WO2017073662A1 - Optical semiconductor illumination device - Google Patents

Optical semiconductor illumination device Download PDF

Info

Publication number
WO2017073662A1
WO2017073662A1 PCT/JP2016/081876 JP2016081876W WO2017073662A1 WO 2017073662 A1 WO2017073662 A1 WO 2017073662A1 JP 2016081876 W JP2016081876 W JP 2016081876W WO 2017073662 A1 WO2017073662 A1 WO 2017073662A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
semiconductor element
detector
lighting device
led
Prior art date
Application number
PCT/JP2016/081876
Other languages
French (fr)
Japanese (ja)
Inventor
登 瀧澤
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2017073662A1 publication Critical patent/WO2017073662A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to an optical semiconductor lighting device using an optical semiconductor such as an LED (light emitting diode) or a laser diode.
  • an optical semiconductor such as an LED (light emitting diode) or a laser diode.
  • FIG. 18 is a diagram illustrating a configuration of the LED lighting device disclosed in Patent Document 1. As illustrated in FIG. 18 includes a plurality of LEDs 101a, 101b,..., A plurality of adjustable current sources 102a, 102b,..., A plurality of switching devices 103a, 103b,. 104, a measurement voltage source 105, and a control unit 106.
  • the switching device 102a corresponding to the LED 101a switches the electrical connection of the LED 102a from the current source 102a to the ammeter 104 and the measurement voltage source 105 when the LED 101a is a junction temperature detection target.
  • the forward voltage Vf of the LED 101a is fixed to the measurement voltage output from the measurement voltage source 105, and the control unit 106 determines from the current value detected by the ammeter 104.
  • the junction temperature of the LED 101a is detected. That is, the LED illumination device of FIG. 18 detects the junction temperature of the LED based on the forward voltage Vf of the LED.
  • optical semiconductors such as LEDs and laser diodes have photovoltaic power.
  • the photovoltaic power of optical semiconductors has increased with the increase in chip size and luminous efficiency, and there are optical semiconductor chips having a photovoltaic power of 1 [V] or more.
  • the LED illumination device of FIG. 18 detects the junction temperature of the LED based on the forward voltage Vf of the LED without considering the photovoltaic power, an error occurs in the detection of the junction temperature of the LED due to the photovoltaic power. Will occur.
  • a deviation of 20 ° C or more may occur.
  • the optical semiconductor When the photovoltaic power is large, a deviation of 20 ° C or more may occur.
  • the optical semiconductor When the photovoltaic power is large, a deviation of 20 ° C or more may occur.
  • the optical semiconductor When the optical semiconductor is used at a predetermined temperature close to the allowable limit value of the junction temperature, the optical semiconductor deteriorates exponentially, so that the lifetime may be very short due to an error in detecting the junction temperature. For example, a lifetime of about 10 ° C. may be halved.
  • an object of the present invention is to provide an optical semiconductor lighting device having a small junction temperature detection error.
  • an optical semiconductor lighting device includes an optical semiconductor element, at least one other optical semiconductor element, and a first voltage that detects a forward voltage of the optical semiconductor element.
  • a fourth detector for detecting each forward voltage in the dark of the other optical semiconductor element based on the difference between the result and the detection result of the second detector and the detection result of the third detector; and a second detector
  • a fifth detector for detecting a junction temperature of the optical semiconductor element from a detection result of the second detector
  • a sixth detector for detecting a junction temperature of the other optical semiconductor element from the detection result of the fourth detector.
  • the second detection unit includes a sensor that is disposed in the vicinity of the optical semiconductor element and outputs a predetermined physical quantity without being affected by external light, and the sensor It is also possible to adopt a configuration (second configuration) for detecting the forward voltage in the dark of the optical semiconductor element based on this detection result.
  • the senor is a diode sealed with a light-shielding substance, and the second detection unit is configured to transmit the optical semiconductor element based on a forward voltage of the diode.
  • the forward voltage in the dark may be detected (third configuration).
  • the senor is a thermistor
  • the second detection unit is based on the temperature detected by the thermistor in order of darkness of the optical semiconductor element.
  • a configuration for detecting a directional voltage may be used.
  • the second detection unit includes a movable light shielding mechanism capable of shielding external light incident on the optical semiconductor element, and external light incident on the optical semiconductor element. May be configured to detect a forward voltage in the dark of the optical semiconductor element (fifth configuration) while being shielded by the movable light shielding mechanism.
  • An optical semiconductor lighting device includes an optical semiconductor element, at least one other optical semiconductor element, a first detection unit that detects a forward current of the optical semiconductor element, and the optical semiconductor element.
  • a second detector for detecting forward current in the dark
  • a third detector for detecting forward currents of the other optical semiconductor elements, detection results of the first detector, and detection of the second detector Based on the difference between the results and the detection result of the third detector, a fourth detector for detecting each forward current in the dark of the other optical semiconductor elements, and the optical semiconductor element from the detection results of the second detector
  • a sixth detection unit for detecting each junction temperature of the other optical semiconductor element from the detection result of the fourth detection unit (sixth configuration). ing.
  • the optical semiconductor element and the other optical semiconductor elements according to a PWM signal whose on-duty ratio changes according to a dimming signal from the outside
  • a current adjusting unit that adjusts the current flowing through the PWM signal and a configuration (seventh configuration) in which at least the first detection unit and the third detection unit perform a detection operation during the off period of the PWM signal.
  • the optical semiconductor element and the other optical semiconductor elements are light emitting diodes or laser diodes (eighth configuration). Also good.
  • the optical semiconductor element includes an anode electrode, a cathode electrode, and a conductive heat dissipation pad, and one of the anode electrode and the cathode electrode
  • a configuration (a ninth configuration) in which the heat dissipating pad and one end of the sensor are electrically connected may be employed.
  • the optical semiconductor element includes an optical semiconductor chip, a heat conductive paste provided on the first surface of the optical semiconductor chip and the heat dissipation pad, and the optical semiconductor.
  • a P-type region formed on a second surface opposite to the first surface of the chip and a first connection member for electrically connecting the anode electrode; and formed on the second surface of the optical semiconductor chip.
  • a second connection member that electrically connects the N-type region and the cathode electrode may be used (a tenth configuration).
  • the heat dissipating pad is disposed between the anode electrode and the cathode electrode as viewed from the normal direction of the first surface and the second surface. You may make it a structure (11th structure).
  • the optical semiconductor lighting device having any one of the ninth to eleventh configurations further includes a substrate on which at least the optical semiconductor element and the sensor are mounted, and the cathode electrode and the heat dissipation pad are formed on the ground.
  • a configuration in which the sensor is electrically connected to one end of the sensor (a twelfth configuration) may be employed.
  • the optical semiconductor lighting device having any one of the ninth to eleventh configurations includes a substrate on which at least the optical semiconductor element and the sensor are mounted, and the anode electrode and the heat dissipation pad are formed on the substrate.
  • a configuration in which the sensor is electrically connected to one end of the sensor by a voltage supply pattern (a thirteenth configuration) may be employed.
  • the moving body according to the present invention has a configuration (fourteenth configuration) including the optical semiconductor illumination device having any one of the first to thirteenth configurations.
  • the outdoor lamp according to the present invention has a configuration (fifteenth configuration) including an optical semiconductor lighting device having the configuration according to any one of claims 1 to 13.
  • Schematic front view of the optical semiconductor lighting device of the first embodiment The figure which shows an example of the schematic longitudinal cross-section of LED Schematic top view showing an example of LED and diode electrode arrangement
  • the figure which shows the other example of the schematic longitudinal cross-section of LED The figure which shows the other example of the schematic longitudinal cross-section of LED
  • the figure which shows the other example of the schematic longitudinal cross-section of LED The flowchart which shows operation
  • movement of the optical semiconductor illuminating device of 3rd Embodiment The figure which shows the structure of the optical semiconductor illuminating device of 4th Embodiment.
  • FIG. 1 is a diagram illustrating a configuration of the optical semiconductor lighting device according to the first embodiment.
  • LEDs 1a to 1h includes LEDs 1a to 1h, variable current sources 2a to 2h, switches 3a to 3h, voltage detectors 4a to 4h, and constant current sources 5a to 5h.
  • the number of LEDs is eight, but the present invention is not limited to this, and the optical semiconductor lighting device may include a plurality of LEDs.
  • the switch 3a selects one of the variable current source 2a and the constant current source 5a, and electrically connects the selected current source and the anode of the LED 1a.
  • a DC driving voltage V D is supplied to the variable current source 2a and the constant current source 5a.
  • the cathode of the LED 1a is at ground potential.
  • Voltage detection unit 4a detects the forward voltage Vf of LED1a when the constant current I C that is output from the constant current source 5a is supplied to the LED1a.
  • the optical semiconductor lighting device shown in FIG. 1 further includes a diode 6, a voltage detection unit 7, a constant current source 8, and a control unit 9.
  • the diode 6 is a diode sealed with a light shielding material such as black resin.
  • a DC drive voltage V D is supplied to the constant current source 8.
  • the cathode of the diode 6 is connected to the constant current source 8.
  • the cathode of the diode 6 is at ground potential.
  • Voltage detector 7 detects the forward voltage Vf of the diode 6 when the constant current I C that is output from the constant current source 8 is supplied to the diode 6.
  • the control unit 9 controls the output currents of the variable current sources 2a to 2h based on the outputs of the voltage detection units 4a to 4h and 7.
  • control unit 9 also performs on / off control of the constant current sources 5a to 5h and 8.
  • the ON / OFF control for example provided with a changeover switch for switching between blocking and electrical connection between the constant current source 5a ⁇ 5h and 8 the supply line of the internal drive voltage V D, respectively, the control unit 9 the changeover switch It can be realized by controlling.
  • FIG. 2A is a schematic front view of the optical semiconductor lighting device of the first embodiment.
  • the diode 6 is disposed in the vicinity of the LED 1a. Thereby, the junction temperature of the diode 6 and the junction temperature of LED1a can be made substantially the same.
  • LEDs are arranged at intervals of 45 ° with respect to the center O of the front of the apparatus, but this arrangement is merely an example, and the present invention is not limited to the arrangement example shown in FIG. 2A.
  • the LED 1a in which the diode 6 is disposed in the vicinity has a conductive heat radiating pad, and the heat radiating pad of the LED 1a is electrically connected to the cathode electrode of the diode 6. This is because heat is transferred from the heat dissipation pad of the LED 1a to the cathode electrode of the diode 6 through this electrical connection, so that the difference between the junction temperature of the LED 1a and the junction temperature of the diode 6 can be reduced.
  • the LEDs 1b to 1h may have the same structure as the LED 1a or a different structure.
  • FIG. 2B is a diagram showing an example of a schematic longitudinal section of the LED 1a.
  • the LED 1a having the structure shown in FIG. 2B includes a translucent resin L0, an LED chip L1, an insulating substrate L2, bonding wires L3 and L4, and a heat conductive paste L5.
  • the insulating substrate L2 includes a front-side anode electrode L6, a front-side cathode electrode L7, a front-side heat dissipation pad L8, a back-side anode electrode L9, a back-side cathode electrode L10, a back-side heat dissipation pad L11, and through holes L12 to L14.
  • the front side anode electrode L6 and the back side anode electrode L9 are electrically connected by a through hole L12
  • the front side cathode electrode L7 and the back side cathode electrode L10 are electrically connected by a through hole L13, and the front side heat radiating pad L8 and the back side heat radiating pad.
  • L11 is electrically connected through a through hole L14.
  • the heat conductive paste L5 is provided between the back surface of the LED chip L1 and the front heat dissipation pad L8, and the heat generated in the LED chip L1 is transmitted to the front heat dissipation pad L8 via the heat conductive paste L5.
  • a silver paste or the like having high heat conductivity may be used as the heat conductive paste L5.
  • the P-type region formed on the surface of the LED chip L1 and the front-side anode electrode L6 are electrically connected by a bonding wire L3, and the N-type region formed on the surface of the LED chip L1 and the front-side cathode electrode L7 are connected to each other. It is electrically connected by a bonding wire L3.
  • the translucent resin L0 covers the LED chip L1, the surface of the insulating substrate L2, and the bonding wires L3 and L4.
  • FIG. 2C is a schematic top view showing an electrode arrangement example of the LED 1 a and the diode 6.
  • An anode electrode 61 and a cathode electrode 62 are formed on the back side of the diode 6.
  • a ground pattern 21 is formed on the front side of the mounting substrate 20 on which the diode 6 and the LED 1a having the structure shown in FIG. 2B are mounted.
  • the back side cathode electrode L10 and the back side heat radiation pad L11 of the LED 1a are electrically connected to the cathode electrode 62 of the diode 6 by the ground pattern 21.
  • the back side cathode electrode L10 and the back side heat radiation pad L11 of the LED 1a are electrically connected. Therefore, instead of the structure shown in FIG. 2B, a structure in which the back-side cathode electrode L10 and the back-side heat dissipating pad L11 are connected as shown in FIG. 2D may be used, and the front-side cathode electrode L7 and the front-side heat dissipating pad L8 are shown in FIG.
  • the backside cathode electrode L10 and the backside heat dissipation pad L11 are connected as shown in FIG. 2F, and the frontside cathode electrode L7 and the frontside heat dissipation pad L8 are connected.
  • FIG. 3 is a flowchart showing the operation of the optical semiconductor lighting device of the first embodiment.
  • the optical semiconductor lighting device of the first embodiment starts the operation of the flowchart shown in FIG. 3 as soon as the startup of the device is completed.
  • the control unit 9 controls each current source so that the constant current sources 5a and 8 are turned on and the other current sources are turned off (output current stop state), and the switch 3a is turned on.
  • the controller 9 controls the switch 3a so as to select the current source 5a.
  • the forward voltage Vf of the diode 6 at the time of the constant current I C is measured by the voltage detector 7, and the forward voltage Vf of the LED 1a at the time of the constant current I C is measured by the voltage detector 4a.
  • Step S10 The measurement result of the voltage detector 7 and the measurement result of the voltage detector 4a are stored in an internal memory (not shown) of the controller 9. Note that another data holding unit such as an internal register may be used instead of the internal memory.
  • the measurement result of the voltage detector 7 is not affected by external light. That is, the forward voltage Vf of the diode 6 at the constant current I C measured by the voltage detector 7 is equivalent to the forward voltage Vf_d of the diode 6 at the dark time at the constant current I C.
  • the measurement result of the voltage detector 4a is affected by the external light.
  • step S20 the control unit 9, the measurement results of the measurement result of the voltage detector 7 and the voltage detection unit 4a, for a forward voltage Vf_d during dark LED1a during the constant current I C, determined
  • the stored data is stored in a data holding unit such as an internal memory.
  • the forward voltage Vf_d during dark LED1a in forward voltage Vf_d a constant current I C at the time of dark diode 6 during the constant current I C is 1 at the same temperature conditions: when a 5 relationship Is obtained by multiplying the measurement result of the voltage detection unit 7 by 5 and subtracting it from the measurement result of the voltage detection unit 4a to obtain the photovoltaic power of the LED 1a, and subtracting the photovoltaic power of the LED 1a from the measurement result of the voltage detection unit 4a. .
  • the forward voltage Vf_d when the LED 1a is dark at the time of the constant current I C can be obtained.
  • the obtained data is stored in a data holding unit such as an internal memory.
  • step S40 following step S30 the control unit 9 controls the constant current source 5b and the variable current source 2b so that the constant current source 5b is turned on and the variable current source 2b is turned off (output current stopped state). At the same time, the control unit 9 controls the switch 3b so that the switch 3b selects the constant current source 5b. Under such a control state, the forward voltage Vf of the LED 1b at the time of the constant current I C is measured by the voltage detector 4b.
  • a switch 3a, 3c ⁇ 3h, the constant current source 5a, 5c ⁇ 2h, and the variable current source 2a the 2c ⁇ 2h state particularly It is not limited.
  • the switches 3a and 3c to 3h select the variable current sources 2a and 2c to 2h and the variable current sources 2a and 2c to 2h are turned on, the LEDs 1a, 1c to 1h at the constant current I C are obtained.
  • the forward voltage Vf_d in the dark is determined, the influence of the LEDs 1a and 1c to 1h incident on the LED 1b can be eliminated.
  • the LED 1b at the constant current I C by the voltage detector 4b is set. simultaneously with the measurement of the forward voltage Vf, it is possible to measure a forward voltage Vf of the LED 1b ⁇ 1h during the constant current I C by the voltage detection unit 4c ⁇ 4h.
  • step S40 the measurement of the forward voltage Vf of the LEDs 1c to 1h at the constant current I C by the voltage detectors 4c to 4h is the same as the measurement of the forward voltage Vf of the LED 1b at the constant current I C by the voltage detector 4b.
  • the measurement results of the voltage detection units 4b to 4h are stored in a data holding unit such as an internal memory of the control unit 9.
  • the forward voltage Vf_d in the dark of the LEDs 1b to 1h at the time C is obtained, and the obtained data is stored in a data holding unit such as an internal memory.
  • the forward voltage Vf_d when the LED 1b is dark at the time of the constant current I C can be obtained. Relationship in the same receiving conditions and photovoltaic LED1b in photovoltaic and constant current I C at the LED1a during the constant current I C is obtained theoretically from the properties of LED1a and 1b.
  • the LEDs 1c to 1h are the same as the LED 1b.
  • step S60 the controller 9 determines the forward voltage Vf_d of the LED 1a in the dark at the constant current I C obtained in step S20 and the darkness of the LEDs 1b to 1h in the constant current I C obtained in step S50.
