCRI request to PCEF 104 (S203) or TDF 105 (S204) , based at least in part on the operator’s policy. For example, SDCF 102 may transmit the add SDCRI request to PCEF 104 or TDF 105 periodically or in response to the request from other entity, such as AS 101, PDRF 103, SCEF, etc.
  • the add SDCRI request may include the SDCRI.
  • SDCRI may include, but are not limited to, the SDCI, a service data flow template and a charging key which may be allocated by SDCF 102.
  • PCEF 104 or TDF 105 may store the SDCRI and start to count and record the used service units, and start offline charging communication with offline charging system (OFCS) based at least in part on the SDCRI. Moreover, PCEF 104 or TDF 105 may transmit an add SDCRI response to SDCF 102 respectively in S205 and S206.
  • OFCS offline charging system
  • the procedure as illustrated in the lower part of Figure 2 may correspond to a situation where SDCF 102 provisions the SDCRI on the operator’s configuration, for example, if the operator decides that it may be unsecure to open interface to the third party application service provider.
  • SDCF 102 may transmit an add SDCRI request to PCEF 104 (S207) or to TDF 105 (S208) , based at least in part on the operator’s policy.
  • SDCF 102 may transmit the add SDCRI request to PCEF 104 or TDF 105 periodically or in response to the request from other entity, such as AS 101, PDRF 103, SCEF, etc.
  • the add SDCRI request may include the SDCRI.
  • SDCRI may include, but are not limited to, an identification of the sponsor, an identification of the application service provider and its applications, a sponsored data rule such as a usage threshold to limit the amount of data or time the user connectivity may be sponsored, a service data flow template, a charging key, and/or others.
  • PCEF 104 or TDF 105 may store the SDCRI and start to count and record the used service units, and start to offline charging communication with offline charging system (OFCS) based at least in part on the SDCRI. Moreover, PCEF 104 or TDF 105 may transmit an add SDCRI response to SDCF 102 respectively in S209 or S210.
  • OFCS offline charging system
  • FIG. 3 schematically illustrates an example of a modification procedure for SDCRI control in the wireless network, in accordance with various embodiments.
  • the procedure as illustrated in the upper part of Figure 3 may correspond to a situation that SDCF 102 modifies the SDCRI at least in part in response to a request from AS 101.
  • AS 101 may transmit a modify SDCRI request to SDCF 102 (S301) , wherein the modify SDCRI request may comprise SDCRI modification related information.
  • SDCRI may include, but are not limited to, sponsored data connectivity information (SDCI) having an identification of the sponsor, an identification of the application service provider and its applications, a sponsored data rule such as a usage threshold to limit the amount of data or time the user connectivity may be sponsored, and/or others.
  • SDCF 102 may modify the SDCRI and transmit a modify SDCRI response to AS 101 (S302) .
  • SDCI sponsored data connectivity information
  • SDCF 102 may transmit a modify SDCRI request to PCEF 104 (S303) or TDF 105 (S304) , based at least in part on the operator’s policy. For example, SDCF 102 may transmit the modify SDCRI request to PCEF 104 or TDF 105 periodically or in response to the request from other entity, such as AS 101, PDRF 103, SCEF, etc.
  • the modify SDCRI request may include the SDCRI modification related information. Examples of “SDCRI” may include, but are not limited to, the SDCI, a service data flow template and a charging key which may be allocated by SDCF 102.
  • PCEF 104 or TDF 105 may modify the SDCRI and start to count and record the used service units, and start to offline charging communication with offline charging system (OFCS) , based at least in part on the modified SDCRI. Moreover, PCEF 104 or TDF 105 may transmit a modify SDCRI response to SDCF 102 respectively in S205 or S206.
  • OFCS offline charging system
  • the procedure as illustrated in the lower part of Figure 3 may correspond to a situation that SDCF 102 modifies the SDCRI on the operator’s configuration, for example, if the operator decides that it may be unsecure to open interface to the third party application service provider.
  • SDCF 102 may transmit a modify SDCRI request to PCEF 104 (S307) or to TDF 105 (S308) , based at least in part on the operator’s policy.
  • SDCF 102 may transmit the modify SDCRI request to PCEF 104 or TDF 105 periodically or in response to the request from other entity, such as AS 101, PDRF 103, SCEF, etc.
  • the modify SDCRI request may include the SDCRI modification related information.
  • SDCRI may include, but are not limited to, an identification of the sponsor, an identification of the application service provider and its applications, a sponsored data rule such as a usage threshold to limit the amount of data or time the user connectivity may be sponsored, a service data flow template, a charging key, and/or others.
  • PCEF 104 or TDF 105 may modify the SDCRI and start to count and record the used service units, and start to offline charging communication with offline charging system (OFCS) based at least in part on the modified SDCRI. Moreover, PCEF 104 or TDF 105 may transmit a modify SDCRI response to SDCF 102 respectively in S309 and S310.
  • OFCS offline charging system
  • FIG. 4 schematically illustrates an example of a removal procedure for SDCRI control in the wireless network, in accordance with various embodiments.
  • the procedure as illustrated in the upper part of Figure 4 may correspond to a situation that SDCF 102 removes the SDCRI at least in part in response to a request from AS 101.
  • AS 101 may transmit a remove SDCRI request to SDCF 102 (S401) , wherein the remove SDCRI request may comprise SDCRI removal related information such as sponsor identification and application service provider identification corresponding to the SDCRI to be removed.
  • SDCRI may include, but are not limited to, sponsored data connectivity information (SDCI) having an identification of the sponsor, an identification of the application service provider, and/or others.
  • SDCF 102 may remove the SDCRI and transmit a remove SDCRI response to AS 101 (S402) .
  • SDCI sponsored data connectivity information
  • SDCF 102 may transmit a remove SDCRI request to PCEF 104 (S403) or TDF 105 (S404) , based at least in part on the operator’s policy. For example, SDCF 102 may transmit the remove SDCRI request to PCEF 104 or TDF 105 periodically or in response to the request from other entity, such as AS 101, PDRF 103, SCEF, etc.
  • the SDCRI request may include the SDCRI removal related information such as sponsor identification and application service provider identification corresponding to the SDCRI to be removed (correct? ) .
  • SDCRI may include, but are not limited to, the SDCI, a service data flow template and a charging key which may be allocated by SDCF 102.
  • PCEF 104 or TDF 105 may remove the SDCRI and stop to count and record the used service units, and stop to offline charging communication with offline charging system (OFCS) . Moreover, PCEF 104 or TDF 105 may transmit a remove SDCRI response to SDCF 102 respectively in S405 or S406.
  • OFCS offline charging system
  • the procedure as illustrated in the lower part of Figure 4 may correspond to a situation that SDCF 102 removes the SDCRI on the operator’s configuration, for example, if the operator decides that it may be unsecure to open interface to the third party application service provider.
  • SDCF 102 may transmit a remove SDCRI request to PCEF 104 (S407) or to TDF 105 (S408) , based at least in part on the operator’s policy.
  • SDCF 102 may transmit the remove SDCRI request to PCEF 104 or TDF 105 periodically or in response to the request from other entity, such as AS 101, PDRF 103, SCEF, etc.
  • the remove SDCRI request may include the SDCRI removal related information. Examples of “SDCRI” may include, but are not limited to, an identification of the sponsor, an identification of the application service provider, and/or others.
  • PCEF 104 or TDF 105 may remove the SDCRI and stop to count and record the used service units, and stop to offline charging communication with offline charging system (OFCS) . Moreover, PCEF 104 or TDF 105 may transmit a remove SDCRI response to SDCF 102 respectively in S409 and S410.
  • OFCS offline charging system
  • FIG. 5 schematically illustrates a method of SDCRI control implemented by a sponsored data connectivity function (SDCF) in the wireless system 100, in accordance with various embodiments.
  • SDCF 102 may receive the add/modify/remove SDCRI request from AS 101, in block 501.
  • the add SDCRI request may comprise the SDCRI.
  • the modify SDCRI request may comprise SDCRI modification related information.
  • the remove SDCRI request may comprise SDCRI removal related information such as sponsor identification and application service provider identification corresponding to the SDCRI to be removed.
  • SDCF 102 may add/modify/remove the SDCRI, based at least in part on the add/modify/remove SDCRI request.
  • SDCF 102 may transmit an add/modify/remove SDCRI response to AS 101.
  • SDCF 102 may transmit the add/modify/remove request to PCEF 104 or TDF 105 based at least in part on the operator’s policy. For example, SDCF 102 may transmit the add/modify/remove SDCRI request to PCEF 104 or TDF 105 periodically or in response to the request from other entity, such as AS 101, PDRF 103, SCEF, etc.
  • the add SDCRI request may include the SDCRI.
  • the modify SDCRI request may include the SDCRI modification related information.
  • the remove SDCRI request may include the SDCRI removal related information.
  • SDCF 102 may receive the add/modify/remove SDCRI response from PCEF 104 or TDF 105.
  • SDCF 102 may add/modify/remove SDCRI itself, such as based on the operator’s policy, rather than base on the request from AS 101.
  • blocks 501-503 may be omitted.
  • PCEF 104 or TDF 105 may receive the add/modify/remove SDCRI request from SDCF 102, which may be transmitted based at least in part on the operator’s policy 601.
  • the add/modify/remove SDCRI request may be transmitted to PCEF 104 or TDF 105 periodically or in response to the request from other entity, such as AS 101, PDRF 103, SCEF, etc.
  • the add SDCRI request may include the SDCRI.
  • the modify SDCRI request may include the SDCRI modification related information.
  • the remove SDCRI request may include the SDCRI removal related information.
  • PCEF 104 or TDF 105 may add/modify/remove the SDCRI at least in part in response to the add/modify/remove request.
  • PCEF 104 or TDF 105 may transmit the add/modify/remove SDCRI response to SDCF 102.
  • start to count and record the used service units, and start to offline charging communication with offline charging system (OFCS) at least in part in response to the add or modify SDCRI request; or, stop to count and record the used service units, and stop to offline charging communication with offline charging system (OFCS) , at least in part in response to the remove SDCRI request.
  • OFCS offline charging system
  • Figure 7 schematically illustrates an example system 700 in accordance with various embodiments.
  • the system 700 may comprise one or more processor (s) 704, system control logic 708 coupled with at least one of the processor (s) 704, system memory 712 coupled with system control logic 708, non-volatile memory (NVM) /storage 716 coupled with system control logic 708, and a network interface 720 coupled with system control logic 708.
  • processors processors
  • system control logic 708 coupled with at least one of the processor (s) 704
  • system memory 712 coupled with system control logic 708, non-volatile memory (NVM) /storage 716 coupled with system control logic 708, and a network interface 720 coupled with system control logic 708.
  • NVM non-volatile memory
  • Processor (s) 704 may include one or more single-core or multi-core processors.
  • Processor (s) 704 may include any combination of general-purpose processors and dedicated processors (e.g., graphics processors, application processors, baseband processors, etc. ) .
  • processors (s) 704 may be configured to execute one or more embodiment (s) as illustrated in Figures 1-6 in accordance with various embodiments.