  • the junction temperatures of the LEDs 1a to 1h are obtained from the forward voltage Vf_d at the time, and the obtained data is stored in a data holding unit such as an internal memory. Relationship between the forward voltage Vf_d and LED1a junction temperature during dark LED1a during the constant current I C is obtained theoretically from the characteristics of LED1a.
  • the LEDs 1b to 1h are the same as the LED 1a.
  • step S70 following step S60 the control unit 9 controls the output currents of the variable current sources 2a to 2h according to the junction temperatures of the LEDs 1a to 1h obtained in step S50.
  • junction temperature of the LED There is a negative correlation between the junction temperature of the LED and the forward voltage Vf of the LED, and the forward voltage Vf decreases as the junction temperature increases. For this reason, when the photovoltaic voltage is included in the forward voltage Vf, the junction temperature is detected lower than the true value. In the present embodiment, since the junction temperature is obtained from the forward voltage Vf_d in the dark as described above, it can be prevented or suppressed that the junction temperature is detected lower than the true value.
  • control in step S70 are not particularly limited.
  • the controller 9 controls the LEDs 1a to 1h so that the luminance of the LEDs falls within a desired range.
  • a control example in which each of the output currents of the variable current sources 2a to 2h is controlled in accordance with each of the junction temperatures can be considered. In this case, by preventing or suppressing the junction temperature from being detected lower than the true value, it is possible to prevent or suppress the luminance from becoming higher than the desired range, thereby reducing the power consumption of the LED. It becomes.
  • control unit 9 controls the output currents of the variable current sources 2a to 2h according to the junction temperatures of the LEDs 1a to 1h so that the junction temperature does not exceed an allowable value.
  • the control unit 9 controls the output currents of the variable current sources 2a to 2h according to the junction temperatures of the LEDs 1a to 1h so that the junction temperature does not exceed an allowable value.
  • a fan for air-cooling the LED is provided in the optical semiconductor lighting device, and the control unit 9 controls the fan on / off according to the junction temperature of the LEDs 1a to 1h obtained in step S50 as well as the control in step S70.
  • a control example for controlling the rotational speed control is also conceivable. In this case, by preventing or suppressing the junction temperature from being detected lower than the true value, excessive driving of the fan can be prevented or suppressed, and the power consumption of the fan can be reduced.
  • step S80 the controller 9 determines whether or not a predetermined time has elapsed since the junction temperatures of the LEDs 1a to 1h were finally obtained in step S70. In order to realize this determination, the control unit 9 has a time measuring function.
  • step S60 when it is determined in step S60 that the predetermined time has not elapsed since the junction temperatures of the LEDs 1a to 1h were obtained (NO in step S80), the process returns to step S70.
  • step S80 if it is determined that the predetermined time has elapsed since the junction temperatures of the LEDs 1a to 1h were finally obtained in step S60 (YES in step S80), the process returns to step S10.
  • the optical semiconductor lighting device of the first embodiment continuously executes the above-described series of operations until the power is turned off.
  • each process of step S20, S30, S50, S60 may be performed using the relational expression which the control part 9 has memorize
  • the LEDs 1a to h are divided into a plurality of groups (for example, the first group to which the LEDs 1a to 1c, 1g, and 1h belong and the LEDs 1d to h). It is also possible to adopt a configuration in which one diode 6 is provided in each group.
  • the LEDs 1a to h corresponding to the date and time zone A configuration may be adopted in which the difference value used in step S50 is corrected by grasping the correlation of the photovoltaic power in advance.
  • FIG. 4 is a diagram illustrating a configuration of the optical semiconductor lighting device of the second embodiment.
  • the optical semiconductor lighting device of the second embodiment is the same as that of the first embodiment in that the control unit 9 receives a dimming signal from the outside and adjusts the output currents of the variable current sources 2a to 2h according to the dimming signal. It is different from the optical semiconductor lighting device, and other parts are basically the same as those of the optical semiconductor lighting device of the first embodiment.
  • the controller 9 outputs a PWM signal whose on-duty ratio changes according to a dimming signal from the outside to the variable current sources 2a to 2h.
  • the PWM signal output from the control unit 9 to the variable current sources 2a to 2h may have the same waveform as the external dimming signal.
  • the on-duty ratio of the PWM signal output from the control unit 9 to the variable current sources 2a to 2h may be proportional to the voltage value of the DC voltage signal.
  • variable current sources 2a to 2h are turned on in the on period of the PWM signal supplied from the control unit 9, and are turned off (output) in the off period of the PWM signal supplied from the control unit 9. (Current stop state). Then, the control unit 9 executes at least the processes of step S10 and step S40 in the off period of the PWM signal supplied from the control unit 9 to the variable current sources 2a to 2h. As a result, the junction temperatures of the LEDs 1a to 1h can be obtained without impeding illumination by the LEDs 1a to 1h. Note that all the processes of steps S10 to S60 in FIG. 3 may be executed during the OFF period of the PWM signal.
  • FIG. 5 is a diagram illustrating a configuration of the optical semiconductor lighting device of the third embodiment.
  • the optical semiconductor lighting device of the third embodiment is different from the optical semiconductor lighting device of the first embodiment in that the diode 6 is replaced with the thermistor 10, and other parts are basically the same as those of the first embodiment. This is the same as the optical semiconductor lighting device.
  • FIG. 6 is a flowchart showing the operation of the optical semiconductor lighting device of the third embodiment.
  • the optical semiconductor lighting device of the third embodiment starts the operation of the flowchart shown in FIG. 6 as soon as the startup of the device is completed.
  • control unit 9 controls each current source so that the constant current sources 5a and 8 are turned on and the other current sources are turned off (output current stop state), and the switch 3a is turned on.
  • the controller 9 controls the switch 3a so as to select the current source 5a.
  • the temperature of the thermistor 10 is measured by the voltage detector 7, and the forward voltage Vf of the LED 1a at the time of the constant current I C is measured by the voltage detector 4a (step S11).
  • the measurement result (temperature measurement result) of the voltage detection unit 7 and the measurement result of the voltage detection unit 4a are stored in a data holding unit such as an internal memory.
  • the thermistor 10 is arranged in the vicinity of the LED 1a. Thereby, the temperature of the thermistor 10 and the junction temperature of LED1a can be made substantially the same. Therefore, the temperature of the thermistor 10 can be regarded as the junction temperature of the LED 1a. Since the resistance value of the thermistor 10 is not affected by external light, the measurement result of the voltage detector 7 is not affected by external light. On the other hand, when external light is incident on the LED 1a, the measurement result of the voltage detector 4a is affected by the external light.
  • step S21 the control unit 9 obtains the forward voltage Vf_d in the dark of the LED 1a at the time of the constant current I C from the measurement result of the voltage detection unit 7, and the obtained data is stored in the internal memory or the like. Store in the holding unit.
  • Step S31 to Step S81 are the same as Step S30 to Step S80 in FIG.
  • the optical semiconductor lighting device of the third embodiment continuously performs the operation shown in FIG. 6 until the power is turned off.
  • step S21 may be executed using a relational expression stored in advance by the control unit 9, or may be executed using a data table stored in advance by the control unit 9.
  • the optical semiconductor lighting device of the third embodiment also has the same effect as the optical semiconductor lighting device of the first and second embodiments.
  • FIG. 7 is a diagram illustrating the configuration of the optical semiconductor lighting device of the fourth embodiment.
  • the optical semiconductor lighting device of the fourth embodiment is different from the optical semiconductor lighting device of the first embodiment in that the diode 6, the voltage detection unit 7, and the constant current source 8 are replaced with the shutter driving unit 11 and the shutter 12.
  • the other parts are basically the same as those of the optical semiconductor lighting device of the first embodiment.
  • FIG. 8 is a flowchart showing the operation of the optical semiconductor lighting device of the fourth embodiment.
  • the optical semiconductor lighting device starts the operation of the flowchart shown in FIG. 8 immediately after the start-up of the device is completed.
  • control unit 9 controls each current source so that the constant current source 5a is turned on and the other current sources are turned off (output current stop state), and the switch 3a is connected to the constant current source.
  • the control unit 9 controls the switch 3a so as to select 5a.
  • control unit 9 controls the shutter drive unit 12 so that the shutter drive unit 12 does not drive the shutter 11.
  • the forward voltage Vf of the LED 1a at the time of the constant current I C is measured by the voltage detector 4a (step S12).
  • Measurement results of the voltage detection unit 4a as the data of the forward voltage Vf_d of LED1a during the constant current I C, is stored in the data holding unit, such as an internal memory.
  • step S22 the controller 9 controls the shutter driver 12 so that the shutter driver 12 drives the shutter 11.
  • the forward voltage Vf_d in the dark state of the LED 1a at the constant current I C is measured by the voltage detection unit 4a (step S22).
  • step S22 the control unit 9 controls the shutter drive unit 12 so that the shutter drive unit 12 does not drive the shutter 11.
  • the outside light incident on the LED 1a returns to the state where it is not shielded by the shutter 11.
  • the obtained data is stored in a data holding unit such as an internal memory.
  • steps S42 to S82 are the same as steps S40 to S80 in FIG. 3, description thereof is omitted here.
  • the optical semiconductor lighting device of the fourth embodiment continuously performs the operation shown in FIG. 8 until the power is turned off.
  • the optical semiconductor lighting device of the fourth embodiment also has the same effects as the optical semiconductor lighting device of the first to third embodiments.
  • a light shielding shade used in an AFS adaptive front-lighting system
  • AFS adaptive front-lighting system
  • FIG. 9 is a diagram illustrating the configuration of the optical semiconductor lighting device of the fifth embodiment.
  • the voltage detectors 4a to 4h and the constant current sources 5a to 5h are replaced with the current detectors 13a to 13h and the constant voltage sources 14a to 14h, and the voltage detector 7 and the constant current source 8 are replaced. It differs from the optical semiconductor lighting device of the first embodiment in that the current detection unit 15 and the constant voltage source 16 are replaced, and other parts are basically the same as those of the optical semiconductor lighting device of the first embodiment. .
  • FIG. 10 is a flowchart showing the operation of the optical semiconductor lighting device of the fifth embodiment.
  • the optical semiconductor lighting device of the fifth embodiment starts the operation of the flowchart shown in FIG. 10 immediately after the start of the device is completed.
  • control unit 9 controls the variable current sources 2a to 2h so that the variable current sources 2a to 2h are turned off (output current stop state), and the switch 3a selects the constant voltage source 14a.
  • the control unit 9 controls the switch 3a. Under such a control state, the forward current If of the diode 6 is measured by the current detector 15, and the forward current If of the LED 1a at the constant current I C is measured by the current detector 13a (step S13). .
  • the measurement result of the current detection unit 15 and the measurement result of the current detection unit 13a are stored in a data holding unit such as an internal memory.
  • step S23 following step S13 the control unit 9 obtains the forward current If_d in the dark of the LED 1a from the measurement result of the current detection unit 15 and the measurement result of the current detection unit 13a, and stores the obtained data in an internal memory or the like. Stored in the data holding unit.
  • step S33 following step S23 the control unit 9 obtains a difference between the measurement result of the current detection unit 13a and the forward current If_d of the LED 1a in the dark, and stores the obtained data in a data holding unit such as an internal memory. To do.
  • step S43 the control unit 9 controls the variable current source 2b so that the variable current source 2b is turned off (output current stop state), and the switch 3b selects the constant voltage source 14b.
  • the controller 9 controls the switch 3b. Under such a control state, the forward current If of the LED 1b is measured by the current detector 13b.
  • step S43 the measurement of the forward current If of the LEDs 1c to 1h by the current detection units 13c to 13h is performed in the same manner as the measurement of the forward current If of the LED 1b by the current detection unit 13b.
  • the measurement results of the current detection units 13b to 13h are stored in a data holding unit such as an internal memory of the control unit 9.
  • step S53 following step S43 the control unit 9 determines the forward current If_d in the dark of the LEDs 1b to 1h from the difference value between the LED 1a obtained in step S33 and the measurement result of the current detection units 13b to 13h obtained in step S43. And the obtained data is stored in a data holding unit such as an internal memory.
  • step S63 following step S53 the control unit 9 determines the LED 1a to 1h based on the dark forward current If_d of the LED 1a obtained in step S23 and the dark forward current If_d of the LEDs 1b to 1h obtained in step S53.
  • the junction temperature is obtained, and the obtained data is stored in a data holding unit such as an internal memory.
  • steps S73 to S83 are the same as steps S70 to S80 in FIG. 3, the description thereof is omitted here.
  • the optical semiconductor lighting device of the fifth embodiment continuously performs the operation shown in FIG. 10 until the power is turned off.
  • the optical semiconductor lighting device of the fifth embodiment also has the same effects as the optical semiconductor lighting devices of the first to fourth embodiments.
  • the configuration of the voltage detection unit can be simplified compared to the current detection unit, the optical semiconductor illumination devices of the first to fourth embodiments are preferable to the optical semiconductor illumination device of the fifth embodiment.
  • the optical semiconductor lighting device of each embodiment described above includes a headlight (including high beam / low beam / small lamp / fog lamp, etc.) X11 of the vehicle X10, daylight / night driving (DRL). ) Light source X12, tail lamp (including small lamp and back lamp as appropriate) X13, stop lamp X14, and turn lamp X15.
  • the daylight / nighttime (DRL) light source X12 has a longer time to be affected by external light than other lamps, and therefore, the application of the present invention is more preferable than other lamps.
  • optical semiconductor lighting devices of the above-described embodiments are provided as modules (LED headlight module Y10 in FIG. 13, LED turn lamp module Y20 in FIG. 14, LED rear lamp module Y30 in FIG. 15, etc.).
  • it may be provided as a single IC that is a semi-finished product excluding the LEDs 1a to 1h and external components such as external capacitors used as part of the current source and voltage source.
  • optical semiconductor illuminating device of each above-mentioned embodiment may be used as a lamp provided in moving bodies other than a vehicle.
  • the optical semiconductor lighting devices of the above-described embodiments may be used as lamps provided at both ends of the main wing of an aircraft.
  • the optical semiconductor lighting devices of the above-described embodiments may be used as the lamps Z11 to Z13 provided in the traffic light Z10 shown in FIG.
  • an LED is used as the optical semiconductor element, but an optical semiconductor element other than the LED (for example, a laser diode) may be used.
  • the value of the output current of each constant current source is the same, but the present invention is not limited to this.
  • the correlation between the output current value of the constant current source 8 and the output current value of another constant current source is grasped in advance, and the forward voltage Vf of the LED is determined. What is necessary is just to reflect the correlation when calculating
  • the output voltage value of each constant voltage source is the same, but the present invention is not limited to this.
  • the correlation between the output voltage value of the constant voltage source 16 and the output voltage value of the other constant voltage source is grasped in advance, and the forward current If of the LED is calculated. What is necessary is just to reflect the correlation when calculating
  • the characteristics of each LED are the same, but the present invention is not limited to this.
  • the correlation between the characteristics of the LED 1a and the characteristics of the other LEDs is grasped in advance, and the LED forward voltage Vf, the LED forward current If, and the LED junction temperature are obtained. What is necessary is just to reflect a correlation.
  • the current source is arranged on the supply line side of the drive voltage V D, it has been disposed an LED on the ground side, the present invention is not limited thereto.
  • the LED is disposed on the supply line side of the drive voltage V D, it may be arranged a current source to the ground side.
  • the LED is arranged on the supply line side of the drive voltage V D, when subjected to deformation to place the current source to the ground, as shown in FIG. 17A It becomes a composition.
  • the diode 6 is disposed in the vicinity of the LED 1a.
  • the LED 1a in which the diode 6 is disposed in the vicinity has a conductive heat dissipation pad, and the heat dissipation pad of the LED 1a is preferably electrically connected to the cathode electrode of the diode 6.
  • FIG. 17B is a schematic top view showing an electrode arrangement example of the LED 1a and the diode 6 in the optical semiconductor lighting device shown in FIG. 17A.
  • An anode electrode 61 and a cathode electrode 62 are formed on the back side of the diode 6.
  • a driving voltage supply pattern 22 is formed on the front side of the mounting substrate 20 on which the diode 6 and the LED 1a having the structure shown in FIG. 2B are mounted.
  • the driving voltage supply pattern 22 it is preferable to use a copper foil or the like having a small electric resistance.
  • the back side anode electrode L9 and the back side heat radiation pad L11 of the LED 1a are electrically connected to the anode electrode 61 of the diode 6 by the drive voltage supply pattern 22.
  • the back side anode electrode L9 of the LED 1a and the back side heat radiation pad L11 are electrically connected. Therefore, instead of the structure shown in FIG. 2B, a structure in which the back-side anode electrode L9 and the back-side heat dissipating pad L11 are connected as shown in FIG. 17C may be used, and a front-side anode electrode L6 and a front-side heat dissipating pad L8 are shown in FIG.
  • the back side anode electrode L9 and the back side heat radiation pad L11 may be connected, and the front side anode electrode L6 and the front side heat dissipation pad L8 may be connected as shown in FIG. 17E.
  • the present invention can be applied to, for example, an optical semiconductor illumination device used in various lamps, outdoor lights, and the like of mobile objects.
  • Control unit 10 Thermistor 11 Shutter drive unit 12 Shutter 13a to 13h, 15 Current detection unit 14a to 14h, 16 constant voltage source 20 mounting board 21 ground pattern 22 drive voltage supply pattern X10 vehicle X11 headlight X12 light source for day / night driving (DRL) X13 tail lamp X14 stop lamp X15 turn lamp Y10 LED headlight module Y20 LED turn lamp module Y30 LED rear lamp module Z10 Traffic light Z11 to Z13 Lamp

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

An optical semiconductor illumination device, having an optical semiconductor element, at least one other optical semiconductor element, and first to fifth detectors. The first detector detects the forward voltage of the optical semiconductor element. The second detector detects the forward voltage of the optical semiconductor element when dark. The third detector detects the respective forward voltages of the other optical semiconductor elements. The fourth detector detects the respective forward voltages of the other optical semiconductor elements when dark, on the basis of the difference between the detection result from the first detector and the detection result from the second detector, and on the basis of the detection result from the third detector. The fifth detector detects the junction temperature of the optical semiconductor element from the detection result from the second detector. The sixth detector detects the respective junction temperatures of the other optical semiconductor elements from the detection result from the fourth detector.

Description

光半導体照明装置Optical semiconductor lighting device
 本発明は、LED(light emitting diode)やレーザーダイオードのような光半導体を用いる光半導体照明装置に関する。 The present invention relates to an optical semiconductor lighting device using an optical semiconductor such as an LED (light emitting diode) or a laser diode.
 従来の光半導体照明装置の一例として、特許文献1に開示されているLED照明装置を挙げることができる。図18は、特許文献1に開示されているLED照明装置の構成を示す図である。図18のLED照明装置は、複数のLED101a、101b、・・・と、複数の調整可能な電流源102a、102b、・・・と、複数の切り替え装置103a、103b、・・・と、電流計104と、測定電圧源105と、制御部106とを備えている。 As an example of a conventional optical semiconductor lighting device, an LED lighting device disclosed in Patent Document 1 can be cited. FIG. 18 is a diagram illustrating a configuration of the LED lighting device disclosed in Patent Document 1. As illustrated in FIG. 18 includes a plurality of LEDs 101a, 101b,..., A plurality of adjustable current sources 102a, 102b,..., A plurality of switching devices 103a, 103b,. 104, a measurement voltage source 105, and a control unit 106.
 LED101aに対応する切り替え装置102aは、LED101aがジャンクション温度検出のターゲットであるときに、LED102aの電気的接続を電流源102aから電流計104及び測定電圧源105へ切り替える。これにより、LED101aがジャンクション温度検出のターゲットであるときに、LED101aの順方向電圧Vfを測定電圧源105から出力される測定電圧に固定し、制御部106が電流計104で検出される電流値からLED101aのジャンクション温度を検出している。つまり、図18のLED照明装置は、LEDの順方向電圧Vfを基にLEDのジャンクション温度を検出している。 The switching device 102a corresponding to the LED 101a switches the electrical connection of the LED 102a from the current source 102a to the ammeter 104 and the measurement voltage source 105 when the LED 101a is a junction temperature detection target. Thus, when the LED 101a is a junction temperature detection target, the forward voltage Vf of the LED 101a is fixed to the measurement voltage output from the measurement voltage source 105, and the control unit 106 determines from the current value detected by the ammeter 104. The junction temperature of the LED 101a is detected. That is, the LED illumination device of FIG. 18 detects the junction temperature of the LED based on the forward voltage Vf of the LED.
特許第5102037号公報Japanese Patent No. 5102037
 しかしながら、LEDやレーザーダイオードのような光半導体は光起電力を有している。近年チップサイズの増大や発光効率の増大に伴って光半導体の光起電力は大きくなっており、1[V]以上の光起電力を有する光半導体チップも存在する。 However, optical semiconductors such as LEDs and laser diodes have photovoltaic power. In recent years, the photovoltaic power of optical semiconductors has increased with the increase in chip size and luminous efficiency, and there are optical semiconductor chips having a photovoltaic power of 1 [V] or more.
 図18のLED照明装置は、光起電力を考慮せずにLEDの順方向電圧Vfを基にLEDのジャンクション温度を検出しているため、光起電力に起因してLEDのジャンクション温度検出に誤差が生じることになる。 Since the LED illumination device of FIG. 18 detects the junction temperature of the LED based on the forward voltage Vf of the LED without considering the photovoltaic power, an error occurs in the detection of the junction temperature of the LED due to the photovoltaic power. Will occur.
 光起電力が大きい場合には、20℃以上のずれが発生することも有る。ジャンクション温度の許容限界値に近い所定温度以上で使用した場合、光半導体は指数関数的に劣化するので、ジャンクション温度検出の誤差によって寿命が非常に短くなる場合がある。例えば、10℃程度のずれで寿命が半減してしまうこともある。 When the photovoltaic power is large, a deviation of 20 ° C or more may occur. When the optical semiconductor is used at a predetermined temperature close to the allowable limit value of the junction temperature, the optical semiconductor deteriorates exponentially, so that the lifetime may be very short due to an error in detecting the junction temperature. For example, a lifetime of about 10 ° C. may be halved.
 本発明は、上記の状況に鑑み、ジャンクション温度の検出誤差が小さい光半導体照明装置を提供することを目的とする。 In view of the above situation, an object of the present invention is to provide an optical semiconductor lighting device having a small junction temperature detection error.
 上記目的を達成するために、本発明の一の態様に係る光半導体照明装置は、光半導体素子と、少なくとも一つの他の光半導体素子と、前記光半導体素子の順方向電圧を検出する第1検出部と、前記光半導体素子の暗黒時の順方向電圧を検出する第2検出部と、前記他の光半導体素子の順方向電圧それぞれを検出する第3検出部と、第1検出部の検出結果と第2検出部の検出結果の差分及び第3検出部の検出結果に基づいて、前記他の光半導体素子の暗黒時の順方向電圧それぞれを検出する第4検出部と、第2検出部の検出結果から前記光半導体素子のジャンクション温度を検出する第5検出部と、第4検出部の検出結果から前記他の光半導体素子のジャンクション温度それぞれを検出する第6検出部と、を有する構成(第1の構成)とされている。 To achieve the above object, an optical semiconductor lighting device according to an aspect of the present invention includes an optical semiconductor element, at least one other optical semiconductor element, and a first voltage that detects a forward voltage of the optical semiconductor element. A detection unit; a second detection unit that detects a forward voltage in the dark of the optical semiconductor element; a third detection unit that detects each of the forward voltages of the other optical semiconductor elements; and a detection of the first detection unit. A fourth detector for detecting each forward voltage in the dark of the other optical semiconductor element based on the difference between the result and the detection result of the second detector and the detection result of the third detector; and a second detector A fifth detector for detecting a junction temperature of the optical semiconductor element from a detection result of the second detector, and a sixth detector for detecting a junction temperature of the other optical semiconductor element from the detection result of the fourth detector. (First configuration) There.
 また、上記第1の構成から成る光半導体照明装置において、第2検出部は、前記光半導体素子の近傍に配置され外光の影響を受けずに所定の物理量を出力するセンサを含み、前記センサの検出結果に基づいて前記光半導体素子の暗黒時の順方向電圧を検出する構成(第2の構成)にしても良い。 In the optical semiconductor lighting device having the first configuration, the second detection unit includes a sensor that is disposed in the vicinity of the optical semiconductor element and outputs a predetermined physical quantity without being affected by external light, and the sensor It is also possible to adopt a configuration (second configuration) for detecting the forward voltage in the dark of the optical semiconductor element based on this detection result.
 また、上記第2の構成から成る光半導体照明装置において、前記センサは、遮光性物質で封止されたダイオードであり、第2検出部は、前記ダイオードの順方向電圧に基づいて前記光半導体素子の暗黒時の順方向電圧を検出する構成(第3の構成)にしても良い。 In the optical semiconductor lighting device having the second configuration, the sensor is a diode sealed with a light-shielding substance, and the second detection unit is configured to transmit the optical semiconductor element based on a forward voltage of the diode. Alternatively, the forward voltage in the dark may be detected (third configuration).
 また、上記第2の構成から成る光半導体照明装置において、前記センサは、サーミスターであり、第2検出部は、前記サーミスターによって検出された温度に基づいて前記光半導体素子の暗黒時の順方向電圧を検出する構成(第4の構成)にしても良い。 Further, in the optical semiconductor lighting device having the second configuration, the sensor is a thermistor, and the second detection unit is based on the temperature detected by the thermistor in order of darkness of the optical semiconductor element. A configuration for detecting a directional voltage (fourth configuration) may be used.
 また、上記第1の構成から成る光半導体照明装置において、第2検出部は、前記光半導体素子に入射する外光を遮光可能な可動式遮光機構を含み、前記光半導体素子に入射する外光を前記可動式遮光機構によって遮光した状態で前記光半導体素子の暗黒時の順方向電圧を検出する構成(第5の構成)にしても良い。 Further, in the optical semiconductor lighting device having the first configuration, the second detection unit includes a movable light shielding mechanism capable of shielding external light incident on the optical semiconductor element, and external light incident on the optical semiconductor element. May be configured to detect a forward voltage in the dark of the optical semiconductor element (fifth configuration) while being shielded by the movable light shielding mechanism.
 本発明の他の態様に係る光半導体照明装置は、光半導体素子と、少なくとも一つの他の光半導体素子と、前記光半導体素子の順方向電流を検出する第1検出部と、前記光半導体素子の暗黒時の順方向電流を検出する第2検出部と、前記他の光半導体素子の順方向電流それぞれを検出する第3検出部と、第1検出部の検出結果と第2検出部の検出結果の差分及び第3検出部の検出結果に基づいて、前記他の光半導体素子の暗黒時の順方向電流それぞれを検出する第4検出部と、第2検出部の検出結果から前記光半導体素子のジャンクション温度を検出する第5検出部と、第4検出部の検出結果から前記他の光半導体素子のジャンクション温度それぞれを検出する第6検出部と、を有する構成(第6の構成)とされている。 An optical semiconductor lighting device according to another aspect of the present invention includes an optical semiconductor element, at least one other optical semiconductor element, a first detection unit that detects a forward current of the optical semiconductor element, and the optical semiconductor element. A second detector for detecting forward current in the dark, a third detector for detecting forward currents of the other optical semiconductor elements, detection results of the first detector, and detection of the second detector Based on the difference between the results and the detection result of the third detector, a fourth detector for detecting each forward current in the dark of the other optical semiconductor elements, and the optical semiconductor element from the detection results of the second detector And a sixth detection unit for detecting each junction temperature of the other optical semiconductor element from the detection result of the fourth detection unit (sixth configuration). ing.
 また、上記第1~6いずれかの構成から成る光半導体照明装置において、外部からの調光信号に応じてオンデューティ比が変化するPWM信号に応じて前記光半導体素子及び前記他の光半導体素子に流れる電流を調整する電流調整部を備え、前記PWM信号のオフ期間において、少なくとも第1検出部及び第3検出部が検出動作を行う構成(第7の構成)にしても良い。 Further, in the optical semiconductor lighting device having any one of the first to sixth configurations, the optical semiconductor element and the other optical semiconductor elements according to a PWM signal whose on-duty ratio changes according to a dimming signal from the outside A current adjusting unit that adjusts the current flowing through the PWM signal, and a configuration (seventh configuration) in which at least the first detection unit and the third detection unit perform a detection operation during the off period of the PWM signal.
 また、上記第1~7いずれかの構成から成る光半導体照明装置において、前記光半導体素子及び前記他の光半導体素子は、発光ダイオード、または、レーザーダイオードである構成(第8の構成)にしても良い。 In the optical semiconductor lighting device having any one of the first to seventh configurations, the optical semiconductor element and the other optical semiconductor elements are light emitting diodes or laser diodes (eighth configuration). Also good.
 また、上記第8の構成から成る光半導体照明装置において、前記光半導体素子は、アノード電極、カソード電極、及び導電性の放熱パッドを有し、前記アノード電極及び前記カソード電極のいずれか一方と前記放熱パッドと前記センサの一端が電気的に接続されている構成(第9の構成)にしても良い。 In the optical semiconductor lighting device having the eighth configuration, the optical semiconductor element includes an anode electrode, a cathode electrode, and a conductive heat dissipation pad, and one of the anode electrode and the cathode electrode A configuration (a ninth configuration) in which the heat dissipating pad and one end of the sensor are electrically connected may be employed.
 また、上記第9の構成から成る光半導体照明装置において、前記光半導体素子は、光半導体チップと、前記光半導体チップの第1面と前記放熱パッドとに設けられる熱伝導ペーストと、前記光半導体チップの前記第1面に対向する第2面に形成されているP型領域と前記アノード電極とを電気的に接続する第1接続部材と、前記光半導体チップの前記第2面に形成されているN型領域と前記カソード電極とを電気的に接続する第2接続部材と、を有する構成(第10の構成)にしても良い。 In the optical semiconductor lighting device having the ninth configuration, the optical semiconductor element includes an optical semiconductor chip, a heat conductive paste provided on the first surface of the optical semiconductor chip and the heat dissipation pad, and the optical semiconductor. A P-type region formed on a second surface opposite to the first surface of the chip and a first connection member for electrically connecting the anode electrode; and formed on the second surface of the optical semiconductor chip. A second connection member that electrically connects the N-type region and the cathode electrode may be used (a tenth configuration).
 また、上記第10の構成から成る光半導体照明装置において、前記放熱パッドは、前記第1面及び前記第2面の法線方向から視て前記アノード電極と前記カソード電極との間に配置される構成(第11の構成)にしても良い。 In the optical semiconductor lighting device having the tenth configuration, the heat dissipating pad is disposed between the anode electrode and the cathode electrode as viewed from the normal direction of the first surface and the second surface. You may make it a structure (11th structure).
 また、上記第9~11いずれかの構成から成る光半導体照明装置において、少なくとも前記光半導体素子及び前記センサを実装する基板を有し、前記カソード電極及び前記放熱パッドが前記基板に形成されるグランドパターンによって前記センサの一端と電気的に接続されている構成(第12の構成)にしても良い。 The optical semiconductor lighting device having any one of the ninth to eleventh configurations further includes a substrate on which at least the optical semiconductor element and the sensor are mounted, and the cathode electrode and the heat dissipation pad are formed on the ground. A configuration in which the sensor is electrically connected to one end of the sensor (a twelfth configuration) may be employed.
 また、上記第9~11いずれかの構成から成る光半導体照明装置において、少なくとも前記光半導体素子及び前記センサを実装する基板を有し、前記アノード電極及び前記放熱パッドが前記基板に形成される駆動電圧供給用パターンによって前記センサの一端と電気的に接続されている構成(第13の構成)にしても良い。 The optical semiconductor lighting device having any one of the ninth to eleventh configurations includes a substrate on which at least the optical semiconductor element and the sensor are mounted, and the anode electrode and the heat dissipation pad are formed on the substrate. A configuration in which the sensor is electrically connected to one end of the sensor by a voltage supply pattern (a thirteenth configuration) may be employed.
 本発明に係る移動体は、上記第1~13いずれかの構成から成る光半導体照明装置を備える構成(第14の構成)とされている。 The moving body according to the present invention has a configuration (fourteenth configuration) including the optical semiconductor illumination device having any one of the first to thirteenth configurations.
 本発明に係る屋外灯は、請求項1~13いずれかの構成から成る光半導体照明装置を備える構成(第15の構成)とされている。 The outdoor lamp according to the present invention has a configuration (fifteenth configuration) including an optical semiconductor lighting device having the configuration according to any one of claims 1 to 13.
 本発明によれば、測定温度の誤差が小さい光半導体照明装置を提供することができる。 According to the present invention, it is possible to provide an optical semiconductor lighting device with a small measurement temperature error.
第1実施形態の光半導体照明装置の構成を示す図The figure which shows the structure of the optical semiconductor illuminating device of 1st Embodiment. 第1実施形態の光半導体照明装置の概略正面図Schematic front view of the optical semiconductor lighting device of the first embodiment LEDの概略縦断面の一例を示す図The figure which shows an example of the schematic longitudinal cross-section of LED LEDとダイオードの電極配置例を示す概略上面図Schematic top view showing an example of LED and diode electrode arrangement LEDの概略縦断面の他の例を示す図The figure which shows the other example of the schematic longitudinal cross-section of LED LEDの概略縦断面の他の例を示す図The figure which shows the other example of the schematic longitudinal cross-section of LED LEDの概略縦断面の他の例を示す図The figure which shows the other example of the schematic longitudinal cross-section of LED 第1実施形態の光半導体照明装置の動作を示すフローチャートThe flowchart which shows operation | movement of the optical semiconductor illuminating device of 1st Embodiment. 第2実施形態の光半導体照明装置の構成を示す図The figure which shows the structure of the optical semiconductor illuminating device of 2nd Embodiment. 第3実施形態の光半導体照明装置の構成を示す図The figure which shows the structure of the optical semiconductor illuminating device of 3rd Embodiment. 第3実施形態の光半導体照明装置の動作を示すフローチャートThe flowchart which shows operation | movement of the optical semiconductor illuminating device of 3rd Embodiment. 第4実施形態の光半導体照明装置の構成を示す図The figure which shows the structure of the optical semiconductor illuminating device of 4th Embodiment. 第4実施形態の光半導体照明装置の動作を示すフローチャートThe flowchart which shows operation | movement of the optical semiconductor illuminating device of 4th Embodiment. 第5実施形態の光半導体照明装置の構成を示す図The figure which shows the structure of the optical semiconductor illuminating device of 5th Embodiment. 第5実施形態の光半導体照明装置の動作を示すフローチャートThe flowchart which shows operation | movement of the optical semiconductor illuminating device of 5th Embodiment. 光半導体照明装置が搭載される車両の外観図(前面)External view of vehicle equipped with optical semiconductor lighting device (front) 光半導体照明装置が搭載される車両の外観図(背面)External view of vehicle equipped with optical semiconductor lighting device (back) LEDヘッドライトモジュールの外観図External view of LED headlight module LEDターンランプモジュールの外観図External view of LED turn lamp module LEDリアランプモジュールの外観図External view of LED rear lamp module 光半導体照明装置が搭載される信号機の外観図External view of a traffic light equipped with an optical semiconductor lighting device 第1実施形態の光半導体照明装置の変形例を示す図The figure which shows the modification of the optical semiconductor illuminating device of 1st Embodiment. LEDとダイオードの電極配置例を示す上面図Top view showing an example of LED and diode electrode arrangement LEDの概略縦断面の他の例を示す図The figure which shows the other example of the schematic longitudinal cross-section of LED LEDの概略縦断面の他の例を示す図The figure which shows the other example of the schematic longitudinal cross-section of LED LEDの概略縦断面の他の例を示す図The figure which shows the other example of the schematic longitudinal cross-section of LED 特許文献1に開示されているLED照明装置の構成を示す図The figure which shows the structure of the LED lighting apparatus currently disclosed by patent document 1
<第1実施形態>
 図1は、第1実施形態の光半導体照明装置の構成を示す図である。
<First Embodiment>
FIG. 1 is a diagram illustrating a configuration of the optical semiconductor lighting device according to the first embodiment.