  • System control logic 708 may include any suitable interface controllers to provide for any suitable interface to at least one of the processor (s) 704 and/or to any suitable device or component in communication with system control logic 708.
  • System control logic 708 may include one or more memory controller (s) to provide an interface to system memory 712.
  • System memory 712 may be used to load and store data and/or instructions, for example, for system 700.
  • System memory 712 for one embodiment may include any suitable volatile memory, such as suitable dynamic random access memory (DRAM) , for example.
  • DRAM dynamic random access memory
  • NVM/storage 716 may include one or more tangible, non-transitory computer-readable media used to store data and/or instructions, for example.
  • NVM/storage 716 may include any suitable non-volatile memory, such as flash memory, for example, and/or may include any suitable non-volatile storage device (s) , such as one or more hard disk drive (s) (HDD (s) ) , one or more compact disk (CD) drive (s) , and/or one or more digital versatile disk (DVD) drive (s) , for example.
  • HDD hard disk drive
  • CD compact disk
  • DVD digital versatile disk
  • the NVM/storage 716 may include a storage resource physically part of a device on which the system 700 is installed or it may be accessible by, but not necessarily a part of, the device.
  • the NVM/storage 716 may be accessed over a network via the network interface 720.
  • System memory 712 and NVM/storage 716 may respectively include, in particular, temporal and persistent copies of instructions 724.
  • Instructions 724 may include instructions that when executed by at least one of the processor (s) 704 result in the system 700 implementing the method as described with reference to Figures 5-6.
  • instructions 724, or hardware, firmware, and/or software components thereof, may additionally/alternatively be located in the system control logic 708, the network interface 720, and/or the processor (s) 704.
  • Network interface 720 may include the interface module 112 of SDCF 102 or the interface module 114 of PCEF 104 and/or others as illustrated in Figure 1, to provide a radio interface for system 700 to communicate over one or more network (s) and/or with any other suitable device.
  • the network interface 720 may be integrated with other components of system 700.
  • the network interface may include a processor of the processor (s) 704, memory of the system memory 712, NVM/Storage of NVM/Storage 716, and/or a firmware device (not being illustrated) having instructions that when executed by at least one of the processor (s) 704 result in the system 700 implementing the method as described with reference to Figures 5-6.
  • Network interface 720 may further include any suitable hardware and/or firmware to provide a multiple input, multiple output radio interface.
  • Network interface 720 for one embodiment may be, for example, a network adapter, a wireless network adapter, a telephone modem, and/or a wireless modem.
  • At least one of the processor (s) 704 may be packaged together with logic for one or more controller (s) of system control logic 708.
  • at least one of the processor (s) 704 may be packaged together with logic for one or more controllers of system control logic 708 to form a System in Package (SiP) .
  • SiP System in Package
  • at least one of the processor (s) 704 may be integrated on the same die with logic for one or more controller (s) of system control logic 708.
  • at least one of the processor (s) 704 may be integrated on the same die with logic for one or more controller (s) of system control logic 708 to form a System on Chip (SoC) .
  • SoC System on Chip
  • the system 700 may further include input/output (I/O) devices 732.
  • I/O devices 732 may include user interfaces designed to enable user interaction with the system 700, peripheral component interfaces designed to enable peripheral component interaction with the system 700, and/or sensors designed to determine environmental conditions and/or location information related to the system 700.
  • the user interfaces could include, but are not limited to, a display (e.g., a liquid crystal display, a touch screen display, etc. ) , a speaker, a microphone, one or more cameras (e.g., a still camera and/or a video camera) , a flashlight (e.g., a light emitting diode flash) , and a keyboard.
  • a display e.g., a liquid crystal display, a touch screen display, etc.
  • a speaker e.g., a microphone
  • one or more cameras e.g., a still camera and/or a video camera
  • a flashlight e.g., a light emitting diode flash
  • the peripheral component interfaces may include, but are not limited to, a non-volatile memory port, an audio jack, and a power supply interface.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, the network interface 720 to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • GPS global positioning system
  • system 700 may be AS 101, SDCF 102, PCRF 103, PCEF 104 or TDF 105. In various embodiments, system 700 may have more or less components, and/or different architectures.
  • FIG. 8 illustrates, for one embodiment, example components of a UE device 800 in accordance with some embodiments.
  • the UE device 800 may include application circuitry 802, baseband circuitry 804, Radio Frequency (RF) circuitry 806, front-end module (FEM) circuitry 808, and one or more antennas 1010, coupled together at least as shown.
  • RF Radio Frequency
  • FEM front-end module
  • the UE device 800 may include additional elements such as, for example, memory/storage, display, camera, sensor, and/or input/output (I/O) interface.
  • I/O input/output
  • the application circuitry 802 may include one or more application processors.
  • the application circuitry 802 may include circuitry such as, but are not limited to, one or more single-core or multi-core processors.
  • the processor (s) may include any combination of general-purpose processors and dedicated processors (e.g., graphics processors, application processors, etc. ) .
  • the processors may be coupled with and/or may include memory/storage and may be configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems to run on the system.
  • the baseband circuitry 804 may include circuitry such as, but are not limited to, one or more single-core or multi-core processors.
  • the baseband circuitry 804 may include one or more baseband processors and/or control logic to process baseband signals received from a receive signal path of the RF circuitry 806 and to generate baseband signals for a transmit signal path of the RF circuitry 806.
  • Baseband processing circuity 804 may interface with the application circuitry 802 for generation and processing of the baseband signals and for controlling operations of the RF circuitry 806.
  • the baseband circuitry 804 may include a second generation (2G) baseband processor 804a, third generation (3G) baseband processor 804b, fourth generation (4G) baseband processor 804c, and/or other baseband processor (s) 804d for other existing generations, generations in development or to be developed in the future (e.g., fifth generation (5G) , 6G, etc. ) .
  • the baseband circuitry 804 e.g., one or more of baseband processors 804a-d
  • the radio control functions may include, but are not limited to, signal modulation/demodulation, encoding/decoding, radio frequency shifting, etc.
  • modulation/demodulation circuitry of the baseband circuitry 804 may include Fast-Fourier Transform (FFT) , precoding, and/or constellation mapping/demapping functionality.
  • FFT Fast-Fourier Transform
  • encoding/decoding circuitry of the baseband circuitry 804 may include convolution, tail-biting convolution, turbo, Viterbi, and/or Low Density Parity Check (LDPC) encoder/decoder functionality.
  • LDPC Low Density Parity Check
  • the baseband circuitry 804 may include elements of a protocol stack such as, for example, elements of an EUTRAN protocol including, for example, physical (PHY) , media access control (MAC) , radio link control (RLC) , packet data convergence protocol (PDCP) , and/or RRC elements.
  • a central processing unit (CPU) 804e of the baseband circuitry 804 may be configured to run elements of the protocol stack for signaling of the PHY, MAC, RLC, PDCP and/or RRC layers.
  • the baseband circuitry may include one or more audio digital signal processor (s) (DSP) 804f.
  • DSP audio digital signal processor
  • the audio DSP (s) 804f may be include elements for compression/decompression and echo cancellation and may include other suitable processing elements in other embodiments.
  • Components of the baseband circuitry may be suitably combined in a single chip, a single chipset, or disposed on a same circuit board in some embodiments.
  • some or all of the constituent components of the baseband circuitry 804 and the application circuitry 802 may be implemented together such as, for example, on a system on a chip (SOC) .
  • SOC system on a chip
  • the baseband circuitry 804 may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry 804 may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • multi-mode baseband circuitry Embodiments in which the baseband circuitry 804 is configured to support radio communications of more than one wireless protocol.
  • RF circuitry 806 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry 806 may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • RF circuitry 806 may include a receive signal path which may include circuitry to down-convert RF signals received from the FEM circuitry 808 and provide baseband signals to the baseband circuitry 804.
  • RF circuitry 806 may also include a transmit signal path which may include circuitry to up-convert baseband signals provided by the baseband circuitry 804 and provide RF output signals to the FEM circuitry 808 for transmission.
  • the RF circuitry 806 may include a receive signal path and a transmit signal path.
  • the receive signal path of the RF circuitry 806 may include mixer circuitry 806a, amplifier circuitry 806b and filter circuitry 806c.
  • the transmit signal path of the RF circuitry 806 may include filter circuitry 806c and mixer circuitry 806a.
  • RF circuitry 806 may also include synthesizer circuitry 806d for synthesizing a frequency for use by the mixer circuitry 806a of the receive signal path and the transmit signal path.
  • the mixer circuitry 806a of the receive signal path may be configured to down-convert RF signals received from the FEM circuitry 808 based on the synthesized frequency provided by synthesizer circuitry 806d.
  • the amplifier circuitry 806b may be configured to amplify the down-converted signals and the filter circuitry 806c may be a low-pass filter (LPF) or band-pass filter (BPF) configured to remove unwanted signals from the down-converted signals to generate output baseband signals.
  • LPF low-pass filter
  • BPF band-pass filter
  • Output baseband signals may be provided to the baseband circuitry 804 for further processing.
  • the output baseband signals may be zero-frequency baseband signals, although this is not a requirement.
  • mixer circuitry 806a of the receive signal path may comprise passive mixers, although the scope of the embodiments is not limited in this respect.
  • the mixer circuitry 806a of the transmit signal path may be configured to up-convert input baseband signals based on the synthesized frequency provided by the synthesizer circuitry 806d to generate RF output signals for the FEM circuitry 808.
  • the baseband signals may be provided by the baseband circuitry 804 and may be filtered by filter circuitry 806c.
  • the filter circuitry 806c may include a low-pass filter (LPF) , although the scope of the embodiments is not limited in this respect.
  • LPF low-pass filter
  • the mixer circuitry 806a of the receive signal path and the mixer circuitry 806a of the transmit signal path may include two or more mixers and may be arranged for quadrature downconversion and/or upconversion respectively.
  • the mixer circuitry 806a of the receive signal path and the mixer circuitry 806a of the transmit signal path may include two or more mixers and may be arranged for image rejection (e.g., Hartley image rejection) .
  • the mixer circuitry 806a of the receive signal path and the mixer circuitry 806a may be arranged for direct downconversion and/or direct upconversion, respectively.