 図1に示す光半導体照明装置は、LED1a~1hと、可変電流源2a~2hと、スイッチ3a~3hと、電圧検出部4a~4hと、定電流源5a~5hと、を備える。本実施形態ではLEDの個数は8個であるが本発明はこれに限定されることは無く、光半導体照明装置がLEDを複数備えていればよい。 1 includes LEDs 1a to 1h, variable current sources 2a to 2h, switches 3a to 3h, voltage detectors 4a to 4h, and constant current sources 5a to 5h. In the present embodiment, the number of LEDs is eight, but the present invention is not limited to this, and the optical semiconductor lighting device may include a plurality of LEDs.
 LEDと他の部品との関係は全てのLEDで同じであるため、ここではLED1aを例に挙げて説明する。スイッチ3aは、可変電流源2a及び定電流源5aのいずれか一方を選択し、選択した電流源とLED1aのアノードとを電気的に接続する。可変電流源2a及び定電流源5aには直流の駆動電圧Vが供給される。LED1aのカソードはグランド電位となっている。電圧検出部4aは、定電流源5aから出力される定電流IがLED1aに供給されているときのLED1aの順方向電圧Vfを検出する。 Since the relationship between the LED and other components is the same for all LEDs, the LED 1a will be described as an example here. The switch 3a selects one of the variable current source 2a and the constant current source 5a, and electrically connects the selected current source and the anode of the LED 1a. A DC driving voltage V D is supplied to the variable current source 2a and the constant current source 5a. The cathode of the LED 1a is at ground potential. Voltage detection unit 4a detects the forward voltage Vf of LED1a when the constant current I C that is output from the constant current source 5a is supplied to the LED1a.
 図1に示す光半導体照明装置は、ダイオード6と、電圧検出部7と、定電流源8と、制御部9と、をさらに備える。ダイオード6は、例えば黒色樹脂などの遮光性物質で封止されたダイオードである。定電流源8には直流の駆動電圧Vが供給される。ダイオード6のカソードは定電流源8に接続される。ダイオード6のカソードはグランド電位となっている。電圧検出部7は、定電流源8から出力される定電流Iがダイオード6に供給されているときのダイオード6の順方向電圧Vfを検出する。制御部9は、電圧検出部4a~4h及び7の各出力に基づいて可変電流源2a~2hの各出力電流を制御する。制御部9の制御内容の詳細については後述する。なお、図1においては制御線の図示を省略しているが、制御部9は、定電流源5a~5h及び8のオン/オフ制御も行う。このオン/オフ制御は、例えば定電流源5a~5h及び8それぞれの内部に駆動電圧Vの供給ラインとの電気的接続と遮断とを切り替える切替スイッチを設け、制御部9が当該切替スイッチを制御することによって実現することができる。 The optical semiconductor lighting device shown in FIG. 1 further includes a diode 6, a voltage detection unit 7, a constant current source 8, and a control unit 9. The diode 6 is a diode sealed with a light shielding material such as black resin. A DC drive voltage V D is supplied to the constant current source 8. The cathode of the diode 6 is connected to the constant current source 8. The cathode of the diode 6 is at ground potential. Voltage detector 7 detects the forward voltage Vf of the diode 6 when the constant current I C that is output from the constant current source 8 is supplied to the diode 6. The control unit 9 controls the output currents of the variable current sources 2a to 2h based on the outputs of the voltage detection units 4a to 4h and 7. Details of the control contents of the control unit 9 will be described later. Although the control lines are not shown in FIG. 1, the control unit 9 also performs on / off control of the constant current sources 5a to 5h and 8. The ON / OFF control, for example provided with a changeover switch for switching between blocking and electrical connection between the constant current source 5a ~ 5h and 8 the supply line of the internal drive voltage V D, respectively, the control unit 9 the changeover switch It can be realized by controlling.
 図2Aは、第1実施形態の光半導体照明装置の概略正面図である。 FIG. 2A is a schematic front view of the optical semiconductor lighting device of the first embodiment.
 ダイオード6はLED1aの近傍に配置されている。これにより、ダイオード6のジャンクション温度とLED1aのジャンクション温度を略同一にすることができる。なお、図2Aでは装置正面の中心Oに対して45°おきにLEDが配置されているが、この配置はあくまで一例であり、本発明は図2Aに示す配置例に限定されない。 The diode 6 is disposed in the vicinity of the LED 1a. Thereby, the junction temperature of the diode 6 and the junction temperature of LED1a can be made substantially the same. In FIG. 2A, LEDs are arranged at intervals of 45 ° with respect to the center O of the front of the apparatus, but this arrangement is merely an example, and the present invention is not limited to the arrangement example shown in FIG. 2A.
 ダイオード6が近傍に配置されるLED1aは導電性の放熱パッドを有し、LED1aの放熱パッドはダイオード6のカソード電極と電気的に接続されていることが望ましい。この電気的接続を介してLED1aの放熱パッドからダイオード6のカソード電極に熱が伝達されるため、LED1aのジャンクション温度とダイオード6のジャンクション温度との差を小さくすることができるからである。なお、LED1b~1hはLED1aと同一の構造或いは異なる構造のいずれであっても構わない。 It is desirable that the LED 1a in which the diode 6 is disposed in the vicinity has a conductive heat radiating pad, and the heat radiating pad of the LED 1a is electrically connected to the cathode electrode of the diode 6. This is because heat is transferred from the heat dissipation pad of the LED 1a to the cathode electrode of the diode 6 through this electrical connection, so that the difference between the junction temperature of the LED 1a and the junction temperature of the diode 6 can be reduced. The LEDs 1b to 1h may have the same structure as the LED 1a or a different structure.
 図2Bは、LED1aの概略縦断面の一例を示す図である。図2Bに示す構造のLED1aは、透光性樹脂L0と、LEDチップL1と、絶縁性基板L2と、ボンディングワイヤL3及びL4と、熱伝導ペーストL5と、を備える。 FIG. 2B is a diagram showing an example of a schematic longitudinal section of the LED 1a. The LED 1a having the structure shown in FIG. 2B includes a translucent resin L0, an LED chip L1, an insulating substrate L2, bonding wires L3 and L4, and a heat conductive paste L5.
 絶縁性基板L2は、表側アノード電極L6、表側カソード電極L7、表側放熱パッドL8、裏側アノード電極L9、裏側カソード電極L10、裏側放熱パッドL11、及びスルーホールL12~L14を備える。表側アノード電極L6と裏側アノード電極L9とはスルーホールL12によって電気的に接続され、表側カソード電極L7と裏側カソード電極L10とはスルーホールL13によって電気的に接続され、表側放熱パッドL8と裏側放熱パッドL11とはスルーホールL14によって電気的に接続される。 The insulating substrate L2 includes a front-side anode electrode L6, a front-side cathode electrode L7, a front-side heat dissipation pad L8, a back-side anode electrode L9, a back-side cathode electrode L10, a back-side heat dissipation pad L11, and through holes L12 to L14. The front side anode electrode L6 and the back side anode electrode L9 are electrically connected by a through hole L12, and the front side cathode electrode L7 and the back side cathode electrode L10 are electrically connected by a through hole L13, and the front side heat radiating pad L8 and the back side heat radiating pad. L11 is electrically connected through a through hole L14.
 LEDチップL1の裏面と表側放熱パッドL8との間には熱伝導ペーストL5が設けられ、LEDチップL1において発生した熱は熱伝導ペーストL5を介して表側放熱パッドL8に伝わる。熱伝導ペーストL5としては、熱伝導が高い銀ペースト等を用いるとよい。 The heat conductive paste L5 is provided between the back surface of the LED chip L1 and the front heat dissipation pad L8, and the heat generated in the LED chip L1 is transmitted to the front heat dissipation pad L8 via the heat conductive paste L5. As the heat conductive paste L5, a silver paste or the like having high heat conductivity may be used.
 LEDチップL1の表面に形成されているP型領域と表側アノード電極L6とはボンディングワイヤL3によって電気的に接続され、LEDチップL1の表面に形成されているN型領域と表側カソード電極L7とはボンディングワイヤL3によって電気的に接続される。 The P-type region formed on the surface of the LED chip L1 and the front-side anode electrode L6 are electrically connected by a bonding wire L3, and the N-type region formed on the surface of the LED chip L1 and the front-side cathode electrode L7 are connected to each other. It is electrically connected by a bonding wire L3.
 透光性樹脂L0は、LEDチップL1と、絶縁性基板L2の表面と、ボンディングワイヤL3及びL4と、を覆っている。 The translucent resin L0 covers the LED chip L1, the surface of the insulating substrate L2, and the bonding wires L3 and L4.
 図2Cは、LED1aとダイオード6の電極配置例を示す概略上面図である。ダイオード6の裏側にアノード電極61とカソード電極62とが形成されている。また、ダイオード6と図2Bに示す構造のLED1aとを実装する実装基板20の表側にグランドパターン21が形成されている。グランドパターン21としては、電気抵抗が小さい銅箔等を用いるとよい。LED1aの裏側カソード電極L10及び裏側放熱パッドL11がグランドパターン21によってダイオード6のカソード電極62と電気的に接続されている。 FIG. 2C is a schematic top view showing an electrode arrangement example of the LED 1 a and the diode 6. An anode electrode 61 and a cathode electrode 62 are formed on the back side of the diode 6. A ground pattern 21 is formed on the front side of the mounting substrate 20 on which the diode 6 and the LED 1a having the structure shown in FIG. 2B are mounted. As the ground pattern 21, it is preferable to use a copper foil or the like having a small electric resistance. The back side cathode electrode L10 and the back side heat radiation pad L11 of the LED 1a are electrically connected to the cathode electrode 62 of the diode 6 by the ground pattern 21.
 図2Cに示すように、LED1aの裏側カソード電極L10と裏側放熱パッドL11とは電気的に接続される。したがって、図2Bに示す構造の代わりに、図2Dに示すように裏側カソード電極L10と裏側放熱パッドL11とが繋がっている構造でもよく、図2Eに示すように表側カソード電極L7と表側放熱パッドL8とが繋がっている構造でもよく、図2Fに示すように裏側カソード電極L10と裏側放熱パッドL11とが繋がっており表側カソード電極L7と表側放熱パッドL8とが繋がっている構造でもよい。 As shown in FIG. 2C, the back side cathode electrode L10 and the back side heat radiation pad L11 of the LED 1a are electrically connected. Therefore, instead of the structure shown in FIG. 2B, a structure in which the back-side cathode electrode L10 and the back-side heat dissipating pad L11 are connected as shown in FIG. 2D may be used, and the front-side cathode electrode L7 and the front-side heat dissipating pad L8 are shown in FIG. The backside cathode electrode L10 and the backside heat dissipation pad L11 are connected as shown in FIG. 2F, and the frontside cathode electrode L7 and the frontside heat dissipation pad L8 are connected.
 図3は、第1実施形態の光半導体照明装置の動作を示すフローチャートである。 FIG. 3 is a flowchart showing the operation of the optical semiconductor lighting device of the first embodiment.
 第1実施形態の光半導体照明装置は、装置の起動が完了すると直ちに図3に示すフローチャートの動作を開始する。 The optical semiconductor lighting device of the first embodiment starts the operation of the flowchart shown in FIG. 3 as soon as the startup of the device is completed.
 まず始めに、定電流源5a及び8がオン状態になり、それ以外の電流源がオフ状態(出力電流停止状態)になるように制御部9が各電流源を制御するとともに、スイッチ3aが定電流源5aを選択するように制御部9がスイッチ3aを制御する。このような制御状態の下で、定電流I時におけるダイオード6の順方向電圧Vfが電圧検出部7によって測定され、定電流I時におけるLED1aの順方向電圧Vfが電圧検出部4aによって測定される(ステップS10)。電圧検出部7の測定結果及び電圧検出部4aの測定結果は、制御部9の内部メモリ(不図示)に格納される。なお、内部メモリの代わりに内部レジスタなどの他のデータ保持部を用いてもよい。 First, the control unit 9 controls each current source so that the constant current sources 5a and 8 are turned on and the other current sources are turned off (output current stop state), and the switch 3a is turned on. The controller 9 controls the switch 3a so as to select the current source 5a. Under such a control state, the forward voltage Vf of the diode 6 at the time of the constant current I C is measured by the voltage detector 7, and the forward voltage Vf of the LED 1a at the time of the constant current I C is measured by the voltage detector 4a. (Step S10). The measurement result of the voltage detector 7 and the measurement result of the voltage detector 4a are stored in an internal memory (not shown) of the controller 9. Note that another data holding unit such as an internal register may be used instead of the internal memory.
 ダイオード6が遮光性物質で封止されたダイオードであるため、電圧検出部7の測定結果は外光の影響を受けていない。つまり、電圧検出部7よって測定される定電流I時におけるダイオード6の順方向電圧Vfは定電流I時におけるダイオード6の暗黒時の順方向電圧Vf_dと等価である。一方、LED1aに外光が入射した場合に、電圧検出部4aの測定結果は外光の影響を受ける。 Since the diode 6 is a diode sealed with a light-shielding substance, the measurement result of the voltage detector 7 is not affected by external light. That is, the forward voltage Vf of the diode 6 at the constant current I C measured by the voltage detector 7 is equivalent to the forward voltage Vf_d of the diode 6 at the dark time at the constant current I C. On the other hand, when external light is incident on the LED 1a, the measurement result of the voltage detector 4a is affected by the external light.
 ステップS10に続くステップS20において、制御部9は、電圧検出部7の測定結果及び電圧検出部4aの測定結果から、定電流I時におけるLED1aの暗黒時の順方向電圧Vf_dを求めて、求めたデータを内部メモリなどのデータ保持部に格納する。 In step S20 following step S10, the control unit 9, the measurement results of the measurement result of the voltage detector 7 and the voltage detection unit 4a, for a forward voltage Vf_d during dark LED1a during the constant current I C, determined The stored data is stored in a data holding unit such as an internal memory.
 例えば、定電流I時におけるダイオード6の暗黒時の順方向電圧Vf_dと定電流I時におけるLED1aの暗黒時の順方向電圧Vf_dとが同一温度条件下で1:5の関係である場合には、電圧検出部7の測定結果を5倍して電圧検出部4aの測定結果から引くことでLED1aの光起電力を求め、電圧検出部4aの測定結果からLED1aの光起電力を引けばよい。これにより、定電流I時におけるLED1aの暗黒時の順方向電圧Vf_dを求めることができる。定電流I時におけるダイオード6の暗黒時の順方向電圧Vf_dと定電流I時におけるLED1aの暗黒時の順方向電圧Vf_dとの同一温度条件下での関係は、ダイオード6とLED1aの各特性から理論的に求まる。 For example, the forward voltage Vf_d during dark LED1a in forward voltage Vf_d a constant current I C at the time of dark diode 6 during the constant current I C is 1 at the same temperature conditions: when a 5 relationship Is obtained by multiplying the measurement result of the voltage detection unit 7 by 5 and subtracting it from the measurement result of the voltage detection unit 4a to obtain the photovoltaic power of the LED 1a, and subtracting the photovoltaic power of the LED 1a from the measurement result of the voltage detection unit 4a. . Thereby, the forward voltage Vf_d when the LED 1a is dark at the time of the constant current I C can be obtained. Each characteristic of the relationship at the same temperature of the forward voltage Vf_d during dark LED1a in forward voltage Vf_d a constant current I C at the time of dark diode 6 during the constant current I C, the diode 6 and LED1a It can be found theoretically from
 ステップS20に続くステップS30において、制御部9は、電圧検出部4aの測定結果と定電流I時におけるLED1aの暗黒時の順方向電圧Vf_dとの差分(=LED1aの光起電力)を求めて、求めたデータを内部メモリなどのデータ保持部に格納する。 In step S30 following step S20, the control unit 9 obtains the difference (= photovoltaic LED1a) the forward voltage Vf_d during dark LED1a in the measurement result and the constant current I C at the voltage detection unit 4a The obtained data is stored in a data holding unit such as an internal memory.
 なお、ステップS20の処理中にLED1aの光起電力を求めている場合は、ステップS20の処理中に求めたLED1aの光起電力をステップS30で流用してもよい。 In addition, when the photovoltaic power of LED1a is calculated | required during the process of step S20, you may divert the photovoltaic power of LED1a calculated | required during the process of step S20 by step S30.
 ステップS30に続くステップS40において、定電流源5bがオン状態になり、可変電流源2bがオフ状態(出力電流停止状態)になるように制御部9が定電流源5b及び可変電流源2bを制御するとともに、スイッチ3bが定電流源5bを選択するように制御部9がスイッチ3bを制御する。このような制御状態の下で、定電流I時におけるLED1bの順方向電圧Vfが電圧検出部4bによって測定される。 In step S40 following step S30, the control unit 9 controls the constant current source 5b and the variable current source 2b so that the constant current source 5b is turned on and the variable current source 2b is turned off (output current stopped state). At the same time, the control unit 9 controls the switch 3b so that the switch 3b selects the constant current source 5b. Under such a control state, the forward voltage Vf of the LED 1b at the time of the constant current I C is measured by the voltage detector 4b.
 電圧検出部4bによる定電流I時におけるLED1bの順方向電圧Vfの測定において、スイッチ3a,3c~3h、定電流源5a,5c~2h、及び可変電流源2a,2c~2hの状態は特に限定されない。例えば、スイッチ3a,3c~3hが可変電流源2a,2c~2hを選択し、可変電流源2a,2c~2hがオン状態になるようにすれば、定電流I時におけるLED1a,1c~1hの暗黒時の順方向電圧Vf_dを求める際に、LED1bに入射するLED1a,1c~1hの影響を排除することが可能となる。また、例えば、スイッチ3a,3c~3hが定電流源5c~5hを選択し、定電流源5c~5hがオン状態になるようにすれば、電圧検出部4bによる定電流I時におけるLED1bの順方向電圧Vfの測定と同時に、電圧検出部4c~4hによる定電流I時におけるLED1b~1hの順方向電圧Vfを測定することが可能となる。 In the measurement of the forward voltage Vf of LED1b during the constant current I C by the voltage detection unit 4b, a switch 3a, 3c ~ 3h, the constant current source 5a, 5c ~ 2h, and the variable current source 2a, the 2c ~ 2h state particularly It is not limited. For example, if the switches 3a and 3c to 3h select the variable current sources 2a and 2c to 2h and the variable current sources 2a and 2c to 2h are turned on, the LEDs 1a, 1c to 1h at the constant current I C are obtained. When the forward voltage Vf_d in the dark is determined, the influence of the LEDs 1a and 1c to 1h incident on the LED 1b can be eliminated. Further, for example, if the switches 3a, 3c to 3h select the constant current sources 5c to 5h and the constant current sources 5c to 5h are turned on, the LED 1b at the constant current I C by the voltage detector 4b is set. simultaneously with the measurement of the forward voltage Vf, it is possible to measure a forward voltage Vf of the LED 1b ~ 1h during the constant current I C by the voltage detection unit 4c ~ 4h.
 ステップS40において、電圧検出部4c~4hによる定電流I時におけるLED1c~1hの順方向電圧Vfの測定も、電圧検出部4bによる定電流I時におけるLED1bの順方向電圧Vfの測定と同様に実行される。そして、電圧検出部4b~4hの測定結果は、制御部9の内部メモリなどのデータ保持部に格納される。 In step S40, the measurement of the forward voltage Vf of the LEDs 1c to 1h at the constant current I C by the voltage detectors 4c to 4h is the same as the measurement of the forward voltage Vf of the LED 1b at the constant current I C by the voltage detector 4b. To be executed. The measurement results of the voltage detection units 4b to 4h are stored in a data holding unit such as an internal memory of the control unit 9.
 ステップS40に続くステップS50において、制御部9は、ステップS40で求めた電圧検出部4b~4hの測定結果とステップS30で求めたLED1aの差分値(=LED1aの光起電力)から、定電流I時におけるLED1b~1hの暗黒時の順方向電圧Vf_dを求めて、求めたデータを内部メモリなどのデータ保持部に格納する。 In step S50 following step S40, the control unit 9 determines the constant current I from the difference between the measurement result of the voltage detection units 4b to 4h obtained in step S40 and the LED 1a obtained in step S30 (= photovoltage of the LED 1a). The forward voltage Vf_d in the dark of the LEDs 1b to 1h at the time C is obtained, and the obtained data is stored in a data holding unit such as an internal memory.
 例えば、定電流I時におけるLED1aの光起電力と定電流I時におけるLED1bの光起電力とが同一受光条件下で1:1の関係である場合には、ステップS40で求めた電圧検出部4bの測定結果からステップS30で求めたLED1aの差分値(=LED1aの光起電力)を引けばよい。これにより、定電流I時におけるLED1bの暗黒時の順方向電圧Vf_dを求めることができる。定電流I時におけるLED1aの光起電力と定電流I時におけるLED1bの光起電力との同一受光条件下での関係は、LED1a及び1bの各特性から理論的に求まる。LED1c~1hについてもLED1bと同様である。 For example, when the photovoltaic power of the LED 1a at the constant current I C and the photovoltaic power of the LED 1b at the constant current I C have a 1: 1 relationship under the same light receiving conditions, the voltage detection obtained in step S40 What is necessary is just to subtract the difference value (= photovoltaic power of LED1a) of LED1a calculated | required by step S30 from the measurement result of the part 4b. Thereby, the forward voltage Vf_d when the LED 1b is dark at the time of the constant current I C can be obtained. Relationship in the same receiving conditions and photovoltaic LED1b in photovoltaic and constant current I C at the LED1a during the constant current I C is obtained theoretically from the properties of LED1a and 1b. The LEDs 1c to 1h are the same as the LED 1b.
 ステップS50に続くステップS60において、制御部9は、ステップS20で求めた定電流I時におけるLED1aの暗黒時の順方向電圧Vf_d及びステップS50で求めた定電流I時におけるLED1b~1hの暗黒時の順方向電圧Vf_dから、LED1a~1hのジャンクション温度を求めて、求めたデータを内部メモリなどのデータ保持部に格納する。定電流I時におけるLED1aの暗黒時の順方向電圧Vf_dとLED1aのジャンクション温度との関係は、LED1aの特性から理論的に求まる。LED1b~1hについてもLED1aと同様である。 In step S60 following step S50, the controller 9 determines the forward voltage Vf_d of the LED 1a in the dark at the constant current I C obtained in step S20 and the darkness of the LEDs 1b to 1h in the constant current I C obtained in step S50. The junction temperatures of the LEDs 1a to 1h are obtained from the forward voltage Vf_d at the time, and the obtained data is stored in a data holding unit such as an internal memory. Relationship between the forward voltage Vf_d and LED1a junction temperature during dark LED1a during the constant current I C is obtained theoretically from the characteristics of LED1a. The LEDs 1b to 1h are the same as the LED 1a.
 ステップS60に続くステップS70において、制御部9は、ステップS50で求めたLED1a~1hのジャンクション温度それぞれに応じて、可変電流源2a~2hの出力電流それぞれを制御する。 In step S70 following step S60, the control unit 9 controls the output currents of the variable current sources 2a to 2h according to the junction temperatures of the LEDs 1a to 1h obtained in step S50.
 LEDのジャンクション温度とLEDの順方向電圧Vfとの間には負の相関があり、ジャンクション温度が上がると順方向電圧Vfが低下する。このため、順方向電圧Vfに光起電力が含まれていると、ジャンクション温度が真の値よりも低く検出されることになる。本実施形態では、上述の通り暗黒時の順方向電圧Vf_dからジャンクション温度を求めているので、ジャンクション温度が真の値よりも低く検出されることを防止あるいは抑制することができる。 There is a negative correlation between the junction temperature of the LED and the forward voltage Vf of the LED, and the forward voltage Vf decreases as the junction temperature increases. For this reason, when the photovoltaic voltage is included in the forward voltage Vf, the junction temperature is detected lower than the true value. In the present embodiment, since the junction temperature is obtained from the forward voltage Vf_d in the dark as described above, it can be prevented or suppressed that the junction temperature is detected lower than the true value.
 ステップS70での制御内容は特に限定されないが、例えば、ジャンクション温度が上昇すると発光効率が低下することを考慮して、LEDの輝度が所望の範囲に収まるように、制御部9が、LED1a~1hのジャンクション温度それぞれに応じて、可変電流源2a~2hの出力電流それぞれを制御する制御例が考えられる。この場合、ジャンクション温度が真の値よりも低く検出されることを防止あるいは抑制することにより、輝度が所望の範囲より高くなることを防止あるいは抑制することができ、LEDの消費電力の低減が可能となる。 The contents of control in step S70 are not particularly limited. For example, in consideration of the fact that the luminous efficiency decreases as the junction temperature rises, the controller 9 controls the LEDs 1a to 1h so that the luminance of the LEDs falls within a desired range. A control example in which each of the output currents of the variable current sources 2a to 2h is controlled in accordance with each of the junction temperatures can be considered. In this case, by preventing or suppressing the junction temperature from being detected lower than the true value, it is possible to prevent or suppress the luminance from becoming higher than the desired range, thereby reducing the power consumption of the LED. It becomes.
 また、例えば、ジャンクション温度が許容値を超えないように、制御部9が、LED1a~1hのジャンクション温度それぞれに応じて、可変電流源2a~2hの出力電流それぞれを制御する制御例が考えられる。この場合、ジャンクション温度が真の値よりも低く検出されることを防止あるいは抑制することにより、ジャンクション温度が上がり過ぎることを防止あるいは抑制することができ、LEDの寿命を長くすることができる。 Also, for example, a control example in which the control unit 9 controls the output currents of the variable current sources 2a to 2h according to the junction temperatures of the LEDs 1a to 1h so that the junction temperature does not exceed an allowable value can be considered. In this case, by preventing or suppressing the detection of the junction temperature lower than the true value, it is possible to prevent or suppress the junction temperature from rising excessively, and to extend the life of the LED.
 また、LEDを空冷するためのファンを光半導体照明装置に設け、制御部9が、ステップS70での制御とともに、ステップS50で求めたLED1a~1hのジャンクション温度に応じてファンのオン/オフ制御あるいは回転数制御を制御する制御例も考えられる。この場合、ジャンクション温度が真の値よりも低く検出されることを防止あるいは抑制することにより、ファンの過剰な駆動を防止あるいは抑制することができ、ファンの消費電力の低減が可能となる。 In addition, a fan for air-cooling the LED is provided in the optical semiconductor lighting device, and the control unit 9 controls the fan on / off according to the junction temperature of the LEDs 1a to 1h obtained in step S50 as well as the control in step S70. A control example for controlling the rotational speed control is also conceivable. In this case, by preventing or suppressing the junction temperature from being detected lower than the true value, excessive driving of the fan can be prevented or suppressed, and the power consumption of the fan can be reduced.
 ステップS70に続くステップS80において、制御部9は、最後にステップS70でLED1a~1hのジャンクション温度を求めてから所定時間が経過したか否かを判定する。この判定を実現するために制御部9は計時機能を備えている。 In step S80 following step S70, the controller 9 determines whether or not a predetermined time has elapsed since the junction temperatures of the LEDs 1a to 1h were finally obtained in step S70. In order to realize this determination, the control unit 9 has a time measuring function.
 最後にステップS60でLED1a~1hのジャンクション温度を求めてから所定時間が経過していないと判定された場合(ステップS80のNO)、ステップS70に戻る。 Finally, when it is determined in step S60 that the predetermined time has not elapsed since the junction temperatures of the LEDs 1a to 1h were obtained (NO in step S80), the process returns to step S70.
 一方、最後にステップS60でLED1a~1hのジャンクション温度を求めてから所定時間が経過していると判定された場合(ステップS80のYES)、ステップS10に戻る。 On the other hand, if it is determined that the predetermined time has elapsed since the junction temperatures of the LEDs 1a to 1h were finally obtained in step S60 (YES in step S80), the process returns to step S10.
 第1実施形態の光半導体照明装置は、電源オフ状態になるまで上述した一連の動作を継続して実行する。 The optical semiconductor lighting device of the first embodiment continuously executes the above-described series of operations until the power is turned off.
 なお、ステップS20、S30、S50、S60の各処理は、制御部9が予め記憶している関係式を用いて実行してもよく、制御部9が予め記憶しているデータテーブルを用いて実行してもよい。 In addition, each process of step S20, S30, S50, S60 may be performed using the relational expression which the control part 9 has memorize | stored previously, and is performed using the data table which the control part 9 has memorize | stored beforehand. May be.
 上述した図3に示すフローチャートの動作は、LED1a~hに入射する外光の光量分布が均一であること、つまりLED1a~1hそれぞれに入射する外光がそれぞれ同等の光量であることを期待したものとなっている。 The above-described operation of the flowchart shown in FIG. 3 expects that the distribution of the amount of external light incident on the LEDs 1a to h is uniform, that is, the external light incident on each of the LEDs 1a to 1h has the same amount of light. It has become.
 LED1a~hに入射する外光の光量分布が均一でないことが予想される場合には、例えば、LED1a~hを複数のグループ(例えば、LED1a~1c,1g,1hが属する第1グループとLED1d~1fが属する第2グループと)に分類し、各グループにダイオード6を1個設ける構成にしてもよい。 When it is expected that the light quantity distribution of the external light incident on the LEDs 1a to h is not uniform, for example, the LEDs 1a to h are divided into a plurality of groups (for example, the first group to which the LEDs 1a to 1c, 1g, and 1h belong and the LEDs 1d to h). It is also possible to adopt a configuration in which one diode 6 is provided in each group.
 また、光半導体照明装置が屋外の所定位置に固定されて使用される場合には、外光の状態に規則性がある可能性が高いため、例えば、日付や時間帯に応じたLED1a~hの光起電力の相関関係を予め把握しておくことで、ステップS50で用いる差分値を補正する構成にしてもよい。 In addition, when the optical semiconductor lighting device is used while being fixed at a predetermined outdoor position, there is a high possibility that there is regularity in the state of outside light. For example, the LEDs 1a to h corresponding to the date and time zone A configuration may be adopted in which the difference value used in step S50 is corrected by grasping the correlation of the photovoltaic power in advance.
<第2実施形態>
 図4は、第2実施形態の光半導体照明装置の構成を示す図である。
Second Embodiment
FIG. 4 is a diagram illustrating a configuration of the optical semiconductor lighting device of the second embodiment.
 第2実施形態の光半導体照明装置は、制御部9が外部からの調光信号を受け取り、その調光信号に応じて可変電流源2a~2hの出力電流を調整する点で第1実施形態の光半導体照明装置と異なっており、それ以外の部分は基本的に第1実施形態の光半導体照明装置と同様である。 The optical semiconductor lighting device of the second embodiment is the same as that of the first embodiment in that the control unit 9 receives a dimming signal from the outside and adjusts the output currents of the variable current sources 2a to 2h according to the dimming signal. It is different from the optical semiconductor lighting device, and other parts are basically the same as those of the optical semiconductor lighting device of the first embodiment.
 制御部9は、外部からの調光信号に応じてオンデューティ比が変化するPWM信号を可変電流源2a~2hに出力する。例えば外部からの調光信号がPWM信号である場合には、制御部9から可変電流源2a~2hに出力するPWM信号を外部からの調光信号と同一波形にするとよい。例えば外部からの調光信号が直流電圧信号である場合には、制御部9から可変電流源2a~2hに出力するPWM信号のオンデューティ比を直流電圧信号の電圧値に比例させるとよい。 The controller 9 outputs a PWM signal whose on-duty ratio changes according to a dimming signal from the outside to the variable current sources 2a to 2h. For example, when the external dimming signal is a PWM signal, the PWM signal output from the control unit 9 to the variable current sources 2a to 2h may have the same waveform as the external dimming signal. For example, when the external dimming signal is a DC voltage signal, the on-duty ratio of the PWM signal output from the control unit 9 to the variable current sources 2a to 2h may be proportional to the voltage value of the DC voltage signal.
 本実施形態において、可変電流源2a~2hは、原則として、制御部9から供給されるPWM信号のオン期間でオン状態となり、制御部9から供給されるPWM信号のオフ期間でオフ状態(出力電流停止状態)となる。そして、制御部9は、制御部9から可変電流源2a~2hに供給されるPWM信号のオフ期間において、少なくともステップS10及びステップS40の処理を実行する。これにより、LED1a~1hによる照明が妨げられることなく、LED1a~1hのジャンクション温度を求めることが可能となる。なお、図3のステップS10~S60の処理を全てPWM信号のオフ期間において実行してもよい。 In this embodiment, in principle, the variable current sources 2a to 2h are turned on in the on period of the PWM signal supplied from the control unit 9, and are turned off (output) in the off period of the PWM signal supplied from the control unit 9. (Current stop state). Then, the control unit 9 executes at least the processes of step S10 and step S40 in the off period of the PWM signal supplied from the control unit 9 to the variable current sources 2a to 2h. As a result, the junction temperatures of the LEDs 1a to 1h can be obtained without impeding illumination by the LEDs 1a to 1h. Note that all the processes of steps S10 to S60 in FIG. 3 may be executed during the OFF period of the PWM signal.
<第3実施形態>
 図5は、第3実施形態の光半導体照明装置の構成を示す図である。
<Third Embodiment>
FIG. 5 is a diagram illustrating a configuration of the optical semiconductor lighting device of the third embodiment.
 第3実施形態の光半導体照明装置は、ダイオード6がサーミスター10に置き換わっている点で第1実施形態の光半導体照明装置と異なっており、それ以外の部分は基本的に第1実施形態の光半導体照明装置と同様である。 The optical semiconductor lighting device of the third embodiment is different from the optical semiconductor lighting device of the first embodiment in that the diode 6 is replaced with the thermistor 10, and other parts are basically the same as those of the first embodiment. This is the same as the optical semiconductor lighting device.
 図6は、第3実施形態の光半導体照明装置の動作を示すフローチャートである。 FIG. 6 is a flowchart showing the operation of the optical semiconductor lighting device of the third embodiment.
 第3実施形態の光半導体照明装置は、装置の起動が完了すると直ちに図6に示すフローチャートの動作を開始する。 The optical semiconductor lighting device of the third embodiment starts the operation of the flowchart shown in FIG. 6 as soon as the startup of the device is completed.
 まず始めに、定電流源5a及び8がオン状態になり、それ以外の電流源がオフ状態(出力電流停止状態)になるように制御部9が各電流源を制御するとともに、スイッチ3aが定電流源5aを選択するように制御部9がスイッチ3aを制御する。このような制御状態の下で、サーミスター10の温度が電圧検出部7によって測定され、定電流I時におけるLED1aの順方向電圧Vfが電圧検出部4aによって測定される(ステップS11)。電圧検出部7の測定結果(温度測定結果)及び電圧検出部4aの測定結果は、内部メモリなどのデータ保持部に格納される。 First, the control unit 9 controls each current source so that the constant current sources 5a and 8 are turned on and the other current sources are turned off (output current stop state), and the switch 3a is turned on. The controller 9 controls the switch 3a so as to select the current source 5a. Under such a control state, the temperature of the thermistor 10 is measured by the voltage detector 7, and the forward voltage Vf of the LED 1a at the time of the constant current I C is measured by the voltage detector 4a (step S11). The measurement result (temperature measurement result) of the voltage detection unit 7 and the measurement result of the voltage detection unit 4a are stored in a data holding unit such as an internal memory.
 サーミスター10はLED1aの近傍に配置されている。これにより、サーミスター10の温度とLED1aのジャンクション温度を略同一にすることができる。したがって、サーミスター10の温度をLED1aのジャンクション温度とみなすことができる。サーミスター10の抵抗値は外光の影響を受けないため、電圧検出部7の測定結果は外光の影響を受けていない。一方、LED1aに外光が入射した場合に、電圧検出部4aの測定結果は外光の影響を受ける。 The thermistor 10 is arranged in the vicinity of the LED 1a. Thereby, the temperature of the thermistor 10 and the junction temperature of LED1a can be made substantially the same. Therefore, the temperature of the thermistor 10 can be regarded as the junction temperature of the LED 1a. Since the resistance value of the thermistor 10 is not affected by external light, the measurement result of the voltage detector 7 is not affected by external light. On the other hand, when external light is incident on the LED 1a, the measurement result of the voltage detector 4a is affected by the external light.
 ステップS11に続くステップS21において、制御部9は、電圧検出部7の測定結果から、定電流I時におけるLED1aの暗黒時の順方向電圧Vf_dを求めて、求めたデータを内部メモリなどのデータ保持部に格納する。 In step S21 following step S11, the control unit 9 obtains the forward voltage Vf_d in the dark of the LED 1a at the time of the constant current I C from the measurement result of the voltage detection unit 7, and the obtained data is stored in the internal memory or the like. Store in the holding unit.
 定電流I時におけるLED1aの暗黒時の順方向電圧Vf_dとLED1aのジャンクション温度との関係は、LED1aの特性から理論的に求まる。 Relationship between the forward voltage Vf_d and LED1a junction temperature during dark LED1a during the constant current I C is obtained theoretically from the characteristics of LED1a.
 ステップS31~ステップS81それぞれは、図3のステップS30~ステップS80それぞれと同一のステップであるため、ここでは説明を省略する。 Step S31 to Step S81 are the same as Step S30 to Step S80 in FIG.
 第3実施形態の光半導体照明装置は、電源オフ状態になるまで図6に示す動作を継続して実行する。 The optical semiconductor lighting device of the third embodiment continuously performs the operation shown in FIG. 6 until the power is turned off.
 なお、ステップS21の処理は、制御部9が予め記憶している関係式を用いて実行してもよく、制御部9が予め記憶しているデータテーブルを用いて実行してもよい。 The process of step S21 may be executed using a relational expression stored in advance by the control unit 9, or may be executed using a data table stored in advance by the control unit 9.
 第3実施形態の光半導体照明装置も、第1,2実施形態の光半導体照明装置と同様の効果を奏する。 The optical semiconductor lighting device of the third embodiment also has the same effect as the optical semiconductor lighting device of the first and second embodiments.
<第4実施形態>
 図7は、第4実施形態の光半導体照明装置の構成を示す図である。
<Fourth embodiment>
FIG. 7 is a diagram illustrating the configuration of the optical semiconductor lighting device of the fourth embodiment.
 第4実施形態の光半導体照明装置は、ダイオード6、電圧検出部7、及び定電流源8がシャッター駆動部11及びシャッター12に置き換わっている点で第1実施形態の光半導体照明装置と異なっており、それ以外の部分は基本的に第1実施形態の光半導体照明装置と同様である。 The optical semiconductor lighting device of the fourth embodiment is different from the optical semiconductor lighting device of the first embodiment in that the diode 6, the voltage detection unit 7, and the constant current source 8 are replaced with the shutter driving unit 11 and the shutter 12. The other parts are basically the same as those of the optical semiconductor lighting device of the first embodiment.
 図8は、第4実施形態の光半導体照明装置の動作を示すフローチャートである。 FIG. 8 is a flowchart showing the operation of the optical semiconductor lighting device of the fourth embodiment.
 第4実施形態の光半導体照明装置は、装置の起動が完了すると直ちに図8に示すフローチャートの動作を開始する。 The optical semiconductor lighting device according to the fourth embodiment starts the operation of the flowchart shown in FIG. 8 immediately after the start-up of the device is completed.
 まず始めに、定電流源5aがオン状態になり、それ以外の電流源がオフ状態(出力電流停止状態)になるように制御部9が各電流源を制御するとともに、スイッチ3aが定電流源5aを選択するように制御部9がスイッチ3aを制御する。さらに、シャッター駆動部12がシャッター11を駆動しないように制御部9がシャッター駆動部12を制御する。これにより、LED1aに入射する外光がシャッター11によって遮光されない状態となる。このような制御状態の下で、定電流I時におけるLED1aの順方向電圧Vfが電圧検出部4aによって測定される(ステップS12)。電圧検出部4aの測定結果は、定電流I時におけるLED1aの順方向電圧Vf_dのデータとして、内部メモリなどのデータ保持部に格納される。 First, the control unit 9 controls each current source so that the constant current source 5a is turned on and the other current sources are turned off (output current stop state), and the switch 3a is connected to the constant current source. The control unit 9 controls the switch 3a so as to select 5a. Further, the control unit 9 controls the shutter drive unit 12 so that the shutter drive unit 12 does not drive the shutter 11. As a result, the external light incident on the LED 1a is not shielded by the shutter 11. Under such a control state, the forward voltage Vf of the LED 1a at the time of the constant current I C is measured by the voltage detector 4a (step S12). Measurement results of the voltage detection unit 4a, as the data of the forward voltage Vf_d of LED1a during the constant current I C, is stored in the data holding unit, such as an internal memory.
 ステップS12に続くステップS22において、シャッター駆動部12がシャッター11を駆動するように制御部9がシャッター駆動部12を制御する。これにより、LED1aに入射する外光がシャッター11によって遮光される状態となる。このような制御状態の下で、定電流I時におけるLED1aの暗黒時の順方向電圧Vf_dが電圧検出部4aによって測定される(ステップS22)。電圧検出部4aの測定結果は、定電流I時におけるLED1aの暗黒時の順方向電圧Vf_dのデータとして、内部メモリなどのデータ保持部に格納される。 In step S22 following step S12, the controller 9 controls the shutter driver 12 so that the shutter driver 12 drives the shutter 11. As a result, external light incident on the LED 1a is blocked by the shutter 11. Under such a control state, the forward voltage Vf_d in the dark state of the LED 1a at the constant current I C is measured by the voltage detection unit 4a (step S22). Measurement results of the voltage detection unit 4a, as the data of the forward voltage Vf_d during dark LED1a during the constant current I C, is stored in the data holding unit, such as an internal memory.