  • the mixer circuitry 806a of the receive signal path and the mixer circuitry 806a of the transmit signal path may be configured for super-heterodyne operation.
  • the output baseband signals and the input baseband signals may be analog baseband signals, although the scope of the embodiments is not limited in this respect.
  • the output baseband signals and the input baseband signals may be digital baseband signals.
  • the RF circuitry 806 may include analog-to-digital converter (ADC) and digital-to-analog converter (DAC) circuitry and the baseband circuitry 804 may include a digital baseband interface to communicate with the RF circuitry 806.
  • ADC analog-to-digital converter
  • DAC digital-to-analog converter
  • a separate radio IC circuitry may be provided for processing signals for each spectrum, although the scope of the embodiments is not limited in this respect.
  • the synthesizer circuitry 806d may be a fractional-N synthesizer or a fractional N/N+1 synthesizer, although the scope of the embodiments is not limited in this respect as other types of frequency synthesizers may be suitable.
  • synthesizer circuitry 806d may be a delta-sigma synthesizer, a frequency multiplier, or a synthesizer comprising a phase-locked loop with a frequency divider.
  • the synthesizer circuitry 806d may be configured to synthesize an output frequency for use by the mixer circuitry 806a of the RF circuitry 806 based on a frequency input and a divider control input. In some embodiments, the synthesizer circuitry 806d may be a fractional N/N+1 synthesizer.
  • frequency input may be provided by a voltage controlled oscillator (VCO) , although that is not a requirement.
  • VCO voltage controlled oscillator
  • Divider control input may be provided by either the baseband circuitry 804 or the applications processor 802 depending on the desired output frequency.
  • a divider control input (e.g., N) may be determined from a look-up table based on a channel indicated by the applications processor 802.
  • Synthesizer circuitry 806d of the RF circuitry 806 may include a divider, a delay-locked loop (DLL) , a multiplexer and a phase accumulator.
  • the divider may be a dual modulus divider (DMD) and the phase accumulator may be a digital phase accumulator (DPA) .
  • the DMD may be configured to divide the input signal by either N or N+1 (e.g., based on a carry out) to provide a fractional division ratio.
  • the DLL may include a set of cascaded, tunable, delay elements, a phase detector, a charge pump and a D-type flip-flop.
  • the delay elements may be configured to break a VCO period up into Nd equal packets of phase, where Nd is the number of delay elements in the delay line.
  • Nd is the number of delay elements in the delay line.
  • synthesizer circuitry 806d may be configured to generate a carrier frequency as the output frequency, while in other embodiments, the output frequency may be a multiple of the carrier frequency (e.g., twice the carrier frequency, four times the carrier frequency) and used in conjunction with quadrature generator and divider circuitry to generate multiple signals at the carrier frequency with multiple different phases with respect to each other.
  • the output frequency may be a LO frequency (fLO) .
  • the RF circuitry 806 may include an IQ/polar converter.
  • FEM circuitry 808 may include a receive signal path which may include circuitry configured to operate on RF signals received from one or more antennas 1010, amplify the received signals and provide the amplified versions of the received signals to the RF circuitry 806 for further processing.
  • FEM circuitry 808 may also include a transmit signal path which may include circuitry configured to amplify signals for transmission provided by the RF circuitry 806 for transmission by one or more of the one or more antennas 1010.
  • the FEM circuitry 808 may include a TX/RX switch to switch between transmit mode and receive mode operation.
  • the FEM circuitry may include a receive signal path and a transmit signal path.
  • the receive signal path of the FEM circuitry may include a low-noise amplifier (LNA) to amplify received RF signals and provide the amplified received RF signals as an output (e.g., to the RF circuitry 806) .
  • the transmit signal path of the FEM circuitry 808 may include a power amplifier (PA) to amplify input RF signals (e.g., provided by RF circuitry 806) , and one or more filters to generate RF signals for subsequent transmission (e.g., by one or more of the one or more antennas 1010.
  • PA power amplifier
  • the UE 800 comprises a plurality of power saving mechanisms. If the UE 800 is in an RRC_Connected state, where it is still connected to the eNB as it expects to receive traffic shortly, then it may enter a state known as Discontinuous Reception Mode (DRX) after a period of inactivity. During this state, the device may power down for brief intervals of time and thus save power.
  • DRX Discontinuous Reception Mode
  • the UE 800 may transition off to an RRC_Idle state, where it disconnects from the network and does not perform operations such as channel quality feedback, handover, etc.
  • the UE 800 goes into a very low power state and it performs paging where again it periodically wakes up to listen to the network and then powers down again.
  • the device cannot receive data in this state; in order to receive data, it transitions back to RRC_Connected state.
  • An additional power saving mode may allow a device to be unavailable to the network for periods longer than a paging interval (ranging from seconds to a few hours) . During this time, the device is totally unreachable to the network and may power down completely. Any data sent during this time incurs a large delay and it is assumed the delay is acceptable.
  • the disclosure may include various example embodiments disclosed below.
  • Example 1 includes an apparatus to be implemented as a sponsored data connectivity function (SDCF) comprising: a control module to configure sponsored data connectivity related information (SDCRI) ; and an interface module to transmit a request associated with the SDCRI to a policy and charging enforcement function (PCEF) or a traffic detection function (TDF) , based at least in part on a network operator’s policy.
  • SDCF sponsored data connectivity function
  • PCEF policy and charging enforcement function
  • TDF traffic detection function
  • Example 2 includes the apparatus of example 1, wherein the network operator’s policy is further to indicate to transmit the request to the PCEF or TDF periodically or in response to another request from other entity.
  • Example 3 includes the apparatus of example 1 or 2, wherein the other entity comprises an application service (AS) , a service capability exposure function (SCEF) , and/or a policy and charging rules function (PCRF) .
  • AS application service
  • SCEF service capability exposure function
  • PCRF policy and charging rules function
  • Example 4 includes the apparatus of any of examples 1-3, wherein the interface module is further to receive, from the PCEF or the TDF, a response to the request.
  • Example 5 includes the apparatus of example 4, wherein the request comprises an add SDCRI request, a modify SDCRI request and/or a remove SDCRI request, and the response comprises an add SDCRI response, a modify SDCRI response and/or a remove SDCRI response.
  • Example 6 includes the apparatus of any of examples 1-5, wherein to configure the SDCRI comprises to add, modify or remove the SDCRI, based at least in part on another request received from an application service (AS) associated with a service provider and/or the network operator.
  • AS application service
  • Example 7 includes the apparatus of any of examples 1-6, wherein to configure the SDCRI comprises to add, modify or remove the SDCRI based at least in part on the network operator’s policy.
  • Example 8 includes the apparatus of any of examples 1-7, wherein the apparatus is further to collocate with a policy and charging rules function (PCRF) .
  • PCRF policy and charging rules function
  • Example 9 includes the apparatus of any of examples 1-8, wherein the apparatus is further to collocate with a service capability exposure function (SCEF) .
  • SCEF service capability exposure function
  • Example 10 includes the apparatus of any of examples 1-9, wherein the SDCRI comprises a sponsor identifier, an application service provider and application identifier, and/or a usage threshold to limit amount of data or time that a user connectivity is sponsored.
  • the SDCRI comprises a sponsor identifier, an application service provider and application identifier, and/or a usage threshold to limit amount of data or time that a user connectivity is sponsored.
  • Example 11 includes the apparatus of any of examples 1-10, wherein the SDCRI further comprises a charging key allocated by the SDCF.
  • Example 12 includes an apparatus, to be implemented as a policy and charging enforcement function (PCEF) or a traffic detection function (TDF) , comprising: an interface module to receive a request associated with sponsored data connectivity related information (SCDRI) from a sponsored data connectivity function (SDCF) , based at least in part on a network operator’s policy; and a control module to configure the SCDRI at least in part in response to the request; wherein the interface module is further to transmit a response to the request, to the SDCF.
  • PCEF policy and charging enforcement function
  • TDF traffic detection function
  • Example 13 includes the apparatus of example 12, wherein the network operator’s policy is further to indicate to transmit the request to the apparatus periodically or in response to another request from other entity.
  • Example 14 includes the apparatus of example 12 or 13, wherein when the SDCF collocates with the PCRF, the interface module receives the request from the SDCF in the PCRF.
  • Example 15 includes the apparatus of any of examples 12-14, wherein when the SDCF collocates with a service capability exposure function (SCEF) , the interface module receives the request from the SDCF in the SCEF.
  • SCEF service capability exposure function
  • Example 16 includes the apparatus of any of examples 12-15, wherein the SDCRI comprises a sponsor identifier, an application service provider and an application identifier, and/or a usage threshold to limit amount of data or time that a user connectivity is sponsored.
  • the SDCRI comprises a sponsor identifier, an application service provider and an application identifier, and/or a usage threshold to limit amount of data or time that a user connectivity is sponsored.
  • Example 17 includes the apparatus of any of examples 12-16, wherein the SDCRI further comprises a charging key allocated by the SDCF.
  • Example 18 includes the apparatus of any of examples 12-17, wherein the request comprises an add SDCRI request, a modify SDCRI request and/or a remove SDCRI request, and the response comprises an add SDCRI response, a modify SDCRI response and/or a remove SDCRI response.
  • Example 19 includes the apparatus of example 18, wherein to configure the SDCRI comprises to add, modify or remove the SDCRI.
  • Example 20 includes the apparatus of any of examples 12-19, wherein the interface module is further to receive, from a policy and charging rules function (PCRF) , the SDCRI and an indication of enabling the SDCRI provided by the SDRF or the SDCRI provided by the PCRF, on an internet protocol-connectivity access network (IP-CAN) session basis; and, the control module is further to record and charge for usage of a sponsored data connectivity, based at least in part on the SDCRI provided by the SDRF or provided by the PCRF as indicated by the indication.
  • PCRF policy and charging rules function
  • IP-CAN internet protocol-connectivity access network
  • Example 21 may comprise a computer-readable storage medium that stores instructions for execution by a processor to perform operations of a SDRF or a PCEF, the operations, when executed by the processor to execute any of the operations discussed above in any combination.
  • Example 22 may comprise an apparatus for a SDRF or a PCEF, comprising means for executing any of the operations discussed above in any combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Telephonic Communication Services (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