 ステップS22の処理が終了すると、シャッター駆動部12がシャッター11を駆動しないように制御部9がシャッター駆動部12を制御する。これにより、LED1aに入射する外光がシャッター11によって遮光しない状態に戻る。 When the processing of step S22 is completed, the control unit 9 controls the shutter drive unit 12 so that the shutter drive unit 12 does not drive the shutter 11. As a result, the outside light incident on the LED 1a returns to the state where it is not shielded by the shutter 11.
 ステップS22に続くステップS32において、制御部9は、ステップS12での電圧検出部4aの測定結果とステップS22での電圧検出部4aの測定結果との差分(=LED1aの光起電力)を求めて、求めたデータを内部メモリなどのデータ保持部に格納する。 In step S32 following step S22, the control unit 9 obtains a difference (= photovoltaic power of the LED 1a) between the measurement result of the voltage detection unit 4a in step S12 and the measurement result of the voltage detection unit 4a in step S22. The obtained data is stored in a data holding unit such as an internal memory.
 ステップS42~ステップS82それぞれは、図3のステップS40~ステップS80それぞれと同一のステップであるため、ここでは説明を省略する。 Since steps S42 to S82 are the same as steps S40 to S80 in FIG. 3, description thereof is omitted here.
 第4実施形態の光半導体照明装置は、電源オフ状態になるまで図8に示す動作を継続して実行する。 The optical semiconductor lighting device of the fourth embodiment continuously performs the operation shown in FIG. 8 until the power is turned off.
 第4実施形態の光半導体照明装置も、第1~3実施形態の光半導体照明装置と同様の効果を奏する。なお、例えば第4実施形態の光半導体照明装置を車両のヘッドライトに用いた場合に、AFS(adaptive front-lighting system)で使用される遮光シェードを改良してシャッター11に流用してもよい。 The optical semiconductor lighting device of the fourth embodiment also has the same effects as the optical semiconductor lighting device of the first to third embodiments. For example, when the optical semiconductor lighting device of the fourth embodiment is used for a vehicle headlight, a light shielding shade used in an AFS (adaptive front-lighting system) may be improved and used for the shutter 11.
<第5実施形態>
 図9は、第5実施形態の光半導体照明装置の構成を示す図である。
<Fifth Embodiment>
FIG. 9 is a diagram illustrating the configuration of the optical semiconductor lighting device of the fifth embodiment.
 第5実施形態の光半導体照明装置は、電圧検出部4a~4h及び定電流源5a~5hが電流検出部13a~13h及び定電圧源14a~14hが置き換わり電圧検出部7及び定電流源8が電流検出部15及び定電圧源16が置き換わっている点で第1実施形態の光半導体照明装置と異なっており、それ以外の部分は基本的に第1実施形態の光半導体照明装置と同様である。 In the optical semiconductor lighting device of the fifth embodiment, the voltage detectors 4a to 4h and the constant current sources 5a to 5h are replaced with the current detectors 13a to 13h and the constant voltage sources 14a to 14h, and the voltage detector 7 and the constant current source 8 are replaced. It differs from the optical semiconductor lighting device of the first embodiment in that the current detection unit 15 and the constant voltage source 16 are replaced, and other parts are basically the same as those of the optical semiconductor lighting device of the first embodiment. .
 図10は、第5実施形態の光半導体照明装置の動作を示すフローチャートである。 FIG. 10 is a flowchart showing the operation of the optical semiconductor lighting device of the fifth embodiment.
 第5実施形態の光半導体照明装置は、装置の起動が完了すると直ちに図10に示すフローチャートの動作を開始する。 The optical semiconductor lighting device of the fifth embodiment starts the operation of the flowchart shown in FIG. 10 immediately after the start of the device is completed.
 まず始めに、可変電流源2a~2hがオフ状態(出力電流停止状態)になるように制御部9が可変電流源2a~2hを制御するとともに、スイッチ3aが定電圧源14aを選択するように制御部9がスイッチ3aを制御する。このような制御状態の下で、ダイオード6の順方向電流Ifが電流検出部15によって測定され、定電流I時におけるLED1aの順方向電流Ifが電流検出部13aによって測定される(ステップS13)。電流検出部15の測定結果及び電流検出部13aの測定結果は、内部メモリなどのデータ保持部に格納される。 First, the control unit 9 controls the variable current sources 2a to 2h so that the variable current sources 2a to 2h are turned off (output current stop state), and the switch 3a selects the constant voltage source 14a. The control unit 9 controls the switch 3a. Under such a control state, the forward current If of the diode 6 is measured by the current detector 15, and the forward current If of the LED 1a at the constant current I C is measured by the current detector 13a (step S13). . The measurement result of the current detection unit 15 and the measurement result of the current detection unit 13a are stored in a data holding unit such as an internal memory.
 ステップS13に続くステップS23において、制御部9は、電流検出部15の測定結果及び電流検出部13aの測定結果から、LED1aの暗黒時の順方向電流If_dを求めて、求めたデータを内部メモリなどのデータ保持部に格納する。 In step S23 following step S13, the control unit 9 obtains the forward current If_d in the dark of the LED 1a from the measurement result of the current detection unit 15 and the measurement result of the current detection unit 13a, and stores the obtained data in an internal memory or the like. Stored in the data holding unit.
 ステップS23に続くステップS33において、制御部9は、電流検出部13aの測定結果とLED1aの暗黒時の順方向電流If_dとの差分を求めて、求めたデータを内部メモリなどのデータ保持部に格納する。 In step S33 following step S23, the control unit 9 obtains a difference between the measurement result of the current detection unit 13a and the forward current If_d of the LED 1a in the dark, and stores the obtained data in a data holding unit such as an internal memory. To do.
 ステップS33に続くステップS43において、可変電流源2bがオフ状態(出力電流停止状態)になるように制御部9が可変電流源2bを制御するとともに、スイッチ3bが定電圧源14bを選択するように制御部9がスイッチ3bを制御する。このような制御状態の下で、LED1bの順方向電流Ifが電流検出部13bによって測定される。 In step S43 following step S33, the control unit 9 controls the variable current source 2b so that the variable current source 2b is turned off (output current stop state), and the switch 3b selects the constant voltage source 14b. The controller 9 controls the switch 3b. Under such a control state, the forward current If of the LED 1b is measured by the current detector 13b.
 ステップS43において、電流検出部13c~13hによるLED1c~1hの順方向電流Ifの測定も、電流検出部13bによるLED1bの順方向電流Ifの測定と同様に実行される。そして、電流検出部13b~13hの測定結果は、制御部9の内部メモリなどのデータ保持部に格納される。 In step S43, the measurement of the forward current If of the LEDs 1c to 1h by the current detection units 13c to 13h is performed in the same manner as the measurement of the forward current If of the LED 1b by the current detection unit 13b. The measurement results of the current detection units 13b to 13h are stored in a data holding unit such as an internal memory of the control unit 9.
 ステップS43に続くステップS53において、制御部9は、ステップS43で求めた電流検出部13b~13hの測定結果とステップS33で求めたLED1aの差分値から、LED1b~1hの暗黒時の順方向電流If_dを求めて、求めたデータを内部メモリなどのデータ保持部に格納する。 In step S53 following step S43, the control unit 9 determines the forward current If_d in the dark of the LEDs 1b to 1h from the difference value between the LED 1a obtained in step S33 and the measurement result of the current detection units 13b to 13h obtained in step S43. And the obtained data is stored in a data holding unit such as an internal memory.
 ステップS53に続くステップS63において、制御部9は、ステップS23で求めたLED1aの暗黒時の順方向電流If_d及びステップS53で求めたLED1b~1hの暗黒時の順方向電流If_dから、LED1a~1hのジャンクション温度を求めて、求めたデータを内部メモリなどのデータ保持部に格納する。 In step S63 following step S53, the control unit 9 determines the LED 1a to 1h based on the dark forward current If_d of the LED 1a obtained in step S23 and the dark forward current If_d of the LEDs 1b to 1h obtained in step S53. The junction temperature is obtained, and the obtained data is stored in a data holding unit such as an internal memory.
 ステップS73~ステップS83それぞれは、図3のステップS70~ステップS80それぞれと同一のステップであるため、ここでは説明を省略する。 Since steps S73 to S83 are the same as steps S70 to S80 in FIG. 3, the description thereof is omitted here.
 第5実施形態の光半導体照明装置は、電源オフ状態になるまで図10に示す動作を継続して実行する。 The optical semiconductor lighting device of the fifth embodiment continuously performs the operation shown in FIG. 10 until the power is turned off.
 第5実施形態の光半導体照明装置も、第1~4実施形態の光半導体照明装置と同様の効果を奏する。ただし、電流検出部よりも電圧検出部の方が構成を簡単にすることができるため、第5実施形態の光半導体照明装置よりも第1~4実施形態の光半導体照明装置の方が好ましい。 The optical semiconductor lighting device of the fifth embodiment also has the same effects as the optical semiconductor lighting devices of the first to fourth embodiments. However, since the configuration of the voltage detection unit can be simplified compared to the current detection unit, the optical semiconductor illumination devices of the first to fourth embodiments are preferable to the optical semiconductor illumination device of the fifth embodiment.
<用途>
 上記した各実施形態の光半導体照明装置は、例えば、図11及び図12で示す通り、車両X10のヘッドライト(ハイビーム/ロービーム/スモールランプ/フォグランプなどを適宜含 む)X11、白昼夜走行(DRL)用光源X12、テールランプ(スモールランプやバックランプなどを適宜含む)X13、ストップランプX14、及び、ター ンランプX15などとして好適に用いることができる。白昼夜走行(DRL)用光源X12は、他のランプよりも外光の影響を受ける時間が長いため、本発明の適用が他のランプに比べてより一層好適である。
<Application>
For example, as shown in FIGS. 11 and 12, the optical semiconductor lighting device of each embodiment described above includes a headlight (including high beam / low beam / small lamp / fog lamp, etc.) X11 of the vehicle X10, daylight / night driving (DRL). ) Light source X12, tail lamp (including small lamp and back lamp as appropriate) X13, stop lamp X14, and turn lamp X15. The daylight / nighttime (DRL) light source X12 has a longer time to be affected by external light than other lamps, and therefore, the application of the present invention is more preferable than other lamps.
 上記した各実施形態の光半導体照明装置は、モジュール(図13のLEDヘッドライトモジュールY10、図14の LEDターンランプモジュールY20、及び、図15のLEDリアランプモジュールY30など)として提供されるものであってもよいし、LED1a~1h及び電流源や電圧源の一部として用いられる外付けコンデンサ等の外付け部品を除いた半製品であるIC単体として提供されるものであってもよい。 The optical semiconductor lighting devices of the above-described embodiments are provided as modules (LED headlight module Y10 in FIG. 13, LED turn lamp module Y20 in FIG. 14, LED rear lamp module Y30 in FIG. 15, etc.). Alternatively, it may be provided as a single IC that is a semi-finished product excluding the LEDs 1a to 1h and external components such as external capacitors used as part of the current source and voltage source.
 なお、車両以外の移動体に設けられるランプとして、上記した各実施形態の光半導体照明装置を用いてもよい。例えば、航空機の主翼両端に設けられるランプとして、上記した各実施形態の光半導体照明装置を用いてもよい。 In addition, you may use the optical semiconductor illuminating device of each above-mentioned embodiment as a lamp provided in moving bodies other than a vehicle. For example, the optical semiconductor lighting devices of the above-described embodiments may be used as lamps provided at both ends of the main wing of an aircraft.
 他の用途では、図16に示す信号機Z10に設けられるランプZ11~Z13として、上記した各実施形態の光半導体照明装置を用いてもよい。また、信号機の以外の屋外灯(例えば公園や街路に設置される屋外照明灯など)に設けられるランプとして、上記した各実施形態の光半導体照明装置を用いてもよい。 In other applications, the optical semiconductor lighting devices of the above-described embodiments may be used as the lamps Z11 to Z13 provided in the traffic light Z10 shown in FIG. Moreover, you may use the optical semiconductor illuminating device of each above-mentioned embodiment as a lamp | ramp provided in outdoor lights (for example, the outdoor illumination lamp etc. which are installed in a park or a street) other than a signal apparatus.
<その他の変形例>
 なお、本発明の構成は、上記実施形態のほか、発明の主旨を逸脱しない範囲で種々の変更を加えることが可能である。
<Other variations>
The configuration of the present invention can be variously modified in addition to the above-described embodiment without departing from the gist of the invention.
 例えば、上記実施形態では光半導体素子としてLEDを用いたが、LED以外の光半導体素子(例えばレーザーダイオードなど)を用いてもよい。 For example, in the above embodiment, an LED is used as the optical semiconductor element, but an optical semiconductor element other than the LED (for example, a laser diode) may be used.
 また、上記第1~第4実施形態では、各定電流源の出力電流の値を同一にしたが、本発明はこれに限定されない。各定電流源の出力電流の値が異なる場合は、定電流源8の出力電流の値と他の定電流源の出力電流の値との相関関係を予め把握し、LEDの順方向電圧Vfを求める際にその相関関係を反映させればよい。 In the first to fourth embodiments, the value of the output current of each constant current source is the same, but the present invention is not limited to this. When the output current value of each constant current source is different, the correlation between the output current value of the constant current source 8 and the output current value of another constant current source is grasped in advance, and the forward voltage Vf of the LED is determined. What is necessary is just to reflect the correlation when calculating | requiring.
 また、上記第5実施形態では、各定電圧源の出力電圧の値を同一にすることを前提としているが、本発明はこれに限定されない。各定電圧源の出力電圧の値が異なる場合は、定電圧源16の出力電圧の値と他の定電圧源の出力電圧の値との相関関係を予め把握し、LEDの順方向電流Ifを求める際にその相関関係を反映させればよい。 In the fifth embodiment, it is assumed that the output voltage value of each constant voltage source is the same, but the present invention is not limited to this. When the output voltage value of each constant voltage source is different, the correlation between the output voltage value of the constant voltage source 16 and the output voltage value of the other constant voltage source is grasped in advance, and the forward current If of the LED is calculated. What is necessary is just to reflect the correlation when calculating | requiring.
 また、上記第1~第5実施形態では、各LEDの特性が同一であることを前提としているが、本発明はこれに限定されない。各LEDの特性が異なる場合は、LED1aの特性と他のLEDの特性との相関関係を予め把握し、LEDの順方向電圧Vf、LEDの順方向電流If、LEDのジャンクション温度を求める際にその相関関係を反映させればよい。 In the first to fifth embodiments, it is assumed that the characteristics of each LED are the same, but the present invention is not limited to this. When the characteristics of each LED are different, the correlation between the characteristics of the LED 1a and the characteristics of the other LEDs is grasped in advance, and the LED forward voltage Vf, the LED forward current If, and the LED junction temperature are obtained. What is necessary is just to reflect a correlation.
 また、上記実施形態では、駆動電圧Vの供給ライン側に電流源を配置し、グランド側にLEDを配置したが、本発明はこれに限定されない。駆動電圧Vの供給ライン側にLEDを配置し、グランド側に電流源を配置してもよい。例えば、上記第1実施形態の光半導体照明装置に対して、駆動電圧Vの供給ライン側にLEDを配置し、グランド側に電流源を配置する変形を施した場合、図17Aに示すような構成になる。 In the above embodiment, the current source is arranged on the supply line side of the drive voltage V D, it has been disposed an LED on the ground side, the present invention is not limited thereto. The LED is disposed on the supply line side of the drive voltage V D, it may be arranged a current source to the ground side. For example, with respect to the optical semiconductor lighting apparatus of the first embodiment, the LED is arranged on the supply line side of the drive voltage V D, when subjected to deformation to place the current source to the ground, as shown in FIG. 17A It becomes a composition.
 図17Aに示す光半導体照明装置においても、LED1aの近傍にダイオード6が配置される。そして、ダイオード6が近傍に配置されるLED1aは導電性の放熱パッドを有し、LED1aの放熱パッドはダイオード6のカソード電極と電気的に接続されていることが望ましい。 Also in the optical semiconductor lighting device shown in FIG. 17A, the diode 6 is disposed in the vicinity of the LED 1a. The LED 1a in which the diode 6 is disposed in the vicinity has a conductive heat dissipation pad, and the heat dissipation pad of the LED 1a is preferably electrically connected to the cathode electrode of the diode 6.
 図17Bは、図17Aに示す光半導体照明装置におけるLED1aとダイオード6の電極配置例を示す概略上面図である。ダイオード6の裏側にアノード電極61とカソード電極62とが形成されている。また、ダイオード6と図2Bに示す構造のLED1aとを実装する実装基板20の表側に駆動電圧供給用パターン22が形成されている。駆動電圧供給用パターン22としては、電気抵抗が小さい銅箔等を用いるとよい。LED1aの裏側アノード電極L9及び裏側放熱パッドL11が駆動電圧供給用パターン22によってダイオード6のアノード電極61と電気的に接続されている。 FIG. 17B is a schematic top view showing an electrode arrangement example of the LED 1a and the diode 6 in the optical semiconductor lighting device shown in FIG. 17A. An anode electrode 61 and a cathode electrode 62 are formed on the back side of the diode 6. A driving voltage supply pattern 22 is formed on the front side of the mounting substrate 20 on which the diode 6 and the LED 1a having the structure shown in FIG. 2B are mounted. As the driving voltage supply pattern 22, it is preferable to use a copper foil or the like having a small electric resistance. The back side anode electrode L9 and the back side heat radiation pad L11 of the LED 1a are electrically connected to the anode electrode 61 of the diode 6 by the drive voltage supply pattern 22.
 図17Bに示すように、LED1aの裏側アノード電極L9と裏側放熱パッドL11とは電気的に接続される。したがって、図2Bに示す構造の代わりに、図17Cに示すように裏側アノード電極L9と裏側放熱パッドL11とが繋がっている構造でもよく、図17Dに示すように表側アノード電極L6と表側放熱パッドL8とが繋がっている構造でもよく、図17Eに示すように裏側アノード電極L9と裏側放熱パッドL11とが繋がっており表側アノード電極L6と表側放熱パッドL8とが繋がっている構造でもよい。 As shown in FIG. 17B, the back side anode electrode L9 of the LED 1a and the back side heat radiation pad L11 are electrically connected. Therefore, instead of the structure shown in FIG. 2B, a structure in which the back-side anode electrode L9 and the back-side heat dissipating pad L11 are connected as shown in FIG. 17C may be used, and a front-side anode electrode L6 and a front-side heat dissipating pad L8 are shown in FIG. The back side anode electrode L9 and the back side heat radiation pad L11 may be connected, and the front side anode electrode L6 and the front side heat dissipation pad L8 may be connected as shown in FIG. 17E.
 このように、上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態の説明ではなく、特許請求の範囲によって示されるものであり、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。 As described above, the above embodiments are examples in all respects and should not be considered to be restrictive, and the technical scope of the present invention is not the description of the above embodiments, but the claims. It is to be understood that all changes that come within the scope of the claims, are equivalent in meaning to the claims, and fall within the scope of the claims.
 本発明は、例えば、移動体の各種ランプや屋外灯等で用いられる光半導体照明装置に適用することが可能である。 The present invention can be applied to, for example, an optical semiconductor illumination device used in various lamps, outdoor lights, and the like of mobile objects.
   1a~1h LED
   2a~2h 可変電流源
   3a~3h スイッチ
   4a~4h、7 電圧検出部
   5a~5h、8 定電流源
   6 ダイオード
   9 制御部
   10 サーミスター
   11 シャッター駆動部
   12 シャッター
   13a~13h、15 電流検出部
   14a~14h、16 定電圧源
   20 実装基板
   21 グランドパターン
   22 駆動電圧供給用パターン
   X10 車両
   X11 ヘッドライト
   X12 白昼夜走行(DRL)用光源
   X13 テールランプ
   X14 ストップランプ
   X15 ターンランプ
   Y10 LEDヘッドライトモジュール
   Y20 LEDターンランプモジュール
   Y30 LEDリアランプモジュール
   Z10 信号機
   Z11~Z13 ランプ
1a ~ 1h LED
2a to 2h Variable current source 3a to 3h Switch 4a to 4h, 7 Voltage detection unit 5a to 5h, 8 Constant current source 6 Diode 9 Control unit 10 Thermistor 11 Shutter drive unit 12 Shutter 13a to 13h, 15 Current detection unit 14a to 14h, 16 constant voltage source 20 mounting board 21 ground pattern 22 drive voltage supply pattern X10 vehicle X11 headlight X12 light source for day / night driving (DRL) X13 tail lamp X14 stop lamp X15 turn lamp Y10 LED headlight module Y20 LED turn lamp module Y30 LED rear lamp module Z10 Traffic light Z11 to Z13 Lamp

Claims (15)

  1.  光半導体素子と、
     少なくとも一つの他の光半導体素子と、
     前記光半導体素子の順方向電圧を検出する第1検出部と、
     前記光半導体素子の暗黒時の順方向電圧を検出する第2検出部と、
     前記他の光半導体素子の順方向電圧それぞれを検出する第3検出部と、
     第1検出部の検出結果と第2検出部の検出結果の差分及び第3検出部の検出結果に基づいて、前記他の光半導体素子の暗黒時の順方向電圧それぞれを検出する第4検出部と、
     第2検出部の検出結果から前記光半導体素子のジャンクション温度を検出する第5検出部と、
     第4検出部の検出結果から前記他の光半導体素子のジャンクション温度それぞれを検出する第6検出部と、
     を有することを特徴とする光半導体照明装置。
    An optical semiconductor element;
    At least one other optical semiconductor element;
    A first detector for detecting a forward voltage of the optical semiconductor element;
    A second detector for detecting a forward voltage in the dark of the optical semiconductor element;
    A third detector for detecting each forward voltage of the other optical semiconductor element;
    A fourth detection unit that detects each forward voltage in the dark of the other optical semiconductor element based on the difference between the detection result of the first detection unit and the detection result of the second detection unit and the detection result of the third detection unit. When,
    A fifth detector for detecting a junction temperature of the optical semiconductor element from a detection result of the second detector;
    A sixth detector for detecting each junction temperature of the other optical semiconductor element from the detection result of the fourth detector;
    An optical semiconductor lighting device comprising:
  2.  第2検出部は、前記光半導体素子の近傍に配置され外光の影響を受けずに所定の物理量を出力するセンサを含み、前記センサの検出結果に基づいて前記光半導体素子の暗黒時の順方向電圧を検出する請求項1に記載の光半導体照明装置。 The second detection unit includes a sensor that is disposed in the vicinity of the optical semiconductor element and outputs a predetermined physical quantity without being affected by external light, and based on the detection result of the sensor, the order of the optical semiconductor element in the dark state. The optical semiconductor lighting device according to claim 1, wherein a direction voltage is detected.
  3.  前記センサは、遮光性物質で封止されたダイオードであり、
     第2検出部は、前記ダイオードの順方向電圧に基づいて前記光半導体素子の暗黒時の順方向電圧を検出する請求項2に記載の光半導体照明装置。
    The sensor is a diode sealed with a light shielding material,
    The optical semiconductor illumination device according to claim 2, wherein the second detection unit detects a forward voltage in the dark of the optical semiconductor element based on a forward voltage of the diode.
  4.  前記センサは、サーミスターであり、
     第2検出部は、前記サーミスターによって検出された温度に基づいて前記光半導体素子の暗黒時の順方向電圧を検出する請求項2に記載の光半導体照明装置。
    The sensor is a thermistor,
    The optical semiconductor lighting device according to claim 2, wherein the second detection unit detects a forward voltage in the dark of the optical semiconductor element based on the temperature detected by the thermistor.
  5.  第2検出部は、前記光半導体素子に入射する外光を遮光可能な可動式遮光機構を含み、前記光半導体素子に入射する外光を前記可動式遮光機構によって遮光した状態で前記光半導体素子の暗黒時の順方向電圧を検出する請求項1に記載の光半導体照明装置。 The second detection unit includes a movable light shielding mechanism capable of shielding external light incident on the optical semiconductor element, and the optical semiconductor element in a state where the external light incident on the optical semiconductor element is shielded by the movable light shielding mechanism. The optical semiconductor lighting device according to claim 1, wherein a forward voltage in the dark is detected.
  6.  光半導体素子と、
     少なくとも一つの他の光半導体素子と、
     前記光半導体素子の順方向電流を検出する第1検出部と、
     前記光半導体素子の暗黒時の順方向電流を検出する第2検出部と、
     前記他の光半導体素子の順方向電流それぞれを検出する第3検出部と、
     第1検出部の検出結果と第2検出部の検出結果の差分及び第3検出部の検出結果に基づいて、前記他の光半導体素子の暗黒時の順方向電流それぞれを検出する第4検出部と、
     第2検出部の検出結果から前記光半導体素子のジャンクション温度を検出する第5検出部と、
     第4検出部の検出結果から前記他の光半導体素子のジャンクション温度それぞれを検出する第6検出部と、
     を有することを特徴とする光半導体照明装置。
    An optical semiconductor element;
    At least one other optical semiconductor element;
    A first detector for detecting a forward current of the optical semiconductor element;
    A second detector for detecting a forward current in the dark of the optical semiconductor element;
    A third detector for detecting a forward current of each of the other optical semiconductor elements;
    A fourth detector for detecting each forward current in the dark of the other optical semiconductor element based on the difference between the detection result of the first detector and the detection result of the second detector and the detection result of the third detector; When,
    A fifth detector for detecting a junction temperature of the optical semiconductor element from a detection result of the second detector;
    A sixth detector for detecting each junction temperature of the other optical semiconductor element from the detection result of the fourth detector;
    An optical semiconductor lighting device comprising:
  7.  外部からの調光信号に応じてオンデューティ比が変化するPWM信号に応じて前記光半導体素子及び前記他の光半導体素子に流れる電流を調整する電流調整部を備え、
     前記PWM信号のオフ期間において、少なくとも第1検出部及び第3検出部が検出動作を行う請求項1~6のいずれか一項に記載の光半導体照明装置。
    A current adjustment unit for adjusting a current flowing through the optical semiconductor element and the other optical semiconductor element according to a PWM signal whose on-duty ratio changes according to a dimming signal from the outside;
    The optical semiconductor lighting device according to any one of claims 1 to 6, wherein at least the first detection unit and the third detection unit perform a detection operation during an off period of the PWM signal.
  8.  前記光半導体素子及び前記他の光半導体素子は、発光ダイオード、または、レーザーダイオードである請求項1~7のいずれか一項に記載の光半導体照明装置。 The optical semiconductor lighting device according to any one of claims 1 to 7, wherein the optical semiconductor element and the other optical semiconductor element are light emitting diodes or laser diodes.
  9.  前記光半導体素子は、アノード電極、カソード電極、及び導電性の放熱パッドを有し、
     前記アノード電極及び前記カソード電極のいずれか一方と前記放熱パッドと前記センサの一端が電気的に接続されている請求項8に記載の光半導体照明装置。
    The optical semiconductor element has an anode electrode, a cathode electrode, and a conductive heat dissipation pad,
    The optical semiconductor lighting device according to claim 8, wherein one of the anode electrode and the cathode electrode, the heat dissipation pad, and one end of the sensor are electrically connected.
  10.  前記光半導体素子は、
     光半導体チップと、
     前記光半導体チップの第1面と前記放熱パッドとに設けられる熱伝導ペーストと、
     前記光半導体チップの前記第1面に対向する第2面に形成されているP型領域と前記アノード電極とを電気的に接続する第1接続部材と、
     前記光半導体チップの前記第2面に形成されているN型領域と前記カソード電極とを電気的に接続する第2接続部材と、
     を有する請求項9に記載の光半導体照明装置。
    The optical semiconductor element is:
    An optical semiconductor chip;
    A heat conductive paste provided on the first surface of the optical semiconductor chip and the heat dissipating pad;
    A first connection member that electrically connects a P-type region formed on a second surface of the optical semiconductor chip opposite to the first surface and the anode electrode;
    A second connecting member that electrically connects the N-type region formed on the second surface of the optical semiconductor chip and the cathode electrode;
    The optical semiconductor lighting device according to claim 9.
  11.  前記放熱パッドは、前記第1面及び前記第2面の法線方向から視て前記アノード電極と前記カソード電極との間に配置される請求項10に記載の光半導体照明装置。 11. The optical semiconductor lighting device according to claim 10, wherein the heat dissipating pad is disposed between the anode electrode and the cathode electrode when viewed from the normal direction of the first surface and the second surface.
  12.  少なくとも前記光半導体素子及び前記センサを実装する基板を有し、
     前記カソード電極及び前記放熱パッドが前記基板に形成されるグランドパターンによって前記センサの一端と電気的に接続されている請求項9~11のいずれか一項に記載の光半導体照明装置。
    Having at least a substrate on which the optical semiconductor element and the sensor are mounted;
    The optical semiconductor lighting device according to any one of claims 9 to 11, wherein the cathode electrode and the heat dissipation pad are electrically connected to one end of the sensor by a ground pattern formed on the substrate.
  13.  少なくとも前記光半導体素子及び前記センサを実装する基板を有し、
     前記アノード電極及び前記放熱パッドが前記基板に形成される駆動電圧供給用パターンによって前記センサの一端と電気的に接続されている請求項9~11のいずれか一項に記載の光半導体照明装置。
    Having at least a substrate on which the optical semiconductor element and the sensor are mounted;
    The optical semiconductor lighting device according to any one of claims 9 to 11, wherein the anode electrode and the heat dissipation pad are electrically connected to one end of the sensor by a drive voltage supply pattern formed on the substrate.
  14.  請求項1~13のいずれか一項に記載の光半導体照明装置を備えることを特徴とする移動体。 A moving body comprising the optical semiconductor lighting device according to any one of claims 1 to 13.
  15.  請求項1~13のいずれか一項に記載の光半導体照明装置を備えることを特徴とする屋外灯。 An outdoor lamp comprising the optical semiconductor lighting device according to any one of claims 1 to 13.
PCT/JP2016/081876 2015-10-27 2016-10-27 Optical semiconductor illumination device WO2017073662A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-211040 2015-10-27
JP2015211040 2015-10-27