Machine-readable media, methods, apparatus and system for sponsored data connectivity related information (SDCRI) control and transmission in a wireless network. In some embodiments, an apparatus to be implemented as a sponsored data connectivity function (SDCF) may comprise a control module to configure sponsored data connectivity related information (SDCRI); and an interface module to transmit a request associated with the SDCRI to a policy and charging enforcement function (PCEF) or a traffic detection function (TDF), based at least in part on a network operator's policy.

Description

METHOD, APPARATUS AND SYSTEM FOR SPONSORED DATA CONNECTIVITY RELATED INFORMATION CONTROL AND TRANSMISSION IN A WIRELESS NETWORK
Cross Reference to Related Applications
The present application claims priority to a Patent Cooperation Treaty (PCT) Patent Application No. PCT/CN2015/094006, filed November 6, 2015, the entire disclosure of which is hereby incorporated by reference.
Field
Embodiments of the present application relate generally to the field of wireless communications, and more particularly, to methods, apparatuses and systems for sponsored data connectivity related information (SDCRI) control and transmission in a wireless network.
Background Information
In a wireless network, e.g., in compliance with the Long Term Evolution (LTE) standards of 3rd Generation Partnership Project along with any amendments, updates and/or revisions, a policy and charging rules function (PCRF) may configure sponsored data connectivity related information (SDCRI) and send the SDCRI to a policy and charging enforcement function (PCEF) on per user and/or per internet protocol-connectivity access network (IP-CAN) session basis, during IP-CAN session establishment or modification procedure.
Brief Description of the Drawings
Embodiments of the present application are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like reference numerals refer to similar elements.
Figure 1 schematically illustrates a wireless system for sponsored data connectivity related information (SDCRI) control, in accordance with various embodiments.
Figure 2 schematically illustrates an example of an initial provisioning procedure for SDCRI control in the wireless network, in accordance with various embodiments.
Figure 3 schematically illustrates an example of a modification procedure for SDCRI control in the wireless network, in accordance with various embodiments.
Figure 4 schematically illustrates an example of a removal procedure for SDCRI control in the wireless network, in accordance with various embodiments.
Figure 5 schematically illustrates a method of SDCRI control implemented by a sponsored data connectivity function (SDCF) in the wireless system, in accordance with various embodiments.
Figure 6 schematically illustrates a method of SDCRI control implemented by a policy  and charging enforcement function (PCEF) in the wireless system, in accordance with various embodiments.
Figure 7 schematically illustrates an example system in accordance with various embodiments.
Figure 8 schematically illustrates an example of the UE device, in accordance with various embodiments.
Description of the Embodiments
Illustrative embodiments of the present disclosure include, but are not limited to, methods, systems, and apparatuses for sponsored data connectivity related information control and transmission in a wireless network, e.g., in compliance with the Long Term Evolution (LTE) standards of 3rd Generation Partnership Project along with any amendments, updates and/or revisions.
Various aspects of the illustrative embodiments will be described using terms commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art. However, it will be apparent to those skilled in the art that some alternate embodiments may be practiced using with portions of the described aspects. For purposes of explanation, specific numbers, materials, and configurations are set forth in order to provide a thorough understanding of the illustrative embodiments. However, it will be apparent to one skilled in the art that alternate embodiments may be practiced without the specific details. In other instances, well-known features are omitted or simplified in order to not obscure the illustrative embodiments.
Further, various operations will be described as multiple discrete operations, in turn, in a manner that is most helpful in understanding the illustrative embodiments; however, the order of description should not be construed as to imply that these operations are necessarily order dependent. In particular, these operations need not be performed in the order of presentation.
The phrase “in one embodiment” is used repeatedly. The phrase generally does not refer to the same embodiment; however, it may. The terms “comprising, ” “having, ” and “including” are synonymous, unless the context dictates otherwise. The phrase “A/B” means “Aor B” . The phrase “A and/or B” means “ (A) , (B) , or (A and B) ” . The phrase “at least one of A, B and C” means “ (A) , (B) , (C) , (A and B) , (A and C) , (B and C) or (A, B and C) ” . The phrase “ (A) B” means “ (B) or (A B) ” , that is, A is optional.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described, without departing from the scope of the embodiments of the present disclosure. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore,  it is manifestly intended that the embodiments of the present disclosure be limited only by the claims and the equivalents thereof.
As used herein, the term “module” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
Figure 1 schematically illustrates a wireless system 100 for sponsored data connectivity related information (SDCRI) control and transmission, in accordance with various embodiments. In some embodiments, wireless system 100 may comprise an application service 101, a sponsored data connectivity function (SDCF) 102, a policy and charging rules function (PCRF) 103, a packet data network gateway (PDW) /policy and charging enforcement function (PCEF) 104, a traffic detection function (TDF) 105, other gateway 106 such as a serving gateway (SGW) , a radio access network (RAN) 107, a user equipment (UE) 108, and/or others, which may operate in a wireless network using a variety of wireless access technologies such as Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , Orthogonal Frequency Division Multiple Access (OFDMA) , Single Carrier Frequency Division Multiple Access (SC-FDMA) , and/or others in compliance with an Institute of Electrical and Electronics Engineers (IEEE) 802 system, a 3rd Generation Project Partnership (3GPP) system, a 3GPP Long Term Evolution (LTE) system, and/or a 3GPP2 system.
AS 101 may be owned by a wireless network operator and/or a third party application service provider, and provide application services to the UE 108. In some embodiments, the sponsor may reimburse an operator of the wireless network, which the sponsor may be associated with, for UE’s network connectivity in order to allow the UE 108 access to an associated application services.
In some embodiments, SDCF 102 may comprise a control module 110, an interface module 112, and/or other modules. Control module 110 may configure the SDCRI based at least in part on the operator’s policy, if the operator decides that it may be unsecure to open interface to the third party application service provider, or in response to a request from other function entity, such as AS 101. Examples of “configure” may include, but are not limited to, add, modify and remove. Examples of “SDCRI” may include, but are not limited to, an identification of the sponsor, an identification of the application service provider and its applications, a sponsored data rule such as a usage threshold to limit the amount of data or time the user connectivity may be sponsored, a charging key, and/or others. Interface module 112 may receive the request from  AS 101 and transmit a response to the request to AS 101 via interface Sr3. The request may comprise an add SDCRI request, a modify SDCRI request, a remove SDCRI request, and/or others. The response may comprise an add SDCRI response, a modify SDCRI response, a remove SDCRI response, and/or others.
Interface module 112 may further transmit a request associated with the SDCRI to the PCEF 104 via an interface Sr1 or a traffic detection function (TDF) 105 via an interface Sr2, based at least in part on an operator’s policy. For example, interface module 112 may transmit the request associated with the SDCRI to PCEF 104/TDF 105 periodically and/or in response to a request from other function entity, such as AS 101, PDRF 103, a service capability exposure function (SCEF) (not shown in Figure 1) , etc. In addition, the interface module 112 may receive a response to the request from PCEF 104 via interface Sr1 or TDF 105 via the interface Sr2. The request may comprise an add SDCRI request, a modify SDCRI request, a remove SDCRI request, and/or others. The response may comprise an add SDCRI response, a modify SDCRI response, a remove SDCRI response, and/or others.
PCEF 104 may comprise a control module 113, an interface module 114, and/or others. Control module 113 may configure the SDCRI, at least in part in response to the request received from SDCF 102 via an interface Sr1. Examples of “configure” may include, but are not limited to, add, modify and remove. Control module 113 may further count and record UE 108 used service units on the sponsored data connectivity for charging, based at least in part on the SDCF provisioned SDCRI.
Interface module 114 may receive the request from SDCF 102 and transmit a response to the request to SDCF 102 via interface Sr1. The request may comprise an add SDCRI request, a modify SDCRI request, a remove SDCRI request, and/or others. The response may comprise an add SDCRI response, a modify SDCRI response, a remove SDCRI response, and/or others.
TDF 105 may comprise a control module 115, an interface module 116, and/or others. Control module 115 may configure the SDCRI, at least in part in response to the request received from SDCF 102 via an interface Sr2. Examples of “configure” may include, but are not limited to, add, modify and remove. Control module 115 may further count and record used service units on the sponsored data connectivity for charging, at least in part or optionally based on the SDCF provisioned SDCRI.
Interface module 116 may receive the request from SDCF 102 and transmit a response to the request to SDCF 102 via interface Sr2. The request may comprise an add SDCRI request, a modify SDCRI request, a remove SDCRI request, and/or others. The response may comprise an add SDCRI response, a modify SDCRI response, a remove SDCRI response, and/or others.
In some embodiments, PCRF 103 may configure SDCRI based at least in part on internet  protocol-connectivity access network (IP-CAN) session related information received from AS 101 via an interface Rx, and provide the SDCRI to PCEF 104 on per user and/or per IP-CAN session basis via an interface Gx. Examples of “configure” may include, but are not limited to, add, modify and remove. Examples of “SDCRI” may include, but are not limited to, an identification of the sponsor, an identification of the application service provider and its applications, optionally a usage threshold and whether the PCRF 103 reports events related to sponsored data connectivity, a charging key, and/or others. In some embodiments, PCRF 103 may further send an indication to PCEF 104 or TDF 105 an indication of enabling PCRF provisioned SDCRI or SDCF provisioned SDCRI, for this IP-CAN session.
Based on the wireless system 100, SDCF 102 may perform as a central node to maintain all SDCRI with interfacing third party applications for PCEFs/TDFs in its coverage. Moreover, the communications between AS 101 and SDCF 102 may happen beyond data layer 3.
It should be understood that other technologies may implement other embodiments for SDCF 102. For example, SDCF 102 may collocate with PCRF 103, which may result in the request and response associated with the SDCRI between AS 101 and PCRF 103 to be communicated via interface Rx, and the request and response associated with the SDCRI between PCRF 103 and PCEF 104 to be communicated via interface Gx. For example, SDCF 102 may collocate with the SCEF (not shown in Figure 1) , which may result in the request and response associated with the SDCRI between the SCEF and PCEF 104 to be communicated via PCRF 103, for example, through interface Rx between the SCEF and PCRF 103, and through interface Gx between PCRF 103 and PCEF 104.
Figure 2 schematically illustrates an example of an initial provisioning procedure for SDCRI control in the wireless network, in accordance with various embodiments. The procedure as illustrated in the upper part of Figure 2 may correspond to a situation that SDCF 102 receives the SDCRI from AS 101. In some embodiments, AS 101 may transmit an add SDCRI request to SDCF 102 (S201) , wherein the SDCRI request may comprise the SDCRI. Examples of “SDCRI” may include, but are not limited to, sponsored data connectivity information (SDCI) having an identification of the sponsor, an identification of the application service provider and its applications, a sponsored data rule such as a usage threshold to limit the amount of data or time the user connectivity may be sponsored, and/or others. SDCF 102 may store the SDCRI and transmit an add SDCRI response to AS 101 (S202) .
SDCF 102 may transmit an add SDCRI request to PCEF 104 (S203) or TDF 105 (S204) , based at least in part on the operator’s policy. For example, SDCF 102 may transmit the add SDCRI request to PCEF 104 or TDF 105 periodically or in response to the request from other entity, such as AS 101, PDRF 103, SCEF, etc. The add SDCRI request may include the SDCRI.  Example of “SDCRI” may include, but are not limited to, the SDCI, a service data flow template and a charging key which may be allocated by SDCF 102.
PCEF 104 or TDF 105 may store the SDCRI and start to count and record the used service units, and start offline charging communication with offline charging system (OFCS) based at least in part on the SDCRI. Moreover, PCEF 104 or TDF 105 may transmit an add SDCRI response to SDCF 102 respectively in S205 and S206.
The procedure as illustrated in the lower part of Figure 2 may correspond to a situation where SDCF 102 provisions the SDCRI on the operator’s configuration, for example, if the operator decides that it may be unsecure to open interface to the third party application service provider. SDCF 102 may transmit an add SDCRI request to PCEF 104 (S207) or to TDF 105 (S208) , based at least in part on the operator’s policy. For example, SDCF 102 may transmit the add SDCRI request to PCEF 104 or TDF 105 periodically or in response to the request from other entity, such as AS 101, PDRF 103, SCEF, etc. The add SDCRI request may include the SDCRI. Examples of “SDCRI” may include, but are not limited to, an identification of the sponsor, an identification of the application service provider and its applications, a sponsored data rule such as a usage threshold to limit the amount of data or time the user connectivity may be sponsored, a service data flow template, a charging key, and/or others.
PCEF 104 or TDF 105 may store the SDCRI and start to count and record the used service units, and start to offline charging communication with offline charging system (OFCS) based at least in part on the SDCRI. Moreover, PCEF 104 or TDF 105 may transmit an add SDCRI response to SDCF 102 respectively in S209 or S210.
Figure 3 schematically illustrates an example of a modification procedure for SDCRI control in the wireless network, in accordance with various embodiments. The procedure as illustrated in the upper part of Figure 3 may correspond to a situation that SDCF 102 modifies the SDCRI at least in part in response to a request from AS 101. In some embodiments, AS 101 may transmit a modify SDCRI request to SDCF 102 (S301) , wherein the modify SDCRI request may comprise SDCRI modification related information. Examples of “SDCRI” may include, but are not limited to, sponsored data connectivity information (SDCI) having an identification of the sponsor, an identification of the application service provider and its applications, a sponsored data rule such as a usage threshold to limit the amount of data or time the user connectivity may be sponsored, and/or others. SDCF 102 may modify the SDCRI and transmit a modify SDCRI response to AS 101 (S302) .
SDCF 102 may transmit a modify SDCRI request to PCEF 104 (S303) or TDF 105 (S304) , based at least in part on the operator’s policy. For example, SDCF 102 may transmit the modify SDCRI request to PCEF 104 or TDF 105 periodically or in response to the request from  other entity, such as AS 101, PDRF 103, SCEF, etc. The modify SDCRI request may include the SDCRI modification related information. Examples of “SDCRI” may include, but are not limited to, the SDCI, a service data flow template and a charging key which may be allocated by SDCF 102.
PCEF 104 or TDF 105 may modify the SDCRI and start to count and record the used service units, and start to offline charging communication with offline charging system (OFCS) , based at least in part on the modified SDCRI. Moreover, PCEF 104 or TDF 105 may transmit a modify SDCRI response to SDCF 102 respectively in S205 or S206.
The procedure as illustrated in the lower part of Figure 3 may correspond to a situation that SDCF 102 modifies the SDCRI on the operator’s configuration, for example, if the operator decides that it may be unsecure to open interface to the third party application service provider. SDCF 102 may transmit a modify SDCRI request to PCEF 104 (S307) or to TDF 105 (S308) , based at least in part on the operator’s policy. For example, SDCF 102 may transmit the modify SDCRI request to PCEF 104 or TDF 105 periodically or in response to the request from other entity, such as AS 101, PDRF 103, SCEF, etc. The modify SDCRI request may include the SDCRI modification related information. Examples of “SDCRI” may include, but are not limited to, an identification of the sponsor, an identification of the application service provider and its applications, a sponsored data rule such as a usage threshold to limit the amount of data or time the user connectivity may be sponsored, a service data flow template, a charging key, and/or others.
PCEF 104 or TDF 105 may modify the SDCRI and start to count and record the used service units, and start to offline charging communication with offline charging system (OFCS) based at least in part on the modified SDCRI. Moreover, PCEF 104 or TDF 105 may transmit a modify SDCRI response to SDCF 102 respectively in S309 and S310.
Figure 4 schematically illustrates an example of a removal procedure for SDCRI control in the wireless network, in accordance with various embodiments. The procedure as illustrated in the upper part of Figure 4 may correspond to a situation that SDCF 102 removes the SDCRI at least in part in response to a request from AS 101. In some embodiments, AS 101 may transmit a remove SDCRI request to SDCF 102 (S401) , wherein the remove SDCRI request may comprise SDCRI removal related information such as sponsor identification and application service provider identification corresponding to the SDCRI to be removed. Examples of “SDCRI” may include, but are not limited to, sponsored data connectivity information (SDCI) having an identification of the sponsor, an identification of the application service provider, and/or others. SDCF 102 may remove the SDCRI and transmit a remove SDCRI response to AS 101 (S402) .
SDCF 102 may transmit a remove SDCRI request to PCEF 104 (S403) or TDF 105  (S404) , based at least in part on the operator’s policy. For example, SDCF 102 may transmit the remove SDCRI request to PCEF 104 or TDF 105 periodically or in response to the request from other entity, such as AS 101, PDRF 103, SCEF, etc. The SDCRI request may include the SDCRI removal related information such as sponsor identification and application service provider identification corresponding to the SDCRI to be removed (correct? ) . Examples of “SDCRI” may include, but are not limited to, the SDCI, a service data flow template and a charging key which may be allocated by SDCF 102.
PCEF 104 or TDF 105 may remove the SDCRI and stop to count and record the used service units, and stop to offline charging communication with offline charging system (OFCS) . Moreover, PCEF 104 or TDF 105 may transmit a remove SDCRI response to SDCF 102 respectively in S405 or S406.
The procedure as illustrated in the lower part of Figure 4 may correspond to a situation that SDCF 102 removes the SDCRI on the operator’s configuration, for example, if the operator decides that it may be unsecure to open interface to the third party application service provider. SDCF 102 may transmit a remove SDCRI request to PCEF 104 (S407) or to TDF 105 (S408) , based at least in part on the operator’s policy. For example, SDCF 102 may transmit the remove SDCRI request to PCEF 104 or TDF 105 periodically or in response to the request from other entity, such as AS 101, PDRF 103, SCEF, etc. The remove SDCRI request may include the SDCRI removal related information. Examples of “SDCRI” may include, but are not limited to, an identification of the sponsor, an identification of the application service provider, and/or others.
PCEF 104 or TDF 105 may remove the SDCRI and stop to count and record the used service units, and stop to offline charging communication with offline charging system (OFCS) . Moreover, PCEF 104 or TDF 105 may transmit a remove SDCRI response to SDCF 102 respectively in S409 and S410.
Figure 5 schematically illustrates a method of SDCRI control implemented by a sponsored data connectivity function (SDCF) in the wireless system 100, in accordance with various embodiments. In some embodiments, SDCF 102 may receive the add/modify/remove SDCRI request from AS 101, in block 501. The add SDCRI request may comprise the SDCRI. The modify SDCRI request may comprise SDCRI modification related information. The remove SDCRI request may comprise SDCRI removal related information such as sponsor identification and application service provider identification corresponding to the SDCRI to be removed. In block 502, SDCF 102 may add/modify/remove the SDCRI, based at least in part on the add/modify/remove SDCRI request. In block 503, SDCF 102 may transmit an add/modify/remove SDCRI response to AS 101.
In block 504, SDCF 102 may transmit the add/modify/remove request to PCEF 104 or TDF 105 based at least in part on the operator’s policy. For example, SDCF 102 may transmit the add/modify/remove SDCRI request to PCEF 104 or TDF 105 periodically or in response to the request from other entity, such as AS 101, PDRF 103, SCEF, etc. The add SDCRI request may include the SDCRI. The modify SDCRI request may include the SDCRI modification related information. The remove SDCRI request may include the SDCRI removal related information. In block 505, SDCF 102 may receive the add/modify/remove SDCRI response from PCEF 104 or TDF 105.
It should be understood that other embodiments may implement other technologies for the method of Figure 5. For example, SDCF 102 may add/modify/remove SDCRI itself, such as based on the operator’s policy, rather than base on the request from AS 101. In light of this, blocks 501-503 may be omitted.
Figure 6 schematically illustrates a method of SDCRI control implemented by a policy and charging enforcement function (PCEF) in the wireless system, in accordance with various embodiments. In block 601, PCEF 104 or TDF 105 may receive the add/modify/remove SDCRI request from SDCF 102, which may be transmitted based at least in part on the operator’s policy 601. For example, the add/modify/remove SDCRI request may be transmitted to PCEF 104 or TDF 105 periodically or in response to the request from other entity, such as AS 101, PDRF 103, SCEF, etc. The add SDCRI request may include the SDCRI. The modify SDCRI request may include the SDCRI modification related information. The remove SDCRI request may include the SDCRI removal related information.
In block 602, PCEF 104 or TDF 105 may add/modify/remove the SDCRI at least in part in response to the add/modify/remove request. In block 603, PCEF 104 or TDF 105 may transmit the add/modify/remove SDCRI response to SDCF 102. In block 604, start to count and record the used service units, and start to offline charging communication with offline charging system (OFCS) , at least in part in response to the add or modify SDCRI request; or, stop to count and record the used service units, and stop to offline charging communication with offline charging system (OFCS) , at least in part in response to the remove SDCRI request.
Figure 7 schematically illustrates an example system 700 in accordance with various embodiments. In an embodiment, the system 700 may comprise one or more processor (s) 704, system control logic 708 coupled with at least one of the processor (s) 704, system memory 712 coupled with system control logic 708, non-volatile memory (NVM) /storage 716 coupled with system control logic 708, and a network interface 720 coupled with system control logic 708.
Processor (s) 704 may include one or more single-core or multi-core processors. Processor (s) 704 may include any combination of general-purpose processors and dedicated  processors (e.g., graphics processors, application processors, baseband processors, etc. ) . In an embodiment in which the system 700 implements the AS 101, SDCF 102, PCRF 103, PCEF 104 or TDF 105, processors (s) 704 may be configured to execute one or more embodiment (s) as illustrated in Figures 1-6 in accordance with various embodiments.
System control logic 708 for one embodiment may include any suitable interface controllers to provide for any suitable interface to at least one of the processor (s) 704 and/or to any suitable device or component in communication with system control logic 708.
System control logic 708 for one embodiment may include one or more memory controller (s) to provide an interface to system memory 712. System memory 712 may be used to load and store data and/or instructions, for example, for system 700. System memory 712 for one embodiment may include any suitable volatile memory, such as suitable dynamic random access memory (DRAM) , for example.
NVM/storage 716 may include one or more tangible, non-transitory computer-readable media used to store data and/or instructions, for example. NVM/storage 716 may include any suitable non-volatile memory, such as flash memory, for example, and/or may include any suitable non-volatile storage device (s) , such as one or more hard disk drive (s) (HDD (s) ) , one or more compact disk (CD) drive (s) , and/or one or more digital versatile disk (DVD) drive (s) , for example.
The NVM/storage 716 may include a storage resource physically part of a device on which the system 700 is installed or it may be accessible by, but not necessarily a part of, the device. For example, the NVM/storage 716 may be accessed over a network via the network interface 720.
System memory 712 and NVM/storage 716 may respectively include, in particular, temporal and persistent copies of instructions 724. Instructions 724 may include instructions that when executed by at least one of the processor (s) 704 result in the system 700 implementing the method as described with reference to Figures 5-6. In various embodiments, instructions 724, or hardware, firmware, and/or software components thereof, may additionally/alternatively be located in the system control logic 708, the network interface 720, and/or the processor (s) 704.
Network interface 720 may include the interface module 112 of SDCF 102 or the interface module 114 of PCEF 104 and/or others as illustrated in Figure 1, to provide a radio interface for system 700 to communicate over one or more network (s) and/or with any other suitable device. In various embodiments, the network interface 720 may be integrated with other components of system 700. For example, the network interface may include a processor of the processor (s) 704, memory of the system memory 712, NVM/Storage of NVM/Storage 716, and/or a firmware device (not being illustrated) having instructions that when executed by at  least one of the processor (s) 704 result in the system 700 implementing the method as described with reference to Figures 5-6.
Network interface 720 may further include any suitable hardware and/or firmware to provide a multiple input, multiple output radio interface. Network interface 720 for one embodiment may be, for example, a network adapter, a wireless network adapter, a telephone modem, and/or a wireless modem.
For one embodiment, at least one of the processor (s) 704 may be packaged together with logic for one or more controller (s) of system control logic 708. For one embodiment, at least one of the processor (s) 704 may be packaged together with logic for one or more controllers of system control logic 708 to form a System in Package (SiP) . For one embodiment, at least one of the processor (s) 704 may be integrated on the same die with logic for one or more controller (s) of system control logic 708. For one embodiment, at least one of the processor (s) 704 may be integrated on the same die with logic for one or more controller (s) of system control logic 708 to form a System on Chip (SoC) .
The system 700 may further include input/output (I/O) devices 732. The I/O devices 732 may include user interfaces designed to enable user interaction with the system 700, peripheral component interfaces designed to enable peripheral component interaction with the system 700, and/or sensors designed to determine environmental conditions and/or location information related to the system 700.
In various embodiments, the user interfaces could include, but are not limited to, a display (e.g., a liquid crystal display, a touch screen display, etc. ) , a speaker, a microphone, one or more cameras (e.g., a still camera and/or a video camera) , a flashlight (e.g., a light emitting diode flash) , and a keyboard.
In various embodiments, the peripheral component interfaces may include, but are not limited to, a non-volatile memory port, an audio jack, and a power supply interface.
In various embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the network interface 720 to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
In various embodiments, the system 700 may be AS 101, SDCF 102, PCRF 103, PCEF 104 or TDF 105. In various embodiments, system 700 may have more or less components, and/or different architectures.
FIG. 8 illustrates, for one embodiment, example components of a UE device 800 in accordance with some embodiments. In some embodiments, the UE device 800 may include application circuitry 802, baseband circuitry 804, Radio Frequency (RF) circuitry 806, front-end  module (FEM) circuitry 808, and one or more antennas 1010, coupled together at least as shown. In some embodiments, the UE device 800 may include additional elements such as, for example, memory/storage, display, camera, sensor, and/or input/output (I/O) interface.
The application circuitry 802 may include one or more application processors. For example, the application circuitry 802 may include circuitry such as, but are not limited to, one or more single-core or multi-core processors. The processor (s) may include any combination of general-purpose processors and dedicated processors (e.g., graphics processors, application processors, etc. ) . The processors may be coupled with and/or may include memory/storage and may be configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems to run on the system.
The baseband circuitry 804 may include circuitry such as, but are not limited to, one or more single-core or multi-core processors. The baseband circuitry 804 may include one or more baseband processors and/or control logic to process baseband signals received from a receive signal path of the RF circuitry 806 and to generate baseband signals for a transmit signal path of the RF circuitry 806. Baseband processing circuity 804 may interface with the application circuitry 802 for generation and processing of the baseband signals and for controlling operations of the RF circuitry 806. For example, in some embodiments, the baseband circuitry 804 may include a second generation (2G) baseband processor 804a, third generation (3G) baseband processor 804b, fourth generation (4G) baseband processor 804c, and/or other baseband processor (s) 804d for other existing generations, generations in development or to be developed in the future (e.g., fifth generation (5G) , 6G, etc. ) . The baseband circuitry 804 (e.g., one or more of baseband processors 804a-d) may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry 806. The radio control functions may include, but are not limited to, signal modulation/demodulation, encoding/decoding, radio frequency shifting, etc. In some embodiments, modulation/demodulation circuitry of the baseband circuitry 804 may include Fast-Fourier Transform (FFT) , precoding, and/or constellation mapping/demapping functionality. In some embodiments, encoding/decoding circuitry of the baseband circuitry 804 may include convolution, tail-biting convolution, turbo, Viterbi, and/or Low Density Parity Check (LDPC) encoder/decoder functionality. Embodiments of modulation/demodulation and encoder/decoder functionality are not limited to these examples and may include other suitable functionality in other embodiments.
In some embodiments, the baseband circuitry 804 may include elements of a protocol stack such as, for example, elements of an EUTRAN protocol including, for example, physical (PHY) , media access control (MAC) , radio link control (RLC) , packet data convergence protocol  (PDCP) , and/or RRC elements. A central processing unit (CPU) 804e of the baseband circuitry 804 may be configured to run elements of the protocol stack for signaling of the PHY, MAC, RLC, PDCP and/or RRC layers. In some embodiments, the baseband circuitry may include one or more audio digital signal processor (s) (DSP) 804f. The audio DSP (s) 804f may be include elements for compression/decompression and echo cancellation and may include other suitable processing elements in other embodiments. Components of the baseband circuitry may be suitably combined in a single chip, a single chipset, or disposed on a same circuit board in some embodiments. In some embodiments, some or all of the constituent components of the baseband circuitry 804 and the application circuitry 802 may be implemented together such as, for example, on a system on a chip (SOC) .
In some embodiments, the baseband circuitry 804 may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry 804 may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry 804 is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
RF circuitry 806 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry 806 may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network. RF circuitry 806 may include a receive signal path which may include circuitry to down-convert RF signals received from the FEM circuitry 808 and provide baseband signals to the baseband circuitry 804. RF circuitry 806 may also include a transmit signal path which may include circuitry to up-convert baseband signals provided by the baseband circuitry 804 and provide RF output signals to the FEM circuitry 808 for transmission.
In some embodiments, the RF circuitry 806 may include a receive signal path and a transmit signal path. The receive signal path of the RF circuitry 806 may include mixer circuitry 806a, amplifier circuitry 806b and filter circuitry 806c. The transmit signal path of the RF circuitry 806 may include filter circuitry 806c and mixer circuitry 806a. RF circuitry 806 may also include synthesizer circuitry 806d for synthesizing a frequency for use by the mixer circuitry 806a of the receive signal path and the transmit signal path. In some embodiments, the mixer circuitry 806a of the receive signal path may be configured to down-convert RF signals received from the FEM circuitry 808 based on the synthesized frequency provided by synthesizer circuitry 806d. The amplifier circuitry 806b may be configured to amplify the down-converted  signals and the filter circuitry 806c may be a low-pass filter (LPF) or band-pass filter (BPF) configured to remove unwanted signals from the down-converted signals to generate output baseband signals. Output baseband signals may be provided to the baseband circuitry 804 for further processing. In some embodiments, the output baseband signals may be zero-frequency baseband signals, although this is not a requirement. In some embodiments, mixer circuitry 806a of the receive signal path may comprise passive mixers, although the scope of the embodiments is not limited in this respect.
In some embodiments, the mixer circuitry 806a of the transmit signal path may be configured to up-convert input baseband signals based on the synthesized frequency provided by the synthesizer circuitry 806d to generate RF output signals for the FEM circuitry 808. The baseband signals may be provided by the baseband circuitry 804 and may be filtered by filter circuitry 806c. The filter circuitry 806c may include a low-pass filter (LPF) , although the scope of the embodiments is not limited in this respect.
In some embodiments, the mixer circuitry 806a of the receive signal path and the mixer circuitry 806a of the transmit signal path may include two or more mixers and may be arranged for quadrature downconversion and/or upconversion respectively. In some embodiments, the mixer circuitry 806a of the receive signal path and the mixer circuitry 806a of the transmit signal path may include two or more mixers and may be arranged for image rejection (e.g., Hartley image rejection) . In some embodiments, the mixer circuitry 806a of the receive signal path and the mixer circuitry 806a may be arranged for direct downconversion and/or direct upconversion, respectively. In some embodiments, the mixer circuitry 806a of the receive signal path and the mixer circuitry 806a of the transmit signal path may be configured for super-heterodyne operation.
In some embodiments, the output baseband signals and the input baseband signals may be analog baseband signals, although the scope of the embodiments is not limited in this respect. In some alternate embodiments, the output baseband signals and the input baseband signals may be digital baseband signals. In these alternate embodiments, the RF circuitry 806 may include analog-to-digital converter (ADC) and digital-to-analog converter (DAC) circuitry and the baseband circuitry 804 may include a digital baseband interface to communicate with the RF circuitry 806.
In some dual-mode embodiments, a separate radio IC circuitry may be provided for processing signals for each spectrum, although the scope of the embodiments is not limited in this respect.
In some embodiments, the synthesizer circuitry 806d may be a fractional-N synthesizer or a fractional N/N+1 synthesizer, although the scope of the embodiments is not limited in this  respect as other types of frequency synthesizers may be suitable. For example, synthesizer circuitry 806d may be a delta-sigma synthesizer, a frequency multiplier, or a synthesizer comprising a phase-locked loop with a frequency divider.
The synthesizer circuitry 806d may be configured to synthesize an output frequency for use by the mixer circuitry 806a of the RF circuitry 806 based on a frequency input and a divider control input. In some embodiments, the synthesizer circuitry 806d may be a fractional N/N+1 synthesizer.
In some embodiments, frequency input may be provided by a voltage controlled oscillator (VCO) , although that is not a requirement. Divider control input may be provided by either the baseband circuitry 804 or the applications processor 802 depending on the desired output frequency. In some embodiments, a divider control input (e.g., N) may be determined from a look-up table based on a channel indicated by the applications processor 802.
Synthesizer circuitry 806d of the RF circuitry 806 may include a divider, a delay-locked loop (DLL) , a multiplexer and a phase accumulator. In some embodiments, the divider may be a dual modulus divider (DMD) and the phase accumulator may be a digital phase accumulator (DPA) . In some embodiments, the DMD may be configured to divide the input signal by either N or N+1 (e.g., based on a carry out) to provide a fractional division ratio. In some example embodiments, the DLL may include a set of cascaded, tunable, delay elements, a phase detector, a charge pump and a D-type flip-flop. In these embodiments, the delay elements may be configured to break a VCO period up into Nd equal packets of phase, where Nd is the number of delay elements in the delay line. In this way, the DLL provides negative feedback to help ensure that the total delay through the delay line is one VCO cycle.
In some embodiments, synthesizer circuitry 806d may be configured to generate a carrier frequency as the output frequency, while in other embodiments, the output frequency may be a multiple of the carrier frequency (e.g., twice the carrier frequency, four times the carrier frequency) and used in conjunction with quadrature generator and divider circuitry to generate multiple signals at the carrier frequency with multiple different phases with respect to each other. In some embodiments, the output frequency may be a LO frequency (fLO) . In some embodiments, the RF circuitry 806 may include an IQ/polar converter.
FEM circuitry 808 may include a receive signal path which may include circuitry configured to operate on RF signals received from one or more antennas 1010, amplify the received signals and provide the amplified versions of the received signals to the RF circuitry 806 for further processing. FEM circuitry 808 may also include a transmit signal path which may include circuitry configured to amplify signals for transmission provided by the RF circuitry 806 for transmission by one or more of the one or more antennas 1010.
In some embodiments, the FEM circuitry 808 may include a TX/RX switch to switch between transmit mode and receive mode operation. The FEM circuitry may include a receive signal path and a transmit signal path. The receive signal path of the FEM circuitry may include a low-noise amplifier (LNA) to amplify received RF signals and provide the amplified received RF signals as an output (e.g., to the RF circuitry 806) . The transmit signal path of the FEM circuitry 808 may include a power amplifier (PA) to amplify input RF signals (e.g., provided by RF circuitry 806) , and one or more filters to generate RF signals for subsequent transmission (e.g., by one or more of the one or more antennas 1010.
In some embodiments, the UE 800 comprises a plurality of power saving mechanisms. If the UE 800 is in an RRC_Connected state, where it is still connected to the eNB as it expects to receive traffic shortly, then it may enter a state known as Discontinuous Reception Mode (DRX) after a period of inactivity. During this state, the device may power down for brief intervals of time and thus save power.
If there is no data traffic activity for an extended period of time, then the UE 800 may transition off to an RRC_Idle state, where it disconnects from the network and does not perform operations such as channel quality feedback, handover, etc. The UE 800 goes into a very low power state and it performs paging where again it periodically wakes up to listen to the network and then powers down again. The device cannot receive data in this state; in order to receive data, it transitions back to RRC_Connected state.
An additional power saving mode may allow a device to be unavailable to the network for periods longer than a paging interval (ranging from seconds to a few hours) . During this time, the device is totally unreachable to the network and may power down completely. Any data sent during this time incurs a large delay and it is assumed the delay is acceptable.
The disclosure may include various example embodiments disclosed below.
Example 1 includes an apparatus to be implemented as a sponsored data connectivity function (SDCF) comprising: a control module to configure sponsored data connectivity related information (SDCRI) ; and an interface module to transmit a request associated with the SDCRI to a policy and charging enforcement function (PCEF) or a traffic detection function (TDF) , based at least in part on a network operator’s policy.
Example 2 includes the apparatus of example 1, wherein the network operator’s policy is further to indicate to transmit the request to the PCEF or TDF periodically or in response to another request from other entity.
Example 3 includes the apparatus of example 1 or 2, wherein the other entity comprises an application service (AS) , a service capability exposure function (SCEF) , and/or a policy and charging rules function (PCRF) .
Example 4 includes the apparatus of any of examples 1-3, wherein the interface module is further to receive, from the PCEF or the TDF, a response to the request.
Example 5 includes the apparatus of example 4, wherein the request comprises an add SDCRI request, a modify SDCRI request and/or a remove SDCRI request, and the response comprises an add SDCRI response, a modify SDCRI response and/or a remove SDCRI response.
Example 6 includes the apparatus of any of examples 1-5, wherein to configure the SDCRI comprises to add, modify or remove the SDCRI, based at least in part on another request received from an application service (AS) associated with a service provider and/or the network operator.
Example 7 includes the apparatus of any of examples 1-6, wherein to configure the SDCRI comprises to add, modify or remove the SDCRI based at least in part on the network operator’s policy.
Example 8 includes the apparatus of any of examples 1-7, wherein the apparatus is further to collocate with a policy and charging rules function (PCRF) .
Example 9 includes the apparatus of any of examples 1-8, wherein the apparatus is further to collocate with a service capability exposure function (SCEF) .
Example 10 includes the apparatus of any of examples 1-9, wherein the SDCRI comprises a sponsor identifier, an application service provider and application identifier, and/or a usage threshold to limit amount of data or time that a user connectivity is sponsored.
Example 11 includes the apparatus of any of examples 1-10, wherein the SDCRI further comprises a charging key allocated by the SDCF.
Example 12 includes an apparatus, to be implemented as a policy and charging enforcement function (PCEF) or a traffic detection function (TDF) , comprising: an interface module to receive a request associated with sponsored data connectivity related information (SCDRI) from a sponsored data connectivity function (SDCF) , based at least in part on a network operator’s policy; and a control module to configure the SCDRI at least in part in response to the request; wherein the interface module is further to transmit a response to the request, to the SDCF.
Example 13 includes the apparatus of example 12, wherein the network operator’s policy is further to indicate to transmit the request to the apparatus periodically or in response to another request from other entity.
Example 14 includes the apparatus of example 12 or 13, wherein when the SDCF collocates with the PCRF, the interface module receives the request from the SDCF in the PCRF.
Example 15 includes the apparatus of any of examples 12-14, wherein when the SDCF collocates with a service capability exposure function (SCEF) , the interface module receives the  request from the SDCF in the SCEF.
Example 16 includes the apparatus of any of examples 12-15, wherein the SDCRI comprises a sponsor identifier, an application service provider and an application identifier, and/or a usage threshold to limit amount of data or time that a user connectivity is sponsored.
Example 17 includes the apparatus of any of examples 12-16, wherein the SDCRI further comprises a charging key allocated by the SDCF.
Example 18 includes the apparatus of any of examples 12-17, wherein the request comprises an add SDCRI request, a modify SDCRI request and/or a remove SDCRI request, and the response comprises an add SDCRI response, a modify SDCRI response and/or a remove SDCRI response.
Example 19 includes the apparatus of example 18, wherein to configure the SDCRI comprises to add, modify or remove the SDCRI.
Example 20 includes the apparatus of any of examples 12-19, wherein the interface module is further to receive, from a policy and charging rules function (PCRF) , the SDCRI and an indication of enabling the SDCRI provided by the SDRF or the SDCRI provided by the PCRF, on an internet protocol-connectivity access network (IP-CAN) session basis; and, the control module is further to record and charge for usage of a sponsored data connectivity, based at least in part on the SDCRI provided by the SDRF or provided by the PCRF as indicated by the indication.
Example 21 may comprise a computer-readable storage medium that stores instructions for execution by a processor to perform operations of a SDRF or a PCEF, the operations, when executed by the processor to execute any of the operations discussed above in any combination.
Example 22 may comprise an apparatus for a SDRF or a PCEF, comprising means for executing any of the operations discussed above in any combination.
Although certain embodiments have been illustrated and described herein for purposes of description, a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments described herein be limited only by the claims and the equivalents thereof.

Claims (25)

  1. An apparatus to be implemented as a sponsored data connectivity function (SDCF) , comprising:
    a control module to configure sponsored data connectivity related information (SDCRI) ; and
    an interface module to transmit a request associated with the SDCRI to a policy and charging enforcement function (PCEF) or a traffic detection function (TDF) , based at least in part on a network operator’s policy.
  2. The apparatus of claim 1, wherein the network operator’s policy is further to indicate to transmit the request to the PCEF or TDF periodically or in response to another request from an other entity.
  3. The apparatus of claim 1 or 2, wherein the other entity comprises an application service (AS) , a service capability exposure function (SCEF) , and/or a policy and charging rules function (PCRF) .
  4. The apparatus of any of claims 1-3 wherein the interface module is further to receive, from the PCEF or the TDF, a response to the request.
  5. The apparatus of claim 4, wherein the request comprises an add SDCRI request, a modify SDCRI request and/or a remove SDCRI request, and the response comprises an add SDCRI response, a modify SDCRI response and/or a remove SDCRI response.
  6. The apparatus of any of claims 1-5, wherein to configure the SDCRI comprises to add, modify or remove the SDCRI, based at least in part on another request received from an application service (AS) associated with a service provider and/or the network operator.
  7. The apparatus of any of claims 1-6, wherein to configure the SDCRI comprises to add, modify or remove the SDCRI based at least in part on the network operator’s policy.
  8. The apparatus of any of claims 1-7, wherein the apparatus is further to collocate with a policy and charging rules function (PCRF) .
  9. The apparatus of any of claims 1-8, wherein the apparatus is further to collocate with a service capability exposure function (SCEF) .
  10. The apparatus of any of claims 1-9, wherein the SDCRI comprises a sponsor identifier, an application service provider and application identifier, and/or a usage threshold to limit amount of data or time that a user connectivity is sponsored.
  11. The apparatus of any of claims 1-10, wherein the SDCRI further comprises a charging key allocated by the SDCF.
  12. An apparatus, to be implemented as a policy and charging enforcement function (PCEF) or a traffic detection function (TDF) , comprising:
    an interface module to receive a request associated with sponsored data connectivity related information (SCDRI) from a sponsored data connectivity function (SDCF) , based at least in part on a network operator’s policy; and
    a control module to configure the SCDRI at least in part in response to the request;
    wherein the interface module is further to transmit a response to the request, to the SDCF.
  13. The apparatus of claim 12, wherein the network operator’s policy is further to indicate to transmit the request to the apparatus periodically or in response to another request from an other entity.
  14. The apparatus of claim 12 or 13, wherein when the SDCF collocates with the PCRF, the interface module receives the request from the SDCF in the PCRF.
  15. The apparatus of any of claims 12-14, wherein when the SDCF collocates with a service capability exposure function (SCEF) , the interface module receives the request from the SDCF in the SCEF.
  16. The apparatus of any of claims 12-15, wherein the SDCRI comprises a sponsor identifier, an application service provider and an application identifier, and/or a usage threshold to limit amount of data or time that a user connectivity is sponsored.
  17. The apparatus of any of claims 12-16, wherein the SDCRI further comprises a charging key allocated by the SDCF.
  18. The apparatus of any of claims 12-17, wherein the request comprises an add SDCRI request, a modify SDCRI request and/or a remove SDCRI request, and the response comprises an add SDCRI response, a modify SDCRI response and/or a remove SDCRI response.
  19. The apparatus of claim 18, wherein to configure the SDCRI comprises to add, modify or remove the SDCRI.
  20. The apparatus of any of claims 12-19, wherein the interface module is further to receive, from a policy and charging rules function (PCRF) , the SDCRI and an indication of enabling the SDCRI provided by the SDRF or the SDCRI provided by the PCRF, on an internet protocol-connectivity access network (IP-CAN) session basis; and, the control module is further to record and charge for usage of a sponsored data connectivity, based at least in part on the SDCRI provided by the SDRF or provided by the PCRF as indicated by the indication.
  21. A computer readable medium having instructions that, when executed, cause a sponsored data connectivity function (SDCF) to:
    configure sponsored data connectivity related information (SDCRI) ; and
    transmit a request associated with the SDCRI to a policy and charging enforcement function (PCEF) or a traffic detection function (TDF) , based at least in part on a network operator’s policy.
  22. The computer readable medium of claim 21, wherein the network operator’s policy is further to indicate to transmit the request to the PCEF or TDF periodically or in response to another request from an other entity, and wherein the other entity comprises an application service (AS) , a service capability exposure function (SCEF) , and/or a policy and charging rules function (PCRF) .
  23. The computer readable medium of claim 21 or 22, wherein the instructions, when executed, further cause the SDCF to receive, from the PCEF or the TDF, a response to the request.
  24. The computer readable medium of any of claims 21-23, wherein the request comprises an add SDCRI request, a modify SDCRI request and/or a remove SDCRI request, and the response comprises an add SDCRI response, a modify SDCRI response and/or a remove SDCRI response.
  25. The computer readable medium of any of claims 21-24, wherein to configure the SDCRI includes to add, modify or remove the SDCRI, based at least in part on another request received from an application service (AS) associated with a service provider and/or the network operator; or based on the network operator’s policy.
PCT/CN2016/078272 2015-11-06 2016-04-01 Method, apparatus and system for sponsored data connectivity related information control and transmission in a wireless network WO2017075936A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105132428A TWI737633B (en) 2015-11-06 2016-10-06 Method, apparatus and system for sponsored data connectivity related information control and transmission in a wireless network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2015/094006 2015-11-06
CN2015094006 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017075936A1 true WO2017075936A1 (en) 2017-05-11

Family

ID=58661534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078272 WO2017075936A1 (en) 2015-11-06 2016-04-01 Method, apparatus and system for sponsored data connectivity related information control and transmission in a wireless network

Country Status (2)

Country Link
TW (1) TWI737633B (en)
WO (1) WO2017075936A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103430487A (en) * 2010-10-06 2013-12-04 诺基亚西门子通信公司 Method, apparatus and system for detecting service data of packet data connection
US20150011182A1 (en) * 2010-12-09 2015-01-08 Alla Goldner System, device, and method of cellular traffic monitoring

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9014663B2 (en) * 2012-09-28 2015-04-21 Alcatel Lucent Sponsored data plan management
WO2014110410A1 (en) * 2013-01-11 2014-07-17 Interdigital Patent Holdings, Inc. User-plane congestion management
US9986103B2 (en) * 2013-05-17 2018-05-29 Telefonaktiebolaget Lm Ericsson (Publ) Advanced policy and charging control methods, network nodes and computer programs for sponsored data connectivity by peers
CN104955013A (en) * 2014-03-26 2015-09-30 中兴通讯股份有限公司 Usage monitoring method, apparatus and system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103430487A (en) * 2010-10-06 2013-12-04 诺基亚西门子通信公司 Method, apparatus and system for detecting service data of packet data connection
US20150011182A1 (en) * 2010-12-09 2015-01-08 Alla Goldner System, device, and method of cellular traffic monitoring

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INTEL.: "Standalone SDCF based solution for key issue #1 and #2.", SA WG2 MEETING #113, S 2-160175 ., 18 January 2016 (2016-01-18), pages 1 - 5, XP051071955 *
INTEL.: "Standalone SDCF based solution for key issue #1 and #2.", SA WG2 MEETING #113, S 2-160605, 30 January 2016 (2016-01-30), pages 1 - 5, XP051072489 *
INTEL.: "Standalone SDCF based solution for key issue #1 and #2.", SA WG2 MEETING #113, S 2-160851 ., 30 January 2016 (2016-01-30), pages 1 - 5, XP051072641 *
INTEL.: "Standalone SDCF based solution for key issue #1 and #2.", SA WG2 MEETING #113, S 2-160916 ., 5 February 2016 (2016-02-05), pages 1 - 5, XP051072706 *

Also Published As

Publication number Publication date
TWI737633B (en) 2021-09-01
TW201728136A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
US20200274595A1 (en) Method, Apparatus and System for Reporting Beam Reference Signal Receiving Power
US10708973B2 (en) Cellular internet of things (CIoT) optimizations for narrowband (NB) and non-NB IoT networks
KR102408268B1 (en) Communication network device for uplink scheduling
US10924943B2 (en) Instantiation and management of physical and virtualized network functions of a radio access network node
US10652910B2 (en) Long-term evolution (LTE) and wireless local area network (WLAN) aggregation (LWA) connection procedures
US12022398B2 (en) Techniques to reduce radio resource management measurements and user equipment power consumption
US20240080653A1 (en) Devices and Methods for UE-Specific RAN-CN Associations
US20200045651A1 (en) Power headroom reporting for shortened transmission time intervals
US20190182696A1 (en) Beam measurement and reporting in cellular networks
US11122505B2 (en) Downlink data handling for idle mode UE when the SGW is split into control plane node and user plane node
WO2018063456A1 (en) Ue capabilities for elwa
WO2017075936A1 (en) Method, apparatus and system for sponsored data connectivity related information control and transmission in a wireless network
US10764817B2 (en) Method, apparatus and system for discovery reference signal measurement in a license assisted access scenario
US11012883B2 (en) Measurement job suspension and resumption in network function virtualization
US11102086B2 (en) Methods and systems for instantiating and connecting radio access network virtualized network function and core network virtualized network function
US12028762B2 (en) Systems and methods for event trigger reporting for L1 measurement and L1/L2 mobility
US20230180077A1 (en) Systems and methods for event trigger reporting for l1 measurement and l1/l2 mobility
EP3434056A1 (en) Method, apparatus and system of splitting control plane and user plane for media access control in a radio access network
WO2018064278A1 (en) Enhanced cell identifier positioning
WO2017023233A1 (en) Extended coverage gsm (ec-gsm) device energy saving using traffic periodicity information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861209

Country of ref document: EP

Kind code of ref document: A1