Publications (1)

Publication Number Publication Date
WO2017073662A1 true WO2017073662A1 (en) 2017-05-04

Family

ID=58630417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081876 WO2017073662A1 (en) 2015-10-27 2016-10-27 Optical semiconductor illumination device

Country Status (1)

Country Link
WO (1) WO2017073662A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330927A (en) * 2003-05-08 2004-11-25 Koito Mfg Co Ltd Lighting fixture for vehicle
JP2008518389A (en) * 2004-10-22 2008-05-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for driving an illumination device using LEDs
JP2014049255A (en) * 2012-08-30 2014-03-17 Koito Electric Industries Ltd Led light flux control device, and road illuminating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330927A (en) * 2003-05-08 2004-11-25 Koito Mfg Co Ltd Lighting fixture for vehicle
JP2008518389A (en) * 2004-10-22 2008-05-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for driving an illumination device using LEDs
JP2014049255A (en) * 2012-08-30 2014-03-17 Koito Electric Industries Ltd Led light flux control device, and road illuminating device

Similar Documents

Publication Publication Date Title
JP4030903B2 (en) Vehicle lighting
CN111955055B (en) Vehicle lamp and lighting circuit thereof
KR100387552B1 (en) Illumination sensor and electronic automatic on/off switch
CN102170725A (en) A driving circuit of semiconductor-type light source for vehicle lighting device and a vehicle lighting device
TW201517685A (en) Light emitting diode illumination device
US9374864B2 (en) Lighting device and light fixture
US9345075B2 (en) Vehicular headlamp
US10009970B2 (en) Power supply device, solid-state light-emitting element lighting device, lamp, automotive lamp, vehicle, and method for controlling power converters
US9131559B2 (en) Heat dissipating method for light emitting diode and lighting device using same
CN110583099B (en) Method and system for controlling current in a semiconductor light source defining at least two distinct light emitting regions
WO2017073662A1 (en) Optical semiconductor illumination device
WO2019187279A1 (en) Light-emitting element drive device
CN201269446Y (en) Constant-current lamp strip apparatus
WO2022202670A1 (en) Light-emitting element drive device, light-emitting device, and vehicle
CN109155344B (en) Light emitting device and lighting device
US11343888B1 (en) MicroLED power considering outlier pixel dynamic resistance
JP4893537B2 (en) Light emitting module and manufacturing method thereof
JP2018010870A (en) Lighting and/or signaling device with scrolling effect
US11118740B1 (en) Light apparatus
JP2011143802A (en) Driving circuit of semiconductor type light source for vehicular lighting fixture, and vehicular lighting fixture
JP2010137675A (en) Led bulb for vehicle lighting fixture
JP2011060679A (en) Lighting system
JP2015147445A (en) Vehicle lighting appliance and its drive device
JP2023082233A (en) Lighting device
WO2019126584A1 (en) Dimmer interface having reduced power consumption

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP